Science.gov

Sample records for acid efa deficiency

  1. Increased plasma triglyceride secretion in EFA-deficient rats fed diets with or without saturated fat.

    PubMed

    Williams, M A; Tinoco, J; Hincenbergs, I; Thomas, B

    1989-05-01

    Metabolic responses to essential fatty acid-deficiency in rats include an increased rate of triglyceride secretion into the plasma, a large reduction in the HDL1 plasma lipoprotein concentration, and increased concentrations of liver triacylglycerols and cholesteryl esters. Because of differences in the types of EFA-deficient diets used, it is not clear whether these responses were solely due to the absence of EFA from the diet or whether saturated fat, or differences in acyl group chain length in this fat, might be responsible. Therefore, we fed rats diets differing only in amounts and kinds of fat, and measured triacylglycerol secretion rates and liver concentrations of triacylglycerols and cholesteryl esters, for comparison with our earlier measurements of plasma high density lipoprotein subpopulations in rats fed exactly the same diets. The purified diets contained either no fat, 5% by weight hydrogenated coconut oil, 5% hydrogenated cottonseed oil, or each of these three diets supplemented with 1% safflower oil, or 5% corn oil. We also fed some rats a nonpurified stock diet for comparison with literature reports. The present results indicate that the metabolic responses to essential fatty acid deficiency described above are definitely due to essential fatty acid-deficiency and not to the presence or chain length of acyl groups in saturated fat in the diet.

  2. Fatty acid composition of umbilical arteries and veins: possible implications for the fetal EFA-status.

    PubMed

    Hornstra, G; van Houwelingen, A C; Simonis, M; Gerrard, J M

    1989-06-01

    Fatty acid compositions were determined of phospholipids, isolated from umbilical arteries and veins, obtained from Dutch neonates after vaginal delivery, terminating normal pregnancy. The fatty acid profiles of the cord vessels were characterized by the absence of eicosapentaenoic (timnodonic) acid, a low (2-3%) content of linoleic acid and reasonable amounts of arachidonic acid (10-15%) and docosahexaenoic (cervonic) acid (3-5%). Significant amounts of Mead acid (1-4%) and its direct elongation product (0.5-2%) were also observed. In each cord, the efferent blood vessels contained significantly more Mead acid and other fatty acids of the oleic acid (n-9) family and less fatty acids of the linoleic (n-6) and linolenic (n-3) families than the afferent blood vessel. This indicates that the essential fatty acid (EFA) status of 'downstream' neonatal tissue may be marginal. No signs of EFA-deficiency were observed in endothelial and smooth muscle cells in culture, or in blood vessels from adults. In all cords 22:5(n-6) was significantly higher in the artery compared to the vein, whereas for all other (n-6) fatty acids this difference was negative. Since the synthesis of 22:5(n-6) is known to be stimulated when the required amount of cervonic acid, 22:6(n-3), is too low, our observations also suggest that the cervonic acid status of the neonates investigated was not optimal. Further studies are in progress to relate these findings to maternal EFA status and complications of pregnancy.

  3. Renal effects of essential fatty acid deficiency in hydropenic and volume-expanded rats.

    PubMed

    Paixão, Ana D O; Nunes, Flávia A; Léger, Claude; Aléssio, Maria L M

    2002-01-01

    The aim of this paper was to study the effects of essential fatty acid (EFA) on fractional sodium excretion (FE(Na(+))) and renal hemodynamics in rats during hydropenia (H) and acute volume expansion (VE), successively. Mean arterial pressure (MAP) and renal blood flow (RBF) were measured using a blood pressure transducer and a flow probe, respectively, both connected to a flowmeter. Glomerular filtration rate (GFR) was estimated by inulin clearance. The rats receiving coconut oil as only source of dietary lipids (the EFA-deficient group) presented lower levels of linoleic acid in cortex and medulla and lower body weight than the rats receiving soy oil in place of coconut oil (the control non-EFA-deficient group). During H, the EFA-deficient rats exhibited a lower level of renal vascular resistance resulting in a higher level of RBF and a higher urinary flow (V') and FE(Na(+)), although GFR was lower than in the control group. During VE, the rats of the control group responded with increased MAP, RBF, V' and FE(Na(+)), which were not found in the EFA-deficient group, suggesting an impaired hemodynamic adjustment in EFA deficiency. In conclusion, both experimental conditions revealed that EFA deficiency affects the renal hemodynamics.

  4. Lipid content and essential fatty acid (EFA) composition of mature Congolese breast milk are influenced by mothers' nutritional status: impact on infants' EFA supply.

    PubMed

    Rocquelin, G; Tapsoba, S; Dop, M C; Mbemba, F; Traissac, P; Martin-Prével, Y

    1998-03-01

    Optimum infant growth and development, especially neurodevelopment and visual acuity, require sufficient n-6 and n-3 essential fatty acid supplies from the placenta or breast milk. The lipid content and fatty acid composition of mature breast milk were measured in samples from 102 randomly selected Congolese mothers of 5-month-old infants, residing in a suburban district of Brazzaville. Mean body mass index (BMI) was 22.3; 14% of mothers were energy-deficient and 22% were overweight. Breast milk samples from these mothers were low in lipids (mean, 28.70 g/l), and 75% had a lipid content below reference values. Adequate lipid content was associated with a maternal diet high in carbohydrates and low in fats. Breast milk was rich in 8:0-14:0 fatty acids (25.97% of total fatty acids) and in polyunsaturated fatty acids, especially n-3. These findings appear related to Congolese mothers' frequent consumption of high-carbohydrate foods such as processed cassava roots, wheat bread, and doughnuts known to enhance 8:0-14:0 fatty acid biosynthesis, as well as locally produced foods such as fish, vegetable oil, leafy green vegetables, and high-fat fruit that provide n-6 and n-3 essential fatty acids. Milk lipid content was inversely associated with the maternal BMI, but was unrelated to maternal age or socioeconomic status. Since the essential fatty acid content of traditional complementary foods is lower than that present in breast milk, Congolese mothers should be encouraged to postpone the introduction of such foods until their infant is 4-6 months old.

  5. Prevention of diabetes in the BB rat by essential fatty acid deficiency. Relationship between physiological and biochemical changes

    PubMed Central

    1990-01-01

    Essential fatty acid (EFA) deficiency exerts a striking protective effect in several animal models of autoimmune disease. We now report that EFA deprivation prevents diabetes in the BB rat, an animal model of human insulin-dependent diabetes mellitus. In diabetes-prone (DP)-BB rats, the incidences of spontaneous diabetes and insulitis (the pathological substrate of autoimmune diabetes) were greatly reduced by EFA deficiency. This beneficial effect of the deficiency state was also seen in diabetes-resistant (DR)-BB rats that, after treatment with antibody to eliminate RT6+ T cells, would otherwise have become diabetic. The susceptibility of EFA-deprived DP-BB rats to spontaneous diabetes was restored when they were given dietary supplements of linoleate at 70 d of age (during the usual period of susceptibility), but not when they were repleted beginning at 120 d (after the peak incidence of diabetes). EFA deficiency did lead to growth retardation, but calorically restricted control rats demonstrated that the protective effect of the deficiency state was not a function of decreased weight. To examine the relationship between the biochemical changes of EFA deficiency and its physiological effects in this system, we compared the fatty acid changes that occurred in EFA-deficient animals that did and did not develop diabetes. Nondiabetic animals had significantly lower levels of (n-6) fatty acids (i.e., linoleate and arachidonate) and higher levels of oleate, an (n-9) fatty acid, than did diabetic animals. Levels of 20:3(n-9), the fatty acid that uniquely characterizes EFA deficiency, were similar in both groups, however. Among diabetic EFA-deficient rats, the age at onset of diabetes was found to correlate inversely with the level of (n-6) fatty acids, the least depleted animals becoming diabetic earliest, whereas there was no correlation with levels of 20:3(n-9). Among animals repleted with linoleate beginning at 70 d, restoration of susceptibility to diabetes

  6. Genetics Home Reference: lysosomal acid lipase deficiency

    MedlinePlus

    ... Home Health Conditions lysosomal acid lipase deficiency lysosomal acid lipase deficiency Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Lysosomal acid lipase deficiency is an inherited condition characterized by ...

  7. Essential fatty acid deficiency profile in patients with nephrotic-range proteinuria.

    PubMed

    Aldámiz-Echevarría, Luis; Vallo, Alfredo; Aguirre, Mireia; Sanjurjo, Pablo; Gonzalez-Lamuño, Domingo; Elorz, Javier; Prieto, José Angel; Andrade, Fernando; Rodríguez-Soriano, Juan

    2007-04-01

    Plasma free fatty acids are bound to albumin, filtered through the glomeruli, and reabsorbed at the proximal nephron. The aim of the present investigation was to determine if urinary loss of fatty acids results in essential fatty acid (EFA) deficiency in patients with nephrotic-range proteinuria. We studied 12 patients aged 9 months to 23 years (eight male, four female) four suffering from congenital nephrotic syndrome (NS) and eight from different renal diseases. Six patients were studied postrenal transplantation. Proteinuria ranged between 41 and 829 mg/m2/h. Results were compared with data obtained in 83 healthy children. The patients had significantly lower values for plasma arachidonic acid content and EFA index (omega3 + omega6/omega7 + omega9). Deficiency in polyunsaturated fatty acids (PUFA) was especially manifest in infants with congenital NS. Plasma content of arachidonic and docosahexaenoic acids related negatively with the degree of proteinuria. In the lineal regression model, the degree of proteinuria explained 60% of the variability of plasma values of those fatty acids. We conclude that plasma fatty acid status should be regularly monitored in patients with nephrotic-range proteinuria, especially in young infants with congenital NS, who represent a population at special risk with regard to neurological development.

  8. Rapid effects of essential fatty acid deficiency on growth and development parameters and transcription of key fatty acid metabolism genes in juvenile barramundi (Lates calcarifer).

    PubMed

    Salini, Michael J; Turchini, Giovanni M; Wade, Nicholas M; Glencross, Brett D

    2015-12-14

    Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2% added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish.

  9. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  10. Effects of ursodeoxycholic acid treatment on essential fatty acid deficiency in patients with biliary atresia.

    PubMed

    Yamashiro, Y; Ohtsuka, Y; Shimizu, T; Nittono, H; Urao, M; Miyano, T; Kawakami, S; Hayasawa, H

    1994-03-01

    To assess whether ursodeoxycholic acid (UDCA) treatment has any beneficial effect on essential fatty acid (EFA) deficiency in patients who have had a Kasai operation for extrahepatic atresia (EBA), responses of serum fatty acids to UDCA administration (15 mg/kg/d) were investigated in eight jaundice-free patients and in eight patients with jaundice (serum total bilirubin > or = 1.0 mg/dL). All patients were also given taurine supplementation (100 mg/kg/d). Serum fatty acid composition was determined before and 6 months after UDCA treatment. Serum total bile acid concentration and serum total bilirubin value, as a part of conventional liver function tests, were measured before and during UDCA therapy. Before UDCA treatment, the concentrations of linoleic acid and arachidonic acid were significantly lower (P > .05 for the former; P > .01 for the latter) in both the jaundice and jaundice-free groups than in the controls. After 6 months of treatment, the linoleic acid concentration significantly increased (P > .05), to the normal range, in the jaundice-free group, but not in the jaundice group. The arachidonic acid concentration did not increase significantly in either group. The serum total bile acid concentration was lower in six of the eight jaundice-free patients and in four of the eight jaundice patients. The serum total bilirubin value decreased in six of the eight jaundice-free patients and in four of the eight jaundice patients; however, the degree of improvement was not statistically significant in either group. No side effects developed, and there were no changes in blood chemistry values unrelated to liver disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Retinoic acid stimulates essential fatty acid-supplemented human keratinocytes in culture.

    PubMed

    Marcelo, C L; Dunham, W R

    1997-05-01

    The effect of all-trans retinoic acid on the proliferation of essential fatty acid (EFA)-deficient and of EFA-supplemented adult human keratinocytes was investigated. EFA-deficient cell strains were supplied with one of four different fatty acid-supplemented media at the P0 to P1 passage. All-trans retinoic acid at 0.5 or 1.0 microM was added to the cultures at the P1 to P2 passage. At passage P3, and 3 and 7 d thereafter, the cell growth rate was determined. The fatty acid content of cultures grown in each medium was measured using gas chromatography. All the EFA media "normalized" the cellular fatty acid composition and drastically decreased the cell number and total DNA and protein of the cultures. All-trans retinoic acid at 1 microM prevented the loss of cell viability and growth usually associated with EFA supplementation but did not affect the control (EFA deficient) or 18:1 fatty acid-supplemented cultures. All-trans retinoic acid at 1 microM altered the fatty acid content of the EFA-supplemented cultures. A statistically significant increase in 14:0, 14:1, 16:1, 18:1, and 20:4 fatty acids occurred, whereas the amounts of 18:0 and 18:2 fatty acids decreased. The largest changes were in 16:1 fatty acid (8-14%) and 18:2 fatty acid (12-5%). All-trans retinoic acid at 0.5 microM also affected both cell growth and fatty acid composition without induction of the CRABP II message. These studies demonstrate that all-trans retinoic acid stimulates the growth of EFA-supplemented keratinocyte cultures while also altering the fatty acid composition of the cells.

  12. Esterification of essential and non-essential fatty acids into distinct lipid classes in ruminant and non-ruminant tissues.

    PubMed

    Caldari-Torres, Cristina; McGilliard, Michael L; Corl, Benjamin A

    2016-10-01

    Extensive microbial biohydrogenation of polyunsaturated fatty acids (PUFA) in the rumen reduces the essential fatty acids (EFA) available for absorption in ruminant animals, but there is no published documentation of ruminants developing EFA deficiency. In ruminants, most circulating PUFA are found in the phospholipid (PL) and cholesteryl ester lipid classes that have slow turn-over compared to other lipid classes. The objective of this experiment was to measure fatty acid esterification patterns of the non-EFA palmitic (16:0) and oleic acid (18:1), and the EFA linoleic (18:2) and linolenic acid (18:3) in small intestine, liver, and muscle tissue of cows and pigs to identify tissues participating in sequestration of these FA in less metabolically active lipid classes in ruminants. Bovine and porcine small intestine, liver, and muscle explants were prepared and incubated in media containing radiolabeled 16:0, 18:1, 18:2, or 18:3 to measure esterification of fatty acids into PL and TG. Neither bovine nor porcine small intestine explants preferentially incorporated non-EFA compared to EFA into PL vs TG. Bovine liver explants esterified a larger proportion of EFA than non-EFA into PL compared to TG, while incorporation was similar among the FA tested in porcine liver explants. Bovine muscle explants showed preferential incorporation of EFA into PL rather than TG. Results show that bovine and porcine liver and muscle esterify EFA and non-EFA differently and that the conservation of EFA in ruminants is a result of preferential incorporation of EFA into PL mediated by bovine liver and muscle, but not the small intestine.

  13. Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase.

    PubMed

    Chen, Lizhen; Chuang, Marian; Koorman, Thijs; Boxem, Mike; Jin, Yishi; Chisholm, Andrew D

    2015-09-04

    Axon injury triggers a series of changes in the axonal cytoskeleton that are prerequisites for effective axon regeneration. In Caenorhabditis elegans the signaling protein Exchange Factor for ARF-6 (EFA-6) is a potent intrinsic inhibitor of axon regrowth. Here we show that axon injury triggers rapid EFA-6-dependent inhibition of axonal microtubule (MT) dynamics, concomitant with relocalization of EFA-6. EFA-6 relocalization and axon regrowth inhibition require a conserved 18-aa motif in its otherwise intrinsically disordered N-terminal domain. The EFA-6 N-terminus binds the MT-associated proteins TAC-1/Transforming-Acidic-Coiled-Coil, and ZYG-8/Doublecortin-Like-Kinase, both of which are required for regenerative growth cone formation, and which act downstream of EFA-6. After injury TAC-1 and EFA-6 transiently relocalize to sites marked by the MT minus end binding protein PTRN-1/Patronin. We propose that EFA-6 acts as a bifunctional injury-responsive regulator of axonal MT dynamics, acting at the cell cortex in the steady state and at MT minus ends after injury.

  14. EFA6B antagonizes breast cancer.

    PubMed

    Zangari, Joséphine; Partisani, Mariagrazia; Bertucci, François; Milanini, Julie; Bidaut, Ghislain; Berruyer-Pouyet, Carole; Finetti, Pascal; Long, Elodie; Brau, Frédéric; Cabaud, Olivier; Chetaille, Bruno; Birnbaum, Daniel; Lopez, Marc; Hofman, Paul; Franco, Michel; Luton, Frédéric

    2014-10-01

    One of the earliest events in epithelial carcinogenesis is the dissolution of tight junctions and cell polarity signals that are essential for normal epithelial barrier function. Here, we report that EFA6B, a guanine nucleotide exchange factor for the Ras superfamily protein Arf6 that helps assemble and stabilize tight junction, is required to maintain apico-basal cell polarity and mesenchymal phenotypes in mammary epithelial cells. In organotypic three-dimensional cell cultures, endogenous levels of EFA6B were critical to determine epithelial-mesenchymal status. EFA6B downregulation correlated with a mesenchymal phenotype and ectopic expression of EFA6B hampered TGFβ-induced epithelial-to-mesenchymal transition (EMT). Transcriptomic and immunohistochemical analyses of human breast tumors revealed that the reduced expression of EFA6B was associated with loss of tight junction components and with increased signatures of EMT, cancer stemness, and poor prognosis. Accordingly, tumors with low levels of EFA6B were enriched in the aggressive triple-negative and claudin-low breast cancer subtypes. Our results identify EFA6B as a novel antagonist in breast cancer and they point to its regulatory and signaling pathways as rational therapeutic targets in aggressive forms of this disease.

  15. EFA Mid-Decade Assessment Meeting Report. Annual EFA Coordinators Meeting/EFA Mid-Decade Assessment Planning Meeting (7th, Bangkok, Thailand, October 24-29, 2005)

    ERIC Educational Resources Information Center

    Tung, Ko-Chih

    2006-01-01

    Six Education For All (EFA) goals were agreed to in the World Education Forum in Dakar, Senegal in 2000. Since then, UNESCO Bangkok, UNICEF and the Regional Thematic Working Group on EFA have been jointly assisting countries in conducting assessment of progress and gaps towards the EFA goals and mid-term review of policies and reforms. In October…

  16. The ACVD task force on canine atopic dermatitis (XXIII): are essential fatty acids effective?

    PubMed

    Olivry, T; Marsella, R; Hillier, A

    2001-09-20

    Essential fatty acids (EFAs) exhibit the potential to affect allergic inflammation through the modulation of prostaglandin and leukotriene production, the inhibition of cellular activation and cytokine secretion as well as the alteration of the composition and function of the epidermal lipid barrier. Because of these multi-faceted effects, EFA have been proposed for treatment of canine atopic dermatitis (AD) since 1987. To date, more than 20 trials have been performed, reporting the efficacy of either oral EFA supplements or EFA-rich diets. Unfortunately, most of these studies were found to exhibit one or more of the following deficiencies: heterogeneity of diagnoses used as inclusion criteria, short duration of supplementation, lack of randomization of treatment allocation, lack of blinding of investigators and/or owners, lack of placebo or active controls, lack of documentation of plasma or skin EFA profiles during supplementation, as well as lack of standardization of the basal diets or supplements which could have provided additional EFA. Consequently, there is presently insufficient evidence to recommend for or against the use of EFA to control clinical signs of canine AD. Evidence of efficacy must await the performance of blinded, randomized and controlled trials of at least 3 months duration in which diets are identical for all of study subjects. In these trials, clinical efficacy should be evaluated in relation to plasma and cutaneous EFA treatment-induced alterations.

  17. Clinical Features of Lysosomal Acid Lipase Deficiency

    PubMed Central

    Burton, Barbara K.; Deegan, Patrick B.; Enns, Gregory M.; Guardamagna, Ornella; Horslen, Simon; Hovingh, Gerard K.; Lobritto, Steve J.; Malinova, Vera; McLin, Valerie A.; Raiman, Julian; Di Rocco, Maja; Santra, Saikat; Sharma, Reena; Sykut-Cegielska, Jolanta; Whitley, Chester B.; Eckert, Stephen; Valayannopoulos, Vassili; Quinn, Anthony G.

    2015-01-01

    Abstract Objective: The aim of this study was to characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults. Methods: Investigators reviewed medical records of LAL D patients ages ≥5 years, extracted historical data, and obtained prospective laboratory and imaging data on living patients to develop a longitudinal dataset. Results: A total of 49 patients were enrolled; 48 had confirmed LAL D. Mean age at first disease-related abnormality was 9.0 years (range 0–42); mean age at diagnosis was 15.2 years (range 1–46). Twenty-nine (60%) were male patients, and 27 (56%) were <20 years of age at the time of consent/assent. Serum transaminases were elevated in most patients with 458 of 499 (92%) of alanine aminotransferase values and 265 of 448 (59%) of aspartate aminotransferase values above the upper limit of normal. Most patients had elevated low-density lipoprotein (64% patients) and total cholesterol (63%) at baseline despite most being on lipid-lowering therapies, and 44% had high-density lipoprotein levels below the lower limit of normal. More than half of the patients with liver biopsies (n = 31, mean age 13 years) had documented evidence of steatosis (87%) and/or fibrosis (52%). Imaging assessments revealed that the median liver volume was ∼1.15 multiples of normal (MN) and median spleen volume was ∼2.2 MN. Six (13%) patients had undergone a liver transplant (ages 9–43.5 years). Conclusion: This study provides the largest longitudinal case review of patients with LAL D and confirms that LAL D is predominantly a pediatric disease causing early and progressive hepatic dysfunction associated with dyslipidemia that often leads to liver failure and transplantation. PMID:26252914

  18. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    SciTech Connect

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V. )

    1990-06-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3.

  19. Maternal bile acid transporter deficiency promotes neonatal demise

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-ze; Frank, Matthew W.; Calabrese, Christopher; Krausz, Kristopher W.; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O.; Gonzalez, Frank J.; Schuetz, John D.

    2015-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition. PMID:26416771

  20. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine.

    PubMed

    Morris, Claudia R; Hamilton-Reeves, Jill; Martindale, Robert G; Sarav, Menaka; Ochoa Gautier, Juan B

    2017-04-01

    Nonessential amino acids are synthesized de novo and therefore not diet dependent. In contrast, essential amino acids must be obtained through nutrition since they cannot be synthesized internally. Several nonessential amino acids may become essential under conditions of stress and catabolic states when the capacity of endogenous amino acid synthesis is exceeded. Arginine and glutamine are 2 such conditionally essential amino acids and are the focus of this review. Low arginine bioavailability plays a pivotal role in the pathogenesis of a growing number of varied diseases, including sickle cell disease, thalassemia, malaria, acute asthma, cystic fibrosis, pulmonary hypertension, cardiovascular disease, certain cancers, and trauma, among others. Catabolism of arginine by arginase enzymes is the most common cause of an acquired arginine deficiency syndrome, frequently contributing to endothelial dysfunction and/or T-cell dysfunction, depending on the clinical scenario and disease state. Glutamine, an arginine precursor, is one of the most abundant amino acids in the body and, like arginine, becomes deficient in several conditions of stress, including critical illness, trauma, infection, cancer, and gastrointestinal disorders. At-risk populations are discussed together with therapeutic options that target these specific acquired amino acid deficiencies.

  1. EFA, Civil Society and the Post-2015 Agenda

    ERIC Educational Resources Information Center

    Verger, Antoni; Sayed, Yusuf; Hiroshi, Ito; Croso, Camilla; Beardmore, Sarah

    2012-01-01

    The year 2015 is the deadline for most of the Education for All (EFA) goals. As this date gets closer, reviews about what has been done and reflection about future agendas will multiply. This Forum aims to contribute such a pressing debate, bringing together contributors from key international organisations within the EFA movement. They are…

  2. Handbook for Decentralized Education Planning. Implementing National EFA Plans

    ERIC Educational Resources Information Center

    Online Submission, 2005

    2005-01-01

    The Dakar 2000 goal of Education For All (EFA) is at the center of UNESCO's education activities worldwide. The wide-ranging efforts to achieve EFA in many countries involve education reform, development strategies and plans. Decentralization, a major component in modernizing the public sector, is also applicable to the education sector. The…

  3. Respiratory failure as initial symptom of acid maltase deficiency.

    PubMed Central

    Keunen, R W; Lambregts, P C; Op de Coul, A A; Joosten, E M

    1984-01-01

    Nine patients with adult onset acid maltase deficiency were seen at the Nijmegen University Hospital and the St Elisabeth Hospital, Tilburg , during the period 1970-1982. Five of these patients developed respiratory failure, and in four this was the initial symptom. The occurrence of respiratory failure as an early symptom of this muscular disease is discussed. Images PMID:6429285

  4. Respiratory failure as initial symptom of acid maltase deficiency.

    PubMed

    Keunen, R W; Lambregts, P C; Op de Coul, A A; Joosten, E M

    1984-05-01

    Nine patients with adult onset acid maltase deficiency were seen at the Nijmegen University Hospital and the St Elisabeth Hospital, Tilburg , during the period 1970-1982. Five of these patients developed respiratory failure, and in four this was the initial symptom. The occurrence of respiratory failure as an early symptom of this muscular disease is discussed.

  5. Studies on essential fatty acid deficiency. Effect of the deficiency on the lipids in liver mitochondria and oxidative phosphorylation

    PubMed Central

    Biran, L. A.; Bartley, W.; Carter, C. W.; Renshaw, A.

    1965-01-01

    1. Dietary deficiency of essential fatty acids results in a twofold increase in the neutral lipid content of liver mitochondria as compared with the corresponding value for stock-fed rats. 2. Deficiency produces changes in the pattern of the constituent fatty acids of the main phospholipid fractions of liver mitochondria which are similar to those previously reported for the lipids of whole liver. There is a fall in the content of C18:2 acid and to a smaller extent of C20:4 acid associated with a rise of C16:1, C18:1 and C20:3 acids. 3. Deficiency results in small decreases in the phosphorylation quotients of liver mitochondria during oxidation of succinate and pyruvate, but the values lie within the range reported for normal mitochondria. Mitochondrial respiration with succinate is decreased as a result of deficiency but no change was observed with pyruvate as substrate. PMID:14342237

  6. Retinoic acid deficiency alters second heart field formation

    PubMed Central

    Ryckebusch, Lucile; Wang, Zengxin; Bertrand, Nicolas; Lin, Song-Chang; Chi, Xuan; Schwartz, Robert; Zaffran, Stéphane; Niederreither, Karen

    2008-01-01

    Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development. The retinaldehyde dehydrogenase 2 (RALDH2) enzyme catalyzes the second oxidative step in RA biosynthesis and its loss of function creates a severe embryonic RA deficiency. Raldh2−/− knockout embryos fail to undergo heart looping and have impaired atrial and sinus venosus development. To understand the mechanism(s) producing these changes, we examined the contribution of the second heart field (SHF) to pharyngeal mesoderm, atria, and outflow tract in Raldh2−/− embryos. RA deficiency alters SHF gene expression in two ways. First, Raldh2−/− embryos exhibited a posterior expansion of anterior markers of the SHF, including Tbx1, Fgf8, and the Mlc1v-nlacZ-24/Fgf10 reporter transgene as well as of Islet1. This occurred at early somite stages, when cardiac defects became irreversible in an avian vitamin A-deficiency model, indicating that endogenous RA is required to restrict the SHF posteriorly. Explant studies showed that this expanded progenitor population cannot differentiate properly. Second, RA up-regulated cardiac Bmp expression levels at the looping stage. The contribution of the SHF to both inflow and outflow poles was perturbed under RA deficiency, creating a disorganization of the heart tube. We also investigated genetic cross-talk between Nkx2.5 and RA signaling by generating double mutant mice. Strikingly, Nkx2.5 deficiency was able to rescue molecular defects in the posterior region of the Raldh2−/− mutant heart, in a gene dosage-dependent manner. PMID:18287057

  7. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sofia; Garcia Padilla, Mercedes; Garcia Sanchez, Rafael J.; Schweim, Christoph; Ziese, Markus

    2016-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and flood warning for Europe which has become fully operational as part of the Copernicus Emergency Management Service in 2012. The aim of EFAS is to gain time for preparedness measures before major flood events strike particularly for trans-national river basins both at country as well as on European level. This is achieved by providing complementary, added value information to the national hydrological services. Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments and the future challenges.

  8. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    PubMed

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  9. Arachidonic acid metabolism in glutathione-deficient macrophages.

    PubMed Central

    Rouzer, C A; Scott, W A; Griffith, O W; Hamill, A L; Cohn, Z A

    1982-01-01

    Mouse resident peritoneal macrophages were treated with the glutathione (GSH) synthesis inhibitor buthionine sulfoximine to deplete intracellular GSH. The arachidonic acid metabolites released by the GSH-depleted macrophages in response to a zymosan challenge were analyzed by HPLC. Buthionine sulfoximine treatment resulted in inhibition of both prostaglandin E2 and leukotriene C synthesis that was directly related to the degree of GSH depletion. Macrophages in which GSH levels were reduced to 3% of normal exhibited reductions to 4% and 1%, respectively, in PGE2 and LTC formation. The total quantity of cyclooxygenase metabolites secreted by GSH-deficient macrophages was identical to that of control cells as a result of increased synthesis of prostacyclin and, to a lesser extent, 12-L-hydroxy-5,8,10-heptadecatrienoic acid. Total lipoxygenase products were decreased, however; increased formation of hydroxyicosatetraenoic acids only partially compensated for the deficit in leukotriene C production. These findings extent our earlier observations on the inhibition of leukotriene C synthesis in GSH-depleted macrophages and confirm with intact cells the previously suggested role of GSH in prostaglandin E2 formation. PMID:6803245

  10. Guidelines for Preparing Gender Responsive EFA Plans. Education for All.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    These guidelines have been prepared to assist individuals and "teams" to produce EFA (Education for All) plans that are gender responsive. The guidelines aim to raise awareness about issues that need to be considered to produce plans leading to the achievement of gender equality in education. Further information and guidance regarding…

  11. Inclusive Education: An EFA Strategy For All Children 31195

    ERIC Educational Resources Information Center

    Peters, Susan J.

    2004-01-01

    The fundamental principle of Education for All (EFA) is that all children should have the opportunity to learn. The fundamental principle of Inclusive Education (IE) is that all children should have the opportunity to learn?together. Diversity is a characteristic that all children and youth have in common?both within each individual child and…

  12. EFA (9-beta-D-erythrofuranosyladenine) is an effective salvage agent for methylthioadenosine phosphorylase-selective therapy of T-cell acute lymphoblastic leukemia with L-alanosine.

    PubMed

    Batova, Ayse; Cottam, Howard; Yu, John; Diccianni, Mitchell B; Carrera, Carlos J; Yu, Alice L

    2006-02-01

    The deficiency of methylthioadenosine phosphorylase (MTAP) in T-cell acute lymphoblastic leukemia (T-ALL) and other cancers, while constitutively expressed in normal cells, allows for selective therapy using L-alanosine, an inhibitor of de novo AMP synthesis. We demonstrate that MTAP- T-ALL cells obtained at relapse are as sensitive to L-alanosine toxicity as diagnosis samples. The therapeutic index of L-alanosine can be increased by the use of a MTAP substrate, which protects MTAP+ normal cells. Since MTAP substrates MTA and 5'deoxyadenosine are prone to toxicities associated with adenosine, we synthesized and evaluated a potentially nontoxic MTAP substrate, 9-beta-D-erythrofuranosyladenine (EFA). The cytotoxicity of EFA to hematopoietic progenitors erythroid burst-forming units (BFU-Es) and granulocyte-macrophage colony-forming units (CFU-GMs) was at least 26- to 41-fold less than that of MTA. In addition, EFA selectively rescued MTAP+ MOLT-4 cells from L-alanosine toxicity at 25 microM with negligible toxicity even at 100 microM. As for MTA, significant, albeit incomplete, rescue was achieved at 12.5 microM, but higher concentrations were toxic. EFA at 20 microM or less rescued primary MTAP+ T-ALL cells and normal lymphocytes from L-alanosine toxicity. Collectively, these data indicate that EFA is an effective agent for salvaging MTAP+ cells from L-alanosine toxicity and is superior to MTA due to lower cytotoxicity.

  13. Effects of ascorbic acid deficiency on methyl mercury dicyandiamide toxicosis in guinea pigs.

    PubMed

    Yamini, B; Sleight, S D

    1984-07-01

    Methylmercury dicyandiamide (MMD) when given intraperitoneally at a dosage of 4 mg/kg of body weight at weekly intervals for 3 weeks resulted in death of guinea pigs fed an ascorbic acid deficient diet. Controls fed an ascorbic acid deficient diet survived during this period as did guinea pigs given MMD and fed an ascorbic acid adequate diet. In a second experiment, guinea pigs fed an ascorbic acid deficient diet containing 22 ppm of MMD died within 26 days and had severe hemorrhagic and ulcerative gastroenteritis and coagulative necrosis of the liver. Ascorbic acid deficient controls died at 34 days. The MMD-containing ascorbic acid adequate diet killed guinea pigs in 150 days. Guinea pigs fed an ascorbic acid deficient diet with 44 ppm of MMD died within 20 days with acute neurologic signs. Pathologic changes were mostly in the gray matter. Guinea pigs fed MMD and a diet with adequate ascorbic acid survived for 38 days whereas the ascorbic acid deficient controls survived for 47 days. Results indicate that ascorbic acid deficiency can be a factor in the location and severity of clinical signs and lesions of MMD.

  14. Enzyme therapy for lysosomal acid lipase deficiency in the mouse.

    PubMed

    Du, H; Schiavi, S; Levine, M; Mishra, J; Heur, M; Grabowski, G A

    2001-08-01

    Lysosomal acid lipase (LAL) is the critical enzyme for the hydrolysis of the triglycerides (TG) and cholesteryl esters (CE) delivered to lysosomes. Its deficiency produces two human phenotypes, Wolman disease (WD) and cholesteryl ester storage disease (CESD). A targeted disruption of the LAL locus produced a null (lal( -/-)) mouse model that mimics human WD/CESD. The potential for enzyme therapy was tested using mannose terminated human LAL expressed in Pichia pastoris (phLAL), purified, and administered by tail vein injections to lal( -/-) mice. Mannose receptor (MR)-dependent uptake and lysosomal targeting of phLAL were evidenced ex vivo using competitive assays with MR-positive J774E cells, a murine monocyte/macrophage line, immunofluorescence and western blots. Following (bolus) IV injection, phLAL was detected in Kupffer cells, lung macrophages and intestinal macrophages in lal( -/-) mice. Two-month-old lal( -/-) mice received phLAL (1.5 U/dose) or saline injections once every 3 days for 30 days (10 doses). The treated lal( -/-) mice showed nearly complete resolution of hepatic yellow coloration; hepatic weight decreased by approximately 36% compared to PBS-treated lal( -/-) mice. Histologic analyses of numerous tissues from phLAL-treated mice showed reductions in macrophage lipid storage. TG and cholesterol levels decreased by approximately 50% in liver, 69% in spleen and 50% in small intestine. These studies provide feasibility for LAL enzyme therapy in human WD and CESD.

  15. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... citric acid may be added to citrus fruit, juice or wine, only malic acid may be added to apples, apple juice or wine, and only citric acid or malic acid may be added to other fruit (including berries) or to juice or wine derived from other fruit (including berries) to correct natural deficiencies to 9.0...

  16. Beta-alanine and beta-aminoisobutyric acid levels in two siblings with dihydropyrimidinase deficiency.

    PubMed

    van Kuilenburg, A B P; Stroomer, A E M; Bosch, A M; Duran, M

    2008-06-01

    Dihydropyrimidinase (DHP) deficiency is an inborn error of the pyrimidine degradation pathway, affecting the hydrolytic ring opening of the dihydropyrimidines. In two siblings with a complete DHP deficiency and a variable clinical presentation, a normal concentration of beta-alanine and strongly decreased levels of beta-aminoisobutyric acid were observed in plasma, urine and CSF. No major differences were observed for the concentrations of the beta-amino acids in plasma and urine between the symptomatic and asymptomatic sibling. Thus, the relevance of the shortage of beta-aminoisobutyric acid for the onset of a clinical phenotype in patients with DHP deficiency remains to be established.

  17. Increased intake of water and NaCl solutions in omega-3 fatty acid deficient monkeys.

    PubMed

    Reisbick, S; Neuringer, M; Connor, W E; Iliff-Sizemore, S

    1991-06-01

    We previously reported that long-term omega-3 fatty acid deficiency is associated with increased water intake in rhesus monkeys. To determine whether the increase was specific to water, intakes of salt solutions were measured in 15-minute single-bottle tests. Deficient monkeys drank at least twice as much of all NaCl concentrations as controls. Overall intake decreased as salt concentration increased. In 2-bottle preference tests, deficient monkeys again drank more total fluid but neither preferred nor avoided normal saline compared to controls. When deprived of water, deficient monkeys concentrated urine as well as controls, demonstrating that the increased intake was not a result of renal failure or diabetes insipidus. Omega-3 fatty acids have roles both in neural membrane function and in metabolism of prostaglandins and other eicosanoids. Omega-3 fatty acid deficiency may affect drinking through changes in one or both of these functions.

  18. Nutrient deficiency in the production of artemisinin, dihydroartemisinic acid, and artemisinic acid in Artemisia annua L.

    PubMed

    Ferreira, Jorge F S

    2007-03-07

    Artemisia annua became a valuable agricultural crop after the World Health Organization recommended artemisinin as a component of ACT (artemisinin-combination based therapies) for malaria in 2001. A cloned, greenhouse-grown, A. annua (Artemis) subjected to an acidic soil and macronutrient deficit was evaluated for artemisinin production. Lack of lime (L) and macronutrients (N, P, and K) reduced leaf biomass accumulation. When L was provided (pH 5.1), the highest average leaf biomass was achieved with the "complete" (+N, +P, +K, and +L) treatment (70.3 g/plant), and the least biomass was achieved with the untreated (-N, -P, -K, and -L) treatment (6.18 g/plant). The nutrient least required for biomass accumulation per plant (g) was K (49.0 g), followed by P (36.5 g) and N (14.3 g). The artemisinin concentration (g/100 g) was significantly higher (75.5%) in -K plants when compared to plants under the complete treatment (1.62 vs 0.93%). Although the artemisinin total yield (g/plant) was 21% higher in -K plants, it was not significantly different from plants under the complete treatment (0.80 vs 0.66 g/plant). There were no marked treatment effects for concentration (g/100 g) or yield (g/plant) of both dihydroartemisinic acid and artemisinic acid, although higher levels were achieved in plants under the complete or -K treatments. There was a positive and significant correlation between artemisinin and both artemisinic acid and dihydroartemisin acid, in g/100 g and g/plant. This is the first report where potassium deficiency significantly increases the concentration (g/100 g) of artemisinin. Thus, under a mild potassium deficiency, A. annua farmers could achieve similar gains in artemisinin/ha, while saving on potassium fertilization, increasing the profitability of artemisinin production.

  19. Plasma Amino Acids Profiles in Children with Autism: Potential Risk of Nutritional Deficiencies.

    ERIC Educational Resources Information Center

    Arnold, Georgianne L.; Hyman, Susan L.; Mooney, Robert A.; Kirby, Russell S.

    2003-01-01

    The plasma amino acid profiles of 10 children with autism on gluten and casein restricted diets and 26 on unrestricted diets were reviewed. There was a trend for the children on restricted diets to have an increased prevalence of essential amino acid deficiencies and lower plasma levels of essential acids. (Contains references.) (Author/CR)

  20. Essential fatty acid requirement of juvenile red drum (Sciaenops ocellatus).

    PubMed

    Lochmann, R T; Gatlin, D M

    1993-10-01

    Feeding experiments and laboratory analyses were conducted to establish the essential fatty acid (EFA) requirement of red drum (Sciaenops ocellatus). Juvenile red drum were maintained in aquaria containing brackish water (5 ± 2‰ total dissolved solids) for two 6-week experiments. Semipurified diets contained a total of 70% lipid consisting of different combinations of tristearin [predominantly 18:0] and the following fatty acid ethyl esters: oleate, linoleate, linolenate, and a mixture of highly unsaturated fatty acids (HUFA) containing approximately 60% eicosapentaenoate plus docosahexaenoate. EFA-deficient diets (containing only tristearin or oleate) rapidly reduced fish growth and feed efficiency, and increased mortality. Fin erosion and a "shock syndrome" also occurred in association with EFA deficiency. Of the diets containing fatty acid ethyl esters, those with 0.5-1% (n-3) HUFA (0.3-0.6% eicosapentaenoate plus docosahexaenoate) promoted the best growth, survival, and feed efficiency; however, the control diet containing 7% menhaden fish oil provided the best performance. Excess (n-3) HUFA suppressed fish weight gain; suppression became evident at 1.5% (n-3) HUFA, and was pronounced at 2.5%. Fatty acid compositions of whole-body, muscle and liver tissues from red drum fed the various diets generally reflected dietary fatty acids, but modifications of these patterns also were evident. Levels of saturated fatty acids appeared to be regulated independent of diet. In fish fed EFA-deficient diets (containing only tristearin or oleate), monoenes increased and (n-3) HUFA were preferentially conserved in polar lipid fractions. Eicosatrienoic acid [20:3(n-9)] was not elevated in EFA-deficient red drum, apparently due to their limited ability to transform fatty acids. Red drum exhibited some limited ability to elongate and desaturate linoleic acid [18:2(n-6)] and linolenic acid [18:3(n-3)]; however, metabolism of 18:3(n-3) did not generally result in increased

  1. [Risk factors for prevalence of folic acid deficiency in Chinese lactating women in 2013].

    PubMed

    Bi, Y; Duan, Y F; Wang, J; Yu, D M; Yang, X G; Yin, S A; Yang, Z Y

    2016-12-06

    Objective: The study aimed to assess the folic acid status of lactating women in China and to analyze factors related to folic acid deficiency in these subjects. Methods: The data on lactating women were extracted from the Chinese National Nutrition and Health Surveillance in 2013. By a multi-stage stratified cluster random sampling method, 10 331 lactating women were selected for the study. The lactating women, 0-24 months postpartum, were from 55 sites in 30 provinces of China, excluding the Tibet Autonomous Region. A standard questionnaire was used to obtain general information and dietary intake during the previous one month period was collected using a food frequency questionnaire. A total of 20% of the total number of lactating women were randomly selected to analyze serum folic acid. Finally, 1 894 lactating women, with questionnaire results and serum folic acid data, were included in the study. Serum folic acid concentrations were analyzed using an electro-chemiluminescence immunoassay method. Folic acid deficiency was defined as a serum folic acid level <2 ng/ml. A multiple logistic regression analysis was used to analyze the factors associated with folic acid deficiency in these women. Results: After excluding abnormal values, 1 894 lactating women were included in the study. Based on our findings, the prevalence of folate deficiency was 3.0% (56/1 894) in lactating women in China. The prevalence of folic acid deficiency was 0.3% (1/388), 1.3% (7/550), 6.0% (38/639) and 3.2% (10/317) in larger, medium or small cities, general rural counties and poor rural counties, respectively. The prevalence of folic acid deficiency was 6.3% (17/269) and 2.4% (39/1 623) for minority and Han ethnic groups, respectively, and was 6.3% (52/823) and 0.4% (4/1 071) for subjects in northern and southern areas of China, respectively. Binary unconditionally logistic regression was used to analyze the factors associated with folic acid deficiency in the lactating women. The

  2. Fish oil prevents essential fatty acid deficiency and enhances growth: clinical and biochemical implications.

    PubMed

    Strijbosch, Robert A M; Lee, Sang; Arsenault, Danielle A; Andersson, Charlotte; Gura, Kathleen M; Bistrian, Bruce R; Puder, Mark

    2008-05-01

    Fish oil, a rich source of omega-3 fatty acids, has never been used as the sole source of lipid in clinical practice for fear of development of essential fatty acid deficiency, as it lacks the believed requisite levels of linoleic acid, an omega-6 fatty acid. The objectives of this study were to establish biochemical standards for fish oil as the sole fat and to test the hypothesis that fish oil contains adequate amounts of omega-6 fatty acids to prevent essential fatty acid deficiency. Forty mice were divided into 2 groups that were either pair fed or allowed to eat ad libitum. In each group, 4 subgroups of 5 mice were fed 1%, 5%, and 10% fish oil diets by weight or a control soybean diet for 9 weeks. Blood was collected at 4 time points, and fatty acid analysis was performed. Food intake and weight status were monitored. All groups but the pair-fed 1% fish oil group gained weight, and the 5% fish oil group showed the highest caloric efficiency in both pair-fed and ad libitum groups. Fatty acid profiles for the 1% fish oil group displayed clear essential fatty acid deficiency, 5% fish oil appeared marginal, and 10% and soybean oil diets were found to prevent essential fatty acid deficiency. Fish oil enhances growth through higher caloric efficiency. We established a total omega-6 fatty acid requirement of between 0.30% and 0.56% of dietary energy, approximately half of the conventionally believed 1% as linoleic acid. This can presumably be attributed to the fact that fish oil contains not only a small amount of linoleic acid, but also arachidonic acid, which has greater efficiency to meet omega-6 fatty acid requirements.

  3. URBANIZATION ALTERS FATTY ACID CONCENTRATIONS OF STREAM FOOD WEBS IN THE NARRAGANSETT BAY WATERSHED

    EPA Science Inventory

    Urbanization and associated human activities negatively affect stream algal and invertebrate assemblages, likely altering food webs. Our goal was to determine if urbanization affects food web essential fatty acids (EFAs) and if EFAs could be useful ecological indicators in monito...

  4. Hepatic storage and transport of n-3 and n-6 polyunsaturated fatty acids by very-low-density lipoproteins in growing rats fed low- or adequate-protein diets with sunflower, soybean, coconut, and salmon oils.

    PubMed

    Bouziane, M; Belleville, J; Prost, J

    1997-03-01

    Protein and essential fatty acid (EFA) deficiencies may both occur in chronic malnutrition and have common symptoms. To determine the interactions between dietary protein intake and EFA availability, rats were fed purified diets containing 20% or 2% casein and 5% as one of four fats (sunflower, soybean, coconut, or salmon oil) that differed particularly in their n-6 and n-3 polyunsaturated fatty acids (PUFAs). Protein malnutrition enhanced hepatic triacylglycerol and cholesterol concentrations while decreasing hepatic protein and phospholipid contents and mass and components of very-low-density lipoprotein (VLDL). The ratio of PUFAs to saturated fatty acids (SFAs) was consistently depressed by protein malnutrition in liver and VLDL triacylglycerol and phospholipid. Total n-6 and n-3 fatty acids were diminished by protein malnutrition, except with salmon oil, with which a decrease in 20:5n-3 was compensated for by an increase in 22:6n-3. The ratio of 20:4n-6 to 18:2n-6 was enhanced in liver phospholipid and VLDL triacylglycerol, and modified little in liver triacylglycerol. Generally, the ratio of 20:3n-9 to 20:4n-6, an index for EFA deficiency, was raised with protein malnutrition in liver triacylglycerol and phospholipid and in VLDL triacylglycerol. The extent of changes in each fatty acid proportion varied according to the oil fed. Overall, VLDL-apolipoprotein concentrations were, in general, strongly reduced with protein malnutrition. In conclusion, protein malnutrition may accelerate marginal EFA deficiency and decrease long-chain PUFA bioavailability and thus increase EFA requirement.

  5. Essential Fatty Acids and Attention-Deficit-Hyperactivity Disorder: A Systematic Review

    ERIC Educational Resources Information Center

    Raz, Raanan; Gabis, Lidia

    2009-01-01

    Aim: Essential fatty acids (EFAs), also known as omega-3 and omega-6 fatty acids, have been claimed to have beneficial effects as a treatment for attention-deficit-hyperactivity disorder (ADHD). Animal experiments have provided information about the role of EFA in the brain, and several mechanisms of EFA activity are well known. The current review…

  6. Association of low potassium diet and folic acid deficiency in patients with CKD

    PubMed Central

    Hassan, Kamal

    2015-01-01

    Background Most of the folic acid sources are rich also in potassium. Patients with chronic kidney disease (CKD) usually receive a low potassium diet. We investigated the possibility of an association between low potassium diet and folic acid deficiency. Methods In total, 128 CKD patients participated in this cross-sectional study. Sixty-four patients with CKD grades 1 and 2 were on an unrestricted potassium diet when enrolled in the study, and 64 patients with CKD grades 3 and 4 had received instructions to restrict their intake of potassium at least 6 months before enrollment in the study. Subjects were evaluated for daily intake of folic acid (DIFA), daily intake of potassium (DIK), and serum folic acid levels (SFA). Results DIFA correlated with the estimated glomerular filtration rate, the DIK, and the SFA (P<0.001). SFA correlated with the estimated glomerular filtration rate (P<0.001). Mean DIFA and mean SFA were lower among patients with CKD grades 3 and 4 than among those with CKD grades 1 and 2 (P<0.001). The mean DIFA in patients with folic acid deficiency was lower than that in those with SFA ≥7.1 nmol/L (P<0.001). There was lower SFA and threefold greater frequency of folic acid deficiency among patients with CKD grades 3 and 4 who had received instructions to restrict their intake of potassium than among patients with CKD grades 1 and 2 who were on an unrestricted potassium diet. Conclusion A potassium-restricted diet offered to patients with CKD grades 3 and 4 may be associated with folic acid deficiency. Serum levels of folic acid should be investigated before starting potassium restriction in patients with CKD grades 3 and 4, in order to identify individuals with folic acid deficiency or with marginal serum levels who should receive folic acid replacement therapy. PMID:26056461

  7. An n-3 Fatty Acid Deficient Diet Affects Mouse Spatial Learning in the Barnes Circular Maze

    PubMed Central

    Fedorova, Irina; Hussein, Nahed; Di Martino, Carmine; Moriguchi, Toru; Hoshiba, Junji; Majchrzak, Sharon; Salem, Norman

    2008-01-01

    Deficiency in n-3 fatty acids has been accomplished through the use of an artificial rearing method in which ICR mouse pups were hand fed a deficient diet starting from the second day of life. There was a 51% loss of total brain DHA in mice with an n-3 fatty acid deficient diet relative to those with a diet sufficient in n-3 fatty acids. N-3 fatty acid adequate and deficient mice did not differ in terms of locomotor activity in the open field test or in anxiety-related behavior in the elevated plus maze. The n-3 fatty acid deficient mice demonstrated impaired learning in the reference-memory version of the Barnes circular maze as they spent more time and made more errors in search of an escape tunnel. No difference in performance between all dietary groups in the cued and working memory version of the Barnes maze was observed. This indicated that motivational, motor and sensory factors did not contribute to the reference memory impairment. PMID:18037280

  8. Inducible Arginase 1 Deficiency in Mice Leads to Hyperargininemia and Altered Amino Acid Metabolism

    PubMed Central

    St. Amand, Tim; Kyriakopoulou, Lianna; Schulze, Andreas; Funk, Colin D.

    2013-01-01

    Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1), which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing “floxed” Arg1 mice with CreERT2 mice. The resulting mice (Arg-Cre) die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency. PMID:24224027

  9. Uncoupling effect of polyunsaturated fatty acid deficiency in isolated rat hepatocytes:effect on glycerol metabolism.

    PubMed Central

    Piquet, M A; Fontaine, E; Sibille, B; Filippi, C; Keriel, C; Leverve, X M

    1996-01-01

    The effects of a 4-week deficiency in polyunsaturated fatty acids (PUFA) in isolated rat hepatocytes have been investigated for oxidative phosphorylation and fatty acid, dihydroxyacetone (DHA) or glycerol metabolism. Oxygen uptake was significantly increased (by 20%) with or without fatty acid addition (octanoate or oleate) in the PUFA-deficient group compared with controls. The effect persisted after oligomycin addition but not after that of potassium cyanide, leading to the conclusion that, in these intact cells, the mitochondria were uncoupled. The PUFA-deficient group exhibited a significant decrease in the cytosolic ATP/ADP ratio, whereas the mitochondrial ratio was not affected. PUFA deficiency led to a 16% decrease in DHA metabolism owing to a 34% decrease in glycerol kinase activity; the significant decrease in the ATP/ADP ratio was accompanied by an increase in the fractional glycolytic flux. In contrast, glycerol metabolism was significantly enhanced in the PUFA-deficient group. The role of the glycerol 3-phosphate dehydrogenase step in this stimulation was evidenced in hepatocytes perifused with glycerol and octanoate in the presence of increased concentrations of 2,4-dinitrophenol (Dnp): uncoupling with Dnp led to an enhancement of glycerol metabolism, as found in PUFA deficiency, although it was more pronounced than in controls. The matrix/cytosol gradients for redox potential and ATP/ADP ratio were lower in cells from PUFA-deficient rats, suggesting a decreased mitochondrial membrane potential in accordance with the uncoupling effect. Moreover, a doubling of the mitochondrial glycerol 3-phosphate dehydrogenase activity in the PUFA-deficient group compared with controls led us to conclude that the activation of glycerol metabolism is the consequence of two mitochondrial effects: uncoupling and an increase in glycerol 3-phosphate dehydrogenase activity. PMID:8760348

  10. Assessment of the value of a competitive protein binding radioassay of folic acid in the detection of folic acid deficiency.

    PubMed Central

    Bain, B J; Wickramasinghe, S N; Broom, G N; Litwinczuk, R A; Sims, J

    1984-01-01

    The diagnostic value of the Becton Dickinson Radioassay Kit (125I) for the the assay of red cell folate has been investigated. The assay was acceptable with regards to precision but was non-linear with changing packed cell volume. Sensitivity of the assay was satisfactory, with 24 of 25 folate deficient patients giving red cell folate values which fell below the reference range. Specificity of the assay in the detection of folate deficiency was less satisfactory. As with microbiological assays, a considerable proportion of vitamin B12 deficient patients had low red cell folate values. In addition, low concentrations were found in 12% of patients who were unlikely to be deficient in either vitamin B12 or folic acid. PMID:6470170

  11. If high folic acid aggravates vitamin B12 deficiency what should be done about it?

    PubMed

    Johnson, Mary Ann

    2007-10-01

    The most common cause of vitamin B12 deficiency in older people is malabsorption of food-bound vitamin B12. Thus, it is suggested that the recommended daily allowance of 2.4 microg/d be met primarily with crystalline vitamin B12, which is believed to be well absorbed in individuals who have food-bound malabsorption. There is concern that high intakes of folic acid from fortified food and dietary supplements might mask the macrocytic anemia of vitamin B12 deficiency, thereby eliminating an important diagnostic sign. One recent study indicates that high serum folate levels during vitamin B12 deficiency exacerbate (rather than mask) anemia and worsen cognitive symptoms. Another study suggests that once vitamin B12 deficiency is established in subjects with food-bound malabsorption, 40 microg/d to 80 microg/d of oral crystalline vitamin B12 for 30 d does not reverse the biochemical signs of deficiency. Together, these studies provide further evidence that public health strategies are needed to improve vitamin B12 status in order to decrease the risk of deficiency and any potentially adverse interactions with folic acid.

  12. Arginine-deficient diets alter plasma and tissue amino acids in young and aged rats.

    PubMed

    Gross, K L; Hartman, W J; Ronnenberg, A; Prior, R L

    1991-10-01

    Blood and urine metabolites were measured in two experiments for young (2-mo-old) and aged (20-mo-old) male Sprague-Dawley rats fed arginine-devoid diets made isonitrogenous to a control 1.12% arginine diet by adding alanine or glycine. Diet, fed for 7 or 13 d, had little effect on urinary or plasma ammonia and urea. Urinary orotate excretion was more than 40-fold higher in rats fed the arginine-deficient diets (P less than 0.01) in both experiments. Source of nonessential N (alanine or glycine) in the arginine-deficient diets did not alter orotic acid excretion or plasma or urine ammonia or urea. Changes in plasma arginine, alanine and glycine concentrations reflected the levels of these amino acids in the diet. Tissue ornithine levels reflected dietary arginine level, but tissue citrulline was unaffected by dietary arginine. Glutamate and glutamine were greater in the plasma and liver of rats fed arginine-deficient diets. Plasma concentrations of glutamate and glutamine were positively correlated with urinary orotic acid excretion (P less than 0.05) and ornithine and arginine were negatively correlated with orotic acid excretion (P less than 0.01). Increased tissue glutamine may be related to the greater orotate excretion in rats fed arginine-devoid diets. The metabolic responses to dietary arginine deficiency were similar in young and aged rats. In general, concentrations of amino acids in plasma, liver and spleen were higher in aged rats.

  13. The transport of indole-3-acetic Acid in boron- and calcium-deficient sunflower hypocotyl segments.

    PubMed

    Tang, P M; Dela Fuente, R K

    1986-06-01

    Transfer of sunflower (Helianthus annuus L. cv Russian Mammoth) seedlings from complete nutrient solution to solutions deficient in either boron or calcium resulted in a steady decline in the rate of auxin transport, compared to seedlings that remained in the complete solution. In seedlings transferred to solutions deficient in both B and Ca, the decline in auxin transport was greater than seedlings deficient in only one element. The transfer of B- or Ca-deficient seedlings back to the complete solution prevented further decline in auxin transport, but auxin transport did not increase to the same level as seedlings maintained in complete solution. The significant reduction in auxin transport during the early stages of B or Ca deficiency was not related to (a) reduced growth rate of the hypocotyl, (b) increased acropetal movement of auxin, or (c) lack of respiratory substrates in the hypocotyl. In addition, no difference was found in the water-extractable total and ionic Ca in B-deficient and control nondeficient hypocotyls, indicating a direct effect of B on auxin transport, rather than indirectly by affecting Ca absorption. The rate of auxin transport in hypocotyls deficient in either B or Ca, was inversely correlated with K(+) leakage and rate of respiration. The data presented strongly support the view that there are separate sites for B and Ca in the basipetal transport of the plant hormone indoleacetic acid.

  14. Education For All: A Committment and an Opportunity. National EFA Coordinators Meeting under the Sub-Regional EFA Forum for East and Southeast Asia Final Report (2nd, Bangkok, Thailand, December 10-12, 2001).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    The working group of Sub-Regional Forum (SRF) and the Thematic Working Group (TWG) on Education for All (EFA) organized the second meeting of the SRF for East and Southeast Asia and the National EFA Coordinators in Bangkok, Thailand December 10-12, 2001. The meeting offered an opportunity for EFA coordinators to reflect on the outcomes of the EFA…

  15. A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency.

    PubMed

    Schmidt, B; Selmer, T; Ingendoh, A; von Figura, K

    1995-07-28

    Multiple sulfatase deficiency (MSD) is a lysosomal storage disorder characterized by a decreased activity of all known sulfatases. The deficiency of sulfatases was proposed to result from the lack of a co- or posttranslational modification that is common to all sulfatases and required for their catalytic activity. Structural analysis of two catalytically active sulfatases revealed that a cysteine residue that is predicted from the cDNA sequence and conserved among all known sulfatases is replaced by a 2-amino-3-oxopropionic acid residue, while in sulfatases derived from MSD cells, this cysteine residue is retained. It is proposed that the co- or posttranslational conversion of a cysteine to 2-amino-3-oxopropionic acid is required for generating catalytically active sulfatases and that deficiency of this protein modification is the cause of MSD.

  16. EFA Planning Guide: Southeast and East Asia. Follow-Up to the World Education Forum (Dakar, Senegal, April 2000).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    The Dakar Framework for Action, adopted at the 2000 World Education Forum, called upon governments to ensure that Education for All (EFA) goals are achieved by 2015. This EFA planning guide is designed as a working tool for educational planners, statisticians, and members of national EFA task forces. It provides practical advice to educational…

  17. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage[OA

    PubMed Central

    Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.

    2006-01-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  18. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pi...

  19. EFA6 controls Arf1 and Arf6 activation through a negative feedback loop.

    PubMed

    Padovani, Dominique; Folly-Klan, Marcia; Labarde, Audrey; Boulakirba, Sonia; Campanacci, Valérie; Franco, Michel; Zeghouf, Mahel; Cherfils, Jacqueline

    2014-08-26

    Guanine nucleotide exchange factors (GEFs) of the exchange factor for Arf6 (EFA6), brefeldin A-resistant Arf guanine nucleotide exchange factor (BRAG), and cytohesin subfamilies activate small GTPases of the Arf family in endocytic events. These ArfGEFs carry a pleckstrin homology (PH) domain in tandem with their catalytic Sec7 domain, which is autoinhibitory and supports a positive feedback loop in cytohesins but not in BRAGs, and has an as-yet unknown role in EFA6 regulation. In this study, we analyzed how EFA6A is regulated by its PH and C terminus (Ct) domains by reconstituting its GDP/GTP exchange activity on membranes. We found that EFA6 has a previously unappreciated high efficiency toward Arf1 on membranes and that, similar to BRAGs, its PH domain is not autoinhibitory and strongly potentiates nucleotide exchange on anionic liposomes. However, in striking contrast to both cytohesins and BRAGs, EFA6 is regulated by a negative feedback loop, which is mediated by an allosteric interaction of Arf6-GTP with the PH-Ct domain of EFA6 and monitors the activation of Arf1 and Arf6 differentially. These observations reveal that EFA6, BRAG, and cytohesins have unanticipated commonalities associated with divergent regulatory regimes. An important implication is that EFA6 and cytohesins may combine in a mixed negative-positive feedback loop. By allowing EFA6 to sustain a pool of dormant Arf6-GTP, such a circuit would fulfill the absolute requirement of cytohesins for activation by Arf-GTP before amplification of their GEF activity by their positive feedback loop.

  20. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis.

    PubMed

    Shen, Chenjia; Yang, Yanjun; Liu, Kaidong; Zhang, Lei; Guo, Hong; Sun, Tao; Wang, Huizhong

    2016-07-01

    Several phytohormones have been demonstrated to be involved in iron (Fe) homeostasis. We took advantage of a salicylic acid (SA) biosynthesis defective mutant phytoalexin deficient 4 (pad4: T-DNA Salk_089936) to explore the possible effects of endogenous SA on the morphological and physiological responses to Fe deprivation. The morphological and physiological analysis was carried out between Col-0 and the pad4 mutant. Under an Fe-deficiency treatment, Col-0 showed more severe leaf chlorosis and root growth inhibition compared with the pad4 mutant. The soluble Fe concentrations were significantly higher in pad4 than in Col-0 under the Fe-deficiency treatment. Fe deficiency significantly induced SA accumulation in Col-0 and the loss-of-function of PAD4 blocked this process. The requirement of endogenous SA accumulation for Fe-deficiency responses was confirmed using a series of SA biosynthetic mutants and transgenic lines. Furthermore, a comparative RNA sequencing analysis of the whole seedling transcriptomes between Col-0 and the pad4 mutant was also performed. Based on the transcriptome data, the expression levels of many auxin- and ethylene-response genes were altered in pad4 compared with Col-0. Fe deficiency increases SA contents which elevates auxin and ethylene signalling, thereby activating Fe translocation via the bHLH38/39-mediated transcriptional regulation of downstream Fe genes.

  1. Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood.

    PubMed

    Bhatia, Harsharan Singh; Agrawal, Rahul; Sharma, Sandeep; Huo, Yi-Xin; Ying, Zhe; Gomez-Pinilla, Fernando

    2011-01-01

    Omega-3-fatty acid DHA is a structural component of brain plasma membranes, thereby crucial for neuronal signaling; however, the brain is inefficient at synthesizing DHA. We have asked how levels of dietary n-3 fatty acids during brain growth would affect brain function and plasticity during adult life. Pregnant rats and their male offspring were fed an n-3 adequate diet or n-3 deficient diets for 15 weeks. Results showed that the n-3 deficiency increased parameters of anxiety-like behavior using open field and elevated plus maze tests in the male offspring. Behavioral changes were accompanied by a level reduction in the anxiolytic-related neuropeptide Y-1 receptor, and an increase in the anxiogenic-related glucocorticoid receptor in the cognitive related frontal cortex, hypothalamus and hippocampus. The n-3 deficiency reduced brain levels of docosahexaenoic acid (DHA) and increased the ratio n-6/n-3 assessed by gas chromatography. The n-3 deficiency reduced the levels of BDNF and signaling through the BDNF receptor TrkB, in proportion to brain DHA levels, and reduced the activation of the BDNF-related signaling molecule CREB in selected brain regions. The n-3 deficiency also disrupted the insulin signaling pathways as evidenced by changes in insulin receptor (IR) and insulin receptor substrate (IRS). DHA deficiency during brain maturation reduces plasticity and compromises brain function in adulthood. Adequate levels of dietary DHA seem crucial for building long-term neuronal resilience for optimal brain performance and aiding in the battle against neurological disorders.

  2. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  3. Amino acid and DNA analyses in a family with ornithine transcarbamylase deficiency.

    PubMed

    Hou, J W; Wang, T R

    1996-02-01

    Ornithine transcarbamylase (OTC) is a hepatic mitochondrial enzyme involved in the detoxification of ammonia by the urea cycle. OTC deficiency is an X-linked genetic disorder, usually causing neonatal or infantile hyperammonemia, coma and death. We attended a male newborn who had poor feeding since 30 hours of age, at which time, he then rapidly progressed to a comatose state. Hyperammonemia and liver dysfunction were noted. Analysis of plasma amino acids showed elevated levels of glutamine and alanine, but a decreased level of arginine and no citrulline. OTC deficiency was diagnosed by family history of early death of newborn males on the maternal side and characteristic biochemical findings. In addition, it was proved by Southern blot analysis of genomic DNA. Although OTC deficiency has been described as the most common inborn error of ureagenesis in humans, to our knowledge, this is the first report in a Chinese family confirmed by biochemical and DNA analyses.

  4. Alx3-deficient mice exhibit folic acid-resistant craniofacial midline and neural tube closure defects.

    PubMed

    Lakhwani, Sita; García-Sanz, Patricia; Vallejo, Mario

    2010-08-15

    Neural tube closure defects are among the most frequent congenital malformations in humans. Supplemental maternal intake of folic acid before and during pregnancy reduces their incidence significantly, but the mechanism underlying this preventive effect is unknown. As a number of genes that cause neural tube closure defects encode transcriptional regulators in mice, one possibility is that folic acid could induce the expression of transcription factors to compensate for the primary genetic defect. We report that folic acid is required in mouse embryos for the specific expression of the homeodomain gene Alx3 in the head mesenchyme, an important tissue for cranial neural tube closure. Alx3-deficient mice exhibit increased failure of cranial neural tube closure and increased cell death in the craniofacial region, two effects that are also observed in wild type embryos developing in the absence of folic acid. Folic acid cannot prevent these defects in Alx3-deficient embryos, indicating that one mechanism of folic acid action is through induced expression of Alx3. Thus, Alx3 emerges as a candidate gene for human neural tube defects and reveals the existence of induced transcription factor gene expression as a previously unknown mechanism by which folic acid prevents neural tube closure defects.

  5. Erythrocyte Membrane Fatty Acid Composition in Premenopausal Patients with Iron Deficiency Anemia.

    PubMed

    Aktas, Mehmet; Elmastas, Mahfuz; Ozcicek, Fatih; Yilmaz, Necmettin

    2016-01-01

    Iron deficiency anemia (IDA) is one of the most common nutritional disorders in the world. In the present study, we evaluated erythrocyte membrane fatty acid composition in premenopausal patients with IDA. Blood samples of 102 premenopausal women and 88 healthy control subjects were collected. After the erythrocytes were separated from the blood samples, the membrane lipids were carefully extracted, and the various membrane fatty acids were measured by gas chromatography (GC). Statistical analyses were performed with the SPSS software program. We used blood ferritin concentration <15 ng/mL as cut-off for the diagnosis of IDA. The five most abundant individual fatty acids obtained were palmitic acid (16:0), oleic acid (18:1, n-9c), linoleic acid (18:2, n-6c), stearic acid (18:0), and erucic acid (C22:1, n-9c). These compounds constituted about 87% of the total membrane fatty acids in patients with IDA, and 79% of the total membrane fatty acids in the control group. Compared with control subjects, case patients had higher percentages of palmitic acid (29.9% case versus 25.3% control), oleic acid (16.8% case versus 15.1% control), and stearic acid (13.5% case versus 10.5% control), and lower percentages of erucic acid (11.5% case versus 13.6% control) and linoleic acid (15.2% case versus 15.4% control) in their erythrocyte membranes. In conclusion, the total-erythrocyte-membrane saturated fatty acid (SFA) composition in premenopausal women with IDA was found to be higher than that in the control group; however, the total-erythrocyte-membrane unsaturated fatty acid (UFA) composition in premenopausal women with IDA was found to be lower than that in the control group. The differences in these values were statistically significant.

  6. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    SciTech Connect

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert; Volz, Cornelia; Jägle, Herbert; Liebisch, Gerhard; Utermöhlen, Olaf; Langmann, Thomas

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  7. Gentamicin induces efaA expression and biofilm formation in Enterococcus faecalis.

    PubMed

    Kafil, Hossein Samadi; Mobarez, Ashraf Mohabati; Moghadam, Mehdi Forouzandeh; Hashemi, Zahra Sadat; Yousefi, Mehdi

    2016-03-01

    Enterococci have been ranked among the leading causes of nosocomial bacteremia and urinary tract infection. This study aimed to investigate the effect of ampicillin, vancomycin, gentamicin and ceftizoxime on biofilm formation and gene expression of colonization factors on Enterococcus faecalis. Twelve clinical isolates of E. faecalis were used to investigate the effect of antibiotics on biofilm formation and gene expression of efaA, asa1, ebpA, esp and ace. Flow system assay and Microtiter plates were used for biofilm assay. Two hundred clinical isolates were used for confirming the effect of antibiotics on biofilm formation. Ampicillin, vancomycin and ceftizoxime did not have any significant effect on biofilm formation, but gentamicin induced biofilm formation in 89% of isolates. In twelve selected isolate gentamicin increased expression of esp (+50.9%) and efaA (+33.9%) genes and reduced or maintained expression of others (asa1:-47.4%, ebpA: 0, ace:-19.2%). Vancomycin increased expression of esp (+89.1%) but reduced the others (asa1: -34.9%, ebpA:-11%, ace:-30%, efaA:-60%). Ceftizoxime increased slightly ebpA (+19.7%) and reduced others (asa1:-66.2%, esp:-35%, ace:-28.1%, efaA:-38.4%). and ampicillin strongly increased expression of ace (+231%), esp (+131%) and ebpA (+83%) but reduced others (asa1:-85.5%, efaA:-47.4%). The findings of the present study showed that antibiotics may have a role in biofilm formation and sustainability of enterococci, especially in case of gentamicin. efaA gene may have an important role, especially in antibiotic induced biofilm formation by gentamicin. Experiments with efaA mutants are needed to investigate the exact effect of efaA on biofilm formation with antibiotic induced cells.

  8. IDH1 deficiency attenuates gluconeogenesis in mouse liver by impairing amino acid utilization

    PubMed Central

    Ye, Jing; Gu, Yu; Zhang, Feng; Zhao, Yuanlin; Yuan, Yuan; Hao, Zhenyue; Sheng, Yi; Li, Wanda Y.; Wakeham, Andrew; Cairns, Rob A.; Mak, Tak W.

    2017-01-01

    Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG–dependent transamination of glucogenic AAs such as alanine. PMID:28011762

  9. Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis

    PubMed Central

    Spodenkiewicz, Marta; Diez-Fernandez, Carmen; Rüfenacht, Véronique; Gemperle-Britschgi, Corinne; Häberle, Johannes

    2016-01-01

    Glutamine synthetase (GS) is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS) can cause an ultra-rare recessive inborn error of metabolism—congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i) this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii) early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition. PMID:27775558

  10. Minireview on Glutamine Synthetase Deficiency, an Ultra-Rare Inborn Error of Amino Acid Biosynthesis.

    PubMed

    Spodenkiewicz, Marta; Diez-Fernandez, Carmen; Rüfenacht, Véronique; Gemperle-Britschgi, Corinne; Häberle, Johannes

    2016-10-19

    Glutamine synthetase (GS) is a cytosolic enzyme that produces glutamine, the most abundant free amino acid in the human body. Glutamine is a major substrate for various metabolic pathways, and is thus an important factor for the functioning of many organs; therefore, deficiency of glutamine due to a defect in GS is incompatible with normal life. Mutations in the human GLUL gene (encoding for GS) can cause an ultra-rare recessive inborn error of metabolism-congenital glutamine synthetase deficiency. This disease was reported until now in only three unrelated patients, all of whom suffered from neonatal onset severe epileptic encephalopathy. The hallmark of GS deficiency in these patients was decreased levels of glutamine in body fluids, associated with chronic hyperammonemia. This review aims at recapitulating the clinical history of the three known patients with congenital GS deficiency and summarizes the findings from studies done along with the work-up of these patients. It is the aim of this paper to convince the reader that (i) this disorder is possibly underdiagnosed, since decreased concentrations of metabolites do not receive the attention they deserve; and (ii) early detection of GS deficiency may help to improve the outcome of patients who could be treated early with metabolites that are lacking in this condition.

  11. Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings.

    PubMed

    Zhang, Xue; Yu, Hong Jun; Zhang, Xiao Meng; Yang, Xue Yong; Zhao, Wen Chao; Li, Qiang; Jiang, Wei Jie

    2016-11-01

    L-Ascorbic acid (AsA, ascorbate) is one of the most abundant natural antioxidants, and it is an important factor in the nutritional quality of cucumber. In this work, key enzymes involved in the ascorbic acid biosynthesis and recycling pathway in cucumber seedlings under nitrogen deficiency were investigated at the levels of transcription and enzyme activity. The activities of myo-inositol oxygenase (MIOX) and transcript levels of MIOXs increased dramatically, while the activities of ascorbate oxidase (AO) and glutathione reductase (GR) and transcript levels of AOs and GR2 decreased significantly in N-limited leaves, as did the ascorbate concentration, in nitrogen-deficient cucumber seedlings. The activities of other enzymes and transcript levels of other genes involved in the ascorbate recycling pathway and ascorbate synthesis pathways decreased or remained unchanged under nitrogen deficiency. These results indicate that nitrogen deficiency induced genes involved in the ascorbate-glutathione recycling and myo-inositol pathway in cucumber leaves. Thus, the AO, GR and MIOX involved in the pathways might play roles in AsA accumulation.

  12. Impaired fatty acid oxidation in a Drosophila model of mitochondrial trifunctional protein (MTP) deficiency.

    PubMed

    Kishita, Yoshihito; Tsuda, Manabu; Aigaki, Toshiro

    2012-03-09

    Mitochondrial trifunctional protein (MTP), which consists of the MTPα and MTPβ subunits, catalyzes long-chain fatty acid β-oxidation. MTP deficiency in humans results in Reye-like syndrome. Here, we generated Drosophila models of MTP deficiency by targeting two genes encoding Drosophila homologs of human MTPα and MTPβ, respectively. Both Mtpα(KO) and Mtpβ(KO) flies were viable, but demonstrated reduced lifespan, defective locomotor activity, and reduced fecundity represented by the number of eggs laid by the females. The phenotypes of Mtpα(KO) flies were generally more striking than those of Mtpβ(KO) flies. Mtpα(KO) flies were hypersensitive to fasting, and retained lipid droplets in their fat body cells as in non-fasting conditions. The amount of triglyceride was also unchanged upon fasting in Mtpα(KO) flies, suggesting that lipid mobilization was disrupted. Finally, we showed that both Mtpα(KO) and Mtpβ(KO) flies accumulated acylcarnitine and hydroxyacylcarnitine, diagnostic markers of MTP deficiencies in humans. Our results indicated that both Mtpα(KO) and Mtpβ(KO) flies were impaired in long-chain fatty acid β-oxidation. These flies should be useful as a model system to investigate the molecular pathogenesis of MTP deficiency.

  13. [Iron, folic acid and vitamin B12 deficiencies related to anemia in adolescents from a region with a high incidence of congenital malformations in Venezuela].

    PubMed

    Suárez, Teresa; Torrealba, Mónica; Villegas, Neifred; Osorio, Crisol; García-Casal, María Nieves

    2005-06-01

    Since in recent years for certain age groups, the main cause of anemia is not iron deficiency, we intended to study the effect of iron, folic acid and vitamin B12 deficiencies on anemia prevalence in adolescents from Venezuela. One hundred adolescents aged between 12 and 19 years participated in the study. Each subject was interviewed about antecedents and habits and a physical examination and a 24-hour food recall questionnaire were performed. From a blood sample, hemoglobin and hematocrit concentrations were determined and serum was separated for quantification of ferritin, folic acid and vitamin B12 concentrations. Prevalence of anemia was 78% and for iron, folic acid and vitamin B12 deficiencies were 34.66, 90.9 and 18.18%, respectively. From anemic cases, 35.89% presented iron deficiency, while 91.02% presented folic acid deficiency. Only 19.23% of adolescents with anemia presented also vitamin B12 deficiency, but all the cases with vitamin B12 deficiency, were anemic. Simultaneous iron and folic acid deficiencies affected 30.76% of anemic cases. The high prevalence of deficiencies found in this work could be explained by insufficient intake and inadequate food habits. The prevalence of anemia was associated to folic acid deficiency rather than to iron deficiency, due to the high prevalence of folic acid deficiency. The high prevalence of nutritional deficiencies found in this work, especially regarding folic acid deficiency, require immediate interventions.

  14. Isolation and characterization of mutants of common ice plant deficient in crassulacean acid metabolism.

    PubMed

    Cushman, John C; Agarie, Sakae; Albion, Rebecca L; Elliot, Stewart M; Taybi, Tahar; Borland, Anne M

    2008-05-01

    Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that improves water use efficiency by shifting part or all of net atmospheric CO2 uptake to the night. Genetic dissection of regulatory and metabolic attributes of CAM has been limited by the difficulty of identifying a reliable phenotype for mutant screening. We developed a novel and simple colorimetric assay to measure leaf pH to screen fast neutron-mutagenized populations of common ice plant (Mesembryanthemum crystallinum), a facultative CAM species, to detect CAM-deficient mutants with limited nocturnal acidification. The isolated CAM-deficient mutants showed negligible net dark CO2 uptake compared with wild-type plants following the imposition of salinity stress. The mutants and wild-type plants accumulated nearly comparable levels of sodium in leaves, but the mutants grew more slowly than the wild-type plants. The mutants also had substantially reduced seed set and seed weight relative to wild type under salinity stress. Carbon-isotope ratios of seed collected from 4-month-old plants indicated that C3 photosynthesis made a greater contribution to seed production in mutants compared to wild type. The CAM-deficient mutants were deficient in leaf starch and lacked plastidic phosphoglucomutase, an enzyme critical for gluconeogenesis and starch formation, resulting in substrate limitation of nocturnal C4 acid formation. The restoration of nocturnal acidification by feeding detached leaves of salt-stressed mutants with glucose or sucrose supported this defect and served to illustrate the flexibility of CAM. The CAM-deficient mutants described here constitute important models for exploring regulatory features and metabolic consequences of CAM.

  15. Nutrition in brain development and aging: role of essential fatty acids.

    PubMed

    Uauy, Ricardo; Dangour, Alan D

    2006-05-01

    The essential fatty acids (EFAs), particularly the n-3 long-chain polyunsaturated fatty acids (LCPs), are important for brain development during both the fetal and postnatal period. They are also increasingly seen to be of value in limiting the cognitive decline during aging. EFA deficiency was first shown over 75 years ago, but the more subtle effects of the n-3 fatty acids in terms of skin changes, a poor response to linoleic acid supplementation, abnormal visual function, and peripheral neuropathy were only discovered later. Both n-3 and n-6 LCPs play important roles in neuronal growth, development of synaptic processing of neural cell interaction, and expression of genes regulating cell differentiation and growth. The fetus and placenta are dependent on maternal EFA supply for their growth and development, with docosahexaenomic acid (DHA)-supplemented infants showing significantly greater mental and psychomotor development scores (breast-fed children do even better). Dietary DHA is needed for the optimum functional maturation of the retina and visual cortex, with visual acuity and mental development seemingly improved by extra DHA. Aging is also associated with decreased brain levels of DHA: fish consumption is associated with decreased risk of dementia and Alzheimer's disease, and the reported daily use of fish-oil supplements has been linked to improved cognitive function scores, but confirmation of these effects is needed.

  16. Metabolic analysis revealed altered amino acid profiles in Lupinus albus organs as a result of boron deficiency.

    PubMed

    Alves, Marta; Chicau, Paula; Matias, Helena; Passarinho, José; Pinheiro, Carla; Ricardo, Cândido Pinto

    2011-07-01

    We analysed the changes in the metabolites of Lupinus albus organs (leaf-blades, petioles, apexes, hypocotyls and roots) as a consequence of B deficiency. The deficiency did not affect malate concentration and induced only minor changes in the sugar content, suggesting that the carbohydrate metabolism is little affected by the deficiency. Contrarily, marked changes in the content of free amino acids were observed, with some specific variations associated with the different organs. These changes indicate that various aspects of metabolism implicated in the amino acid accumulation were affected by B deficiency. Most of the detected changes appear to have implications with some stress responses or signalling processes. Asparagine and proline that increase in many stresses also accumulated in petioles, apexes and hypocotyls. Accumulation of γ-aminobutyric acid shunt amino acids, indicative of production of reactive oxygen species, occurs in the same three organs and also the roots. The increase in the branched-chain amino acids, observed in all organs, suggests the involvement of B with the cytoskeleton, whereas glycine decrease in leaf-blades and active growing organs (apexes and roots) could be associated with the proposed role of this amino acids in plant signalling in processes that might be associated with the decreased growth rates observed in B deficiency. Despite the admitted importance of free amino acids in plant metabolism, the available information on this matter is scarce. So our results bring new information concerning the effects of B deficiency in the metabolism of the several L. albus organs.

  17. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    PubMed

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function.

  18. Caenorhabditis elegans EFA-6 limits microtubule growth at the cell cortex.

    PubMed

    O'Rourke, Sean M; Christensen, Sara N; Bowerman, Bruce

    2010-12-01

    Microtubules are polymers of tubulin heterodimers that exhibit dynamic instability: periods of growth followed by periods of shrinkage. However, the molecular regulation of dynamic instability remains elusive. Here, we show that EFA-6, a cortically-localized protein, limits the growth of microtubules near the cell cortex of early embryonic cells from Caenorhabditis elegans, possibly by inducing microtubule catastrophes. Compared with wild type, embryos lacking EFA-6 had abnormally long and dense microtubules at the cell cortex, and growing microtubule plus ends resided at the cortex for up to five-fold longer. Loss of EFA-6 also caused excess centrosome separation and displacement towards the cell cortex early in mitosis, and subsequently a loss of anaphase spindle-pole oscillations and increased rates of spindle elongation. The centrosome separation phenotype was dependent on the motor protein dynein, suggesting a possible link between the modulation of microtubule dynamics at the cortex and dynein-dependent force production. EFA-6 orthologues activate ARF6-type GTPases to regulate vesicle trafficking. However, we show that only the C. elegans EFA-6 amino-terminus is both necessary and sufficient to limit microtubule growth along the cortex, and that this function is independent of ARF-6.

  19. Detection and treatment of omega-3 fatty acid deficiency in psychiatric practice: Rationale and implementation.

    PubMed

    Messamore, Erik; McNamara, Robert K

    2016-02-10

    A body of translational evidence has implicated dietary deficiency in long-chain omega-3 (LCn-3) fatty acids, including eicosapenaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and potentially etiology of different psychiatric disorders. Case-control studies have consistently observed low erythrocyte (red blood cell) EPA and/or DHA levels in patients with major depressive disorder, bipolar disorder, schizophrenia, and attention deficit hyperactivity disorder. Low erythrocyte EPA + DHA biostatus can be treated with fish oil-based formulations containing preformed EPA + DHA, and extant evidence suggests that fish oil supplementation is safe and well-tolerated and may have therapeutic benefits. These and other data provide a rationale for screening for and treating LCn-3 fatty acid deficiency in patients with psychiatric illness. To this end, we have implemented a pilot program that routinely measures blood fatty acid levels in psychiatric patients entering a residential inpatient clinic. To date over 130 blood samples, primarily from patients with treatment-refractory mood or anxiety disorders, have been collected and analyzed. Our initial results indicate that the majority (75 %) of patients exhibit whole blood EPA + DHA levels at ≤ 4 percent of total fatty acid composition, a rate that is significantly higher than general population norms (25 %). In a sub-set of cases, corrective treatment with fish oil-based products has resulted in improvements in psychiatric symptoms without notable side effects. In view of the urgent need for improvements in conventional treatment algorithms, these preliminary findings provide important support for expanding this approach in routine psychiatric practice.

  20. Elevated Fundus Autofluorescence in Monkeys Deficient in Lutein, Zeaxanthin, and Omega-3 Fatty Acids

    PubMed Central

    McGill, Trevor J.; Renner, Lauren M.; Neuringer, Martha

    2016-01-01

    Purpose We quantified fundus autofluorescence (FAF) in the nonhuman primate retina as a function of age and diets lacking lutein and zeaxanthin (L/Z) and omega-3 fatty acids. Methods Quantitative FAF was measured in a cross-sectional study of rhesus macaques fed a standard diet across the lifespan, and in aged rhesus macaques fed lifelong diets lacking L/Z and providing either adequate or deficient levels of omega-3 fatty acids. Macular FAF images were segmented into multiple regions of interest, and mean gray values for each region were calculated using ImageJ. The resulting FAF values were compared across ages within the standard diet animals, and among diet groups and regions. Results Fundus autofluorescence increased with age in the standard diet animals, and was highest in the perifovea. Monkeys fed L/Z-free diets with either adequate or deficient omega-3 fatty acids had significantly higher FAF overall than age-matched standard diet monkeys. Examined by region, those with adequate omega-3 fatty acids had higher FAF in the fovea and superior regions, while monkeys fed the diet lacking L/Z and omega-3 fatty acids had higher FAF in all regions. Conclusions Diets devoid of L/Z resulted in increased retinal autofluorescence, with the highest values in animals also lacking omega-3 fatty acids. The increase was equivalent to a 12- to 20-year acceleration in lipofuscin accumulation compared to animals fed a standard diet. Together these data add support for the role of these nutrients as important factors in lipofuscin accumulation, retinal aging, and progression of macular disease. PMID:27002296

  1. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  2. Optimization of a histopathological biomarker for sphingomyelin accumulation in acid sphingomyelinase deficiency.

    PubMed

    Taksir, Tatyana V; Johnson, Jennifer; Maloney, Colleen L; Yandl, Emily; Griffiths, Denise; Thurberg, Beth L; Ryan, Susan

    2012-08-01

    Niemann-Pick disease (types A and B), or acid sphingomyelinase deficiency, is an inherited deficiency of acid sphingomyelinase, resulting in intralysosomal accumulation of sphingomyelin in cells throughout the body, particularly within those of the reticuloendothelial system. These cellular changes result in hepatosplenomegaly and pulmonary infiltrates in humans. A knockout mouse model mimics many elements of human ASMD and is useful for studying disease histopathology. However, traditional formalin-fixation and paraffin embedding of ASMD tissues dissolves sphingomyelin, resulting in tissues with a foamy cell appearance, making quantitative analysis of the substrate difficult. To optimize substrate fixation and staining, a modified osmium tetroxide and potassium dichromate postfixation method was developed to preserve sphingomyelin in epon-araldite embedded tissue and pulmonary cytology specimens. After processing, semi-thin sections were incubated with tannic acid solution followed by staining with toluidine blue/borax. This modified method provides excellent preservation and staining contrast of sphingomyelin with other cell structures. The resulting high-resolution light microscopy sections permit digital quantification of sphingomyelin in light microscopic fields. A lysenin affinity stain for sphingomyelin was also developed for use on these semi-thin epon sections. Finally, ultrathin serial sections can be cut from these same tissue blocks and stained for ultrastructural examination by electron microscopy.

  3. Acid Sphingomyelinase Deficiency Prevents Diet-induced Hepatic Triacylglycerol Accumulation and Hyperglycemia in Mice*

    PubMed Central

    Deevska, Gergana M.; Rozenova, Krassimira A.; Giltiay, Natalia V.; Chambers, Melissa A.; White, James; Boyanovsky, Boris B.; Wei, Jia; Daugherty, Alan; Smart, Eric J.; Reid, Michael B.; Merrill, Alfred H.; Nikolova-Karakashian, Mariana

    2009-01-01

    Acid sphingomyelinase plays important roles in ceramide homeostasis, which has been proposed to be linked to insulin resistance. To test this association in vivo, acid sphingomyelinase deletion (asm–/–) was transferred to mice lacking the low density lipoprotein receptor (ldlr–/–), and then offsprings were placed on control or modified (enriched in saturated fat and cholesterol) diets for 10 weeks. The modified diet caused hypercholesterolemia in all genotypes; however, in contrast to asm+/+/ldlr–/–, the acid sphingomyelinase-deficient littermates did not display hepatic triacylglyceride accumulation, although sphingomyelin and other sphingolipids were substantially elevated, and the liver was enlarged. asm–/–/ldlr–/– mice on a modified diet did not accumulate body fat and were protected against diet-induced hyperglycemia and insulin resistance. Experiments with hepatocytes revealed that acid sphingomyelinase regulates the partitioning of the major fatty acid in the modified diet, palmitate, into two competitive and inversely related pools, triacylglycerides and sphingolipids, apparently via modulation of serine palmitoyltransferase, a rate-limiting enzyme in de novo sphingolipid synthesis. These studies provide evidence that acid sphingomyelinase activity plays an essential role in the regulation of glucose metabolism by regulating the hepatic accumulation of triacylglycerides and sphingolipids during consumption of a diet rich in saturated fats. PMID:19074137

  4. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide.

    PubMed

    Zhang, Y; Scorpio, A; Nikaido, H; Sun, Z

    1999-04-01

    Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosis are unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistant M. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosis to PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.

  5. Early Effects of Boron Deficiency on Indoleacetic Acid Oxidase Levels of Squash Root Tips

    PubMed Central

    Bohnsack, Charles W.; Albert, Luke S.

    1977-01-01

    The indoleacetic acid (IAA) oxidase activity of root tips of boron-sufficient, -deficient, recovering, and IAA-treated boron-sufficient squash plants (Cucurbita pepo L.) was determined. Apical and subapical root sections displayed an increase in IAA oxidase activity between 6 and 9 hours after boron was withheld, and after 24 hours the activity of the apical sections showed a 20-fold increase over +B controls. Root elongation of -B plants was inhibited before an increase in oxidase activity could be detected. Roots of plants subjected to 12 hours of -B treatment and then transferred to +B treatment for recovery regained normal elongation rates and oxidase activity within 18 to 20 hours. IAA treatment of +B plants increased IAA oxidase activity of apical and subapical root sections and also inhibited root elongation and caused symptoms similar to -B treatments. These results have demonstrated the earliest enzymic change for intact boron-deficient plants. The results are in agreement with the theory that boron deficiency symptoms may be the result of supraoptimal endogenous levels of IAA. These high levels of IAA may inhibit cell division and lead to an induction of the IAA oxidase enzyme. PMID:16659990

  6. Adenosine deaminase deficiency with normal immune function. An acidic enzyme mutation.

    PubMed Central

    Daddona, P E; Mitchell, B S; Meuwissen, H J; Davidson, B L; Wilson, J M; Koller, C A

    1983-01-01

    In most instances, marked deficiency of the purine catabolic enzyme adenosine deaminase results in lymphopenia and severe combined immunodeficiency disease. Over a 2-yr period, we studied a white male child with markedly deficient erythrocyte and lymphocyte adenosine deaminase activity and normal immune function. We have documented that (a) adenosine deaminase activity and immunoreactive protein are undetectable in erythrocytes, 0.9% of normal in lymphocytes, 4% in cultured lymphoblasts, and 14% in skin fibroblasts; (b) plasma adenosine and deoxyadenosine levels are undetectable and deoxy ATP levels are only slightly elevated in lymphocytes and in erythrocytes; (c) no defect in deoxyadenosine metabolism is present in the proband's cultured lymphoblasts; (d) lymphoblast adenosine deaminase has normal enzyme kinetics, absolute specific activity, S20,w, pH optimum, and heat stability; and (e) the proband's adenosine deaminase exhibits a normal apparent subunit molecular weight but an abnormal isoelectric pH. In contrast to the three other adenosine deaminase-deficient healthy subjects who have been described, the proband is unique in demonstrating an acidic, heat-stable protein mutation of the enzyme that is associated with less than 1% lymphocyte adenosine deaminase activity. Residual adenosine deaminase activity in tissues other than lymphocytes may suffice to metabolize the otherwise lymphotoxic enzyme substrate(s) and account for the preservation of normal immune function. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6603477

  7. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid?

    PubMed

    Van Kuilenburg, André B P; Stroomer, Alida E M; Van Lenthe, Henk; Abeling, Nico G G M; Van Gennip, Albert H

    2004-04-01

    DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways.

  8. SERUM VITAMIN B12, IRON AND FOLIC ACID DEFICIENCIES IN OBESE INDIVIDUALS SUBMITTED TO DIFFERENT BARIATRIC TECHNIQUES

    PubMed Central

    SILVA, Rafaella de Andrade; MALTA, Flávia Monteiro França; CORREIA, Maria Flora Ferreira Sampaio Carvalho; BURGOS, Maria Goretti Pessoa de Araújo

    2016-01-01

    ABSTRACT Background: Different surgical techniques to combat obesity combine malabsorption with restrictive procedures and can lead to metabolic problems, such as micronutrient deficiencies. Aim: Assess vitamin B12, iron and folic acid deficiencies associated with the lifestyle of obese individuals having been submitted to different bariatric techniques. Methods: A retrospective analysis was performed using the electronic charts of patients submitted to bariatric surgery involving adjustable gastric banding and Roux-en-Y gastric bypass at the São João Hospital Center in the city of Porto, Portugal, between 2005 and 2010. The following data were collected: surgical technique, sex, age, marital status, serum concentrations of vitamin B12, iron and folic acid and postoperative lifestyle. A 5% significance level was used for the statistical analysis (p<0.05). Results: Among 286 individuals evaluated, females accounted for 90.9% of the overall sample (both techniques). Gastric banding was performed more (68.9%), but greater nutrient deficiencies were found following gastric bypass. Iron was the most prevalent deficiency (21.3%), followed by vitamin B12 (16.9%) and folic acid (4.5%). Mild to moderate alcohol intake, adherence to the diet and the use of multivitamins reduced the frequency, but did not avoid micronutrient deficiency. Conclusion: Vitamin B12, iron and folic acid deficiencies were found in the first and second year following the two bariatric techniques analyzed and were more frequent among individuals submitted to gastric bypass. PMID:27683779

  9. Suppression of muscle protein turnover and amino acid degradation by dietary protein deficiency

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Goldberg, A. L.

    1992-01-01

    To define the adaptations that conserve amino acids and muscle protein when dietary protein intake is inadequate, rats (60-70 g final wt) were fed a normal or protein-deficient (PD) diet (18 or 1% lactalbumin), and their muscles were studied in vitro. After 7 days on the PD diet, both protein degradation and synthesis fell 30-40% in skeletal muscles and atria. This fall in proteolysis did not result from reduced amino acid supply to the muscle and preceded any clear decrease in plasma amino acids. Oxidation of branched-chain amino acids, glutamine and alanine synthesis, and uptake of alpha-aminoisobutyrate also fell by 30-50% in muscles and adipose tissue of PD rats. After 1 day on the PD diet, muscle protein synthesis and amino acid uptake decreased by 25-40%, and after 3 days proteolysis and leucine oxidation fell 30-45%. Upon refeeding with the normal diet, protein synthesis also rose more rapidly (+30% by 1 day) than proteolysis, which increased significantly after 3 days (+60%). These different time courses suggest distinct endocrine signals for these responses. The high rate of protein synthesis and low rate of proteolysis during the first 3 days of refeeding a normal diet to PD rats contributes to the rapid weight gain ("catch-up growth") of such animals.

  10. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail.

    PubMed Central

    Kikuchi, T; Yang, H W; Pennybacker, M; Ichihara, N; Mizutani, M; Van Hove, J L; Chen, Y T

    1998-01-01

    Pompe disease is a fatal genetic muscle disorder caused by a deficiency of acid alpha-glucosidase (GAA), a glycogen degrading lysosomal enzyme. GAA-deficient (AMD) Japanese quails exhibit progressive myopathy and cannot lift their wings, fly, or right themselves from the supine position (flip test). Six 4-wk-old acid maltase-deficient quails, with the clinical symptoms listed, were intravenously injected with 14 or 4.2 mg/kg of precursor form of recombinant human GAA or buffer alone every 2-3 d for 18 d (seven injections). On day 18, both high dose-treated birds (14 mg/kg) scored positive flip tests and flapped their wings, and one bird flew up more than 100 cm. GAA activity increased in most of the tissues examined. In heart and liver, glycogen levels dropped to normal and histopathology was normal. In pectoralis muscle, morphology was essentially normal, except for increased glycogen granules. In sharp contrast, sham-treated quail muscle had markedly increased glycogen granules, multi-vesicular autophagosomes, and inter- and intrafascicular fatty infiltrations. Low dose-treated birds (4.2 mg/kg) improved less biochemically and histopathologically than high dose birds, indicating a dose-dependent response. Additional experiment with intermediate doses and extended treatment (four birds, 5.7-9 mg/kg for 45 d) halted the progression of the disease. Our data is the first to show that an exogenous protein can target to muscle and produce muscle improvement. These data also suggest enzyme replacement with recombinant human GAA is a promising therapy for human Pompe disease. PMID:9466978

  11. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase-deficient quail.

    PubMed

    Kikuchi, T; Yang, H W; Pennybacker, M; Ichihara, N; Mizutani, M; Van Hove, J L; Chen, Y T

    1998-02-15

    Pompe disease is a fatal genetic muscle disorder caused by a deficiency of acid alpha-glucosidase (GAA), a glycogen degrading lysosomal enzyme. GAA-deficient (AMD) Japanese quails exhibit progressive myopathy and cannot lift their wings, fly, or right themselves from the supine position (flip test). Six 4-wk-old acid maltase-deficient quails, with the clinical symptoms listed, were intravenously injected with 14 or 4.2 mg/kg of precursor form of recombinant human GAA or buffer alone every 2-3 d for 18 d (seven injections). On day 18, both high dose-treated birds (14 mg/kg) scored positive flip tests and flapped their wings, and one bird flew up more than 100 cm. GAA activity increased in most of the tissues examined. In heart and liver, glycogen levels dropped to normal and histopathology was normal. In pectoralis muscle, morphology was essentially normal, except for increased glycogen granules. In sharp contrast, sham-treated quail muscle had markedly increased glycogen granules, multi-vesicular autophagosomes, and inter- and intrafascicular fatty infiltrations. Low dose-treated birds (4.2 mg/kg) improved less biochemically and histopathologically than high dose birds, indicating a dose-dependent response. Additional experiment with intermediate doses and extended treatment (four birds, 5.7-9 mg/kg for 45 d) halted the progression of the disease. Our data is the first to show that an exogenous protein can target to muscle and produce muscle improvement. These data also suggest enzyme replacement with recombinant human GAA is a promising therapy for human Pompe disease.

  12. Beta-aminoisobutyric acid prevents diet-induced obesity in mice with partial leptin deficiency.

    PubMed

    Begriche, Karima; Massart, Julie; Abbey-Toby, Adjé; Igoudjil, Anissa; Lettéron, Philippe; Fromenty, Bernard

    2008-09-01

    Beta-Aminoisobutyric acid (BAIBA), a thymine catabolite, increases fatty acid oxidation (FAO) in liver and reduces the gain of body fat mass in Swiss (lean) mice fed a standard chow. We determined whether BAIBA could prevent obesity and related metabolic disorders in different murine models. To this end, BAIBA (100 or 500 mg/kg/day) was administered for 4 months in mice totally deficient in leptin (ob/ob). BAIBA (100 mg/kg/day) was also given for 4 months in wild-type (+/+) mice and mice partially deficient in leptin (ob/+) fed a high-calorie (HC) diet. BAIBA did not limit obesity and hepatic steatosis in ob/ob mice, but reduced liver cytolysis and inflammation. In ob/+ mice fed the HC diet, BAIBA fully prevented, or limited, the gain of body fat, steatosis and necroinflammation, glucose intolerance, and hypertriglyceridemia. Plasma beta-hydroxybutyrate was increased, whereas expression of carnitine palmitoyltransferase-1 was augmented in liver and white adipose tissue. Acetyl-CoA carboxylase was more phosphorylated, and de novo lipogenesis was less induced in liver. These favorable effects of BAIBA in ob/+ mice were associated with a restoration of plasma leptin levels. The reduction of body adiposity afforded by BAIBA was less marked in +/+ mice. Finally, BAIBA significantly stimulated the secretion of leptin in isolated ob/+ adipose cells, but not in +/+ cells. Thus, BAIBA could limit triglyceride accretion in tissues through a leptin-dependent stimulation of FAO. As partial leptin deficiency is not uncommon in the general population, supplementation with BAIBA may help to prevent diet-induced obesity and related metabolic disorders in low leptin secretors.

  13. A Review: Supplementation of Foods with Essential Fatty Acids-Can It Turn a Breeze without Further Ado?

    PubMed

    Ganesh, Vijayalakshmi; Hettiarachchy, Navam S

    2016-07-03

    This paper focuses on the critical aspects of supplementation of foods with essential fatty acids (EFAs), the need, health benefits of supplementation and the constraints of the process. Current trend of supplementation of foods with EFAs has been gaining momentum and more research pioneers due to the health benefits in par with the direct intake of EFA supplements. Technologies including encapsulation, nanotechnology, molecular complexing, genetic engineering and more emerging means, hold promise to food supplementation with EFAs. Food trials with adoption of various technologies, studies of bioavailability and health benefits are still underway and crucial before EFA supplementation in foods can hit the market on a global scale.

  14. Some Partners Are More Equal than Others: EFA and Civil Society in Papua New Guinea and Vanuatu Education Policy Processes

    ERIC Educational Resources Information Center

    McCormick, Alexandra

    2011-01-01

    This article considers a parallel marginalisation of Education for All (EFA) as a holistic approach to education, and the civil society actors and coalitions who address sidelined Dakar goals of early childhood care and education, adult literacy, quality and non-formal education. I argue that in spite of over two decades of EFA rhetoric prizing…

  15. Isotope-dilution assay for urinary methylmalonic acid in the diagnosis of vitamin B12 deficiency. A prospective clinical evaluation

    SciTech Connect

    Matchar, D.B.; Feussner, J.R.; Millington, D.S.; Wilkinson, R.H. Jr.; Watson, D.J.; Gale, D.

    1987-05-01

    Vitamin B12 deficiency is a frequently considered diagnosis for which there is no single, commonly available and accurate test. A urinary methylmalonic acid assay using gas chromatography-mass spectrometry has been proposed as the preferred test. We reviewed vitamin B12 assays on 1599 consecutive patients and prospectively studied all patients with low serum B12 levels (n = 75) and a random sample of patients with normal levels (n = 68). Of 96 evaluable patients, 7 had clinical deficiency. All 7 deficient patients had urinary methylmalonic acid levels greater than 5 micrograms/mg creatine (sensitivity, 100%; confidence interval, 65% to 100%). Of the 89 patients who were not clinically deficient, 88 had urinary methylmalonic acid levels less than or equal to 5 micrograms/mg creatinine (specificity, 99%). The overall test accuracy in this population was 99%. If the high sensitivity and specificity of the gas chromatography-mass spectrometry assay for urinary methylmalonic acid is supported by other clinical studies, the methylmalonic acid assay may become the reference standard for the diagnosis of vitamin B12 deficiency.

  16. Brain docosahexaenoic acid status and learning in young rats submitted to dietary long-chain polyunsaturated fatty acid deficiency and supplementation limited to lactation.

    PubMed

    García-Calatayud, Salvador; Redondo, Carlos; Martín, Eva; Ruiz, José Ignacio; García-Fuentes, Miguel; Sanjurjo, Pablo

    2005-05-01

    N-3 fatty acid deficiency has been related to decreased docosahexaenoic acid (DHA) and increased docosapentaenoic acid (DPA) levels in brain and to learning disadvantages. The influence of n-3 deficiency and supplementation on brain fatty acids and learning were investigated in young rats. Newborn Wistar rats were assigned to three groups of cross-foster mothers. The control group (C) was nursed by mothers that received essential fatty acids during pregnancy and lactation, and the deficient group (D) was nursed by mothers that did not receive those fatty acids. The supplemental group (S) had the same conditions as D, receiving an additional DHA and arachidonic acid supplement during lactation. Cerebral cortex and hippocampus fatty acid composition was examined using thin-layer and capillary column gas chromatography, and learning was measured by passive-avoidance procedure. D brains showed low DHA and high DPA levels, but S brain composition was similar to C. Learning in the S group was unaffected, but in the D group, it was poorer than C. Learning was directly correlated with DHA levels and inversely with DPA levels in brain. Low DHA and high DPA brain levels both were correlated with poor learning. DPA seems not to be a suitable brain functional analogue of DHA, and DHA supplementation reversed both biochemical and learning adverse effects observed in n-3 deficiency.

  17. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    SciTech Connect

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  18. Cation deficiency in the atmosphere as a probable cause of acid rains in North America

    NASA Astrophysics Data System (ADS)

    Varma, G. S.

    In North America, where almost every shower is acidic (pH < 5.65), the proper causes have been studied. It was observed that the main cause behind the acidic rains is the alkali deficient environment which fails to neutralize the acid traces formed in the atmosphere by anthropogenic, biogenic and agricultural activity and not the increase in anions in the atmosphere as was speculated earlier by many workers. The data of 12 BAPMoN stations of America from the period 1974-1980 have revealed that, at most of the stations, the trends of cations are declining and in most cases the concentration of anions have also decreased. Thus the environment in the U.S. is becoming cleaner day by day. The pH values have been correlated with both the 'cations' and 'anions' separately (Fig. 1) for all 12 the BAPMoN stations and strong positive correlations have been observed between pH and cations ( rc) while poor correlations were found for anions ( ra) which reveals that pH of rain is more influenced by cation's activity in the atmosphere which are decreasing rapidly as a result of which the rains in North America are found to be acidic. It is not due to an increase in anions caused by industrialization and automobile emissions.

  19. Exploratory Structural Equation Modeling, Integrating CFA and EFA: Application to Students' Evaluations of University Teaching

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Muthen, Bengt; Asparouhov, Tihomir; Ludtke, Oliver; Robitzsch, Alexander; Morin, Alexandre J. S.; Trautwein, Ulrich

    2009-01-01

    This study is a methodological-substantive synergy, demonstrating the power and flexibility of exploratory structural equation modeling (ESEM) methods that integrate confirmatory and exploratory factor analyses (CFA and EFA), as applied to substantively important questions based on multidimentional students' evaluations of university teaching…

  20. EFA Politics, Policies and Progress. CREATE Pathways to Access. Research Monograph No. 13

    ERIC Educational Resources Information Center

    Little, Angela W.

    2008-01-01

    The Millennium Development Goal 2 has a target of ensuring that, by 2015, all children will complete a full course of primary schooling. This is consistent with the second goal of the Dakar Framework of Action for Education for All [EFA] that pre-dated it, except that the Dakar goal qualifies the Millennium Goal with "compulsory education of…

  1. Hard-Pressed to Achieve the EFA Goals by 2015 in the Philippines

    ERIC Educational Resources Information Center

    Caoli-Rodriguez, Rhona B.

    2008-01-01

    The Philippines has experienced a setback in its progress towards EFA 2015 Goals. In particular, a decline in primary and secondary education performance indicators and a widening gap between boys' and girls' performance were noted. While the present policy environment in the country has been conducive to education reforms, a lack of political…

  2. Some Comments on Analytic Traditions in EFA As against CFA: An Analysis of Selected Research Reports.

    ERIC Educational Resources Information Center

    Kieffer, Kevin M.

    Factor analysis has historically been used for myriad purposes in the social and behavioral sciences, but an especially important application of this technique has been to evaluate construct validity. Since in the present milieu both exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) are readily available to the researcher,…

  3. EFA: The Lessons of Experience. The Impact of Policy in 20 Case Studies.

    ERIC Educational Resources Information Center

    World Bank, Washington, DC.

    The World Bank was one of the five convening agencies for the 1990 Education for All (EFA) Conference held in Jomtien (Thailand) and the Dakar (Netherlands) World Education Conference of 2000. World Bank lending for basic education in the five years following Jomtien increased 500% compared to the previous five years. Yet for all the increased…

  4. An alternative retinoic acid-responsive Stra6 promoter regulated in response to retinol deficiency.

    PubMed

    Laursen, Kristian B; Kashyap, Vasundhra; Scandura, Joseph; Gudas, Lorraine J

    2015-02-13

    Cellular uptake of vitamin A (retinol) is essential for many biological functions. The Stra6 protein binds the serum retinol-binding protein, RBP4, and acts in conjunction with the enzyme lecithin:retinol acyltransferase to facilitate retinol uptake in some cell types. We show that in embryonic stem (ES) cells and in some tissues, the Stra6 gene encodes two distinct mRNAs transcribed from two different promoters. Whereas both are all-trans-retinoic acid (RA)-responsive in ES cells, the downstream promoter contains a half-site RA response element (RARE) and drives an ∼ 13-fold, RA-associated increase in luciferase reporter activity. We employed CRISPR-Cas9 genome editing to show that the endogenous RARE is required for RA-induced transcription of both Stra6 isoforms. We further demonstrate that in ES cells, 1) both RARγ and RXRα are present at the Stra6 RARE; 2) RA increases co-activator p300 (KAT3B) binding and histone H3 Lys-27 acetylation at both promoters; 3) RA decreases Suz12 levels and histone H3 Lys-27 trimethylation epigenetic marks at both promoters; and 4) these epigenetic changes are diminished in the absence of RARγ. In the brains of WT mice, both the longer and the shorter Stra6 transcript (Stra6L and Stra6S, respectively) are highly expressed, whereas these transcripts are found only at low levels in RARγ(-/-) mice. In the brains of vitamin A-deficient mice, both Stra6L and Stra6S levels are decreased. In contrast, in the vitamin A-deficient kidneys, the Stra6L levels are greatly increased, whereas Stra6S levels are decreased. Our data show that kidneys respond to retinol deficiency by differential Stra6 promoter usage, which may play a role in the retention of retinol when vitamin A is low.

  5. The Dynamics of Embolism Refilling in Abscisic Acid (ABA)-Deficient Tomato Plants

    PubMed Central

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K.; Lovisolo, Claudio; Zwieniecki, Maciej A.

    2013-01-01

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling. PMID:23263667

  6. Novel treatment options for lysosomal acid lipase deficiency: critical appraisal of sebelipase alfa

    PubMed Central

    Su, Kim; Donaldson, Emma; Sharma, Reena

    2016-01-01

    Lysosomal acid lipase deficiency (LAL-D) is a rare disorder of cholesterol metabolism with an autosomal recessive mode of inheritance. The absence or deficiency of the LAL enzyme gives rise to pathological accumulation of cholesterol esters in various tissues. A severe LAL-D phenotype manifesting in infancy is associated with adrenal calcification and liver and gastrointestinal involvement with characteristic early mortality. LAL-D presenting in childhood and adulthood is associated with hepatomegaly, liver fibrosis, cirrhosis, and premature atherosclerosis. There are currently no curative pharmacological treatments for this life-threatening condition. Supportive management with lipid-modifying agents does not ameliorate disease progression. Hematopoietic stem cell transplantation as a curative measure in infantile disease has mixed success and is associated with inherent risks and complications. Sebelipase alfa (Kanuma) is a recombinant human LAL protein and the first enzyme replacement therapy for the treatment of LAL-D. Clinical trials have been undertaken in infants with rapidly progressive LAL-D and in children and adults with later-onset LAL-D. Initial data have shown significant survival benefits in the infant group and improvements in biochemical parameters in the latter. Sebelipase alfa has received marketing authorization in the United States and Europe as long-term therapy for all affected individuals. The availability of enzyme replacement therapy for this rare and progressive disorder warrants greater recognition and awareness by physicians. PMID:27799810

  7. Physiological management of dietary deficiency in n-3 fatty acids by spawning Gulf killifish (Fundulus grandis).

    PubMed

    Patterson, Joshua T; Green, Christopher C

    2015-08-01

    Lipid dynamics of spawning fish are critical to the production of viable embryos and larvae. The present study utilized manipulation of dietary fatty acid (FA) profiles to examine the ability of spawning Gulf killifish (Fundulus grandis) to mobilize critical lipid components from somatic reserves or synthesize long-chain polyunsaturated FAs (LC-PUFAs) de novo from shorter-chain C18 precursors. An egg and multi-tissue evaluation of changes in FA concentrations across time after fish were switched from LC-PUFA-rich to LC-PUFA-deficient experimental diets was employed. The two experimental diets contained lipid sources which differed drastically in n-3 C18 FA content but had similar levels of n-6 C18 FAs. Discrete effects of dietary n-3 FAs can be analyzed because n-3 and n-6 represent distinct metabolic families which cannot be exchanged in vivo. Results indicate that a combination of mobilization and de novo synthesis is likely utilized to maintain physiologically required FA levels in critical tissues and embryos. Mobilization was supported by decreases in LC-PUFAs in somatic tissues and decreases in intraperitoneal fat content and liver mass. Evidence for biosynthesis was provided by a higher level of n-3 LC-PUFAs in the liver and ova of fish fed diets containing n-3 C18 precursors versus those fed diets with low levels of precursor FAs. The characteristic physiological plasticity of Gulf killifish is exemplified in the nutritional domain by its management of dietary FA deficiency.

  8. The dynamics of embolism refilling in abscisic acid (ABA)-deficient tomato plants.

    PubMed

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K; Lovisolo, Claudio; Zwieniecki, Maciej A

    2012-12-24

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant's refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant's capacity for refilling.

  9. A pivotal role for beta-aminoisobutyric acid and oxidative stress in dihydropyrimidine dehydrogenase deficiency?

    PubMed

    van Kuilenburg, A B P; Stroomer, A E M; Abeling, N G G M; van Gennip, A H

    2006-01-01

    Dihydropyrimidine dehydrogenase (DPD) constitutes the first step of the pyrimidine degradation pathway in which the pyrimidine bases uracil and thymine are catabolised to beta-alanine and beta-aminoisobutyric acid (beta-AIB), respectively. The mean concentration of beta-AIB was approximately 5- to 8-fold lower in urine of patients with a DPD deficiency, when compared to age-matched controls. Comparable levels of 8-hydroxydeoxyguanosine (8-OHdG) were present in urine from controls and DPD patients at the age <2 year. In contrast, slightly elevated levels of 8-OHdG were detected in urine from DPD patients with an age >2 year, suggesting the presence of increased oxidative stress.

  10. Spurious Elevation of Multiple Urine Amino Acids by Ion-Exchange Chromatography in Patients with Prolidase Deficiency.

    PubMed

    Ferreira, Carlos R; Cusmano-Ozog, Kristina

    2017-01-01

    The enzyme prolidase cleaves dipeptides where the C-terminal amino acid corresponds to proline or hydroxyproline. As a consequence, a deficiency of this enzyme leads to accumulation of these dipeptides, which correspondingly are found to be elevated in urine. In fact, the absence of dipeptiduria is sufficient to rule out a diagnosis of prolidase deficiency. However, given the fact that these dipeptides elute at the same position as more common amino acids, the analyzer's software will instead call an elevation of these corresponding amino acids. Thus, an elevation of glycylproline, aspartylproline, glutamylproline, threonylproline and serylproline, valylproline, leucylproline, isoleucylproline, alanylproline, phenylalanylproline, and lysylproline will instead be interpreted as an elevation of leucine, citrulline, methionine, isoleucine, beta-aminoisobutyric acid, gamma-aminobutyric acid, ethanolamine, tyrosine, histidine, and anserine/carnosine, respectively. This particular profile of elevated amino acids, however, can easily be overlooked. We hope that the recognition of this characteristic pattern of falsely elevated urinary amino acids will aid in the recognition of prolidase deficiency.

  11. Effects of dietary sialic acid in n-3 fatty acid-deficient dams during pregnancy and lactation on the learning abilities of their pups after weaning.

    PubMed

    Hiratsuka, Seiichi; Honma, Hiroyuki; Saitoh, Yoichi; Yasuda, Yuki; Yokogoshi, Hidehiko

    2013-01-01

    The effects of dietary sialic acid in dams on the learning abilities of their pups after weaning were investigated using rats deficient in n-3 fatty acids. Nine-week-old female Wistar rats were fed an n-3 fatty acid-deficient diet for 3 wk and were mated at 12 wk of age. During pregnancy and lactation, the female rats were fed the n-3 fatty acid-deficient diet, and were given water or water containing 1% N-acetylneuraminic acid (NANA) ad libitum. After weaning, the learning abilities of the pups were evaluated using a novel object recognition test. The recognition index of pups nursed by dams fed on water containing 1% NANA (NANA-intake dams) was significantly higher than that of pups nursed by dams fed only on water (NANA non-intake dams). There were no significant differences in the total sialic acid or docosahexaenoic acid contents in the cerebral cortex or hippocampus of pups nursed by dams fed on either type of water. The total dimethylacetal (DMA, from plasmalogen) level in the cerebral cortex of pups nursed by NANA-intake dams was significantly higher than that of pups nursed by NANA non-intake dams. These results suggest that dietary sialic acid in dams during pregnancy and lactation might be beneficial for the learning abilities of pups after weaning, which may be related to the plasmalogen level in the brain of pups.

  12. Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid.

    PubMed Central

    Goldman, A S; Baker, L; Piddington, R; Marx, B; Herold, R; Egler, J

    1985-01-01

    Congenital malformations now represent the largest single cause of mortality in the infant of the diabetic mother. The mechanism by which diabetes exerts its teratogenic effects is not known. This study evaluated whether arachidonic acid might be involved, a possibility raised by the role of arachidonic acid in palatal elevation and fusion, processes analogous to neural tube folding and fusion. This hypothesis was tested in two animal models of diabetic embryopathy, the in vivo pregnant diabetic rat and the in vitro hyperglycemic mouse embryo culture. The subcutaneous injection of arachidonic acid (200-400 mg/kg per day) into pregnant diabetic rats during the period of organ differentiation (days 6-12) did not alter the maternal glucose concentration, the maternal weight gain, or the weight of the embryos. However, the incidence of neural tube fusion defects was reduced from 11% to 3.8% (P less than 0.005), the frequency of cleft palate was reduced from 11% to 4% (P less than 0.005), and the incidence of micrognathia was reduced from 7% to 0.8% (P less than 0.001). The addition of arachidonic acid to B10.A mouse embryos in culture also resulted in a reversal of hyperglycemia-induced teratogenesis. The teratogenic effect of D-glucose (8 mg/ml) in the medium resulted in normal neural tube fusion in only 32% of the embryos (P less than 0.006 when compared to controls). Arachidonic acid supplementation (1 or 10 micrograms/ml) produced a rate of neural tube fusion (67%) that was not significantly different from that observed in controls. The evidence presented indicates that arachidonic acid supplementation exerts a significant protective effect against the teratogenic action of hyperglycemia in both in vivo (rat) and in vitro (mouse) animal models. These data therefore suggest that the mechanism mediating the teratogenic effect of an increased glucose concentration involves a functional deficiency of arachidonic acid at a critical stage of organogenesis. Images PMID

  13. Changes in transepidermal water loss and the composition of epidermal lecithin after applications of pure fatty acid triglycerides to skin of essential fatty acid-deficient rats.

    PubMed

    Hartop, P J; Prottey, C

    1976-09-01

    The importance of various unsaturated fatty acid triglycerides to the repair of faulty skin barrier function was studied in essential fatty acid-deficient rats. Following cutaneous application of the pure triglycerides for up to 5 days, the hitherto high rate of transepidermal water loss, characteristic of essential fatty acid deficiency in rats, was reduced by the triglycerides of linoleic and gamma-linolenic acids. Incorporation of the applied fatty acids into the lecithin of the epidermis accompanied these changes in water loss, indicating that cutaneously applied triglycerides may be metabolized by the skin and incorporated into complex lipids. Other fatty acid triglycerides, including alpha-linolenic, dihomo-gamma-linolenic, arachidonic and omega-7-heneicosatrienoic acid, did not lower the rate of transepidermal water loss, although all were incorporated into epidermal structural lipids. The non-essential oleic acid also had no effect upon the rate of transepidermal water loss. These data suggest that of the two main essential fatty acids that occur in skin, linoleic acid and arachidonic acid, the former specifically plays an important role in regulating barrier function whereas the later may have a separate function, such as serving as a precursor of prostaglandins.

  14. The essentiality of arachidonic acid and docosahexaenoic acid

    PubMed Central

    Le, Hau D.; Meisel, Jonathan A.; de Meijer, Vincent E.; Gura, Kathleen M.; Puder, Mark

    2012-01-01

    Objective The purpose of this review is to correlate the clinical finding that patients receiving parenteral nutrition with a fish oil-based lipid emulsion do not develop essential fatty acid deficiency (EFAD) with an experimental murine model, thus showing that arachidonic acid (AA) and docosahexaenoic acid (DHA) are likely to be the essential fatty acids. Background Conventional belief is that linoleic acid (LA, omega-6) and alpha-linolenic acid (ALA, omega-3) are the essential fatty acids (EFAs). We have shown that a fish oil-based lipid emulsion containing AA (omega-6) and docosahexaenoic acid (DHA, omega-3) and insignificant quantities of LA and ALA is efficacious in the treatment of parenteral nutrition-associated liver disease (PNALD), a major cause of liver-related morbidity and mortality. The prospect of using a fish oil-based lipid emulsion as monotherapy has raised concerns of EFAD development, hindering its adoption into clinical practice. Design Data from patients in our institution who received PN with a fish oil-based lipid emulsion was reviewed for clinical and biochemical evidence of EFAD, defined as an elevated triene-tetraene ratio (Mead acid/AA >0.2). We also investigated the minimum amount of fish oil required to prevent EFAD in a murine model and determined whether DHA and AA alone can prevent EFAD. Results No patients receiving PN with a fish oil-based lipid emulsion in our institution have developed biochemical or clinical evidence of EFAD such as an elevated triene-tetraene ratio, growth retardation or dermatitis. This observation parallels our previously published animal studies, which demonstrated prevention of EFAD when thirteen percent of total calories were from fish oil. Moreover, current work in our laboratory shows that AA and DHA provision alone is sufficient to prevent biochemical and physiologic evidence of EFAD in a murine model. Conclusions When dosed appropriately, fish oil-based lipid emulsions contain sufficient EFAs to

  15. Hypercholesterolemia and changes in lipid and bile acid metabolism in male and female cyp7A1-deficient mice.

    PubMed

    Erickson, Sandra K; Lear, Steven R; Deane, Sean; Dubrac, Sandrine; Huling, Sandra L; Nguyen, Lien; Bollineni, Jaya S; Shefer, Sarah; Hyogo, Hideyuki; Cohen, David E; Shneider, Benjamin; Sehayek, Ephraim; Ananthanarayanan, Meena; Balasubramaniyan, Natarajan; Suchy, Fredrick J; Batta, Ashok K; Salen, Gerald

    2003-05-01

    Cholesterol 7alpha-hydroxylase, a rate-limiting enzyme for bile acid synthesis, has been implicated in genetic susceptibility to atherosclerosis. The gene, CYP7A1, encoding a protein with this activity, is expressed normally only in hepatocytes and is highly regulated. Our cyp7A1 gene knockout mouse colony, as young adults on a chow diet, is hypercholesterolemic. These mice were characterized extensively to understand how cyp7A1 affects lipid and bile acid homeostasis in different tissue compartments and whether gender plays a modifying role. Both male and female cyp7A1-deficient mice had decreased hepatic LDL receptors, unchanged hepatic cholesterol synthesis, increased intestinal cholesterol synthesis and bile acid transporters, and decreased fecal bile acids but increased fecal sterols. In females, cyp7A1 deficiency also caused changes in hepatic fatty acid metabolism, decreased hepatic canalicular bile acid transporter, Bsep, and gallbladder bile composition altered to a lithogenic profile. Taken together, the data suggest that cyp7A1 deficiency results in a proatherogenic phenotype in both genders and leads to a prolithogenic phenotype in females.

  16. Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse

    PubMed Central

    van Vlies, Naomi; Tian, Liqun; Overmars, Henk; Bootsma, Albert H.; Kulik, Willem; Wanders, Ronald J. A.; Wood, Philip A.; Vaz, Frédéric M.

    2004-01-01

    In the present paper, we describe a novel method which enables the analysis of tissue acylcarnitines and carnitine biosynthesis intermediates in the same sample. This method was used to investigate the carnitine and fatty acid metabolism in wild-type and LCAD−/− (long-chain acyl-CoA dehydrogenase-deficient) mice. In agreement with previous results in plasma and bile, we found accumulation of the characteristic C14:1-acylcarnitine in all investigated tissues from LCAD−/− mice. Surprisingly, quantitatively relevant levels of 3-hydroxyacylcarnitines were found to be present in heart, muscle and brain in wild-type mice, suggesting that, in these tissues, long-chain 3-hydroxyacyl-CoA dehydrogenase is rate-limiting for mitochondrial β-oxidation. The 3-hydroxyacylcarnitines were absent in LCAD−/− tissues, indicating that, in this situation, the β-oxidation flux is limited by the LCAD deficiency. A profound deficiency of acetylcarnitine was observed in LCAD−/− hearts, which most likely corresponds with low cardiac levels of acetyl-CoA. Since there was no carnitine deficiency and only a marginal elevation of potentially cardiotoxic acylcarnitines, we conclude from these data that the cardiomyopathy in the LCAD−/− mouse is caused primarily by a severe energy deficiency in the heart, stressing the important role of LCAD in cardiac fatty acid metabolism in the mouse. PMID:15535801

  17. Total Serum Bilirubin Predicts Fat-Soluble Vitamin Deficiency Better Than Serum Bile Acids in Infants with Biliary Atresia

    PubMed Central

    Venkat, Veena L.; Shneider, Benjamin L.; Magee, John C.; Turmelle, Yumirle; Arnon, Ronen; Bezerra, Jorge A.; Hertel, Paula M.; Karpen, Saul J; Kerkar, Nanda; Loomes, Kathleen M.; Molleston, Jean; Murray, Karen F.; Ng, Vicky L.; Raghunathan, Trivellore; Rosenthal, Philip; Schwartz, Kathleen; Sherker, Averell H.; Sokol, Ronald J.; Teckman, Jeffrey; Wang, Kasper; Whitington, Peter F.; Heubi, James E.

    2014-01-01

    Objective Fat soluble vitamin (FSV) deficiency is a well-recognized consequence of cholestatic liver disease and reduced intestinal intraluminal bile acids. We hypothesized that serum bile acids (SBA) would predict biochemical FSV deficiency better than serum total bilirubin level (TB) in infants with biliary atresia. Methods Infants enrolled in the Trial of Corticosteroid Therapy in Infants with Biliary Atresia (START) after hepatoportoenterostomy were the subjects of this investigation. Infants received standardized FSV supplementation and monitoring of TB, SBA and vitamin levels at 1, 3 and 6 months. A logistic regression model was used with the binary indicator variable insufficient/sufficient as the outcome variable. Linear and non-parametric correlations were made between specific vitamin measurement levels and either TB or SBA. Results The degree of correlation for any particular vitamin at a specific time point was higher with TB than SBA (higher for TB in 31 circumstances versus 3 circumstances for SBA). Receiver operating characteristic (ROC) shows that TB performed better than SBA (AUC 0.998 vs. 0.821). Including both TB and SBA did not perform better than TB alone (AUC 0.998). Conclusion We found that TB was a better predictor of FSV deficiency than SBA in infants with biliary atresia. The role of SBA as a surrogate marker of FSV deficiency in other cholestatic liver diseases, such as PFIC, alpha-one antitrypsin deficiency and Alagille syndrome where the pathophysiology is dominated by intrahepatic cholestasis, warrants further study. PMID:25419594

  18. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    PubMed

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells.

  19. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    PubMed

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P < 0.01). When analyzed by real-time polymerase chain reaction, PdxR deficiency was found to drastically reduce expression of an apparent operon encoding a pyridoxal kinase (SMU865) and a pyridoxal permease (SMU866) of the salvage pathway of vitamin B6 biosynthesis. In addition, PdxR deficiency also altered the expression of genes for ClpL protease, glucosyltransferase B and adhesin SpaP, which are known to play important roles in stress tolerance and biofilm formation. Consistently, PdxR-deficiency affected the growth of the deficient mutant when grown in defined medium with and without vitamin B6 . Further studies revealed that although S. mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation.

  20. 41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... impracticable or inefficient. Waiver approval will be coordinated with GSA's Office of Travel, Transportation..., the agency must still (1) post asset information on the eFAS Web site and (2) provide post-sales...

  1. 41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... impracticable or inefficient. Waiver approval will be coordinated with GSA's Office of Travel, Transportation..., the agency must still (1) post asset information on the eFAS Web site and (2) provide post-sales...

  2. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of α1-antitrypsin deficiency.

    PubMed

    Bouchecareilh, Marion; Hutt, Darren M; Szajner, Patricia; Flotte, Terence R; Balch, William E

    2012-11-02

    α1-Antitrypsin (α1AT) deficiency (α1ATD) is a consequence of defective folding, trafficking, and secretion of α1AT in response to a defect in its interaction with the endoplasmic reticulum proteostasis machineries. The most common and severe form of α1ATD is caused by the Z-variant and is characterized by the accumulation of α1AT polymers in the endoplasmic reticulum of the liver leading to a severe reduction (>85%) of α1AT in the serum and its anti-protease activity in the lung. In this organ α1AT is critical for ensuring tissue integrity by inhibiting neutrophil elastase, a protease that degrades elastin. Given the limited therapeutic options in α1ATD, a more detailed understanding of the folding and trafficking biology governing α1AT biogenesis and its response to small molecule regulators is required. Herein we report the correction of Z-α1AT secretion in response to treatment with the histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA), acting in part through HDAC7 silencing and involving a calnexin-sensitive mechanism. SAHA-mediated correction restores Z-α1AT secretion and serpin activity to a level 50% that observed for wild-type α1AT. These data suggest that HDAC activity can influence Z-α1AT protein traffic and that SAHA may represent a potential therapeutic approach for α1ATD and other protein misfolding diseases.

  3. Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration

    SciTech Connect

    Goswami, B.B.; Sharma, O.K.

    1980-01-01

    Highly purified poly(adenylic acid)-containing RNA isolated from livers of rats fed 0.25% DL-etionine in the diet for 7 days accepted methyl groups from S-adenosyl(methyl-/sup 3/H)methionine, when incubated in vitro with mRNA methyltransferases from vaccinia virus or Ehrlich ascites cells, whereas RNA from control rats had no such activity. Nuclease digestion followed by chromatographic analyses of mRNA methylated in vitro revealed that the methyl groups were incorporated at the 5' end into cap 1 structures (m/sup 7/GpppNmp...) by the viral enzyme, whereas both cap 0 (m/sup 7/GpppNp...) and cap 1 (m/sup 7/Gpppm/sup 6/Am...) structures were formed by the Ehrlich ascites cell enzymes. the methyl-deficient mRNA isolated from the liver of ethionine-fed rats differed in its translational properties from mRNA isolated from control animals in an in vitro protein synthesizing system from wheat germ.

  4. Tailoring gut immune responses with lipoteichoic acid-deficient Lactobacillus acidophilus

    PubMed Central

    Lightfoot, Yaíma L.; Mohamadzadeh, Mansour

    2013-01-01

    As highlighted by the development of intestinal autoinflammatory disorders when tolerance is lost, homeostatic interactions between gut microbiota, resident immune cells, and the gut epithelium are key in the maintenance of gastrointestinal health. Gut immune responses, whether stimulatory or regulatory, are dictated by the activated dendritic cells (DCs) that first interact with microorganisms and their gene products to then elicit T and B cell responses. Previously, we have demonstrated that treatment with genetically modified Lactobacillus acidophilus is sufficient to tilt the immune balance from proinflammatory to regulatory in experimental models of colitis and colon cancer. Given the significant role of DCs in efficiently orchestrating intestinal immune responses, characterization of the signals induced within these cells by the surface layer molecules, such as lipoteichoic acid (LTA), and proteins of L. acidophilus is critical for future treatment and prevention of gastrointestinal diseases. Here, we discuss the potential regulatory pathways involved in the downregulation of pathogenic inflammation in the gut, and explore questions regarding the immune responses to LTA-deficient L. acidophilus that require future studies. PMID:23390423

  5. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi(amino acid) copolymer

    PubMed Central

    Li, Hong; Gong, Min; Yang, Aiping; Ma, Jian; Li, Xiangde; Yan, Yonggang

    2012-01-01

    Background and methods A nano calcium-deficient hydroxyapatite (n-CDHA)-multi(amino acid) copolymer (MAC) composite bone substitute biomaterial was prepared using an in situ polymerization method. The composition, structure, and compressive strength of the composite was characterized, and the in vitro degradability in phosphate-buffered solution and preliminary cell responses to the composite were investigated. Results The composite comprised n-CDHA and an amide linkage copolymer. The compressive strength of the composite was in the range of 88–129 MPa, varying with the amount of n-CDHA in the MAC (ranging from 10 wt% to 50 wt%). Weight loss from the composite increased (from 32.2 wt% to 44.3 wt%) with increasing n-CDHA content (from 10 wt% to 40 wt%) in the MAC after the composite was soaked in phosphate-buffered solution for 12 weeks. The pH of the soaking medium varied from 6.9 to 7.5. MG-63 cells with an osteogenic phenotype were well adhered and spread on the composite surface. Viability and differentiation increased with time, indicating that the composite had no negative effects on MG-63 cells. Conclusion The n-CDHA-MAC composite had good cytocompatibility and has potential to be used as a bone substitute. PMID:22457591

  6. Update on lysosomal acid lipase deficiency: Diagnosis, treatment and patient management.

    PubMed

    Camarena, Carmen; Aldamiz-Echevarria, Luis J; Polo, Begoña; Barba Romero, Miguel A; García, Inmaculada; Cebolla, Jorge J; Ros, Emilio

    2017-03-09

    Lysosomal acid lipase deficiency (LALD) is an ultra-rare disease caused by a congenital disorder of the lipid metabolism, characterized by the deposition of cholesterol esters and triglycerides in the organism. In patients with no enzyme function, the disease develops during the perinatal period and is invariably associated with death during the first year of life. In all other cases, the phenotype is heterogeneous, although most patients develop chronic liver diseases and may also develop an early cardiovascular disease. Treatment for LALD has classically included the use of supportive measures that do not prevent the progression of the disease. In 2015, regulatory agencies approved the use of a human recombinant LAL for the treatment of LALD. This long-term enzyme replacement therapy has been associated with significant improvements in the hepatic and lipid profiles of patients with LALD, increasing survival rates in infants with a rapidly progressive disease. Both the severity of LALD and the availability of a specific treatment highlight the need to identify these patients in clinical settings, although its low prevalence and the existing clinical overlap with other more frequent pathologies limit its diagnosis. In this paper we set out practical recommendations to identify and monitor patients with LALD, including a diagnostic algorithm, along with an updated treatment.

  7. Role of the plasma membrane H(+)-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency.

    PubMed

    Yu, Wenqian; Kan, Qi; Zhang, Jiarong; Zeng, Bingjie; Chen, Qi

    2016-01-01

    Aluminum (Al) toxicity and phosphorus (P) deficiency are 2 major limiting factors for plant growth and crop production in acidic soils. Organic acids exuded from roots have been generally regarded as a major resistance mechanism to Al toxicity and P deficiency. The exudation of organic acids is mediated by membrane-localized OA transporters, such as ALMT (Al-activated malate transporter) and MATE (multidrug and toxic compound extrusion). Beside on up-regulation expression of organic acids transporter gene, transcriptional, translational and post-translational regulation of the plasma membrane H(+)-ATPase are also involved in organic acid release process under Al toxicity and P deficiency. This mini-review summarizes the current knowledge about this field of study on the role of the plasma membrane H(+)-ATPase in organic acid exudation under Al toxicity and P deficiency conditions.

  8. Fish oil, essential fatty acids, and hypertension.

    PubMed

    Lee, R M

    1994-08-01

    A proper balance between the n-3 and n-6 series of essential fatty acids (EFAs) is essential for homeostasis and normal growth in humans. Dietary supplement with fish oil and related n-3 EFAs has been used to study their antihypertensive property in animals and humans with borderline and essential hypertension. In the animal models, chronic treatment of young animals generally only attenuated the development of hypertension. In animals with hypercholesterolemia, n-3 EFA supplement increased the incidence of atherosclerosis. In humans, chronic treatment with fish oil only produced a small reduction in blood pressure. The concerns are that the high dose of fish oil may interfere with the control of blood glucose in diabetic patients, and may cause prolonged bleeding in surgical patients. Studies on the animal models of hypertension showed that n-6 EFAs are more effective than n-3 EFAs in lowering and normalizing the blood pressure of these animals, probably through the production of tissue prostaglandins, which favour vasodilation. The antihypertensive effect of the n-6 EFAs in humans is not well known, because there are only a few studies, usually involving a very small number of patients. A possible side effects of n-6 EFAs for concern is that they might stimulate tumour development. A careful examination of these risk factors is needed before any recommendation can be made concerning the use of EFAs for the control of hypertension for humans.

  9. Intestinal absorption, liver uptake, and excretion of /sup 3/H-folic acid in folic acid-deficient, alcohol-consuming nonhuman primates

    SciTech Connect

    Blocker, D.E.; Thenen, S.W.

    1987-09-01

    Nonhuman primates fed folic acid-deficient diets +/- 30% kcal ethanol were used to determine alcohol effects on megaloblastic anemia development and folate bioavailability. Lower hemoglobin (Hb) and red blood cell (RBC) counts and higher mean corpuscular volume (MCV) occurred after 13 wk in alcohol-fed monkeys, later in controls. Plasma, RBC, and liver folate declined and urinary formiminoglutamic acid (FIGLU) was elevated in both groups with FIGLU increasing more among alcohol-fed monkeys at 38 wk. After 40 wk, the bioavailability of oral /sup 3/H-folic acid was investigated and showed increased fecal and reduced urinary tritium excretion in alcohol-fed monkeys compared with controls while plasma uptake and liver and whole body tritium retention were similar in both groups. These observations demonstrate that chronic alcohol consumption impairs folate coenzymes, accelerates appearance of hematologic indices of megaloblastic anemia, and causes possible malabsorption of enterohepatically circulated folates in folate deficiency even when other essential nutrients are provided.

  10. Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice.

    PubMed

    Carrasco, J; Penkowa, M; Hadberg, H; Molinero, A; Hidalgo, J

    2000-07-01

    Metallothioneins (MTs) are major zinc binding proteins in the CNS that could be involved in the control of zinc metabolism as well as in protection against oxidative stress. Mice lacking MT-I and MT-II (MT-I + II deficient) because of targeted gene inactivation were injected with kainic acid (KA), a potent convulsive agent, to examine the neurobiological importance of these MT isoforms. At 35 mg/kg KA, MT-I + II deficient male mice showed a higher number of convulsions and a longer convulsion time than control mice. Three days later, KA-injected mice showed gliosis and neuronal injury in the hippocampus. MT-I + II deficiency decreased both astrogliosis and microgliosis and potentiated neuronal injury and apoptosis as shown by terminal deoxynucleotidyl transferase-mediated in situ end labelling (TUNEL), detection of single stranded DNA (ssDNA) and by increased interleukin-1beta-converting enzyme (ICE) and caspase-3 levels. Histochemically reactive zinc in the hippocampus was increased by KA to a greater extent in MT-I + II-deficient compared with control mice. KA-induced seizures also caused increased oxidative stress, as suggested by the malondialdehyde (MDA) and protein tyrosine nitration (NITT) levels and by the expression of MT-I + II, nuclear factor-kappaB (NF-kappaB), and Cu/Zn-superoxide dismutase (Cu/Zn-SOD). MT-I + II deficiency potentiated the oxidative stress caused by KA. Both KA and MT-I + II deficiency significantly affected the expression of MT-III, granulocyte-macrophage colony stimulating factor (GM-CSF) and its receptor (GM-CSFr). The present results indicate MT-I + II as important for neuron survival during KA-induced seizures, and suggest that both impaired zinc regulation and compromised antioxidant activity contribute to the observed neuropathology of the MT-I + II-deficient mice.

  11. Effects of folic acid deficiency and MTHFRC677T polymorphisms on cytotoxicity in human peripheral blood lymphocytes

    SciTech Connect

    Wu Xiayu; Liang Ziqing; Zou Tianning; Wang Xu

    2009-02-13

    Apoptosis (APO) and necrosis (NEC) are two different types of cell death occurring in response to cellular stress factors. Cells with DNA damage may undergo APO or NEC. Folate is an essential micronutrient associated with DNA synthesis, repair and methylation. Methylenetetrahydrofolate reductase (MTHFR) regulates intracellular folate metabolism. Folate deficiency and MTHFR C677T polymorphisms have been shown to be related to DNA damage. To verify the cytotoxic effects of folate deficiency on cells with different MTHFR C677T genotypes, 15 human peripheral lymphocyte cases with different MTHFR C677T genotypes were cultured in folic acid (FA)-deficient and -sufficient media for 9 days. Cytotoxicity was quantified using the frequencies of APO and NEC as endpoints, the nuclear division index (NDI), and the number of viable cells (NVC). These results showed that FA is an important factor in reducing cytotoxicity and increasing cell proliferation. Lymphocytes with the TT genotype proliferated easily under stress and exhibited different responses to FA deficiency than lymphocytes with the CC and CT genotypes. A TT individual may accumulate more cytotoxicity under cytotoxic stress, suggesting that the effects of FA deficiency on cytotoxicity are greater than the effects in individuals with the other MTHFR C677T variants.

  12. Effect of selenium and vitamin E deficiencies on the fate of arachidonic acid in rat isolated lungs

    SciTech Connect

    Uotila, P.; Puustinen, T.

    1985-06-01

    The fate of exogenous /sup 14/C-arachidonic acid (/sup 14/C-AA) was investigated in the isolated lungs of rats fed selenium and vitamin E deficient diet or diets supplemented with selenium and/or vitamin E. When 80 nmol of /sup 14/C-AA was infused into the pulmonary circulation most of the infused /sup 14/C-AA was found in different phospholipid and neutral lipid fractions of the perfused lungs. Only less than ten percent of the infused radioactivity was recovered in the perfusion effluent. The amount of arachidonate metabolites in the perfusion effluent was negligible, and most of the radioactivity in the perfusion effluent consisted of unmetabolized arachidonate. Selenium deficiency had no significant effect on the distribution of /sup 14/C-AA in different lung lipid fractions. However, in the lungs of vitamin E deficient rats the amount of radioactivity was slightly increased in the neutral lipid fraction, which was due to the increased amount of /sup 14/C-AA in the diacylglycerols. The amount of radioactivity was increased especially in the 1,3-diacylglycerols. The amount of radioactivity was increased especially in the 1,3-diacylglycerols. The amount of /sup 14/C-AA in the triacylglycerols and in different phospholipids was not significantly changed. The present study might indicate that selenium deficiency has no significant effect on the fate of exogenous arachidonic acid in isolated rat lungs, and that vitamin E deficiency would slightly increase the amount of arachidonic acid in the diacylglycerols.

  13. A Mixed-Method Study to Determine the Benefits of Periconceptional Folic Acid Supplementation and Effects of Folic Acid Deficiency in Mothers on Birth Outcomes

    PubMed Central

    Murthy, Gudlavalleti Venkata S; Kolli, Sunanda Reddy; Neogi, Sutapa B; Singh, Samiksha; John, Neena; N., Srinivas; Ramani, Sudha; Shamanna, BR; Doyle, Pat; Kinra, Sanjay; Ness, Andy; Pallepogula, Dinesh Raj; Pant, Hira B; Babbar, Smiksha; Reddy, Raghunath; Singh, Rachna

    2016-01-01

    Background Evidence from high income countries shows mothers who are supplemented with folic acid in their periconceptional period and early pregnancy have significantly reduced adverse outcomes like birth defects. However, in India there is a paucity of data on association of birth defects and folic acid supplementation. We identified a few important questions to be answered using separate scientific methods and then planned to triangulate the information. Objective In this paper, we describe the protocol of our study that aims to determine the association of folic acid and pregnancy outcomes like neural tube defects (NTDs) and orofacial clefts (OFCs). We decided to fill the gaps in knowledge from India to determine public health consequences of folic acid deficiency and factors influencing dietary and periconceptional consumption of folic acid. Methods The proposed study will be carried out in five stages and will examine the questions related to folic acid deficiency across selected locations in South and North India. The study will be carried out over a period of 4 years through the hierarchical evidence-based approach. At first a systematic review was conducted to pool the current birth prevalence of NTDs and orofacial clefts OFCs in India. To investigate the population prevalence, we plan to use the key informant method to determine prevalence of NTDs and OFCs. To determine the normal serum estimates of folic acid, iron, and vitamin B12 among Indian women (15-35 years), we will conduct a population-based, cross-sectional study. We will further strengthen the evidence of association between OFCs and folic acid by conducting a hospital-based, case-control study across three locations of India. Lastly, using qualitative methods we will understand community and health workers perspective on factors that decide the intake of folic acid supplements. Results This study will provide evidence on the community prevalence of birth defects and prevalence folic acid and

  14. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone.

  15. Folate deficiency and folic acid supplementation: the prevention of neural-tube defects and congenital heart defects.

    PubMed

    Czeizel, Andrew E; Dudás, Istvan; Vereczkey, Attila; Bánhidy, Ferenc

    2013-11-21

    Diet, particularly vitamin deficiency, is associated with the risk of birth defects. The aim of this review paper is to show the characteristics of common and severe neural-tube defects together with congenital heart defects (CHD) as vitamin deficiencies play a role in their origin. The findings of the Hungarian intervention (randomized double-blind and cohort controlled) trials indicated that periconceptional folic acid (FA)-containing multivitamin supplementation prevented the major proportion (about 90%) of neural-tube defects (NTD) as well as a certain proportion (about 40%) of congenital heart defects. Finally the benefits and drawbacks of three main practical applications of folic acid/multivitamin treatment such as (i) dietary intake; (ii) periconceptional supplementation; and (iii) flour fortification are discussed. The conclusion arrived at is indeed confirmation of Benjamin Franklin's statement: "An ounce of prevention is better than a pound of care".

  16. Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress.

    PubMed

    Pompeu, Georgia B; Vilhena, Milca B; Gratão, Priscila L; Carvalho, Rogério F; Rossi, Mônica L; Martinelli, Adriana P; Azevedo, Ricardo A

    2017-03-01

    There is a very effective cross-talk between signals triggered by reactive oxygen species and hormonal responses in plants, activating proteins/enzymes likely to be involved in stress tolerance. Abscisic acid (ABA) is known as a stress hormone that takes part in the integration of signals. This work aimed to characterize the biochemical response and ultrastructural changes induced by cadmium (Cd) in the Micro-Tom (MT) sitiens ABA-deficient mutant (sit) and its wild-type (MT) counterpart. MT and sit plants were grown over a 96-h period in the presence of Cd (0, 10, and 100 μM CdCl2). The overall results indicated increases in lipid peroxidation, hydrogen peroxide content and in the activities of the key antioxidant enzymes such as catalase, glutathione reductase, and ascorbate peroxidase in both genotypes. On the other hand, no alteration was observed in chlorophyll content, while the activity of another antioxidant enzyme, superoxide dismutase, remained constant or even decreased in the presence of Cd. Roots and shoots of the sit mutant and MT were analyzed by light and transmission electron microscopy in order to characterize the structural changes caused by the exposure to this metal. Cd caused a decrease in intercellular spaces in shoots and a decrease in cell size in roots of both genotypes. In leaves, Cd affected organelle shape and internal organization of the thylakoid membranes, whereas noticeable increase in the number of mitochondria and vacuoles in MT and sit roots were observed. These results add new information that should help unravel the relative importance of ABA in regulating the cell responses to stressful conditions induced by Cd apart from providing the first characterization of this mutant to oxidative stress.

  17. Successful Within-patient Dose Escalation of Olipudase Alfa in Acid Sphingomyelinase Deficiency

    PubMed Central

    Wasserstein, Melissa P.; Jones, Simon A.; Soran, Handrean; Diaz, George A.; Lippa, Natalie; Thurberg, Beth L.; Culm-Merdek, Kerry; Shamiyeh, Elias; Inguilizian, Haig; Cox, Gerald F.; Puga, Ana Cristina

    2015-01-01

    Background Olipudase alfa, a recombinant human acid sphingomyelinase (rhASM), is an investigational enzyme replacement therapy (ERT) for patients with ASM deficiency [ASMD; Niemann-Pick Disease (NPD) A and B]. This open-label phase 1b study assessed the safety and tolerability of olipudase alfa using within-patient dose escalation to gradually debulk accumulated sphingomyelin and mitigate the rapid production of metabolites, which can be toxic. Secondary objectives were pharmacokinetics, pharmacodynamics, and exploratory efficacy. Methods Five adults with nonneuronopathic ASMD (NPD B) received escalating doses (0.1 to 3.0 mg/kg) of olipudase alfa intravenously every 2 weeks for 26 weeks. Results All patients successfully reached 3.0 mg/kg without serious or severe adverse events. One patient repeated a dose (2.0 mg/kg) and another had a temporary dose reduction (1.0 to 0.6 mg/kg). Most adverse events (97%) were mild and all resolved without sequelae. The most common adverse events were headache, arthralgia, nausea and abdominal pain. Two patients experienced single acute phase reactions. No patient developed hypersensitivity or anti-olipudase alfa antibodies. The mean circulating half-life of olipudase alfa ranged from 20.9 to 23.4 hours across doses without accumulation. Ceramide, a sphingomyelin catabolite, rose transiently in plasma after each dose, but decreased over time. Reductions in sphingomyelin storage, spleen and liver volumes, and serum chitotriosidase activity, as well as improvements in infiltrative lung disease, lipid profiles, platelet counts, and quality of life assessments, were observed. Conclusions This study provides proof-of-concept for the safety and efficacy of within-patient dose escalation of olipudase alfa in patients with nonneuronopathic ASMD. PMID:26049896

  18. Fate of Donor Deoxyribonucleic Acid in a Highly Transformation-Deficient Strain of Haemophilus influenzae

    PubMed Central

    Kooistra, Jan; Venema, Gerard

    1974-01-01

    A transformation-deficient strain of Haemophilus influenzae (efficiency of transformation 104-fold less than that of the wild type), designated TD24, was isolated by selection for sensitivity to mitomycin C. In its properties the mutant was equivalent to recA type mutants of Escherichia coli. The TD24 mutation was linked with the str-r marker (about 30%) and only weakly linked with the nov-r2.5 marker. The uptake of donor deoxyribonucleic acid (DNA) was normal in the TD24 strain, but no molecules with recombinant-type activity (molecules carrying both the donor and the resident marker) were formed. In the mutant the intracellular presynaptic fate of the donor DNA was the same as that in the transformation-proficient (wild-type) strain, and the radioactive label of the donor DNA associated covalently with the recipient chromosome in about the same quantity as in the wild type. However, many fewer donor atoms were associated with segments of the mutant's recipient chromosome as compared with segments of the wild-type chromosome. In the mutant the association was accompanied by complete loss of donor marker activity. The lack of donor marker activity of the donor-recipient complex of DNA isolated from the mutant was not due to lack of uptake of the complex by the second recipient and its inability to associate with the second recipient's chromosome. Because the number of donor-atom-carrying resident molecules was higher than could be accounted for by the lengths of presynaptic donor molecules, we favor the idea that the association of donor DNA atoms with the mutant chromosome results from local DNA synthesis rather than from dispersive integration of donor DNA by recombination. PMID:4546806

  19. Identification of genes and pathways involved in the synthesis of Mead acid (20:3n-9), an indicator of essential fatty acid deficiency.

    PubMed

    Ichi, Ikuyo; Kono, Nozomu; Arita, Yuka; Haga, Shizuka; Arisawa, Kotoko; Yamano, Misato; Nagase, Mana; Fujiwara, Yoko; Arai, Hiroyuki

    2014-01-01

    In mammals, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n-9) is synthesized from oleic acid during a state of essential fatty acid deficiency (EFAD). Mead acid is thought to be produced by the same enzymes that synthesize arachidonic acid and eicosapentaenoic acid, but the genes and the pathways involved in the conversion of oleic acid to Mead acid have not been fully elucidated. The levels of polyunsaturated fatty acids in cultured cells are generally very low compared to those in mammalian tissues. In this study, we found that cultured cells, such as NIH3T3 and Hepa1-6 cells, have significant levels of Mead acid, indicating that cells in culture are in an EFAD state under normal culture conditions. We then examined the effect of siRNA-mediated knockdown of fatty acid desaturases and elongases on the level of Mead acid, and found that knockdown of Elovl5, Fads1, or Fads2 decreased the level of Mead acid. This and the measured levels of possible intermediate products for the synthesis of Mead acid such as 18:2n-9, 20:1n-9 and 20:2n-9 in the knocked down cells indicate two pathways for the synthesis of Mead acid: pathway 1) 18:1n-9→(Fads2)→18:2n-9→(Elovl5)→20:2n-9→(Fads1)→20:3n-9 and pathway 2) 18:1n-9→(Elovl5)→20:1n-9→(Fads2)→20:2n-9→(Fads1)→20:3n-9.

  20. Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling.

    PubMed

    Howarth, Jonathan R; Parmar, Saroj; Jones, Janina; Shepherd, Caroline E; Corol, Delia-Irina; Galster, Aimee M; Hawkins, Nathan D; Miller, Sonia J; Baker, John M; Verrier, Paul J; Ward, Jane L; Beale, Michael H; Barraclough, Peter B; Hawkesford, Malcolm J

    2008-01-01

    Increasing demands for productivity together with environmental concerns about fertilizer use dictate that the future sustainability of agricultural systems will depend on improving fertilizer use efficiency. Characterization of the biological processes responsible for efficient fertilizer use will provide tools for crop improvement under reduced inputs. Transcriptomic and metabolomic approaches were used to study the impact of nitrogen (N) and sulphur (S) deficiency on N and S remobilization from senescing canopy tissues during grain filling in winter wheat (Triticum aestivum). Canopy tissue N was remobilized effectively to the grain after anthesis. S was less readily remobilized. Nuclear magnetic resonance (NMR) metabolite profiling revealed significant effects of suboptimal N or S supply in leaves but not in developing grain. Analysis of amino acid pools in the grain and leaves revealed a strategy whereby amino acid biosynthesis switches to the production of glutamine during grain filling. Glutamine accumulated in the first 7 d of grain development, prior to conversion to other amino acids and protein in the subsequent 21 d. Transcriptome analysis indicated that a down-regulation of the terminal steps in many amino acid biosynthetic pathways occurs to control pools of amino acids during leaf senescence. Grain N and S contents increased in parallel after anthesis and were not significantly affected by S deficiency, despite a suboptimal N:S ratio at final harvest. N deficiency resulted in much slower accumulation of grain N and S and lower final concentrations, indicating that vegetative tissue N has a greater control of the timing and extent of nutrient remobilization than S.

  1. Bioactivation of cyanide to cyanate in sulfur amino acid deficiency: relevance to neurological disease in humans subsisting on cassava.

    PubMed

    Tor-Agbidye, J; Palmer, V S; Lasarev, M R; Craig, A M; Blythe, L L; Sabri, M I; Spencer, P S

    1999-08-01

    Neurological disorders have been reported from parts of Africa with protein-deficient populations and attributed to cyanide (CN-) exposure from prolonged dietary use of cassava, a cyanophoric plant. Cyanide is normally metabolized to thiocyanate (SCN-) by the sulfur-dependent enzyme rhodanese. However, in protein-deficient subjects where sulfur amino acids (SAA) are low, CN may conceivably be converted to cyanate (OCN-), which is known to cause neurodegenerative disease in humans and animals. This study investigates the fate of potassium cyanide administered orally to rats maintained for up to 4 weeks on either a balanced diet (BD) or a diet lacking the SAAs, L-cystine and L-methionine. In both groups, there was a time-dependent increase in plasma cyanate, with exponential OCN- increases in SAA-deficient rats. A strongly positive linear relationship between blood CN- and plasma OCN- concentrations was observed in these animals. These data are consistent with the hypothesis that cyanate is an important mediator of chronic cyanide neurotoxicity during protein-calorie deficiency. The potential role of thiocyanate in cassava-associated konzo is discussed in relationship to the etiology of the comparable pattern of motor-system disease (spastic paraparesis) seen in lathyrism.

  2. Folic acid deficiency enhances abeta accumulation in APP/PS1 mice brain and decreases amyloid-associated miRNAs expression.

    PubMed

    Liu, Huan; Tian, Tian; Qin, Shanchun; Li, Wen; Zhang, Xumei; Wang, Xuan; Gao, Yuxia; Huang, Guowei

    2015-12-01

    Recent efforts have revealed the microRNA (miRNA) pathways in the pathogenesis of Alzheimer's disease (AD). Epidemiological studies have revealed an association between folic acid deficiency and AD risk. However, the effects of folic acid deficiency on miRNA expression in AD animals have not been observed. We aimed to find if folic acid deficiency may enhance amyloid-β (Aβ) peptide deposition and regulate amyloid-associated miRNAs and their target genes expression in APP/PS1 mice. APP/PS1 mice and N2a cells were treated with folic acid-deficient diet or medium. Cognitive function of mice was assessed using the Morris water maze. miRNA profile was tested by polymerase chain reaction (PCR) array. Different expressional miRNAs were validated by real-time PCR. The deposition of Aβ plaques was evaluated by immunohistochemistry and enzyme-linked immunosorbent assay. APP and BACE1 proteins in mice brain and N2a cells were determined by Western blot. Folic acid deficiency aggravated amyloid pathology in AD mice. The AD+FD group showed shorter time spent in the target zone during the probe test. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that were differentially modulated by folic acid deficiency. In APP/PS1 mice brains and N2a cells with folic acid-deficient treatment, miR-106a-5p, miR-200b-3p and miR-339-5p were down-regulated, and their target genes APP and BACE1 were up-regulated. In conclusion, folic acid deficiency can enhance Aβ accumulation in APP/PS1 mice brain and decrease amyloid-associated miRNAs expression.

  3. [Posterior-predominant leukoencephalopathy which was caused by methylenetetrahydrofolate reductase deficiency and successfully treated with folic acid].

    PubMed

    Tamura, Asako; Sasaki, Ryogen; Kagawa, Ken; Nakatani, Kaname; Osaka, Hitoshi; Tomimoto, Hidekazu

    2014-01-01

    A 35-year-old woman was admitted with subacute intellectual deterioration. Laboratory studies showed elevated total homocysteine and decreased folic acid. MRI revealed leukoencephalopathy with a posterior predominance, and hyperintensity in the pyramidal tracts on T2-weighted and FLAIR images. The enzyme assay showed a deficiency of methylenetetrahydrofolate reductase (MTHFR) activity with low residual activity of 4.2% of the mean control value in cultured fibroblasts. Sequence analysis of the MTHFR gene demonstrated two homozygous missense mutations, c.677C>T (p.Ala222Val) and c.685A>C (p.Ile225Leu). c.677C>T (p.Ala222Val) is known as a common polymorphism and c.685A>C (p.Ile225Leu) is considered to be a novel polymorphism. A diagnosis of MTHFR deficiency was made. Treatment with folic acid, vitamin B12 and B6 made significant improvement of intellectual deterioration and reduction in the total homocysteine level. They also made marked resolution of leukoencephalopathy. Posterior-predominant leukoencephalopathy was found to be an excellent marker of MTHFR deficiency, and may help to establish the diagnosis.

  4. Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain.

    PubMed

    Tonin, Anelise M; Grings, Mateus; Busanello, Estela N B; Moura, Alana P; Ferreira, Gustavo C; Viegas, Carolina M; Fernandes, Carolina G; Schuck, Patrícia F; Wajner, Moacir

    2010-07-01

    Accumulation of long-chain 3-hydroxy fatty acids is the biochemical hallmark of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. These disorders are clinically characterized by neurological symptoms, such as convulsions and lethargy, as well as by cardiomyopathy and muscle weakness. In the present work we investigated the in vitro effect of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in these disorders, on important oxidative stress parameters in cerebral cortex of young rats in the hope to clarify the mechanisms leading to the brain damage found in patients affected by these disorders. It was first verified that these compounds significantly induced lipid peroxidation, as determined by increased thiobarbituric acid-reactive substances levels. In addition, carbonyl formation was significantly increased and sulfhydryl content decreased by 3HTA and 3HPA, which indicates that these fatty acids elicit protein oxidative damage. 3HTA and 3HPA also diminished the reduced glutathione (GSH) levels, without affecting nitrate and nitrite production. Finally, we observed that the addition of the antioxidants and free radical scavengers trolox and deferoxamine (DFO) was able to partially prevent lipid oxidative damage, whereas DFO fully prevented the reduction on GSH levels induced by 3HTA. Our present data showing that 3HDA, 3HTA and 3HPA elicit oxidative stress in rat brain indicate that oxidative damage may represent an important pathomechanism involved in the neurologic symptoms manifested by patients affected by LCHAD and MTP deficiencies.

  5. Is hyperuricemia a risk factor for arteriosclerosis? Uric acid and arteriosclerosis in apolipoprotein e-deficient mice.

    PubMed

    Wakuda, Hirokazu; Uchida, Shinya; Ikeda, Masahiko; Tabuchi, Masaki; Akahoshi, Yasumitsu; Shinozuka, Kazumasa; Yamada, Shizuo

    2014-01-01

    Although hyperlipidemia, high blood pressure, and diabetes increase the risk of arteriosclerosis, it is not clear whether hyperuricemia increases the risk of arteriosclerosis or not. We examined the effects of uric acid and curative drugs for hyperuricemia on atherosclerosis-susceptible C57BL/6J apolipoprotein E-deficient (apoE(-/-)) mice. Male apoE(-/-) mice (age: 6 weeks) were fed a normal diet (normal diet group) or a uric acid-enriched diet. Mice fed the uric acid-enriched diet were divided into three groups and administered a drinking vehicle (high uric acid diet group), allopurinol (20 mg·kg(-1)·d(-1)), or benzbromarone (20 mg·kg(-1)·d(-1)) for 10 weeks. Serum uric acid concentrations were higher in the high uric acid diet group than in the normal diet group, and concentrations in the allopurinol and benzbromarone groups were lower than in the high uric acid diet group. Serum total cholesterol and triglyceride levels were lower in the allopurinol group than in the high uric acid diet group. Oxidative stress was lower in the benzbromarone group than in the high uric acid diet group. Atherosclerotic lesion areas were smaller in the allopurinol and benzbromarone groups than in the high uric acid diet group. Thus, hyperuricemia may not be an independent risk factor for arteriosclerosis; however, the administration of allopurinol and benzbromarone prevented the development of atherosclerosis in apoE(-/-) mice fed a uric acid-enriched diet. The anti-atherosclerotic effect was in part due to lower total cholesterol and oxidative stress in the serum. Other possible mechanisms underlying this effect should be investigated.

  6. Potential application of a glucose-transport-deficient mutant of Schizosaccharomyces pombe for removing gluconic acid from grape must.

    PubMed

    Peinado, Rafael A; Moreno, Juan J; Medina, Manuel; Mauricio, Juan C

    2005-02-23

    Musts from rotten grapes typically contain high levels of gluconic acid, which can raise severe problems in winemaking processes. In this work, the ability of the glucose-transport-deficient mutant YGS-5 of Schizosaccharomyces pombe to completely or partly remove gluconic acid from a synthetic glucose-containing medium and the potential use of this yeast strain for the same purpose in musts and wines were examined. Surprisingly, the S. pombe YGS-5 strain successfully removed 93% of the initial gluconic acid (2.5 gL(-1)) and 80% of the initial malic acid (1.0 gL(-1)) within 30 h after inoculation. Also, the yeast strain produced no volatile compounds other than those obtained in fermentations conducted with the wine yeast Saccharomyces cerevisiae. S. pombe YGS-5 could thus be used to remove gluconic acid present in musts from rotten grapes. On the basis of these results, various ways of using S. pombe YGS-5 to treat musts containing gluconic acid in order to solve the problems due to the high gluconic acid concentrations in botrytized grape must are proposed.

  7. Omega-3 Fatty Acid Intake of Pregnant Women and Women of Childbearing Age in the United States: Potential for Deficiency?

    PubMed Central

    Nordgren, Tara M.; Lyden, Elizabeth; Anderson-Berry, Ann; Hanson, Corrine

    2017-01-01

    Omega-3 fatty acids play critical roles during fetal growth and development with increased intakes associated with improved maternal-fetal outcomes. Omega-3 fatty acid intake in Western diets is low, and the impact of socioeconomic factors on omega-3 fatty acid intake in pregnant women and women of childbearing age has not been reported. We used the National Health and Nutrition Examination Survey (NHANES) cycles 2003–2012 to assess the relationship between omega-3 fatty acid intake and socioeconomic factors in women of childbearing age. Out of 7266 eligible participants, 6478 were women of childbearing age, while 788 were identified as pregnant at the time of the survey. Mean EPA+DHA intake of the population was 89.0 mg with no significant difference between pregnant and non-pregnant women. By univariate and multivariate analyses adjusting for confounders, omega-3 fatty acid intake was significantly associated with poverty-to-income ratio, race, and educational attainment. Our results demonstrate that omega-3 fatty acid intake is a concern in pregnant women and women of childbearing age in the United States, and that socioeconomically disadvantaged populations are more susceptible to potential deficiencies. Strategies to increase omega-3 fatty acid intake in these populations could have the potential to improve maternal and infant health outcomes. PMID:28245632

  8. Omega-3 Fatty Acid Intake of Pregnant Women and Women of Childbearing Age in the United States: Potential for Deficiency?

    PubMed

    Nordgren, Tara M; Lyden, Elizabeth; Anderson-Berry, Ann; Hanson, Corrine

    2017-02-26

    Omega-3 fatty acids play critical roles during fetal growth and development with increased intakes associated with improved maternal-fetal outcomes. Omega-3 fatty acid intake in Western diets is low, and the impact of socioeconomic factors on omega-3 fatty acid intake in pregnant women and women of childbearing age has not been reported. We used the National Health and Nutrition Examination Survey (NHANES) cycles 2003-2012 to assess the relationship between omega-3 fatty acid intake and socioeconomic factors in women of childbearing age. Out of 7266 eligible participants, 6478 were women of childbearing age, while 788 were identified as pregnant at the time of the survey. Mean EPA+DHA intake of the population was 89.0 mg with no significant difference between pregnant and non-pregnant women. By univariate and multivariate analyses adjusting for confounders, omega-3 fatty acid intake was significantly associated with poverty-to-income ratio, race, and educational attainment. Our results demonstrate that omega-3 fatty acid intake is a concern in pregnant women and women of childbearing age in the United States, and that socioeconomically disadvantaged populations are more susceptible to potential deficiencies. Strategies to increase omega-3 fatty acid intake in these populations could have the potential to improve maternal and infant health outcomes.

  9. Dietary deficiencies of unsaturated fatty acids and starch cause atopic dermatitis-like pruritus in hairless mice.

    PubMed

    Fujii, Masanori; Shimazaki, Yuki; Muto, Yoshiko; Kohno, Shigekatsu; Ohya, Susumu; Nabe, Takeshi

    2015-02-01

    Hairless mice fed with a special diet (named HR-AD) show atopic dermatitis (AD)-like pruritic skin inflammation that is almost completely resolved with the supplementation of an unsaturated fatty acid (UFA), the linoleic acid (LA). This suggests that the dietary deficiency of LA is the key cause of this dermatitis. However, because there is no appropriate control diet for HR-AD, the involvement of other dietary ingredients cannot be ruled out. Furthermore, it has not yet been tested whether only UFA deficiency can cause such AD-like pruritus. In this study, using semi-purified custom diets, we attempted to reproduce this syndrome. Four-week-old hairless mice were maintained on a widely used standard diet American Institute of Nutrition-76A (AIN-76A), its modifications, or HR-AD. Several modifications of fat and carbohydrate components revealed that dietary deficiency of both UFAs and cornstarch was required to induce severe skin barrier dysfunction as typically occurred in HR-AD-fed mice. An UFA- and cornstarch-deficient diet caused severe AD-like pruritus comparable to HR-AD, despite weak Th2 immune responses and absence of immunoglobulin E production. On the other hand, a diet lacking UFAs but containing cornstarch significantly alleviated the development of pruritic dermatitis. Furthermore, the supplementation of wheat starch similarly improved skin barrier function. In conclusion, this study showed that a lack of certain starches might also be the cause of diet-induced AD. Our findings could help to reproduce the diet-induced AD itch model and also provide evidence that certain starches can have protective and ameliorative effects on AD-like pruritus.

  10. Gyrate atrophy of the choroid and retina: amino acid metabolism and correction of hyperornithinemia with an arginine-deficient diet.

    PubMed Central

    Valle, D; Walser, M; Brusilow, S W; Kaiser-Kupfer, M

    1980-01-01

    Four patients with gyrate atrophy of the choroid and retina were studied, all of whom exhibited the hyperornithinemia characteristic of this disorder. Elevated plasma histidine and diminished plasma lysine and branched-chain amino acids were also noted. The renal clearances of these four amino acids were not sufficiently elevated to explain their low plasma levels. In one subject, an arginine-deficient diet led to progressive reduction in plasma ornithine from 13 times normal to the upper limits of normal, along with the disappearance of ornithinuria and lysinuria. Orally administered alpha-aminoisobutyric acid facilitated the fall in plasma ornithine by increasing renal losses of ornithine. It also increased the clearances of most other amino acids. When plasma ornithine approached normal (less than 200 microM), plasma lysine became normal, plasma arginine became subnormal, and renal clearances of basic amino acids decreased. Long-term (1.5 yr) maintenance with a diet containing 10-20 g of protein plus essential amino acids served to keep plasma ornithine at between 55-355 microM; chorioretinal degeneration did not progress and vision apparently improved. PMID:7356686

  11. Physicochemical and physiological properties of cholylsarcosine. A potential replacement detergent for bile acid deficiency states in the small intestine.

    PubMed Central

    Lillienau, J; Schteingart, C D; Hofmann, A F

    1992-01-01

    The properties of cholylsarcosine (the synthetic N-acyl conjugate of cholic acid with sarcosine [N-methylglycine]) were examined to determine its suitability as a bile acid replacement agent for conditions of bile acid deficiency in the small intestine, which causes fat malabsorption. Previous studies in rodents had shown that the compound was well transported by the liver and ileum and underwent neither deconjugation nor dehydroxylation during enterohepatic cycling. By 1H-nuclear magnetic resonance, cholylsarcosine was found to exist in dilute aqueous solution as an almost equimolar mixture of two geometric isomers--cis and trans (around the amide bond)--in contrast to cholylglycine, which was present entirely in the trans form. The critical micellization concentration was 11 mmol/liter, similar to that of cholylglycine (10 mmol/liter). By nonaqueous titrimetry, the pKa' of cholylsarcosine was 3.7, only slightly lower than that of cholylglycine (3.9). Cholylsarcosine was poorly soluble below pH 3.7, but highly soluble above pH 4. In vitro, cholylsarcosine behaved as cholylglycine with respect to promoting lipolysis by lipase/colipase. There was little difference between cholylsarcosine and cholylglycine in their solubilization of an equimolar mixture of oleic acid, oleate, and monoolein (designed to simulate digestive products of triglyceride) or in their solubilization of monooleyl-glycerol alone. When a [3H]triolein emulsion with either cholylsarcosine or cholyltaurine was infused intraduodenally in biliary fistula rats, recovery of 3H in lymph was 52 +/- 10% (mean +/- SD) for cholylsarcosine and 52 +/- 11% for cholyltaurine. When perfused into the colon of the anesthetized rabbit, cholylsarcosine (5 mmol/liter) did not influence water absorption or permeability to erythritol, in contrast to chenodeoxycholate, which induced vigorous water secretion and caused erythritol loss. We conclude that cholylsarcosine possesses the physicochemical and physiological

  12. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency[S

    PubMed Central

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J.; Ribes, Antonia

    2015-01-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker. PMID:26239048

  13. Liver disease in infancy caused by oxysterol 7 α-hydroxylase deficiency: successful treatment with chenodeoxycholic acid.

    PubMed

    Dai, Dongling; Mills, Philippa B; Footitt, Emma; Gissen, Paul; McClean, Patricia; Stahlschmidt, Jens; Coupry, Isabelle; Lavie, Julie; Mochel, Fanny; Goizet, Cyril; Mizuochi, Tatsuki; Kimura, Akihiko; Nittono, Hiroshi; Schwarz, Karin; Crick, Peter J; Wang, Yuqin; Griffiths, William J; Clayton, Peter T

    2014-09-01

    A child of consanguineous parents of Pakistani origin developed jaundice at 5 weeks and then, at 3 months, irritability, a prolonged prothrombin time, a low albumin, and episodes of hypoglycaemia. Investigation showed an elevated alanine aminotransferase with a normal γ-glutamyl-transpeptidase. Analysis of urine by electrospray ionisation tandem mass spectrometry (ESI-MS/MS) showed that the major peaks were m/z 480 (taurine-conjugated 3β-hydroxy-5-cholenoic acid) and m/z 453 (sulphated 3β-hydroxy-5-cholenoic acid). Analysis of plasma by gas chromatography-mass spectrometry (GC-MS) showed increased concentrations of 3β-hydroxy-5-cholenoic acid, 3β-hydroxy-5-cholestenoic acid and 27-hydroxycholesterol, indicating oxysterol 7 α-hydroxylase deficiency. The patient was homozygous for a mutation (c.1249C>T) in CYP7B1 that alters a highly conserved residue in oxysterol 7 α-hydroxylase (p.R417C) - previously reported in a family with hereditary spastic paraplegia type 5. On treatment with ursodeoxycholic acid (UDCA), his condition was worsening, but on chenodeoxycholic acid (CDCA), 15 mg/kg/d, he improved rapidly. A biopsy (after 2 weeks on CDCA), showed a giant cell hepatitis, an evolving micronodular cirrhosis, and steatosis. The improvement in liver function on CDCA was associated with a drop in the plasma concentrations and urinary excretions of the 3β-hydroxy-Δ5 bile acids which are considered hepatotoxic. At age 5 years (on CDCA, 6 mg/kg/d), he was thriving with normal liver function. Neurological development was normal apart from a tendency to trip. Examination revealed pes cavus but no upper motor neuron signs. The findings in this case suggest that CDCA can reduce the activity of cholesterol 27-hydroxylase - the first step in the acidic pathway for bile acid synthesis.

  14. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana.

    PubMed

    Abreu, Maria Elizabeth; Munné-Bosch, Sergi

    2009-01-01

    Salicylic acid-deficient NahG transgenic lines and sid2 mutants were used to evaluate the role of this compound in the development of the short-lived, annual plant Arabidopsis thaliana, with a particular focus on the interplay between salicylic acid and other phytohormones. Low salicylic acid levels led to increased growth, as well as to smaller abscisic acid levels and reduced damage to PSII (as indicated by F(v)/F(m) ratios) during the reproductive stages in rosette leaves of NahG transgenic lines and sid2 mutants, compared with wild-type plants. Furthermore, salicylic acid deficiency highly influenced seed yield and composition. Seed production increased by 4.4-fold and 3.5-fold in NahG transgenic lines and sid2 mutants, respectively, compared to the wild type. Salicylic acid deficiency also improved seed composition in terms of antioxidant vitamin concentrations, seeds of salicylic acid-deficient plants showing higher levels of alpha- and gamma-tocopherol (vitamin E) and beta-carotene (pro-vitamin A) than seeds of wild-type plants. Seeds of salicylic acid-deficient plants also showed higher nitrogen concentrations than seeds of wild-type plants. It is concluded that (i) the sid2 gene, which encodes for isochorismate synthase, plays a central role in salicylic acid biosynthesis during plant development in A. thaliana, (ii) salicylic acid plays a role in the regulation of growth, senescence, and seed production, (iii) there is a cross-talk between salicylic acid and other phytohormones during plant development, and (iv) the concentrations of antioxidant vitamins in seeds may be influenced by the endogenous levels of salicylic acid in plants.

  15. The effect of humic acids and their complexes with iron on the functional status of plants grown under iron deficiency

    NASA Astrophysics Data System (ADS)

    Abros'kin, D. P.; Fuentes, M.; Garcia-Mina, J. M.; Klyain, O. I.; Senik, S. V.; Volkov, D. S.; Perminova, I. V.; Kulikova, N. A.

    2016-10-01

    The effect of humic acids (HAs) and their iron complexes (Fe-HAs) on the input of the main mineral elements into wheat seedlings, as well as on the efficiency of photosynthesis and the lipid profile of plants, under iron deficiency has been studied. The input of iron from Fe-HA complexes and its predominant accumulation in roots are demonstrated. It is found that HAs increase the efficiency of photosynthesis due to enhanced electron transport in photosystem II. It is shown that the application of HAs and Fe-HAs is accompanied by an enhanced input of Zn into plants, which could increase the antioxidant status of plants under iron deficiency conditions. In addition, a pronounced increase in the content of lipids in plants is revealed, which is indicative of the effect of HAs on plant metabolism. The obtained results suggest that the positive effect of Fe-HAs and HAs on plants under iron deficiency conditions is due to a combination of factors, among which the effect of HAs on the antioxidant status of plants and the plant lipid metabolism predominates.

  16. Ascorbic acid deficiency leads to increased grain chalkiness in transgenic rice for suppressed of L-GalLDH.

    PubMed

    Yu, Le; Liu, Yonghai; Lu, Lina; Zhang, Qilei; Chen, Yezheng; Zhou, Liping; Chen, Hua; Peng, Changlian

    2017-04-01

    The grain chalkiness of rice (Oryza sativa L.), which determines the rice quality and price, is a major concern in rice breeding. Reactive oxygen species (ROS) plays a critical role in regulating rice endosperm chalkiness. Ascorbic acid (Asc) is a major plant antioxidant, which strictly regulates the levels of ROS. l-galactono-1, 4-lactone dehydrogenase (L-GalLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in higher plants. Here we show that the L-GalLDH-suppressed transgenic rice, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf and grain Asc content compared with the wild-type (WT), exhibit significantly increased grain chalkiness. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation and H2O2 content, accompanied by a lower hydroxyl radical scavenging rate, total antioxidant capacity and photosynthetic ability. In addition, changes of the enzyme activities and gene transcript abundances related to starch synthesis were also observed in GI-1 and GI-2 grains. The results we presented here suggest a close correlation between Asc deficiency and grain chalkiness in the L-GalLDH-suppressed transgenics. Asc deficiency leads to the accumulation of H2O2, affecting antioxidant capacity and photosynthetic function, changing enzyme activities and gene transcript abundances related to starch synthesis, finally leading to the increased grain chalkiness.

  17. Reading and Writing a Better World. A Response to the Education for All (EFA) Global Monitoring Report 2008, from an Adult Literacy Perspective (Including Numeracy)

    ERIC Educational Resources Information Center

    Eldred, Jan

    2008-01-01

    The six EFA goals help to shape policies and priorities especially in developing countries; they can be seen as discrete targets or as a cohesive collection of complimentary developmental areas to improve learning for people of all ages and stages. The paper argues that the cohesion, success and impact of the EFA would be improved enormously if…

  18. Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel.

    PubMed

    Kato, Yuichi; Miwa, Kyoko; Takano, Junpei; Wada, Motoko; Fujiwara, Toru

    2009-01-01

    Boron (B) is an essential element for plants, and B deficiency is a worldwide agricultural problem. In B-deficient areas, B is often supplied as fertilizer, but excess B can be toxic to both plants and animals. Generation of B deficiency-tolerant plants could reduce B fertilizer use. Improved fertility under B-limiting conditions in Arabidopsis thaliana by overexpression of BOR1, a B transporter, has been reported, but the root growth was not improved by the BOR1 overexpression. In this study, we report that enhanced expression of NIP5;1, a boric acid channel for efficient B uptake, resulted in improved root elongation under B-limiting conditions in A. thaliana. An NIP5;1 activation tag line, which has a T-DNA insertion with enhancer sequences near the NIP5;1 gene, showed improved root elongation under B limitation. We generated a construct which mimics the tag line: the cauliflower mosaic virus 35S RNA promoter was inserted at 1,357 bp upstream of the NIP5;1 transcription initiation site. Introduction of this construct into the nip5;1-1 mutant and the BOR1 overexpresser resulted in enhanced expression of NIP5;1 and improved root elongation under low B supply. Furthermore, one of the transgenic lines exhibited improved fertility and short-term B uptake. Our results demonstrate successful improvement of B deficiency tolerance and the potential of enhancing expression of a mineral nutrient channel gene to improve growth under nutrient-limiting conditions.

  19. Can prenatal N-3 fatty acid deficiency be completely reversed after birth? Effects on retinal and brain biochemistry and visual function in rhesus monkeys.

    PubMed

    Anderson, Gregory J; Neuringer, Martha; Lin, Don S; Connor, William E

    2005-11-01

    Our previous studies of rhesus monkeys showed that combined prenatal and postnatal n-3 fatty acid deficiency resulted in reduced visual acuity, abnormal retinal function, and low retina and brain docosahexaenoic acid content. We now report effects of n-3 fatty acid deficiency during intrauterine development only. Rhesus infants, born to mothers fed an n-3 fatty acid deficient diet throughout pregnancy, were repleted with a diet high in alpha-linolenic acid from birth to 3 y. Fatty acid composition was determined for plasma and erythrocytes at several time points, for prefrontal cerebral cortex biopsies at 15, 30, 45, and 60 wk, and for cerebral cortex and retina at 3 y. Visual acuity was determined behaviorally at 4, 8, and 12 postnatal weeks, and the electroretinogram was recorded at 3-4 mo. Total n-3 fatty acids were reduced by 70-90% in plasma, erythrocytes, and tissues at birth but recovered to control values within 4 wk in plasma, 8 wk in erythrocytes, and 15 wk in cerebral cortex. At 3 y, fatty acid composition was normal in brain phospholipids, but in the retina DHA recovery was incomplete (84% of controls). Visual acuity thresholds did not differ from those of control infants from mothers fed a high linolenic acid diet. However, the repleted group had lower amplitudes of cone and rod ERG a-waves. These data suggest that restriction of n-3 fatty acid intake during the prenatal period may have long-term effects on retinal fatty acid composition and function.

  20. Arabidopsis Deficient in Cutin Ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester.

    PubMed

    Rautengarten, Carsten; Ebert, Berit; Ouellet, Mario; Nafisi, Majse; Baidoo, Edward E K; Benke, Peter; Stranne, Maria; Mukhopadhyay, Aindrila; Keasling, Jay D; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2012-02-01

    The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C(16) and C(18) unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm.

  1. 41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What must an executive..., and Asset Management. Contact the eFAS Planning Office at FASPlanningOffice@gsa.gov to obtain...

  2. 41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What must an executive..., and Asset Management. Contact the eFAS Planning Office at FASPlanningOffice@gsa.gov to obtain...

  3. 41 CFR 102-38.360 - What must an executive agency do to implement the eFAS program?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION PERSONAL... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What must an executive..., and Asset Management. Contact the eFAS Planning Office at FASPlanningOffice@gsa.gov to obtain...

  4. Reflecting on the EFA Global Monitoring Report's Framework for Understanding Quality Education: A Teacher's Perspective in Eritrea

    ERIC Educational Resources Information Center

    Gordon, Charlie

    2010-01-01

    This paper considers issues concerning the quality of education in Eritrea using the Education for All (EFA) Global Monitoring Report's (GMR) framework for quality education. Drawing on 2 years school-based professional experience in the country, the multiple factors affecting quality in schooling are discussed. The applicability of the GMR…

  5. Influence of dietary phosphorus deficiency with or without addition of fumaric acid to a diet in pigs on bone parameters.

    PubMed

    Liesegang, A; Ursprung, R; Gasser, J; Sassi, M-L; Risteli, J; Riond, J-L; Wanner, M

    2002-02-01

    The purpose of this study was to examine if substantial bone loss occurs in weaned pigs by feeding a phosphorus-deficient diet with or without fumaric acid. Eighteen weaned pigs were used. The animals were assigned to three groups: group C (control; 0.65% P on DM basis), group LP (low phosphorus; 0.37% P on DM basis) and group LPF (low phosphorus plus fumaric acid; 0.35% P on DM basis plus 2% fumaric acid). These three diets were fed to the groups for a period of four weeks after a two-week adaptation period. Blood samples were collected once a week. Carboxyterminal telopeptide of type I collagen (ICTP) in serum was used as a bone resorption marker. Osteocalcin (OC) and bone-specific alkaline phosphatase (bAP) were used as bone formation markers. Bone mineral density (BMD) and content (BMC) were determined by peripheral quantitative computer tomography. BAP activities significantly increased (24%) in group LPF, and at the last sampling day group LPF had significantly increased activities in comparison to group C. In contrast, ICTP concentrations significantly increased with time in group LP and LPF, and at the last sampling day group LPF had significantly increased activities in comparison to group C. BMD and BMC in femur and tibia significantly decreased in group LP and LPF. The results show that P-deficient diets induce a bone loss. Fumaric acid did not influence the degree of bone loss. With a better understanding of its effect on bone, dietary phosphorus requirements in pigs could be more precisely defined.

  6. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  7. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  8. Increase in tartrate-resistant acid phosphatase of bone at the early stage of ascorbic acid deficiency in the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat.

    PubMed

    Goto, A; Tsukamoto, I

    2003-08-01

    The effect of ascorbic acid deficiency on bone metabolism was evaluated using the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat model. Ascorbic acid (Asc)-deficient rats gained body weight in a manner similar to Asc-supplemented rats (control) during 3 weeks, but began to lose weight during the 4th week of Asc deficiency. The tartrate-resistant acid phosphatase (TRAP) activity in serum increased to about 2-fold the control value in the rats fed the Asc-free diet for 2, 3, and 4 weeks (AscD2, AscD3, and AscD4), while a decrease in the alkaline phosphatase (ALP) activity was observed only in AscD4 rats. The serum pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP) level significantly increased to 1.3-, 1.4-, and 1.9-fold of that in the controls in AscD2, D3, and D4, respectively. The ALP activity in the distal femur was unchanged in AscD1, D2, and D3, but decreased to 50% of the control level in AscD4 rats. The TRAP activity in the distal femur increased to about 2-fold of that in the controls in the AscD2 and D3 and decreased to the control level in the AscD4 rats. The amount of hydroxyproline in the distal femur significantly decreased to about 80%, 70%, and 60% of the control in AscD2, D3, and D4 rats, respectively. These decreases were associated with a similar reduction in the calcium content of the distal femur. Histochemical analysis of the distal femur showed an increase in TRAP-positive cells in AscD2 and AscD3 rats and a decrease in the trabecular bone in AscD2, D3, and D4 rats. These results suggested that a deficiency of Asc stimulated bone resorption at an early stage, followed by a decrease in bone formation in mature ODS rats which already had a well-developed collagen matrix and fully differentiated osteoblasts.

  9. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant.

  10. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., during or after fermentation, may not increase the fixed acid level of the finished wine (calculated as... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Wine § 24.182 Use of acid to... (including berries) may be added within the limitations of § 24.246 to juice or wine in order to...

  11. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., during or after fermentation, may not increase the fixed acid level of the finished wine (calculated as... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Wine § 24.182 Use of acid to... (including berries) may be added within the limitations of § 24.246 to juice or wine in order to...

  12. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., during or after fermentation, may not increase the fixed acid level of the finished wine (calculated as... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL WINE Production of Wine § 24.182 Use of acid to... (including berries) may be added within the limitations of § 24.246 to juice or wine in order to...

  13. 27 CFR 24.182 - Use of acid to correct natural deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., during or after fermentation, may not increase the fixed acid level of the finished wine (calculated as... AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Wine § 24.182 Use of acid to... (including berries) may be added within the limitations of § 24.246 to juice or wine in order to...

  14. Endoplasmic Reticulum Thiol Oxidase Deficiency Leads to Ascorbic Acid Depletion and Noncanonical Scurvy in Mice

    PubMed Central

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S.H.; Fujii, Junichi; Ron, David

    2012-01-01

    Summary Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H2O2-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy. PMID:22981861

  15. Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice.

    PubMed

    Zito, Ester; Hansen, Henning Gram; Yeo, Giles S H; Fujii, Junichi; Ron, David

    2012-10-12

    Endoplasmic reticulum (ER) thiol oxidases initiate a disulfide relay to oxidatively fold secreted proteins. We found that combined loss-of-function mutations in genes encoding the ER thiol oxidases ERO1α, ERO1β, and PRDX4 compromised the extracellular matrix in mice and interfered with the intracellular maturation of procollagen. These severe abnormalities were associated with an unexpectedly modest delay in disulfide bond formation in secreted proteins but a profound, 5-fold lower procollagen 4-hydroxyproline content and enhanced cysteinyl sulfenic acid modification of ER proteins. Tissue ascorbic acid content was lower in mutant mice, and ascorbic acid supplementation improved procollagen maturation and lowered sulfenic acid content in vivo. In vitro, the presence of a sulfenic acid donor accelerated the oxidative inactivation of ascorbate by an H(2)O(2)-generating system. Compromised ER disulfide relay thus exposes protein thiols to competing oxidation to sulfenic acid, resulting in depletion of ascorbic acid, impaired procollagen proline 4-hydroxylation, and a noncanonical form of scurvy.

  16. Alpha-lipoic acid affects the oxidative stress in various brain structures in mice with methionine and choline deficiency

    PubMed Central

    Veskovic, Milena; Mladenovic, Dusan; Jorgacevic, Bojan; Stevanovic, Ivana; de Luka, Silvio

    2015-01-01

    Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control – continuously fed with standard chow; (2) LA – fed with standard chow and receiving LA; (3) MCD2 – fed with MCD diet for two weeks, and (4) MCD2+LA – fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency. PMID:25193852

  17. Prevalence of Vitamin B12 and folic acid deficiency in HIV-positive patients and its association with neuropsychiatric symptoms and immunological response

    PubMed Central

    Adhikari, Prabha M. R.; Chowta, Mukta N.; Ramapuram, John T.; Rao, Satish; Udupa, Karthik; Acharya, Sahana Devdas

    2016-01-01

    Background: Deficiency of micronutrients is prevalent even before the development of symptoms of HIV disease and is associated with accelerated HIV disease progression. Aims: This study evaluates the prevalence of folate and Vitamin B12 deficiency in HIV-positive patients with or without tuberculosis (TB) and its association with neuropsychiatric symptoms and immunological response. Settings and Design: Cross-sectional, observational study in an outpatient setting. Patients and Methods: Four groups of HIV-positive patients with TB (Group I), HIV-positive patients with neuropsychiatric symptoms (Group II), HIV-positive patients without neuropsychiatric symptoms or TB (Group III), and HIV-negative controls with neuropsychiatric symptoms (Group IV). Vitamin B12 and folate estimation was done using carbonyl metallo-immunoassay method. Statistical Analysis Used: ANOVA, Kruskal–Wallis and Mann–Whitney, Pearson's correlation. Results: The prevalence of folic acid deficiency was 27.1% in the Group I, 31.9% in the Group II, 23.4% in the Group III, and 32% in the Group IV being higher in patients with neuropsychiatric symptoms in both HIV and non-HIV patients. The prevalence of Vitamin B12 deficiency was 18.8% in Group I, 9.1% in Group II, 4.8% in Group III, and 16.7% in Group IV. The patients with folate deficiency had more severe depression and anxiety. Conclusion: Nearly, 30% of the HIV patients had a folic acid deficiency, and about 10% of the HIV patients had Vitamin B12 deficiency. The folate deficiency was highest among neuropsychiatric patients with or without HIV infection and Vitamin B12 deficiency was higher among HIV patients with TB. PMID:27890954

  18. EFA6, exchange factor for ARF6, regulates the actin cytoskeleton and associated tight junction in response to E-cadherin engagement.

    PubMed

    Luton, Frédéric; Klein, Stéphanie; Chauvin, Jean-Paul; Le Bivic, André; Bourgoin, Sylvain; Franco, Michel; Chardin, Pierre

    2004-03-01

    We addressed the role of EFA6, exchange factor for ARF6, during the development of epithelial cell polarity in Madin-Darby canine kidney cells. EFA6 is located primarily at the apical pole of polarized cells, including the plasma membrane. After calcium-triggered E-cadherin-mediated cell adhesion, EFA6 is recruited to a Triton X-100-insoluble fraction and its protein level is increased concomitantly to the accelerated formation of a functional tight junction (TJ). The expression of EFA6 results in the selective retention at the cell surface of the TJ protein occludin. This effect is due to EFA6 capacities to promote selectively the stability of the apical actin ring onto which the TJ is anchored, resulting in the exclusion of TJ proteins from endocytosis. Finally, our data suggest that EFA6 effects are achieved by the coordinate action of both its exchange activity and its actin remodeling C-terminal domain. We conclude that EFA6 is a signaling molecule that responds to E-cadherin engagement and is involved in TJ formation and stability.

  19. Absorption and metabolism of ( sup 3 H)arachidonic and ( sup 14 C)linoleic acid in essential fatty acid-deficient rats

    SciTech Connect

    Hjelte, L.; Melin, T.; Nilsson, A.; Strandvik, B. )

    1990-07-01

    ({sup 3}H)arachidonic acid (20:4) and ({sup 14}C)linoleic acid (18:2) were fed in a triolein emulsion to essential fatty acid-deficient (EFAD) rats and to age-matched controls. Tissues were analyzed for radioactivity of different lipid classes after 1, 2, and 4 h. As in earlier studies, control rats retained more ({sup 3}H)20:4 than ({sup 14}C)18:2 in all organs except adipose tissue. In EFAD rats, recovery of ({sup 14}C)18:2 was increased in small intestine, liver, heart, and kidneys. In comparison to controls, EFAD rats retained much more ({sup 14}C)18:2 in phospholipids of these organs. The increase in the incorporation of both {sup 3}H and {sup 14}C into phosphatidylethanolamine was particularly pronounced. Another striking feature was the drastic increase in the retention after 4 h of {sup 14}C in cardiolipin, which is specifically located in the inner mitochondrial membrane. In contrast, incorporation of both {sup 3}H and {sup 14}C into phosphatidylinositol was decreased or unchanged in EFAD rats. Although fecal fat excretion was increased there was no evidence for a malabsorption or an increased retention in intestinal triacyglycerol of the radioactive fatty acids in EFAD rats. The proportion of ({sup 14}C)18:2 that had been converted to ({sup 14}C)20:4 was generally low but increased significantly with time in the liver and intestine of EFAD rats.

  20. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body.

    PubMed

    Alves-Bezerra, Michele; Ramos, Isabela B; De Paula, Iron F; Maya-Monteiro, Clarissa M; Klett, Eric L; Coleman, Rosalind A; Gondim, Katia C

    2017-03-01

    Glycerol-3-phosphate acyltransferases (GPAT) catalyze the initial and rate-limiting step for the de novo synthesis of triacylglycerol (TAG). Four mammalian GPAT isoforms have been identified: the mitochondria-associated GPAT1 and 2, and the endoplasmic reticulum (ER)-associated GPAT3 and 4. In the insect Rhodnius prolixus, a vector of Chagas' disease, we previously predicted a mitochondrial-like isoform (RhoprGPAT1) from genomic data. In the current study, we clone the RhoprGPAT1 coding sequence and identify an ER-associated GPAT (RhoprGPAT4) as the second isoform in the insect. RhoprGPAT1 contributes 15% of the total GPAT activity in anterior midgut, 50% in posterior midgut and fat body, and 70% in the ovary. The RhoprGpat1 gene is the predominant transcript in the midgut and fat body. To evaluate the physiological relevance of RhoprGPAT1, we generate RhoprGPAT1-deficient insects. The knockdown of RhoprGpat1 results in 50% and 65% decrease in TAG content in the posterior midgut and fat body, respectively. RhoprGpat1-deficient insects also exhibits impaired lipid droplet expansion and a 2-fold increase in fatty acid β-oxidation rates in the fat body. We propose that the RhoprGPAT1 mitochondrial-like isoform is required to channel fatty acyl chains towards TAG synthesis and away from β-oxidation. Such a process is crucial for the insect lipid homeostasis.

  1. Sequencing around 5-Hydroxyconiferyl Alcohol-Derived Units in Caffeic Acid O-Methyltransferase-Deficient Poplar Lignins1[OA

    PubMed Central

    Lu, Fachuang; Marita, Jane M.; Lapierre, Catherine; Jouanin, Lise; Morreel, Kris; Boerjan, Wout; Ralph, John

    2010-01-01

    Caffeic acid O-methyltransferase (COMT) is a bifunctional enzyme that methylates the 5- and 3-hydroxyl positions on the aromatic ring of monolignol precursors, with a preference for 5-hydroxyconiferaldehyde, on the way to producing sinapyl alcohol. Lignins in COMT-deficient plants contain benzodioxane substructures due to the incorporation of 5-hydroxyconiferyl alcohol (5-OH-CA), as a monomer, into the lignin polymer. The derivatization followed by reductive cleavage method can be used to detect and determine benzodioxane structures because of their total survival under this degradation method. Moreover, partial sequencing information for 5-OH-CA incorporation into lignin can be derived from detection or isolation and structural analysis of the resulting benzodioxane products. Results from a modified derivatization followed by reductive cleavage analysis of COMT-deficient lignins provide evidence that 5-OH-CA cross couples (at its β-position) with syringyl and guaiacyl units (at their O-4-positions) in the growing lignin polymer and then either coniferyl or sinapyl alcohol, or another 5-hydroxyconiferyl monomer, adds to the resulting 5-hydroxyguaiacyl terminus, producing the benzodioxane. This new terminus may also become etherified by coupling with further monolignols, incorporating the 5-OH-CA integrally into the lignin structure. PMID:20427467

  2. Maternal di-(2-ethylhexyl)-phthalate exposure influences essential fatty acid homeostasis in rat placenta.

    PubMed

    Xu, Y; Agrawal, S; Cook, T J; Knipp, G T

    2008-11-01

    Maintaining essential fatty acid (EFA) homeostasis during pregnancy is critical for fetal development. As the organ that controls the maternal-to-fetal supply of nutrients, the placenta plays a significant role in guiding EFA transfer to the fetus. Many EFA homeostasis proteins are regulated by peroxisome proliferator-activated receptors (PPARs). The metabolites of di-(2-ethylhexyl)-phthalate (DEHP), a ubiquitous environmental contaminant, might influence EFA homeostasis via trans-activation of PPARs with subsequent downstream effects on EFA transporters and enzymes. To investigate DEHP's effect on placental/fetal EFA homeostasis, female Sprague-Dawley rats were orally gavaged with either vehicle or DEHP at 750 or 1500 mg/kg/day from gestational day (GD) 0 to GD 19. Changes in the expression of several EFA homeostasis regulating proteins were determined in the junctional (JXN) and labyrinthine (LAB) zones of the placenta, including PPAR isoforms (alpha, beta and gamma), fatty acid translocase (FAT/CD36), fatty acid transport protein 1 (FATP1), plasma membrane fatty acid binding protein (FABPpm), heart cytoplasmic fatty acid binding protein (HFABP), cytochrome P450 (CYP) 4A1, and cyclooxygenase (COX)-1 and -2. Additionally, effects of DEHP maternal exposure on the placental transfer and fetal distribution of representative EFAs, arachidonic acid (AA) and docosahexaenoic acid (DHA), and the placental production of prostaglandins (PGs) were investigated. Expression of PPARalpha, PPARgamma, FAT/CD36, FATP1, HFABP and CYP4A1 was up-regulated in JXN and/or LAB while COX-2 was down-regulated in JXN. PPARbeta, FABPpm, and COX-1 demonstrated variable expression. Reduced directional maternal-to-fetal placental transfer and altered fetal distribution of AA and DHA were observed in concordance with a decreased total placental PG production. These results correlate with previous in vitro data, suggesting that DEHP could influence placental EFA homeostasis with potential

  3. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    PubMed

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process.

  4. Whole Blood Levels of the n-6 Essential Fatty Acid Linoleic Acid Are Inversely Associated with Stunting in 2-to-6 Year Old Tanzanian Children: A Cross-Sectional Study

    PubMed Central

    Jumbe, Theresia; Comstock, Sarah S.; Hahn, Samantha L.; Harris, William S.; Kinabo, Joyce; Fenton, Jenifer I.

    2016-01-01

    Background In Tanzania, 35% of all children below five years of age are stunted. Dietary fatty acids (FA) are critical for growth and development. However, whole blood FA levels in Tanzanian children are poorly described. Objective The objectives of this cross-sectional study were to assess 1) whole blood levels of essential fatty acids and 2) the association between whole blood FA levels and growth parameters in Tanzanian children 2–6 years of age. Methods A drop of blood was collected on an antioxidant treated card and analyzed for FA composition. Weight and height were measured and z-scores calculated. Relationships between FAs and growth parameters were analyzed by linear regression. Results Of the 334 children that participated, 30.3% were stunted. The average whole blood level of Mead acid was 0.15%. The anthropometric z-score height-for-age (HAZ) was inversely associated with Mead acid, the Mead acid to arachidonic acid (T/T) ratio, and total n-9 FA. Additionally, HAZ was positively associated with linoleic acid and total n-6 FA. BMI-for-age was positively associated with oleic acid, total n-9 FA and T/T ratio but inversely associated with arachidonic acid and total n-6 FA. Weight-for-height was inversely associated with arachidonic acid and total n-6 FAs and positively associated with oleic acid and total n-9 FA. Weight-for-age was not associated with any FA tested. Total n-3 FAs were not associated with any growth parameters measured. Conclusions The EFA linoleic acid and the markers of FA deficiency were associated with HAZ, an indicator for stunting in 2–6 year old Tanzanian children. Total n-6, total n-9, and a number of individual FAs were associated with growth. Increasing dietary intake of EFA and n-6 FAs may be a strategy to combat stunting in this population. PMID:27137223

  5. Egg boons: central components of marine fatty acid food webs.

    PubMed

    Fuiman, Lee A; Connelly, Tara L; Lowerre-Barbieri, Susan K; McClelland, James W

    2015-02-01

    Food web relationships are traditionally defined in terms of the flow of key elements, such as carbon, nitrogen, and phosphorus, and their role in limiting production. There is growing recognition that availability of important biomolecules, such as fatty acids, may exert controls on secondary production that are not easily explained by traditional element-oriented models. Essential fatty acids (EFAs) are required by most organisms for proper physiological function but are manufactured almost entirely by primary producers. Therefore, the flow of EFAs, especially docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA), through aquatic food webs is critical for ecosystem functioning. A meta-analysis of data on the EFA content of marine organisms reveals that individual eggs of marine animals have exceptionally high concentrations of EFAs, and that superabundances of eggs released in temporally and spatially discrete patches create rich, but temporary, nutritional resources for egg predators, called "egg boons." Mortality rates of fish eggs are disproportionately higher than animals of similar size, and those eggs are consumed by predators, both larger and smaller than the adults that produce the eggs. Thus, egg boons are a major trophic pathway through which EFAs are repackaged and redistributed, and they are among the few pathways that run counter to the main direction of trophic flow. Egg boons can transport EFAs across ecosystems through advection of patches of eggs and spawning migrations of adults. Recognizing the significance of egg boons to aquatic food webs reveals linkages and feedbacks between organisms and environments that have important implications for understanding how food webs vary in time and space. Examples are given of top-down, bottom-up, and lateral control mechanisms that could significantly alter food webs through their effects on eggs. Our results suggest that trophodynamic food web models should include EFAs

  6. Elevated levels of plasma homocysteine, deficiencies in dietary folic acid and uracil-DNA glycosylase impair learning in a mouse model of vascular cognitive impairment.

    PubMed

    Jadavji, Nafisa M; Farr, Tracy D; Lips, Janet; Khalil, Ahmed A; Boehm-Sturm, Philipp; Foddis, Marco; Harms, Christoph; Füchtemeier, Martina; Dirnagl, Ulrich

    2015-04-15

    Dietary deficiencies in folic acid result in elevated levels of plasma homocysteine, which has been associated with the development of dementia and other neurodegenerative disorders. Previously, we have shown that elevated levels of plasma homocysteine in mice deficient for a DNA repair enzyme, uracil-DNA glycosylase (UNG), result in neurodegeneration. The goal of this study was to evaluate how deficiencies in folic acid and UNG along with elevated levels of homocysteine affect vascular cognitive impairment, via chronic hypoperfursion in an animal model. Ung(+/+) and Ung(-/-) mice were placed on either control (CD) or folic acid deficient (FADD) diets. Six weeks later, the mice either underwent implantation of microcoils around both common carotid arteries. Post-operatively, behavioral tests began at 3-weeks, angiography was measured after 5-weeks using MRI to assess vasculature and at completion of study plasma and brain tissue was collected for analysis. Learning impairments in the Morris water maze (MWM) were observed only in hypoperfused Ung(-/-) FADD mice and these mice had significantly higher plasma homocysteine concentrations. Interestingly, Ung(+/+) FADD produced significant remodeling of the basilar artery and arterial vasculature. Increased expression of GFAP was observed in the dentate gyrus of Ung(-/-) hypoperfused and FADD sham mice. Chronic hypoperfusion resulted in increased cortical MMP-9 protein levels of FADD hypoperfused mice regardless of genotypes. These results suggest that elevated levels of homocysteine only, as a result of dietary folic acid deficiency, don't lead to memory impairments and neurobiochemical changes. Rather a combination of either chronic hypoperfusion or UNG deficiency is required.

  7. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    NASA Technical Reports Server (NTRS)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  8. Response to Quinlivan: Post-fortification, folate intake in vitamin B12 deficiency is positively related to homocysteine and methylmalonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With cross-sectional data, causes and effects are difficult to distinguish, and Quinlivan suggests that high circulating concentrations of homcysteine (Hcy), methylmalonic acid (MMA), and folate observed among vitamin B12-deficient survey participants all resulted from a lack of vitamin B12 (1). How...

  9. Metabolic pathways promoting intrahepatic fatty acid accumulation in methionine and choline deficiency: implications for the pathogenesis of steatohepatitis.

    PubMed

    Macfarlane, David P; Zou, Xiantong; Andrew, Ruth; Morton, Nicholas M; Livingstone, Dawn E W; Aucott, Rebecca L; Nyirenda, Moffat J; Iredale, John P; Walker, Brian R

    2011-02-01

    The pathological mechanisms that distinguish simple steatosis from steatohepatitis (or NASH, with consequent risk of cirrhosis and hepatocellular cancer) remain incompletely defined. Whereas both a methionine- and choline-deficient diet (MCDD) and a choline-deficient diet (CDD) lead to hepatic triglyceride accumulation, MCDD alone is associated with hepatic insulin resistance and inflammation (steatohepatitis). We used metabolic tracer techniques, including stable isotope ([¹³C₄]palmitate) dilution and mass isotopomer distribution analysis (MIDA) of [¹³C₂]acetate, to define differences in intrahepatic fatty acid metabolism that could explain the contrasting effect of MCDD and CDD on NASH in C57Bl6 mice. Compared with control-supplemented (CS) diet, liver triglyceride pool sizes were similarly elevated in CDD and MCDD groups (24.37 ± 2.4, 45.94 ± 3.9, and 43.30 ± 3.5 μmol/liver for CS, CDD, and MCDD, respectively), but intrahepatic neutrophil infiltration and plasma alanine aminotransferase (31 ± 3, 48 ± 4, 231 ± 79 U/l, P < 0.05) were elevated only in MCDD mice. However, despite loss of peripheral fat in MCDD mice, neither the rate of appearance of palmitate (27.2 ± 3.5, 26.3 ± 2.3, and 28.3 ± 3.5 μmol·kg⁻¹·min⁻¹) nor the contribution of circulating fatty acids to the liver triglyceride pool differed between groups. Unlike CDD, MCDD had a defect in hepatic triglyceride export that was confirmed using intravenous tyloxapol (142 ± 21, 122 ± 15, and 80 ± 7 mg·kg⁻¹·h⁻¹, P < 0.05). Moreover, hepatic de novo lipogenesis was significantly elevated in the MCDD group only (1.4 ± 0.3, 2.3 ± 0.4, and 3.4 ± 0.4 μmol/day, P < 0.01). These findings suggest that important alterations in hepatic fatty acid metabolism may promote the development of steatohepatitis. Similar mechanisms may predispose to hepatocyte damage in human NASH.

  10. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice.

    PubMed

    Jones, Ryan D; Lopez, Adam M; Tong, Ernest Y; Posey, Kenneth S; Chuang, Jen-Chieh; Repa, Joyce J; Turley, Stephen D

    2015-01-01

    Mice deficient in cholesterol 7α-hydroxylase (Cyp7a1) have a diminished bile acid pool (BAP) and therefore represent a useful model for investigating the metabolic effects of restoring the pool with a specific BA. Previously we carried out such studies in Cyp7a1(-/-) mice fed physiological levels of cholic acid (CA) and achieved BAP restoration, along with an increased CA enrichment, at a dietary level of just 0.03% (w/w). Here we demonstrate that in Cyp7a1(-/-) mice fed chenodeoxycholic acid (CDCA) at a level of 0.06% (w/w), the BAP was restored to normal size and became substantially enriched with muricholic acid (MCA) (>70%), leaving the combined contribution of CA and CDCA to be <15%. This resulted in a partial to complete reversal of the main changes in cholesterol and BA metabolism associated with Cyp7a1 deficiency such as an elevated rate of intestinal sterol synthesis, an enhanced level of mRNA for Cyp8b1 in the liver, and depressed mRNA levels for Ibabp, Shp and Fgf15 in the distal small intestine. When Cyp7a1(-/-) and matching Cyp7a1(+/+) mice were fed a diet with added cholesterol (0.2%) (w/w), either alone, or also containing CDCA (0.06%) (w/w) or CA (0.03%) (w/w) for 18days, the hepatic total cholesterol concentrations (mg/g) in the Cyp7a1(-/-) mice were 26.9±3.7, 16.4±0.9 and 47.6±1.9, respectively, vs. 4.9±0.4, 5.0±0.7 and 6.4±1.9, respectively in the corresponding Cyp7a1(+/+) controls. These data affirm the importance of using moderate levels of dietary BA supplementation to elicit changes in hepatic cholesterol metabolism through shifts in BAP size and composition.

  11. Deficiency or inhibition of lysophosphatidic acid receptor 1 protects against hyperoxia-induced lung injury in neonatal rats

    PubMed Central

    Chen, Xueyu; Walther, Frans J; van Boxtel, Ruben; Laghmani, El Houari; Sengers, Rozemarijn M A; Folkerts, Gert; DeRuiter, Marco C.; Cuppen, Edwin; Wagenaar, Gerry T M

    2015-01-01

    Aim Blocking of lysophosphatidic acid (LPA) receptor (LPAR) 1 may be a novel therapeutic option for bronchopulmonary dysplasia (BPD) by preventing the LPAR1-mediated adverse effects of its ligand (LPA), consisting of lung inflammation, pulmonary arterial hypertension (PAH) and fibrosis. Methods In Wistar rats with experimental BPD, induced by continuous exposure to 100% oxygen for 10 days, we determined the beneficial effects of LPAR1 deficiency in neonatal rats with a missense mutation in cytoplasmic helix 8 of LPAR1 and of LPAR1 and -3 blocking with Ki16425. Parameters investigated included survival, lung and heart histopathology, fibrin and collagen deposition, vascular leakage, and differential mRNA expression in the lungs of key genes involved in LPA signalling and BPD pathogenesis. Results LPAR1 mutant rats were protected against experimental BPD and mortality with reduced alveolar septal thickness, lung inflammation (reduced influx of macrophages and neutrophils, and CINC1 expression), and collagen III deposition. However, LPAR1 mutant rats were not protected against alveolar enlargement, increased medial wall thickness of small arterioles, fibrin deposition, and vascular alveolar leakage. Treatment of experimental BPD with Ki16425 confirmed the data observed in LPAR1 mutant rats, but did not reduce the pulmonary influx of neutrophils, CINC1 expression, and mortality in rats with experimental BPD. In addition, Ki16425 treatment protected against PAH and right ventricular hypertrophy. Conclusion LPAR1 deficiency attenuates pulmonary injury by reducing pulmonary inflammation and fibrosis, thereby reducing mortality, but does not affect alveolar and vascular development and, unlike Ki16425 treatment, does not prevent PAH in neonatal rats with experimental BPD. PMID:26495902

  12. Research needs in allergy: an EAACI position paper, in collaboration with EFA

    PubMed Central

    2012-01-01

    In less than half a century, allergy, originally perceived as a rare disease, has become a major public health threat, today affecting the lives of more than 60 million people in Europe, and probably close to one billion worldwide, thereby heavily impacting the budgets of public health systems. More disturbingly, its prevalence and impact are on the rise, a development that has been associated with environmental and lifestyle changes accompanying the continuous process of urbanization and globalization. Therefore, there is an urgent need to prioritize and concert research efforts in the field of allergy, in order to achieve sustainable results on prevention, diagnosis and treatment of this most prevalent chronic disease of the 21st century. The European Academy of Allergy and Clinical Immunology (EAACI) is the leading professional organization in the field of allergy, promoting excellence in clinical care, education, training and basic and translational research, all with the ultimate goal of improving the health of allergic patients. The European Federation of Allergy and Airways Diseases Patients’ Associations (EFA) is a non-profit network of allergy, asthma and Chronic Obstructive Pulmonary Disorder (COPD) patients’ organizations. In support of their missions, the present EAACI Position Paper, in collaboration with EFA, highlights the most important research needs in the field of allergy to serve as key recommendations for future research funding at the national and European levels. Although allergies may involve almost every organ of the body and an array of diverse external factors act as triggers, there are several common themes that need to be prioritized in research efforts. As in many other chronic diseases, effective prevention, curative treatment and accurate, rapid diagnosis represent major unmet needs. Detailed phenotyping/endotyping stands out as widely required in order to arrange or re-categorize clinical syndromes into more coherent, uniform

  13. Effects of essential amino acid deficiency: down-regulation of KCC2 and the GABAA receptor; disinhibition in the anterior piriform cortex.

    PubMed

    Sharp, James W; Ross-Inta, Catherine M; Baccelli, Irène; Payne, John A; Rudell, John B; Gietzen, Dorothy W

    2013-11-01

    The anterior piriform cortex (APC) is activated by, and is the brain area most sensitive to, essential (indispensable) amino acid (IAA) deficiency. The APC is required for the rapid (20 min) behavioral rejection of IAA deficient diets and increased foraging, both crucial adaptive functions supporting IAA homeostasis in omnivores. The biochemical mechanisms signaling IAA deficiency in the APC block initiation of translation in protein synthesis via uncharged tRNA and the general amino acid control kinase, general control nonderepressing kinase 2. Yet, how inhibition of protein synthesis activates the APC is unknown. The neuronal K(+) Cl(-) cotransporter, neural potassium chloride co-transporter (KCC2), and GABAA receptors are essential inhibitory elements in the APC with short plasmalemmal half-lives that maintain control in this highly excitable circuitry. After a single IAA deficient meal both proteins were reduced (vs. basal diet controls) in western blots of APC (but not neocortex or cerebellum) and in immunohistochemistry of APC. Furthermore, electrophysiological analyses support loss of inhibitory elements such as the GABAA receptor in this model. As the crucial inhibitory function of the GABAA receptor depends on KCC2 and the Cl(-) transmembrane gradient it establishes, these results suggest that loss of such inhibitory elements contributes to disinhibition of the APC in IAA deficiency. The circuitry of the anterior piriform cortex (APC) is finely balanced between excitatory (glutamate, +) and inhibitory (GABA, -) transmission. GABAA receptors use Cl(-), requiring the neural potassium chloride co-transporter (KCC2). Both are rapidly turning-over proteins, dependent on protein synthesis for repletion. In IAA (indispensable amino acid) deficiency, within 20 min, blockade of protein synthesis prevents restoration of these inhibitors; they are diminished; disinhibition ensues. GCN2 = general control non-derepressing kinase 2, eIF2α = α-subunit of the eukaryotic

  14. Elimination of Iron Deficiency Anemia and Soil Transmitted Helminth Infection: Evidence from a Fifty-four Month Iron-Folic Acid and De-worming Program

    PubMed Central

    Casey, Gerard J.; Montresor, Antonio; Cavalli-Sforza, Luca T.; Thu, Hoang; Phu, Luong B.; Tinh, Ta T.; Tien, Nong T.; Phuc, Tran Q.; Biggs, Beverley-Ann

    2013-01-01

    Background Intermittent iron-folic acid supplementation and regular de-worming are effective initiatives to reduce anemia, iron deficiency, iron deficiency anemia, and soil transmitted helminth infections in women of reproductive age. However, few studies have assessed the long-term effectiveness of population-based interventions delivered in resource-constrained settings. Methodology/Principal Findings The objectives were to evaluate the impact of weekly iron-folic acid supplementation and de-worming on mean hemoglobin and the prevalence of anaemia, iron deficiency, and soil transmitted helminth infection in a rural population of women in northern Vietnam and to identify predictive factors for hematological outcomes. A prospective cohort design was used to evaluate a population-based supplementation and deworming program over 54 months. The 389 participants were enrolled just prior to commencement of the intervention. After 54 months 76% (95% CI [68%, 84%]) were taking the iron-folic acid supplement and 95% (95% CI [93%, 98%]) had taken the most recently distributed deworming treatment. Mean hemoglobin rose from 122 g/L (95% CI [120, 124]) to 131 g/L (95% CI [128, 134]) and anemia prevalence fell from 38% (95% CI [31%, 45%]) to 18% (95% CI [12%, 23%]); however, results differed significantly between ethnic groups. Iron deficiency fell from 23% (95% CI [17%, 29%]) to 8% (95% CI [4%, 12%]), while the prevalence of iron deficiency anemia was reduced to 4% (95% CI [1%, 7%]). The prevalence of hookworm infection was reduced from 76% (95% CI [68%, 83%]) to 11% (95% CI [5%, 18%]). The level of moderate or heavy infestation of any soil-transmitted helminth was reduced to less than 1%. Conclusions/Significance Population-based interventions can efficiently and effectively reduce anemia and practically eliminate iron deficiency anemia and moderate to heavy soil transmitted helminth infections, maintaining them below the level of public health concern. PMID:23593517

  15. ‘Metabolic syndrome’ in the brain: deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition

    PubMed Central

    Agrawal, Rahul; Gomez-Pinilla, Fernando

    2012-01-01

    We pursued studies to determine the effects of the metabolic syndrome (MetS) on brain, and the possibility of modulating these effects by dietary interventions. In addition, we have assessed potential mechanisms by which brain metabolic disorders can impact synaptic plasticity and cognition. We report that high-dietary fructose consumption leads to an increase in insulin resistance index, and insulin and triglyceride levels, which characterize MetS. Rats fed on an n-3 deficient diet showed memory deficits in a Barnes maze, which were further exacerbated by fructose intake. In turn, an n-3 deficient diet and fructose interventions disrupted insulin receptor signalling in hippocampus as evidenced by a decrease in phosphorylation of the insulin receptor and its downstream effector Akt. We found that high fructose consumption with an n-3 deficient diet disrupts membrane homeostasis as evidenced by an increase in the ratio of n-6/n-3 fatty acids and levels of 4-hydroxynonenal, a marker of lipid peroxidation. Disturbances in brain energy metabolism due to n-3 deficiency and fructose treatments were evidenced by a significant decrease in AMPK phosphorylation and its upstream modulator LKB1 as well as a decrease in Sir2 levels. The decrease in phosphorylation of CREB, synapsin I and synaptophysin levels by n-3 deficiency and fructose shows the impact of metabolic dysfunction on synaptic plasticity. All parameters of metabolic dysfunction related to the fructose treatment were ameliorated by the presence of dietary n-3 fatty acid. Results showed that dietary n-3 fatty acid deficiency elevates the vulnerability to metabolic dysfunction and impaired cognitive functions by modulating insulin receptor signalling and synaptic plasticity. PMID:22473784

  16. Tiller number is altered in the ascorbic acid-deficient rice suppressed for L-galactono-1,4-lactone dehydrogenase.

    PubMed

    Liu, Yonghai; Yu, Le; Tong, Jianhua; Ding, Junhui; Wang, Ruozhong; Lu, Yusheng; Xiao, Langtao

    2013-03-01

    The tiller of rice (Oryza sativa L.), which determines the panicle number per plant, is an important agronomic trait for grain production. Ascorbic acid (Asc) is a major plant antioxidant that serves many functions in plants. L-Galactono-1,4-lactone dehydrogenase (GLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Here we show that the GLDH-suppressed transgenic rices, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf Asc content compared with the wild-type plants, exhibit a significantly reduced tiller number. Moreover, lower growth rate and plant height were observed in the Asc-deficient plants relative to the trait values of the wild-type plants at different tillering stages. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation, a loss of chlorophyll, a loss of carotenoids, and a lower rate of CO(2) assimilation. In addition, the level of abscisic acid was higher in GI-1 plants, while the level of jasmonic acid was higher in GI-1 and GI-2 plants at different tillering stages. The results we presented here indicated that Asc deficiency was likely responsible for the promotion of premature senescence, which was accompanied by a marked decrease in photosynthesis. These observations support the conclusion that the deficiency of Asc alters the tiller number in the GLDH-suppressed transgenics through promoting premature senescence and changing phytohormones related to senescence.

  17. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency

    PubMed Central

    Schiff, Manuel; Haberberger, Birgit; Xia, Chuanwu; Mohsen, Al-Walid; Goetzman, Eric S.; Wang, Yudong; Uppala, Radha; Zhang, Yuxun; Karunanidhi, Anuradha; Prabhu, Dolly; Alharbi, Hana; Prochownik, Edward V.; Haack, Tobias; Häberle, Johannes; Munnich, Arnold; Rötig, Agnes; Taylor, Robert W.; Nicholls, Robert D.; Kim, Jung-Ja; Prokisch, Holger; Vockley, Jerry

    2015-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients. First, we confirmed that HEK293 cells express ACAD9 abundantly. Then, we showed that ACAD9 knockout in HEK293 cells affected long-chain fatty acid oxidation along with Cl, both of which were rescued by wild type ACAD9. Further, we evaluated whether the loss of ACAD9 enzymatic fatty acid oxidation affects clinical severity in patients with ACAD9 mutations. The effects on ACAD activity of 16 ACAD9 mutations identified in 24 patients were evaluated using a prokaryotic expression system. We showed that there was a significant inverse correlation between residual enzyme ACAD activity and phenotypic severity of ACAD9-deficient patients. These results provide evidence that in cells where it is strongly expressed, ACAD9 plays a physiological role in fatty acid oxidation, which contributes to the severity of the phenotype in ACAD9-deficient patients. Accordingly, treatment of ACAD9 patients should aim at counteracting both CI and fatty acid oxidation dysfunctions. PMID:25721401

  18. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis.

    PubMed

    Weber, Thomas J; Magnaldo, Thierry; Xiong, Yijia

    2014-09-11

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.

  19. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency.

    PubMed

    Schiff, Manuel; Haberberger, Birgit; Xia, Chuanwu; Mohsen, Al-Walid; Goetzman, Eric S; Wang, Yudong; Uppala, Radha; Zhang, Yuxun; Karunanidhi, Anuradha; Prabhu, Dolly; Alharbi, Hana; Prochownik, Edward V; Haack, Tobias; Häberle, Johannes; Munnich, Arnold; Rötig, Agnes; Taylor, Robert W; Nicholls, Robert D; Kim, Jung-Ja; Prokisch, Holger; Vockley, Jerry

    2015-06-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients. First, we confirmed that HEK293 cells express ACAD9 abundantly. Then, we showed that ACAD9 knockout in HEK293 cells affected long-chain fatty acid oxidation along with Cl, both of which were rescued by wild type ACAD9. Further, we evaluated whether the loss of ACAD9 enzymatic fatty acid oxidation affects clinical severity in patients with ACAD9 mutations. The effects on ACAD activity of 16 ACAD9 mutations identified in 24 patients were evaluated using a prokaryotic expression system. We showed that there was a significant inverse correlation between residual enzyme ACAD activity and phenotypic severity of ACAD9-deficient patients. These results provide evidence that in cells where it is strongly expressed, ACAD9 plays a physiological role in fatty acid oxidation, which contributes to the severity of the phenotype in ACAD9-deficient patients. Accordingly, treatment of ACAD9 patients should aim at counteracting both CI and fatty acid oxidation dysfunctions.

  20. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis

    PubMed Central

    Weber, Thomas J.; Magnaldo, Thierry; Xiong, Yijia

    2014-01-01

    We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects. PMID:28250390

  1. Maternal omega-3 fatty acid supplementation to a vitamin B12 deficient diet normalizes angiogenic markers in the pup brain at birth.

    PubMed

    Rathod, Richa S; Khaire, Amrita A; Kale, Anvita A; Joshi, Sadhana R

    2015-06-01

    Vitamin B12 and omega-3 fatty acids are critical for normal brain development and function and their deficiencies during pregnancy could have adverse effects on cognitive performance in children. Our earlier studies indicate that both maternal vitamin B12 and omega-3 fatty acids influence brain development by regulating the levels of neurotrophins. Literature suggests that there exists a cross talk between neurotrophins like nerve growth factor (NGF) and angiogenic factors like vascular endothelial growth factor (VEGF). It remains to be established whether maternal nutrients like vitamin B12 and omega-3 fatty acids influence the levels of angiogenic markers like VEGF and NGF in the brain of the offspring. Therefore the present study examines the effect of maternal vitamin B12 and omega-3 fatty acids on protein and mRNA levels of VEGF, HIF-1 alpha (hypoxia inducible factor alpha) and NGF in the pup brain at birth. Pregnant Wistar rats were divided into five dietary groups (n=8 each): control, vitamin B12 deficient, vitamin B12 deficient+omega-3 fatty acid, vitamin B12 supplemented, vitamin B12 supplemented+omega-3 fatty acid. At birth the pups were dissected to collect the brain tissue. Maternal vitamin B12 deficiency showed lower (p<0.05) pup brain mRNA and protein levels (p<0.01) of VEGF, higher (p<0.01) HIF-1 alpha protein levels, lower (p<0.05) NGF protein levels while NGF mRNA levels were not altered. Omega-3 fatty acid supplementation to a vitamin B12 deficient group normalized the VEGF mRNA levels, NGF protein levels and HIF-1 alpha protein levels. Vitamin B12 supplementation showed similar protein and mRNA levels of VEGF and NGF as well as HIF-1 alpha protein levels as compared to control. Omega-3 fatty acid supplementation to the vitamin B12 supplemented group showed higher (p<0.01) protein and mRNA levels of NGF but the protein and mRNA levels of VEGF were comparable to control. In conclusion maternal vitamin B12 and omega-3 fatty acids both influence the

  2. Does folic acid supplementation rescue defects in ECE-1-deficient mouse embryos?

    PubMed

    Haque, A; Šaňková, B; Kvasilová, A; Krejčí, E; Sedmera, D

    2014-01-01

    Endothelin (ET) signalling is essential for normal embryonic development. Disruption of this pathway leads to defects in the development of subsets of cranial and cephalic neural crest derivatives. Endothelin-converting enzyme 1 (ECE-1) is a ratelimiting step in the biosynthesis of ET-1. Recently, there has been considerable interest in the protective role of folic acid (FA) against congenital anomalies via increasing the expression of ET-1. We have tested whether FA supplementation can rescue craniofacial and cardiac defects observed in the ECE1-/- embryos. ECE1+/- mice were caged together to obtain litters containing embryos of all possible genotypes. The treatment group had the diet supplemented with 20 mg/kg of FA from the day of discovery of the vaginal plug. FA supplementation did not result in modified proportions of the genotypes, indicating no rescue of the embryonic mortality. There was also no effect on the litter size. Craniofacial and cardiac defects were likewise identical in the ECE1-/- embryos of both groups. There was a mild but significant reduction in the embryo size in wild-type and heterozygous FA-supplemented embryos, and there were haemorrhages in the wild-type supplemented embryos at ED14.5. Expression of ET receptor A detected by immunohistochemistry was up-regulated in the ECE1-/- embryos, but FA supplementation had no effects on the distribution of staining intensity. We conclude that FA is not able to rescue the phenotype in this model, suggesting an alternative pathway for its action. These results also caution against indiscriminate use of dietary supplements in attempts to prevent congenital anomalies.

  3. Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice.

    PubMed

    Konuma, Kuniha; Itoh, Michiko; Suganami, Takayoshi; Kanai, Sayaka; Nakagawa, Nobutaka; Sakai, Takeru; Kawano, Hiroyuki; Hara, Mitsuko; Kojima, Soichi; Izumi, Yuichi; Ogawa, Yoshihiro

    2015-01-01

    Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-β activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.

  4. Molecular analysis of the acid sphingomyelinase deficiency in a family with an intermediate form of Niemann-Pick disease.

    PubMed Central

    Ferlinz, K; Hurwitz, R; Weiler, M; Suzuki, K; Sandhoff, K; Vanier, M T

    1995-01-01

    A novel point mutation in the lysosomal acid sphingomyelinase gene has been identified in the recently reported Serbian family with a clinically and biochemically atypical intermediate form of Niemann-Pick disease. The mutation was a T1171-->G transversion resulting in substitution of glycine for normal tryptophan at amino acid residue 391. The coding sequence was otherwise normal. All of the five affected individuals were almost certainly homoallelic, and both of the two obligate heterozygotes studied also carried the same mutation. This mutation is therefore likely to be directly associated with the atypical phenotype of these patients. Expression in COS-1 cells suggested a higher residual activity than that in cultured fibroblasts. A recently developed high-affinity rabbit antihuman sphingomyelinase antibody allowed us to study for the first time the biosynthesis, processing, and targeting of a mutant sphingomyelinase by metabolic labeling of cultured fibroblasts. The mutant enzyme protein was normally synthesized, processed, and routed to the lysosome but was apparently unstable and degraded rapidly once it reached the lysosome. Together with the finding of the relatively high residual activity in COS-1 cells, we interpret our observations to mean that instability and rapid breakdown of the mature mutant enzyme protein, due to the mutation rather than direct inactivation of the catalytic activity, is the primary mechanism for the deficiency of sphingomyelinase activity in these patients. A high prevalence of this mutation in the Serbian population is likely, since the family pedigree indicates that members from four reportedly unrelated families must have contributed the same mutation. Images Figure 2 Figure 3 PMID:7762557

  5. Ethacrynic-acid-induced glutathione depletion and oxidative stress in normal and Mrp2-deficient rat liver.

    PubMed

    Ji, Bin; Ito, Kousei; Sekine, Shuichi; Tajima, Ai; Horie, Toshiharu

    2004-12-01

    Oxidative stress in the liver is sometimes accompanied by cholestasis. We investigated the localization and role of multidrug-resistance-associated protein (Mrp) 2, a biliary transporter involved in bile-salt-independent bile flow, under ethacrynic acid (EA)-induced acute oxidative stress. Normal Sprague-Dawley rat (SDR) and Mrp2-deficient Eisai hyperbilirubinemic rat (EHBR) livers were perfused with 500 microM EA. The release of glutamic pyruvic transaminase (GPT) and thiobarbituric-acid-reactive substances (TBARS) from EHBR liver was markedly delayed compared with that from SDR liver. This is mainly due to the higher basal level of glutathione (GSH) in EHBR liver (59.1 +/- 0.3 nmol/mg protein) compared with SDR liver (39.7 +/- 1.5 nmol/mg protein). EA similarly induced a rapid reduction in GSH followed by mitochondrial permeability transition in the isolated mitochondria from both SDR and EHBR. Internalization of Mrp2 was detected before nonspecific disruption of the canalicular membrane and GPT release in SDR liver perfused with 100 microM EA. SDR liver preperfused with hyperosmolar buffer (405 mosmol/L) for 30 min induced internalization of Mrp2 without changing the basal GSH level, while elimination of hepatic GSH by 300 microM EA perfusion was significantly delayed thereafter. Concomitantly, hepatotoxicity assessed by the release of GPT and TBARS was also significantly attenuated under hyperosmolar conditions. In conclusion, preserved cytosolic and intramitochondrial GSH is the key factor involved in the acute hepatotoxicity induced by EA and its susceptibility could be altered by the presence of Mrp2.

  6. Melatonin enhances cold tolerance in drought-primed wild-type and abscisic acid-deficient mutant barley.

    PubMed

    Li, Xiangnan; Tan, Dun-Xian; Jiang, Dong; Liu, Fulai

    2016-10-01

    Melatonin is involved in multiple plant developmental processes and various stress responses. To explore the roles of melatonin played as well as its association with abscisic acid (ABA) in a process of drought priming-induced cold tolerance (DPICT), a wild-type barley and its ABA-deficient mutant Az34 counterpart were selected for comparison, in which the effects of melatonin application (either foliarly or rhizospherically) and/or drought priming on the cold tolerance of both types of barleys were systematically investigated. It was demonstrated that the early drought priming induced an increase of endogenous melatonin production, which is not ABA dependent. In addition, exogenously applied melatonin resulted in higher ABA concentration in the drought-primed plants than in the nonprimed plants when exposed to cold stress, indicating that ABA responded in a drought-dependent manner. The interplay of melatonin and ABA leads to plants maintaining better water status. Drought priming-induced melatonin accumulation enhanced the antioxidant capacity in both chloroplasts and mitochondria, which sustained the photosynthetic electron transport in photosynthetic apparatus of the plants under cold stress. These results suggest that the exogenous melatonin application enhances the DPICT by modulating subcellular antioxidant systems and ABA levels in barley.

  7. Creatine and guanidinoacetate content of human milk and infant formulas: implications for creatine deficiency syndromes and amino acid metabolism.

    PubMed

    Edison, Erica E; Brosnan, Margaret E; Aziz, Khalid; Brosnan, John T

    2013-09-28

    Creatine is essential for normal neural development; children with inborn errors of creatine synthesis or transport exhibit neurological symptoms such as mental retardation, speech delay and epilepsy. Creatine accretion may occur through dietary intake or de novo creatine synthesis. The objective of the present study was to determine how much creatine an infant must synthesise de novo. We have calculated how much creatine an infant needs to account for urinary creatinine excretion (creatine's breakdown product) and new muscle lay-down. To measure an infant's dietary creatine intake, we measured creatine in mother's milk and in various commercially available infant formulas. Knowing the amount of milk/formula ingested, we calculated the amount of creatine ingested. We have found that a breast-fed infant receives about 9 % of the creatine needed in the diet and that infants fed cows' milk-based formula receive up to 36 % of the creatine needed. However, infants fed a soya-based infant formula receive negligible dietary creatine and must rely solely on de novo creatine synthesis. This is the first time that it has been shown that neonatal creatine accretion is largely due to de novo synthesis and not through dietary intake of creatine. This has important implications both for infants suffering from creatine deficiency syndromes and for neonatal amino acid metabolism.

  8. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes.

    PubMed

    Lee, Sunhee; Flores-Encarnación, M; Contreras-Zentella, M; Garcia-Flores, L; Escamilla, J E; Kennedy, Christina

    2004-08-01

    Gluconacetobacter diazotrophicus is an endophyte of sugarcane frequently found in plants grown in agricultural areas where nitrogen fertilizer input is low. Recent results from this laboratory, using mutant strains of G. diazotrophicus unable to fix nitrogen, suggested that there are two beneficial effects of G. diazotrophicus on sugarcane growth: one dependent and one not dependent on nitrogen fixation. A plant growth-promoting substance, such as indole-3-acetic acid (IAA), known to be produced by G. diazotrophicus, could be a nitrogen fixation-independent factor. One strain, MAd10, isolated by screening a library of Tn5 mutants, released only approximately 6% of the amount of IAA excreted by the parent strain in liquid culture. The mutation causing the IAA(-) phenotype was not linked to Tn5. A pLAFR3 cosmid clone that complemented the IAA deficiency was isolated. Sequence analysis of a complementing subclone indicated the presence of genes involved in cytochrome c biogenesis (ccm, for cytochrome c maturation). The G. diazotrophicus ccm operon was sequenced; the individual ccm gene products were 37 to 52% identical to ccm gene products of Escherichia coli and equivalent cyc genes of Bradyrhizobium japonicum. Although several ccm mutant phenotypes have been described in the literature, there are no reports of ccm gene products being involved in IAA production. Spectral analysis, heme-associated peroxidase activities, and respiratory activities of the cell membranes revealed that the ccm genes of G. diazotrophicus are involved in cytochrome c biogenesis.

  9. Studies on an iron-poly(sorbitol-gluconic acid) complex for parenteral treatment of iron deficiency anaemia.

    PubMed

    Domeij, K; Hellström, V; Högberg, K G; Lindvall, S; Rydell, G; Wichman, U; Ortengren, B

    1977-01-01

    A preparation containing an iron-poly(sorbitol-gluconic acid) complex for parenteral treatment of iron deficiency anaemia is described. The physical and chemical properties of the iron complex have been studied by using electrophoresis and gel permeation chromatography. A rapid absorption from the injection site after intramuscular administration to rabbits takes place, 70% of the iron being absorbed after 24-48 hours. Thereafter, the absorption rate is slower, and 32 days after the injection 94% has been absorbed from the injection site. In rabbits the maximum level of iron in serum is reached after 12-24 hours; in dogs after 1-3 hours. Disappearance from the serum takes place slowly. The complex is exclusively absorbed via the lymphatic route. Nine to ten per cent of the given dose is excreted by the kidney within 72 hours in rats and 24 hours in rabbits after intramuscular administration. On administration of the preparation to rats, made anaemic by phlebotomy, a rapid increase of haemoglobin values is observed as well as a very high utilization of the retained amount of the given dose.

  10. Investigation of trimethylacetic acid adsorption on stoichiometric and oxygen-deficient CeO 2 (111) surfaces

    SciTech Connect

    Sanghavi, Shail; Wang, Weina; Nandasiri, Manjula I.; Karakoti, Ajay S.; Wang, Wenliang; Yang, Ping; Thevuthasan, S.

    2016-01-01

    We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO2(111) surfaces as a function of oxygen stoichiometry using in-situ x-ray photoelectron spectroscopy (XPS). Stoichiometric CeO2(111) surface was obtained by annealing the thin film under 2.0x10-5 Torr of oxygen at ~550°C for 30 min. In order to reduce the CeO2(111) surface, the thin film was annealed in ~5.0x10-10 Torr vacuum at 550°C, 650°C, 750°C and 850°C for 30 min to progressively increase the oxygen defect concentration on the surface. The saturated TMAA coverage on CeO2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with increase in the oxygen defect concentrations. Periodic density functional theory (DFT) calculations are in agreement with XPS results and indicate a stronger binding between carboxylate group from TMAA with oxygen deficient CeO2-δ(111) surface. In addition DFT calculations reveal that dissociative mode of carboxylate adsorption is more favored than the molecular state and that carboxylate moiety bind to CeO2(111) surface in a bidentate configuration.

  11. Investigation of trimethylacetic acid adsorption on stoichiometric and oxygen-deficient CeO2 (111) surfaces

    SciTech Connect

    Sanghavi, Shail; Wang, Weina; Nandasiri, Manjula I.; Karakoti, Ajay S.; Wang, Wenliang; Yang, Ping; Thevuthasan, S.

    2016-05-12

    We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO2(111) surface was obtained by annealing the thin film under 2.0 × 10–5 Torr of oxygen at ~550 °C for 30 min. In order to reduce the CeO2(111) surface, the thin film was annealed under ~5.0 × 10–10 Torr vacuum conditions at 550 °C, 650 °C, 750 °C and 850 °C for 30 min to progressively increase the oxygen defect concentration on the surface. The saturated TMAA coverage on the CeO2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with the increase in the oxygen defect concentrations. Furthermore, XPS results were in agreement with periodic density functional theory (DFT) calculations and indicate a stronger binding between the carboxylate group from TMAA and the oxygen deficient CeO2–δ(111) surface through dissociative adsorption.

  12. Investigation of trimethylacetic acid adsorption on stoichiometric and oxygen-deficient CeO2 (111) surfaces

    DOE PAGES

    Sanghavi, Shail; Wang, Weina; Nandasiri, Manjula I.; ...

    2016-05-12

    We studied the interactions between the carboxylate anchoring group from trimethylacetic acid (TMAA) and CeO2(111) surfaces as a function of oxygen stoichiometry using in situ X-ray photoelectron spectroscopy (XPS). The stoichiometric CeO2(111) surface was obtained by annealing the thin film under 2.0 × 10–5 Torr of oxygen at ~550 °C for 30 min. In order to reduce the CeO2(111) surface, the thin film was annealed under ~5.0 × 10–10 Torr vacuum conditions at 550 °C, 650 °C, 750 °C and 850 °C for 30 min to progressively increase the oxygen defect concentration on the surface. The saturated TMAA coverage onmore » the CeO2(111) surface determined from XPS elemental composition is found to increase with increasing oxygen defect concentration. This is attributed to the increase of under-coordinated cerium sites on the surface with the increase in the oxygen defect concentrations. Furthermore, XPS results were in agreement with periodic density functional theory (DFT) calculations and indicate a stronger binding between the carboxylate group from TMAA and the oxygen deficient CeO2–δ(111) surface through dissociative adsorption.« less

  13. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L

    NASA Technical Reports Server (NTRS)

    Moore, R.; Smith, J. D.

    1985-01-01

    The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.

  14. Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea.

    PubMed

    Curvers, Katrien; Seifi, Hamed; Mouille, Grégory; de Rycke, Riet; Asselbergh, Bob; Van Hecke, Annelies; Vanderschaeghe, Dieter; Höfte, Herman; Callewaert, Nico; Van Breusegem, Frank; Höfte, Monica

    2010-10-01

    A mutant of tomato (Solanum lycopersicum) with reduced abscisic acid (ABA) production (sitiens) exhibits increased resistance to the necrotrophic fungus Botrytis cinerea. This resistance is correlated with a rapid and strong hydrogen peroxide-driven cell wall fortification response in epidermis cells that is absent in tomato with normal ABA production. Moreover, basal expression of defense genes is higher in the mutant compared with the wild-type tomato. Given the importance of this fast response in sitiens resistance, we investigated cell wall and cuticle properties of the mutant at the chemical, histological, and ultrastructural levels. We demonstrate that ABA deficiency in the mutant leads to increased cuticle permeability, which is positively correlated with disease resistance. Furthermore, perturbation of ABA levels affects pectin composition. sitiens plants have a relatively higher degree of pectin methylesterification and release different oligosaccharides upon inoculation with B. cinerea. These results show that endogenous plant ABA levels affect the composition of the tomato cuticle and cell wall and demonstrate the importance of cuticle and cell wall chemistry in shaping the outcome of this plant-fungus interaction.

  15. Activities of sulfatases for the degradation of acidic glycosaminoglycans in cultured skin fibroblasts from two siblings with multiple sulfatase deficiency.

    PubMed

    Minami, R; Fujibayashi, S; Tachi, N; Wagatsuma, K; Nakao, T; Ikeno, T; Tsugawa, S; Sukegawa, K; Orii, T

    1983-04-01

    Cultured skin fibroblasts from two siblings with multiple sulfatase deficiency (MSD) were assayed for the activities of sulfatases known to degrade acidic glycosaminoglycans (AGAG). There were iduronate sulfatase, arylsulfatase B, heparan sulfate (HS) sulfatase, N-acetylgalactosamine-6-sulfate sulfatase, HS-derived N-acetylglucosamine-6-sulfate sulfatase, and two keratan sulfate (KS)-derived N-acetylglucosamine-6-sulfate sulfatases. The activities of sulfatases required for the degradation of HS were reduced to a greater extent than those for the degradation of dermatan sulfate (DS), and those of sulfatases associated with basic defect of Morquio disease type A were moderately decreased or normal. On the other hand, urinary excretion of AGAG in both patients was increased about 10-fold compared to controls, and especially, the excretion of HS and DS was increased about 150-fold and 50-fold, respectively. Keratan sulfate was not detected. The results suggest that in patients with MSD the degradation of HS might be affected to a greater extent than that of DS.

  16. Responses of a triple mutant defective in three iron deficiency-induced Basic Helix-Loop-Helix genes of the subgroup Ib(2) to iron deficiency and salicylic acid.

    PubMed

    Maurer, Felix; Naranjo Arcos, Maria Augusta; Bauer, Petra

    2014-01-01

    Plants are sessile organisms that adapt to external stress by inducing molecular and physiological responses that serve to better cope with the adverse growth condition. Upon low supply of the micronutrient iron, plants actively increase the acquisition of soil iron into the root and its mobilization from internal stores. The subgroup Ib(2) BHLH genes function as regulators in this response, however their concrete functions are not fully understood. Here, we analyzed a triple loss of function mutant of BHLH39, BHLH100 and BHLH101 (3xbhlh mutant). We found that this mutant did not have any iron uptake phenotype if iron was provided. However, under iron deficiency the mutant displayed a more severe leaf chlorosis than the wild type. Microarray-based transcriptome analysis revealed that this mutant phenotype resulted in the mis-regulation of 198 genes, out of which only 15% were associated with iron deficiency regulation itself. A detailed analysis revealed potential targets of the bHLH transcription factors as well as genes reflecting an exaggerated iron deficiency response phenotype. Since the BHLH genes of this subgroup have been brought into the context of the plant hormone salicylic acid, we investigated whether the 3xbhlh mutant might have been affected by this plant signaling molecule. Although a very high number of genes responded to SA, also in a differential manner between mutant and wild type, we did not find any indication for an association of the BHLH gene functions in SA responses upon iron deficiency. In summary, our study indicates that the bHLH subgroup Ib(2) transcription factors do not only act in iron acquisition into roots but in other aspects of the adaptation to iron deficiency in roots and leaves.

  17. delta. -aminolevulinic acid dehydratase deficiency can cause. delta. -aminolevulinate auxotrophy in Escherichia coli

    SciTech Connect

    O'Neill, G.P.; Michelsen, U.; Soll, D. ); Thorbjarnardottir, S.; Palsson, S.; Eggertsson, G. )

    1991-01-01

    Ethylmethane sulfonate-induced mutants of several Escherichia coli strains that required {delta}-aminolevulinic acid (ALA) for growth were isolated by penicillin enrichment or by selection for respiratory-defective strains resistant to the aminoglycoside antibiotic kanamycin. Three classes of mutants were obtained. Two-thirds of the strains were mutants in hemA. Representative of a third of the mutations was the hem-201 mutation. This mutation was mapped to min 8.6 to 8.7. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding phage 8F10 allowed the isolation of the gene. DNA sequence analysis revealed that the hem-201 gene encoded ALA dehydratase and was similar to a known hemB gene of E. coli. Complementation studies of hem-201 and hemB1 mutant strains with various hem-201 gene subfragments showed that hem-201 and the previously reported hemB1 mutation are in the same gene and that no other gene is required to complement the hem-201 mutant. ALA-forming activity from glutamate could not be detected by in vitro or in vivo assays. Extracts of hem-201 cells had drastically reduce ALA dehydratase levels, while cells transformed with the plasmid-encoded wild-type gene possessed highly elevated enzyme levels. The ALA requirement for growth, the lack of any ALA-forming enzymatic activity, and greatly reduced ALA dehydratase activity of the hem-201 strain suggest that a diffusible product of an enzyme in the heme biosynthetic pathway after ALA formation is involved in positive regulation of ALA biosynthesis. Analysis of another class of ALA-requiring mutants showed that the auxotrophy of the hem-205 mutant could be relieved by either methionine or cysteine and that the mutation maps in the cysG gene, which encodes uroporphyrinogen III methylase. The properties of these nonleaky ALA-requiring strains suggest that ALA is involved more extensively in E. coli intermediary metabolism than has been appreciated to date.

  18. Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency.

    PubMed

    Hickmann, Fernanda Hermes; Cecatto, Cristiane; Kleemann, Daniele; Monteiro, Wagner Oliveira; Castilho, Roger Frigério; Amaral, Alexandre Umpierrez; Wajner, Moacir

    2015-01-01

    Patients with long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiency commonly present liver dysfunction whose pathogenesis is unknown. We studied the effects of long-chain 3-hydroxylated fatty acids (LCHFA) that accumulate in LCHAD deficiency on liver bioenergetics using mitochondrial preparations from young rats. We provide strong evidence that 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, the monocarboxylic acids that are found at the highest tissue concentrations in this disorder, act as metabolic inhibitors and uncouplers of oxidative phosphorylation. These conclusions are based on the findings that these fatty acids decreased ADP-stimulated (state 3) and uncoupled respiration, mitochondrial membrane potential and NAD(P)H content, and, in contrast, increased resting (state 4) respiration. We also verified that 3HTA and 3HPA markedly reduced Ca2+ retention capacity and induced swelling in Ca2+-loaded mitochondria. These effects were mediated by mitochondrial permeability transition (MPT) induction since they were totally prevented by the classical MPT inhibitors cyclosporin A and ADP, as well as by ruthenium red, a Ca2+ uptake blocker. Taken together, our data demonstrate that the major monocarboxylic LCHFA accumulating in LCHAD deficiency disrupt energy mitochondrial homeostasis in the liver. It is proposed that this pathomechanism may explain at least in part the hepatic alterations characteristic of the affected patients.

  19. Adult Lysophosphatidic Acid Receptor 1-Deficient Rats with Hyperoxia-Induced Neonatal Chronic Lung Disease Are Protected against Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Chen, Xueyu; Walther, Frans J.; Laghmani, El H.; Hoogeboom, Annemarie M.; Hogen-Esch, Anne C. B.; van Ark, Ingrid; Folkerts, Gert; Wagenaar, Gerry T. M.

    2017-01-01

    Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg−1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this “second hit” with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated “second hit” than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic

  20. A new fluorogenic sensing platform for salicylic acid derivatives based on π-π and NH-π interactions between electron-deficient and electron-rich aromatics.

    PubMed

    Pandith, Anup; Hazra, Giridhari; Kim, Hong-Seok

    2017-02-03

    A novel simple fluorescent probe was designed for the recognition of electron-rich salicylic acid derivatives (SAs). The imidazole-appended aminomethyl perylene probe 1 selectively differentiated between electron-rich amino-SAs and electron-deficient nitro-SAs in EtOH, exhibiting the highest selectivity and sensitivity toward 5-aminosalicylic acid (5-ASA) and showing strong 1:1 binding (Ka=1.37×10(7)M(-1)). This high selectivity and sensitivity resulted from the synergistic multiple hydrogen bonding interactions of secondary amine and imidazole units and π-π interactions between electron-rich and electron-deficient rings, along with the unusual NH-π interactions between 5-ASA and the perylene moiety of 1. The limit of detection (LOD) for 5-ASA in EtOH was 0.012ppb.

  1. The influence of dietary essential fatty acids on uterine C20 and C22 fatty acid composition.

    PubMed

    Howie, A; Leaver, H A; Wilson, N H; Yap, P L; Aitken, I D

    1992-06-01

    The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.

  2. Differential regulation of hepatic transcription factors in the Wistar rat offspring born to dams fed folic acid, vitamin B12 deficient diets and supplemented with omega-3 fatty acids.

    PubMed

    Meher, Akshaya; Joshi, Asmita; Joshi, Sadhana

    2014-01-01

    Nutritional status of the mother is known to influence various metabolic adaptations required for optimal fetal development. These may be mediated by transcription factors like peroxisome proliferator activated receptors (PPARs), which are activated by long chain polyunsaturated fatty acids. The objective of the current study was to examine the expression of different hepatic transcription factors and the levels of global methylation in the liver of the offspring born to dams fed micronutrient deficient (folic acid and vitamin B12) diets and supplemented with omega-3 fatty acids. Female rats were divided into five groups (n = 8/group) as follows; control, folic acid deficient (FD), vitamin B12 deficient (BD) and omega-3 fatty acid supplemented groups (FDO and BDO). Diets were given starting from pre-conception and continued throughout pregnancy and lactation. Pups were dissected at the end of lactation. Liver tissues were removed; snap frozen and stored at -80°C. Maternal micronutrients deficiency resulted in lower (p<0.05) levels of pup liver docosahexaenoic acid (DHA) and arachidonic acid (ARA) as compared to the control group. Pup liver PPARα and PPARγ expression was lower (p<0.05) in the BD group although there were no differences in the expression of SREBP-1c, LXRα and RXRα expression. Omega-3 fatty acids supplementation to this group normalized (p<0.05) levels of both PPARα and PPARγ but reduced (p<0.05) SREBP-1c, LXRα and RXRα expression. There was no change in any of the transcription factors in the pup liver in the FD group. Omega-3 fatty acids supplementation to this group reduced (p<0.05) PPARα, SREBP-1c and RXRα expression. Pup liver global methylation levels were higher (p<0.01) in both the micronutrients deficient groups and could be normalized (p<0.05) by omega-3 fatty acid supplementation. Our novel findings suggest a role for omega-3 fatty acids in the one carbon cycle in influencing the hepatic expression of transcription factors in the

  3. RESTORATION OF NORMAL GLUTAMIC ACID TRANSPORT IN VITAMIN B6-DEFICIENT LACTOBACILLUS PLANTARUM BY ACETATE, AMMONIUM, AND VITAMIN B6,

    DTIC Science & Technology

    GLUTAMIC ACID, * LACTOBACILLUS , VITAMIN B COMPLEX, METABOLIC DISEASES, VITAMIN B COMPLEX, ACETATES, AMMONIUM COMPOUNDS, CHLORAMPHENICOL, DEOXYRIBONUCLEIC ACIDS, AMINO ACIDS, PENICILLINS, CELL WALL, SYNTHESIS, OSMOSIS.

  4. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.

    PubMed

    Kainz, Martin; Telmer, Kevin; Mazumder, Asit

    2006-09-01

    Organisms of the planktonic food web convey essential nutrients as well as contaminants to animals at higher trophic levels. We measured concentrations of methyl mercury (MeHg) and essential fatty acids (EFAs, key nutrients for aquatic food webs) in four size categories of planktonic organisms - seston (10-64 microm), micro-(100-200 microm), meso-(200-500 microm), and macrozooplankton (>500 microm) - as well as total mercury (THg) and EFAs in rainbow trout (Oncorhynchus mykiss) in coastal lakes. We demonstrate that, in all lakes during this summer sampling, MeHg concentrations of planktonic organisms increase significantly with plankton size, independent of their taxonomic composition, and that their MeHg accumulation patterns predict significantly THg concentrations in rainbow trout (R2=0.71, p<0.05). However, concentrations of total EFAs do not follow this pattern. Total EFAs increased from seston to mesozooplankton but decreased in the largest zooplankton size fraction. Moreover, concentrations of individual EFA compounds in rainbow trout are consistently lower, with the exception of docosahexaenoic acid, than those in macrozooplankton. The continuous increase of MeHg concentrations in aquatic organisms, therefore, differs from patterns of EFA accumulation in zooplankton and fish. We interpret these contrasting accumulation patterns of MeHg and EFA compounds as the inability of aquatic organisms to regulate the assimilation of dietary MeHg, whereas the rate of EFA retention may be controlled to optimize their physiological performance. Therefore, we conclude that bioaccumulation patterns of Hg in these aquatic food webs are not controlled by lipid solubility and/or the retention of EFA compounds.

  5. Clearance of Hepatic Sphingomyelin by Olipudase Alfa Is Associated With Improvement in Lipid Profiles in Acid Sphingomyelinase Deficiency

    PubMed Central

    Wasserstein, Melissa P.; Jones, Simon A.; Schiano, Thomas D.; Cox, Gerald F.; Puga, Ana Cristina

    2016-01-01

    Acid sphingomyelinase deficiency (ASMD; Niemann-Pick disease type A and B) is a lysosomal storage disorder characterized by abnormal intracellular sphingomyelin (SM) accumulation. Prominent liver involvement results in hepatomegaly, fibrosis/cirrhosis, abnormal liver chemistries, and a proatherogenic lipid profile. Olipudase alfa (recombinant human ASM) is in clinical development as an investigational enzyme replacement therapy for the non-neurological manifestations of ASMD. In a phase 1b study conducted to evaluate the safety and tolerability of within-patient dose escalation with olipudase alfa, measurement of SM levels in liver biopsies was used as a pharmacodynamic biomarker of substrate burden. Five adult patients with non neuronopathic ASMD received escalating doses of olipudase alfa every 2 weeks for 26 weeks. Liver biopsies obtained at baseline and 26 weeks after treatment were evaluated for SM storage by histomorphometric analysis, biochemistry, and electron microscopy. Biopsies were also assessed for inflammation and fibrosis, and for the association of SM levels with liver volume, liver function tests, and lipid profiles. At baseline, SM storage present in Kupffer cells and hepatocytes ranged from 9.8% to 53.8% of the microscopic field. After 26 weeks of treatment, statistically significant reductions in SM (P<0.0001) measured by morphometry were seen in 4 patients with evaluable liver biopsies. The 26-week biopsy of the fifth patient was insufficient for morphometric quantitation. Posttreatment SM levels ranged from 1.2% to 9.5% of the microscopic field, corresponding to an 84% to 92% relative reduction from baseline. Improvements in liver volume, liver function tests, and lipid profiles were also observed. This study illustrates the utility of SM assessment by liver biopsy as a pharmacodynamic biomarker of disease burden in these patients. PMID:27340749

  6. Mass Spectrometric Confirmation of γ-Linolenic Acid Ester-Linked Ceramide 1 in the Epidermis of Borage Oil Fed Guinea Pigs.

    PubMed

    Shin, Kyong-Oh; Kim, Kunpyo; Jeon, Sanghun; Seo, Cho-Hee; Lee, Yong-Moon; Cho, Yunhi

    2015-10-01

    Ceramide 1 (Cer1), a Cer species with eicosasphingenine (d20:1) amide-linked to two different ω-hydroxy fatty acids (C30wh:0:C32wh:1), which are, in turn, ester-linked to linoleic acid (LNA; 18:2n-6), plays a critical role in maintaining the structural integrity of the epidermal barrier. Prompted by the recovery of a disrupted epidermal barrier with dietary borage oil [BO: 36.5% LNA and 23.5% γ-linolenic acid (GLA; 18:3n-6)], in essential fatty acid (EFA)-deficient guinea pigs, we further investigated the effects of BO on the substitution of ester-linked GLA for LNA in these two epidermal Cer1 species by LC-MS in positive and negative modes. Dietary supplementation of BO for 2 weeks in EFA-deficient guinea pigs increased LNA ester-linked to C32wh:1/d20:1 and C30wh:0/d20:1 of Cer1. Moreover, GLA ester-linked to C32wh:1/d20:1, but not to C30wh:0/d20:1, of Cer1 was detected, which was further confirmed by the product ions of m/z 277.2 for ester-linked GLA and m/z 802.3 for the deprotonated C32wh:1/d20:1. C20-Metabolized fatty acids of LNA or GLA were not ester-linked to these Cer1 species. Dietary BO induced GLA ester-linked to C32wh:1/d20:1 of epidermal Cer1.

  7. Occurrence of cleft-palate and alteration of Tgf-β(3) expression and the mechanisms leading to palatal fusion in mice following dietary folic-acid deficiency.

    PubMed

    Maldonado, Estela; Murillo, Jorge; Barrio, Carmen; del Río, Aurora; Pérez-Miguelsanz, Juliana; López-Gordillo, Yamila; Partearroyo, Teresa; Paradas, Irene; Maestro, Carmen; Martínez-Sanz, Elena; Varela-Moreiras, Gregorio; Martínez-Álvarez, Concepción

    2011-01-01

    Folic acid (FA) is essential for numerous bodily functions. Its decrease during pregnancy has been associated with an increased risk of congenital malformations in the progeny. The relationship between FA deficiency and the appearance of cleft palate (CP) is controversial, and little information exists on a possible effect of FA on palate development. We investigated the effect of a 2-8 weeks' induced FA deficiency in female mice on the development of CP in their progeny as well as the mechanisms leading to palatal fusion, i.e. cell proliferation, cell death, and palatal-shelf adhesion and fusion. We showed that an 8 weeks' maternal FA deficiency caused complete CP in the fetuses although a 2 weeks' maternal FA deficiency was enough to alter all the mechanisms analyzed. Since transforming growth factor-β(3) (TGF-β(3)) is crucial for palatal fusion and since most of the mechanisms impaired by FA deficiency were also observed in the palates of Tgf-β(3)null mutant mice, we investigated the presence of TGF-β(3) mRNA, its protein and phospho-SMAD2 in FA-deficient (FAD) mouse palates. Our results evidenced a large reduction in Tgf-β(3) expression in palates of embryos of dams fed an FAD diet for 8 weeks; Tgf-β(3) expression was less reduced in palates of embryos of dams fed an FAD diet for 2 weeks. Addition of TGF-β(3) to palatal-shelf cultures of embryos of dams fed an FAD diet for 2 weeks normalized all the altered mechanisms. Thus, an insufficient folate status may be a risk factor for the development of CP in mice, and exogenous TGF-β(3) compensates this deficit in vitro.

  8. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing.

  9. Seed storage protein deficiency improves sulfur amino acid content in common bean (Phaseolus vulgaris L.): redirection of sulfur from gamma-glutamyl-S-methyl-cysteine.

    PubMed

    Taylor, Meghan; Chapman, Ralph; Beyaert, Ronald; Hernández-Sebastià, Cinta; Marsolais, Frédéric

    2008-07-23

    The contents of sulfur amino acids in seeds of common bean ( Phaseolus vulgaris L.) are suboptimal for nutrition. They accumulate large amounts of a gamma-glutamyl dipeptide of S-methyl-cysteine, a nonprotein amino acid that cannot substitute for methionine or cysteine in the diet. Protein accumulation and amino acid composition were characterized in three genetically related lines integrating a progressive deficiency in major seed storage proteins, phaseolin, phytohemagglutinin, and arcelin. Nitrogen, carbon, and sulfur contents were comparable among the three lines. The contents of S-methyl-cysteine and gamma-glutamyl-S-methyl-cysteine were progressively reduced in the mutants. Sulfur was shifted predominantly to the protein cysteine pool, while total methionine was only slightly elevated. Methionine and cystine contents (mg per g protein) were increased by up to ca. 40%, to levels slightly above FAO guidelines on amino acid requirements for human nutrition. These findings may be useful to improve the nutritional quality of common bean.

  10. Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains.

    PubMed

    Barbosa, Catarina; Falco, Virgilio; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2009-08-01

    The effects of nitrogen addition into nitrogen deficient/depleted media on the release of aroma compounds post-fermentation were investigated in three commercial yeast strains of Saccharomyces cerevisiae which highlight the yeast strain effect as well as nitrogen effects. By comparing the two timings of nitrogen addition, prior to fermentation or later at stationary phase (72 h), it was shown that nitrogen addition at stationary phase significantly decreases ethanol and acetic acid formation and significantly increases the following compounds: 2-phenylethanol, ethyl isobutyrate, 2-phenylethyl acetate, ethyl 2-methylbutyrate and ethyl propionate in the three strains, and also isovaleric acid, isoamyl alcohol and ethyl isovalerate in both PYCC4072 and UCD522. The strain EC1118 produced significantly less medium chain fatty acids, hexanoic, octanoic and decanoic acids and their respective esters after nitrogen addition. Therefore, timing of nitrogen addition to a ferment media can vary the concentration of certain aroma compound and might provide a means for varying wine composition.

  11. EfaR Is a Major Regulator of Enterococcus faecalis Manganese Transporters and Influences Processes Involved in Host Colonization and Infection

    PubMed Central

    Abrantes, M. C.; Lopes, M. de F.

    2013-01-01

    Metal ions, in particular manganese, are important modulators of bacterial pathogenicity. However, little is known about the role of manganese-dependent proteins in the nosocomial pathogen Enterococcus faecalis, a major cause of bacterial endocarditis. The present study demonstrates that the DtxR/MntR family metalloregulator EfaR of E. faecalis controls the expression of several of its regulon members in a manganese-dependent way. We also show that efaR inactivation impairs the ability of E. faecalis to form biofilms, to survive inside macrophages, and to tolerate oxidative stress. Our results reveal that EfaR is an important modulator of E. faecalis virulence and link manganese homeostasis to enterococcal pathogenicity. PMID:23297382

  12. D-lactic acid production from cellooligosaccharides and beta-glucan using L-LDH gene-deficient and endoglucanase-secreting Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Zhang, Qiao; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-01-01

    In order to achieve direct fermentation of an optically pure D: -lactic acid from cellulosic materials, an endoglucanase from a Clostridium thermocellum (CelA)-secreting plasmid was introduced into an L: -lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (ldhL1) bacterial strain. CelA expression and its degradation of beta-glucan was confirmed by western blot analysis and enzyme assay, respectively. Although the CelA-secreting ldhL1 assimilated cellooligosaccharides up to cellohexaose (although not cellotetraose), the main end product was acetic acid, not lactic acid, due to the conversion of lactic acid to acetic acid. Cultivation under anaerobic conditions partially suppressed this conversion resulting in the production of 1.27 g/l of D: -lactic acid with a high optical purity of 99.5% from a medium containing 2 g/l of cellohexaose. Subsequently, D: -lactic acid fermentation from barley beta-glucan was carried out with the addition of Aspergillus aculeatus beta-glucosidase produced by recombinant Aspergillus oryzae and 1.47 g/l of D: -lactic was produced with a high optical purity of 99.7%. This is the first report of direct lactic acid fermentation from beta-glucan and a cellooligosaccharide that is a more highly polymerized sugar than cellotriose.

  13. Biologically active molecules regulating the IgE antibody system: biochemical and biological comparisons of suppressive factor of allergy (SFA) and enhancing factor of allergy (EFA).

    PubMed

    Katz, D H; Chen, S S; Liu, F T; Bogowitz, C A; Katz, L R

    1984-01-01

    Studies in recent years directed at unraveling the complex regulatory mechanisms controlling IgE antibody production have demonstrated the existence of soluble factors that exert selective regulatory effects on the IgE antibody system. In addition, the demonstration of IgE-specific Fc receptors (FcR epsilon) on B and T lymphocytes, especially after exposure to high concentrations of IgE either in vivo or in vitro, has provided increasingly strong indications of an important role for such cells in the overall control of the IgE system. In our own laboratory, we have been studying soluble regulatory factors known as suppressive factor of allergy (SFA) and enhancing factor of allergy (EFA), which were initially identified by their selective, and opposing, regulatory effects on in vivo IgE responses in inbred mice. More recently, in an in vitro system in which it is possible to induce the de novo expression of FcR epsilon on lymphocytes cultured in the presence of monoclonal IgE, we reported that concomitant exposure of such cultured cells to SFA selectively blocked the induction of FcR epsilon expression. In the present study, we have extended these investigations by making a direct comparison between certain biological properties and biochemical characteristics of SFA and EFA. We found that SFA and EFA can be distinguished biochemically on the basis of size, SFA falling in the range of 30,000 daltons or so, and EFA falling in the range of 15,000 daltons. In examining their biological properties, we unexpectedly found that although SFA-enriched and EFA-enriched fractions exert dramatically distinct biological effects on in vivo IgE antibody synthesis (as implied by their names), the two respective active fractions are totally indistinguishable in their inhibitory effects on IgE-mediated induction of FcR epsilon + lymphocytes in vitro when intact spleen cell populations are exposed to monoclonal IgE. That the active entities in SFA and EFA responsible for inhibition of

  14. Omega-3 fatty acid deficiency in major depressive disorder is caused by the interaction between diet and a genetically determined abnormality in phospholipid metabolism.

    PubMed

    Ross, Brian M

    2007-01-01

    Omega-3 fatty acids are a type of polyunsaturated fatty acid (PUFA). A growing body of evidence suggests that this form PUFA is a useful and well tolerated treatment for major depressive disorder, a common and serious mental illness. The efficacy of omega-3 PUFA is routinely explained as being due to a deficiency caused by inadequate dietary intake of this class of fatty acid. The hypothesis considered states that low omega-3 PUFA abundance in patients with major depressive and related disorders is due to an underlying genetically determined abnormality. The hypothesis can explain why although a specific and consistent deficit in omega-3, but not omega-6, PUFA occurs in major depressive and related disorders, the literature does not consistently support the notion that this is due to deficient dietary intake. Specifically it is hypothesized that having genetically determined low activity of fatty acid CoA ligase 4 and/or Type IV phospholipase A(2) combined with the low dietary availability of omega-3 PUFA results in reduced cellular uptake of omega-3 PUFA and constitutes a risk factor for depression. The hypothesis also has important consequences for the pharmacological treatment of depression in that it predicts that administering agents which enhance phospholipid synthesis, particularly those containing ethanolamine such as CDP-ethanolamine, should be effective antidepressants especially when co-administered with omega-3 PUFA.

  15. Folic acid deficiency impairs the gill health status associated with the NF-κB, MLCK and Nrf2 signaling pathways in the gills of young grass carp (Ctenopharyngodon idella).

    PubMed

    Shi, Lei; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Zhao, Juan; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-11-01

    The aim of this study was to investigate the effect of dietary folic acid on fish growth, the immune and barrier functions of fish gills, and the potential mechanisms of these effects. Young grass carp (Ctenopharyngodon idella) were fed diets containing graded levels of folic acid at 0.10 (basal diet), 0.47, 1.03, 1.48, 1.88 and 3.12 mg kg(-1) diet for 8 weeks. The results showed that acid phosphatase and lysozyme activities and the complement component 3 content in fish gills decreased with folic acid deficiency (P < 0.05). Folic acid deficiency up-regulated liver-expressed antimicrobial peptide 1, interleukin 1β, interleukin 8, tumor necrosis factor α, nuclear factor κB p65, IκB kinase α (IKK-α), IKK-β and IKK-γ gene expression. Folic acid deficiency down-regulated interleukin 10, transforming growth factor β, IκB and target of rapamycin gene expression in fish gills (P < 0.05). These results showed that limited folic acid decreased fish gill immune status. Furthermore, folic acid deficiency down-regulated claudin-b, claudin-c, claudin-3, occludin and zonula occludens 1 gene expression, whereas folic acid deficiency up-regulated claudin-12, claudin-15, myosin light chain kinase and p38 mitogen activated protein kinase gene expression in fish gills (P < 0.05). These results suggested that folic acid deficiency disrupted tight junction-mediated fish gill barrier function. Additionally, folic acid deficiency increased the content of reactive oxygen species, protein carbonyl and malondialdehyde (MDA); Mn superoxide dismutase activity and gene expression; and Kelch-like-ECH-associated protein 1a (Keap1a) and Keap1b gene expression (P < 0.05). Conversely, folic acid deficiency decreased Cu/Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferases and glutathione reductase activities and gene expression as well as NF-E2-related factor 2 gene expression in fish gills (P < 0.05). All of these results indicated that folic acid

  16. Enhancing visible light photocatalytic activity of nitrogen-deficient g-C3N4 via thermal polymerization of acetic acid-treated melamine.

    PubMed

    Xu, Cheng-Qun; Li, Kui; Zhang, Wei-De

    2017-06-01

    Nitrogen-deficient graphitic carbon nitride (CN-HAc) was synthesized by thermal condensation of acetic acid-treated melamine as a precursor. The nitrogen vacancies play a remarkable role on controlling the electronic structure of g-C3N4, such as extending the optical absorption and enhancing the separation efficiency of photogenerated charge carriers, resulting in the improvement of photocatalytic activity. The photocatalytic activity of the catalysts was evaluated by splitting water and degradation of rhodamine B (RhB) under visible light irradiation (λ>420nm). The average H2 evolution rate on CN-HAc is 24μmolh(-1), which is about 5 times of that on pristine g-C3N4. Meanwhile, CN-HAc exhibits superior photocatalytic mineralization of RhB. The possible formation mechanism of nitrogen-deficient in the framework of g-C3N4 is proposed.

  17. Lysosomal Acid Lipase Deficiency in 23 Spanish Patients: High Frequency of the Novel c.966+2T>G Mutation in Wolman Disease.

    PubMed

    Ruiz-Andrés, Carla; Sellés, Elena; Arias, Angela; Gort, Laura

    2017-02-21

    Lysosomal acid lipase (LAL) is a lysosomal key enzyme involved in the intracellular hydrolysis of cholesteryl esters and triglycerides. Patients with very low residual LAL activity present with the infantile severe form Wolman disease (WD), while patients with some residual activity develop the less severe disorder known as Cholesteryl ester storage disorder (CESD). We present the clinical, biochemical, and molecular findings of 23 Spanish patients (22 families) with LAL deficiency. We identified eight different mutations, four of them not previously reported. The novel c.966+2T>G mutation accounted for 75% of the Wolman disease alleles, and the frequent CESD associated c.894G>A mutation accounted for 55% of the CESD alleles in our cohort. Haplotype analysis showed that both mutations co-segregated with a unique haplotype suggesting a common ancestor. Our study contributes to the LAL deficiency acknowledgement with novel mutations and with high frequencies of some unknown mutations for WD.

  18. Severe ulceration with impaired induction of growth factors and cytokines in keratinocytes after trichloroacetic acid application on TRPV1-deficient mice.

    PubMed

    Li, Hong-jin; Kanazawa, Nobuo; Kimura, Ayako; Kaminaka, Chikako; Yonei, Nozomi; Yamamoto, Yuki; Furukawa, Fukumi

    2012-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a highly polymodal TRP channel activated by various stimuli, including capsaicin, heat and acids. TRPV1 expression can be detected widely but is highest in sensory neurons and its activation alerts the body to noxious signals via neurogenic pain. Although TRPV1 is reportedly localized in the epidermis, it remains unclear how TRPV1 is involved in the chemical peeling processes with cytotoxic acids. Therefore, in this study, the role of TRPV1 on the effects of trichloroacetic acid (TCA) peeling was assessed using TRPV1-deficient mice. Following the confirmation of TRPV1 expression in murine keratinocytes with reverse transcription-polymerase chain reaction and immunohistochemistry, the effects of TCA on TRPV1-deficient mouse skin were compared with those on wild-type mouse skin. Our results indicated that TRPV1 expression was not required for TCA-induced DNA damage, as shown by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling, but was indispensable for the TCA-induced production of distinct growth factors and cytokines by keratinocytes. Ulceration after TCA peeling was actually more severe in the absence of TRPV1, suggesting that the TRPV1-mediated epidermal production of growth factors and cytokines affected the damaging and healing processes of TCA-peeled skin to induce rejuvenation.

  19. Folic acid deficiency induces premature hearing loss through mechanisms involving cochlear oxidative stress and impairment of homocysteine metabolism.

    PubMed

    Martínez-Vega, Raquel; Garrido, Francisco; Partearroyo, Teresa; Cediel, Rafael; Zeisel, Steven H; Martínez-Álvarez, Concepción; Varela-Moreiras, Gregorio; Varela-Nieto, Isabel; Pajares, María A

    2015-02-01

    Nutritional imbalance is emerging as a causative factor of hearing loss. Epidemiologic studies have linked hearing loss to elevated plasma total homocysteine (tHcy) and folate deficiency, and have shown that folate supplementation lowers tHcy levels potentially ameliorating age-related hearing loss. The purpose of this study was to address the impact of folate deficiency on hearing loss and to examine the underlying mechanisms. For this purpose, 2-mo-old C57BL/6J mice (Animalia Chordata Mus musculus) were randomly divided into 2 groups (n = 65 each) that were fed folate-deficient (FD) or standard diets for 8 wk. HPLC analysis demonstrated a 7-fold decline in serum folate and a 3-fold increase in tHcy levels. FD mice exhibited severe hearing loss measured by auditory brainstem recordings and TUNEL-positive-apoptotic cochlear cells. RT-quantitative PCR and Western blotting showed reduced levels of enzymes catalyzing homocysteine (Hcy) production and recycling, together with a 30% increase in protein homocysteinylation. Redox stress was demonstrated by decreased expression of catalase, glutathione peroxidase 4, and glutathione synthetase genes, increased levels of manganese superoxide dismutase, and NADPH oxidase-complex adaptor cytochrome b-245, α-polypeptide (p22phox) proteins, and elevated concentrations of glutathione species. Altogether, our findings demonstrate, for the first time, that the relationship between hyperhomocysteinemia induced by folate deficiency and premature hearing loss involves impairment of cochlear Hcy metabolism and associated oxidative stress.

  20. Towards Gender Equality in Basic Education: Major Challenges in Meeting Dakar EFA Goals. Regional Seminar in Asia (Kyoto, Japan, November 28-30, 2001).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and the Pacific.

    A regional UNESCO seminar aimed to follow up on the goals set at the World Education Forum in Dakar in 2000 and to contribute to the "Ten Year UN Girls' Education Initiative" (UNGEI). The seminar established three primary aims: (1) to develop a regional cooperation mechanism or network of Education for All (EFA) gender focal points, to…

  1. Determining the Number of Factors to Retain in EFA: Using the SPSS R-Menu v2.0 to Make More Judicious Estimations

    ERIC Educational Resources Information Center

    Courtney, Matthew Gordon Ray

    2013-01-01

    Exploratory factor analysis (EFA) is a common technique utilized in the development of assessment instruments. The key question when performing this procedure is how to best estimate the number of factors to retain. This is especially important as under- or over-extraction may lead to erroneous conclusions. Although recent advancements have been…

  2. Children, Education and War: Reaching Education for All (EFA) Objectives in Countries Affected by Conflict. Conflict Prevention and Reconstruction Unit Working Paper.

    ERIC Educational Resources Information Center

    Sommers, Marc

    Conflict's path of devastation and chaos has dramatically slowed the ability of war-torn countries to reach the Education for All (EFA) goals adopted in Dakar (April 2000). This paper describes the situation confronting children, their families, and governments in conflict countries and describes the challenges of reaching universal primary…

  3. Nutritional stress effects under different nitrogen sources on the genes in microalga Isochrysis zhangjiangensis and the assistance of Alteromonas macleodii in releasing the stress of amino acid deficiency.

    PubMed

    Wu, Shuang; Zhou, Jiannan; Xin, Yanjuan; Xue, Song

    2015-10-01

    The expressions of nine nitrogen assimilation-associated genes, NRT2, NAR1, NIA2, NIR, GLN2, GLSF, GSN1, GDH, and AAT2, in the microalga Isochrysis zhangjiangensis were investigated to unveil the effects of limitations of various nitrogen sources (NaNO3 , NH4 Cl, NaNO2 , and an amino acid mixture) on the microalgae. The results demonstrated that the NRT2, NAR1, GLN2, GSN1, and AAT2 genes were highly expressed in lipid-rich microalgae under inorganic nitrogen-deficient conditions and they decreased after nitrogen resupply. Significant increases in the expressions of NAR1, GLN2, and GLSF were found in nitrate-depleted microalgae, whereas significant increases in the expressions of NRT2, NAR1, GLN2, and GSN1 were found in nitrite-depleted microalgae. Significant increases in the expressions of only NRT2 and GSN1 were found in ammonium-depleted microalgae (P < 0.05). Except for the NRT2, other genes were expressed at lower levels under amino acid-deficient conditions compared with amino acid-sufficient controls. The expression of the NIA2 gene decreased in nitrogen-depleted microalgae regardless of the initial nitrogen source. However, the results of fatty acid analyses showed that the features of fatty acid profiles followed a similar mode, in which the percentage compositions of C16:0 and C18:1Δ(9) increased in nitrogen-depleted cells and that of C16:1Δ(9) , C18:3Δ(9,12,15) , C18:4Δ(6,9,12,15) , and C18:5Δ(3,6,9,12,15) decreased, regardless of the type of nitrogen source applied. It was also found that the epiphytic bacterium Alteromonas macleodii played a particularly important role in releasing microalgae from the stress of amino acid deficiency. These findings also provide a foundation for regulating microalgal lipid production through manipulation of the nitrogen assimilation-associated genes.

  4. Accumulation of Zeaxanthin in Abscisic Acid-Deficient Mutants of Arabidopsis Does Not Affect Chlorophyll Fluorescence Quenching or Sensitivity to Photoinhibition in Vivo.

    PubMed Central

    Hurry, V.; Anderson, J. M.; Chow, W. S.; Osmond, C. B.

    1997-01-01

    Abscisic acid (ABA)-deficient mutants of Arabidopsis do not synthesize the epoxy-xanthophylls antheraxanthin, violaxanthin, or neoxanthin. However, thylakoid membranes from these mutants contain 3-fold more zeaxanthin than wild-type plants. This increase in zeaxanthin occurs as a stoichiometric replacement of the missing violaxanthin and neoxanthin within the pigment-protein complexes of both photosystem I and photosystem II (PSII). The retention of zeaxanthin in the dark by ABA-deficient mutants sensitizes the leaves to the development of nonphotochemical quenching (NPQ) during the first 2 to 4 min following a dark-light transition. However, the increase in pool size does not result in any increase in steady-state NPQ. When we exposed wild-type and ABA-deficient mutants leaves to twice growth irradiance, the mutants developed lower maximal NPQ but suffered similar photoinhibition to wildtype, measured both as a decline in the ratio of variable to maximal fluorescence and as a loss of functional PSII centers from oxygen flash yield measurements. These results suggest that only a few of the zeaxanthin molecules present within the light-harvesting antenna of PSII may be involved in NPQ and neither the accumulation of a large pool of zeaxanthin within the antenna of PSII nor an increase in conversion of violaxanthin to zeaxanthin will necessarily enhance photoprotective energy dissipation. PMID:12223632

  5. Assembly of D-alanyl-lipoteichoic acid in Lactobacillus casei: mutants deficient in the D-alanyl ester content of this amphiphile

    SciTech Connect

    Ntamere, A.S.; Taron, D.J.; Neuhaus, F.C.

    1987-04-01

    D-Alanyl-lipoteichoic acid (D-alanyl-LTA) from Lactobacillus casei ATCC 7469 contains a poly(glycerophosphate) moiety that is acylated with D-alanyl ester residues. The physiological function of these residues is not well understood. Five mutant strains of this organism that are deficient in the esters of this amphiphile were isolated and characterized. When compared with the parent, strains AN-1 and AN-4 incorporated less than 10% of D-(/sup 14/C)alanine into LTA, whereas AN-2, AN-3, and AN-5 incorporated 50%. The synthesis of D-(/sup 14/C)alanyl-lipophilic LTA was virtually absent in the first group and was approximately 30% in the second group. The mutant strains synthesized and selected the glycolipid anchor for LTA assembly. In addition, all of the strains synthesized the poly(glycerophosphate) moiety of LTA to the same extent as did the parent or to a greater extent. It was concluded that the membranes from the mutant strains AN-1 and AN-4 are defective for D-alanylation of LTA even though acceptor LTA is present. Mutant strains AN-2 and AN-3 appear to be partially deficient in the amount of the D-alanine-activating enzyme. Aberrant morphology and defective cell separation appear to result from this deficiency in D-alanyl ester content.

  6. The bioavailability of magnesium in spinach and the effect of oxalic acid on magnesium utilization examined in diets of magnesium-deficient rats.

    PubMed

    Kikunaga, S; Ishii, H; Takahashi, M

    1995-12-01

    Spinach was evaluated for its bioavailability of magnesium in the experiment with magnesium-deficient rats. The effect of oxalic acid on absorption of dietary magnesium was also examined in the same experiment. After there were significant differences in the body weight of the rats between the control group and the magnesium-deficient group, and after the number of dead rats increased, the magnesium-deficient rats were divided into six groups. They were pair-fed for 8 days on the magnesium-deficient diet, magnesium-deficient diet supplemented with raw powdered spinach (R-sp), boiled powdered spinach (B-sp), or fried powdered spinach (F-sp), control diet supplemented with oxalic acid (Ox-C), and control diet (+Mg). On the 10th day, there was no significant difference in the food intake of the rats between the control group and magnesium-deficient group. However, the body weight, and body weight gain of the rats increased more significantly in the control group than in those of the magnesium-deficient group. Also, the contents of calcium and phosphorus in the liver and kidneys, and serum calcium content increased significantly in the magnesium-deficient rats compared with those of the control rats. However, the serum magnesium content decreased significantly in the magnesium-deficient rats. An especially large amount of calcium was accumulated in the kidneys of the magnesium-deficient rats. At the end of the experimental period, there were no significant differences in the food intake, body weight and body weight gain of the rats among the control group and each of the spinach-added groups. The body weight and body weight gain of the Ox-C rats decreased significantly in comparison with those of the control group and each of the spinach-added groups. Although, there were no significant differences in the concentrations of serum minerals (Mg, Ca and P) among each of the groups, kidney magnesium, calcium and phosphorus, and liver magnesium and phosphorus were

  7. Linoleic acid-rich fats reduce atherosclerosis development beyond its oxidative and inflammatory stress-increasing effect in apolipoprotein E-deficient mice in comparison with saturated fatty acid-rich fats.

    PubMed

    Sato, Masao; Shibata, Kenichi; Nomura, Run; Kawamoto, Daisuke; Nagamine, Rika; Imaizumi, Katsumi

    2005-12-01

    The relative benefit of replacing saturated fatty acid with linoleic acids is still being debated because a linoleic acid-enriched diet increases oxidative and inflammatory stresses, although it is associated with a reduction in serum cholesterol levels. The present study was conducted to evaluate the effect of dietary supplementation of linoleic acid-rich (HL) fat, compared with a saturated fatty acid-rich (SF) fat on atherosclerotic lesion areas, serum and liver cholesterol levels, oxidative stress (urinary isoprostanes and serum malondialdehayde) and inflammatory stress (expression of aortic monocyte chemoattractant protein-1; MCP-1) in apo E-deficient mice. Male and female apo E-deficient mice (8 weeks old; seven to eight per group) were fed an AIN-76-based diet containing SF fat (50 g palm oil and 50 g lard/kg) or HL fat (100 g high-linoleic safflower-seed oil/kg) for 9 weeks. Compared with the SF diet, the HL diet lowered atherosclerosis (P<0.05). It reduced serum total cholesterol levels (P<0.05), increased HDL-cholesterol levels (P<0.05) and lowered liver esterified cholesterol levels (P<0.01). The HL diet-fed mice showed increased expression of MCP-1 mRNA (P<0.05), serum levels of malondialdehayde (P<0.05) and urinary excretion of 2,3-dinor-5,6-dihydro-8-iso-prostaglandin F2alpha; P<0.05). These results suggest that having biomarkers in vivo for oxidative stress and inflammatory status of endothelial cells does not necessarily indicate predisposition to an increased lesion area in the aortic root in apo E-deficient mice fed an HL or SF diet.

  8. Selective elimination of the free fatty acid fraction from esterified fatty acids in rat plasma through chemical derivatization and immobilization on amino functionalized silica nano-particles.

    PubMed

    Chen, Jun; Lyu, Qiang; Yang, Mingqing; Chen, Zhi; He, Junhui

    2016-01-29

    A high throughput and low cost approach to separate free fatty acids (FFAs) from phospholipid and acylglycerols (esterified fatty acids, EFAs) has been demonstrated, which may be widely used as a sample preparation method in the metabolomics and lipid research. The optimal conditions for FFAs reacting with N-hydroxysuccinimide (NHS) only need 10min at room temperature to obtain a 93.5% yield of FFAs-NHS ester. The rest 6% FFA transformed into N-cyclohexyl-fatty acid-amide which is stable to methyl esterification adopted for fatty acids analysis. 10min are taken for FFAs-NHS ester to react with amino functionalized silica nanoparticles to immobilize the FFAs. The separation of FFAs from EFAs could be carried out readily by centrifugation. The whole process including derivatization, immobilization, and centrifugation takes less than 40min. Much more accurate fatty acids composition of rat plasma EFAs could be obtained by this approach than the previous reported methods.

  9. Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-08-01

    Optically pure d-lactic acid fermentation from arabinose was achieved by using the Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase gene was substituted with a heterologous transketolase gene. After 27 h of fermentation, 38.6 g/liter of d-lactic acid was produced from 50 g/liter of arabinose.

  10. Dietary zinc deficiency affects blood linoleic acid: dihomo-gamma-linolenic acid (LA:DGLA) ratio; a reactive physiological marker of zinc status in vivo (Gallus gallus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary Zinc (Zn) deficiency affects approximately 30% of the world’s population. Zinc is a vital micronutrient and is important for the body’s ability to function. To date, accurate biological markers of the Zn subject’s status are still needed. The aim of this study was to evaluate the chicken mod...

  11. Metabolism of lysine in alpha-aminoadipic semialdehyde dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation.

    PubMed

    Struys, Eduard A; Jakobs, Cornelis

    2010-01-04

    The mammalian degradation of lysine is believed to proceed via two distinct routes, the saccharopine and the pipecolic acid routes, that ultimately converge at the level of alpha-aminoadipic semialdehyde (alpha-AASA). alpha-AASA dehydrogenase-deficient fibroblasts were grown in cell culture medium supplemented with either L-[alpha-(15)N]lysine or L-[epsilon-(15)N]lysine to explore the exact route of lysine degradation. L-[alpha-(15)N]lysine was catabolised into [(15)N]saccharopine, [(15)N]alpha-AASA, [(15)N]Delta(1)-piperideine-6-carboxylate, and surprisingly in [(15)N]pipecolic acid, whereas L-[epsilon-(15)N]lysine resulted only in the formation of [(15)N]saccharopine. These results imply that lysine is exclusively degraded in fibroblasts via the saccharopine branch, and pipecolic acid originates from an alternative precursor. We hypothesize that pipecolic acid derives from Delta(1)-piperideine-6-carboxylate by the action of Delta(1)-pyrroline-5-carboxylic acid reductase, an enzyme involved in proline metabolism.

  12. Differential effects of dietary Oenothera, Zizyphus mistol, and corn oils, and essential fatty acid deficiency on the progression of a murine mammary gland adenocarcinoma.

    PubMed

    Muñoz, S E; Piegari, M; Guzmán, C A; Eynard, A R

    1999-03-01

    The modulating effect of dietary enrichment in mistol seed oil (MO) containing 25% of alpha-linolenic acid (ALA), evening primrose oil (EPO) enriched in gamma-linolenic acid (GLA) and corn oil (CO) as sources of omega-6 and omega-9 fatty acids on the growth parameters of one transplantable mammary tumor were compared. Mice fed on different lipid formulae were inoculated with a mammary gland adenocarcinoma and different growth development tumor parameters were recorded. Results showed that corn oil feeding slowed down most of the tumor growth parameters, as did the EPO diet. MO also showed antitumor activity. Olein feeding, which induces an essential fatty acid deficiency (EFAD), increased the incidence and the multiplicity of metastases when compared with the controls. It may be concluded that a diet enriched in omega-6 fatty acids did not behave as a tumor promoter in this mammary gland tumor model. The antitumor activities of EPO and MO are corroborated in present experiments, suggesting that both oils may be of value in nutritional approaches of mammary gland tumor therapies. In addition, present data add further experimental proof about the proposed protumorigenic proneness induced by the EFAD state.

  13. Arabidopsis Deficient in Cutin Ferulate Encodes a Transferase Required for Feruloylation of ω-Hydroxy Fatty Acids in Cutin Polyester1[W][OA

    PubMed Central

    Rautengarten, Carsten; Ebert, Berit; Ouellet, Mario; Nafisi, Majse; Baidoo, Edward E.K.; Benke, Peter; Stranne, Maria; Mukhopadhyay, Aindrila; Keasling, Jay D.; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2012-01-01

    The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C16 and C18 unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm. PMID:22158675

  14. Dynamics of hepatic and intestinal cholesterol and bile acid pathways: The impact of the animal model of estrogen deficiency and exercise training

    PubMed Central

    Lavoie, Jean-Marc

    2016-01-01

    Plasma cholesterol level is determined by a complex dynamics that involves transport lipoproteins which levels are tightly dependent on how the liver and the intestine regulate cholesterol and biliary acid metabolism. Regulation of cholesterol and biliary acids by the liver and the intestine is in turn coupled to a large array of enzymes and transporters that largely influence the inflow and the outflow of cholesterol and biliary acids through these organs. The activity of the key regulators of cholesterol and biliary acids may be influenced by several external factors such as pharmacological drugs and the nutritional status. In recent years, more information has been gathered about the impact of estrogens on regulation of cholesterol in the body. Exposure to high levels of estrogens has been reported to promote cholesterol gallstone formation and women are twice as likely as men to develop cholesterol gallstones. The impact of estrogen withdrawal, such as experienced by menopausal women, is therefore of importance and more information on how the absence of estrogens influence cholesterol regulation is started to come out, especially through the use of animal models. An interesting alternative to metabolic deterioration due to estrogen deficiency is exercise training. The present review is intended to summarize the present information that links key regulators of cholesterol and biliary acid pathways in liver and intestine to the absence of estrogens in an animal model and to discuss the potential role of exercise training as an alternative. PMID:27621762

  15. Role of maternal tissue in the synthesis of polyunsaturated fatty acids in response to a lipid-deficient diet during pregnancy and lactation in rats.

    PubMed

    González, Raúl Sánchez; Rodriguez-Cruz, Maricela; Maldonado, Jorge; Saavedra, Filiberto Jasso

    2014-10-01

    During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P<0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P<0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated

  16. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid.

    PubMed

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-07-08

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee.

  17. Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid

    PubMed Central

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Guillén-Mancina, Emilio; Mateos, Santiago; López-Lázaro, Miguel

    2016-01-01

    Epidemiological studies have found a positive association between coffee consumption and a lower risk of cardiovascular disorders, some cancers, diabetes, Parkinson and Alzheimer disease. Coffee consumption, however, has also been linked to an increased risk of developing some types of cancer, including bladder cancer in adults and leukemia in children of mothers who drink coffee during pregnancy. Since cancer is driven by the accumulation of DNA alterations, the ability of the coffee constituent caffeic acid to induce DNA damage in cells may play a role in the carcinogenic potential of this beverage. This carcinogenic potential may be exacerbated in cells with DNA repair defects. People with the genetic disease Fanconi Anemia have DNA repair deficiencies and are predisposed to several cancers, particularly acute myeloid leukemia. Defects in the DNA repair protein Fanconi Anemia D2 (FANCD2) also play an important role in the development of a variety of cancers (e.g., bladder cancer) in people without this genetic disease. This communication shows that cells deficient in FANCD2 are hypersensitive to the cytotoxicity (clonogenic assay) and DNA damage (γ-H2AX and 53BP1 focus assay) induced by caffeic acid and by a commercial lyophilized coffee extract. These data suggest that people with Fanconi Anemia, or healthy people who develop sporadic mutations in FANCD2, may be hypersensitive to the carcinogenic activity of coffee. PMID:27399778

  18. Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle.

    PubMed

    Cecatto, Cristiane; Godoy, Kálita Dos Santos; da Silva, Janaína Camacho; Amaral, Alexandre Umpierrez; Wajner, Moacir

    2016-10-01

    The pathogenesis of the muscular symptoms and recurrent rhabdomyolysis that are commonly manifested in patients with mitochondrial trifunctional protein (MTP) and long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) deficiencies is still unknown. In this study we investigated the effects of the major long-chain monocarboxylic 3-hydroxylated fatty acids (LCHFA) accumulating in these disorders, namely 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, on important mitochondrial functions in rat skeletal muscle mitochondria. 3HTA and 3HPA markedly increased resting (state 4) and decreased ADP-stimulated (state 3) and CCCP-stimulated (uncoupled) respiration. 3HPA provoked similar effects in permeabilized skeletal muscle fibers, validating the results obtained in purified mitochondria. Furthermore, 3HTA and 3HPA markedly diminished mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded mitochondria. Mitochondrial permeability transition (mPT) induction probably underlie these effects since they were totally prevented by cyclosporin A and ADP. In contrast, the dicarboxylic analogue of 3HTA did not alter the tested parameters. Our data strongly indicate that 3HTA and 3HPA behave as metabolic inhibitors, uncouplers of oxidative phosphorylation and mPT inducers in skeletal muscle. It is proposed that these pathomechanisms disrupting mitochondrial homeostasis may be involved in the muscle alterations characteristic of MTP and LCHAD deficiencies.

  19. Near-elimination of folate-deficiency anemia by mandatory folic acid fortification in older US adults: Reasons for Geographic and Racial Differences in Stroke study 2003–20072,3

    PubMed Central

    Odewole, Oluwaseun A; Williamson, Rebecca S; Zakai, Neil A; Berry, Robert J; Judd, Suzanne E; Qi, Yan Ping; Adedinsewo, Demilade A; Oakley, Godfrey P

    2015-01-01

    Background The United States implemented mandatory folic acid fortification of enriched cereal grains in 1998. Although several studies have documented the resulting decrease in anemia and folate deficiency, to our knowledge, no one has determined the prevalence of folate-deficiency anemia after fortification. Objective We determined the prevalence of folate deficiency and folate-deficiency anemia within a sample of the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. Design The REGARDS cohort is a prospective cohort of 30,239 black and white participants living in the contiguous United States. We measured serum folate concentrations in a random sample of 1546 REGARDS participants aged ≥50 y with baseline hemoglobin and red blood cell mean corpuscular volume measurements. Folate deficiency was defined as a serum folate concentration <6.6 nmol/L (<3.0 ng/mL), and anemia was defined as a hemoglobin concentration <13 g/dL in men and <12 g/dL in nonpregnant women (WHO criteria). Folate-deficiency anemia was defined as the presence of both folate deficiency and anemia. Results The mean hemoglobin concentration was 13.6 g/dL, and 15.9% of subjects had anemia. The median serum folate concentration was 34.2 nmol/L (15.1 ng/mL), and only 2 of 1546 participants 0.1%) were folate deficient. Both subjects were African American women with markedly elevated C-reactive protein concentrations, macrocytosis, and normal serum cobalamin concentrations; only one subject was anemic. Overall, the prevalence of folate-deficiency anemia was <0.1% (1 of 1546 subjects). Conclusion Our data suggest that, after mandatory folic acid fortification, the prevalence of folate-deficiency anemia is nearly nonexistent in a community-dwelling population in the United States. PMID:23945721

  20. [Vitamin deficiencies and hypervitaminosis].

    PubMed

    Mino, M

    1999-10-01

    There have recently been very few deficiencies with respect to fat soluble and water soluble vitamins in Japan All-trans-retinoic acid as induction or maintenance treatment improves disease free and overall survival against acute promyelocytic leukemia. In the isolated vitamin E deficiencies gene mutation has been cleared for alpha-tocopherol transferprotein. Recently, a relation of nutritional vitamin K intake and senile osteoporosis in women was epidemiologically demonstrated on a prospective study. Thiamin was yet noticed as development of deficiency in alcoholism, while the importance of supplemental folic acid during pregnancy has become especially clear in light of studies showing that folic acid supplements reduce the risk of neural tube defects in the fetus. With respect to hypervitaminosis, the Council for Responsible Nutrition (CRN), USA, has established safe intakes by identifying the NOAEL (No Observed Adverse Effect Level) and LOAEL (Lowest Observed Adverse Effect Level). Summaries of NOAEL and LOAEL for individual vitamins were shown.

  1. [Recombinant Escherichia coli strains deficient in mixed acid fermentation pathways and capable of rapid aerobic growth on glucose with a reduced Crabtree effect].

    PubMed

    Morzhakova, A A; Skorokhodova, A Iu; Gulevich, A Iu; Debabov, V G

    2013-01-01

    In this study, we constructed and characterized Escherichia coli strains deficient for mixed acid fermentation pathways, which are capable of rapid aerobic growth on glucose without pronounced bacterial Crabtree effect. The main pathways of production of acetic and lactic acids and ethanol in these strains were inactivated by a deletion of the ackA, pta, poxB, IdhA, and adhEgenes. The phosphoenolpyruvate-dependent phosphotransferase system of glucose transport and phosphorylation was inactivated in the strains by a deletion of the ptsG gene. The possibility of alternative transport and phosphorylation of the carbohydrate substrate was ensured in recombinants by constitutive expression of the galP and glk genes, which encode the low-affinity H+-symporter of D-galactose and glucokinase, respectively. SGMI.0DeltaptsG PtacgalP and SG M1.0DeltaptsG PIglk PtacgalP strains were capable of rapid aerobic growth in a minimal medium containing 2.0 and 10.0 g/l of glucose and secreted only small amounts of acetic acid and trace amounts of pyruvic acid.

  2. Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity.

    PubMed

    Hu, Jia; Wei, Min; Mirzaei, Hamed; Madia, Federica; Mirisola, Mario; Amparo, Camille; Chagoury, Shawna; Kennedy, Brian; Longo, Valter D

    2014-06-01

    In mammals, extended periods of fasting leads to the accumulation of blood ketone bodies including acetoacetate. Here we show that similar to the conversion of leucine to acetoacetate in fasting mammals, starvation conditions induced ketone body-like acetic acid generation from leucine in S. cerevisiae. Whereas wild-type and ras2Δ cells accumulated acetic acid, long-lived tor1Δ and sch9Δ mutants rapidly depleted it through a mitochondrial acetate CoA transferase-dependent mechanism, which was essential for lifespan extension. The sch9Δ-dependent utilization of acetic acid also required coenzyme Q biosynthetic genes and promoted the accumulation of intracellular trehalose. These results indicate that Tor-Sch9 deficiency extends longevity by switching cells to an alternative metabolic mode, in which acetic acid can be utilized for the storage of stress resistance carbon sources. These effects are reminiscent of those described for ketone bodies in fasting mammals and raise the possibility that the lifespan extension caused by Tor-S6K inhibition may also involve analogous metabolic changes in higher eukaryotes.

  3. [Blood deficiency values of polyunsaturated fatty acids of phospholipids, vitamin E and glutathione peroxidase as possible risk factors in the onset and development of acquired immunodeficiency syndrome].

    PubMed

    Passi, S; De Luca, C; Picardo, M; Morrone, A; Ippolito, F

    1990-04-01

    Plasma levels of vitamin E (vit E) and polyunsatured fatty acids of phospholipids (PUFA-PL) as well as erythrocyte glutathione peroxidase (GSH-Px) activity are significantly lower (p less than 0.001) in patients HIV sero-positive (AIDS and ARC cases) both affected and not affected with seborrheic dermatitis and in 32% of HIV sero-negative intravenous drug abusers (IVDA, A subgroup) than in controls. The deficiency of PUFA-PL (mainly C20:3 n-6, C20:4 n-6 and C22:6 n-3) which is associated with a significant increase (p less than 0.001) of saturated palmitic and stearic acids and monounsaturated oleic acid, cannot be correlated to an active lipoperoxidative process. In fact the levels of thiobarbituric acid-reactive materials (TBA-RM) are not increased in the plasma of HIV sero-positive patients and A subgroup of IVDA. It is likely that the reduction of PUFA-PL is due to an inhibition of hepatic microsomal desaturase enzymes (delta 6 desaturase, delta 5 desaturase, delta 4 desaturase) which are involved in both n-6 and n-3 pathways. Since IVDA represent, and not only in Italy, a major risk category for HIV infection, we suggest that reduced blood levels of vit E, GSH-Px and particularly PUFA-PL may be added to the list of risk factors favouring the onset and the development of AIDS.

  4. Oxidative DNA damage after acute exposure to arsenite and monomethylarsonous acid in biomethylation-deficient human cells.

    PubMed

    Orihuela, Ruben; Kojima, Chikara; Tokar, Erik J; Person, Rachel J; Xu, Yuanyuan; Qu, Wei; Waalkes, Michael P

    2013-07-01

    The carcinogen inorganic arsenic (iAs) undergoes biomethylation (BMT) in some cells. The methylated metabolite, monomethylarsonous (MMA(3+)), may cause oxidative DNA damage (ODD). With chronic iAs exposure, BMT-competent cells show ODD while BMT-deficient do not. To further define these events, we studied ODD produced by acute iAs or MMA(3+) in the BMT-deficient human prostate cell line, RWPE-1. ODD, measured by the immuno-spin trapping method, was assessed after exposure to iAs or MMA(3+) alone, with the arsenic BMT inhibitor selenite or after glutathione (GSH) depletion. The expression of oxidative stress-related genes (HO-1, SOD-1, SOD-2, Nrf2 and Keap-1) was also assessed. Exposure to iAs at 24 h (0-20 µM), stimulated ODD only at levels above the LC50 of a 48 h exposure (17 µM). If iAs induced ODD, it also activated oxidative stress-related genes. Selenium did not alter iAs-induced ODD. MMA(3+) at 24 h (0-0.5 µM) caused ODD at levels below the LC50 of a 48 h exposure (1.5 µM), which were greatly increased by GSH depletion but not selenite. MMA(3+) induced ODD at levels not activating oxidant stress response genes. Overall, iAs induced ODD in BMT-deficient cells only at toxic levels. MMA(3+) caused ODD at non-toxic levels, independently of cellular BMT capacity and in a fashion not requiring further BMT.

  5. Stabilization of emulsion and butter like products containing essential fatty acids using kalonji seeds extract and curcuminoids.

    PubMed

    Rege, Sameera A; Momin, Shamim A; Bhowmick, Dipti N; Pratap, Amit A

    2012-01-01

    Owing to the tendency of essential fatty acids (EFAs) to undergo autoxidation, their storage becomes a key problem. Generally, they are stabilized by synthetic antioxidants like TBHQ that are toxic in nature. Recently many studies were reported where these EFAs are stabilized by natural antioxidants. In the present study, curcuminoids and kalonji seeds ethanol extract (KEE) were used to stabilize these EFAs in refined sunflower oil (RSFO), water-in-oil (w/o) emulsion and butter like products (BLPs). In RSFO, though curcuminoids alone exerted pro-oxidant effect, KEE and curcuminoids showed synergistic antioxidant activity that was comparable to TBHQ. KEE exhibited good antioxidant activity in emulsions and BLPs, providing fine physical properties like slipping point, dropping point and spreadability. EFAs increased the nutritional value of BLPs and antioxidants added for their stabilization provided their medicinal benefits.

  6. Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life.

    PubMed

    Chen, Hui-Feng; Su, Hui-Min

    2013-01-01

    Brain docosahexaenoic acid (DHA, 22:6n-3) accumulates rapidly during brain development and is essential for normal neurological function. The aim of this study was to evaluate whether brain development was the critical period in which DHA deficiency leads to dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in response to stress later in life. Rats were exposed to an n-3 fatty acid-deficient diet or the same diet supplemented with fish oil as an n-3 fatty acid-adequate diet either throughout the preweaning period from embryo to weaning at 3 weeks old or during the postweaning period from 3 to 10 weeks old. Exposure to the n-3 fatty acid-deficient diet during the preweaning period resulted, at weaning, in a significant decrease in hypothalamic DHA levels and a reduced male offspring body weight. DHA deficiency during the preweaning period significantly increased and prolonged restraint stress-induced changes in colonic temperature and serum corticosterone levels, caused a significant increase in GABA(A) antagonist-induced heart rate changes and enhanced depressive-like behavior in the forced swimming test and anxiety-like behavior in the plus-maze test in later life. These effects were not seen in male rats fed the n-3 fatty acid-deficient diet during the postweaning period. These results suggest that brain development is the critical period in which DHA deficiency leads to excessive HPA responses to stress and elevated behavioral indices of depression and anxiety in adulthood. We propose that these effects of hypothalamic DHA deficiency during brain development may involve a GABA(A) receptor-mediated mechanism.

  7. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions.

    PubMed

    Hanaoka, Hideki; Uraguchi, Shimpei; Takano, Junpei; Tanaka, Mayuki; Fujiwara, Toru

    2014-06-01

    Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth.

  8. Immunity decreases, antioxidant system damages and tight junction changes in the intestine of grass carp (Ctenopharyngodon idella) during folic acid deficiency: Regulation of NF-κB, Nrf2 and MLCK mRNA levels.

    PubMed

    Shi, Lei; Feng, Lin; Jiang, Wei-Dan; Liu, Yang; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu

    2016-04-01

    This investigation used the same growth trial as the previous study, which showed that folic acid deficiency retarded growth in young grass carp (the percent weight gain of Groups 1-6 were 102.32 ± 3.41%, 137.25 ± 10.48%, 179.78 ± 3.95%, 164.33 ± 3.21%, 143.35 ± 8.12% and 115.28 ± 2.66%) [1]. In the present study, we investigated the effects of dietary folic acid on the immune response, antioxidant status and tight junctions in the intestine of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp were fed diets containing graded levels of folic acid at 0.10, 0.47, 1.03, 1.48, 1.88 and 3.12 mg kg(-1) diet for 8 weeks. The results indicated that acid phosphatase and lysozyme activities, and the complement component 3 content in the proximal intestine (PI), mid intestine (MI) and distal intestine (DI) were decreased with folic acid deficiency (0.1 mg kg(-1)) (P < 0.05). Folic acid deficiency (0.1 mg kg(-1)) up-regulated interleukin 1β, interleukin 8, tumor necrosis factor α, nuclear factor κB p65 (NF-κB p65), IκB kinase α (IKK-α), IKK-β and IKK-γ gene expression, meanwhile down-regulated interleukin 10, transforming growth factor β, IκB and target of rapamycin gene expression in the PI, MI and DI (P < 0.05). These data suggested that folic acid deficiency decreased fish intestinal innate immune function may be partly contributed to the regulation of NF-κB p65 pathway. Moreover, the activities and corresponding gene expression of glutathione content, Cu/Zn superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferases and glutathione reductase in fish intestine were depressed by deficient folic acid diet (0.1 mg kg(-1)) (P < 0.05). Furthermore, folic acid deficiency (0.1 mg kg(-1)) down-regulated NF-E2-related factor 2 (Nrf2) gene expression, up-regulated Kelch-like-ECH-associated protein 1a (Keap1a) and Keap1b gene expression in fish intestine (P < 0.05). These data indicated

  9. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.

    PubMed

    Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda

    2014-06-01

    The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.

  10. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  11. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  12. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    PubMed

    Pethybridge, Heidi R; Parrish, Christopher C; Morrongiello, John; Young, Jock W; Farley, Jessica H; Gunasekera, Rasanthi M; Nichols, Peter D

    2015-01-01

    Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  13. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    PubMed

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  14. Genetics Home Reference: beta-ureidopropionase deficiency

    MedlinePlus

    ... down N-carbamyl-beta-alanine to beta-alanine, ammonia, and carbon dioxide. Both beta-aminoisobutyric acid and ... beta-ureidopropionase deficiency Merck Manual Professional Version: Pyrimidine Metabolism Disorders Orphanet: Beta-ureidopropionase deficiency Patient Support and ...

  15. Nutritional Supplementation with Chlorella pyrenoidosa Lowers Serum Methylmalonic Acid in Vegans and Vegetarians with a Suspected Vitamin B₁₂ Deficiency.

    PubMed

    Merchant, Randall Edward; Phillips, Todd W; Udani, Jay

    2015-12-01

    Since vitamin B12 occurs in substantial amounts only in foods derived from animals, vegetarians and particularly vegans are at risk of developing deficiencies of this essential vitamin. The chlorella used for this study is a commercially available whole-food supplement, which is believed to contain the physiologically active form of the vitamin. This exploratory open-label study was performed to determine if adding 9 g of Chlorella pyrenoidosa daily could help mitigate a vitamin B12 deficiency in vegetarians and vegans. Seventeen vegan or vegetarian adults (26-57 years of age) with a known vitamin B12 deficiency, as evidenced by a baseline serum methylmalonic acid (MMA) level above 270 nmol/L at screening, but who otherwise appeared healthy were enrolled in the study. Each participant added 9 g of C. pyrenoidosa to their daily diet for 60 ± 5 days and their serum MMA, vitamin B12, homocysteine (Hcy) levels as well as mean corpuscular volume (MCV), hemoglobin (Hgb), and hematocrit (Hct) were measured at 30 and 60 days from baseline. After 30 and 60 days, the serum MMA level fell significantly (P < .05) by an average ∼34%. Fifteen of the 17 (88%) subjects showed at least a 10% drop in MMA. At the same time, Hcy trended downward and serum vitamin B12 trended upward, while MCV, Hgb, and Hct appeared unchanged. The results of this work suggest that the vitamin B12 in chlorella is bioavailable and such dietary supplementation is a natural way for vegetarians and vegans to get the vitamin B12 they need.

  16. Disaccharidase deficiency.

    PubMed

    Bayless, T M; Christopher, N L

    1969-02-01

    This review of the literature and current knowledge concerning a nutritional disorder of disaccharidase deficiency discusses the following topics: 1) a description of disorders of disaccharide digestion; 2) some historical perspective on the laboratory and bedside advances in the past 10 years that have helped define a group of these digestive disorders; 3) a classification of conditions causing disaccharide intolerance; and 4) a discussion of some of the specific clinical syndromes emphasizing nutritional consequences of these syndromes. The syndromes described include congenital lactase deficiency, acquired lactase deficiency in teenagers and adults, acquired generalized disaccharidase deficiency secondary to diffuse mucosal damage, acquired lactose intolerance secondary to alterations in the intestinal transit, sucrase-isomaltase deficiencies, and other disease associations connected with lactase deficiency such as colitis.

  17. The Brain’s Response to an Essential Amino Acid-Deficient Diet and the Circuitous Route to a Better Meal

    PubMed Central

    Gietzen, Dorothy W.; Aja, Susan M.

    2012-01-01

    The essential (indispensable) amino acids (IAA) are neither synthesized nor stored in metazoans, yet they are the building blocks of protein. Survival depends on availability of these protein precursors, which must be obtained in the diet; it follows that food selection is critical for IAA homeostasis. If even one of the IAA is depleted, its tRNA becomes quickly deacylated and the levels of charged tRNA fall, leading to disruption of global protein synthesis. As they have priority in the diet, second only to energy, the missing IAA must be restored promptly or protein catabolism ensues. Animals detect and reject an IAA-deficient meal in 20 min, but how? Here, we review the molecular basis for sensing IAA depletion and repletion in the brain’s IAA chemosensor, the anterior piriform cortex (APC). As animals stop eating an IAA-deficient meal, they display foraging and altered choice behaviors, to improve their chances of encountering a better food. Within 2 h, sensory cues are associated with IAA depletion or repletion, leading to learned aversions and preferences that support better food selection. We show neural projections from the APC to appetitive and consummatory motor control centers, and to hedonic, motivational brain areas that reinforce these adaptive behaviors. PMID:22674217

  18. Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis.

    PubMed

    Yu, Hailan; Zhang, Fengxia; Wang, Guodong; Liu, Yule; Liu, Dong

    2013-01-01

    Isoleucine is one of the branched-chain amino acids (BCAAs) that are essential substrates for protein synthesis in all organisms. Although the metabolic pathway for isoleucine has been well characterized in higher plants, it is not known whether it plays a specific role in plant development. In this study, an Arabidopsis mutant, lib (low isoleucine biosynthesis), that has defects in both cell proliferation and cell expansion processes during root development, was characterized. The lib mutant carries a T-DNA insertion in the last exon of the OMR1 gene that encodes a threonine deaminase/dehydratase (TD). TD catalyses the deamination and dehydration of threonine, which is the first and also the committed step in the biosynthesis of isoleucine. This T-DNA insertion results in a partial deficiency of isoleucine in lib root tissues but it does not affect its total protein content. Application of exogenous isoleucine or introduction of a wild-type OMR1 gene into the lib mutant can completely rescue the mutant phenotypes. These results reveal an important role for isoleucine in plant development. In addition, microarray analysis indicated that the partial deficiency of isoleucine in the lib mutant triggers a decrease in transcript levels of the genes encoding the major enzymes involved in the BCAA degradation pathway; the analysis also indicated that many genes involved in the biosynthesis of methionine-derived glucosinolates are up-regulated.

  19. Dietary Omega-3 Fatty Acid Deficiency and High Fructose intake in the Development of Metabolic Syndrome Brain, Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Simopoulos, Artemis P.

    2013-01-01

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health. PMID:23896654

  20. A new mouse model of mild ornithine transcarbamylase deficiency (spf-j) displays cerebral amino acid perturbations at baseline and upon systemic immune activation.

    PubMed

    Tarasenko, Tatyana N; Rosas, Odrick R; Singh, Larry N; Kristaponis, Kara; Vernon, Hilary; McGuire, Peter J

    2015-01-01

    Ornithine transcarbamylase deficiency (OTCD, OMIM# 311250) is an inherited X-linked urea cycle disorder that is characterized by hyperammonemia and orotic aciduria. In this report, we describe a new animal model of OTCD caused by a spontaneous mutation in the mouse Otc gene (c.240T>A, p.K80N). This transversion in exon 3 of ornithine transcarbamylase leads to normal levels of mRNA with low levels of mature protein and is homologous to a mutation that has also been described in a single patient affected with late-onset OTCD. With higher residual enzyme activity, spf-J were found to have normal plasma ammonia and orotate. Baseline plasma amino acid profiles were consistent with mild OTCD: elevated glutamine, and lower citrulline and arginine. In contrast to WT, spf-J displayed baseline elevations in cerebral amino acids with depletion following immune challenge with polyinosinic:polycytidylic acid. Our results indicate that the mild spf-J mutation constitutes a new mouse model that is suitable for mechanistic studies of mild OTCD and the exploration of cerebral pathophysiology during acute decompensation that characterizes proximal urea cycle dysfunction in humans.

  1. Telmisartan prevents hepatic fibrosis and enzyme-altered lesions in liver cirrhosis rat induced by a choline-deficient L-amino acid-defined diet

    SciTech Connect

    Jin Haiyan; Yamamoto, Naoki; Uchida, Koichi; Terai, Shuji; Sakaida, Isao

    2007-12-28

    Rennin-angiotensin system is involved in liver fibrogenesis through activating hepatic stellate cells (HSCs). Telmisartan (Tel) is an angiotensin II type 1 receptor antagonist, could function as a selective peroxisome proliferator-activated receptor {gamma} activator. Here we studied the effect of Tel on liver fibrosis, pre-neoplastic lesions in vivo and primary HSCs in vitro. In vivo study, we used the choline-deficient L-amino acid-defined (CDAA)-diet induced rat NASH model. The rats were fed the CDAA diet for 8 weeks to induce liver fibrosis and pre-neoplastic lesions, and then co-administrated with Tel for another 10 weeks. Tel prevented liver fibrogenesis and pre-neoplastic lesions by down-regulating TGF{beta}1 and TIMP-1, 2 and increasing MMP-13 expression. Tel inhibited HSCs activation and proliferation. These results suggested that Tel could be a promising drug for NASH related liver fibrosis.

  2. Evidence for chronic omega-3 fatty acids and ascorbic acid deficiency in Palaeolithic hominins in Europe at the emergence of cannibalism

    NASA Astrophysics Data System (ADS)

    Guil-Guerrero, J. L.

    2017-02-01

    At the Middle-Upper Palaeolithic (M/UP) transition in Western Europe, hominins depended mostly on terrestrial mammals for subsistence, being pointed out that reliance on reindeer (Rangifer tarandus) would have promoted declines in human population densities during that period. Food-composition tables have been compiled for hominins at the M/UP transition, listing protein, fat, energy, different omega-3 fatty acids and ascorbic acid concentrations. These data were used to compute the regular relations between fatty and lean tissues of the main hunted food-animals to meet hominin energy needs. Then, with daily protein intake considered critical, the optimal contribution of the different omega-3 fatty acids from different hunted species to hominin diets were computed. Several faunal assemblages from different human sites at different M/UP periods were used to assess the overall daily intake of the various omega-3 fatty acid classes. The results of the calculations made in this work are quite clear; hominins at the M/UP transition had a deficit of both omega-3 fatty acids and ascorbic acid. Data on human organs summarized here are also conclusive: these contain such nutrients in amounts much higher than reached in the corresponding mammal organs consumed, and thus could have been alternative sources of those nutrients for Palaeolithic hominins. Therefore, nutritional cannibalism detected at such times could have had the function of alleviating these deficits. The evolutionary advantages gained by the consumption of the various omega-3 fatty acids of human origin are also discussed.

  3. Antepartum ornithine transcarbamylase deficiency.

    PubMed

    Nakajima, Hitoshi; Sasaki, Yosuke; Maeda, Tadashi; Takeda, Masako; Hara, Noriko; Nakanishi, Kazushige; Urita, Yoshihisa; Hattori, Risa; Miura, Ken; Taniguchi, Tomoko

    2014-01-01

    Ornithine transcarbamylase deficiency (OTCD) is the most common type urea cycle enzyme deficiencies. This syndrome results from a deficiency of the mitochondrial enzyme ornithine transcarbamylase, which catalyzes the conversion of ornithine and carbamoyl phosphate to citrullin. Our case was a 28-year-old female diagnosed with OTCD following neurocognitive deficit during her first pregnancy. Although hyperammonemia was suspected as the cause of the patient's mental changes, there was no evidence of chronic liver disease. Plasma amino acid and urine organic acid analysis revealed OTCD. After combined modality treatment with arginine, sodium benzoate and hemodialysis, the patient's plasma ammonia level stabilized and her mental status returned to normal. At last she recovered without any damage left.

  4. Prevalence of anemia and deficiency of iron, folic acid, and zinc in children younger than 2 years of age who use the health services provided by the Mexican Social Security Institute

    PubMed Central

    Duque, Ximena; Flores-Hernández, Sergio; Flores-Huerta, Samuel; Méndez-Ramírez, Ignacio; Muñoz, Sergio; Turnbull, Bernardo; Martínez-Andrade, Gloria; Ramos, Rosa I; González-Unzaga, Marco; Mendoza, María E; Martínez, Homero

    2007-01-01

    Background In Mexico, as in other developing countries, micronutrient deficiencies are common in infants between 6 and 24 months of age and are an important public health problem. The objective of this study was to determine the prevalence of anemia and of iron, folic acid, and zinc deficiencies in Mexican children under 2 years of age who use the health care services provided by the Mexican Institute for Social Security (IMSS). Methods A nationwide survey was conducted with a representative sample of children younger than 2 years of age, beneficiaries, and users of health care services provided by IMSS through its regular regimen (located in urban populations) and its Oportunidades program (services offered in rural areas). A subsample of 4,955 clinically healthy children was studied to determine their micronutrient status. A venous blood sample was drawn to determine hemoglobin, serum ferritin, percent of transferrin saturation, zinc, and folic acid. Descriptive statistics include point estimates and 95% confidence intervals for the sample and projections for the larger population from which the sample was drawn. Results Twenty percent of children younger than 2 years of age had anemia, and 27.8% (rural) to 32.6% (urban) had iron deficiency; more than 50% of anemia was not associated with low ferritin concentrations. Iron stores were more depleted as age increased. Low serum zinc and folic acid deficiencies were 28% and 10%, respectively, in the urban areas, and 13% and 8%, respectively, in rural areas. The prevalence of simultaneous iron and zinc deficiencies was 9.2% and 2.7% in urban and rural areas. Children with anemia have higher percentages of folic acid deficiency than children with normal iron status. Conclusion Iron and zinc deficiencies constitute the principal micronutrient deficiencies in Mexican children younger than 2 years old who use the health care services provided by IMSS. Anemia not associated with low ferritin values was more prevalent than

  5. Thioacidolysis Marker Compound for Ferulic Acid Incorporation into Angiosperm Lignins (and an Indicator for Cinnamoyl-coenzyme-A Reductase Deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignification in angiosperms (poplar, Arabidopsis, tobacco) has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-m...

  6. 2,4-Dienoyl-coenzyme A reductase deficiency: a possible new disorder of fatty acid oxidation.

    PubMed Central

    Roe, C R; Millington, D S; Norwood, D L; Kodo, N; Sprecher, H; Mohammed, B S; Nada, M; Schulz, H; McVie, R

    1990-01-01

    Several inherited disorders of fatty acid beta-oxidation have been described that relate mainly to saturated precursors. This study is the first report of an enzyme defect related only to unsaturated fatty acid oxidation and provides the first in vivo evidence that fat oxidation in humans proceeds by the reductase-dependent pathway. The patient was a black female, presenting in the neonatal period with persistent hypotonia. Biochemical studies revealed hyperlysinemia, hypocarnitinemia, normal organic acid profile, and an unusual acylcarnitine species in both urine and blood. The new metabolite was positively identified by mass spectrometry as 2-trans,4-cis-decadienoylcarnitine, derived from incomplete oxidation of linoleic acid. In spite of dietary therapy, the patient died of respiratory acidosis at four months of age. Samples of liver and muscle from the autopsy were assayed for 2,4-dienoyl-coenzyme A reductase activity. Using the substrate 2-trans,4-cis-decadienoylcoenzyme A, the reductase activity was 40% of the control value in liver and only 17% of that found in normal muscle. It is suggested that unsaturated substrates should be used for in vitro testing to cover the full range of potential beta-oxidation defects and that acylcarnitine species identification be used for in vivo detection of this disorder. PMID:2332510

  7. Production of non-alcoholic beer using free and immobilized cells of Saccharomyces cerevisiae deficient in the tricarboxylic acid cycle.

    PubMed

    Navrátil, Marián; Dömény, Zoltán; Sturdík, Ernest; Smogrovicová, Daniela; Gemeiner, Peter

    2002-04-01

    Production of non-alcoholic beer using Saccharomyces cerevisiae has been studied. Non-recombinant mutant strains with a defect in the synthesis of tricarboxylic-acid-cycle enzymes were used and applied in both free and pectate-immobilized form, using both batch and packed-bed continuous systems. After fermentation, basic parameters of the beer produced by five mutant strains were compared with a standard strain of brewing yeast. Results showed that the beer prepared by mutant yeast cells was characterized by lower levels of total alcohols, with ethanol concentrations between 0.07 and 0.31% (w/w). The organic acids produced, especially lactic acid, in concentrations up to 1.38 g x l(-1) had a strong protective effect on the microbial stability of the final product and thus the usual addition of lactic acid could be omitted. Application of the yeast mutants appears to be a good alternative to the classical methods for the production of non-alcoholic beer.

  8. EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors.

    PubMed

    Stevens, Laura; Zhang, Wen; Peck, Louise; Kuczek, Thomas; Grevstad, Nels; Mahon, Anne; Zentall, Sydney S; Arnold, L Eugene; Burgess, John R

    2003-10-01

    This pilot study evaluated the effects of supplementation with PUFA on blood FA composition and behavior in children with Attention-Deficit/Hyperactivity Disorder (AD/HD)-like symptoms also reporting thirst and skin problems. Fifty children were randomized to treatment groups receiving either a PUFA supplement providing a daily dose of 480 mg DHA, 80 mg EPA, 40 mg arachidonic acid (AA), 96 mg GLA, and 24 mg alpha-tocopheryl acetate, or an olive oil placebo for 4 mon of double-blind parallel treatment. Supplementation with the PUFA led to a substantial increase in the proportions of EPA, DHA, and alpha-tocopherol in the plasma phospholipids and red blood cell (RBC) total lipids, but an increase was noted in the plasma phospholipid proportions of 18:3n-3 with olive oil as well. Significant improvements in multiple outcomes (as rated by parents) were noted in both groups, but a clear benefit from PUFA supplementation for all behaviors characteristic of AD/HD was not observed. For most outcomes, improvement of the PUFA group was consistently nominally better than that of the olive oil group; but the treatment difference was significant, by secondary intent-to-treat analysis, on only 2 out of 16 outcome measures: conduct problems rated by parents (-42.7 vs. -9.9%, n = 47, P = 0.05), and attention symptoms rated by teachers (-14.8 vs. +3.4%, n = 47, P = 0.03). PUFA supplementation led to a greater number of participants showing improvement in oppositional defiant behavior from a clinical to a nonclinical range compared with olive oil supplementation (8 out of 12 vs. 3 out of 11, n = 33, P = 0.02). Also, significant correlations were observed when comparing the magnitude of change between increasing proportions of EPA in the RBC and decreasing disruptive behavior as assessed by the Abbreviated Symptom Questionnaire (ASQ) for parents (r = -0.38, n = 31, P < 0.05), and for EPA and DHA in the RBC and the teachers' Disruptive Behavior Disorders (DBD) Rating Scale for

  9. Assessing the quality of the snow model used in the European Flood Awareness System (EFAS) against MODIS satellite observations over 8 years

    NASA Astrophysics Data System (ADS)

    Thirel, G.; Burek, P.

    2012-04-01

    The European Flood Alert System is under development at the European Commission Joint Research Centre since 2003 to foster international information exchange on early flood warning within Europe. The aim of EFAS is to provide catchment-wide flood forecasts indicating the probability of upcoming events between 3-10 days in advance with emphasis on transnational river basins. EFAS is designed to use full sets of Ensemble Prediction Systems (EPS) in the short- and medium term. EFAS consists of a rainfall-runoff model with a routing component (LISFLOOD) that is set-up on a 5km grid for entire Europe and runs in pre-operational model twice a day. The LISFLOOD model also includes a snow model based on a degree-day scheme. For this, each pixel is divided in 3 zones in order to represent the heterogeneity of the area regarding altitude. Then, snow is melt according to the air temperature, the amount of rainfall, and a calibrated snowmelt rate. The aim of this study is to compare the snow simulated by the LISFLOOD model (in fact the snow cover fraction) to the observed MODIS Snow Cover Area data. The period of this study is July 2002 - June 2010 and the area covers the entire Europe. For this work, the LISFLOOD model is forced by observations, not by forecasts, which means that the initial states of EFAS are in fact analyzed. A first comparison has been performed, between the version of the LISFLOOD model previously used in EFAS (until November 2011), and the current version. For the new version, better meteorological input (precipitation and temperature) were used, and the snow model has been improved (artifact to mimic glaciers, better distribution of the three altitudinal zones - Gaussian instead of linear-, and seasonal variation of the snowmelt rate). This comparison showed the important overall improvement of agreement for the new LISFLOOD version between the model and the observed MODIS data. The second step was to measure the impact of some of the important

  10. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  11. Whole-blood fatty acids are associated with executive function in Tanzanian children aged 4-6 years: a cross-sectional study.

    PubMed

    Jumbe, Theresia; Comstock, Sarah S; Harris, William S; Kinabo, Joyce; Pontifex, Matthew B; Fenton, Jenifer I

    2016-11-01

    Essential fatty acids (EFA) are PUFA that are metabolised to long-chain PUFA and are important for brain development and cognitive function. The objective of this study was to determine the association between whole-blood EFA and cognitive function in Tanzanian children. A total of 325 2-6-year-old children attempted the dimensional change card sort (DCCS) tasks to assess executive function. Blood samples were collected for fatty acid (FA) analysis by GC. Associations between executive function and FA levels were assessed by regression. Among the 130 4-6-year-old children who attempted the DCCS tasks, whole-blood levels of linoleic acid were positively associated with executive function, whereas whole-blood levels of α-linolenic acid and nervonic acid were inversely associated with executive function. A full model including all twenty-five FA explained 38 % of the variation in executive function, whereas a reduced model including only the EFA (α-linolenic acid and linoleic acid), DHA and EPA explained 25 % of the variation in executive function. Children who had sufficient whole-blood levels of EFA were 3·8 times more likely to successfully complete all DCCS tasks compared with children with insufficient EFA. These results suggest that whole-blood FA levels are associated with cognitive abilities. Intervention trials that include assessment of whole-blood FA levels are required to determine the relationships between intake, blood levels and executive function in Tanzanian children.

  12. Effects of taurine deficiency and chronic methanol administration on rat retina, optic nerve and brain amino acids and monoamines.

    PubMed

    González-Quevedo, A; Obregón, F; Urbina, M; Roussó, T; Lima, L

    2003-08-01

    A chronic methanol (MeOH) intoxication scheme (2 g/kg/day ip for 2 weeks) was carried out in Sprague-Dawley rats, previously depleted of folates with methotrexate (MTX). beta-Alanine (beta-Ala), 5%, was also administered to some animals in the drinking water. Amino acids were determined in plasma, retina, optic nerve, hippocampus and posterior cortex by HPLC with fluorescence detection and monoamines in retina, hippocampus and posterior cortex by electrochemical detection. Beta-Ala administration reduced taurine (Tau) levels in plasma, hippocampus and posterior cortex, but not in retina and optic nerve. Aspartate (Asp) concentration in the optic nerve was increased in MTX-MeOH treated animals, and the administration of beta-Ala did not modify this elevation. The association of beta-Ala with MTX-MeOH produced an increase of threonine, and a decrease of 5-hydroxytryptamine (5-HT) in the retina without modifying 5-hydroxyindoleacetic acid, whereas in the hippocampus an elevation of asparagine was observed. We conclude that, in the retina, beta-Ala in combination with MTX-MeOH increased serotonin and decreased dopamine (DA) turnover rate, and resulted in changes in the amino acid balance, that could affect glycinergic activity. On the other hand, in the hippocampus, Asp metabolism could be affected by Tau depletion with beta-Ala.

  13. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-Lactate dehydrogenase gene-deficient Lactobacillus plantarum.

    PubMed

    Okano, Kenji; Yoshida, Shogo; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2009-12-01

    The production of optically pure d-lactic acid via xylose fermentation was achieved by using a Lactobacillus plantarum NCIMB 8826 strain whose l-lactate dehydrogenase gene was deficient and whose phosphoketolase genes were replaced with a heterologous transketolase gene. After 60 h of fermentation, 41.2 g/liter of d-lactic acid was produced from 50 g/liter of xylose.

  14. Molecular genetics of 3beta-hydroxy-Delta5-C27-steroid oxidoreductase deficiency in 16 patients with loss of bile acid synthesis and liver disease.

    PubMed

    Cheng, Jeffrey B; Jacquemin, Emmanuel; Gerhardt, Marie; Nazer, Hisham; Cresteil, Danièle; Heubi, James E; Setchell, Kenneth D R; Russell, David W

    2003-04-01

    The 3beta-hydroxy-Delta(5)-C(27)-steroid oxidoreductase (C(27) 3beta-HSD) is a membrane-bound enzyme of the endoplasmic reticulum that catalyzes an early step in the synthesis of bile acids from cholesterol. Subjects with autosomal recessive mutations in the encoding gene, HSD3B7, on chromosome 16p11.2-12 fail to synthesize bile acids and develop a form of progressive liver disease characterized by cholestatic jaundice and malabsorption of lipids and lipid-soluble vitamins from the gastrointestinal tract. The gene encoding the human C(27) 3beta-HSD enzyme was isolated previously, and a 2-bp deletion in exon 6 of HSD3B7 was identified in a well characterized subject with this disorder. Here, we report a molecular analysis of 15 additional patients from 13 kindreds with C(27) 3beta-HSD deficiency. Twelve different mutations were identified in the HSD3B7 gene on chromosome 16p11.2-12. Ten mutations were studied in detail and shown to cause complete loss of enzyme activity and, in two cases, alterations in the size or amount of the transcribed mRNA. Mutations were inherited in homozygous form in 13 subjects from 10 families and compound heterozygous form in four subjects from three families. We conclude that a diverse spectrum of mutations in the HSD3B7 gene underlies this rare form of neonatal cholestasis.

  15. Disturbances in cholesterol, bile acid and glucose metabolism in peroxisomal 3-ketoacylCoA thiolase B deficient mice fed diets containing high or low fat contents.

    PubMed

    Nicolas-Francès, Valérie; Arnauld, Ségolène; Kaminski, Jacques; Ver Loren van Themaat, Emiel; Clémencet, Marie-Claude; Chamouton, Julie; Athias, Anne; Grober, Jacques; Gresti, Joseph; Degrace, Pascal; Lagrost, Laurent; Latruffe, Norbert; Mandard, Stéphane

    2014-03-01

    The peroxisomal 3-ketoacyl-CoA thiolase B (ThB) catalyzes the thiolytic cleavage of straight chain 3-ketoacyl-CoAs. Up to now, the ability of ThB to interfere with lipid metabolism was studied in mice fed a laboratory chow enriched or not with the synthetic agonist Wy14,643, a pharmacological activator of the nuclear hormone receptor PPARα. The aim of the present study was therefore to determine whether ThB could play a role in obesity and lipid metabolism when mice are chronically fed a synthetic High Fat Diet (HFD) or a Low Fat Diet (LFD) as a control diet. To investigate this possibility, wild-type (WT) mice and mice deficient for Thb (Thb(-/-)) were subjected to either a synthetic LFD or a HFD for 25 weeks, and their responses were compared. First, when fed a normal regulatory laboratory chow, Thb(-/-) mice displayed growth retardation as well as a severe reduction in the plasma level of Growth Hormone (GH) and Insulin Growth Factor-I (IGF-I), suggesting alterations in the GH/IGF-1 pathway. When fed the synthetic diets, the corrected energy intake to body mass was significantly higher in Thb(-/-) mice, yet those mice were protected from HFD-induced adiposity. Importantly, Thb(-/-) mice also suffered from hypoglycemia, exhibited reduction in liver glycogen stores and circulating insulin levels under the LFD and the HFD. Thb deficiency was also associated with higher levels of plasma HDL (High Density Lipoproteins) cholesterol and increased liver content of cholesterol under both the LFD and the HFD. As shown by the plasma lathosterol to cholesterol ratio, a surrogate marker for cholesterol biosynthesis, whole body cholesterol de novo synthesis was increased in Thb(-/-) mice. By comparing liver RNA from WT mice and Thb(-/-) mice using oligonucleotide microarray and RT-qPCR, a coordinated decrease in the expression of critical cholesterol synthesizing genes and an increased expression of genes involved in bile acid synthesis (Cyp7a1, Cyp17a1, Akr1d1) were

  16. Efficacy and Safety of a Hyaluronic Acid Filler to Correct Aesthetically Detracting or Deficient Features of the Asian Nose: A Prospective, Open-Label, Long-Term Study

    PubMed Central

    Liew, Steven; Scamp, Terrence; de Maio, Mauricio; Halstead, Michael; Johnston, Nicole; Silberberg, Michael; Rogers, John D.

    2016-01-01

    Background There is increasing interest among patients and plastic surgeons for alternatives to rhinoplasty, a common surgical procedure performed in Asia. Objectives To evaluate the safety, efficacy, and longevity of a hyaluronic acid filler in the correction of aesthetically detracting or deficient features of the Asian nose. Methods Twenty-nine carefully screened Asian patients had their noses corrected with the study filler (Juvéderm VOLUMA [Allergan plc, Dublin, Ireland] with lidocaine injectable gel), reflecting individualized treatment goals and utilizing a standardized injection procedure, and were followed for over 12 months. Results A clinically meaningful correction (≥1 grade improvement on the Assessment of Aesthetic Improvement Scale) was achieved in 27 (93.1%) patients at the first follow-up visit. This was maintained in 28 (96.6%) patients at the final visit, based on the independent assessments of a central non-injecting physician and the patients. At this final visit, 23 (79.3%) patients were satisfied or very satisfied with the study filler and 25 (86.2%) would recommend it to others. In this small series of patients, there were no serious adverse events (AEs), with all treatment-related AEs being mild to moderate, transient injection site reactions, unrelated to the study filler. Conclusions Using specific eligibility criteria, individualized treatment goals, and a standardized injection procedure, the study filler corrected aesthetically detracting or deficient features of the Asian nose, with the therapeutic effects lasting for over 12 months, consistent with a high degree of patient satisfaction. This study supports the safety and efficacy of this HA filler for specific nose augmentation procedures in selected Asian patients. Level of Evidence: 3 Therapeutic PMID:27301371

  17. Omega-3 fatty acid deficiency does not alter the effects of chronic fluoxetine treatment on central serotonin turnover or behavior in the forced swim test in female rats.

    PubMed

    McNamara, Robert K; Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lipton, Jack W

    2013-12-01

    While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here, we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids during peri-adolescent development (P21-P90), and one half of each group was administered FLX (10mg/kg/day) for 30days (P60-P90) prior to testing. In adulthood (P90), regional brain serotonin (5-HT) and 5-hydroxyindoleacetic (5-HIAA) concentrations, presynaptic markers of 5-HT neurotransmission, behavioral responses in the forced swim test (FST), and plasma FLX and norfluoxetine (NFLX) concentrations were investigated. Peri-adolescent n-3 insufficiency led to significant reductions in cortical docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-25%, p≤0.0001) and DEF+FLX (-28%, p≤0.0001) rats. Untreated DEF rats exhibited significantly lower regional 5-HIAA/5-HT ratios compared with untreated CON rats, but exhibited similar behavioral responses in the FST. In both CON and DEF rats, chronic FLX treatment similarly and significantly decreased 5-HIAA concentrations and the 5-HIAA/5-HT ratio in the hypothalamus, hippocampus, and nucleus accumbens, brainstem tryptophan hydroxylase-2 mRNA expression, and immobility in the FST. While the FLX-induced reduction in 5-HIAA concentrations in the prefrontal cortex was significantly blunted in DEF rats, the reduction in the 5-HIAA/5-HT ratio was similar to CON rats. Although plasma FLX and NFLX levels were not significantly different in DEF and CON rats, the NFLX/FLX ratio was significantly lower in DEF+FLX rats. These preclinical data demonstrate that n-3 fatty acid deficiency does not significantly reduce the effects of chronic

  18. Hepatic entrapment of esterified cholesterol drives continual expansion of whole body sterol pool in lysosomal acid lipase-deficient mice.

    PubMed

    Aqul, Amal; Lopez, Adam M; Posey, Kenneth S; Taylor, Anna M; Repa, Joyce J; Burns, Dennis K; Turley, Stephen D

    2014-10-15

    Cholesteryl ester storage disease (CESD) results from loss-of-function mutations in LIPA, the gene that encodes lysosomal acid lipase (LAL). Hepatomegaly and deposition of esterified cholesterol (EC) in multiple organs ensue. The present studies quantitated rates of synthesis, absorption, and disposition of cholesterol, and whole body cholesterol pool size in a mouse model of CESD. In 50-day-old lal(-/-) and matching lal(+/+) mice fed a low-cholesterol diet, whole animal cholesterol content equalled 210 and 50 mg, respectively, indicating that since birth the lal(-/-) mice sequestered cholesterol at an average rate of 3.2 mg·day(-1)·animal(-1). The proportion of the body sterol pool contained in the liver of the lal(-/-) mice was 64 vs. 6.3% in their lal(+/+) controls. EC concentrations in the liver, spleen, small intestine, and lungs of the lal(-/-) mice were elevated 100-, 35-, 15-, and 6-fold, respectively. In the lal(-/-) mice, whole liver cholesterol synthesis increased 10.2-fold, resulting in a 3.2-fold greater rate of whole animal sterol synthesis compared with their lal(+/+) controls. The rate of cholesterol synthesis in the lal(-/-) mice exceeded that in the lal(+/+) controls by 3.7 mg·day(-1)·animal(-1). Fractional cholesterol absorption and fecal bile acid excretion were unchanged in the lal(-/-) mice, but their rate of neutral sterol excretion was 59% higher than in their lal(+/+) controls. Thus, in this model, the continual expansion of the body sterol pool is driven by the synthesis of excess cholesterol, primarily in the liver. Despite the severity of their disease, the median life span of the lal(-/-) mice was 355 days.

  19. Mice with heterozygous deficiency of lipoic acid synthase have an increased sensitivity to lipopolysaccharide-induced tissue injury

    PubMed Central

    Yi, Xianwen; Kim, Kuikwon; Yuan, Weiping; Xu, Longquan; Kim, Hyung-Suk; Homeister, Jonathon W.; Key, Nigel S.; Maeda, Nobuyo

    2009-01-01

    α-Lipoic acid (1, 2-dithiolane-3-pentanoic acid; LA), synthesized in mitochondria by LA synthase (Lias), is a potent antioxidant and a cofactor for metabolic enzyme complexes. In this study, we examined the effect of genetic reduction of LA synthesis on its antioxidant and anti-inflammatory properties using a model of LPS-induced inflammation in Lias+/– mice. The increase of plasma proinflammatory cytokine, TNF-α, and NF-κB at an early phase following LPS injection was greater in Lias+/– mice compared with Lias+/+ mice. The circulating blood white blood cell (WBC) and platelet counts dropped continuously during the initial 4 h. The counts subsequently recovered partially in Lias+/+ mice, but the recovery was impaired totally in Lias+/– mice. Administration of exogenous LA normalized the recovery of WBC counts in Lias+/– mice but not platelets. Enhanced neutrophil sequestration in the livers of Lias+/– mice was associated with increased hepatocyte injury and increased gene expression of growth-related oncogene, E-selectin, and VCAM-1 in the liver and/or lung. Lias gene expression in tissues was 50% of normal expression in Lias+/– mice and reduced further by LPS treatment. Decreased Lias expression was associated with diminished hepatic LA and tissue oxidative stress. Finally, Lias+/– mice displayed enhanced mortality when exposed to LPS-induced sepsis. These data demonstrate the importance of endogenously produced LA for preventing leukocyte accumulation and tissue injury that result from LPS-induced inflammation. PMID:18845616

  20. Effect of light intensity and various organic acids on the growth of Rhodobacter sphaeroides LHII-deficient mutant in a turbidostat culture.

    PubMed

    Eltsova, Zinaida; Bolshakov, Maxim; Tsygankov, Anatoly

    2016-12-01

    The composition of photosynthetic apparatus of Rhodobacter sphaeroides wild strain 2.4.1 and its LHII-deficient mutant DBCΩ was compared. The absence of LHII in the mutant was confirmed by comparison of chromatophores spectra and by the absence of electrophoretic band corresponding to LHII complex. Continuous turbidostat cultures of wild strain and its LHII-deficient mutant were compared in response to different light intensities. Cultures were grown using lactate, mixture of lactate and acetate or succinate as carbon source. For comparative analysis, an approximation of experimental data by Monod and Gompertz equations were used. Cultures of DBCΩ had lower growth rates than wild strain when grown on lactate as electron donor and carbon source. Cultures of both strains grown on lactate and acetate or on succinate had similar growth rates. The cultures showed maximum growth rates when grown with succinate. Bacteriochlorophyll a content increased in both strains with decrease of incident light intensity. However, the variation of Bchl a content in wild strain was much more significant. Under light-limiting conditions, bacteriochlorophyll a content in DBCΩ was 4-5 times lower than in the wild strain. Under light-saturating conditions, it was only 1.5-2.5 times lower. Growing with lactate or with lactate and acetate, the mutant switched from light limitation under low light intensities to limitation by organic acids under higher light, whereas the parental strain had similar switch of limiting factor only when growing with lactate and acetate mixture. DBCΩ mutant has higher minimal light intensity enabling growth on any organic acid as a substrate. When growing with lactate or with lactate and acetate, the mutant reached maximum growth rate at lower light intensities than the wild strain. This phenomenon was observed for the first time. Taking into account the concentration of BChl a under light-limiting conditions, the thickness of the suspension capable of

  1. Nonclinical safety assessment of recombinant human acid sphingomyelinase (rhASM) for the treatment of acid sphingomyelinase deficiency:the utility of animal models of disease in the toxicological evaluation of potential therapeutics.

    PubMed

    Murray, James M; Thompson, Anne Marie; Vitsky, Allison; Hawes, Michael; Chuang, Wei-Lien; Pacheco, Joshua; Wilson, Stephen; McPherson, John M; Thurberg, Beth L; Karey, Kenneth P; Andrews, Laura

    2015-02-01

    Recombinant human acid sphingomyelinase (rhASM) is being developed as an enzyme replacement therapy for patients with acid sphingomyelinase deficiency (Niemann-Pick disease types A and B), which causes sphingomyelin to accumulate in lysosomes. In the acid sphingomyelinase knock-out (ASMKO) mouse, intravenously administered rhASM reduced tissue sphingomyelin levels in a dose-dependent manner. When rhASM was administered to normal rats, mice, and dogs, no toxicity was observed up to a dose of 30mg/kg. However, high doses of rhASM≥10mg/kg administered to ASMKO mice resulted in unexpected toxicity characterized by cardiovascular shock, hepatic inflammation, adrenal hemorrhage, elevations in ceramide and cytokines (especially IL-6, G-CSF, and keratinocyte chemoattractant [KC]), and death. The toxicity could be completely prevented by the administration of several low doses (3mg/kg) of rhASM prior to single or repeated high doses (≥20mg/kg). These results suggest that the observed toxicity involves the rapid breakdown of large amounts of sphingomyelin into ceramide and/or other toxic downstream metabolites, which are known signaling molecules with cardiovascular and pro-inflammatory effects. Our results suggest that the nonclinical safety assessment of novel therapeutics should include the use of specific animal models of disease whenever feasible.

  2. FcR epsilon+ lymphocytes and regulation of the IgE antibody system. IV. Delineation of target cells and mechanisms of action of SFA and EFA in inhibiting in vitro induction of FcR epsilon expression.

    PubMed

    Marcelletti, J F; Katz, D H

    1984-12-01

    SFA and EFA are derived from distinct mouse T cell hybridomas secreting one or the other (but not both) factor, and although both are capable of inhibiting FcR epsilon expression by unfractionated spleen cells induced by monomeric IgE, neither was inhibitory for EIRT-induced FcR epsilon expression by T cells in the same cell population. This suggests that the final target cell for the inhibitory effects of SFA and EFA is the FcR epsilon+ B lymphocyte. T cells are required for both SFA- and EFA-mediated FcR epsilon inhibition, and more precisely, as shown in this study, SFA stimulates Lyt-1+ cells in the presence or absence of IgE to produce a suppressive effector molecule (SEM), and EFA together with IgE stimulates Lyt-2+ cells to produce an enhancing effector molecule (EEM), both of which can directly inhibit FcR epsilon expression by B cells. SFA and SEM can inhibit both IgE- and EIRB-induced FcR epsilon expression by B cells, indicating that SFA may act by blocking the EIRB-mediated expansion of the FcR epsilon+ B cell population. EFA and EEM, in contrast, can inhibit IgE-induced but not EIRB-induced FcR epsilon expression, indicating that EFA may act at some point before the release of EIR, perhaps involving those FcR epsilon+ B cells that respond to IgE and produce EIRB. Finally, although neither SFA and EFA display IgE binding properties, both SEM and EEM, in contrast, are IgE binding factors (IgE-BF) and may be homologous to the suppressive IgE binding factor and potentiating IgE binding factor described by other investigators. The possible interrelationships between these various cells and factors are discussed.

  3. Age and adaptation to Ca and P deficiencies: 2. Impacts on amino acid digestibility and phytase efficacy in broilers.

    PubMed

    Li, W; Angel, R; Kim, S-W; Jiménez-Moreno, E; Proszkowiec-Weglarz, M; Plumstead, P W

    2015-12-01

    A total of 1,152 straight-run hatchling Heritage 56M×fast feathering Cobb 500F broiler birds were used to determine Ca, age, and adaptation effects on apparent ileal digestibility of crude protein (AID of CP), amino acids (AID of AA) and phytase efficacy. Twelve treatments with 8 replicates, each were fed from 7 to 9 d (6 birds per replicate), 7 to 21 d (6 birds per replicate) and 19 to 21 d (3 birds per replicate) d of age. Diets were prepared with 3 Ca (0.65, 0.80, and 0.95%) and 2 non-phytate P, (0.20 and 0.40%) concentrations. A 6-phytase was added at 500 or 1,000 FTU/kg to the 0.20% nPP diet at each Ca concentration. The age and adaptation effects were determined by comparing the responses between birds fed from 7 to 9 and 19 to 21 d of age, 19 to 21, and 7 to 21 d of age, respectively. An age effect was observed regardless of Ca, nPP, or phytase concentration, with older birds (19 to 21 d) having greater apparent ileal digestibility (AID) of amino acids (AA) and CP than younger birds (7 to 9 d; P<0.05). Response to adaptation varied depending on Ca, nPP, and phytase concentrations. Constant lower AID of CP and AA was seen in adapted birds (7 to 21 d) compared to unadapted bird (19 to 21 d) when 0.20% nPP diets were fed at 0.95% Ca concentrations (P<0.05). At 0.40% nPP, there was no effect of adaptation on AID of CP and AA at any Ca concentration. Phytase efficacy was significantly lower in younger (7 to 9 d) compared to older birds (19 to 21 d; P<0.05), except at 0.65% Ca. Phytase inclusion increased AID of CP and AA regardless of Ca (P<0.05). In conclusion, the AID of CP and AA can be affected by diet, age, and adaptation.

  4. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice

    PubMed Central

    Kritikou, Eva; van Puijvelde, Gijs H. M.; van der Heijden, Thomas; van Santbrink, Peter J.; Swart, Maarten; Schaftenaar, Frank H.; Kröner, Mara J.; Kuiper, Johan; Bot, Ilze

    2016-01-01

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA1/3 antagonism using the small molecule Ki16425. We show that LPA1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA1/3 blockade enhanced the percentage of non-inflammatory, Ly6Clow monocytes and CD4+ CD25+ FoxP3+ T-regulatory cells. Finally, we demonstrate that LPA1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA1/3 receptors may prove a promising approach to diminish atherosclerosis development. PMID:27883026

  5. Deficiency of the beta 3 subunit of the type A gamma-aminobutyric acid receptor causes cleft palate in mice.

    PubMed

    Culiat, C T; Stubbs, L J; Woychik, R P; Russell, L B; Johnson, D K; Rinchik, E M

    1995-11-01

    In addition to its function in the nervous system, gamma-aminobutyric acid (GABA) has been implicated in mouse craniofacial development by the results of both teratological, and genetic studies. We previously reported that disruption of the cleft palate 1 (cp1) locus, closely linked to the pink-eyed dilution (p) locus on mouse chromosome 7, causes a 95% penetrant, recessive, neonatally-lethal cleft palate (CP) in mice homozygous for the p(4THO-II) deletion. We proposed that the beta 3 subunit gene (Gabrb3) of the GABAA receptor might be a candidate for cp1 (ref. 4); our earlier studies had localized cp1 to an interval beginning distal to the gene for the GABAA receptor alpha 5 subunit (Gabra5) and ending within the Gabrb3 coding region. To test the hypothesis that deletion of Gabrb3, and not another gene in the interval, causes CP, we performed an experiment to rescue the CP phenotype by introducing a Gabrb3 transgene into p(4THO-II) homozygotes. We now show that such transgenic mice are phenotypically normal, indicating that Gabrb3 is indeed the cp1 locus.

  6. Pharmacological studies on an iron-poly-(sorbitol-gluconic acid) complex for parenteral treatment of iron deficiency anaemia.

    PubMed

    Eriksson, H; Svärd, P O

    1977-01-01

    Intravenous injection of the iron-poly(sorbitol-gluconic acid) complex (IPSG) to cats anaesthetized with sodium pentobarbitone caused a transient decrease in mean arterial blood pressure and a temporary increase in central venous pressure, heart rate and femoral blood flow at large doses (cumulative doses up to 744 mg/kg). Tachyphylaxis developed upon repeated administration. A temporary reduction in the magnitude of the blood pressure responses to noradrenaline and isoprenaline was obtained after large doses of IPSG. The blood pressure effects of acetylcholine, histamine and bilateral carotid occlusion were not affected. No definite effects were seen on the electrocardiograms. The transient cardiovascular effects were interpreted as being due to the presence of small amounts of ferrous iron in the preparation. IPSG did not significantly affect blood coagulation or platelet aggregation as judged from results of in vitro and in vivo experiments. Immunogenicity studies in rabbits and antibody analyses of sera from patients treated with IPSG failed to demonstrate any effect of IPSG on the immune system.

  7. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA1/3 antagonism using the small molecule Ki16425. We show that LPA1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA1/3 blockade enhanced the percentage of non-inflammatory, Ly6C(low) monocytes and CD4(+) CD25(+) FoxP3(+) T-regulatory cells. Finally, we demonstrate that LPA1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  8. Rice: Characterizing the Environmental Response of a Gibberellic Acid-Deficient Rice for Use as a Model Crop

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Pinnock, Derek; Klassen, Steve; Bugbee, Bruce

    2004-01-01

    Rice (Oryza sativa L.) is a useful model crop plant. Rice was the first crop plant to have its complete genome sequenced. Unfortunately, even semi-dwarf rice cultivars are 60 to 90 an tail, and large plant populations cannot be grown in the confined volumes of greenhouses and growth chambers. We recently identified an extremely short (20 em tall) rice line, which is an ideal model for larger rice cultivars. We called this line "Super Dwarf rice." Here we report the response of Super Dwarf to temperature, photoperiod, photosynthetic photon flux (PPF), and factors that can affect time to head emergence. Vegetative biomass increased 6% per degree Celsius, with increasing temperature from 27 to 31 C. Seed yield decreased by 2% per degree Celsius rise in temperature, and as a result, harvest index decreased from 60 to 54%. The time to heading increased by 2 d for every hour above a 12-h photoperiod. Yield increased with increasing PPF up to the highest level tested at 1800 micro-mol/sq m/s (12-h photoperiod; 77.8 mol/sq m/d). Yield efficiency (grams per mole of photons) increased to 900 micro-mol/sq m/s and then slightly decreased at 1800 micro-mol/sq m/s . Heading was delayed by addition of gibberellic acid 3 (GA,) to the root zone but was hastened under mild N stress. Overall, short stature, high yield, high harvest index, and no extraordinary environmental requirements make Super Dwarf rice an excellent model plant for yield studies in controlled environments.

  9. Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pre-treated by ABA.

    PubMed

    Hlavinka, Jan; Nožková-Hlaváčková, Vladimíra; Floková, Kristýna; Novák, Ondřej; Nauš, Jan

    2012-05-01

    Burning the terminal leaflet of younger tomato (Lycopersicon esculentum Mill.) leaf caused local and systemic changes in the surface electrical potential (SEP) and gas exchange (GE) parameters. The local and systemic accumulation of endogenous abscisic acid (ABA) and jasmonic acid (JA) was measured 85 min after burning. The experiments were conducted with wild type (WT) plants, ABA-deficient mutant sitiens (SIT) and ABA pre-treated SIT plants (SITA). First changes in SEP were detected within 1.5 min after burning and were followed by a decrease in GE parameters within 3-6 min in WT, SIT and SITA plants. GE and SEP time courses of SIT were different and wave amplitudes of SEP of SIT were lower compared to WT and SITA. ABA content in WT and SITA control plants was similar and substantially higher compared to SIT, JA content was similar among WT, SIT and SITA. While changes in the ABA content in systemic leaves have not been recorded after burning, the systemic JA content was substantially increased in WT and more in SIT and SITA. The results suggest that ABA content governs the systemic reaction of GE and the SEP shape upon local burning. ABA, JA and SEP participate in triggering the GE reaction. The ABA shortage in the SIT in the reaction to burning is partly compensated by an enhanced JA accumulation. This JA compensation is maintained even in SIT endogenously supplied with ABA. A correlation between the systemic JA content and changes in GE parameters or SEP was not found.

  10. Docosahexanoic Acid Plus Vitamin D Treatment Improves Features of NAFLD in Children with Serum Vitamin D Deficiency: Results from a Single Centre Trial

    PubMed Central

    De Vito, Rita; De Stefanis, Cristiano; Alisi, Anna; Cianfarani, Stefano; Overi, Diletta; Mosca, Antonella; Stronati, Laura; Cucchiara, Salvatore; Raponi, Massimiliano; Gaudio, Eugenio; Byrne, Christopher D.; Nobili, Valerio

    2016-01-01

    Background There are no licensed treatments for non alcoholic fatty liver disease (NAFLD) in adults or children. In NAFLD, several studies have shown a benefit of omega-3 fatty acid treatment on lipid profile, insulin-sensitivity and hepatic steatosis and it has also been suggested that Vitamin D treatment has potential antifibrotic properties in liver disease. Trial Design To date, however, there are no studies that have tested the combination of Docosahexanoic acid (DHA) and vitamin D treatment which may benefit the whole spectrum of disease in NAFLD. Our aim therefore, was to test the effect of daily DHA (500 mg) plus vitamin D (800 IU) treatment, in obese children with biopsy-proven NAFLD and vitamin D deficiency, in a randomized, double-blind placebo-controlled trial. Methods The 41/43 patients completed the study (18-treatment, 23-placebo). At 12 months: i) the main outcome was liver histology improvement, defined by NAS; ii) the secondary outcome was amelioration of metabolic parameters. Results DHA plus vitamin D treatment reduced the NAFLD Activity Score (NAS), in the treatment group (5.4 v1.92; p<0.001 for baseline versus end of study). There was no change in fibrosis score, but a reduction of the activation of hepatic stellate cells (HSC) and fibrillar collagen content was noted (3.51±1.66 v. 1.59±1.37; p = 0.003) in treatment group. Moreover, the triglycerides (174.5 vs. 102.15 mg/dl), ALT (40.25 vs. 24.5 UI/l) and HOMA-IR (4.59 vs. 3.42) were all decreased with treatment. Conclusion DHA plus vitamin D treatment improved insulin-resistance, lipid profile, ALT and NAS. There was also decreased HSC activation and collagen content with treatment. PMID:27977757

  11. Deficiency in a very-long-chain fatty acid β-ketoacyl-coenzyme a synthase of tomato impairs microgametogenesis and causes floral organ fusion.

    PubMed

    Smirnova, Anna; Leide, Jana; Riederer, Markus

    2013-01-01

    Previously, it was shown that β-ketoacyl-coenzyme A synthase ECERIFERUM6 (CER6) is necessary for the biosynthesis of very-long-chain fatty acids with chain lengths beyond C₂₈ in tomato (Solanum lycopersicum) fruits and C₂₆ in Arabidopsis (Arabidopsis thaliana) leaves and the pollen coat. CER6 loss of function in Arabidopsis resulted in conditional male sterility, since pollen coat lipids are responsible for contact-mediated pollen hydration. In tomato, on the contrary, pollen hydration does not rely on pollen coat lipids. Nevertheless, mutation in SlCER6 impairs fertility and floral morphology. Here, the contribution of SlCER6 to the sexual reproduction and flower development of tomato was addressed. Cytological analysis and cross-pollination experiments revealed that the slcer6 mutant has male sterility caused by (1) hampered pollen dispersal and (2) abnormal tapetum development. SlCER6 loss of function provokes a decrease of n- and iso-alkanes with chain lengths of C₂₇ or greater and of anteiso-alkanes with chain lengths of C₂₈ or greater in flower cuticular waxes, but it has no impact on flower cuticle ultrastructure and cutin content. Expression analysis confirmed high transcription levels of SlCER6 in the anther and the petal, preferentially in sites subject to epidermal fusion. Hence, wax deficiency was proposed to be the primary reason for the flower fusion phenomenon in tomato. The SlCER6 substrate specificity was revisited. It might be involved in elongation of not only linear but also branched very-long-chain fatty acids, leading to production of the corresponding alkanes. SlCER6 implements a function in the sexual reproduction of tomato that is different from the one in Arabidopsis: SlCER6 is essential for the regulation of timely tapetum degradation and, consequently, microgametogenesis.

  12. Effects of cigarette smoke and ethanol intake on mouse oesophageal mucosa changes induced by dietary zinc deficiency and deoxycholic acid supplementation.

    PubMed

    Zapaterini, Joyce R; de Moura, Nelci A; Ribeiro, Daniel A; Rodrigues, Maria A M; Barbisan, Luis F

    2012-08-01

    The noxious effects of dietary zinc deficiency (ZD) and deoxycholic bile acid (DCA) supplementation in the oesophagus were investigated. The additional influence of cigarette smoke and ethanol intake on the changes in the oesophageal mucosa induced by dietary ZD plus DCA was also assessed. Male C57BL/6 mice were allocated into four groups: Group 1 was fed control diet and groups 2-4 were fed ZD plus DCA diet. After 5 weeks, groups 3 and 4 were exposed to 10% ethanol intake or cigarette smoke for 15 weeks, respectively. All animals were euthanized at the end of week 20, and the oesophagus, lung, liver and colon were collected and analysed by conventional morphology. Cell proliferation was assessed in the oesophageal mucosa by Ki-67 immunohistochemistry and cyclooxygenase 2 (COX-2) protein by Western blotting. Dietary ZD plus DCA treatment induced mild hyperkeratosis and hyperplasia, increased cell proliferation index and COX-2 protein expression in the oesophagus, and intranuclear inclusion, karyocytomegaly and microvesicular fatty change in the liver. Cigarette smoke increased COX-2 protein expression in oesophageal mucosa and irregular enlargement of alveolus and alveolar ductal air spaces, while ethanol enhanced liver damage induced by ZD plus DCA diet. These findings indicate that dietary ZD plus DCA treatment during 20 weeks induces a pattern of chemical oesophageal injury but not Barrett's-like lesions.

  13. Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency.

    PubMed

    Pajares, Sonia; Arias, Angela; García-Villoria, Judit; Macías-Vidal, Judit; Ros, Emilio; de las Heras, Javier; Girós, Marisa; Coll, Maria J; Ribes, Antonia

    2015-10-01

    Niemann-Pick type C (NPC) is a progressive neurodegenerative disease characterized by lysosomal/endosomal accumulation of unesterified cholesterol and glycolipids. Recent studies have shown that plasma cholestane-3β,5α,6β-triol (CT) and 7-ketocholesterol (7-KC) could be potential biomarkers for the diagnosis of NPC patients. We aimed to know the sensitivity and specificity of these biomarkers for the diagnosis of NPC compared with other diseases that can potentially lead to oxysterol alterations. We studied 107 controls and 122 patients including 16 with NPC, 3 with lysosomal acid lipase (LAL) deficiency, 8 with other lysosomal diseases, 5 with galactosemia, 11 with cerebrotendinous xanthomatosis (CTX), 3 with Smith-Lemli-Opitz, 14 with peroxisomal biogenesis disorders, 19 with unspecific hepatic diseases, 13 with familial hypercholesterolemia, and 30 with neurological involvement and no evidence of an inherited metabolic disease. CT and 7-KC were analyzed by HPLC-ESI-MS/MS as mono-dimethylglycine derivatives. Levels of 7-KC were high in most of the studied diseases, whereas those of CT were only high in NPC, LAL, and CTX patients. Consequently, although CT is a sensitive biomarker of NPC disease, including those cases with doubtful filipin staining, it is not specific. 7-KC is a very unspecific biomarker.

  14. Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease.

    PubMed

    Chuang, Jen-Chieh; Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-01-17

    Lysosomal acid lipase (LAL) plays a critical role in the intracellular handling of lipids by hydrolyzing cholesteryl esters (CE) and triacylglycerols (TAG) contained in newly internalized lipoproteins. In humans, mutations in the LAL gene result in cholesteryl ester storage disease (CESD), or in Wolman disease (WD) when the mutations cause complete loss of LAL activity. A rat model for WD and a mouse model for CESD have been described. In these studies we used LAL-deficient mice to investigate how modulating the amount of intestinally-derived cholesterol reaching the liver might impact its mass, cholesterol content, and function in this model. The main experiment tested if ezetimibe, a potent cholesterol absorption inhibitor, had any effect on CE accumulation in mice lacking LAL. In male Lal(-/-) mice given ezetimibe in their diet (20 mg/day/kg bw) for 4 weeks starting at 21 days of age, both liver mass and hepatic cholesterol concentration (mg/g) were reduced to the extent that whole-liver cholesterol content (mg/organ) in the treated mice (74.3±3.4) was only 56% of that in those not given ezetimibe (133.5±6.7). There was also a marked improvement in plasma alanine aminotransferase (ALT) activity. Thus, minimizing cholesterol absorption has a favorable impact on the liver in CESD.

  15. Maximizing bone formation in posterior spine fusion using rhBMP-2 and zoledronic acid in wild type and NF1 deficient mice.

    PubMed

    Bobyn, Justin; Rasch, Anton; Kathy, Mikulec; Little, David G; Schindeler, Aaron

    2014-08-01

    Spinal pseudarthrosis is a well described complication of spine fusion surgery in NF1 patients. Reduced bone formation and excessive resorption have been described in NF1 and anti-resorptive agents may be advantageous in these individuals. In this study, 16 wild type and 16 Nf1(+/-) mice were subjected to posterolateral fusion using collagen sponges containing 5 µg rhBMP-2 introduced bilaterally. Mice were dosed twice weekly with 0.02 mg/kg zoledronic acid (ZA) or sterile saline. The fusion mass was assessed for bone volume (BV) and bone mineral density (BMD) by microCT. Co-treatment using rhBMP-2 and ZA produced a significant increase (p < 0.01) in BV of the fusion mass compared to rhBMP-2 alone in both wild type mice (+229%) and Nf1(+/-) mice (+174%). Co-treatment also produced a significantly higher total BMD of the fusion mass compared to rhBMP-2 alone in both groups (p < 0.01). Despite these gains with anti-resorptive treatment, Nf1(+/-) deficient mice still generated less bone than wild type controls. TRAP staining on histological sections indicated an increased osteoclast surface/bone surface (Oc.S/BS) in Nf1(+/-) mice relative to wild type mice, and this was reduced with ZA treatment.

  16. Abscisic Acid Deficiency Causes Changes in Cuticle Permeability and Pectin Composition That Influence Tomato Resistance to Botrytis cinerea1[C][W][OA

    PubMed Central

    Curvers, Katrien; Seifi, Hamed; Mouille, Grégory; de Rycke, Riet; Asselbergh, Bob; Van Hecke, Annelies; Vanderschaeghe, Dieter; Höfte, Herman; Callewaert, Nico; Van Breusegem, Frank; Höfte, Monica

    2010-01-01

    A mutant of tomato (Solanum lycopersicum) with reduced abscisic acid (ABA) production (sitiens) exhibits increased resistance to the necrotrophic fungus Botrytis cinerea. This resistance is correlated with a rapid and strong hydrogen peroxide-driven cell wall fortification response in epidermis cells that is absent in tomato with normal ABA production. Moreover, basal expression of defense genes is higher in the mutant compared with the wild-type tomato. Given the importance of this fast response in sitiens resistance, we investigated cell wall and cuticle properties of the mutant at the chemical, histological, and ultrastructural levels. We demonstrate that ABA deficiency in the mutant leads to increased cuticle permeability, which is positively correlated with disease resistance. Furthermore, perturbation of ABA levels affects pectin composition. sitiens plants have a relatively higher degree of pectin methylesterification and release different oligosaccharides upon inoculation with B. cinerea. These results show that endogenous plant ABA levels affect the composition of the tomato cuticle and cell wall and demonstrate the importance of cuticle and cell wall chemistry in shaping the outcome of this plant-fungus interaction. PMID:20709830

  17. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.

    PubMed

    Tonin, Anelise M; Amaral, Alexandre U; Busanello, Estela N B; Grings, Mateus; Castilho, Roger F; Wajner, Moacir

    2013-02-01

    Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.

  18. Substantial deficiency of free sialic acid in muscles of patients with GNE myopathy and in a mouse model

    PubMed Central

    Chan, Yiumo Michael; Lee, Paul; Jungles, Steve; Morris, Gabrielle; Cadaoas, Jaclyn; Skrinar, Alison; Vellard, Michel; Kakkis, Emil

    2017-01-01

    GNE myopathy (GNEM), also known as hereditary inclusion body myopathy (HIBM), is a late- onset, progressive myopathy caused by mutations in the GNE gene encoding the enzyme responsible for the first regulated step in the biosynthesis of sialic acid (SA). The disease is characterized by distal muscle weakness in both the lower and upper extremities, with the quadriceps muscle relatively spared until the late stages of disease. To explore the role of SA synthesis in the disease, we conducted a comprehensive and systematic analysis of both free and total SA levels in a large cohort of GNEM patients and a mouse model. A sensitive LC/MS/MS assay was developed to quantify SA in serum and muscle homogenates. Mean serum free SA level was 0.166 μg/mL in patients and 18% lower (p<0.001) than that of age-matched control samples (0.203 μg/mL). In biopsies obtained from patients, mean free SA levels of different muscles ranged from 0.046–0.075 μg/μmol Cr and were markedly lower by 72–85% (p<0.001) than free SA from normal controls. Free SA was shown to constitute a small fraction (3–7%) of the total SA pool in muscle tissue. Differences in mean total SA levels in muscle from patients compared with normal controls were less distinct and more variable between different muscles, suggesting a small subset of sialylation targets could be responsible for the pathogenesis of GNEM. Normal quadriceps had significantly lower levels of free SA (reduced by 39%) and total SA (reduced by 53%) compared to normal gastrocnemius. A lower SA requirement for quadriceps may be linked to the reported quadriceps sparing in GNEM. Analysis of SA levels in GneM743T/M743T mutant mice corroborated the human study results. These results show that serum and muscle free SA is severely reduced in GNEM, which is consistent with the biochemical defect in SA synthesis associated with GNE mutations. These results therefore support the approach of reversing SA depletion as a potential treatment for GNEM

  19. Genetics Home Reference: purine nucleoside phosphorylase deficiency

    MedlinePlus

    ... patients with purine nucleoside phosphorylase deficiency. Nucleosides Nucleotides Nucleic Acids. 2004 Oct;23(8-9):1411-5. Erratum in: Nucleosides Nucleotides Nucleic Acids. 2005;24(4):303. Citation on PubMed Nyhan ...

  20. Focal Thalamic Degeneration from Ethanol and Thiamine Deficiency is Associated with Neuroimmune Gene Induction, Microglial Activation, and Lack of Monocarboxylic Acid Transporters

    PubMed Central

    Qin, Liya; Crews, Fulton T

    2014-01-01

    Background Wernicke's encephalopathy-Korsakoff syndrome (WE-KS) is common in alcoholics, caused by thiamine deficiency (TD; vitamin B1) and associated with lesions to the thalamus (THAL). Although TD alone can cause WE, the high incidence in alcoholism suggests that TD and ethanol (EtOH) interact. Methods Mice in control, TD, or EtOH groups alone or combined were studied after 5 or 10 days of treatment. THAL and entorhinal cortex (ENT) histochemistry and mRNA were assessed. Results Combined EtOH-TD treatment for 5 days (EtOH-TD5) showed activated microglia, proinflammatory gene induction and THAL neurodegeneration that was greater than that found with TD alone (TD5), whereas 10 days resulted in marked THAL degeneration and microglial-neuroimmune activation in both groups. In contrast, 10 days of TD did not cause ENT degeneration. Interestingly, in ENT, TD10 activated microglia and astrocytes more than EtOH-TD10. In THAL, multiple astrocytic markers were lost consistent with glial cell loss. TD blocks glucose metabolism more than acetate. Acetate derived from hepatic EtOH metabolism is transported by monocarboxylic acid transporters (MCT) into both neurons and astrocytes that use acetyl-CoA synthetase (AcCoAS) to generate cellular energy from acetate. MCT and AcCoAS expression in THAL is lower than ENT prompting the hypothesis that focal THAL degeneration is related to insufficient MCT and AcCoAS in THAL. To test this hypothesis, we administered glycerin triacetate (GTA) to increase blood acetate and found it protected the THAL from TD-induced degeneration. Conclusions Our findings suggest that EtOH potentiates TD-induced THAL degeneration through neuroimmune gene induction. The findings support the hypothesis that TD deficiency inhibits global glucose metabolism and that a reduced ability to process acetate for cellular energy results in THAL focal degeneration in alcoholics contributing to the high incidence of Wernicke-Korsakoff syndrome in alcoholism. PMID

  1. Evaluation of increasing levels of a microbial phytase in phosphorus deficient broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility.

    PubMed

    Pieniazek, J; Smith, K A; Williams, M P; Manangi, M K; Vazquez-Anon, M; Solbak, A; Miller, M; Lee, J T

    2017-02-01

    The objective was to investigate increasing concentrations of an evolved microbial phytase on male broiler performance, tibia bone ash, AME, and amino acid digestibility when fed diets deficient in available phosphorus (aP). Experiment 1 evaluated the effects of phytase during a 21 d battery cage study and Experiment 2 was a 42 d grow-out. Experiment 1 included six treatments; negative control (NC) with an aP level of 0.23% (starter) and 0.19% (grower), two positive controls (PC) consisting of an additional 0.12% and 0.22% aP (PC 1 and PC 2), and the NC supplemented with three levels of phytase (250, 500, and 2,000 U/kg). The NC diet reduced (P < 0.05) FC, BW, and bone ash. Phytase increased (P < 0.05) BW with 2,000 U/kg phytase yielding similar results to the PC2, and improved FCR and increased bone ash was observed at all phytase levels. Amino acid digestibility coefficients were increased (P < 0.05) with phytase at 250 U/kg. Phytase at all rates increased (P < 0.05) AME to levels similar level as PC diets. Linear regression analysis indicated average P equivalency values for BW and bone ash of 0.137, 0.147, and 0.226 for phytase inclusion of 250, 500, and 2000 U/kg, respectively. Experiment 2 included a PC consisting of 0.45%, 0.41%, and 0.38% aP for the starter, grower, and finisher, respectively; NC with reduced aP of 0.17%; and phytase at 500 and 2,000 U/kg. Phytase increased BW (P < 0.05) compared to the NC as 2,000 U/kg phytase resulted in further BW increases compared to the PC (starter and grower). Phytase improved FCR to levels comparable to the PC, with supplementation at 2,000 U/kg resulting in improvements beyond the PC in the starter phase. Amino acid digestibility coefficients were increased with phytase at 2,000 U/kg to levels comparable to that of the PC. These data confirm that the inclusion of phytase improves broiler performance and bone mineralization in aP reduced diets and levels beyond the traditional 500 U/kg can result in further

  2. Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: a possible role of mPTP opening as a pathomechanism in these disorders?

    PubMed

    Tonin, Anelise Miotti; Amaral, Alexandre Umpierrez; Busanello, Estela Natacha; Gasparotto, Juciano; Gelain, Daniel P; Gregersen, Niels; Wajner, Moacir

    2014-09-01

    Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca(2+) retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca(2+)-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca(2+) uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca(2+), respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies.

  3. The novel R347g pathogenic mutation of aromatic amino acid decarboxylase provides additional molecular insights into enzyme catalysis and deficiency.

    PubMed

    Montioli, Riccardo; Paiardini, Alessandro; Kurian, Manju A; Dindo, Mirco; Rossignoli, Giada; Heales, Simon J R; Pope, Simon; Voltattorni, Carla Borri; Bertoldi, Mariarita

    2016-06-01

    We report here a clinical case of a patient with a novel mutation (Arg347→Gly) in the gene encoding aromatic amino acid decarboxylase (AADC) that is associated with AADC deficiency. The variant R347G in the purified recombinant form exhibits, similarly to the pathogenic mutation R347Q previously studied, a 475-fold drop of kcat compared to the wild-type enzyme. In attempting to unravel the reason(s) for this catalytic defect, we have carried out bioinformatics analyses of the crystal structure of AADC-carbidopa complex with the modelled catalytic loop (residues 328-339). Arg347 appears to interact with Phe103, as well as with both Leu333 and Asp345. We have then prepared and characterized the artificial F103L, R347K and D345A mutants. F103L, D345A and R347K exhibit about 13-, 97-, and 345-fold kcat decrease compared to the wild-type AADC, respectively. However, unlike F103L, the R347G, R347K and R347Q mutants as well as the D345A variant appear to be more defective in catalysis than in protein folding. Moreover, the latter mutants, unlike the wild-type protein and the F103L variant, share a peculiar binding mode of dopa methyl ester consisting of formation of a quinonoid intermediate. This finding strongly suggests that their catalytic defects are mainly due to a misplacement of the substrate at the active site. Taken together, our results highlight the importance of the Arg347-Leu333-Asp345 hydrogen-bonds network in the catalysis of AADC and reveal the molecular basis for the pathogenicity of the variants R347. Following the above results, a therapeutic treatment for patients bearing the mutation R347G is proposed.

  4. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants.

    PubMed

    Aguirre, Elena; Elena, Aguirre; Leménager, Diane; Diane, Leménager; Bacaicoa, Eva; Eva, Bacaicoa; Fuentes, Marta; Marta, Fuentes; Baigorri, Roberto; Roberto, Baigorri; Zamarreño, Angel Ma; García-Mina, José Ma

    2009-03-01

    The aim of this study is to investigate the effect of a well-characterized purified humic acid (non-measurable concentrations of the main plant hormones were detected) on the transcriptional regulation of the principal molecular agents involved in iron assimilation. To this end, non-deficient cucumber plants were treated with different concentrations of a purified humic acid (PHA) (2, 5, 100 and 250 mg of organic carbonL(-1)) and harvested 4, 24, 48, 76 and 92 h from the onset of the treatment. At harvest times, the mRNA transcript accumulation of CsFRO1 encoding for Fe(III) chelate-reductase (EC 1.16.1.7); CsHa1 and CsHa2 encoding for plasma membrane H+-ATPase (EC 3.6.3.6); and CsIRT1 encoding for Fe(II) high-affinity transporter, was quantified by real-time RT-PCR. Meanwhile, the respective enzyme activity of the Fe(III) chelate-reductase and plasma membrane H+-ATPase was also investigated. The results obtained indicated that PHA root treatments affected the regulation of the expression of the studied genes, but this effect was transient and differed (up-regulation or down-regulation) depending on the genes studied. Thus, principally the higher doses of PHA caused a transient increase in the expression of the CsHa2 isoform for 24 and 48 h whereas the CsHa1 isoform was unaffected or down-regulated. These effects were accompanied by an increase in the plasma membrane H+-ATPase activity for 4, 48 and 96 h. Likewise, PHA root treatments (principally the higher doses) up-regulated CsFRO1 and CsIRT1 expression for 48 and 72 h; whereas these genes were down-regulated by PHA for 96 h. These effects were associated with an increase in the Fe(III) chelate-reductase activity for 72 h. These effects were not associated with a significant decrease in the Fe root or leaf concentrations, although an eventual effect on the Fe root assimilation pattern cannot be ruled out. These results stress the close relationships between the effects of humic substances on plant development

  5. [The use of essential fatty acids in the treatments of wounds].

    PubMed

    Manhezi, Andreza Cano; Bachion, Maria Márcia; Pereira, Angela Lima

    2008-01-01

    In spite of being widely spread throughout Brazil, the use of essential fatty acids (EFA) for wound healing is controversial. This study aimed at identifying and analyzing the available scientific evidence for EFA to be used in the treatment of wounds. This is a descriptive study, carried out through a systematic literature review, concerning the Biblioteca Virtual de Saúde (Health Online Library) and PubMed data bank, from 1970 to 2006. Initially, we identified 503 references. After the relevance tests I and II, 11 articles were included in the analysis, showing evidence of recommendation- level II and III for EFA to be used in burns, mediastinitis, among others situations. Most studies still refer to its use in animal. Relevant publications are still scarce.

  6. Feeding long-chain n-3 polyunsaturated fatty acids to obese leptin receptor-deficient JCR:LA- cp rats modifies immune function and lipid-raft fatty acid composition.

    PubMed

    Ruth, Megan R; Proctor, Spencer D; Field, Catherine J

    2009-05-01

    Dietary EPA and DHA modulate immunity and thereby may improve the aberrant immune function in obese states. To determine the effects of feeding fish oil (FO) containing EPA and DHA on splenocyte phospholipid (PL) and lipid-raft fatty acid composition, phenotypes and cytokine production, 14-week-old obese, leptin receptor-deficient JCR:LA-cp rats (cp/cp; n 10) were randomised to one of three nutritionally adequate diets for 3 weeks: control (Ctl, 0 % EPA+DHA); low FO (LFO, 0.8 % (w/w) EPA+DHA); high FO (HFO, 1.4 % (w/w) EPA+DHA). Lean JCR:LA-cp (+/ - or +/+) rats (n 5) were fed the Ctl diet. Obese Ctl rats had a higher proportion of n-3 PUFA in splenocyte PL than lean rats fed the same diet (P < 0.05). The lower n-6:n-3 PUFA ratio of splenocyte PL was consistent with the lower mitogen-stimulated interferon (IFN)-gamma and IL-1beta production by cells from obese rats (P < 0.05). Obese rats fed the FO diet had lower mitogen-stimulated Th1 (IFN-gamma) and Th2 (IL-4) cytokine responses, but IL-2 production (concanavalin A; ConA) did not differ (P < 0.05). The HFO diet was more effective in lowering IL-1beta and increasing IL-10 production (ConA, P < 0.05). This lower IL-1beta production was accompanied by a lower proportion of major histocompatability complex class II-positive cells and a higher incorporation of DHA into lipid rafts. This is the first study to demonstrate impaired responses to mitogen stimulation and altered fatty acid incorporation into the membrane PL of JCR:LA-cp rats. Feeding FO lowered the ex vivo inflammatory response, without altering IL-2 production from ConA-stimulated splenocytes which may occur independent of leptin signalling.

  7. Effects of oral supplementation with evening primrose oil for six weeks on plasma essential fatty acids and uremic skin symptoms in hemodialysis patients.

    PubMed

    Yoshimoto-Furuie, K; Yoshimoto, K; Tanaka, T; Saima, S; Kikuchi, Y; Shay, J; Horrobin, D F; Echizen, H

    1999-02-01

    Abnormalities in plasma composition of essential fatty acids (EFAs) may be associated with the etiology of pruritus and other skin problems in patients undergoing hemodialysis. To study whether an oral supplementation with omega-6 (n-6) EFAs would restore deranged plasma EFAs and ameliorate skin symptoms, 9 and 7 dialysis patients were randomly assigned to receive either gamma-linolenic acid (GLA)-rich evening primrose oil (EPO) or linoleic acid (LA) (2 g/day each) for 6 weeks. Plasma concentrations of EFA were analyzed by gas chromatography and uremic skin symptoms were assessed for dryness, pruritus and erythema by questionnaire and visual inspection in a double-blind manner. The patients given EPO exhibited a significant (p < 0.05) increase in plasma dihomo-gamma-linolenic acid (a precursor of anti-inflammatory prostaglandin E1) with no concomitant change in plasma arachidonic acid (a precursor of pro-inflammatory prostaglandin E2 and leukotriene B4). In contrast, those given LA exhibited a significant (p < 0.05) increase in LA but not in any other n-6 EFAs, whereas they exhibited a significant (p < 0.05) decrease in plasma docosahexaenoic acid. The patients given EPO showed a significant (p < 0.05) improvement in the skin scores for the three different uremic skin symptoms over the baseline values and a trend toward a greater improvement (0.05 < p < 0.1) in pruritus scores than those given LA. Results indicate that GLA-rich EPO would be a more favorable supplemental source than LA in terms of shifting eicosanoid metabolism toward a less inflammation status through modifying plasma concentrations of their precursor n-6 EFAs. Further studies are required to confirm the efficacy and safety of EPO therapy for the treatment of uremic pruritus.

  8. Plasminogen deficiency.

    PubMed

    Celkan, Tiraje

    2017-01-01

    Plasminogen plays an important role in fibrinolysis as well as wound healing, cell migration, tissue modeling and angiogenesis. Congenital plasminogen deficiency is a rare autosomal recessive disorder that leads to the development of thick, wood-like pseudomembranes on mucosal surfaces, mostly seen in conjunctivas named as ''ligneous conjunctivitis''. Local conjunctival use of fresh frozen plazma (FFP) in combination with other eye medications such as cyclosporin and artificial tear drops may relieve the symptoms. Topical treatment with plasminogen eye drops is the most promising treatment that is not yet available in Turkey.

  9. Peroxisomal bifunctional enzyme deficiency.

    PubMed Central

    Watkins, P A; Chen, W W; Harris, C J; Hoefler, G; Hoefler, S; Blake, D C; Balfe, A; Kelley, R I; Moser, A B; Beard, M E

    1989-01-01

    Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta-oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been distinguished from this disorder by clinical study alone. Images PMID:2921319

  10. Construction of a traditional Chinese medicine syndrome-specific outcome measure: the Kidney Deficiency Syndrome questionnaire (KDSQ)

    PubMed Central

    2012-01-01

    Background Development of Traditional Chinese Medicine (TCM) syndrome-specific outcome measures is needed for the evaluation of TCM syndrome-specific therapies. We constructed a Kidney Deficiency Syndrome Questionnaire (KDSQ) for the evaluation of the common TCM syndromes Kidney-Yin Deficiency Syndrome (KDS-Yin) and Kidney-Yang Deficiency Syndrome (KDS-Yang) in middle-aged women with menopausal symptoms. Methods KDS-Yin and KDS-Yang were traditionally defined by expert opinion were validated by exploratory factor analysis (EFA) and structural equation modeling (SEM). Content validity was tested by EFA on a sample of 236 women from a seminar and SEM on another sample of 321 women from a postal survey. Other psychometric properties were tested on 292 women from the seminar at baseline and two systematically selected sub-samples: 54 who reported no changes in discomforts 11–12 days after the baseline and 31 who reported changes in discomforts 67–74 days after the baseline. All participants completed the KDSQ, the Greene Climacteric Scale and the standard 12-item Short Form Health Survey. Results The EFA and SEM established the measurement models of KDS-Yin and KDS-Yang supporting content validity of the KDSQ. Internal consistency was good (Cronbach’s Alpha >0.70). Construct validity was supported by theoretically-derived levels of correlation with the established external measures. Test–retest reliability was strong (ICCagreement: KDS-Yin, 0.94; KDS-Yang, 0.93). The KDSQ was responsive to changes over time as tested by effect size and longitudinal validity. Conclusions The KDSQ was a valid and reliable measure for KDS-Yin and KDS-Yang in Hong Kong Chinese middle-aged women with menopausal symptoms. PMID:22672362

  11. Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... from food are broken down into parts called amino acids . Amino acids can be further processed to provide energy for ... an enzyme that helps break down a particular amino acid called valine. Most people with IBD deficiency are ...

  12. Essential fatty acid intake and serum fatty acid composition among adolescent girls in central Mozambique.

    PubMed

    Freese, Riitta; Korkalo, Liisa; Vessby, Bengt; Tengblad, Siv; Vaara, Elina M; Hauta-alus, Helena; Selvester, Kerry; Mutanen, Marja

    2015-04-14

    Many African diets are low in fat but are currently changing because of nutrition transition. We studied fat and fatty acid (FA) intake and the essential fatty acid (EFA) status of adolescent girls (aged 14-19 years, n 262) in Zambezia Province, central Mozambique. A cross-sectional study was carried out in a city as well as in the towns and rural villages of a coastal and an inland district. Dietary intake and FA sources were studied in a 24 h dietary recall. FA compositions of cholesteryl esters and phospholipids of non-fasting serum samples were analysed by GLC. Fat intake was low (13-18 % of energy) in all areas. Coconut and palm oil were the main sources of fat, and soyabean oil and maize were the main sources of PUFA. Compared to Food and Agriculture Organization/WHO 2010 recommendations, intake of linoleic acid (LA, 18 : 2n-6) was inadequate in the coastal district, and intakes of n-3 PUFA were inadequate in all areas. FA compositions of serum lipids differed between areas. The proportions of LA tended to be highest in the city and lowest in the rural areas. The phospholipid mead (20 : 3n-9):arachidonic acid (20 : 4n-6) ratio did not indicate EFA insufficiency. LA proportions in phospholipids were low, but those of long-chain n-6 and n-3 PUFA were high in comparison with Western adolescents. To conclude, fat sources, FA intake and EFA status differed between adolescent girls living in different types of communities. Fat intake was low, but EFA insufficiency was not indicated.

  13. Folate deficiency

    MedlinePlus

    ... micrograms of folate daily. Women who may become pregnant should take folic acid supplements to ensure that they get enough each day. Specific recommendations depend on a person's age, gender, and other factors (such as pregnancy ...

  14. Omega-3 Fatty Acid Deficient Male Rats Exhibit Abnormal Behavioral Activation in the Forced Swim Test Following Chronic Fluoxetine Treatment: Association with Altered 5-HT1A and Alpha2A Adrenergic Receptor Expression

    PubMed Central

    Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K.

    2014-01-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n=34) or without (DEF, n=30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n=14) and DEF (n=12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (−26%, p=0.0001) and DEF+FLX (−32%, p=0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF+FLX rats exhibited significantly greater climbing behavior compared with CON+FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF+FLX rats exhibited significant elevations in climbing behavior. DEF+FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON+FLX rats. DEF+FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. PMID:24360505

  15. Efficient production of optically pure D-lactic acid from raw corn starch by using a genetically modified L-lactate dehydrogenase gene-deficient and alpha-amylase-secreting Lactobacillus plantarum strain.

    PubMed

    Okano, Kenji; Zhang, Qiao; Shinkawa, Satoru; Yoshida, Shogo; Tanaka, Tsutomu; Fukuda, Hideki; Kondo, Akihiko

    2009-01-01

    In order to achieve direct and efficient fermentation of optically pure D-lactic acid from raw corn starch, we constructed L-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum and introduced a plasmid encoding Streptococcus bovis 148 alpha-amylase (AmyA). The resulting strain produced only D-lactic acid from glucose and successfully expressed amyA. With the aid of secreting AmyA, direct D-lactic acid fermentation from raw corn starch was accomplished. After 48 h of fermentation, 73.2 g/liter of lactic acid was produced with a high yield (0.85 g per g of consumed sugar) and an optical purity of 99.6%. Moreover, a strain replacing the ldhL1 gene with an amyA-secreting expression cassette was constructed. Using this strain, direct D-lactic acid fermentation from raw corn starch was accomplished in the absence of selective pressure by antibiotics. This is the first report of direct D-lactic acid fermentation from raw starch.

  16. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers

    PubMed Central

    Pethybridge, Heidi R.; Parrish, Christopher C.; Morrongiello, John; Young, Jock W.; Farley, Jessica H.; Gunasekera, Rasanthi M.; Nichols, Peter D.

    2015-01-01

    Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT) of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20) omega-3 fatty acids (EFA) measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST) and chlorophyll-a (Chla), and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes) were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems. PMID:26135308

  17. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5

    PubMed Central

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation. PMID:23050242

  18. Acetic acid treatment in S. cerevisiae creates significant energy deficiency and nutrient starvation that is dependent on the activity of the mitochondrial transcriptional complex Hap2-3-4-5.

    PubMed

    Kitanovic, Ana; Bonowski, Felix; Heigwer, Florian; Ruoff, Peter; Kitanovic, Igor; Ungewiss, Christin; Wölfl, Stefan

    2012-01-01

    Metabolic pathways play an indispensable role in supplying cellular systems with energy and molecular building blocks for growth, maintenance and repair and are tightly linked with lifespan and systems stability of cells. For optimal growth and survival cells rapidly adopt to environmental changes. Accumulation of acetic acid in stationary phase budding yeast cultures is considered to be a primary mechanism of chronological aging and induction of apoptosis in yeast, which has prompted us to investigate the dependence of acetic acid toxicity on extracellular conditions in a systematic manner. Using an automated computer controlled assay system, we investigated and model the dynamic interconnection of biomass yield- and growth rate-dependence on extracellular glucose concentration, pH conditions and acetic acid concentration. Our results show that toxic concentrations of acetic acid inhibit glucose consumption and reduce ethanol production. In absence of carbohydrates uptake, cells initiate synthesis of storage carbohydrates, trehalose and glycogen, and upregulate gluconeogenesis. Accumulation of trehalose and glycogen, and induction of gluconeogenesis depends on mitochondrial activity, investigated by depletion of the Hap2-3-4-5 complex. Analyzing the activity of glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PYK), and glucose-6-phosphate dehydrogenase (G6PDH) we found that while high acetic acid concentration increased their activity, lower acetic acids concentrations significantly inhibited these enzymes. With this study we determined growth and functional adjustment of metabolism to acetic acid accumulation in a complex range of extracellular conditions. Our results show that substantial acidification of the intracellular environment, resulting from accumulation of dissociated acetic acid in the cytosol, is required for acetic acid toxicity, which creates a state of energy deficiency and nutrient starvation.

  19. Genetics Home Reference: guanidinoacetate methyltransferase deficiency

    MedlinePlus

    ... E, Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids. ... Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem. 2010 Oct;115( ...

  20. Genetics Home Reference: beta-ketothiolase deficiency

    MedlinePlus

    ... 2 links) Children Living with Inherited Metabolic Diseases Organic Acidemia Association Scientific Articles on PubMed (1 link) ... CoA thiolase (T2) deficiency in Japanese patients: urinary organic acid and blood acylcarnitine profiles under stable conditions ...

  1. Genetics Home Reference: carbonic anhydrase VA deficiency

    MedlinePlus

    ... people with carbonic anhydrase VA deficiency have excess ammonia in the blood (hyperammonemia), problems with acid-base ... anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism. Proc Natl Acad Sci ...

  2. Modulation in vitro of human natural cytotoxicity, lymphocyte proliferative response to mitogens and cytokine production by essential fatty acids.

    PubMed Central

    Purasiri, P; Mckechnie, A; Heys, S D; Eremin, O

    1997-01-01

    Essential fatty acids (EFA) have been shown in animal studies to have a differential effect on various aspects of immune reactivity. However, there have been few studies in humans. Therefore, we elected to investigate the effects of a variety of EFA [gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in vitro on human blood lymphocyte reactivity, cytokine secretion and natural cytotoxicity. The proliferative response to polyclonal mitogens (phytohaemagglutinin, pokeweed mitogen, concanavalin A), as measured by [3H]thymidine incorporation into newly synthesized lymphocytes, was inhibited (P < 0.05) by all EFAs tested, in a dose-dependent manner (3-15 micrograms/ml). The greatest inhibition of proliferation was caused by EPA and DHA. Similarly, EPA, DHA and GLA significantly reduced cytotoxic activity [expressed as lytic units, using 51 chromium-release assays natural killer (NK) (K562 cells) and lymphokine-activated (LAK) (Daudi cells) cells] (P < 0.05) in a concentration-dependent manner (5-50 micrograms/ml), without affecting cell viability. EPA and DHA exhibited greater suppression than GLA. Furthermore, the inhibition of cell proliferation and suppression of natural cytotoxicity was associated with marked decrease in cytokine [interleukin-1 (IL-1), IL-2, tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma)] production in vitro. Our findings demonstrate that EFAs (GLA, EPA, DHA) have the potential to inhibit significantly various aspects of human lymphocyte cell-mediated and humoral immune reactivities. PMID:9415022

  3. Carnitine palmitoyltransferase II deficiency

    PubMed Central

    Roe, C R.; Yang, B-Z; Brunengraber, H; Roe, D S.; Wallace, M; Garritson, B K.

    2008-01-01

    Background: Carnitine palmitoyltransferase II (CPT II) deficiency is an important cause of recurrent rhabdomyolysis in children and adults. Current treatment includes dietary fat restriction, with increased carbohydrate intake and exercise restriction to avoid muscle pain and rhabdomyolysis. Methods: CPT II enzyme assay, DNA mutation analysis, quantitative analysis of acylcarnitines in blood and cultured fibroblasts, urinary organic acids, the standardized 36-item Short-Form Health Status survey (SF-36) version 2, and bioelectric impedance for body fat composition. Diet treatment with triheptanoin at 30% to 35% of total daily caloric intake was used for all patients. Results: Seven patients with CPT II deficiency were studied from 7 to 61 months on the triheptanoin (anaplerotic) diet. Five had previous episodes of rhabdomyolysis requiring hospitalizations and muscle pain on exertion prior to the diet (two younger patients had not had rhabdomyolysis). While on the diet, only two patients experienced mild muscle pain with exercise. During short periods of noncompliance, two patients experienced rhabdomyolysis with exercise. None experienced rhabdomyolysis or hospitalizations while on the diet. All patients returned to normal physical activities including strenuous sports. Exercise restriction was eliminated. Previously abnormal SF-36 physical composite scores returned to normal levels that persisted for the duration of the therapy in all five symptomatic patients. Conclusions: The triheptanoin diet seems to be an effective therapy for adult-onset carnitine palmitoyltransferase II deficiency. GLOSSARY ALT = alanine aminotransferase; AST = aspartate aminotransferase; ATP = adenosine triphosphate; BHP = β-hydroxypentanoate; BKP = β-ketopentanoate; BKP-CoA = β-ketopentanoyl–coenzyme A; BUN = blood urea nitrogen; CAC = citric acid cycle; CoA = coenzyme A; CPK = creatine phosphokinase; CPT II = carnitine palmitoyltransferase II; LDL = low-density lipoprotein; MCT

  4. Vitamin Deficiency Anemia

    MedlinePlus

    Vitamin deficiency anemia Overview By Mayo Clinic Staff Vitamin deficiency anemia is a lack of healthy red blood ... normal amounts of certain vitamins. Vitamins linked to vitamin deficiency anemia include folate, vitamin B-12 and vitamin ...

  5. Alpha-1 Antitrypsin Deficiency

    MedlinePlus

    ... 1 antitrypsin (an-tee-TRIP-sin) deficiency, or AAT deficiency, is a condition that raises your risk ... and other diseases. Some people who have severe AAT deficiency develop emphysema (em-fi-SE-ma)—often ...

  6. Trans isomeric octadecenoic acids are related inversely to arachidonic acid and DHA and positively related to mead acid in umbilical vessel wall lipids.

    PubMed

    Decsi, Tamás; Boehm, Günther; Tjoonk, H M Ria; Molnár, Szilárd; Dijck-Brouwer, D A Janneke; Hadders-Algra, Mijna; Martini, Ingrid A; Muskiet, Frits A J; Boersma, E Rudy

    2002-10-01

    Long-chain PUFA play an important role in early human neurodevelopment. Significant inverse correlations were reported between values of trans isomeric and long-chain PUFA in plasma lipids of preterm infants and children aged 1-15 yr as well as in venous cord blood lipids of full-term infants. Here we report FA compositional data of cord blood vessel wall lipids in 308 healthy, full-term infants (gestational age: 39.7 +/- 1.2 wk, birth weight: 3528 +/- 429 g, mean +/- SD). The median (interquartile range) of the sum of 18-carbon trans FA was 0.22 (0.13) % w/w in umbilical artery and 0.16 (0.10) % w/w in umbilical vein lipids. Nonparametric correlation analysis showed significant inverse correlations between the sum of 18-carbon trans FA and both arachidonic acid and DHA in artery (r = -0.38, P < 0.01, and r = -0.20, P < 0.01) and vein (r = -0.36, P < 0.01, and -0.17, P < 0.01) wall lipids. In addition, the sum of 18-carbon trans FA was significantly positively correlated to Mead acid, a general indicator of EFA deficiency, in both artery (r = +0.35, P < 0.01) and vein (r = +0.31, P< 0.01) wall lipids. The present results obtained in a large group of full-term infants suggest that maternal trans FA intake is inversely associated with long-chain PUFA status of the infant at birth.

  7. Application of a fiber-optic NIR-EFA sensor system for in situ monitoring of aromatic hydrocarbons in contaminated groundwater.

    PubMed

    Buerck, J; Roth, S; Kraemer, K; Scholz, M; Klaas, N

    2001-05-07

    Interaction of analyte molecules with the evanescent wave of light guided in optical fibers is among the most promising novel sensing schemes that can be applied for environmental monitoring and on-line process analysis. By combining this measuring principle with the solid-phase extraction of analyte molecules into the polymer cladding of a fiber, it is possible to perform direct absorption measurements in the cladding, if the fiber is adapted to a conventional spectrometer/photometer. A big advantage of this arrangement is that the measurement is scarcely disturbed by matrix effects (background absorption of water in IR measurements, stray light due to turbidity in the sample). By using near-infrared (NIR) evanescent field absorption (EFA) measurements in quartz glass fibers coated with a hydrophobic silicone membrane it is possible to design and construct sensors for monitoring apolar hydrocarbons (HCs) in aqueous matrices.The paper presents a fiber-optic sensor system for the determination of aromatic HCs in groundwater or industrial wastewater. Generally, this instrument is suitable for quantitative in situ monitoring of pollutants such as aromatic solvents, fuels, mineral oils or chlorinated HCs with relatively low water saturation solubility (typically between 0.01 and 10 g l(-1)). The sensor probe is connected via all-silica fibers to a filter photometer developed at the IFIA, thus, allowing even remote analysis in a monitoring well. This portable instrument provides a total concentration signal of the organic compounds extracted into the fiber cladding by measuring the integral absorption at the 1st C--H overtone bands in the NIR spectral range. In situ measurements with the sensor system were performed in a groundwater circulation well at the VEGAS research facility of the University of Stuttgart (Germany). The NIR-EFA sensor system was tested within the frame of an experiment that was carried through in a tank containing sandy gravel with a groundwater

  8. [Treatment with levodopa can affect latent vitamin B 12 and folic acid deficiency. Patients with Parkinson disease runt the risk of elevated homocysteine levels].

    PubMed

    Lökk, Johan

    2003-08-28

    There is a well-known interaction between vitamin B12, folate, and homocysteine. More unknown is the fact that this interaction might be affected by long-term treatment with levo-dopa in patients with Parkinson's disease. An increase in homocysteine levels and tissue deficiency of vitamin B12 and folate may occur. The responsible doctor should be liberal in checking vitamin B12 and folate status and supplement with appropriate vitamins when needed.

  9. Phenylalanine hydroxylase deficiency.

    PubMed

    Mitchell, John J; Trakadis, Yannis J; Scriver, Charles R

    2011-08-01

    Phenylalanine hydroxylase deficiency is an autosomal recessive disorder that results in intolerance to the dietary intake of the essential amino acid phenylalanine. It occurs in approximately 1:15,000 individuals. Deficiency of this enzyme produces a spectrum of disorders including classic phenylketonuria, mild phenylketonuria, and mild hyperphenylalaninemia. Classic phenylketonuria is caused by a complete or near-complete deficiency of phenylalanine hydroxylase activity and without dietary restriction of phenylalanine most children will develop profound and irreversible intellectual disability. Mild phenylketonuria and mild hyperphenylalaninemia are associated with lower risk of impaired cognitive development in the absence of treatment. Phenylalanine hydroxylase deficiency can be diagnosed by newborn screening based on detection of the presence of hyperphenylalaninemia using the Guthrie microbial inhibition assay or other assays on a blood spot obtained from a heel prick. Since the introduction of newborn screening, the major neurologic consequences of hyperphenylalaninemia have been largely eradicated. Affected individuals can lead normal lives. However, recent data suggest that homeostasis is not fully restored with current therapy. Treated individuals have a higher incidence of neuropsychological problems. The mainstay of treatment for hyperphenylalaninemia involves a low-protein diet and use of a phenylalanine-free medical formula. This treatment must commence as soon as possible after birth and should continue for life. Regular monitoring of plasma phenylalanine and tyrosine concentrations is necessary. Targets of plasma phenylalanine of 120-360 μmol/L (2-6 mg/dL) in the first decade of life are essential for optimal outcome. Phenylalanine targets in adolescence and adulthood are less clear. A significant proportion of patients with phenylketonuria may benefit from adjuvant therapy with 6R-tetrahydrobiopterin stereoisomer. Special consideration must be

  10. Consequences of Essential Fatty Acids

    PubMed Central

    Lands, Bill

    2012-01-01

    Essential fatty acids (EFA) are nutrients that form an amazingly large array of bioactive mediators that act on a large family of selective receptors. Nearly every cell and tissue in the human body expresses at least one of these receptors, allowing EFA-based signaling to influence nearly every aspect of human physiology. In this way, the health consequences of specific gene-environment interactions with these nutrients are more extensive than often recognized. The metabolic transformations have similar competitive dynamics for the n-3 and n-6 homologs when converting dietary EFA from the external environment of foods into the highly unsaturated fatty acid (HUFA) esters that accumulate in the internal environment of cells and tissues. In contrast, the formation and action of bioactive mediators during tissue responses to stimuli tend to selectively create more intense consequences for n-6 than n-3 homologs. Both n-3 and n-6 nutrients have beneficial actions, but many common health disorders are undesired consequences of excessive actions of tissue n-6 HUFA which are preventable. This review considers the possibility of preventing imbalances in dietary n-3 and n-6 nutrients with informed voluntary food choices. That action may prevent the unintended consequences that come from eating imbalanced diets which support excessive chronic actions of n-6 mediators that harm human health. The consequences from preventing n-3 and n-6 nutrient imbalances on a nationwide scale may be very large, and they need careful evaluation and implementation to avoid further harmful consequences for the national economy. PMID:23112921

  11. Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: An analysis of data from the National Health and Nutrition Examination Survey indicated that in older adults exposed to folic acid fortification, the combination of low serum vitamin B-12 and elevated folate is associated with higher concentrations of homocysteine and methylmalonic acid ...

  12. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    PubMed

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats.

  13. Do polyunsaturated fatty acids behave like an endogenous "polypill"?

    PubMed

    Das, Undurti N

    2008-01-01

    Lowering plasma low density lipoprotein-cholesterol (LDL-C), blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a beta blocker, and an angiotensin converting enzyme (ACE) inhibitor each at half standard dose; folic acid; and aspirin - called as polypill - was estimated to reduce cardiovascular events by approximately 80%. Essential fatty acids (EFAs) and their long-chain metabolites and other products prevent platelet aggregation, lower blood pressure, reduce LDL-C, and ameliorate the adverse actions of homocysteine. Thus, EFAs and their metabolites show all the actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules, have no significant side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and children; and have been shown to reduce the incidence cardiovascular diseases. I propose that a rational combination of omega-3 and omega-6 fatty acids is as beneficial as that of the "polypill"; and may even show additional benefit in the prevention of depression, schizophrenia, Alzheimer's disease, and enhance cognitive function.

  14. Leaf Senescence by Magnesium Deficiency

    PubMed Central

    Tanoi, Keitaro; Kobayashi, Natsuko I.

    2015-01-01

    Magnesium ions (Mg2+) are the second most abundant cations in living plant cells, and they are involved in various functions, including photosynthesis, enzyme catalysis, and nucleic acid synthesis. Low availability of Mg2+ in an agricultural field leads to a decrease in yield, which follows the appearance of Mg-deficient symptoms such as chlorosis, necrotic spots on the leaves, and droop. During the last decade, a variety of physiological and molecular responses to Mg2+ deficiency that potentially link to leaf senescence have been recognized, allowing us to reconsider the mechanisms of Mg2+ deficiency. This review focuses on the current knowledge about the physiological responses to Mg2+ deficiency including a decline in transpiration, accumulation of sugars and starch in source leaves, change in redox states, increased oxidative stress, metabolite alterations, and a decline in photosynthetic activity. In addition, we refer to the molecular responses that are thought to be related to leaf senescence. With these current data, we give an overview of leaf senescence induced by Mg deficiency. PMID:27135350

  15. Vaccination with DNA Encoding Truncated Enterohemorrhagic Escherichia coli (EHEC) Factor for Adherence-1 Gene (efa-1′) Confers Protective Immunity to Mice Infected with E. coli O157:H7

    PubMed Central

    Riquelme-Neira, Roberto; Rivera, Alejandra; Sáez, Darwin; Fernández, Pablo; Osorio, Gonzalo; del Canto, Felipe; Salazar, Juan C.; Vidal, Roberto M.; Oñate, Angel

    2016-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1′) in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1′ gene (pVAXefa-1′) into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1′, EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1′ have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle. PMID:26835434

  16. Vaccination with DNA Encoding Truncated Enterohemorrhagic Escherichia coli (EHEC) Factor for Adherence-1 Gene (efa-1') Confers Protective Immunity to Mice Infected with E. coli O157:H7.

    PubMed

    Riquelme-Neira, Roberto; Rivera, Alejandra; Sáez, Darwin; Fernández, Pablo; Osorio, Gonzalo; del Canto, Felipe; Salazar, Juan C; Vidal, Roberto M; Oñate, Angel

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1') in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1' gene (pVAXefa-1') into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1', EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1' have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle.

  17. Micronutrient deficiencies in developing and affluent countries.

    PubMed

    Díaz, J R; de las Cagigas, A; Rodríguez, R

    2003-09-01

    Micronutrient deficiencies, also known as 'hidden hunger', are determining and aggravating factors for health status and quality of life. Three nutritional problems that have serious consequences are deficiencies of iron, vitamin A and iodine. It is estimated that in today's world, iron deficiency anemia affects two billion people, mostly women and children. Blindness due to vitamin A deficiency affects 2.8 million children under 5 years of age. Iodine deficiency disorders affect 740 million people. Cuba is employing various programs to deal with these micronutrient deficiencies. Dietary diversification, fortification of foods and supplementation with pharmaceutical preparations are included in Cuba's response to these deficiencies. Urban agriculture is one strategy to increase dietary diversity. The aim is to increase both the availability and consumption of vegetables and fruits. Food fortification takes many forms in Cuba today and various supplementation programs are carried out. The most common supplemental program in the country is the prenatal program. This program provides four essential nutrients: iron, ascorbic acid, vitamin A and folic acid. At present, iodination covers more than 90% of the total amount of salt used for human consumption. Results of research carried out in Cuba have shown that vitamin A deficiency is nonexistent in children up to 7 y of age. Foods and preparations for these programs are delivered gratuitously or at very low prices.

  18. Production of optically pure L-lactic acid from lignocellulosic hydrolysate by using a newly isolated and D-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain.

    PubMed

    Kuo, Yang-Cheng; Yuan, Shuo-Fu; Wang, Chun-An; Huang, Yin-Jung; Guo, Gia-Luen; Hwang, Wen-Song

    2015-12-01

    The use of lignocellulosic feedstock for lactic acid production with a difficulty is that the release of inhibitory compounds during the pretreatment process which inhibit the growth of microorganism. Thus we report a novel lactic acid bacterium, Lactobacillus paracasei 7 BL, that has a high tolerance to inhibitors and produced optically pure l-lactic acid after the interruption of ldhD gene. The strain 7 BL fermented glucose efficiently and showed high titer of l-lactic acid (215 g/l) by fed-batch strategy. In addition, 99 g/l of l-lactic acid with high yield (0.96 g/g) and productivity (2.25-3.23 g/l/h) was obtained by using non-detoxified wood hydrolysate. Rice straw hydrolysate without detoxification was also tested and yielded a productivity rate as high as 5.27 g/l/h. Therefore, L. paracasei 7 BL represents a potential method of l-lactic acid production from lignocellulosic biomass and has attractive application for industries.

  19. Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis.

    PubMed

    Segarra, Silvia; Mir, Ricardo; Martínez, Cristina; León, José

    2010-01-01

    Salicylic acid (SA) has been characterized as an activator of pathogen-triggered resistance of plants. SA also regulates developmental processes such as thermogenesis in floral organs and stress-induced flowering. To deepen our knowledge of the mechanism underlying SA regulation of flowering time in Arabidopsis, we compared the transcriptomes of SA-deficient late flowering genotypes with wild-type plants. Down- or up-regulated genes in SA-deficient plants were screened for responsiveness to ultraviolet (UV)-C light, which accelerates flowering in Arabidopsis. Among them, only Pathogen and Circadian Controlled 1 (PCC1) was up-regulated by UV-C light through a SA-dependent process. Moreover, UV-C light-activated expression of PCC1 was also dependent on the flowering activator CONSTANS (CO). PCC1 gene has a circadian-regulated developmental pattern of expression with low transcript levels after germination that increased abruptly by day 10. RNAi plants with very low expression of PCC1 gene were late flowering, defective in UV-C light acceleration of flowering and contained FLOWERING LOCUS T (FT) transcript levels below 5% of that detected in wild-type plants. Although PCC1 seems to function between CO and FT in the photoperiod-dependent flowering pathway, transgenic plants overexpressing a Glucocorticoid Receptor (GR)-fused version of CO strongly activated FT but not PCC1 after dexamethasone treatment.

  20. Osteopetrorickets due to Snx10 Deficiency in Mice Results from Both Failed Osteoclast Activity and Loss of Gastric Acid-Dependent Calcium Absorption

    PubMed Central

    Ye, Liang; Morse, Leslie R.; Zhang, Li; Sasaki, Hajime; Mills, Jason C.; Odgren, Paul R.; Sibbel, Greg; Stanley, James R. L.; Wong, Gee; Zamarioli, Ariane; Battaglino, Ricardo A.

    2015-01-01

    Mutations in sorting nexin 10 (Snx10) have recently been found to account for roughly 4% of all human malignant osteopetrosis, some of them fatal. To study the disease pathogenesis, we investigated the expression of Snx10 and created mouse models in which Snx10 was knocked down globally or knocked out in osteoclasts. Endocytosis is severely defective in Snx10-deficent osteoclasts, as is extracellular acidification, ruffled border formation, and bone resorption. We also discovered that Snx10 is highly expressed in stomach epithelium, with mutations leading to high stomach pH and low calcium solubilization. Global Snx10-deficiency in mice results in a combined phenotype: osteopetrosis (due to osteoclast defect) and rickets (due to high stomach pH and low calcium availability, resulting in impaired bone mineralization). Osteopetrorickets, the paradoxical association of insufficient mineralization in the context of a positive total body calcium balance, is thought to occur due to the inability of the osteoclasts to maintain normal calcium–phosphorus homeostasis. However, osteoclast-specific Snx10 knockout had no effect on calcium balance, and therefore led to severe osteopetrosis without rickets. Moreover, supplementation with calcium gluconate rescued mice from the rachitic phenotype and dramatically extended life span in global Snx10-deficient mice, suggesting that this may be a life-saving component of the clinical approach to Snx10-dependent human osteopetrosis that has previously gone unrecognized. We conclude that tissue-specific effects of Snx10 mutation need to be considered in clinical approaches to this disease entity. Reliance solely on hematopoietic stem cell transplantation can leave hypocalcemia uncorrected with sometimes fatal consequences. These studies established an essential role for Snx10 in bone homeostasis and underscore the importance of gastric acidification in calcium uptake. PMID:25811986

  1. [Powdered milk enriched with iron and ascorbic acid as an intervention measure for treating iron deficiency anemia in children seen at a Basic Health Care Unit].

    PubMed

    Torres, M A; Sato, K; Juliano, Y; Queiroz, S de S

    1996-06-01

    This study was undertaken to verify the influence of the use of iron and Vitamin C fortified powdered whole milk on the hemoglobin levels of 238 children, aged 6 to 18 months, seen at a Basic Health Care Unit in the State of São Paulo. The powdered milk was fortified with 9 mg of iron (ferrous sulfate) and 65 mg of Vitamin C for each 100 g of powder. 4 kg/month were distributed to children under one year and 2 kg/month to those over one year of age. Clinical, anthropometric and hematological (hemoglobin level measurements) evaluations were performed at the onset of the study and at three month intervals after the beginning of the supplementation. At the end of the trial, there was still enough milk available to extend the intervention for a group of 39 children who had presented the worst evolution in the first six months. At the onset of the study, 72.6% of the children presented anemia. After 3 and 6 months, these percentages had decreased to 38.9% and 18.5%, respectively. Among the children that were followed-up for 9 months, their were only 2.5% who presented anemia at the end of the intervention. The highest prevalences were found in the 6 to 12 months age group and the best results in the 10 to 18 month group. There was intrafamilial dilution of the milk in 30.7% of the cases. With or without intrafamilial milk sharing, there were significant decreases in anemia occurrences with no differences between the two groups. The use of fortified milk did not affect the children nutritional condition. This study permitted the conclusion that the fortification of foodstuffs, besides being the method of election for the prevention of iron deficiency, is an excellent alternative for the treatment of and recovery from iron deficient anemia in children under two years of age.

  2. High-level production of ethylmalonyl-CoA pathway-derived dicarboxylic acids by Methylobacterium extorquens under cobalt-deficient conditions and by polyhydroxybutyrate negative strains.

    PubMed

    Sonntag, Frank; Müller, Jonas E N; Kiefer, Patrick; Vorholt, Julia A; Schrader, Jens; Buchhaupt, Markus

    2015-04-01

    Bio-based production of dicarboxylic acids is an emerging research field with remarkable progress during the last decades. The recently established synthesis of the ethylmalonyl-CoA pathway (EMCP)-derived dicarboxylic acids, mesaconic acid and (2S)-methylsuccinic acid, from the alternative carbon source methanol (Sonntag et al., Appl Microbiol Biotechnol 98:4533-4544, 2014) gave a proof of concept for the sustainable production of hitherto biotechnologically inaccessible monomers. In this study, substantial optimizations of the process by different approaches are presented. Abolishment of mesaconic and (2S)-methylsuccinic acid reuptake from culture supernatant and a productivity increase were achieved by 30-fold decreased sodium ion availability in culture medium. Undesired flux from EMCP into polyhydroxybutyrate (PHB) cycle was hindered by the knockout of polyhydroxyalkanoate synthase phaC which was concomitant with 5-fold increased product concentrations. However, frequently occurring suppressors of strain ΔphaC lost their beneficial properties probably due to redirected channeling of acetyl-CoA. Pool sizes of the product precursors were increased by exploiting the presence of two cobalt-dependent mutases in the EMCP: Fine-tuned growth-limiting cobalt concentrations led to 16-fold accumulation of mesaconyl- and (2S)-methylsuccinyl-CoA which in turn resulted in 6-fold increased concentrations of mesaconic and (2S)-methylsuccinic acids, with a combined titer of 0.65 g/l, representing a yield of 0.17 g/g methanol. This work represents an important step toward an industrially relevant production of ethylmalonyl-CoA pathway-derived dicarboxylic acids and the generation of a stable PHB synthesis negative Methylobacterium extorquens strain.

  3. Adaptation of human immunodeficiency virus type 1 to cells expressing a binding-deficient CD4 mutant (lysine 46 to aspartic acid).

    PubMed Central

    Choe, H R; Sodroski, J

    1995-01-01

    Human immunodeficiency virus (HIV-1) was adapted to replicate efficiently in cells expressing an altered form of the CD4 viral receptor. The mutant CD4 (46 K/D) contained a single amino acid change (lysine 46 to aspartic acid) in the CDR2 loop of domain 1, which results in a 15-fold reduction in affinity for the viral gp120 glycoprotein. The ability of the adapted virus to replicate in CD4 46 K/D-expressing cells was independently enhanced by single amino acid changes in the V2 variable loop, the V3 variable loop, and the fourth conserved (C4) region of the gp120 glycoprotein. Combinations of these amino acids in the same envelope glycoprotein resulted in additive enhancement of virus replication in cells expressing the CD4 46 K/D molecule. In cells expressing the wild-type CD4 glycoproteins, the same V2 and V3 residue changes also increased the efficiency of replication of a virus exhibiting decreased receptor-binding ability due to an amino acid change (aspartic acid 368 to glutamic acid) in the gp120 glycoprotein. In neither instance did the adaptive changes restore the binding ability of the monomeric gp120 glycoprotein or the oligomeric envelope glycoprotein complex for the mutant or wild-type CD4 glycoproteins, respectively. Thus, particular conformations of the gp120 V2 and V3 variable loops and of the C4 region allow postreceptor binding events in the membrane fusion process to occur in the context of less than optimal receptor binding. These results suggest that the fusion-related functions of the V2, V3, and C4 regions of gp120 are modulated by CD4 binding. PMID:7707502

  4. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  5. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  6. Pyruvate kinase deficiency

    MedlinePlus

    ... the second most common cause, after glucose-6-phosphate dehydrogenase (G6PD) deficiency . PKD is found in people ... Read More Anemia Autosomal recessive Enzyme Glucose-6-phosphate dehydrogenase deficiency Hemolytic anemia Review Date 10/27/ ...

  7. Vitamin D Deficiency

    MedlinePlus

    Vitamin D Deficiency A Patient’s Guide Vitamin D helps the body absorb calcium. Along with calcium, it is vital ... for physicians about testing for, treating, and preventing vitamin D deficiency. These guidelines do not apply to people who ...

  8. Folate-deficiency anemia

    MedlinePlus

    ... medlineplus.gov/ency/article/000551.htm Folate-deficiency anemia To use the sharing features on this page, please enable JavaScript. Folate-deficiency anemia is a decrease in red blood cells (anemia) ...

  9. Nutrition and hair: deficiencies and supplements.

    PubMed

    Finner, Andreas M

    2013-01-01

    Hair follicle cells have a high turnover. A caloric deprivation or deficiency of several components, such as proteins, minerals, essential fatty acids, and vitamins, caused by inborn errors or reduced uptake, can lead to structural abnormalities, pigmentation changes, or hair loss, although exact data are often lacking. The diagnosis is established through a careful history, clinical examination of hair loss activity, and hair quality and confirmed through targeted laboratory tests. Examples of genetic hair disorders caused by reduced nutritional components are zinc deficiency in acrodermatitis enteropathica and copper deficiency in Menkes kinky hair syndrome.

  10. Detection and Treatment of Long-Chain Omega-3 Fatty Acid Deficiency in Adolescents with SSRI-Resistant Major Depressive Disorder.

    PubMed

    McNamara, Robert K; Strimpfel, Jennifer; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Welge, Jeffrey A; Strawn, Jeffrey R; Delbello, Melissa P

    2014-04-01

    Residual depressive symptoms are commonly observed in adolescents with major depressive disorder (MDD) following treatment with selective serotonin reuptake inhibitors (SSRIs). This study combined a case-control analysis and an open-label fish oil (FO) trial to investigate the relationship between long-chain omega-3 (LCn-3) fatty acid status and residual depressive symptoms in SSRI-resistant adolescent MDD patients. Baseline erythrocyte docosahexaenoic acid (DHA)(-28%, p=0.0003), but not eicosapentaenoic acid (EPA)(-18%, p=0.2), was significantly lower in patients (n=20) compared with healthy controls (n=20). Patients receiving 10-week low-dose (2.4 g/d, n=7) and high-dose (16.2 g/d, n=7) FO exhibited significant increases in erythrocyte EPA and DHA composition. In the intent-to-treat sample, depressive symptoms decreased significantly in the high-dose group (n=7, -40%, p<0.0001), and there was a trend in the low-dose group (n=10, -20%, p=0.06). Symptom remission was observed in 40% of patients in the low-dose group and 100% of patients in the high-dose group. There were no significant changes in vital signs and adverse events were rated as mild or moderate in severity. These preliminary findings demonstrate that adolescents with SSRI-resistant depression exhibit robust DHA deficits, and suggest that adjunctive FO supplementation is well-tolerated and effective for increasing LCn-3 fatty acid status and augmenting SSRI antidepressant effects.

  11. Progress towards EFA in Tanzania

    ERIC Educational Resources Information Center

    Woods, Eric

    2008-01-01

    Positive developments are identified, notably a strong policy and planning environment linked to overall strategy for growth and poverty reduction, leading to vigorous commitment to achievement of the Millennium Development Goals. Abolition of school fees, and a measure of compulsion, resulted in significant gains in school enrolment, including…

  12. Meeting EFA: Afghanistan Community Schools

    ERIC Educational Resources Information Center

    Balwanz; David

    2007-01-01

    From 1979 to 2002, Afghanistan was in a near constant state of war and exhibited some of the lowest levels of development in the world. While local conflicts and Taliban remnants continue to challenge Afghanistan's reconstruction and stabilization, significant progress has been made since the 2001 U.S. led invasion and subsequent fall of the…

  13. Simultaneous high-performance liquid chromatography determination of coenzyme A, dephospho-coenzyme A, and acetyl-coenzyme A in normal and pantothenic acid-deficient rats.

    PubMed

    Shibata, Katsumi; Nakai, Takumi; Fukuwatari, Tsutomu

    2012-11-15

    We describe here a simultaneous high-performance liquid chromatography method for practical and rapid determination of coenzyme A (CoA), dephospho-CoA, and acetyl-CoA in tissues. These coenzymes are biosynthesized from the vitamin pantothenic acid (PaA), which is involved in the metabolism of fatty acids, amino acid catabolism, and several other nutrients. The method employed a Tosoh TSK-GEL ODS-100 V column (250×4.6mm i.d., particle size 5μm) eluted with 100mmol/L NaH(2)PO(4) and 75mmol/L CH(3)COONa (pH was adjusted to 4.6 by the addition of concentrated H(3)PO(4))-acetonitrile (94:6, v/v) at a flow rate of 1.0ml/min. The ultraviolet detector was set at 259nm. The limits of detection for CoA, dephospho-CoA, and acetyl-CoA all were 10pmol. The method was applied to the analysis of several tissues of rats fed normal and PaA-free diets. The results clearly showed that the method was suitable for the simultaneous determination of CoA, dephospho-CoA, and acetyl-CoA in the liver, heart, kidney, spleen, testis, large colon, and muscle, but not for the small intestine, of rats.

  14. Subcellular relocalization of a long-chain fatty acid CoA ligase by a suppressor mutation alleviates a respiration deficiency in Saccharomyces cerevisiae.

    PubMed Central

    Harington, A; Schwarz, E; Slonimski, P P; Herbert, C J

    1994-01-01

    We have isolated an extragenic suppressor, FAM1-1, which is able to restore respiratory growth to a deletion of the CEM1 gene (mitochondrial beta-keto-acyl synthase). The sequence of the suppressor strongly suggests that it encodes a long-chain fatty acid CoA ligase (fatty-acyl-CoA synthetase). We have also cloned and sequenced the wild-type FAM1 gene, which is devoid of suppressor activity. The comparison of the two sequences shows that the suppressor mutation is an A-->T transversion, which creates a new initiation codon and adds 18 amino acids to the N-terminus of the protein. This extension has all the characteristics of a mitochondrial targeting sequence, whilst the N-terminus of the wild-type protein has none of these characteristics. In vitro mitochondrial import experiments show that the N-terminal half of the suppressor protein, but not of the wild-type, is transported into mitochondria. Thus, we hypothesize that the suppressor acts by changing the subcellular localization of the protein and relocating at least some of the enzyme from the cytosol to the mitochondria. These results support the hypothesis that some form of fatty acid synthesis, specific for the mitochondria, is essential for the function of the organelle. Images PMID:7988550

  15. Epidemiology of iodine deficiency.

    PubMed

    Vanderpump, Mark P

    2017-04-01

    Iodine is an essential component of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) produced by the thyroid gland. Iodine deficiency impairs thyroid hormone production and has adverse effects throughout life, particularly early in life as it impairs cognition and growth. Iodine deficiency remains a significant problem despite major national and international efforts to increase iodine intake, primarily through the voluntary or mandatory iodization of salt. Recent epidemiological data suggest that iodine deficiency is an emerging issue in industrialized countries, previously thought of as iodine-sufficient. International efforts to control iodine deficiency are slowing, and reaching the third of the worldwide population that remains deficient poses major challenges.

  16. Nutritional Deficiencies and Phospholipid Metabolism

    PubMed Central

    Gimenez, María S.; Oliveros, Liliana B.; Gomez, Nidia N.

    2011-01-01

    Phospholipids are important components of the cell membranes of all living species. They contribute to the physicochemical properties of the membrane and thus influence the conformation and function of membrane-bound proteins, such as receptors, ion channels, and transporters and also influence cell function by serving as precursors for prostaglandins and other signaling molecules and modulating gene expression through the transcription activation. The components of the diet are determinant for cell functionality. In this review, the effects of macro and micronutrients deficiency on the quality, quantity and metabolism of different phospholipids and their distribution in cells of different organs is presented. Alterations in the amount of both saturated and polyunsaturated fatty acids, vitamins A, E and folate, and other micronutrients, such as zinc and magnesium, are discussed. In all cases we observe alterations in the pattern of phospholipids, the more affected ones being phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The deficiency of certain nutrients, such as essential fatty acids, fat-soluble vitamins and some metals may contribute to a variety of diseases that can be irreversible even after replacement with normal amount of the nutrients. Usually, the sequelae are more important when the deficiency is present at an early age. PMID:21731449

  17. Development of a nuclear transformation system for Oleaginous Green Alga Lobosphaera (Parietochloris) incisa and genetic complementation of a mutant strain, deficient in arachidonic acid biosynthesis.

    PubMed

    Zorin, Boris; Grundman, Omer; Khozin-Goldberg, Inna; Leu, Stefan; Shapira, Michal; Kaye, Yuval; Tourasse, Nicolas; Vallon, Olivier; Boussiba, Sammy

    2014-01-01

    Microalgae are considered a promising source for various high value products, such as carotenoids, ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The unicellular green alga Lobosphaera (Parietochloris) incisa is an outstanding candidate for the efficient phototrophic production of arachidonic acid (AA), an essential ω-6 PUFA for infant brain development and a widely used ingredient in the baby formula industry. Although phototrophic production of such algal products has not yet been established, estimated costs are considered to be 2-5 times higher than competing heterotrophic production costs. This alga accumulates unprecedented amounts of AA within triacylglycerols and the molecular pathway of AA biosynthesis in L. incisa has been previously elucidated. Thus, progress in transformation and metabolic engineering of this high value alga could be exploited for increasing the efficient production of AA at competitive prices. We describe here the first successful transformation of L. incisa using the ble gene as a selection marker, under the control of the endogenous RBCS promoter. Furthermore, we have succeeded in the functional complementation of the L. incisa mutant strain P127, containing a mutated, inactive version of the delta-5 (Δ5) fatty acid desaturase gene. A copy of the functional Δ5 desaturase gene, linked to the ble selection marker, was transformed into the P127 mutant. The resulting transformants selected for zeocine resistant, had AA biosynthesis partially restored, indicating the functional complementation of the mutant strain with the wild-type gene. The results of this study present a platform for the successful genetic engineering of L. incisa and its long-chain PUFA metabolism.

  18. GLUT-4, tumor necrosis factor, essential fatty acids and daf-genes and their role in insulin resistance and non-insulin dependent diabetes mellitus.

    PubMed

    Das, U N

    1999-01-01

    It is now believed that the GLUT-4 receptor, tumor necrosis factor-alpha (TNF-alpha), essential fatty acids (EFAs) and their metabolites and daf-genes have an important role in the development of obesity and non-insulin dependent diabetes mellitus (NIDDM). The protein encoded by daf-2 is 35% identical to the human insulin receptor, daf-7 codes a transforming growth factor-beta (TGF-beta) type signal and daf-16 can enhance superoxide dismutase (SOD) expression. EFAs and their metabolites can alter the cell membrane fluidity and enhance the expression of GLUT-4 and insulin receptors. EFAs can suppress TNF-alpha production and secretion, a mechanism that may have relevance to the role of these fatty acids in the pathogenesis of insulin resistance, obesity and NIDDM. Melatonin has anti-oxidant actions similar to daf-16, TGF-beta and SOD. Based on this evidence, it is proposed that GLUT-4, TNF-alpha, EFAs, daf-genes, melatonin and leptin interact with each other in ways which may have relevance to the development or abrogation of insulin resistance, obesity, NIDDM, complications due to NIDDM, longevity and ageing.

  19. Effects of partial and total colectomy on mineral and acid-base homoeostasis in the rat: magnesium deficiency, hyperphosphaturia and osteopathy, in the presence of high serum 1,25-dihydroxyvitamin D but normal parathyroid hormone.

    PubMed

    Croner, R; Schwille, P O; Erben, R G; Gepp, H; Stahr, K; Rümenapf, G; Parth, R; Scheuerlein, H

    2000-06-01

    The effects of colectomy on acid-base status, extra-osseous and bone minerals, calciotropic hormones and bone morphology have not yet been studied. To rectify this, groups of normally fed male rats were subjected to distal (n=11), proximal (n=12) or total (n=12) colectomy. Sham-operated rats (n=12) served as controls. At 112 (+/-2) days after colectomy the following changes were noted: (1) weight gain was delayed; (2) faecal excretion of calcium and phosphorus was normal, whereas that of magnesium was increased; (3) intestinal calcium secretion and absorption of calcium and phosphorus were normal, but magnesium absorption was decreased; (4) urinary excretion of magnesium was also decreased, that of phosphorus was increased, and that of pyridinium and deoxypyridinium tended to be high; (5) the serum levels of ionized magnesium, total calcium, 25-hydroxyvitamin D and parathyroid hormone were normal, while that of 1,25-dihydroxyvitamin D was markedly elevated; and (6) bone magnesium and phosphorus content were decreased, but bone calcium was normal, and thus the bone calcium/phosphorus ratio was high. These abnormalities were associated with moderate metabolic acidosis, as reflected by high urinary ammonium, low citrate and low total CO(2), but normal blood gases. Significant structural abnormalities of bone were not detectable, but trabecular bone tended to show rarefication. Distal colectomy had the least effect, whereas proximal and total colectomies had a distinct effect, on these parameters. It is concluded that colectomy in the rat causes: (1) a syndrome of magnesium deficiency of intestinal origin, compensated metabolic acidosis, urinary phosphorus loss, and high circulating 1,25-dihydroxyvitamin D levels, with the degree depending on the extent of surgical resection; and (2) brittle bones, a feature characteristic of low bone magnesium and more generalized magnesium deficiency. The mechanisms leading to this syndrome are unknown, but altered tissue levels of

  20. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; da Silva, Janaína Camacho; Wajner, Alessandro; Godoy, Kálita Dos Santos; Ribeiro, Rafael Teixeira; Wajner, Moacir

    2016-09-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is biochemically characterized by tissue accumulation of octanoic (OA), decanoic (DA) and cis-4-decenoic (cDA) acids, as well as by their carnitine by-products. Untreated patients present episodic encephalopathic crises and biochemical liver alterations, whose pathophysiology is poorly known. We investigated the effects of OA, DA, cDA, octanoylcarnitine (OC) and decanoylcarnitine (DC) on critical mitochondrial functions in rat brain and liver. DA and cDA increased resting respiration and diminished ADP- and CCCP-stimulated respiration and complexes II-III and IV activities in both tissues. The data indicate that these compounds behave as uncouplers and metabolic inhibitors of oxidative phosphorylation. Noteworthy, metabolic inhibition was more evident in brain as compared to liver. DA and cDA also markedly decreased mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded brain and liver mitochondria. The reduction of Ca(2+) retention capacity was more pronounced in liver and totally prevented by cyclosporine A and ADP, as well as by ruthenium red, demonstrating the involvement of mitochondrial permeability transition (mPT) and Ca(2+). Furthermore, cDA induced lipid peroxidation in brain and liver mitochondria and increased hydrogen peroxide formation in brain, suggesting the participation of oxidative damage in cDA-induced alterations. Interestingly, OA, OC and DC did not alter the evaluated parameters, implying lower toxicity for these compounds. Our results suggest that DA and cDA, in contrast to OA and medium-chain acylcarnitines, disturb important mitochondrial functions in brain and liver by multiple mechanisms that are possibly involved in the neuropathology and liver alterations observed in MCAD deficiency.

  1. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis.

    PubMed

    Miura, Kenji; Okamoto, Hiroyuki; Okuma, Eiji; Shiba, Hayato; Kamada, Hiroshi; Hasegawa, Paul M; Murata, Yoshiyuki

    2013-01-01

    Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1-mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA-dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA-dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA-responsive genes, such as PR1 and PR2. Furthermore, other SA-accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.

  2. Growth-promoting activity of pyrazinoic acid, a putative active compound of antituberculosis drug pyrazinamide, in niacin-deficient rats through the inhibition of ACMSD activity.

    PubMed

    Fukuwatari, Tsutomu; Sugimoto, Etsuro; Shibata, Katsumi

    2002-07-01

    We have recently reported that the antituberculosis drug, pyrazinamide (PZA), caused a significant increase in the conversion ratio of tryptophan to niacin in rats. In the present work, we investigated whether or not pyrazinoic acid (POA), a putative metabolite of PZA, increased the conversion ratio of tryptophan to niacin. Weaning rats were fed with a niacin-free and tryptophan-limited diet (negative control diet), or with the negative control diet supplemented with 0.003% nicotinic acid (positive control diet) or 1% POA (test diet) for 27 days. The growth rate was almost same between the groups fed on the positive control diet and the test diet. Dietary POA significantly increased the conversion ratio of tryptophan to niacin. Although POA did not directly inhibit the activity of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), the rate-limiting enzyme in the tryptophan-niacin pathway, liver ACMSD activity was only not detected in the test diet group. These results suggest that a derivative of POA metabolized by rats inhibited the ACMSD activity.

  3. Effects of Adding Super Dose Phytase to the Phosphorus-deficient Diets of Young Pigs on Growth Performance, Bone Quality, Minerals and Amino Acids Digestibilities

    PubMed Central

    Zeng, Z. K.; Wang, D.; Piao, X. S.; Li, P. F.; Zhang, H. Y.; Shi, C. X.; Yu, S. K.

    2014-01-01

    Two experiments were conducted to evaluate the efficacy of feeding an Escherichia coli (E. coli) derived phytase to pigs fed P deficient, corn-soybean meal diets. In Exp. 1, one hundred and twenty crossbred piglets (9.53±0.84 kg) were allocated to one of five treatments which consisted of four low P diets (0.61% Ca, 0.46% total P and 0.24% non-phytate P) supplemented with 0, 500, 1,000, or 20,000 FTU/kg E. coli phytase as well as a positive control formulated to be adequate in all nutrients (0.77% Ca, 0.62% total P and 0.42% non-phytate P). The treatments were applied to six pens with four pigs per pen for 28 days. In Exp. 2, ten crossbred pigs (19.66±1.16 kg) fitted with ileal T-cannula were used in a nutrient balance study. The pigs were assigned to treatments similar to those used in Exp. 1 in a doubly replicated 5×4 incomplete Latin square design (5 diets with 4 periods). Each period consisted of a 5-d adjustment period followed by a 3-d total collection of feces and urine and then a 2-d collection of ileal digesta. Supplementation with phytase linearly increased (p<0.05) weight gain, feed intake, feed efficiency, bone breaking strength and fat-free dry and ash bone weight. There were linear increases (p<0.01) in the apparent ileal digestibility (AID) of DM, GE, CP, Ca, total P, inositol hexaphosphate (IP6) and some AA with increasing dose of E. coli phytase. Pigs fed 20,000 FTU/kg had a greater (p<0.05) AID of IP6 (80% vs 59% or 64%, respectively) than pigs fed diets with 500 or 1,000 FTU/kg phytase. There were linear increases (p<0.05) in the total tract digestibility of Ca, total P, Na, K, Mg, and Zn as well as in the retention of Mg and Zn with increased phytase dose. The retention and utilization of Cu, and the total tract digestibility of CP and Cu quadratic increased (p<0.05) with increased phytase dose. In conclusion, supplementation of 500 FTU of phytase/kg and above effectively hydrolyzed phytate in low-P corn-soybean diets for pigs. In addition, a

  4. Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes

    NASA Astrophysics Data System (ADS)

    Menet, V.; Prieto, M.; Privat, A.; Giménez Y Ribotta, M.

    2003-07-01

    The lack of axonal regeneration in the injured adult mammalian spinal cord leads to permanent functional disabilities. The inability of neurons to regenerate their axon is appreciably due to an inhospitable environment made of an astrocytic scar. We generated mice knock-out for glial fibrillary acidic protein and vimentin, the major proteins of the astrocyte cytoskeleton, which are upregulated in reactive astrocytes. These animals, after a hemisection of the spinal cord, presented reduced astroglial reactivity associated with increased plastic sprouting of supraspinal axons, including the reconstruction of circuits leading to functional restoration. Therefore, improved anatomical and functional recovery in the absence of both proteins highlights the pivotal role of reactive astrocytes in axonal regenerative failure in adult CNS and could lead to new therapies of spinal cord lesions.

  5. Photoinhibition and recovery in a herbicide-resistant mutant from Glycine max (L.) Merr. cell cultures deficient in fatty acid unsaturation.

    PubMed

    Alfonso, Miguel; Collados, Raquel; Yruela, Inmaculada; Picorel, Rafael

    2004-07-01

    Photoinhibition and recovery were studied in two photosynthetic cell suspensions from soybean (Glycine max L. Merr): the wild type (WT) and the herbicide-resistant D1 mutant STR7. This mutant also showed an increase in saturated fatty acids from thylakoid lipids. STR7 was more sensitive to photoinhibition under culture conditions. In vivo photoinhibition experiments in the presence of chloramphenicol, in vitro studies in isolated thylakoid membranes, and immunoblot analysis indicated that the process of light-induced degradation of the D1 protein was not involved in the response of STR7 to light. At growth temperature (24 degrees C), the recovery rate of photoinhibited photosystem II (PSII) was slower in STR7 relative to WT. Photoinhibition and recovery were differentially affected by temperature in both cell lines. The rates of photoinhibition were faster in STR7 at any temperature below 27 degrees C. The rates of PSII recovery from STR7 were more severely affected than those of WT at temperatures lower than 24 degrees C. The photoinhibition and recovery rates of WT at 17 degrees C mimicked those of STR7 at 24 degrees C. In organelle translation studies indicated that synthesis and elongation of D1 were substantially similar in both cell lines. However, sucrose gradient fractionation of chloroplast membranes demonstrated that D1 and also other PSII proteins such as D2, OEE33, and LCHII had a reduced capability to incorporate into PSII to yield a mature assembled complex in STR7. This effect may become the rate-limiting step during the recovery of photoinhibited PSII and may explain the increased sensitivity to high light found in STR7. Our data may hint at a possible role of fatty acids from membrane lipids in the assembly and dynamics of PSII.

  6. Serum fatty acid profiles and potential biomarkers of ankylosing spondylitis determined by gas chromatography-mass spectrometry and multivariate statistical analysis.

    PubMed

    Chen, Rui; Han, Su; Dong, Daming; Wang, Yansong; Liu, Qingpeng; Xie, Wei; Li, Mi; Yao, Meng

    2015-04-01

    Ankylosing spondylitis (AS) is a common chronic inflammatory rheumatic disease. Early and accurate detection is essential for effective disease treatment. Recently, research has focused on genomics and proteomics. However, the associated metabolic variations, especially fatty acid profiles, have been poorly discussed. In this study, the gas chromatography-mass spectrometry (GC-MS) approach and multivariate statistical analysis were used to investigate the metabolic profiles of serum free fatty acids (FFAs) and esterified fatty acids (EFAs) in AS patients. The results showed that significant differences in most of the FFA (C12:0, C16:0, C16:1, C18:3, C20:4, C20:5, C22:5 and C22:6) and EFA (C12:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:4 and C22:6) concentrations were found between the AS patients and healthy controls (p < 0.05). Principal component analysis and partial least squares discriminant analysis were performed to classify the AS patients and controls. Additionally, FFAs C20:4, C12:0, C18:3 and EFAs C22:6, C12:0 were confirmed as potential biomarkers to identify AS patients and healthy controls. The present study highlights that differences in the serum FFA and EFA profiles of AS patients reflect the metabolic disorder. Moreover, FFA and EFA biomarkers appear to have clinical applications for the screening and diagnosis of AS.

  7. Colour vision deficiency.

    PubMed

    Simunovic, M P

    2010-05-01

    Colour vision deficiency is one of the commonest disorders of vision and can be divided into congenital and acquired forms. Congenital colour vision deficiency affects as many as 8% of males and 0.5% of females--the difference in prevalence reflects the fact that the commonest forms of congenital colour vision deficiency are inherited in an X-linked recessive manner. Until relatively recently, our understanding of the pathophysiological basis of colour vision deficiency largely rested on behavioural data; however, modern molecular genetic techniques have helped to elucidate its mechanisms. The current management of congenital colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may be of benefit to those with colour vision deficiency when performing certain tasks, the evidence suggests that they do not enable wearers to obtain normal colour discrimination. In the future, gene therapy remains a possibility, with animal models demonstrating amelioration following treatment.

  8. Acquired color vision deficiency.

    PubMed

    Simunovic, Matthew P

    2016-01-01

    Acquired color vision deficiency occurs as the result of ocular, neurologic, or systemic disease. A wide array of conditions may affect color vision, ranging from diseases of the ocular media through to pathology of the visual cortex. Traditionally, acquired color vision deficiency is considered a separate entity from congenital color vision deficiency, although emerging clinical and molecular genetic data would suggest a degree of overlap. We review the pathophysiology of acquired color vision deficiency, the data on its prevalence, theories for the preponderance of acquired S-mechanism (or tritan) deficiency, and discuss tests of color vision. We also briefly review the types of color vision deficiencies encountered in ocular disease, with an emphasis placed on larger or more detailed clinical investigations.

  9. Autism and Folate Deficiency

    DTIC Science & Technology

    2010-05-01

    W81XWH-09-1-0246 TITLE: Autism and Folate Deficiency PRINCIPAL INVESTIGATOR: Richard H. Finnell, Ph.D...5a. CONTRACT NUMBER W81XWH-09-1-0246 Autism and Folate Deficiency 5b. GRANT NUMBER AR080064-Concept Award 5c. PROGRAM ELEMENT NUMBER...risk factor for autism : alterations in m ethionine metabolism in autistic patients may be due to a functional folate deficiency, and folate receptor

  10. Effect of inositol and phytases on hematological indices and α-1 acid glycoprotein levels in laying hens fed phosphorus-deficient corn-soybean meal-based diets.

    PubMed

    Zyła, K; Grabacka, M; Pierzchalska, M; Duliński, R; Starzyńska-Janiszewska, A

    2013-01-01

    The effects of feeding low nonphytate phosphorus (NPP) corn-soybean meal-based diets supplemented with myo-inositol at 0.1%, or with phytase B at 1,300 acid phosphatase units/kg, or with phytase B enriched in 6-phytase A at 300 phytase units/kg on the hematological indices and the α-1 acid glycoprotein (AGP) concentrations in the blood of Bovans Brown laying hens were investigated. The experimental design comprised also a negative control diet and an internal control diet that had the NPP content adjusted by the addition of 0.304 g of monocalcium phosphate per kg to reach the NPP level similar to that resulting from the combined action of both phytases. A total of sixty 50-wk-old hens were randomly assigned to the dietary treatments with 12 cage replicates of 1 hen, and fed the experimental diets until wk 62, when the blood samples were taken and analyzed for basic hematological indices and for AGP concentrations in sera. The hematological indices from all the experimental groups remained in a normal range; nevertheless, the statistically significant effects of diet on hemoglobin concentration (P = 0.003), erythrocyte counts (P = 0.035), the percentage of lymphocytes (P = 0.020), heterophils (P = 0.002), eosinophils (P = 0.023), and basophils (P = 0.001) in the leucocyte population, as well as on the heterophil to lymphocyte ratio (P = 0.003), were observed. The highest erythrocyte counts were characteristic for hens fed the diet supplemented with both phytase A and phytase B. The highest heterophil to lymphocyte ratios were found in blood of hens fed the diet supplemented with phytase B, whereas the highest basophil percentages and the highest AGP concentrations occurred in birds fed the negative control diet. A highly significant correlation was observed between AGP concentrations in sera and BW losses determined previously. The results indicate that the low-NPP corn soybean meal-based diets increased acute phase protein level in laying hens. Phytase B alone

  11. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning

    PubMed Central

    GAO, Hanchao; ZHAO, Chengjiang; XIANG, Xi; LI, Yong; ZHAO, Yanli; LI, Zesong; PAN, Dengke; DAI, Yifan; HARA, Hidetaka; COOPER, David K.C.; CAI, Zhiming; MOU, Lisha

    2016-01-01

    Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications. PMID:27725344

  12. Peri-gestational Dietary Folic Acid Deficiency Protects Against Medulloblastoma Formation in a Mouse Model of Nevoid Basal Cell Carcinoma Syndrome

    PubMed Central

    Been, Raha A.; Nagel, Christian W.; Hooten, Anthony J.; Langer, Erica K.; DeCoursin, Krista J.; Marek, Courtney A.; Janik, Callie L.; Linden, Michael A.; Reed, Robyn C.; Schutten, Melissa M.; Largaespada, David A.; Johnson, Kimberly J.

    2013-01-01

    Hereditary nevoid basal cell carcinoma syndrome (NBCCS) is caused by PTCH1 gene mutations that result in diverse neoplasms including medulloblastoma (MB). Epidemiological studies report reduced pediatric brain tumor risks associated with maternal intake of prenatal vitamins containing folic acid (FA) and FA supplements specifically. We hypothesized that low maternal FA intake during the peri-gestational period would increase MB incidence in a transgenic NBCCS mouse model, which carries an autosomal dominant mutation in the Ptch1 gene. Female wild-type C57BL/6 mice (n=126) were randomized to one of three diets with differing FA amounts: 0.3 mg/kg (low), 2.0 mg/kg (control), and 8.0 mg/kg (high) one month prior to mating with Ptch1+/− C57BL/6 males. Females were maintained on the diet until pup weaning; the pups were then aged for tumor development. Compared to the control group, offspring MB incidence was significantly lower in the low FA group (Hazard Ratio (HR)=0.47; 95% confidence interval (CI) 0.27–0.80) at one year. No significant difference in incidence was observed between the control and high FA groups. Low maternal peri-gestational FA levels may decrease MB incidence in mice genetically predisposed to tumor development. Our results could have implications for prenatal FA intake recommendations in the presence of cancer syndromes. PMID:23909730

  13. Production of α1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase gene double-deficient pigs by CRISPR/Cas9 and handmade cloning.

    PubMed

    Gao, Hanchao; Zhao, Chengjiang; Xiang, Xi; Li, Yong; Zhao, Yanli; Li, Zesong; Pan, Dengke; Dai, Yifan; Hara, Hidetaka; Cooper, David K C; Cai, Zhiming; Mou, Lisha

    2017-02-16

    Gene-knockout pigs hold great promise as a solution to the shortage of organs from donor animals for xenotransplantation. Several groups have generated gene-knockout pigs via clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) and somatic cell nuclear transfer (SCNT). Herein, we adopted a simple and micromanipulator-free method, handmade cloning (HMC) instead of SCNT, to generate double gene-knockout pigs. First, we applied the CRISPR/Cas9 system to target α1,3-galactosyltransferase (GGTA1) and cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) genes simultaneously in porcine fetal fibroblast cells (PFFs), which were derived from wild-type Chinese domestic miniature Wuzhishan pigs. Cell colonies were obtained by screening and were identified by Surveyor assay and sequencing. Next, we chose the GGTA1/CMAH double-knockout (DKO) cells for HMC to produce piglets. As a result, we obtained 11 live bi-allelic GGTA1/CMAH DKO piglets with the identical phenotype. Compared to cells from GGTA1-knockout pigs, human antibody binding and antibody-mediated complement-dependent cytotoxicity were significantly reduced in cells from GGTA1/CMAH DKO pigs, which demonstrated that our pigs would exhibit reduced humoral rejection in xenotransplantation. These data suggested that the combination of CRISPR/Cas9 and HMC technology provided an efficient and new strategy for producing pigs with multiple genetic modifications.

  14. Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4-Cre-mediated knockout of the tuberous sclerosis complex 1 gene.

    PubMed

    Xiang, Xinxin; Yuan, Fang; Zhao, Jing; Li, Ziru; Wang, Xian; Guan, Youfei; Tang, Chaoshu; Sun, Guang; Li, Yin; Zhang, Weizhen

    2013-03-01

    Tuberous sclerosis complex 1 (TSC1) forms a heterodimmer with tuberous sclerosis complex 2, to inhibit signalling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). The mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as gene transcription and protein translation, in response to growth factors and nutrient signals. Originally designed to test the role of TSC1 in adipocyte function, mice in which the gene for TSC1 was specifically deleted by the fatty acid binding protein 4 (FABP4)-Cre (Fabp4-Tsc1cKO mice) died prematurely within 48 h after birth. The Fabp4-Tsc1cKO mouse revealed a much smaller phenotype relative to the wild-type littermates. Maternal administration of rapamycin, a classical mTOR inhibitor, significantly increased the survival time of Fabp4-Tsc1cKO mice for up to 23 days. Both macroscopic and microscopic haemorrhages were observed in the lungs of Fabp4-Tsc1cKO mice, while other tissues showed no significant changes. Levels of surfactant proteins A and B demonstrated a significant decrease in the Fabp4-Tsc1cKO mice, which was rescued by maternal injection of rapamycin. Co-localization of FABP4 or TSC1 with surfactant protein B was also detected in neonatal pulmonary tissues. Our study suggests that TSC1-mTORC1 may be critical for the synthesis of surfactant proteins A and B.

  15. High incidence of lipid deposition in the liver of rats fed a diet supplemented with branched-chain amino acids under vitamin B6 deficiency.

    PubMed

    Kaimoto, Tae; Shibuya, Mayumi; Nishikawa, Kazutaka; Maeda, Hideo

    2013-01-01

    Male Wistar rats were fed four diets composed of purified 20% vitamin-free casein diet with (+) or without (-) vitamin B(6) (7.0 mg of pyridoxine HCl/kg of diet) and with (+) or without (-) branched-chain amino acids (BCAAs) of valine, leucine, and isoleucine (4.75%): B(6)(+)BCAA(-); B(6)(+)BCAA(+); B(6)(-)BCAA(-); and B(6)(-)BCAA(+) for 21 d. Among rats fed the B(6)(-)BCAA(+) diet, about a half showed lipid deposition in the liver. On the other hand, serum triacylglycerol levels in the B(6)(-)BCAA(+) group tended to be decreased. Hepatic triacylglycerol and cholesterol levels tended to increase in the B(6)(-)BCAA(+) group compared with the other three groups. Serum apolipoprotein B and apolipoprotein E (apo E) levels in the B(6)(-)BCAA(+) group were the lowest among the three groups. In contrast, hepatic apo E levels in the B(6)(-)BCAA(+) group were the highest among the three groups. High-performance liquid chromatography of pooled serum of rats with lipid deposits revealed that triacylglycerol and cholesterol levels in very low-density lipoprotein (VLDL) were decreased compared with other diet groups. These results strongly suggest that one of the mechanisms of lipid deposition in rats fed a B(6)(-)BCAA(+) diet is due to impaired secretion of VLDL.

  16. GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid.

    PubMed

    Scheenstra, Maaike R; De Cuyper, Iris M; Branco-Madeira, Filipe; de Bleser, Pieter; Kool, Mirjam; Meinders, Marjolein; Hoogenboezem, Mark; Mul, Erik; Wolkers, Monika C; Salerno, Fiamma; Nota, Benjamin; Saeys, Yvan; Klarenbeek, Sjoerd; van IJcken, Wilfred F J; Hammad, Hamida; Philipsen, Sjaak; van den Berg, Timo K; Kuijpers, Taco W; Lambrecht, Bart N; Gutiérrez, Laura

    2016-12-01

    Dendritic cells (DCs) play a pivotal role in the regulation of the immune response. DC development and activation is finely orchestrated through transcriptional programs. GATA1 transcription factor is required for murine DC development, and data suggest that it might be involved in the fine-tuning of the life span and function of activated DCs. We generated DC-specific Gata1 knockout mice (Gata1-KO(DC)), which presented a 20% reduction of splenic DCs, partially explained by enhanced apoptosis. RNA sequencing analysis revealed a number of deregulated genes involved in cell survival, migration, and function. DC migration toward peripheral lymph nodes was impaired in Gata1-KO(DC) mice. Migration assays performed in vitro showed that this defect was selective for CCL21, but not CCL19. Interestingly, we show that Gata1-KO(DC) DCs have reduced polysialic acid levels on their surface, which is a known determinant for the proper migration of DCs toward CCL21.

  17. Maslinic Acid, a Natural Triterpene, Induces a Death Receptor-Mediated Apoptotic Mechanism in Caco-2 p53-Deficient Colon Adenocarcinoma Cells

    PubMed Central

    Reyes-Zurita, Fernando J.; Rufino-Palomares, Eva E.; García-Salguero, Leticia; Peragón, Juan; Medina, Pedro P.; Parra, Andrés; Cascante, Marta; Lupiáñez, José A.

    2016-01-01

    Maslinic acid (MA) is a natural triterpene present in high concentrations in the waxy skin of olives. We have previously reported that MA induces apoptotic cell death via the mitochondrial apoptotic pathway in HT29 colon cancer cells. Here, we show that MA induces apoptosis in Caco-2 colon cancer cells via the extrinsic apoptotic pathway in a dose-dependent manner. MA triggered a series of effects associated with apoptosis, including the cleavage of caspases -8 and -3, and increased the levels of t-Bid within a few hours of its addition to the culture medium. MA had no effect on the expression of the Bax protein, release of cytochrome-c or on the mitochondrial membrane potential. This suggests that MA triggered the extrinsic apoptotic pathway in this cell type, as opposed to the intrinsic pathway found in the HT29 colon-cancer cell line. Our results suggest that the apoptotic mechanism induced in Caco-2 may be different from that found in HT29 colon-cancer cells, and that in Caco-2 cells MA seems to work independently of p53. Natural antitumoral agents capable of activating both the extrinsic and intrinsic apoptotic pathways could be of great use in treating colon-cancer of whatever origin. PMID:26751572

  18. Disorders of GABA metabolism: SSADH and GABA-transaminase deficiencies.

    PubMed

    Parviz, Mahsa; Vogel, Kara; Gibson, K Michael; Pearl, Phillip L

    2014-11-25

    Clinical disorders known to affect inherited gamma-amino butyric acid (GABA) metabolism are autosomal recessively inherited succinic semialdehyde dehydrogenase and GABA-transaminase deficiency. The clinical presentation of succinic semialdehyde dehydrogenase deficiency includes intellectual disability, ataxia, obsessive-compulsive disorder and epilepsy with a nonprogressive course in typical cases, although a progressive form in early childhood as well as deterioration in adulthood with worsening epilepsy are reported. GABA-transaminase deficiency is associated with a severe neonatal-infantile epileptic encephalopathy.

  19. Alcoholic Myelopathy and Nutritional Deficiency

    PubMed Central

    Koike, Haruki; Nakamura, Tomohiko; Ikeda, Shohei; Takahashi, Mie; Kawagashira, Yuichi; Iijima, Masahiro; Katsuno, Masahisa; Sobue, Gen

    2017-01-01

    A patient with chronic alcoholism presented with myelopathy and low serum folate and cobalamin levels. A 42-year-old alcoholic man had gait disturbance for 4 months. A neurological examination revealed marked spasticity with increased deep tendon reflexes and extensor plantar responses of the lower limbs. His cobalamin level was decreased and his serum folate level was particularly low. His plasma ammonia level was not increased. Abstinence and folic acid and cobalamin supplementation stopped the progression of his neurological deficits. This case indicates that nutritional deficiency should be monitored closely in patients with chronic alcoholism who present with myelopathy. PMID:28049986

  20. Mice deficient in mitochondrial glycerol-3-phosphate acyltransferase-1 have diminished myocardial triacylglycerol accumulation during lipogenic diet and altered phospholipid fatty acid composition

    PubMed Central

    Lewin, Tal M.; de Jong, Hendrik; Schwerbrock, Nicole J. M.; Hammond, Linda E.; Watkins, Steven M.; Combs, Terry P.; Coleman, Rosalind A.

    2008-01-01

    Glycerol-3-phosphate acyltransferase-1 (GPAT1), which is located on the outer mitochondrial membrane comprises up to 30% of total GPAT activity in the heart. It is one of at least four mammalian GPAT isoforms known to catalyze the initial, committed, and rate limiting step of glycerolipid synthesis. Because excess triacylglycerol (TAG) accumulates in cardiomyocytes in obesity and type 2 diabetes, we determined whether lack of GPAT1 would alter the synthesis of heart TAG and phospholipids after a 2-week high sucrose diet or a 3-month high fat diet. Even in the absence of hypertriglyceridemia, TAG increased 2-fold with both diets in hearts from wildtype mice. In contrast, hearts from Gpat1−/− mice contained 20–80% less TAG than the wildtype controls. In addition, hearts from Gpat1−/− mice fed the high-sucrose diet incorporate 60% less [14C]palmitate into heart TAG as compared to wildtype mice. Because GPAT1 prefers 16:0-CoA to other long chain acyl-CoA substrates, we determined the fatty acid composition of heart phospholipids. Compared to wildtype littermate controls, hearts from Gpat1−/− mice contained a lower amount of 16:0 in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine/phosphatidylinositol and significantly more C20:4n6. Phosphatidylcholine and phosphatidylethanolamine from Gpat1−/− hearts also contained higher amounts of 18:0 and 18:1. Although at least three other GPAT isoforms are expressed in the heart, our data suggest that GPAT1 contributes significantly to cardiomyocyte TAG synthesis during lipogenic or high fat diets and influences the incorporation of 20:4n6 into heart phospholipids. PMID:18522808

  1. Suppression of brain cholesterol synthesis in male Mecp2-deficient mice is age dependent and not accompanied by a concurrent change in the rate of fatty acid synthesis.

    PubMed

    Lopez, Adam M; Chuang, Jen-Chieh; Posey, Kenneth S; Turley, Stephen D

    2017-01-01

    Mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2) are the principal cause of Rett syndrome, a progressive neurodevelopmental disorder afflicting 1 in 10,000 to 15,000 females. Studies using hemizygous Mecp2 mouse models have revealed disruptions to some aspects of their lipid metabolism including a partial suppression of cholesterol synthesis in the brains of mature Mecp2 mutants. The present studies investigated whether this suppression is evident from early neonatal life, or becomes manifest at a later stage of development. We measured the rate of cholesterol synthesis, in vivo, in the brains of male Mecp2(-)(/y) and their Mecp2(+/y) littermates at 7, 14, 21, 28, 42 and 56 days of age. Brain weight was consistently lower in the Mecp2(-/y) mice than in their Mecp2(+/y) controls except at 7 days of age. In the 7- and 14-day-old mice there was no genotypic difference in the rate of brain cholesterol synthesis but, from 21 days and later, it was always marginally lower in the Mecp2(-/y) mice than in age-matched Mecp2(+/y) littermates. At no age was a genotypic difference detected in either the rate of fatty acid synthesis or cholesterol concentration in the brain. Cholesterol synthesis rates in the liver and lungs of 56-day-old Mecp2(-/y) mice were normal. The onset of lower rates of brain cholesterol synthesis at about the time closure of the blood brain barrier purportedly occurs might signify a disruption to mechanism(s) that dictate intracellular levels of cholesterol metabolites including oxysterols known to exert a regulatory influence on the cholesterol biosynthetic pathway.

  2. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation

    SciTech Connect

    Takeuchi-Yorimoto, Ayano; Noto, Takahisa; Yamada, Atsushi; Miyamae, Yoichi; Oishi, Yuji; Matsumoto, Masahiro

    2013-05-01

    Nonalcoholic steatohepatitis (NASH) is characterized by combined pathology of steatosis, lobular inflammation, fibrosis, and hepatocellular degeneration, with systemic symptoms of diabetes or hyperlipidemia, all in the absence of alcohol abuse. Given the therapeutic importance and conflicting findings regarding the potential for healing the histopathologic features of NASH in humans, particularly fibrosis, we investigated the reversibility of NASH-related findings in Wistar rats fed a choline-deficient and iron-supplemented L-amino acid-defined (CDAA) diet for 12 weeks, with a recovery period of 7 weeks, during which the diets were switched to a choline-sufficient and iron-supplemented L-amino acid-defined (CSAA) one. Analysis showed that steatosis and inflammation were significantly resolved by the end of the recovery period, along with decreases in AST and ALT activities within 4 weeks. In contrast, fibrosis remained even after the recovery period, to an extent similar to that in continuously CDAA-fed animals. Real-time reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemical investigations revealed that expression of some factors indicating oxidative stress (CYP2E1, 4-HNE, and iNOS) were elevated, whereas catalase and SOD1 were decreased, and a hypoxic state and CD34-positive neovascularization were evident even after the recovery period, although the fibrogenesis pathway by activated α-SMA-positive hepatic stellate cells via TGF-β and TIMPs decreased to the CSAA group level. In conclusion, persistent fibrosis was noted after the recovery period of 7 weeks, possibly due to sustained hypoxia and oxidative stress supposedly caused by capillarization. Otherwise, histopathological features of steatosis and inflammation, as well as serum AST and ALT activities, were recovered. - Highlights: ► NASH-like liver lesions are induced in rats by feeding a CDAA diet. ► Steatosis and lobular inflammation are resolved after switching to a

  3. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  4. Effects of Iron Supplementation With and Without Docosahexaenoic Acid on the Cardiovascular Disease Risk Based on Paraoxonase-1, hs-CRP, and ApoB/ApoA-I Ratio in Women with Iron Deficiency Anemia.

    PubMed

    Shidfar, Farzad; Amani, Samira; Vafa, Mohammadreza; Shekarriz, Ramin; Hosseini, Sharieh; Shidfar, Shahrzad; Eshraghian, Mohammadreza; Mousavi, Seyedeh Neda

    2016-01-01

    Numerous studies have demonstrated that tissue deposition of iron following prolonged high dose of oral supplementation for treatment of iron deficiency anemia (IDA) leads to body iron overload and oxidative stress, which starts the process of atherosclerosis. This study aimed to determine the effect of iron supplementation in combination with docosahexaenoic acid (DHA) on the cardiovascular disease risk based on paraoxonase-1 (PON-1), high-sensitivity C-reactive protein (hs-CRP), and ApoB/ApoA-I ratio in women with IDA. In this randomized controlled trial, 76 women with IDA, aged 15-45 years, were included. The patients were randomly assigned to receive 500 mg of DHA supplement or placebo with an iron tablet, once daily for 12 weeks. The participants were assessed by measurement of the serum iron, ferritin, PON-1, hs-CRP levels, and the ApoB/ApoA-I ratio at the beginning and end of study. Serum hs-CRP decreased in the DHA-supplemented group (p = 0.036), and ApoA-I decreased in the placebo group (p = 0.013). No significant difference was detected for the serum PON-1 concentration and the ApoB/ApoA-I ratio in two groups. Iron supplementation combined with DHA may have favorable effects on serum hs-CRP in women with IDA.

  5. Micronutrients and women of reproductive potential: required dietary intake and consequences of dietary deficiency or excess. Part II--vitamin D, vitamin A, iron, zinc, iodine, essential fatty acids.

    PubMed

    Simpson, Joe Leigh; Bailey, Lynn B; Pietrzik, Klaus; Shane, Barry; Holzgreve, Wolfgang

    2011-01-01

    Part II of this review considers additional micronutrients. Vitamin D is a fat soluble vitamin found in foods of animal origins (fatty fish, liver oil) or fortified products (milk, cheese). Vitamin D deficiency is common in African-American women living in northern latitudes. Vitamin D supplementation may be needed to reach desired 25-(OH)D3 concentrations of >50 nmol/L. In foods of animal origin, preformed Vitamin A is present; in plants (fruits and vegetables) vitamin A precursors (β-carotenoids) are present. Vitamin A supplementation is usually not warranted, and in developing countries should not exceed 3000 μg (10,000 IU)/day. Iron in the form of haem-iron is found in meat, fish and poultry; non-haem (inorganic) iron is found in vegetables, fruits and grains. Iron supplementation may be necessary in the third trimester, earlier in pregnancy or in non-pregnant states if serum ferritin is <20 μg/L or haemoglobin <10.9 g/dL. Zinc is available in red meat, seafood including oysters and unpolished grains; supplementation is not necessary. To assure adequate iodine, food is fortified worldwide with iodated salt. If urinary iodine levels are low, supplementation is needed. Essential fatty acids requirements can be met by one to two portions of fish per week.

  6. Systemic primary carnitine deficiency with hypoglycemic encephalopathy

    PubMed Central

    Jun, Jae Sung; Lee, Eun Joo; Park, Hyung Doo

    2016-01-01

    Acute hypoglycemia in children is not an uncommon disease that can be encountered in the Emergency Department. Most cases of childhood hypoglycemia are caused by ketotic hypoglycemia due to missed meals. Often, hypoketotic hypoglycemia can also occur, which suggests hyperinsulinemia or a defect in fatty acid oxidation. Carnitine is essential for long chain fatty acids transfer into mitochondria for oxidation. We present a case of systemic primary carnitine deficiency who presented with seizures due to hypoketotic hypoglycemia. PMID:28164076

  7. Distribution of /sup 14/C after oral administration of (1-/sup 14/C)linoleic acid in rats fed different levels of essential fatty acids

    SciTech Connect

    Becker, W.

    1984-09-01

    Rats from an inbred Sprague-Dawley strain were fed semisynthetic diets with a low (0.3 energy percent (en %)), normal (3 en %) or high (10 en %) content of essential fatty acids (EFA) for at least three generations. Twenty-nine- to 33-day-old male rats were given a single intragastric dose of (1-14C)linoleic acid in olive oil, and the respiratory CO2, urine and feces were collected for 46 hours (expt 1) or 20 hours (expt 2). The 14C activity in respiratory CO2, feces, urine and the carcass was determined in both experiments. In experiment 2 it was also measured in samples of the brown fat, liver, adrenals, white fat, skeletal muscles and brain. In both experiments the rats fed the low EFA diet retained significantly more 14C activity than the rats fed the normal or high EFA diets. In all groups the concentration of label was highest in the brown fat and the adrenals, but the above differences among the groups with respect to 14C retention were mainly observed in the liver, skeletal muscles and brain.

  8. Iron induced nickel deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is increasingly apparent that economic loss due to nickel (Ni) deficiency likely occurs in horticultural and agronomic crops. While most soils contain sufficient Ni to meet crop requirements, situations of Ni deficiency can arise due to antagonistic interactions with other metals. This study asse...

  9. Cerebral Folate Deficiency

    ERIC Educational Resources Information Center

    Gordon, Neil

    2009-01-01

    Cerebral folate deficiency (CFD) is associated with low levels of 5-methyltetrahydrofolate in the cerebrospinal fluid (CSF) with normal folate levels in the plasma and red blood cells. The onset of symptoms caused by the deficiency of folates in the brain is at around 4 to 6 months of age. This is followed by delayed development, with deceleration…

  10. MENTAL DEFICIENCY. SECOND EDITION.

    ERIC Educational Resources Information Center

    HILLIARD, L.T.; KIRMAN, BRIAN H.

    REVISED TO INCLUDE LEGISLATIVE AND ADMINISTRATIVE PROCEDURES NEW IN BRITAIN SINCE THE 1957 EDITION, THE TEXT INCLUDES RECENT ADVANCES IN ETIOLOGY, PATHOLOGY, AND TREATMENT OF MENTAL DEFICIENCY. CONSIDERATION OF THE BACKGROUND OF MENTAL DEFICIENCY INCLUDES HISTORICAL AND LEGAL ASPECTS, THE SOCIAL BACKGROUND OF MENTAL DEFECT, PRENATAL CAUSES OF…

  11. GLUT-4, tumour necrosis factor, essential fatty acids and daf-genes and their role in glucose homeostasis, insulin resistance, non-insulin dependent diabetes mellitus, and longevity.

    PubMed

    Das, U N

    1999-04-01

    GLUT-4 receptor, tumor necrosis factor-alpha (TNF-alpha), essential fatty acids (EFAs) and their metabolites and daf-genes seem to play an important and essential role in the maintenance of glucose homeostasis, and in the pathobiology of obesity and non-insulin dependent diabetes mellitus (NIDDM). Daf-genes encode for proteins which are 35% identical to the human insulin receptor, a transforming growth factor-beta (TGF-beta) type signal and can also enhance the expression of superoxide dismutase (SOD). On the other hand, EFAs and their metabolites can increase the cell membrane fluidity and thus, enhance the expression of GLUT-4 and insulin receptors. In addition, EFAs can suppress TNF-alpha production and secretion and thus, are capable of reversing insulin resistance. Melatonin has anti-oxidant actions similar to daf-16, TGF-beta and SOD. Hence, it is likely that there is a close interaction between GLUT-4, TNF-alpha, EFAs, daf-genes, melatonin and leptin that may have relevance to the development of insulin resistance, obesity, NIDDM, complications due to NIDDM, longevity and ageing.

  12. Cobalamin deficiency, hyperhomocysteinemia, and dementia

    PubMed Central

    Werder, Steven F

    2010-01-01

    homocysteine, serum methylmalonic acid, antiparietal cell and anti-intrinsic factor antibodies, and serum gastrin level. In B12 deficiency dementia with versus without pernicious anemia, there appear to be different manifestations, need for further workup, and responses to treatment. Dementia of the Alzheimer’s type is a compatible diagnosis when B12 deficiency is found, unless it is caused by pernicious anemia. Patients with pernicious anemia generally respond favorably to supplemental B12 treatment, especially if pernicious anemia is diagnosed early in the course of the disease. Some patients without pernicious anemia, but with B12 deficiency and either mild cognitive impairment or mild to moderate dementia, might show some degree of cognitive improvement with supplemental B12 treatment. Evidence that supplemental B12 treatment is beneficial for patients without pernicious anemia, but with B12 deficiency and moderately-severe to severe dementia is scarce. Oral cyanocobalamin is generally favored over intramuscular cyanocobalamin. PMID:20505848

  13. Genetics Home Reference: 2-methylbutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... down proteins from food into smaller parts called amino acids. Amino acids can be further processed to provide energy for ... methylbutyryl-CoA dehydrogenase deficiency cannot process a particular amino acid called isoleucine. Most cases of 2-methylbutyryl-CoA ...

  14. Genetics Home Reference: arginine:glycine amidinotransferase deficiency

    MedlinePlus

    ... E, Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids. ... Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem. 2010 Oct;115( ...

  15. Oxalate metabolism in magnesium-deficient rats.

    PubMed

    Rattan, V; Thind, S K; Jethi, R K; Sidhu, H; Nath, R

    1993-06-01

    Male weanling rats were maintained on magnesium-deficient diet for 30 d and compared with pair-fed control rats fed magnesium-supplemented diet. Magnesium deficiency led to slow growth and finally to a significant decrease in body weight (P < 0.001) accompanied by a significant hypomagnesaemia, hypomagnesuria and hyperoxaluria (P < 0.001 in each case) in experimental rats as compared to the control rats. Magnesium deficiency altered the glyoxylate metabolism in the liver and kidney mitochondria by significantly decreasing glyoxylate oxidation (by 26 per cent in liver and 17 per cent in kidney) and activity of alpha-ketoglutarate:glyoxylate carboligase enzyme (by 35 per cent in liver and 27 per cent in kidney) in the experimental animals. A significant increase in the specific activities of glycolic acid oxidase (P < 0.001) and glycolic acid dehydrogenase (P < 0.01) and a significant decrease in alanine transaminase (P < 0.01) was also observed in magnesium-deficient rats. No change in liver and kidney lactate dehydrogenase was observed. Thus magnesium deficiency in rats leads to accumulation of glyoxylate in the tissues, a part of which is converted into oxalate, thereby promoting hyperoxaluria.

  16. Betaine deficiency in maize

    SciTech Connect

    Lerma, C. ); Rich, P.J.; Ju, G.C.; Yang, Wenju; Rhodes, D. ); Hanson, A.D. )

    1991-04-01

    Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency. This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positive and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline {r arrow} betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde.

  17. Iodine deficiency: Clinical implications.

    PubMed

    Niwattisaiwong, Soamsiri; Burman, Kenneth D; Li-Ng, Melissa

    2017-03-01

    Iodine is crucial for thyroid hormone synthesis and fetal neurodevelopment. Major dietary sources of iodine in the United States are dairy products and iodized salt. Potential consequences of iodine deficiency are goiter, hypothyroidism, cretinism, and impaired cognitive development. Although iodine status in the United States is considered sufficient at the population level, intake varies widely across the population, and the percentage of women of childbearing age with iodine deficiency is increasing. Physicians should be aware of the risks of iodine deficiency and the indications for iodine supplementation, especially in women who are pregnant or lactating.

  18. Effects of inositol, inositol-generating phytase B applied alone, and in combination with 6-phytase A to phosphorus-deficient diets on laying performance, eggshell quality, yolk cholesterol, and fatty acid deposition in laying hens.

    PubMed

    Zyla, K; Mika, M; Duliński, R; Swiatkiewicz, S; Koreleski, J; Pustkowiak, H; Piironen, J

    2012-08-01

    polyunsaturated fatty acids ratio. In the CSM diets, the supplemental myo-inositol suppressed feed intakes, reduced egg production, had no effect on eggshell quality and reduced the deposition of eicosanoid fatty acids in yolks. When comparing the effects of feeding MCP, myo-inositol, and phytases on the nutritional quality of the eggs laid by the hens fed phosphorus-deficient CSM diets, it seems that the enhancements in nutritional quality cannot be attributed solely to higher phosphorus level or higher concentrations of myo-inositol.

  19. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids.

    PubMed

    Amjad Khan, Waleed; Chun-Mei, Hu; Khan, Nadeem; Iqbal, Amjad; Lyu, Shan-Wu; Shah, Farooq

    2017-01-01

    Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants.

  20. Bioengineered Plants Can Be a Useful Source of Omega-3 Fatty Acids

    PubMed Central

    Lyu, Shan-Wu

    2017-01-01

    Omega-3 fatty acids have proven to be very essential for human health due to their multiple health benefits. These essential fatty acids (EFAs) need to be uptaken through diet because they are unable to be produced by the human body. These are important for skin and hair growth as well as for proper visual, neural, and reproductive functions of the body. These fatty acids are proven to be extremely vital for normal tissue development during pregnancy and infancy. Omega-3 fatty acids can be obtained mainly from two dietary sources: marine and plant oils. Eicosapentaenoic acid (EPA; C20:5 n-3) and docosahexaenoic acid (DHA; C22:6 n-3) are the primary marine-derived omega-3 fatty acids. Marine fishes are high in omega-3 fatty acids, yet high consumption of those fishes will cause a shortage of fish stocks existing naturally in the oceans. An alternative source to achieve the recommended daily intake of EFAs is the demand of today. In this review article, an attempt has, therefore, been made to discuss the importance of omega-3 fatty acids and the recent developments in order to produce these fatty acids by the genetic modifications of the plants. PMID:28316988

  1. Plasma α1-Acid Glycoprotein Can Be Used to Adjust Inflammation-Induced Hyporetinolemia in Vitamin A-Sufficient, but Not Vitamin A-Deficient or -Supplemented Rats12

    PubMed Central

    Gieng, Sin H.; Rosales, Francisco J.

    2006-01-01

    We examined the association between α1-acid glycoprotein (AGP), all-trans-retinol (retinol), and albumin concentrations in a longitudinal animal model of IL-6–induced inflammation. Vitamin A–sufficient (VAS) male Sprague-Dawley rats were administered recombinant human IL-6 [n = 4, 65 μg/(kg·d)] or PBS (n = 4) continuously for 7 d via osmotic minipumps. Plasma samples were obtained daily and concentrations of retinol, AGP, albumin, and total protein were measured. Compared with both baseline and controls, retinol and albumin decreased (P < 0.05), AGP increased (P < 0.05), and total protein concentrations were unaffected in IL-6–treated rats. In vitamin A–deficient (VAD) rats, AGP concentrations were significantly lower at all time points and increased only to one-third of that in VAS rats. The AGP cut-off value indicative of inflammation was 0.11 g/L (i.e., 95% upper limit of baseline concentrations). After 20.5 h, there was an inverse linear correlation between AGP concentrations and the relative change in retinol to baseline (y = −0.18x + 0.48, r = −0.84, P < 0.001). However, changes in AGP and albumin were not correlated (P = 0.94). The application of this function to retinol concentrations in rats from separate experiments showed that hyporetinolemia cannot be adjusted using plasma AGP in VAD or vitamin A–supplemented rats. In conclusion, correcting inflammation-induced hyporetinolemia using an acute-phase protein requires longitudinally derived data, knowledge of vitamin A status, and a common underlying mechanism of change. PMID:16772457

  2. Deletion of sterol O-acyltransferase 2 (SOAT2) function in mice deficient in lysosomal acid lipase (LAL) dramatically reduces esterified cholesterol sequestration in the small intestine and liver.

    PubMed

    Lopez, Adam M; Posey, Kenneth S; Turley, Stephen D

    2014-11-07

    Sterol O-acyltransferase 2 (SOAT2), also known as ACAT2, is the major cholesterol esterifying enzyme in the liver and small intestine (SI). Esterified cholesterol (EC) carried in certain classes of plasma lipoproteins is hydrolyzed by lysosomal acid lipase (LAL) when they are cleared from the circulation. Loss-of-function mutations in LIPA, the gene that encodes LAL, result in Wolman disease (WD) or cholesteryl ester storage disease (CESD). Hepatomegaly and a massive increase in tissue EC levels are hallmark features of both disorders. While these conditions can be corrected with enzyme replacement therapy, the question arose as to what effect the loss of SOAT2 function might have on tissue EC sequestration in LAL-deficient mice. When weaned at 21 days, Lal(-)(/)(-):Soat2(+)(/)(+) mice had a whole liver cholesterol content (mg/organ) of 24.7 mg vs 1.9mg in Lal(+/+):Soat2(+/+) littermates, with almost all the excess sterol being esterified. Over the next 31 days, liver cholesterol content in the Lal(-)(/)(-):Soat2(+)(/)(+) mice increased to 145 ± 2 mg but to only 29 ± 2 mg in their Lal(-)(/)(-):Soat2(-)(/)(-) littermates. The level of EC accumulation in the SI of the Lal(-)(/)(-):Soat2(-)(/)(-) mice was also much less than in their Lal(-)(/)(-):Soat2(+)(/)(+) littermates. In addition, there was a >70% reduction in plasma transaminase activities in the Lal(-)(/)(-):Soat2(-)(/)(-) mice. These studies illustrate how the severity of disease in a mouse model for CESD can be substantially ameliorated by elimination of SOAT2 function.

  3. Steroid sulfatase deficiency with bilateral periventricular nodular heterotopia.

    PubMed

    Ozawa, Hiroshi; Osawa, Maki; Nagai, Toshiro; Sakura, Nobuo

    2006-03-01

    This report presents a case of steroid sulfatase deficiency with bilateral periventricular nodular heterotopia. A 13-year-old male was diagnosed as having steroid sulfatase deficiency because steroid sulfatase activity was not detected in his leukocytes. In deoxyribonucleic acid studies, steroid sulfatase locus and adjacent loci were found to be deleted in his deoxyribonucleic acid. Cranial magnetic resonance imaging revealed periventricular nodular heterotopia, disclosing an irregular contour of the lateral walls of the lateral ventricles due to small nodular masses that were isointense as to the gray matter. In steroid sulfatase deficiency patients, bilateral periventricular nodular heterotopia must be considered.

  4. Iron deficiency anemia

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  5. [Selenium deficiency in pregnancy?].

    PubMed

    Lechner, W; Jenewein, I; Ritzberger, G; Sölder, E; Waitz-Penz, A; Schirmer, M; Abfalter, E

    1990-07-15

    Selenium content was investigated by atomic absorbtion spectroscopy in 32 normal pregnant women in the 38th-42, week of pregnancy. In congruence with other investigations from middle and northern Europe, selenium deficiency was stated in all of the patients.

  6. Adenine phosphoribosyltransferase deficiency.

    PubMed

    Bollée, Guillaume; Harambat, Jérôme; Bensman, Albert; Knebelmann, Bertrand; Daudon, Michel; Ceballos-Picot, Irène

    2012-09-01

    Complete adenine phosphoribosyltransferase (APRT) deficiency is a rare inherited metabolic disorder that leads to the formation and hyperexcretion of 2,8-dihydroxyadenine (DHA) into urine. The low solubility of DHA results in precipitation of this compound and the formation of urinary crystals and stones. The disease can present as recurrent urolithiasis or nephropathy secondary to crystal precipitation into renal parenchyma (DHA nephropathy). The diagnostic tools available-including stone analysis, crystalluria, and APRT activity measurement-make the diagnosis easy to confirm when APRT deficiency is suspected. However, the disease can present at any age, and the variability of symptoms can present a diagnostic challenge to many physicians. The early recognition and treatment of APRT deficiency are of crucial importance for preventing irreversible loss of renal function, which still occurs in a non-negligible proportion of cases. This review summarizes the genetic and metabolic mechanisms underlying stone formation and renal disease, along with the diagnosis and management of APRT deficiency.

  7. Factor V deficiency

    MedlinePlus

    ... as many as 20 different proteins in blood plasma. These proteins are called blood coagulation factors. Factor ... You will be given fresh blood plasma or fresh frozen plasma infusions ... These treatments will correct the deficiency temporarily.

  8. Factor VII deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor VII is one such coagulation factor. Factor VII deficiency runs in families (inherited) and is very rare. Both parents must ...

  9. Factor II deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor II is one such coagulation factor. Factor II deficiency runs in families (inherited) and is very rare. Both parents must ...

  10. Vitamin D deficiency

    PubMed Central

    Gani, Linsey Utami; How, Choon How

    2015-01-01

    Vitamin D deficiency is common and may contribute to osteopenia, osteoporosis and falls risk in the elderly. Screening for vitamin D deficiency is important in high-risk patients, especially for patients who suffered minimal trauma fractures. Vitamin D deficiency should be treated according to the severity of the deficiency. In high-risk adults, follow-up serum 25-hydroxyvitamin D concentration should be measured 3–4 months after initiating maintenance therapy to confirm that the target level has been achieved. All patients should maintain a calcium intake of at least 1,000 mg for women aged ≤ 50 years and men ≤ 70 years, and 1,300 mg for women > 50 years and men > 70 years. PMID:26311908

  11. Acrodermatitis Enteropathica-like Eruption Associated with Combined Nutritional Deficiency

    PubMed Central

    Kim, You Jeong; Kim, Mi-Yeon; Kim, Hyung Ok; Lee, Myung Duck

    2005-01-01

    We present here a case of acrodermatitis enteropathica-like eruption associated with essential free fatty acid and protein deficiencies as well as borderline zinc deficiency that occurred after Whipple's operation in a 31-yr-old woman. Her eruptions were improved not by zinc supplements alone, but her condition was improved by total parenteral nutrition including amino acids, albumin, lipid and zinc. Although we could not exactly decide which of the nutrients contributed the most to her manifestations, we inferred that all three elements in concert caused her dermatoses. This case shows that even though the patient's skin manifestations and laboratory results are suggestive of acrodermatitis enteropathica, the physicians should keep in mind the possibility that this disease can be associated with other nutritional deficiencies such as free fatty acid or protein deficiency. PMID:16224175

  12. An Open-label Phase 2 Study of UX007 (Triheptanoin) in Subjects With Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD)

    ClinicalTrials.gov

    2016-11-23

    Long-chain Fatty Acid Oxidation Disorders (LC-FAOD); Carnitine Palmitoyltransferase (CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Longchain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency

  13. Diagnosis and management of cerebral folate deficiency

    PubMed Central

    Al-Baradie, Raidah S.; Chudary, Mohammed W.

    2014-01-01

    Folinic acid-responsive seizures (FARS) are a rare treatable cause of neonatal epilepsy. They have characteristic peaks on CSF monoamine metabolite analysis, and have mutations in the ALDH7A1 gene, characteristically found in pyridoxine-dependent epilepsy. There are case reports of patients presenting with seizures at a later age, and with folate deficiency due to different mechanisms with variable response to folinic acid supplementation. Here, we report 2 siblings who presented with global developmental delay and intractable seizures who responded clinically to folinic acid therapy. Their work-up included metabolic and genetic testing. The DNA sequencing was carried out for the ALDH7A1 gene, and the folate receptor 1 (FOLR1) gene. They had very low 5-methyltetrahydrofolate (5-MTHF) in CSF with no systemic folate deficiency and no characteristic peaks on neurotransmitter metabolite chromatogram. A novel mutation in the FOLR1 gene was found. The mutation in this gene is shown to affect CSF folate transport leading to cerebral folate deficiency. The response to treatment with folinic acid was dramatic with improvement in social interaction, mobility, and complete seizure control. We should consider the possibility of this treatable condition in appropriate clinical circumstances early, as diagnosis with favorable outcome depends on the specialized tests. PMID:25274592

  14. Separating electrophilicity and Lewis acidity: the synthesis, characterization, and electrochemistry of the electron deficient tris(aryl)boranes B(C6F5)(3-n)(C6Cl5)n (n = 1-3).

    PubMed

    Ashley, Andrew E; Herrington, Thomas J; Wildgoose, Gregory G; Zaher, Hasna; Thompson, Amber L; Rees, Nicholas H; Krämer, Tobias; O'Hare, Dermot

    2011-09-21

    A new family of electron-deficient tris(aryl)boranes, B(C(6)F(5))(3-n)(C(6)Cl(5))(n) (n = 1-3), has been synthesized, permitting an investigation into the steric and electronic effects resulting from the gradual replacement of C(6)F(5) with C(6)Cl(5) ligands. B(C(6)F(5))(2)(C(6)Cl(5)) (3) is accessed via C(6)Cl(5)BBr(2), itself prepared from donor-free Zn(C(6)Cl(5))(2) and BBr(3). Reaction of C(6)Cl(5)Li with BCl(3) in a Et(2)O/hexane slurry selectively produced B(C(6)Cl(5))(2)Cl, which undergoes B-Cl exchange with CuC(6)F(5) to afford B(C(6)F(5))(C(6)Cl(5))(2) (5). While 3 forms a complex with H(2)O, which can be rapidly removed under vacuum or in the presence of molecular sieves, B(C(6)Cl(5))(3) (6) is completely stable to refluxing toluene/H(2)O for several days. Compounds 3, 5, and 6 have been structurally characterized using single crystal X-ray diffraction and represent the first structure determinations for compounds featuring B-C(6)Cl(5) bonds; each exhibits a trigonal planar geometry about B, despite having different ligand sets. The spectroscopic characterization using (11)B, (19)F, and (13)C NMR indicates that the boron center becomes more electron-deficient as n increases. Optimized structures of B(C(6)F(5))(3-n)(C(6)Cl(5))(n) (n = 0-3) using density functional theory (B3LYP/TZVP) are all fully consistent with the experimental structural data. Computed (11)B shielding constants also replicate the experimental trend almost quantitatively, and the computed natural charges on the boron center increase in the order n = 0 (0.81) < n = 1 (0.89) < n = 2 (1.02) < n = 3 (1.16), supporting the hypothesis that electrophilicity increases concomitantly with substitution of C(6)F(5) for C(6)Cl(5). The direct solution cyclic voltammetry of B(C(6)F(5))(3) has been obtained for the first time and electrochemical measurements upon the entire series B(C(6)F(5))(3-n)(C(6)Cl(5))(n) (n = 0-3) corroborate the spectroscopic data, revealing C(6)Cl(5) to be a more electron

  15. Biochemical Assessment of Coenzyme Q10 Deficiency

    PubMed Central

    Rodríguez-Aguilera, Juan Carlos; Cortés, Ana Belén; Fernández-Ayala, Daniel J. M.; Navas, Plácido

    2017-01-01

    Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA) depletion and mutations in genes involved in the fatty acid β-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors. PMID:28273876

  16. Biochemical Assessment of Coenzyme Q10 Deficiency.

    PubMed

    Rodríguez-Aguilera, Juan Carlos; Cortés, Ana Belén; Fernández-Ayala, Daniel J M; Navas, Plácido

    2017-03-05

    Coenzyme Q10 (CoQ10) deficiency syndrome includes clinically heterogeneous mitochondrial diseases that show a variety of severe and debilitating symptoms. A multiprotein complex encoded by nuclear genes carries out CoQ10 biosynthesis. Mutations in any of these genes are responsible for the primary CoQ10 deficiency, but there are also different conditions that induce secondary CoQ10 deficiency including mitochondrial DNA (mtDNA) depletion and mutations in genes involved in the fatty acid β-oxidation pathway. The diagnosis of CoQ10 deficiencies is determined by the decrease of its content in skeletal muscle and/or dermal skin fibroblasts. Dietary CoQ10 supplementation is the only available treatment for these deficiencies that require a rapid and distinct diagnosis. Here we review methods for determining CoQ10 content by HPLC separation and identification using alternative approaches including electrochemical detection and mass spectrometry. Also, we review procedures to determine the CoQ10 biosynthesis rate using labeled precursors.

  17. Congenital prothrombin deficiency.

    PubMed

    Lancellotti, Stefano; De Cristofaro, Raimondo

    2009-06-01

    Prothrombin deficiency is among the rarest inherited coagulation disorders, with a prevalence of approximately 1:2,000,000. Two main phenotypes can be distinguished: (1) hypoprothrombinemia (type I deficiency), characterized by concomitantly low levels of activity and antigen; and (2) dysprothrombinemia (type II deficiency), characterized by the normal or near-normal synthesis of a dysfunctional protein. In some cases, hypoprothrombinemia associated with dysprothrombinemia was also described in compound heterozygous defects. No living patient with undetectable plasma prothrombin has been reported to date. Prothrombin is encoded by a gene of approximately 21 kb located on chromosome 11 and containing 14 exons. Forty different mutations have been identified and characterized in prothrombin deficiency. Many of them surround the catalytic site, whereas another "hot spot" is localized in the recognition domain called anion binding exosite I, also called fibrinogen recognition site. Recently, mutations were identified also in the Na (+)-binding loop and in the light A-chain of thrombin. Most hypoprothrombinemia-associated mutations are missense, but there are also nonsense mutations leading to stop codons and one single nucleotide deletion. Finally, the main aspects of clinical manifestations and therapy of congenital prothrombin deficiency are presented and discussed.

  18. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  19. Thiamine Deficiency and Delirium

    PubMed Central

    Ali, Shahid; Freeman, C.; Barker, Narviar C.; Jabeen, Shagufta; Maitra, Sarbani; Olagbemiro, Yetunde; Richie, William; Bailey, Rahn K.

    2013-01-01

    Thiamine is an essential vitamin that plays an important role in cellular production of energy from ingested food and enhances normal neuronal actives. Deficiency of this vitamin leads to a very serious clinical condition known as delirium. Studies performed in the United States and other parts of the world have established the link between thiamine deficiency and delirium. This literature review examines the physiology, pathophysiology, predisposing factors, clinical manifestations (e.g., Wernicke’s encephalopathy, Wernicke-Korsakoff syndrome, structural and functional brain injuries) and diagnosis of thiamine deficiency and delirium. Current treatment practices are also discussed that may improve patient outcome, which ultimately may result in a reduction in healthcare costs. PMID:23696956

  20. Natural killer cell deficiency.

    PubMed

    Orange, Jordan S

    2013-09-01

    Natural killer (NK) cells are part of the innate immune defense against infection and cancer and are especially useful in combating certain viral pathogens. The utility of NK cells in human health has been underscored by a growing number of persons who are deficient in NK cells and/or their functions. This can be in the context of a broader genetically defined congenital immunodeficiency, of which there are more than 40 presently known to impair NK cells. However, the abnormality of NK cells in certain cases represents the majority immunologic defect. In aggregate, these conditions are termed NK cell deficiency. Recent advances have added clarity to this diagnosis and identified defects in 3 genes that can cause NK cell deficiency, as well as some of the underlying biology. Appropriate consideration of these diagnoses and patients raises the potential for rational therapeutic options and further innovation.

  1. Genetics Home Reference: 17β-hydroxysteroid dehydrogenase type 10 deficiency

    MedlinePlus

    ... involved in breaking down the protein building block ( amino acid ) isoleucine and a group of fats called branched- ... system. Mutations that cause HSD10 deficiency change single amino acids in HSD10, which reduces or eliminates the activity ...

  2. Acid Lipase Disease

    MedlinePlus

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  3. Comparison of gravimetric, creamatocrit and esterified fatty acid methods for determination of total fat content in human milk.

    PubMed

    Du, Jian; Gay, Melvin C L; Lai, Ching Tat; Trengove, Robert D; Hartmann, Peter E; Geddes, Donna T

    2017-02-15

    The gravimetric method is considered the gold standard for measuring the fat content of human milk. However, it is labor intensive and requires large volumes of human milk. Other methods, such as creamatocrit and esterified fatty acid assay (EFA), have also been used widely in fat analysis. However, these methods have not been compared concurrently with the gravimetric method. Comparison of the three methods was conducted with human milk of varying fat content. Correlations between these methods were high (r(2)=0.99). Statistical differences (P<0.001) were observed in the overall fat measurements and within each group (low, medium and high fat milk) using the three methods. Overall, stronger correlation with lower mean (4.73g/L) and percentage differences (5.16%) was observed with the creamatocrit than the EFA method when compared to the gravimetric method. Furthermore, the ease of operation and real-time analysis make the creamatocrit method preferable.

  4. Regulation of the laminin beta 1 (LAMB1), retinoic acid receptor beta, and bone morphogenetic protein 2 genes in mutant F9 teratocarcinoma cell lines partially deficient in cyclic AMP-dependent protein kinase activity.

    PubMed

    Shen, J; Li, C; Gudas, L J

    1997-12-01

    We stably transfected a gene encoding a dominant negative regulatory subunit of cyclic AMP (cAMP)-dependent protein kinase A (PKA) into F9 cells and generated cell lines partially deficient in PKA activity (DN16 and DN19). In these cell lines, the retinoic acid (RA) receptor beta and laminin beta(1) chain (LAMB1) genes were regulated normally by RA alone, indicating that in the absence of exogenous modulation of cAMP levels, the PKA signaling pathway does not seem to play a major role in the RA-associated regulation of these genes. However, alterations in gene regulation were observed when the mutant cell lines were treated with a combination of RA and cAMP analogues. Moreover, in the DN16 cell line, which exhibits the lowest PKA activity among the mutant cell lines [22% of wild type (WT) at 1 microM cAMP], there was a significant decrease in the cAMP-associated activation of the LAMB1 gene DNase I hypersensitivity site 2 enhancer, as measured by chloramphenicol acetyl transferase assays. Using electrophoretic mobility shift assays, less protein binding was observed at one of the motifs (C2) within this enhancer region in the DN16 cells as compared to the F9 WT cells after treatment of the cells with RA and cAMP analogues for 24 h. Furthermore, no increase in C2 binding was observed when extracts from RA-treated F9 ST or DN16 cells were subjected to in vitro phosphorylation, suggesting that PKA is involved in the induction of the C2-binding protein in RA-treated cells. In contrast to the results with RA receptor beta and LAMB1, the effects of cAMP analogues on the RA-associated regulation of the bone morphogenetic protein 2 gene were not altered in the cell lines that exhibited reduced PKA activity. These results suggest that a partial reduction in PKA activity is not sufficient to abrogate the effects of cAMP analogues on all of the genes regulated by RA.

  5. Multiple sulfatase deficiency.

    PubMed

    Soong, B W; Casamassima, A C; Fink, J K; Constantopoulos, G; Horwitz, A L

    1988-08-01

    Multiple sulfatase deficiency is an inherited disorder characterized by a deficiency of several sulfatases and the accumulation of sulfatides, glycosaminoglycans, sphingolipids, and steroid sulfates in tissues and body fluids. The clinical manifestations represent the summation of two diseases: late infantile metachromatic leukodystrophy and mucopolysaccharidosis. We present a 9-year-old girl with a phenotype similar to a mucopolysaccharidosis: short stature, microcephaly, and mild facial dysmorphism, along with dysphagia, retinal degeneration, developmental arrest, and ataxia. We discuss the importance of measuring the sulfatase activities in the leukocytes, and the instability of sulfatases in the cultured skin fibroblasts.

  6. Taurine supplementation of plant derived protein and n-3 fatty acids are critical for optimal growth and development of cobia, Rachycentron canadum.

    PubMed

    Watson, Aaron M; Barrows, Frederic T; Place, Allen R

    2013-09-01

    We examined growth performance and the lipid content in juvenile cobia, Rachycentron canadum, fed a taurine supplemented (1.5 %), plant protein based diet with two fish oil replacements. The first fish oil replacement was a thraustochytrid meal (TM + SOY) plus soybean oil (~9 % CL) and the second was a canola oil supplemented with the essential fatty acids (EFA) docosahexaenoic acid (DHA) and arachidonic acid (ARA) (~8 % CL). The diet using the thraustochytrid meal plus soybean oil performed equivalently to the fish oil diet; both resulting in significantly higher growth rates, lower feed conversion ratios, and higher survival than the supplemented canola oil diet, even though all three diets were similar in overall energy and met known protein and lipid requirements for cobia. The poor performance of the canola oil diet was attributed to insufficient addition of EFA in the supplemented canola oil source. Increasing levels of EFA in the supplemented canola oil above 0.5 g EFA kg(-1) would likely improve results with cobia. When fish fed either of the fish oil replacement diets were switched to the fish oil control diet, fatty acid profiles of the fillets were observed to transition toward that of the fish oil diet and could be predicted based on a standard dilution model. Based on these findings, a formulated diet for cobia can be produced without fish products providing 100 % survivorship, specific growth rates greater than 2.45 and feed conversion ratios less than 1.5, as long as taurine is added and EFA levels are above 0.5 g EFA kg(-1).

  7. Gamma-linolenic acid dietary supplementation can reverse the aging influence on rat liver microsome delta 6-desaturase activity.

    PubMed

    Biagi, P L; Bordoni, A; Hrelia, S; Celadon, M; Horrobin, D F

    1991-05-08

    We have recently demonstrated that in rats the process of delta 6-desaturation of linoleic and alpha-linolenic acids slows with aging. One method of counteracting the effect of slowed desaturation of linoleic acid would be to provide the 6-desaturated metabolite, gamma-linolenic acid (18:3(n-6) GLA) directly. We have here investigated the 6-desaturation of both linoleic and alpha-linolenic acids in liver microsomes of young and old rats given GLA in the form of evening primrose oil (EPO) (B diet) in comparison to animals given soy bean oil alone (A diet), monitoring also the fatty acid composition of liver microsomes and relating this to the microviscosity of the membranes. In young rats the different experimental diets did not produce any difference in delta 6-desaturase (D6D) activity on either substrate suggesting that, when D6D activity is at or near its peak, the variations in diet tested are unable to influence it. In the old animals the rate of 6-desaturation of linoleic and particularly of alpha-linolenic acid was significantly greater in the B diet fed animals than in the A diet fed. The effects of the diets on the fatty acid composition of liver microsomes were consistent with the findings with regard to 6-desaturation. Administration of GLA partially corrected the abnormalities of n-6 essential fatty acid (EFA) metabolism by raising the concentration of 20:4(n-6) and other 6-desaturated EFAs. Furthermore, the GLA rich diet also increased the levels of dihomo-gamma-linolenic acid and of 6-desaturated n-3 EFAs in the liver microsomes. The microviscosity of microsomal membranes as indicated by DPH polarization was correlated with the unsaturation index of the same membranes. There was a very strong correlation between the two. In both young and old rats the B diet reduced the microviscosity and increased the unsaturation index. However, the effect was much greater in the old animals.

  8. Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves.

    PubMed

    Lima, Marta R M; Diaz, Sílvia O; Lamego, Inês; Grusak, Michael A; Vasconcelos, Marta W; Gil, Ana M

    2014-06-06

    Iron (Fe) deficiency is an important agricultural concern that leads to lower yields and crop quality. A better understanding of the condition at the metabolome level could contribute to the design of strategies to ameliorate Fe-deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extracts and whole leaves were analyzed by liquid (1)H nuclear magnetic resonance (NMR) and high-resolution magic-angle spinning NMR spectroscopy, respectively. Overall, 30 compounds were measurable and identifiable (comprising amino and organic acids, fatty acids, carbohydrates, alcohols, polyphenols, and others), along with 22 additional spin systems (still unassigned). Thus, metabolite differences between treatment conditions could be evaluated for different compound families simultaneously. Statistically relevant metabolite changes upon Fe deficiency included higher levels of alanine, asparagine/aspartate, threonine, valine, GABA, acetate, choline, ethanolamine, hypoxanthine, trigonelline, and polyphenols and lower levels of citrate, malate, ethanol, methanol, chlorogenate, and 3-methyl-2-oxovalerate. The data indicate that the main metabolic impacts of Fe deficiency in soybean include enhanced tricarboxylic acid cycle activity, enhanced activation of oxidative stress protection mechanisms and enhanced amino acid accumulation. Metabolites showing accumulation differences in Fe-starved but visually asymptomatic leaves could serve as biomarkers for early detection of Fe-deficiency stress.

  9. Clinical significance of enzymatic deficiencies in the gastrointestinal tract with particular reference to lactase deficiency.

    PubMed

    Rossi, E; Lentze, M J

    1984-12-01

    The study of deficiencies of small intestinal brush-border hydrolases increased our knowledge about the specific functions of hydrolases in the digestion of smaller molecules on the microvillus surface of the absorptive cells. The sucrase-isomaltase (SI) complex has been shown to be synthesized as a precursor (pro-sucrase-isomaltase) which is then incorporated into the membrane. The hydrophobic N-terminal end of the molecule is anchored in the lipid bilayer. In SI deficiency the molecular base of the disease is still not clear. Absence of SI activity could be due to complete lack of precursor synthesis or to structural changes within the N-terminal end of the SI-complex. Deficiencies of peptide hydrolases have not been reported with the exception of enteropeptidase (EP). Here a congenital deficiency of the enzyme was observed as the primary defect in enzyme synthesis within the enterocytes and as a secondary defect due to exocrine pancreatic insufficiency. In contrast to the primary EP deficiency, the activity of EP can be restored in the cases of exocrine pancreatic insufficiency by treatment with pancreatic extracts. Primary lactase deficiency exists in various forms. Besides congenital lactase deficiency, the late onset or adult type of lactase deficiency has been observed. The latter occurs in many different ethnic groups around the world. Here, using gel electrophoresis and immunoelectrophoresis, the lack of enzyme activity could be shown to be a primary defect in enzyme protein synthesis. In man and in the rat, two different lactases have been identified. In contrast to adult lactase, fetal lactase contains sialic acid at the end of carbohydrate side chains.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Diagnosing oceanic nutrient deficiency

    NASA Astrophysics Data System (ADS)

    Moore, C. Mark

    2016-11-01

    The supply of a range of nutrient elements to surface waters is an important driver of oceanic production and the subsequent linked cycling of the nutrients and carbon. Relative deficiencies of different nutrients with respect to biological requirements, within both surface and internal water masses, can be both a key indicator and driver of the potential for these nutrients to become limiting for the production of new organic material in the upper ocean. The availability of high-quality, full-depth and global-scale datasets on the concentrations of a wide range of both macro- and micro-nutrients produced through the international GEOTRACES programme provides the potential for estimation of multi-element deficiencies at unprecedented scales. Resultant coherent large-scale patterns in diagnosed deficiency can be linked to the interacting physical-chemical-biological processes which drive upper ocean nutrient biogeochemistry. Calculations of ranked deficiencies across multiple elements further highlight important remaining uncertainties in the stoichiometric plasticity of nutrient ratios within oceanic microbial systems and caveats with regards to linkages to upper ocean nutrient limitation. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  11. Color vision deficiencies

    NASA Astrophysics Data System (ADS)

    Vannorren, D.

    1982-04-01

    Congenital and acquired color vision defects are described in the context of physiological data. Light sources, photometry, color systems and test methods are described. A list of medicines is also presented. The practical social consequences of color vision deficiencies are discussed.

  12. Periconceptional Folate Deficiency and Implications in Neural Tube Defects

    PubMed Central

    Safi, J.; Joyeux, L.; Chalouhi, G. E.

    2012-01-01

    Nutritional deficiencies are preventable etiological and epigenetic factors causing congenital abnormalities, first cause of infant mortality. Folate deficiency has a well-established teratogenic effect, leading to an increasing risk of neural tube defects. This paper highlights the most recent medical literature about folate deficiency, be it maternal or paternal. It then focuses on associated deficiencies as nutritional deficiencies are multiple and interrelated. Observational and interventional studies have all been consistent with a 50–70% protective effect of adequate women consumption of folates on neural tube defects. Since strategies to modify women's dietary habits and vitamin use have achieved little progress, scientific as well as political effort is mandatory in order to implement global preventive public health strategies aimed at improving the alimentation of women in reproductive age, especially folic acid supplementation. Even with the recent breakthrough of fetal surgery for myelomeningocele, the emphasis should still be on prevention as the best practice rather than treatment of neural tube defects. PMID:22900183

  13. Phospholipase A2 and Arachidonic Acid in Alzheimer’s Disease

    PubMed Central

    Sanchez-Mejia, Rene O.; Mucke, Lennart

    2011-01-01

    Essential fatty acids (EFA) play a critical role in the brain and regulate many of the processes altered in Alzheimer’s disease (AD). Technical advances are allowing for the dissection of complex lipid pathways in normal and diseased states. Arachidonic acid (AA) and specific isoforms of phospholipase A2 (PLA2) appear to play critical mediator roles in amyloid-β (Aβ) - induced pathogenesis, leading to learning, memory, and behavioral impairments in mouse models of AD. These findings and ongoing research into lipid biology in AD and related disorders promise to reveal new pharmacological targets that may lead to better treatments for these devastating conditions. PMID:20553961

  14. Omega-3 deficiency impairs honey bee learning

    PubMed Central

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  15. Altered essential fatty acid metabolism and composition in rat liver, plasma, heart and brain after microalgal DHA addition to the diet.

    PubMed

    Lin, Yu Hong; Shah, Samit; Salem, Norman

    2011-08-01

    To investigate the effect of docosahexaenoic acid (DHA) without other highly unsaturated fatty acids (HUFA) on n-3 and n-6 essential fatty acid (EFA) metabolism and fatty acid composition in mammals, a stable isotope tracer technique was used in adult rats fed diets with or without 1.3% of algal DHA in a base diet containing 15% of linoleic acid and 3% of alpha-linolenic acid over 8 weeks. The rats were administered orally a mixed oil containing 48 mg/kg body weight of deuterated linoleic and alpha-linolenic acids and euthanized at 4, 8, 24, 96, 168, 240, 360 and 600 h after administration of the isotopes. Fatty acid compositions and the concentrations of deuterated precursors and their respective metabolites were determined in rat liver, plasma, heart and brain as a function of time. DHA, docosapentaenoic acid and eicosapentaenoic acid in the n-3 EFA family were significantly increased in all organs tested in the DHA-fed group, ranging from 5% to 200% greater in comparison with the control group. The accumulation of the metabolites, deuterated-DHA and deuterated-docosapentaenoic acid n-6 was greatly decreased by 1.5- to 2.5-fold in the dietary DHA group. In summary, feeding preformed DHA led to a marked increase in n-3 HUFA content of rat organs at the expense of n-6 HUFA and also prevented the accumulation of newly synthesized deuterated end products. This is the first study which has isolated the effects of DHA on the de novo metabolism on both the n-6 and n-3 EFA pathways.

  16. Genetics Home Reference: isolated growth hormone deficiency

    MedlinePlus

    ... Isolated growth hormone deficiency Educational Resources (10 links) Boston Children's Hospital CLIMB: Growth Hormone Deficiency Information Sheet (PDF) Disease InfoSearch: Isolated growth hormone deficiency ...

  17. Genetics Home Reference: proopiomelanocortin deficiency

    MedlinePlus

    ... Open All Close All Description Proopiomelanocortin (POMC) deficiency causes severe obesity that begins at an early age. In addition ... and severe obesity. POMC deficiency is a rare cause of obesity; POMC gene mutations are not frequently associated with ...

  18. Sanitary Surveys & Significant Deficiencies Presentation

    EPA Pesticide Factsheets

    The Sanitary Surveys & Significant Deficiencies Presentation highlights some of the things EPA looks for during drinking water system site visits, how to avoid significant deficiencies and what to do if you receive one.

  19. Genetics Home Reference: biotinidase deficiency

    MedlinePlus

    ... links) Children Living With Inherited Metabolic Diseases (CLIMB) (UK): Biotinidase Deficiency (PDF) Disease InfoSearch: Biotinidase Deficiency Illinois ... Group Children Living with Inherited Metabolic Diseases (CLIMB) (UK) National Organization for Rare Disorders (NORD) GeneReviews (1 ...

  20. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G6PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Gallagher PG. Hemolytic anemias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 161. Janz ...

  1. Essential fatty acid supplementation during lactation is required to maximize the subsequent reproductive performance of the modern sow.

    PubMed

    Rosero, David S; Boyd, R Dean; McCulley, Mark; Odle, Jack; van Heugten, Eric

    2016-05-01

    This study was conducted to investigate the effects of supplemental essential fatty acids (EFA) on sow reproductive efficiency and to estimate the concentrations of EFA required by the lactating sow for maximum subsequent reproduction. Data were collected on 480 sows (PIC Camborough) balanced by parity, with 241 and 239 sows representing Parity 1, and 3-5 (P3+), respectively. Sows were assigned randomly, within parity, to a 3 × 3 factorial arrangement plus a control diet without added lipids. Factors included linoleic (2.1%, 2.7%, and 3.3%) and α-linolenic acid (0.15%, 0.30%, and 0.45%), obtained by adding 4% of different mixtures of canola, corn and flaxseed oils to diets. Diets were corn-soybean meal based with 12% wheat middlings. The benefits of supplemental EFA were more evident for the subsequent reproduction of mature P3+ sows. For these sows, supplemental α-linolenic acid improved the proportion of sows that farrowed relative to sows weaned (linear P=0.080; 82.8, 80.5, and 92.8% for sows fed 0.15%, 0.30%, and 0.45% α-linolenic acid, respectively). In addition, supplemental linoleic acid, fed to Parity 1 and P3+ sows, tended to increase subsequent litter size (linear P=0.074; 13.2, 13.8 and 14.0 total pigs born for 2.1%, 2.7% and 3.3% linoleic acid, respectively). These results demonstrate that a minimum dietary intake of both α-linolenic and linoleic acid is required for the modern lactating sow to achieve a maximum reproductive outcome through multiple mechanisms that include rapid return to estrus, increased maintenance of pregnancy and improved subsequent litter size.

  2. Chronic Zinc Deficiency Alters Chick Gut Microbiota Composition and Function

    PubMed Central

    Reed, Spenser; Neuman, Hadar; Moscovich, Sharon; Glahn, Raymond P.; Koren, Omry; Tako, Elad

    2015-01-01

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under conditions of Zn deficiency have yet to be studied. Using the broiler chicken (Gallus gallus) model, the aim of this study was to characterize distinct cecal microbiota shifts induced by chronic dietary Zn depletion. We demonstrate that Zn deficiency induces significant taxonomic alterations and decreases overall species richness and diversity, establishing a microbial profile resembling that of various other pathological states. Through metagenomic analysis, we show that predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways responsible for macro- and micronutrient uptake are significantly depleted under Zn deficiency; along with concomitant decreases in beneficial short chain fatty acids, such depletions may further preclude optimal host Zn availability. We also identify several candidate microbes that may play a significant role in modulating the bioavailability and utilization of dietary Zn during prolonged deficiency. Our results are the first to characterize a unique and dysbiotic cecal microbiota during Zn deficiency, and provide evidence for such microbial perturbations as potential effectors of the Zn deficient phenotype. PMID:26633470

  3. Language deficiency in children.

    PubMed

    Morehead, D M; Morehead, K E; Morehead, W A

    1980-01-01

    Research in cognition and language has provided useful constructs which suggests that specific deficits underlie language deficiencies in children. In addition, this research has provided procedures that the determine what a child knows about language at a particular level of development and has established a sequence of linguistic development that maps the specific content and structure of training programs. Two new areas of research offer additional approaches to assessment and remediation. One approach focuses on the actual principles and strategies that normal children use to learn language, making it possible to determine which methods are most efficient. The second research approach looks at the contextual conditions adults and children provide the first language learner. Preliminary work suggests that the natural conditions found universally in first language learning may be the best indicators of how to proceed with language-deficient children.

  4. Pbx3 deficiency results in central hypoventilation.

    PubMed

    Rhee, Joon Whan; Arata, Akiko; Selleri, Licia; Jacobs, Yakop; Arata, Satoru; Onimaru, Hiroshi; Cleary, Michael L

    2004-10-01

    Pbx proteins comprise a family of TALE (three amino acid loop extension) class homeodomain transcription factors that are implicated in developmental gene expression through their abilities to form hetero-oligomeric DNA-binding complexes and function as transcriptional regulators in numerous cell types. We demonstrate here that one member of this family, Pbx3, is expressed at high levels predominantly in the developing central nervous system, including a region of the medulla oblongata that is implicated in the control of respiration. Pbx3-deficient mice develop to term but die within a few hours of birth from central respiratory failure due to abnormal activity of inspiratory neurons in the medulla. This partially phenocopies the defect in mice deficient for Rnx, a metaHox homeodomain transcription factor, that we demonstrate here is capable of forming a DNA-binding complex with Pbx3. Rnx expression is unperturbed in Pbx3-deficient mice, but its ability to enhance transcription in vitro as a complex with TALE proteins is compromised in the absence of Pbx3. Thus, Pbx3 is essential for respiration and, like its DNA-binding partner Rnx, is critical for proper development of medullary respiratory control mechanisms. Pbx3-deficient mice provide a model for congenital central hypoventilation syndrome and suggest that Pbx3 mutations may promote the pathogenesis of this disorder.

  5. Iron-Deficiency Anemia (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Iron-Deficiency Anemia KidsHealth > For Parents > Iron-Deficiency Anemia Print A ... common nutritional deficiency in children. About Iron-Deficiency Anemia Every red blood cell in the body contains ...

  6. How Is Iron-Deficiency Anemia Treated?

    MedlinePlus

    ... the NHLBI on Twitter. How Is Iron-Deficiency Anemia Treated? Treatment for iron-deficiency anemia will depend ... may be advised. Treatments for Severe Iron-Deficiency Anemia Blood Transfusion If your iron-deficiency anemia is ...

  7. Comparative analysis of the biological and physical properties of Enterococcus faecalis bacteriophage vB_EfaS_GEC-EfS_3 and Streptococcus mitis bacteriophage vB_SmM_GEC-SmitisM_2.

    PubMed

    Rigvava, Sophio; Tchgkonia, Irina; Jgenti, Darejan; Dvalidze, Teona; Carpino, James; Goderdzishvili, Marina

    2013-01-01

    Enterococcus faecalis and Streptococcus mitis are common commensal inhabitants of the human gastrointestinal and genitourinary tracts. However, both species can be opportunistic pathogens and cause disease in nosocomial settings. These infections can be difficult to treat because of the frequency of antibiotic resistance among these strains. Bacteriophages are often suggested as an alternative therapeutic agent against these infections. In this study, E. faecalis and S. mitis strains were isolated from female patients with urinary tract infections. Bacteriophages active against these strains were isolated from sewage water from the Mtkvari River. Two phages, designated vB_EfaS_GEC-EfS_3 (Syphoviridae) and vB_SmM_GEC-SmitisM_2 (Myoviridae), were specific for E. faecalis and S. mitis, respectively. Each phage's growth patterns and adsorption rates were quantified. Sensitivity to ultraviolet light and temperature was determined, as was host range and serology. The S. mitis bacteriophage was found to be more resistant to ultraviolet light and exposure to high temperatures than the E. faecalis bacteriophage, despite having a much greater rate of replication. While each phage was able to infect a broad range of strains of the same species as the host species from which they were isolated, they were unable to infect other host species tested.

  8. Zinc transporter 7 deficiency affects lipid synthesis in adipocytes by inhibiting insulin-dependent Akt activity and glucose uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mice deficient for zinc transporter 7 (Znt7) are mildly zinc deficient, accompanied with low body weight gain and body fat accumulation. To investigate the underlying mechanism of Znt7 deficiency in body adiposity, we investigated fatty acid composition and insulin sensitivity in visceral (epididyma...

  9. Intake of essential fatty acids in Indonesian children: secondary analysis of data from a nationally representative survey.

    PubMed

    Neufingerl, Nicole; Djuwita, Ratna; Otten-Hofman, Anke; Nurdiani, Reisi; Garczarek, Ursula; Sulaeman, Ahmad; Zock, Peter L; Eilander, Ans

    2016-02-28

    Essential fatty acids (EFA) such as α-linolenic acid (ALA) and linoleic acid (LA) are needed for healthy growth and development of children. Worldwide, reliable intake data of EFA are often lacking. The objective of this study was to investigate dietary intake of EFA in Indonesian children. Dietary intake data of 4-12-year-old children (n 45,821) from a nationally representative Indonesian survey were used to estimate median intake and distribution of population fatty acid intake. Missing data on individual fatty acids in the Indonesian food composition table were complemented through chemical analyses of national representative food samples and imputation of data from the US nutrient database. Nutrient adequacy ratios were calculated as a percentage of FAO/WHO intake recommendations. The medians of total fat intake of the children was 26·7 (10th-90th percentile 11·2-40·0) percentage of total daily energy (%E). Intakes of fatty acids were 4·05 (10th-90th percentile 1·83-7·22) %E for total PUFA, 3·36 (10th-90th percentile 1·14-6·29) %E for LA and 0·20 (10th-90th percentile 0·07-0·66) %E for ALA. Median intake of PUFA was 67 % and that of ALA 40 % of the minimum amounts recommended by FAO/WHO. These data indicate that a majority of Indonesian children has intakes of PUFA and specifically ALA that are lower than recommended intake levels. Total fat and LA intakes may be suboptimal for a smaller yet considerable proportion of children. Public health initiatives should provide practical guidelines to promote consumption of PUFA-rich foods.

  10. (Accumulation of methyl-deficient rat liver messenger ribonucleic acid on ethionine administration). Progress report. [Methyltransferase activity in Ehrlich ascites tumor cells and effects of phorbol ester on methyltransferase activity

    SciTech Connect

    Borek, E.

    1980-01-01

    Enzyme fractions were isolated from Ehrlich ascites cells which introduced methyl groups into methyl deficient rat liver mRNA and unmethylated vaccinia mRNA. The methyl groups were incorporated at the 5' end into cap 1 structures by the viral enzyme, whereas both cap 0 and cap 1 structures were formed by the Ehrlich ascites cell enzymes. Preliminary results indicate the presence of adenine N/sup 6/-methyltransferase activity in Ehrlich ascites cells. These results indicate that mRNA deficient in 5'-cap methylation and in internal methylation of adenine accumulated in rats on exposure to ethionine. The methyl-deficient mRNA isolated from the liver of ethionine-fed rats differed in its translational properties from mRNA isolated from control animals. Preliminary experiments indicate that single topical application of 17n moles of TPA to mouse skin altered tRNA methyltransferases. The extent of methylation was increased over 2-fold in mouse skin treated with TPA for 48 hours. These changes have been observed as early as 12 hours following TPA treatment. In contrast, the application of initiating dose of DMBA had no effect on these enzymes. It should be emphasized that the changes in tRNA methyltransferases produced by TPA are not merely an increase of the concentration of the enzyme, rather that they represent alterations of specificity of a battery of enzymes. In turn the change in enzyme specificity can produce alterations in the structure of tRNA. (ERB)

  11. IgA deficiency in wolves.

    PubMed

    Frankowiack, Marcel; Hellman, Lars; Zhao, Yaofeng; Arnemo, Jon M; Lin, Miaoli; Tengvall, Katarina; Møller, Torsten; Lindblad-Toh, Kerstin; Hammarström, Lennart

    2013-06-01

    Low mean concentrations of serum immunoglobulin A (IgA) and an increased frequency of overt IgA deficiency (IgAD) in certain dog breeds raises the question whether it is a breeding-enriched phenomenon or a legacy from the dog's ancestor, the gray wolf (Canis lupus). The IgA concentration in 99 serum samples from 58 free-ranging and 13 captive Scandinavian wolves, was therefore measured by capture ELISA. The concentrations were markedly lower in the wolf serum samples than in the dog controls. Potential differences in the IgA molecule between dogs and wolves were addressed by sequencing the wolf IgA heavy chain constant region encoding gene (IGHA). Complete amino acid sequence homology was found. Detection of wolf and dog IgA was ascertained by showing identity using double immunodiffusion. We suggest that the vast majority of wolves, the ancestor of the dog, are IgA deficient.

  12. Sensitivity of three activated partial thromboplastin time reagents to coagulation factor deficiencies.

    PubMed

    Turi, D C; Peerschke, E I

    1986-01-01

    Three activated partial thromboplastin time (APTT) reagent test systems, General Diagnostics Automated APTT, American Dade Actin FS, and Pacific Hemostasis (Thromboscreen KAPTT) reagent, containing different activators for the APTT assay, were evaluated for their precision and sensitivity to factor deficiencies in the intrinsic coagulation system. The data suggest that micronized silica and ellagic acid reagent systems were similar in sensitivity to Factor VIII, X, and XII deficiencies, whereas, the micronized kaolin reagent was significantly less sensitive to these deficiencies. Factor XI deficiency was detected equally well with the use of all three reagent systems. The ellagic acid reagent was somewhat more sensitive to Factor IX deficiency than the micronized silica reagent, and the micronized kaolin reagent was again least sensitive. Both the micronized silica and ellagic acid based reagents were insensitive to all but severe deficiencies in prekallikrein, whereas the micronized kaolin reagent was unable to detect this deficiency. All three reagents were insensitive to all but severe deficiencies in high-molecular-weight kininogen. The authors conclude that the reagent systems tested, containing micronized silica or ellagic acid as activators, are similar in sensitivity when used in a routine activated partial thromboplastin time to screen for factor deficiencies, whereas the reagent system containing micronized kaolin as an activator is less sensitive.

  13. Iatrogenic nutritional deficiencies.

    PubMed

    Young, R C; Blass, J P

    1982-01-01

    This article catalogs the nutritional