Science.gov

Sample records for acid electrolyte solution

  1. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOEpatents

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  2. Electrolytic recovery of copper and regeneration of nitric acid from a copper strip solution

    SciTech Connect

    Stewart, T.L.; Hartley, J.N.

    1985-01-01

    The fabrication of nuclear fuels involves stripping of a copper jacket with nitric acid. The waste acid, which contains 3.0 to 4.5 N nitric acid and 100 to 180 g/L copper, is currently discharged, neutralized, and disposed of in solar evaporation ponds. Alternative waste disposal and treatment methods including electrowinning are being investigated. Laboratory-scale electrowinning tests have been conducted in an air-sparged cell at current densities from 0.027 to 0.22 A/cm/sup 2/. The efficiency of copper recovery was improved by adding sulfamic acid or by cooling the electrolyte. Copper current efficiency ranged from 55% to 95%; energy consumption ranged from 1.8 to 6.6 kWh/kg Cu. Results of the laboratory-scale electrowinning tests are summarized. A brief economic comparison of an alternative waste disposal and acid recycle technique is presented.

  3. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  4. Hydrogen-ion titrations of amino acids and proteins in solutions containing concentrated electrolyte

    SciTech Connect

    Fergg, F.; Kuehner, D.E.; Blanch, H.W.; Prausnitz, J.M.

    1994-12-01

    This report describes a first attempt to quantify the net charge as a function of solution pH for lysozyme and {alpha}-chymotrypsin at 0.1 M, 1.0 M and 3.0 M ionic strength, (IS). The calculations are based on the residue (titratable group) pK{sub a}`s in the amino-acid sequence of the protein. To determine these pK{sub a}`s, a simple theory was used which assumes that the pK{sub a}`s are independent from each other in the protein and are equal to their pK{sub a} values in free amino-acid solution (Independent-Site Theory, IST). Residue pK{sub a}`s were obtained from amino-acid hydrogen-ion titrations at three different KCl concentrations corresponding to 0.1M, 1.0M and 3.0M ionic strength. After construction of a suitable apparatus, the experimental procedure and data reduction were computerized to perform a large number of titrations. Most measured pK{sub a}`s showed high reproducibility (the difference of pK{sub a} values observed between two experiments was less than 0.05). For IS = 0.1M, observed pK{sub a}`s agreed with literature values to within a few hundredths of a pH unit. Furthermore, the ionic-strength dependence of the pK{sub a}`s followed the trends reported in the literature, viz. pK{sub a} values decrease with increasing ionic strength until they reach a minimum at about IS = 0.5M. At still higher IS, pK{sub a}`s increase as the ionic strength rises to 3M. The known pK{sub a}`s of all titratable groups in a protein were used with the IST to give a first approximation of how the protein net charge varies with pH at high ionic strength. A comparison of the titration curves based on the IST with experimental lysozyme and {alpha}-chymotrypsin titration data indicates acceptable agreement at IS = 0.1M. However, comparison of measured and calculated titration curves at IS = 1M and IS = 3M indicates only quantitative agreement.

  5. Acid-Base and Electrolyte Status during Normovolemic Hemodilution with Succinylated Gelatin or HES-Containing Volume Replacement Solutions in Rats

    PubMed Central

    Teloh, Johanna K.; Ferenz, Katja B.; Petrat, Frank; Mayer, Christian; de Groot, Herbert

    2013-01-01

    Background In the past, several studies have compared different colloidal replacement solutions, whereby the focus was usually on the respective colloid. We therefore systematically studied the influence of the carrier solution’s composition of five approved colloidal volume replacement solutions (Gelafundin, Gelafusal, Geloplasma, Voluven and Volulyte) on acid-base as well as electrolyte status during and following acute severe normovolemic hemodilution. The solutions differed in the colloid used (succinylated gelatin vs. HES) and in the presence and concentration of metabolizable anions as well as in their electrolyte composition. Methods Anesthetized Wistar rats were subjected to a stepwise normovolemic hemodilution with one of the solutions until a final hematocrit of 10%. Subsequent to dilution (162 min), animals were observed for an additional period (150 min). During dilution and observation time blood gas analyses were performed eight times in total. Additionally, in the Voluven and Volulyte groups as well as in 6 Gelafundin animals, electrolyte concentrations, glucose, pH and succinylated gelatin were measured in urine and histopathological evaluation of the kidney was performed. Results All animals survived without any indications of injury. Although the employed solutions differed in their respective composition, comparable results in all plasma acid-base and electrolyte parameters studied were obtained. Plasma pH increased from approximately 7.28 to 7.39, the plasma K+ concentration decreased from circa 5.20 mM to 4.80-3.90 mM and the plasma Cl− concentration rose from approximately 105 mM to 111–120 mM. Urinary analysis revealed increased excretion of K+, H+ and Cl−. Conclusions The present data suggest that the carrier solution’s composition with regard to metabolizable anions as well as K+, Ca2+ only has a minor impact on acid-base and electrolyte status after application of succinylated gelatin or HES-containing colloidal volume

  6. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents.

  7. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1998-10-20

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

  8. Electro-oxidation of methanol on Pt(111) in acid solutions: effects of electrolyte anions during electrocatalytic reactions

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hirohito; Ito, Masatoki

    1995-10-01

    The electro-oxidation of methanol on a Pt(111) surface in both sulfuric and perchloric acid solutions was investigated by combined apparatus under both ultra-high vacuum and electrochemical environments. In sulfuric acid solution, a strong lateral interaction was observed between adsorbed bisulfate and CO derived from methanol. Coadsorption of CO derived from methanol with bisulfate ion yielded a (√7 × √7)-R19.1°-CO-bisulfate structure. In perchloric acid solution, however, no lateral interaction between adsorbed CO and perchlorate was seen. The difference in reaction rates of methanol oxidation in both solutions was explained by these specific anion adsorption effects.

  9. Electrochemical characteristics of acid electrolytes for fuel cells

    NASA Astrophysics Data System (ADS)

    Adzic, R.; Gervasio, D.; Kanamura, K.; Razaq, A.; Razaq, M.; Yeager, Ernest B.

    1990-01-01

    Five topics investigated by the Gas Research Institute (GRI) contractors at Case Western Reserve University (CWRU) during the past year included: (1) electrochemical evaluation of perfluorinated electrolyte, (2) the Nafion solid polymer electrolyte (SPE) fuel cell, (3) electrochemistry of single crystal Pt electrodes in acid solution, (4) catalytic effects of adatoms entrapped on electrode surfaces by bipolar or monopolar ion exchange membrane layers, (5) investigations of the Fleischmann-Pons phenomenon. The principal objective of the project is to evaluate new acid electrolytes. Electrochemical evaluation was made for two bisphosphonic acids as a replacement for phosphoric acid as a fuel cell electrolyte, and also a bis-sulfonyl carbon acid as an additive to concentrated phosphoric acid electrolyte for acid H2-O2 fuel cells. Electrochemical characteristics were found for these new perfluorinated acids.

  10. Potentiometric investigation of the effect of the pH on the ionic transfer of some amino acids at the interface between two immiscible electrolyte solutions.

    PubMed

    Spătaru, Tanta; Spătaru, Nicolae; Bonciocat, Nicolae; Luca, Constantin

    2004-04-01

    The effect of the pH on the ionic transfer of glycine and beta-alanine at the interface between two immiscible electrolyte solutions (ITIES) was investigated by a simple potentiometric method. Upon addition of small amounts of solution containing the investigated amino acids, a variation of the potential drop across the interface was recorded, which was found to be pH-dependent. This behavior was explained in terms of a preferential orientation of the amino acid molecules at the ITIES, induced by the different lipoficility of the functional groups. The results enabled the measurement of this voltage variation to be used as the basis for a simple and rapid method for determining the isoelectric point of the investigated compounds. The agreement between the pH(i) values thus estimated and those reported in the literature suggests the possibility of using the method for the interpretation of processes occurring at the level of biological membranes. PMID:14990327

  11. Thermodynamic models of aqueous solutions containing inorganic electrolytes and dicarboxylic acids at 298.15 K. 2. Systems including dissociation equilibria.

    PubMed

    Clegg, Simon L; Seinfeld, John H

    2006-05-01

    Atmospheric aerosols contain a significant fraction of water-soluble organic compounds, including dicarboxylic acids. Pitzer activity coefficient models are developed, using a wide range of data at 298.15 K, for the following systems containing succinic acid (H(2)Succ) and/or succinate salts: [H(+), Li(+), Na(+), K(+), Rb(+), Cs(+)]Cl(-)-H(2)Succ-H(2)O, HNO(3)-H(2)Succ-H(2)O, H(+)-NH(4)(+)-HSucc(-)-Succ(2-)-NH(3)-H(2)Succ-H(2)O, NH(4)Cl-(NH(4))(2)Succ-H(2)O, H(+)-Na(+)-HSucc(-)-Succ(2-)-Cl(-)-H(2)Succ-H(2)O, NH(4)NO(3)-H(2)Succ-H(2)O, and H(2)SO(4)-H(2)Succ-H(2)O. The above compositions are given in terms of ions in the cases where acid dissociation was considered. Pitzer models were also developed for the following systems containing malonic acid (H(2)Malo): H(+)-Na(+)-HMalo(-)-Malo(2-)-Cl(-)-H(2)Malo-H(2)O, and H(2)Malo-H(2)SO(4)-H(2)O. The models are used to evaluate the extended Zdanovskii-Stokes-Robinson (ZSR) model proposed by Clegg and Seinfeld (J. Phys. Chem. A 2004, 108, 1008-1017) for calculating water and solute activities in solutions in which dissociation equilibria occur. The ZSR model yields satisfactory results only for systems that contain moderate to high concentrations of (nondissociating) supporting electrolyte. A practical modeling scheme is proposed for aqueous atmospheric aerosols containing both electrolytes and dissociating (organic) nonelectrolytes.

  12. Supersaturated Electrolyte Solutions: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.; Na, Han-Soo

    1995-01-01

    Highly supersaturated electrolyte solutions can be prepared and studied employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. In the approach suggested the metastable state for electrolyte solutions is described in terms of the conserved order parameter omega(r,t) associated with fluctuations of the mean solute concentration n(sub 0). Parameters of the corresponding Ginzburg-Landau free energy functional which defines the dynamics of metastable state relaxation are determined and expressed through the experimentally measured quantities. A correspondence of 96-99 % between theory and experiment for all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin), and its calculation for various electrolyte solutions at 298 K. The assumption that subcritical solute clusters consist of the electrically neutral Bjerrum pairs has allowed both analytical and numerical investigation of the number-size N(sub c) of nucleation monomers (aggregates of the Bjerrum pairs) which are elementary units of the solute critical clusters. This has also allowed estimations for the surface tension Alpha, and equilibrium bulk energy Beta per solute molecule in the nucleation monomers. The dependence of these properties on the temperature T and on the solute concentration n(sub 0) through the entire metastable zone (from saturation concentration n(sub sat) to spinodal n(sub spin) is examined. It has been demonstrated that there are the following asymptotics: N(sub c), = I at spinodal

  13. Extraction of electrolytes from aqueous solutions and their spectrophotometric determination by use of acid-base chromoionophores in lipophylic solvents.

    PubMed

    Barberi, Paola; Giannetto, Marco; Mori, Giovanni

    2004-04-01

    The formation of non-absorbing complexes in an organic phase has been exploited for the spectrophotometric determination of ionic analytes in aqueous solutions. The method is based on liquid-liquid extraction of aqueous solution with lipophylic organic phases containing an acid-base chromoionophore, a neutral lypophilic ligand (neutral carrier) selective to the analyte and a cationic (or anionic) exchanger. The method avoids all difficulties of the preparation of the very thin membranes used in optodes, so that it can advantageously be used for the study of the role physical-chemical parameters of the system in order to optimize them and to prepare, if necessary, an optimized optode. Two lipophylic derivatives of Nile Blue and 4',5-dibromofluorescein have been synthesized, in order to ensure their permanence within organic phase. Two different neutral carriers previously characterized by us as ionophores for liquid-membrane Ion Selective Electrodes have been employed. Three different ionic exchangers have been tested. Furthermore, a model allowing the interpolation of experimental data and the determination of the thermodynamic constant of the ionic-exchange equilibrium has been developed and applied. PMID:15242090

  14. Polyethylene glycol-electrolyte solution (PEG-ES)

    MedlinePlus

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by ...

  15. Glasslike behavior in aqueous electrolyte solutions.

    PubMed

    Turton, David A; Hunger, Johannes; Hefter, Glenn; Buchner, Richard; Wynne, Klaas

    2008-04-28

    When salts are added to water, generally the viscosity increases, suggesting that the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules, implying no enhancement or breakdown of the hydrogen-bond network. Here, we report optical Kerr effect and dielectric relaxation spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

  16. A new perturbation theory for electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Drunsel, F.; Zmpitas, W.; Gross, J.

    2014-08-01

    Developing physically based equations of state for electrolyte solutions is demanding due to the long range behaviour of the Coulombic interaction potentials. In this work, we present a new perturbation approach for nonprimitive model electrolyte solutions consisting of hard spheres with a positive or negative point charge or with point dipoles. We overcome the problem of diverging correlation integrals by separating the interaction potentials into short ranged parts and a long ranged contribution. For the point charges, the division is done like in most implementations of the Ewald sum. The perturbation expansion to 3rd order is formulated using the short ranged part of the potentials only, which results in converging correlation integrals for which we provide simple analytical expressions. The long range contribution to the Helmholtz energy is taken into account by a analytical term that has recently been presented by Rodgers and Weeks [J. M. Rodgers and J. D. Weeks, J. Chem. Phys. 131, 244108 (2009)]. In order to assess the proposed theory, we present molecular simulation data for Helmholtz energies of the same model electrolyte solutions. Predictions for the Helmholtz energy from the new theory are found to be in very good agreement with results from the molecular simulations for all state points we regarded.

  17. Polarization of anthracite electrodes in electrolyte solutions

    SciTech Connect

    A.N. Lopanov; E.V. Blaido; O.V. Smirnova

    2007-10-15

    The regularities of the polarization of anthractie electrodes for the liberation of hydrogen from electrolyte (potassium chloride and hydrogen chloride) solutions were found, and electrode processes occurring at the surface of coals in the Fe{sup 2+}/Fe{sup 3+} redox system were studied. It was found that the deviations of standard electrode potentials from the equilibrium values of redox systems depend on the exchange current densities of electrochemical processes occurring at the surface of coal matter. Low transfer coefficients (0.04-0.051) for the discharge reaction of hydrogen ions on anthracites indicate that the reaction occurs under conditions close to those of an activationless process.

  18. Ionometry in the analysis of electrolyte solutions (review)

    SciTech Connect

    Petrukhin, O.M.; Rogatinskaya, S.L.; Shipulo, E.V.

    1995-04-01

    The potential usefulness of ionometry in the analytical control of plating electrolytes, etching solutions, and waste effluents has been considered. Complete ionometric analysis of plating electrolytes and determination of metal cyanide complexes have been presented as examples. Ion-selective field-effect transistors (IEFT), semiconductor electrodes, and ISE pairs have been shown to have potential usefulness for the potentiometric titration of plating electrolytes.

  19. Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    The present invention relates to electrolyte solvents for use in liquid or rubbery electrolyte solutions. Specifically, this invention is directed to boron-containing electrolyte solvents and boron-containing electrolyte solutions.

  20. Solid acids as fuel cell electrolytes.

    PubMed

    Haile, S M; Boysen, D A; Chisholm, C R; Merle, R B

    2001-04-19

    Fuel cells are attractive alternatives to combustion engines for electrical power generation because of their very high efficiencies and low pollution levels. Polymer electrolyte membrane fuel cells are generally considered to be the most viable approach for mobile applications. However, these membranes require humid operating conditions, which limit the temperature of operation to less than 100 degrees C; they are also permeable to methanol and hydrogen, which lowers fuel efficiency. Solid, inorganic, acid compounds (or simply, solid acids) such as CsHSO4 and Rb3H(SeO4)2 have been widely studied because of their high proton conductivities and phase-transition behaviour. For fuel-cell applications they offer the advantages of anhydrous proton transport and high-temperature stability (up to 250 degrees C). Until now, however, solid acids have not been considered viable fuel-cell electrolyte alternatives owing to their solubility in water and extreme ductility at raised temperatures (above approximately 125 degrees C). Here we show that a cell made of a CsHSO4 electrolyte membrane (about 1.5 mm thick) operating at 150-160 degrees C in a H2/O2 configuration exhibits promising electrochemical performances: open circuit voltages of 1.11 V and current densities of 44 mA cm-2 at short circuit. Moreover, the solid-acid properties were not affected by exposure to humid atmospheres. Although these initial results show promise for applications, the use of solid acids in fuel cells will require the development of fabrication techniques to reduce electrolyte thickness, and an assessment of possible sulphur reduction following prolonged exposure to hydrogen.

  1. Thermodynamic Studies of Levitated Microdroplets of Highly Supersaturated Electrolyte Solutions

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo

    1996-01-01

    Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin) and its calculation for various electrolyte solutions at 298 K.

  2. Electrolyte Solutions and Specific Ion Effects on Interfaces

    ERIC Educational Resources Information Center

    Friedman, Ran

    2013-01-01

    Introductory general and physical chemistry courses often deal with colligative properties of solutions and do not discuss nonideal solutions in detail. Yet, a growing body of evidence reveals that even at physiological concentrations electrolyte solutions cannot be treated as ideal when a charged or partially charged solute (such as a protein) is…

  3. Electrolytes

    MedlinePlus

    ... body fluids that carry an electric charge. Electrolytes affect how your body functions in many ways, including: The amount of water in your body The acidity of your blood (pH) Your muscle function Other important processes You lose ...

  4. Apparent Ionic Charge in Electrolyte and Polyelectrolyte Solutions

    ERIC Educational Resources Information Center

    Magdelenat, H.; And Others

    1978-01-01

    Compares average displacements of charged particles under thermal motion alone with those obtained by the action of an external electric field to develop a concept of "apparent charge" to approximate actual structural charge in an electrolyte solution. (SL)

  5. Boiling and nonboiling heat transfer to electrolyte solutions

    SciTech Connect

    Najibi, S.H.; Mueller-Steinhagen, H.; Jamialahmadi, M.

    1996-10-01

    Heat transfer to electrolyte solutions is a common engineering problem in the chemical and petrochemical industries. Nevertheless, only a few experimental investigations of heat transfer to electrolyte solutions can be found in the literature. To improve design of heat transfer equipment and to understand fouling characteristics, it is important to know the clean heat transfer coefficient of electrolyte solutions, and whether heat transfer to electrolyte solutions can be predicted with models found for less complicated fluids. A wide range of experiments were performed to determine the effects of various dissolved salts on forced-convective, pool boiling, and subcooled flow-boiling heat transfer. The effect of dissolved salts on bubble size and nucleation site density were also investigated. The measured heat transfer coefficients are compared with recommended correlations for the different heat transfer modes.

  6. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    NASA Astrophysics Data System (ADS)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  7. Solubility of non-polar gases in electrolyte solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. L., Jr.

    1970-01-01

    Solubility theory describes the effects of both concentration and temperature on solute activity coefficients. It predicts the salting-out effect and the decrease in solubility of non-polar gases with increased electrolyte concentration, and can be used to calculate heats of solution, entropies, and partial molal volumes of dissolved gases

  8. Osmotic coefficients of aqueous weak electrolyte solutions: influence of dissociation on data reduction and modeling.

    PubMed

    Reschke, Thomas; Naeem, Shahbaz; Sadowski, Gabriele

    2012-06-28

    The experimental determination and modeling of osmotic coefficients in electrolyte solutions requires knowledge of the stoichiometric coefficient ν(i). In contrast to strong electrolytes, weak electrolytes exhibit a concentration-dependent stoichiometric coefficient, which directly influences the thermodynamic properties (e.g., osmotic coefficients). Neglecting this concentration dependence leads to erroneous osmotic coefficients for solutions of weak electrolytes. In this work, the concentration dependence of the stoichiometric coefficients and the influence of concentration on the osmotic coefficient data were accounted for by considering the dissociation equilibria of aqueous sulfuric and phosphoric acid systems. The dissociation equilibrium was combined with the ePC-SAFT equation of state to model osmotic coefficients and densities of electrolyte solutions. Without the introduction of any additional adjustable parameters, the average relative deviation between the modeled and the experimental data decreases from 12.82% to 4.28% (osmotic coefficients) and from 2.59% to 0.89% (densities) for 12 phosphoric and sulfuric systems compared to calculations that do not account for speciation. For easy access to the concentration-dependent stoichiometric coefficient, estimation schemes were formulated for mono-, di-, and triprotic acids and their salts.

  9. Diffusioosmosis of electrolyte solutions in a fine capillary slit.

    PubMed

    Ma, Hsien Chen; Keh, Huan J

    2006-06-01

    The steady diffusioosmotic flows of an electrolyte solution along a charged plane wall and in a capillary channel between two identical parallel charged plates generated by an imposed tangential concentration gradient are theoretically investigated. The plane walls may have either a constant surface potential or a constant surface charge density. The electrical double layers adjacent to the charged walls may have an arbitrary thickness and their electrostatic potential distributions are determined by the Poisson-Boltzmann equation. Solving a modified Navier-Stokes equation with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions, the macroscopic electric field and the fluid velocity along the tangential direction induced by the imposed electrolyte concentration gradient are obtained semianalytically as a function of the lateral position in a self-consistent way. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential (or surface charge density) of the wall, the properties of the electrolyte solution, and other relevant factors. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field and the relaxation effect in the double layer on the diffusioosmotic flow are found to be very significant. PMID:16364357

  10. Study on degradation process of polymer electrolyte by solution analysis

    NASA Astrophysics Data System (ADS)

    Akiyama, Yoko; Sodaye, Hemant; Shibahara, Yuji; Honda, Yoshihide; Tagawa, Seiichi; Nishijima, Shigehiro

    Degradation process of Nafion which is one of the polymer electrolyte generally used for polymer electrolyte membrane fuel cell was investigated by solution analysis and structural analysis of eluted species. Nafion degraded by gamma-ray irradiation and heat treatment was immersed in distilled water and the solutions were analyzed using ion chromatograph, total organic carbon (TOC) analyzer, and inductively coupled plasma atomic emission spectrometer (ICP-AES). The solutions after the Fenton reaction were also analyzed with the same methods. Proton, sulfide ion, fluorine ion and organic carbon were eliminated into the solution, and their ratio was changed depending on the degradation method. To determine the eliminated species to the solution, structural analysis of concentrated dissolved species was performed using FT-IR. As the results, the initial process of degradation was detected sensitively in solution analysis compared with membrane analysis, and difference of the degradation process under different conditions was clearly observed. It was also found that new functional group COOH was formed in the eliminated species. These results showed that solution analysis are very simple yet powerful methods to elucidate the degradation process, which can also be applied to actual fuel cell operation to track minute changes in the polymer electrolyte.

  11. Acid and alkali doped PBI electrolyte in electrochemical system

    NASA Astrophysics Data System (ADS)

    Xing, Baozhong

    In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism

  12. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities. PMID:26901167

  13. Ion Pairing in Alkali Nitrate Electrolyte Solutions.

    PubMed

    Xie, Wen Jun; Zhang, Zhen; Gao, Yi Qin

    2016-03-10

    In this study, we investigate the thermodynamics of alkali nitrate salt solutions, especially the formation of contact ion pairs between alkali cation and nitrate anion. The ion-pairing propensity shows an order of LiNO3 < NaNO3 < KNO3. Such results explain the salt activity coefficients and suggest that the empirical "law of matching water affinity" is followed by these alkali nitrate salt solutions. The spatial patterns of contact ion pairs are different in the three salt solutions studied here: Li(+) forms the contact ion pair with only one oxygen of the nitrate while Na(+) and K(+) can also be shared by two oxygens of the nitrate. In reproducing the salt activity coefficient using Kirkwood-Buff theory, we find that it is essential to include electronic polarization for Li(+) which has a high charge density. The electronic continuum correction for nonpolarizable force field significantly improves the agreement between the calculated activity coefficients and their experimental values. This approach also improves the performance of the force field on salt solubility. From these two aspects, this study suggests that electronic continuum correction can be a promising approach to force-field development for ions with high charge densities.

  14. Cl- sensitive biosensor used electrolyte-solution-gate diamond FETs.

    PubMed

    Song, Kwang-Soup; Sakai, Toshikatsu; Kanazawa, Hirofumi; Araki, Yuta; Umezawa, Hitoshi; Tachiki, Minoru; Kawarada, Hiroshi

    2003-11-15

    We have investigated the electrolyte-solution-gate field effect transisitors (SGFETs) used hydrogen terminated (H-terminated) or partially oxygen terminated (O-terminated) polycrystalline diamond surface in the Cl- and Br- ionic solutions. The H-terminated channel SGFETs are insensitive to pH values in electrolyte solutions. The threshold voltages of the diamond SGFETs shift according to the density of Cl- and Br- ions about 30 mV/decade. One of the attractive biomedical applications for the Cl- sensitive SGFETs is the detection of chloride density in blood or in sweat especially in the case of cystic fibrosis. The sensitivities of Cl- and Br- ions have been lost on the partially O-terminated diamond surface. These phenomena can be explained by the polarity of surface change on the H-terminated and the O-terminated surface.

  15. [Electrodynamics of interactions in electrolyte solutions and their biological significance].

    PubMed

    de Xammar Oro, J R; Ruderman, G; Grigera, J R

    2008-01-01

    Attention is drawn to the fact that the interaction of charges in aqueous solutions of electrolytes, such as media having physiological characteristics, depends not only on the distance between interacting charges but also on the frequency that determines their dynamics. This fact has significant consequences for some biological processes and their kinetics. The analysis of reasons for charge shielding, including the dynamic effects, shows that, even at distances exceeding the Debye length, electric interactions in systems similar to physiological are effective provided that charges move with frequencies higher than 250 MHz. For each electrolyte solution, the threshold frequency (Maxwell frequency) can be found, which determines the transition from the conducting to the dielectric mode of interactions of charges in physiological solutions.

  16. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    SciTech Connect

    Kuan, Aaron T.; Szalay, Tamas; Lu, Bo; Xie, Ping; Golovchenko, Jene A.

    2015-05-18

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

  17. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    PubMed Central

    Kuan, Aaron T.; Lu, Bo; Xie, Ping; Szalay, Tamas; Golovchenko, Jene A.

    2015-01-01

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips. PMID:26045626

  18. Thermodynamic properties of gases dissolved in electrolyte solutions.

    NASA Technical Reports Server (NTRS)

    Tiepel, E. W.; Gubbins, K. E.

    1973-01-01

    A method based on perturbation theory for mixtures is applied to the prediction of thermodynamic properties of gases dissolved in electrolyte solutions. The theory is compared with experimental data for the dependence of the solute activity coefficient on concentration, temperature, and pressure; calculations are included for partial molal enthalpy and volume of the dissolved gas. The theory is also compared with previous theories for salt effects and found to be superior. The calculations are best for salting-out systems. The qualitative feature of salting-in is predicted by the theory, but quantitative predictions are not satisfactory for such systems; this is attributed to approximations made in evaluating the perturbation terms.

  19. Electrokinetic Characteristics of Calcined Kaolinite in Aqueous Electrolytic Solutions

    NASA Astrophysics Data System (ADS)

    Chen, Tianxing; Zhao, Yunliang; Li, Hongliang; Liu, Jia; Song, Shaoxian

    2015-03-01

    In this work, the electrokinetic characteristics of calcined kaolinite in aqueous solutions has been studied in the presence of the electrolytes of NaCl, KCl, NH4Cl, NaNO3, MgCl2, CaCl2 and AlCl3, through electrophoretic measurement. The experimental results have shown that the zeta potential was closely dependent on the valence and concentration of the electrolytic cations, but not on the type of the cations. The higher the valence and the concentration were, the stronger the impact to the zeta potential was. Al3+ could reverse the potential sign from negative to positive. In addition, it was found that the monovalent anions of Cl- and NO3- made a big difference to the zeta potential at the same dosage.

  20. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-12-01

    The decrease in the efficiency and capacity of a vanadium redox flow battery (VRB) caused by an electrolyte imbalance is an important impediment to its long-term operation. Knowing the state of charge (SOC) of an electrolyte solution can quantify the level of the electrolyte imbalance in the VRB. In this study, a four-pole cell device is devised and employed to predict the SOC. The proposed method directly measures the ionic resistance of the electrolyte solution and is sufficiently precise to be applied in real-time mode. Experimental studies on the effects of the operating current on the four-pole cell and the concentrations of vanadium and sulfuric acid in the electrolyte solution are carried out. The results show that the four-pole cell method can be utilized to measure the electrolyte SOC. The concentrations of vanadium and sulfuric acid in the electrolyte solution affect the ionic resistance of the solution. Regarding the capacity and efficiency of the VRB system, the results indicate that the electrical charge is determined from the concentration of vanadium and that the cell voltage depends on the concentration of sulfuric acid in the electrolyte solution. The decreased vanadium concentration and increased sulfuric acid concentration improves the cell voltage efficiency.

  1. Modern techniques for the study of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Kunz, Werner; Turq, Pierre; Barthel, Josef

    In the last decade a variety of new or optimized techniques considerably enriched our knowledge about electrolyte solutions. In the present review we discuss some of these techniques which are applied to aqueous as well as non-aqueous solutions. Among the theoretical approaches computer simulations and numerical or analytical equations based on statistical mechanics are particularly powerful. The field of experimental methods is even more vast. We selected four examples: an efficient technique for the determination of free energy data, neutron scattering experiments for the direct access to structural data, dielectric measurements as an example of a spectroscopic method and recent developments in the field of electrolyte diffusion as an example of transport properties. Finally we show an example of a data compilation which covers a wide range of properties of a great number of electrolyte solutions. Dans les années 80, la connaissance des propriétés des solutions électrolytiques s'est considérablement élargie par l'apparition de techniques nouvelles ou l'optimisation de techniques plus anciennes. Dans cet article, nous en discutons quelquesunes qui sont appliquées à des solutions aqueuses et non-aqueuses. Parmi les approches théoriques, les simulations par ordinateur et les équations basées sur la méchaniquestatistique sont particulièrement puissantes. En ce qui concerne les méthodes expérimentales, le nombre de techniques est encore plus grand. Nous avons choisi quatre exemples: une technique bien adaptée à la détermination de l'énergie libre, la diffusion de neutron pour la détermination directe de la structure d'une solution, des mesures diélectriques comme exemple d'une méthode spectroscopique et des développements recents dans le domaine de la diffusion des électrolytes. A la fin, nous montrons un exemple d'une banque de données qui contient un grand nombre de propriétés d'une multitude d'électrolytes.

  2. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Febiyanti, Irine Ayu; Utami, Nissa; Ibrahim

    2015-12-01

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H2O2 amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  3. A lithium ion battery using an aqueous electrolyte solution

    NASA Astrophysics Data System (ADS)

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg‑1. It will be a promising energy storage system with good safety and efficient cooling effects.

  4. Hydroxyl radical production in plasma electrolysis with KOH electrolyte solution

    SciTech Connect

    Saksono, Nelson; Febiyanti, Irine Ayu Utami, Nissa; Ibrahim

    2015-12-29

    Plasma electrolysis is an effective technology for producing hydroxyl radical (•OH). This method can be used for waste degradation process. This study was conducted to obtain the influence of applied voltage, electrolyte concentration, and anode depth in the plasma electrolysis system for producing hydroxyl radical. The materials of anode and cathode, respectively, were made from tungsten and stainless steel. KOH solution was used as the solution. Determination of hydroxyl radical production was done by measuring H{sub 2}O{sub 2} amount formed in plasma system using an iodometric titration method, while the electrical energy consumed was obtained by measuring the electrical current throughout the process. The highest hydroxyl radical production was 3.51 mmol reached with 237 kJ energy consumption in the power supply voltage 600 V, 0.02 M KOH, and 0.5 cm depth of anode.

  5. A lithium ion battery using an aqueous electrolyte solution.

    PubMed

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-06-22

    Energy and environmental pollution have become the two major problems in today's society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg(-1). It will be a promising energy storage system with good safety and efficient cooling effects.

  6. A lithium ion battery using an aqueous electrolyte solution

    PubMed Central

    Chang, Zheng; Li, Chunyang; Wang, Yanfang; Chen, Bingwei; Fu, Lijun; Zhu, Yusong; Zhang, Lixin; Wu, Yuping; Huang, Wei

    2016-01-01

    Energy and environmental pollution have become the two major problems in today’s society. The development of green energy storage devices with good safety, high reliability, high energy density and low cost are urgently demanded. Here we report on a lithium ion battery using an aqueous electrolyte solution. It is built up by using graphite coated with gel polymer membrane and LISICON as the negative electrode, and LiFePO4 in aqueous solution as the positive electrode. Its average discharge voltage is up to 3.1 V and energy density based on the two electrode materials is 258 Wh kg−1. It will be a promising energy storage system with good safety and efficient cooling effects. PMID:27328707

  7. High/low temperature operation of electric double layer capacitor utilizing acidic cellulose-chitin hybrid gel electrolyte

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shigeaki; Takegawa, Akihiko; Kaneko, Yoshiro; Kadokawa, Jun-ichi; Yamagata, Masaki; Ishikawa, Masashi

    An acidic cellulose-chitin hybrid gel electrolyte consisting of cellulose, chitin, 1-butyl-3-methylimidazolium, 1-allyl-3-methylimidazolium bromide, and an aqueous H 2SO 4 solution is investigated for electric double layer capacitors (EDLCs) with activated carbon fiber cloth electrodes. The acidic cellulose-chitin hybrid gel electrolyte shows a high ionic conductivity comparable to that for an aqueous 2 mol dm -3 H 2SO 4 solution at 0-80 °C. This system's temperature dependence in EDLC performance is investigated by galvanostatic charge-discharge measurement. An EDLC cell with the acidic hybrid gel electrolyte has higher capacitance than that with the aqueous H 2SO 4 solution in the range of operation temperatures (-10 to 60 °C). Moreover, the capacitance retention of the EDLC cell with the acidic hybrid gel electrolyte is better than that of a cell with the H 2SO 4 solution at 60 °C over 10,000 cycles. This suggests that the proposed acidic gel electrolyte has excellent stability in the presence of a strong acid, even at a high temperature of 60 °C.

  8. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  9. Metabolic changes and nutrient repletion in lambs provided with electrolyte solutions before and after feed and water deprivation.

    PubMed

    Cole, N A

    1996-02-01

    Providing feeder calves and lambs with electrolyte solutions before and(or) after a transport period could potentially reduce tissue shrink and speed repletion of nutrients and weight that are lost during transport. This trial was conducted to determine metabolic changes and nutrient repletion in lambs provided with electrolyte solutions before and after feed and water deprivation. Solutions were 1) deionized water, 2) ES1 (g/10 L: NaCl, 2.0; K carbonate, 2.8; Mg sulfate.7H2O, 2.0; equal mixture of amino acids [Lys, Thr, Phe, His, Trp, Met, Leu, Ile, and Val], .45; and phosphoric acid to pH 7.0), 3) ES2 (twice the concentrations as in ES1), and ES3 (g/10 L: NaCl 2.0; K carbonate, 8.0; Mg sulfate.7H2O, 4.0; amino acid mixture from ES1, .45; and phosphoric acid to pH 7.0). Eight Suffolk x Hampshire crossbred lambs (average BW 35 +/- 2 kg) were used in an 8 x 8 Latin square design with treatments arranged in a 2 x 4 factorial. Main treatments consisted of two deprivation electrolyte solutions (deionized water or ES1) and four realimentation electrolyte solutions (deionized water, ES1, ES2, and ES3). Lambs were limit-fed (600 g/d, as-fed basis) before and after a 3-d feed and water deprivation phase. Lambs provided the ES1 solution during the pre-deprivation phase had greater (P < .05) Na, Mg, Zn retention during the pre-deprivation phase, had greater (P < .05) Na and Mg losses during the 3-d deprivation phase, and greater (P < .05) cumulative Na, Cu, and Fe retentions than lambs given deionized water during the pre-deprivation phase. Compared to lambs provided water, lambs provided the ES1 solution during the realimentation phase had greater Na retention but similar K, Mg, and water retentions. However, when the concentration of electrolytes in the solution was doubled (i.e., ES2 solution), Na, K, and Mg retentions were increased (P < .05) compared with those of lambs provided deionized water or the ES1 solution. These results suggest that as the length or severity of

  10. Multiscale theory in the molecular simulation of electrolyte solutions.

    PubMed

    Zhang, W; You, X; Pratt, L R

    2014-07-17

    To define a role for AIMD simulation on the limited time and space scales accessible to those demanding methods, this paper organizes McMillan-Mayer theory, the potential distribution approach, and quasi-chemical theory to provide theory for the thermodynamic effects associated with long-length scales. The theory treats composition fluctuations that would be accessed by larger-scale calculations, and also longer-ranged interactions that are of special interest for electrolyte solutions. The quasi-chemical organization breaks-up governing free energies into physically distinct contributions: packing, outer-shell, and chemical contributions. Here we study specifically the outer-shell contributions that express electrolyte screening. For that purpose we adopt a primitive model suggested by observation of ion-pairing in tetraethylammonium tetrafluoroborate dissolved in propylene carbonate. Gaussian statistical models are shown to be effective physical models for outer-shell contributions, and they are conclusive for the free energies within the quasi-chemical formulation. With the present data set the Gaussian physical approximation obtains more accurate mean activity coefficients than does the Bennett direct evaluation of that free energy.

  11. Hydration force between mica surfaces in aqueous KCl electrolyte solution.

    PubMed

    Leng, Yongsheng

    2012-03-27

    Liquid-vapor molecular dynamics simulations are performed to study the interaction forces between two mica surfaces in an aqueous KCl electrolyte solution. Strong repulsive hydration force is obtained within a distance of ~2 nm between the two mica surfaces, which cannot be explained by the continuum theory of double-layer repulsion. We find that this short-range repulsive hydration force is much stronger than the double-layer force between mica surfaces. Whereas the simulation system is much smaller than the surface force measurement system, fundamental mechanisms of repulsive hydration force are revealed. In particular, important features of the step-like force oscillatory behavior during normal compression and force hysteresis during retraction are observed. Detailed analysis of the ionic density distributions shows that the "forced adsorption" of diffusive K(+) ions onto mica surfaces during compression and the subsequent "slow desorption" of the absorbed K(+) ions from mica surfaces upon retraction are responsible for the hysteresis phenomenon. From a mechanics point of view, we attribute the load bearing capacity of the dense electrolyte to the very hard hydration shells of K(+) metal ions under confinement. We find that the hydrated K(+) ions and Cl(-) co-ions remain very diffusive in the aqueous film. Water molecules in the hydration layer are also very fluidic, in the sense that the diffusion constant of water molecules is less than its bulk value by at most 3 orders of magnitude under the extreme confinement. PMID:22369483

  12. Generic transport coefficients of a confined electrolyte solution.

    PubMed

    Yoshida, Hiroaki; Mizuno, Hideyuki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-11-01

    Physical parameters characterizing electrokinetic transport in a confined electrolyte solution are reconstructed from the generic transport coefficients obtained within the classical nonequilibrium statistical thermodynamic framework. The electro-osmotic flow, the diffusio-osmotic flow, the osmotic current, as well as the pressure-driven Poiseuille-type flow, the electric conduction, and the ion diffusion are described by this set of transport coefficients. The reconstruction is demonstrated for an aqueous NaCl solution between two parallel charged surfaces with a nanoscale gap, by using the molecular dynamic (MD) simulations. A Green-Kubo approach is employed to evaluate the transport coefficients in the linear-response regime, and the fluxes induced by the pressure, electric, and chemical potential fields are compared with the results of nonequilibrium MD simulations. Using this numerical scheme, the influence of the salt concentration on the transport coefficients is investigated. Anomalous reversal of diffusio-osmotic current, as well as that of electro-osmotic flow, is observed at high surface charge densities and high added-salt concentrations.

  13. Electrostatics of polymer translocation events in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin; Ala-Nissila, T.

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  14. Electrostatics of polymer translocation events in electrolyte solutions.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  15. Generic transport coefficients of a confined electrolyte solution

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Mizuno, Hideyuki; Kinjo, Tomoyuki; Washizu, Hitoshi; Barrat, Jean-Louis

    2014-11-01

    Physical parameters characterizing electrokinetic transport in a confined electrolyte solution are reconstructed from the generic transport coefficients obtained within the classical nonequilibrium statistical thermodynamic framework. The electro-osmotic flow, the diffusio-osmotic flow, the osmotic current, as well as the pressure-driven Poiseuille-type flow, the electric conduction, and the ion diffusion are described by this set of transport coefficients. The reconstruction is demonstrated for an aqueous NaCl solution between two parallel charged surfaces with a nanoscale gap, by using the molecular dynamic (MD) simulations. A Green-Kubo approach is employed to evaluate the transport coefficients in the linear-response regime, and the fluxes induced by the pressure, electric, and chemical potential fields are compared with the results of nonequilibrium MD simulations. Using this numerical scheme, the influence of the salt concentration on the transport coefficients is investigated. Anomalous reversal of diffusio-osmotic current, as well as that of electro-osmotic flow, is observed at high surface charge densities and high added-salt concentrations.

  16. Electrostatics of polymer translocation events in electrolyte solutions.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-01

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution. PMID:27394120

  17. Electrostatic interactions between charged dielectric particles in an electrolyte solution.

    PubMed

    Derbenev, Ivan N; Filippov, Anatoly V; Stace, Anthony J; Besley, Elena

    2016-08-28

    Theory is developed to address a significant problem of how two charged dielectric particles interact in the presence of a polarizable medium that is a dilute solution of a strong electrolyte. The electrostatic force is defined by characteristic parameters for the interacting particles (charge, radius, and dielectric constant) and for the medium (permittivity and Debye length), and is expressed in the form of a converging infinite series. The limiting case of weak screening and large inter-particle separation is considered, which corresponds to small (macro)ions that carry constant charge. The theory yields a solution in the limit of monopole and dipole terms that agrees exactly with existing analytical expressions, which are generally used to describe ion-ion and ion-molecular interactions in a medium. Results from the theory are compared with DLVO theory and with experimental measurements for the electrostatic force between two PMMA particles contained in a nonpolar solvent (hexadecane) with an added charge control agent. PMID:27586900

  18. PREDICTING WATER ACTIVITY IN ELECTROLYTE SOLUTIONS WITH THE CISTERNAS-LAM MODEL

    SciTech Connect

    REYNOLDS JG; GREER DA; DISSELKAMP RL

    2011-03-01

    Water activity is an important parameter needed to predict the solubility of hydrated salts in Hanford nuclear waste supernatants. A number of models available in the scientific literature predict water activity from electrolyte solution composition. The Cisternas-Lam model is one of those models and has several advantages for nuclear waste application. One advantage is that it has a single electrolyte specific parameter that is temperature independent. Thus, this parameter can be determined from very limited data and extrapolated widely. The Cisternas-Lam model has five coefficients that are used for all aqueous electrolytes. The present study aims to determine if there is a substantial improvement in making all six coefficients electrolyte specific. The Cisternas-Lam model was fit to data for six major electrolytes in Hanford nuclear waste supernatants. The model was first fit to all data to determine the five global coefficients, when they were held constant for all electrolytes it yielded a substantially better fit. Subsequently, the model was fit to each electrolyte dataset separately, where all six coefficients were allowed to be electrolyte specific. Treating all six coefficients as electrolyte specific did not make sufficient difference, given the complexity of applying the electrolyte specific parameters to multi-solute systems. Revised water specific parameters, optimized to the electrolytes relevant to Hanford waste, are also reported.

  19. Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, L. F.; Xie, B.; Lee, H. S.; Li, H.; Yang, X. Q.; McBreen, J.; Huang, X. J.

    The new electrolyte systems utilizing one type of Lewis acids, the boron based anion receptors (BBARs) with LiF, Li 2O, or Li 2O 2 in carbonate solutions have been developed and reported by us. These systems open up a new approach in developing non-aqueous electrolytes with higher operating voltage and less moisture sensitivity for lithium-ion batteries. However, the formation of a stable solid electrolyte interphase (SEI) layer on the graphitized anodes is a serious problem needs to be solved for these new electrolyte systems, especially when propylene carbonate (PC) is used as a co-solvent. Using lithium bis(oxalato)borate (LiBOB) as an additives, the SEI layer formation on mesophase carbon microbeads (MCMB) anode is significantly enhanced in these new electrolytes containing boron-based anion receptors, such as tris(pentafluorophenyl) borane, and lithium salt such as LiF, or lithium oxides such as Li 2O or Li 2O 2 in PC and dimethyl carbonate (DMC) solvents. The cells using these electrolytes and MCMB anodes cycled very well and the PC co-intercalation was suppressed. Fourier transform infrared spectroscopy (FTIR) studies show that one of the electrochemical decomposition products of LiBOB, lithium carbonate (Li 2CO 3), plays a quite important role in the stablizing SEI layer formation.

  20. ELVIS: Multi-Electrolyte Aqueous Activity Model for Geothermal Solutions

    NASA Astrophysics Data System (ADS)

    Hingerl, F. F.; Wagner, T.; Driesner, T.; Kulik, D. A.; Kosakowski, G.

    2011-12-01

    High temperature, pressure, and fluid salinities render geochemical modeling of fluid-rock interactions in Enhanced Geothermal Systems a demanding task. Accurate prediction of fluid-mineral equilibria strongly depends on the availability of thermodynamic data and activity models. Typically, the Pitzer activity model is applied for geothermal fluids. A drawback of this model is the large number of parameters required to account for temperature and pressure dependencies, which significantly reduces computational efficiency of reactive transport simulations. In addition, most available parameterizations are valid only at vapor-saturated conditions. As an alternative we implemented the EUNIQUAC local composition model [2] that needs substantially fewer fitting parameters. However, the current EUNIQUAC model design does not include provision for high temperature (>150°C) applications and lacks a formulation for pressure dependence. Therefore, its application to geothermal conditions requires a re-formulation and re-fitting of the model. We developed a new tool termed GEMSFIT that allows generic fitting of activity models (for aqueous electrolyte and non-electrolyte solutions) and equations of state implemented in our geochemical equilibrium solver GEM-Selektor (http://gems.web.psi.ch). GEMSFIT combines a PostgreSQL database for storing and managing the datasets of experimental measurements and interaction parameters, the parallelized genetic algorithm toolbox of MATLAB° for the parameter fitting, and an interface to the numerical kernel of GEM-Selektor to access activity models and perform chemical equilibrium calculations. Benchmarking of the partly re-parameterized EUNIQUAC model against Pitzer revealed that the former is less accurate, which can result in incorrect predictions of mineral precipitation/dissolution. Consequently, we modified the EUNIQUAC model and concurrently introduced a pressure dependence to be able to fit experimental data over wide ranges of

  1. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    SciTech Connect

    Vijayakumar, M.; Wang, Wei; Nie, Zimin; Sprenkle, Vincent L.; Hu, Jian Z.

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.

  2. Maintenance free lead acid batteries with immobilized electrolyte

    SciTech Connect

    Tuphorn, H.

    1984-10-01

    The reducing of antimony in lead-acid batteries in the last 10 years to optimize the maintenance of the batteries on the other hand was to the detriment of the cycle life. In contrast to antimonyfree batteries in conventional construction the immobilization of the electrolyte by gelatinizing permits the production of sealed batteries with highly improved cycle life, high charge acceptance and deep dischargeability. Moreover those batteries do not have a problem of electrolyte stratification. During charging the O/sub 2/-recombination is approximately 75% depending upon the battery size. Because of the O/sub 2/-recombination in this system a wider range of charging potentials of single cells in the battery takes place, which is characteristic of this system.

  3. Nonlinear oscillations in an electrolyte solution under ac voltage.

    PubMed

    Schnitzer, Ory; Yariv, Ehud

    2014-03-01

    The response of an electrolyte solution bounded between two blocking electrodes subjected to an ac voltage is considered. We focus on the pertinent thin-double-layer limit, where this response is governed by a reduced dynamic model [L. Højgaard Olesen, M. Z. Bazant, and H. Bruus, Phys. Rev. E 82, 011501 (2010)]. During a transient stage, the system is nonlinearly entrained towards periodic oscillations of the same frequency as that of the applied voltage. Employing a strained-coordinate perturbation scheme, valid for moderately large values of the applied voltage amplitude V, we obtain a closed-form asymptotic approximation for the periodic orbit which is in remarkable agreement with numerical computations. The analysis elucidates the nonlinear characteristics of the system, including a slow (logarithmic) growth of the zeta-potential amplitude with V and a phase straining scaling as V-1lnV. In addition, an asymptotic current-voltage relation is provided, capturing the numerically observed rapid temporal variations in the electric current. PMID:24730837

  4. Preparation of High-Orderly TIO2 Nanotubes in Different Conditions and Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhuai; Hu, Fu; Xiao, Peng; Fan, Xiaoyan

    High-orderly nanotubes of titania were fabricated by anodic oxidation of pure titanium substrate in different electrolytes containing fluoride. Different morphological nanotubes of titania were obtained through controlling the different pH value of inorganic electrolytes, and it was found that nanotubes of titanium oxide would not formed when pH value was above 6. The morphological and structural properties of nanotublar products were characterized by SEM. The synthesized nanotubes of titania in organic electrolytic solutions containing fluoride was of 60 μm in length. The experiments demonstrated the length and orderliness of nanotubes of titanium oxide in organic solutions were much better than those in inorganic solutions.

  5. Experimental investigation into the transmembrane electrical potential of the forward osmosis membrane process in electrolyte solutions.

    PubMed

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-01-01

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations. PMID:24957177

  6. Experimental Investigation into the Transmembrane Electrical Potential of the Forward Osmosis Membrane Process in Electrolyte Solutions

    PubMed Central

    Bian, Lixia; Fang, Yanyan; Wang, Xiaolin

    2014-01-01

    The transmembrane electrical potential (TMEP) in a forward osmosis membrane process with a single electrolyte solution as the draw and feed solutions was investigated by experiments. The effects of membrane orientation, the electrolyte species (KCl, NaCl, MgCl2, and CaCl2), concentration and concentration ratio of solutions at both sides of membrane on water flux and TMEP were investigated. The results showed that the TMEPs at different membrane orientation cannot completely coincide, which confirmed the effect of membrane asymmetry. The ion diffusion coefficients significantly affected the TMEP across the membrane, with different patterns for different electrolytes and concentrations. PMID:24957177

  7. Electrolyte interactions with vapor dosed and solution dosed carbon monoxide on platinum (111)

    NASA Astrophysics Data System (ADS)

    Borup, R. L.; Sauer, D. E.; Stuve, E. M.

    1997-03-01

    Carbon monoxide adsorption and interactions with electrolyte species were examined for a Pt(111) electrode in 0.1M HClO 4. The experiments were conducted with an ex situ ultrahigh vacuum (UHV)-electrochemical system, with CO being adsorbed either from the vapor phase in the vacuum chamber or from solution. CO oxidation coulometry and cyclic voltammetry were used to characterize CO coverage in solution, and thermal desorption spectroscopy was used to measure CO coverage in vacuum, desorption kinetics and to detect coadsorbed electrolyte species. In agreement with earlier studies, the saturation coverage of 0.68 ML of CO from solution dosing is nearly 40% greater than the saturation coverage of 0.50 ML in vacuum at room temperature. The higher saturation coverages survive transfer to vacuum, but only in the presence of coadsorbed electrolyte species (H 2O and ClO 4) retained after removal of the electrode from the electrolyte. In the absence of coadsorbed electrolyte species, saturated, solution dosed CO transferred to vacuum exhibits the same coverage as vapor dosed CO. Interaction between CO and electrolyte species was confirmed through detection of both in thermal desorption following immersion of a vapor dosed CO adlayer into solution and back-transfer to vacuum. Kinetic modeling of CO thermal desorption showed that, regardless of whether CO is adsorbed from solution or from vapor, the COCO repulsive interactions are approximately 40% less when electrolyte species are retained than when they are absent.

  8. Forces between like-charged walls immersed in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Otto, Frank

    The effects of a molecular solvent on the forces between two infinite like-charged walls immersed in aqueous electrolyte solution are investigated. The solution models are chosen such that the numerical solution of accurate anisotropic integral equation theories is possible, and the anisotropic hypernetted-chain (AHNC) approximation is used in the present calculations. The resulting average particle densities and the pair correlation functions are used to analyze the force acting between the walls in detail. Mixtures of neutral hard-sphere solvent particles and counterions are employed to investigate the influence of the finite size of the solvent molecules. At wall separations of a few solvent diameters, even at relatively high surface charge and moderate solvent density, the ionic contribution to the force tends to be dominated by the hard-core or packing component. If the ions and solvent particles are of equal size, then the net pressure between the walls can be reasonably well approximated by adding the pressures of pure one-component ionic and solvent systems. However, if the ion and solvent diameters are significantly different, the pressure curve is more complex, and the hard-core component must be evaluated for a mixture of neutral hard spheres. The interaction of the walls is also investigated at the McMillan-Mayer (MM) level of description. In these models, the solvent is not represented by discrete particles but exerts its influence through solvent-averaged ion-ion potentials of mean force which serve as effective potentials. The approximations involved in applying MM theory to the inhomogeneous slit system are discussed. The wall-wall interactions obtained can differ dramatically from the primitive model (dielectric continuum solvent) case. Most interestingly, at the MM level, the force between like- charged walls at small separations and with realistic surface charges can be attractive for monovalent counterions, which is due to solvent effects on the

  9. Effect of glutamine or glycine containing oral electrolyte solutions on mucosal morphology, clinical and biochemical findings, in calves with viral induced diarrhea.

    PubMed Central

    Naylor, J M; Leibel, T; Middleton, D M

    1997-01-01

    Twenty-one diarrheic calves were randomly assigned to 1 of 3 oral electrolyte treatments. The treatments were either a conventional oral electrolyte containing glycine (40 mmol/L) as the amino acid, an oral electrolyte in which glutamine (40 mmol/L) replaced glycine or an electrolyte in which high concentrations of glutamine (400 mmol/L) replaced glycine. The calves were monitored while on trial and at the end of the treatment they were euthanized and a necropsy was immediately performed. Calves fed the high glutamine electrolyte had more treatment failures (2/7 versus 0/7 for each of the other 2 treatments). There was a significant effect of type of electrolyte on fecal consistency. Calves fed the glycine containing electrolyte had the most solid feces. Duodenal villus height was significantly affected by the type of electrolyte: values (mean +/- 1 SEM) were 0.61 +/- 0.09, 0.46 +/- 0.05, and 0.59 +/- 0.07 mm for high glutamine, low glutamine and glycine electrolytes respectively. There was no significant difference in small intestinal surface area between groups. High glutamine treated calves had the greatest capacity to absorb xylose from the small intestine but this difference was not statistically significant. Overall, this trial does not suggest that substituting glutamine for glycine in oral electrolyte solutions improves treatment of diarrheic calves or speeds mucosal healing. PMID:9008800

  10. Carbohydrate Electrolyte Solutions Enhance Endurance Capacity in Active Females

    PubMed Central

    Sun, Feng-Hua; Wong, Stephen Heung-Sang; Chen, Shi-Hui; Poon, Tsz-Chun

    2015-01-01

    The purpose of the present study was to investigate the effects of supplementation with a carbohydrate-electrolyte solution (CES) in active females during a prolonged session of submaximal running to exhaustion. Eight healthy active females volunteered to perform a session of open-ended running to exhaustion at 70% of their maximal oxygen consumption on a treadmill during the follicular phase of their menstrual cycle on two occasions. During each run, the subjects consumed either 3mL·kg−1 body mass of a 6% CES or a placebo drink (PL) every 20 min during exercise. The trials were administered in a randomized double-blind, cross-over design. During the run, the subjects ingested similar volumes of fluid in two trials (CES: 644 ± 75 mL vs. PL: 593 ± 66 mL, p > 0.05). The time to exhaustion was 16% longer during the CES trial (106.2 ± 9.4 min) than during the PL trial (91.6 ± 5.9 min) (p < 0.05). At 45 min during exercise, the plasma glucose concentration in the CES trial was higher than that in PL trial. No differences were observed in the plasma lactate level, respiratory exchange ratio, heart rate, perceived rate of exertion, sensation of thirst, or abdominal discomfort between the two trials (p > 0.05). The results of the present study confirm that CES supplementation improves the moderate intensity endurance capacity of active females during the follicular phases of the menstrual cycle. However, the exogenous oxidation of carbohydrate does not seem to explain the improved capacity after CES supplementation. PMID:25988766

  11. Sensitive bridge circuit measures conductance of low-conductivity electrolyte solutions

    NASA Technical Reports Server (NTRS)

    Schmidt, K.

    1967-01-01

    Compact bridge circuit measures sensitive and accurate conductance of low-conductivity electrolyte solutions. The bridge utilizes a phase sensitive detector to obtain a linear deflection of the null indicator relative to the measured conductance.

  12. Students' Misconceptions in Electrochemistry: Current Flow in Electrolyte Solutions and the Salt Bridge.

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Greenbowe, Thomas J.

    1997-01-01

    Examines students' misconceptions and proposed mechanisms related to current flow in electrolyte solutions and the salt bridge. Confirms reported misconceptions and identifies several new ones. Discusses probable sources of misconceptions and some methods for preventing them. Contains 27 references. (JRH)

  13. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  14. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi

    2014-02-01

    All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.

  15. Thermal and oxidation stability of organo-fluorine compound-mixed electrolyte solutions for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nishikawa, Daiki; Nakajima, Tsuyoshi; Ohzawa, Yoshimi; Koh, Meiten; Yamauchi, Akiyoshi; Kagawa, Michiru; Aoyama, Hirokazu

    2013-12-01

    Thermal and oxidation stability of fluorine compound-mixed electrolyte solutions have been investigated. Charge/discharge behavior of natural graphite electrode has been also examined in the same electrolyte solutions. Fluorine compounds demonstrate much lower reactivity with metallic Li than ethylene carbonate/dimethyl carbonate. Fluorine compound-mixed electrolyte solutions show the lower reactivity with LiC6 and the smaller exothermic peaks due to decomposition of electrolyte solutions and surface films than original solutions without fluorine compound. Oxidation currents are also smaller in fluorine compound-mixed electrolyte solutions than in original ones. First coulombic efficiencies in fluorine compound-mixed electrolyte solutions are similar to those in original ethylene carbonate-based solutions except one case. Mixing of fluorine compounds highly increase first coulombic efficiencies of natural graphite electrode in propylene carbonate-containing solution.

  16. Role of hydration forces in the properties of electrolyte solutions in the bulk and at interfaces

    SciTech Connect

    Sushko, Maria L.; Rosso, Kevin M.

    2015-03-01

    We present a theoretical approach for modeling electrolyte solutions at interfaces that reaches into the mesoscale while retaining molecular detail. The total Hamiltonian of the system includes interactions arising from density and charge density (ion correlation) fluctuations, direct Coulomb interactions between ions, and at interfaces the image interactions, ion-solid and ion-water dispersion interactions. The model was validated against its ability to reproduce ion activity in 1:1 and 2:1 electrolyte solutions in the 0-2 M concentration range, its ability to capture the ion-specific effect in 1:1 electrolytes at the air-water interface, and solvent structure in a confined environment between hydrophobic surfaces, revealing the central role of ion hydration interactions in specific ion thermodynamic properties in the bulk solutions and at interfaces. The model is readily extensible to treat electrolyte interactions and forces across charged solid-water interfaces.

  17. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Gao, Xiangwen; Chen, Yuhui; Johnson, Lee; Bruce, Peter G.

    2016-08-01

    On discharge, the Li-O2 battery can form a Li2O2 film on the cathode surface, leading to low capacities, low rates and early cell death, or it can form Li2O2 particles in solution, leading to high capacities at relatively high rates and avoiding early cell death. Achieving discharge in solution is important and may be encouraged by the use of high donor or acceptor number solvents or salts that dissolve the LiO2 intermediate involved in the formation of Li2O2. However, the characteristics that make high donor or acceptor number solvents good (for example, high polarity) result in them being unstable towards LiO2 or Li2O2. Here we demonstrate that introduction of the additive 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) promotes solution phase formation of Li2O2 in low-polarity and weakly solvating electrolyte solutions. Importantly, it does so while simultaneously suppressing direct reduction to Li2O2 on the cathode surface, which would otherwise lead to Li2O2 film growth and premature cell death. It also halves the overpotential during discharge, increases the capacity 80- to 100-fold and enables rates >1 mA cmareal-2 for cathodes with capacities of >4 mAh cmareal-2. The DBBQ additive operates by a new mechanism that avoids the reactive LiO2 intermediate in solution.

  18. Anomalously enhanced hydration of aqueous electrolyte solution in hydrophobic carbon nanotubes to maintain stability.

    PubMed

    Ohba, Tomonori

    2014-02-24

    An understanding of the structure and behavior of electrolyte solutions in nanoenvironements is crucial not only for a wide variety of applications, but also for the development of physical, chemical, and biological processes. We demonstrate the structure and stability of electrolyte in carbon nanotubes using hybrid reverse Monte Carlo simulations of X-ray diffraction patterns. Hydrogen bonds between water are adequately formed in carbon nanotubes, although some hydrogen bonds are restricted by the interfaces of carbon nanotubes. The hydrogen bonding network of water in electrolyte in the carbon nanotubes is further weakened. On the other hand, formation of the ion hydration shell is significantly enhanced in the electrolyte in the carbon nanotubes in comparison to ion hydration in bulk electrolyte. The significant hydrogen bond and hydration shell formation are a result of gaining stability in the hydrophobic nanoenvironment.

  19. An Overview of Experimental Studies on H/Pd Over-Loading with Thin pd Wires and Different Electrolytic Solutions

    NASA Astrophysics Data System (ADS)

    Spallone, A.; Celani, F.; Marini, P.; di Stefano, V.

    2006-02-01

    Hundreds of electrolytic loading tests of thin Pd wires in different experimental conditions have been performed in order to find out the best procedures for stable, high hydrogen overloading into the palladium lattice. In a very dilute acid solution thin Pd cathodes (50 or 100 μm in diameter) and thick Pt anodes (0.5 mm in diameter) were used in a parallel or coaxial geometry. Normalised resistance (R/R0) of the Pd cathode was on-line and continuously measured in order to determine the actual H/Pd values. Different electrolytic solutions have been tested by adding to the acid solution very low amounts of Ca, Sr, Li, and Hg ions; high loading H/Pd ratios have been achieved with a satisfactory grade of reproducibility. Several loading procedures have been performed in a wide range of electrolysis current (from a few mA up to 100 mA) and at different Hg ion concentrations. The obtained results allowed for the definition of a loading protocol that ensures very high H/Pd over-loading. Stable R/R0 ≤ 1.2 values (corresponding to H/Pd ratios ≥ 1) can be currently achieved with an extremely low power electrolytic supply (10 V, 5 mA).

  20. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  1. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  2. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. PMID:27372125

  3. Effect of electrolytes on wettability of glass surface using anionic and cationic surfactant solutions.

    PubMed

    Chaudhuri, Rajib Ghosh; Paria, Santanu

    2014-01-01

    Wetting behavior of a flat glass surface using pure nonionic, anionic, and cationic surfactants solutions has been studied by the dynamic contact angle (Wilhelmy plate) measurement technique. The advancing contact angle increases with the increasing concentration of surfactant and the value is maximum in the presence of cationic surfactant CTAB. The effect of different electrolytes in the presence of ionic surfactants was also studied to see the wetting behavior in the presence of electrolytes. The presence of electrolytes on ionic surfactant solutions significantly enhance the contact angle at very low concentration, which in turn lead to reduction in ionic surfactant requirement by more than 90% to achieve a particular contact angle. The effectiveness of electrolyte highly depends on the valance of counter ion. The reduction of ionic surfactant requirement is mostly useful for different applications such as flotation, and colloidal stability to reduce the production cost as well as environmental pollution.

  4. Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution.

    PubMed

    Bera, Mrinal K; Antonio, Mark R

    2015-05-19

    Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu(3+) cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achieved by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.

  5. Stannous sulfate as an electrolyte additive for lead acid battery made from a novel ultrafine leady oxide

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Liu, Jianwen; Yang, Danni; Yuan, Xiqing; Li, Lei; Zhu, Xinfeng; Zhang, Wei; Hu, Yucheng; Sun, Xiaojuan; Liang, Sha; Hu, Jingping; Kumar, R. Vasant; Yang, Jiakuan

    2015-07-01

    The effects of SnSO4 as an electrolyte additive on the microstructure of positive plate and electrochemical performance of lead acid battery made from a novel leady oxide are investigated. The novel leady oxide is synthesized through leaching of spent lead paste in citric acid solution. The novel leady oxides are used to prepare working electrode (WE) subjected to electrochemical cyclic voltammetry (CV) tests. Moreover, the novel leady oxides are used as active materials of positive plate assembled as a testing battery of 1.85 A h capacity. In CV tests, SEM/EDX results show that the major crystalline phase of the paste in WE after CV cycles is PbSO4. The larger column-shaped PbSO4 crystals easily generate in the paste of WE without an electrolyte additive of SnSO4. However, PbSO4 crystals significantly become smaller with the addition of SnSO4 in the electrolyte. In batteries testing, SEM results show that an electrolyte additive of SnSO4 could effectively decrease PbO2 particle size in the positive active materials of the teardown battery at the end of charging procedure. It is indicated that an electrolyte additive of SnSO4 could have a positive influence on restraining larger particles of irreversible sulfation in charge/discharge cycles of battery testing.

  6. Simulations of mean ionic activity coefficients and solubilities in aqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, Athanassios

    Aqueous electrolyte solutions play an important role in industrial, geochemical and biological applications. The mean ionic activity coefficients quantify the deviation of salt chemical potential from ideal solution behavior; experimental measurements are available for many salts over broad ranges of concentration and temperature, but there have been practically no prior simulation results, because if sampling difficulties for explicit-solvent electrolyte solutions. We have developed a new approach for determination of activity coefficients of aqueous electrolytes. Common fixed-point-charge models for water and ions are unable to reproduce simultaneously activity coefficients and solubilities. Polarizable models perform better, but still predict an incorrect temperature dependence of these properties. Work supported by the U.S. Department of Energy, Office of Basic Energy Science.

  7. UNICEF/W.H.O. glucose electrolyte solution not always appropriate.

    PubMed

    Tripp, J H; Harries, J T

    1980-10-11

    The authors defended Dr. Kahn's and Dr. Blum's suggestion, reported in the May 17, 1980 issue of Lancet, that the formula for making GES (glucose electrolyte solution), used for the management of gastroenteritis, should be determined by the age and condition of the patients in each locality. They disagreed with the proposal of Dr. Clements, reported in the July 5, 1980 issue of Lancet, that all patients could be treated with a single solution, the UNICEF/WHO CES, or with a dilution of this single solution. Recent studies confirmed that there was considerable epidemiological variation in the type and degree of electrolyte disturbances among infants with gastroenteritis. Factors such as age, nutritional status, climate, and the type of pathagens were linked to different type of electrolyte disturbances. These differences should be taken into account in formulating the appropriate GES.

  8. Molecular dynamics study of the primitive model of 1 3 electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Suh, S.-H.; Mier-y-Teran, L.; White, H. S.; Davis, H. T.

    1990-04-01

    Molecular dynamics simulations at constant temperature have been carried out for the primitive model of 1-3 electrolyte solutions. Thermodynamics, pair distribution functions, and self-diffusion coefficients were computed to examine the electrostatic effects on the structural and dynamical properties. The simulation results were used to evaluate various theoretical equations, namely, the exponential form of Debye-Hückel theory, the mean spherical approximation, and the hypernetted chain approximation. As has been observed for symmetrical electrolytes, the latter turns out to be the best approximation. For asymmetrically charged 1-3 electrolytes, it was found that ionic aggregation significantly influenced the dynamical properties of electrolytes. Coherent motion between highly charged negative ions and positive ions surrounding them was deduced from the time dependence of the velocity autocorrelation functions, particularly at concentrations between 0.4 and 4 total ion molarity.

  9. Mechanism of degradation of electrolyte solutions for dye-sensitized solar cells under ultraviolet light irradiation

    NASA Astrophysics Data System (ADS)

    Nakajima, Shohei; Katoh, Ryuzi

    2015-01-01

    We studied the mechanism of the degradation of I-/I3--containing electrolyte solutions for dye-sensitized solar cells under UV light irradiation. The yellow electrolyte solutions underwent achromatization during irradiation, indicating the reduction of I3-. We propose a mechanism involving the production of holes in TiO2, reaction of the holes with solvent molecules, and subsequent reduction of I3- by electrons remaining in the TiO2. Although the quantum yield of the photodegradation reaction is estimated to be low (3 × 10-3), this reaction can nevertheless be expected to affect the long-term stability of dye-sensitized solar cell devices.

  10. Towards understanding the poor thermal stability of V 5+ electrolyte solution in Vanadium Redox Flow Batteries

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Li, Liyu; Graff, Gordon; Liu, Jun; Zhang, Huamin; Yang, Zhenguo; Hu, Jian Zhi

    The V 5+ electrolyte solution from Vanadium Redox Flow Batteries was studied by variable temperature 17O and 51V Nuclear Magnetic Resonance (NMR) spectroscopy and density functional theory (DFT) based computational modeling. It was found that the V 5+ species exist as hydrated penta co-ordinated vanadate ion, i.e. [VO 2(H 2O) 3] 1+. This hydrated structure is not stable at elevated temperature and change into neutral H 3VO 4 molecule via a deprotonation process and subsequently leading to the observed V 2O 5 precipitation in V 5+ electrolyte solutions.

  11. A New Fe/V Redox Flow Battery Using Sulfuric/Chloric Mixed Acid Supporting Electrolyte

    SciTech Connect

    Wang, Wei; Nie, Zimin; Chen, Baowei; Chen, Feng; Luo, Qingtao; Wei, Xiaoliang; Xia, Guanguang; Skyllas-Kazacos, Maria; Li, Liyu; Yang, Zhenguo

    2012-04-01

    A redox flow battery using Fe2+/Fe3+ and V2+/V3+ redox couples in chloric/sulphuric mixed acid supporting electrolyte was investigated for potential stationary energy storage applications. The Fe/V redox flow cell using mixed reactant solutions operated within a voltage window of 0.5-1.35 V with a nearly 100% utilization ratio and demonstrated stable cycling over 100 cycles with energy efficiency > 80% and no capacity fading at room temperature. A 25% improvement in the discharge energy density of the Fe/V cell was achieved compared with the previous reported Fe/V cell using pure chloride acid supporting electrolyte. Stable performance was also achieved in the temperature range between 0 C and 50 C as well as using microporous separator as the membrane. The improved electrochemical performance at room temperature makes the Fe/V redox flow battery a promising option as a stationary energy storage device to enable renewable integration and stabilization of the electrical grid.

  12. Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid.

    PubMed

    Moučka, Filip; Lísal, Martin; Smith, William R

    2012-05-10

    We extend the osmotic ensemble Monte Carlo (OEMC) molecular simulation method (Moučka et al. J. Phys Chem. B 2011, 115, 7849-7861) for directly calculating the aqueous solubility of electrolytes and for calculating their chemical potentials as functions of concentration to cases involving electrolyte hydrates and mixed electrolytes, including invariant points involving simultaneous precipitation of several solutes. The method utilizes a particular semigrand canonical ensemble, which performs simulations of the solution at a fixed number of solvent molecules, pressure, temperature, and specified overall electrolyte chemical potential. It avoids calculations for the solid phase, incorporating available solid chemical potential data from thermochemical tables, which are based on well-defined reference states, or from other sources. We apply the method to a range of alkali halides in water and to selected examples involving LiCl monohydrate, mixed electrolyte solutions involving water and hydrochloric acid, and invariant points in these solvents. The method uses several existing force-field models from the literature, and the results are compared with experiment. The calculated results agree qualitatively well with the experimental trends and are of reasonable accuracy. The accuracy of the calculated solubility is highly dependent on the solid chemical potential value and also on the force-field model used. Our results indicate that pairwise additive effective force-field models developed for the solution phase are unlikely to also be good models for the corresponding crystalline solid. We find that, in our OEMC simulations, each ionic force-field model is characterized by a limiting value of the total solution chemical potential and a corresponding aqueous concentration. For higher values of the imposed chemical potential, the solid phase in the simulation grows in size without limit.

  13. Process for defoaming acid gas scrubbing solutions and defoaming solutions

    SciTech Connect

    Ernst, E.R.; Robbins, M.L.

    1980-06-17

    The foam in acid gas scrubbing solutions created during an acid gas scrubbing process is reduced or eliminated by the addition of certain polyoxyethylene polyoxypropylene block copolymers as defoaming agents. The defoaming agents are particularly effective when the acid gas scrubbing solution contains an amine having a large hydrophobic moiety.

  14. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions.

    PubMed

    See, Kimberly A; Chapman, Karena W; Zhu, Lingyang; Wiaderek, Kamila M; Borkiewicz, Olaf J; Barile, Christopher J; Chupas, Peter J; Gewirth, Andrew A

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, (27)Al and (35)Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore the active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ-Cl)3·6THF](+) complex that is observed in the solid state structure. Additionally, conditioning creates free Cl(-) in the electrolyte solution, and we suggest the free Cl(-) adsorbs at the electrode surface to enhance Mg electrodeposition.

  15. Modeling of CO2 solubility in single and mixed electrolyte solutions using statistical associating fluid theory

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Panagiotopoulos, Athanassios Z.; Economou, Ioannis G.

    2016-03-01

    Statistical associating fluid theory (SAFT) is used to model CO2 solubilities in single and mixed electrolyte solutions. The proposed SAFT model implements an improved mean spherical approximation in the primitive model to represent the electrostatic interactions between ions, using a parameter K to correct the excess energies ("KMSA" for short). With the KMSA formalism, the proposed model is able to describe accurately mean ionic activity coefficients and liquid densities of electrolyte solutions including Na+, K+, Ca2+, Mg2+, Cl-, Br- and SO42- from 298.15 K to 473.15 K using mostly temperature independent parameters, with sole exception being the volume of anions. CO2 is modeled as a non-associating molecule, and temperature-dependent CO2-H2O and CO2-ion cross interactions are used to obtain CO2 solubilities in H2O and in single ion electrolyte solutions. Without any additional fitting parameters, CO2 solubilities in mixed electrolyte solutions and synthetic brines are predicted, in good agreement with experimental measurements.

  16. Electrodeposition of lustrous tin-lead alloys in acidic electrolytes with organic additives

    SciTech Connect

    Selivanova, G.A.; Maksimenko, S.A.; Tyutina, K.M.

    1994-09-01

    Galvanic coatings based on tin-lead alloys are mainly used in radio-engineering and electronic industries to prepare certain products, including printed-circuit boards, for soldering. To improve ecological safety of the proces, the authors studied a new electrolyte for depositing a tin-lead alloy based on nontoxic and abundant perchloric acid, as well as electrolytes based on mono- and trichloroacetic acids.

  17. Electrical conductivity measurements of aqueous electrolyte solutions at high temperatures and high pressures

    SciTech Connect

    Ho, P.C.; Palmer, D.A.

    1995-02-01

    In aqueous solutions all electrolytes tend to associate at high temperatures (low dielectric constants). Ion association results in the formation of uncharged substrates, which are substantially more volatile than their precursor ions. Thus knowledge of the association constants is important in interpreting the thermodynamics of the partitioning of electrolytes to the vapor phase in a fully speciated approach. Electrical conductance measurements provide a unique window into ionic interactions of solutions at high temperatures and pressures. In this study, the electrical conductivities of dilute (<0.1 molal) aqueous solutions of NaCl (100-600{degrees}C to 300 MPa) and sodium and potassium hydroxides (0-600 and 100-600{degrees}C, respectively, and to 300 MPa) were measured. The results show that the extent of association of Na{sup +} and Cl{sup -} is similar to those for Na{sup +} and K{sup +} with OH{sup -} in solution from subcritical to supercritical conditions.

  18. Elucidating the higher stability of vanadium(V) cations in mixed acid based redox flow battery electrolytes

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin; Sprenkle, Vincent; Hu, JianZhi

    2013-11-01

    The vanadium(V) cation structures in mixed acid based electrolyte solution were analyzed by density functional theory (DFT) based computational modeling and 51V and 35Cl nuclear magnetic resonance (NMR) spectroscopy. The vanadium(V) cation exists as di-nuclear [V2O3Cl2·6H2O]2+ compound at higher vanadium concentrations (≥1.75 M). In particular, at high temperatures (>295 K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl·6H2O]2+ compound. This chlorine bonded [V2O3Cl2·6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2·6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based vanadium(V) electrolyte solutions.

  19. Electrophoretic mobility of oil droplets in electrolyte and surfactant solutions.

    PubMed

    Wuzhang, Jiachen; Song, Yongxin; Sun, Runzhe; Pan, Xinxiang; Li, Dongqing

    2015-10-01

    Electrophoretic mobility of oil droplets of micron sizes in PBS and ionic surfactant solutions was measured in this paper. The experimental results show that, in addition to the applied electric field, the speed and the direction of electrophoretic motion of oil droplets depend on the surfactant concentration and on if the droplet is in negatively charged SDS solutions or in positively charged hexadecyltrimethylammonium bromide (CTAB) solutions. The absolute value of the electrophoretic mobility increases with increased surfactant concentration before the surfactant concentration reaches to the CMC. It was also found that there are two vortices around the oil droplet under the applied electric field. The size of the vortices changes with the surfactant and with the electric field. The vortices around the droplet directly affect the drag of the flow field to the droplet motion and should be considered in the studies of electrophoretic mobility of oil droplets. The existence of the vortices will also influence the determination and the interpretation of the zeta potential of the oil droplets based on the measured mobility data. PMID:26140616

  20. Reentrant behavior of effective attraction between like-charged macroions immersed in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Akiyama, Ryo; Sakata, Ryo; Ide, Yuji

    2011-03-01

    Strong effective attraction between like-charged macroions appears in electrolyte solution. The attraction between the monomers in DNA is experimentally measured[1,2]. The attraction depends on the concentration of electrolyte. When the electrolyte concentration is low, the effective interaction between like-charged macroions is repulsive. Addition of salt inverts the sign of the effective interaction. The dimer of macroions is strongly stabilized when the charges of the macroions are enough large and the electrolyte concentration is ˜1 mM. However the strong attraction disappears, when the electrolyte concentration becomes higher than 0.1 M. We studied this reentrant behavior on the basis of the HNC-OZ theory with a simple model. The attraction is caused by the overlap of ionic clouds which surround the macroions. This ionic "covalent" bond, namely shared-ion-bond, is similar to the molecular covalent bond consists of electronic cloud. (See Fig. 1.) Moreover, the result s indicates that the role of co-ions is important in disappearing the attraction.We will discuss the detail of our results and a model of molecular motor driven by the growth of actin filament in neutrophil (a kind of white blood cells) in our presentation.

  1. Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases.

    PubMed

    Brotchie, Adam; Statham, Tom; Zhou, Meifang; Dharmarathne, Leena; Grieser, Franz; Ashokkumar, Muthupandian

    2010-08-01

    Acoustic bubble sizes, coalescence behavior, and sonochemical activity have been investigated in water in the presence of various electrolyte additives (KCl, HCl, and NaNO(3)) and saturating gases-helium, air, and argon. A strong correlation was identified between the bubble radius and the dissolved gas concentration in the cavitation medium. The extent of bubble coalescence for each gas was also studied in different electrolyte solutions. A causal relationship between coalescence and bubble size was inferred. Importantly, the effects of the different electrolytes could be completely attributed to their "salting out" effect on the dissolved gas, providing valuable insight into the contentious issue of ion-specific coalescence inhibition. Extrapolation of the bubble size data to conditions where bubble coalescence is minimal, i.e., zero gas concentration and zero ultrasound exposure time, yielded a bubble radius of 1.5 +/- 0.5 microm at an acoustic frequency of 515 kHz. In addition, the effects of electrolyte concentration and gas type on sonochemical activity were investigated. Sonochemical yields were increased by up to 1 order of magnitude at high electrolyte concentrations. This has been attributed to reduced gas and vapor content in the bubble core prior to collapse and a lower clustering density.

  2. Evaluating the performance enhancement of lead acid batteries by forced circulation of the electrolyte

    SciTech Connect

    Wicks, F.; Gilbert, T.J.

    1995-12-31

    Phenomena which may limit the performance of lead-acid batteries are the space charge and corresponding voltage gradient in the boundary between the plates and the electrolyte and also the stratification of the varying density electrolyte during the discharging and charging process. It has been suggested that forced circulation of the electrolyte could improve performance by minimizing these negative effects. However, the amount of benefit has been uncertain. This paper reviews previous work that has been performed to measure and model battery performance. It describes the experimental apparatus that was developed to demonstrate the difference between free and forced circulation of the electrolyte. It then presents experimental data that demonstrates substantial performance improvement results from forced circulation of the electrolyte. These improvements included a 16% improvement in energy output, along with higher power capability.

  3. Preparation of silicate tungsten bronzes on aluminum by plasma electrolytic oxidation process in 12-tungstosilicic acid

    NASA Astrophysics Data System (ADS)

    Petković, M.; Stojadinović, S.; Vasilić, R.; Belča, I.; Nedić, Z.; Kasalica, B.; Mioč, U. B.

    2011-09-01

    The growth of silicate tungsten bronzes on aluminum by plasma electrolytic oxidation in 12-tungstosilicic acid is experimentally investigated and discussed. Real time imaging and optical emission spectroscopy characterization of plasma electrolytic oxidation show that spatial density of microdischarges is the highest in the early stage of the process, while the percentage of oxide coating area covered by active discharge sites decreases slowly with time. Emission spectrum of microdischarges has several intensive band peaks originating either from aluminum electrode or from the electrolyte. Surface roughness of obtained oxide coatings increases with prolonged time of plasma electrolytic oxidation, as their microhardness decreases. Raman spectroscopy and energy dispersive X-ray spectroscopy are employed to confirm that the outer layer of oxide coatings formed during the plasma electrolytic oxidation process is silicate tungsten bronze

  4. Unravelling the anomalous dielectric permittivity of nanoconfined electrolyte solutions.

    PubMed

    Renou, Richard; Szymczyk, Anthony; Ghoufi, Aziz

    2015-04-21

    The dielectric properties of sodium chloride solutions confined in a hydrophilic nanocavity were investigated by means of molecular dynamics simulations. Unlike what is observed in the bulk phase, three dielectric regimes were evidenced, namely an anomalous increase in the dielectric permittivity at low concentrations (with respect to confined pure water), a dielectric plateau at intermediate concentrations and finally a bulk-like behavior for salt concentrations higher than a critical value. It was shown that this peculiar behavior results from the competition between dielectric saturation due to the electric field generated by ions (which tends to lower the dielectric permittivity) and the ion-induced perturbation of pre-oriented water molecules inside the nanocavity which gain some rotational degrees of freedom (entropic contribution) leading to an increase in dipolar fluctuations responsible for the increase in the dielectric permittivity.

  5. Oral rehydration in infantile diarrhoea. Controlled trial of a low sodium glucose electrolyte solution.

    PubMed Central

    Chatterjee, A; Mahalanabis, D; Jalan, K N; Maitra, T K; Agarwal, S K; Dutta, B; Khatua, S P; Bagchi, D K

    1978-01-01

    The paper describes the first controlled trial of an oral glucose electrolyte solution designed on the basis of the optimum pathophysiological needs for rehydration in infantile diarrahoea. The solution, having a sodium concentration of 50 mmol/l, was tried in a group of 20 infants with moderate to severe dehydration due to acute diarrhoea and was compared with a matched group of 19 infants predominantly under 2 years of age taking a 'standard' oral solution with a sodium concentration of 90 mmol/l. They could be hydrated as well with a low sodium oral solution alone as with the standard solution. Intravenous fluid was not required in either group. The group treated with the high soldium 'standard' solution appeared to develop hypernatraemia and/or periorbital oedema more frequently than the other group. Also, the low sodium solution eliminated the need for additional free water orally. PMID:348125

  6. Analytical characterization of the passive film formed on steel in solutions simulating the concrete interstitial electrolyte

    SciTech Connect

    Montemor, M.F.; Simoes, A.M.P.; Ferreira, M.G.S.

    1998-05-01

    Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS) were used to study the effect of chloride (Cl{sup {minus}}) and fly ash on behavior of the passive film formed on steel in solutions simulating the concrete interstitial electrolyte. Results showed the presence of fly ash and of Cl{sup {minus}} led to an increase in the amount of iron oxyhydroxide (FeOOH) in outer layers of the film and to an increase in the thickness and water content of the passive film. Significant differences in composition and thickness were observed between the films formed in paste solutions and in calcium hydroxide (Ca[OH]{sub 2}) solutions.

  7. Polyvinyl alcohol-polystyrene sulphonic acid blend electrolyte for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Selva Kumar, M.; Bhat, D. Krishna

    2009-05-01

    A new polymer blend electrolyte based on poly vinyl alcohol and poly styrene sulphonic acid has been studied as an electrolyte for supercapcitors. A carbon-carbon supercapacitor has been fabricated using this electrolyte and its electrochemical characteristics and performance have been studied. The conductivity has been calculated using the bulk impedance obtained through impedance spectroscopy. The real and imaginary parts of the electrical modulus of samples show a long tail feature, which can be attributed to high capacitance of the material. The super capacitor showed a fairly good specific capacitance of 40 F g-1 and a time constant of 5 s.

  8. Theoretical analysis of aqueous solutions of mixed strong electrolytes by a smaller-ion shell electrostatic model

    SciTech Connect

    Fraenkel, Dan

    2014-02-07

    In spite of the great importance of mixed electrolytes in science and technology, no compelling theoretical explanation has been offered yet for the thermodynamic behavior of such systems, such as their deviation from ideality and the variation of their excess functions with ionic composition and concentration. Using the newly introduced Smaller-ion Shell treatment – an extension of the Debye–Hückel theory to ions of dissimilar size (hence DH–SiS) – simple analytic mathematical expressions can be derived for the mean and single-ion activity coefficients of binary electrolyte components of ternary ionic systems. Such expressions are based on modifying the parallel DH–SiS equations for pure binary ionic systems, by adding to the three ion-size parameters – a (of counterions), b{sub +} (of positive coions), and b{sub −} (of negative coions) – a fourth parameter. For the (+ + −) system, this is “b{sub ++},” the contact distance between non-coion cations. b{sub ++} is derived from fits with experiment and, like the other b’s, is constant at varying ion concentration and combination. Four case studies are presented: (1) HCl–NaCl–H{sub 2}O, (2) HCl–NH{sub 4}Cl–H{sub 2}O, (3) (0.01 M HX)–MX–H{sub 2}O with X = Cl, Br, and with M = Li, Na, K, Cs, and (4) HCl–MCl{sub n}–H{sub 2}O with n = 2, M = Sr, Ba; and n = 3, M = Al, Ce. In all cases, theory is fully consistent with experiment when using a of the measured binary electrolyte as the sole fitting parameter. DH–SiS is thus shown to explain known “mysteries” in the behavior of ternary electrolytes, including Harned rule, and to adequately predict the pH of acid solutions in which ionized salts are present at different concentrations.

  9. Nitric acid recovery from waste solutions

    DOEpatents

    Wilson, A. S.

    1959-04-14

    The recovery of nitric acid from aqueous nitrate solutions containing fission products as impurities is described. It is desirable to subject such solutions to concentration by evaporation since nitric acid is regenerated thereby. A difficulty, however, is that the highly radioactive fission product ruthenium is volatilized together with the nitric acid. It has been found that by adding nitrous acid, ruthenium volatilization is suppressed and reduced to a negligible degree so that the distillate obtained is practically free of ruthenium.

  10. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach.

    PubMed

    Gavish, Nir; Promislow, Keith

    2016-07-01

    We present a microfield approach for studying the dependence of the orientational polarization of the water in aqueous electrolyte solutions upon the salt concentration and temperature. The model takes into account the orientation of the solvent dipoles due to the electric field created by ions, and the effect of thermal fluctuations. The model predicts a dielectric functional dependence of the form ɛ(c)=ɛ_{w}-βL(3αc/β),β=ɛ_{w}-ɛ_{ms}, where L is the Langevin function, c is the salt concentration, ɛ_{w} is the dielectric of pure water, ɛ_{ms} is the dielectric of the electrolyte solution at the molten salt limit, and α is the total excess polarization of the ions. The functional form gives a remarkably accurate description of the dielectric constant for a variety of salts and a wide range of concentrations. PMID:27575183

  11. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach

    NASA Astrophysics Data System (ADS)

    Gavish, Nir; Promislow, Keith

    2016-07-01

    We present a microfield approach for studying the dependence of the orientational polarization of the water in aqueous electrolyte solutions upon the salt concentration and temperature. The model takes into account the orientation of the solvent dipoles due to the electric field created by ions, and the effect of thermal fluctuations. The model predicts a dielectric functional dependence of the form ɛ (c ) =ɛw-β L (3 α c /β ) ,β =ɛw-ɛms , where L is the Langevin function, c is the salt concentration, ɛw is the dielectric of pure water, ɛms is the dielectric of the electrolyte solution at the molten salt limit, and α is the total excess polarization of the ions. The functional form gives a remarkably accurate description of the dielectric constant for a variety of salts and a wide range of concentrations.

  12. Co/Mo bimetallic addition to electrolytic manganese dioxide for oxygen generation in acid medium

    PubMed Central

    Delgado, Dario; Minakshi, Manickam; McGinnity, Justin; Kim, Dong-Jin

    2015-01-01

    An efficient electrocatalyst comprising inexpensive and earth-abundant materials for the oxygen evolution reaction (OER) is crucial for the development of water electrolysis. In this work, in-situ addition of cobalt/molybdenum ions to the electrolytic manganese dioxide has been shown to be beneficial for the OER in acid solution as its overpotential performed better (305 mV) than that of the commercial DSA® (341 mV) at 100 mA cm−2. The OER was investigated at ambient temperature in 2 M H2SO4 solution on the modified EMD (MnMoCoO) electrodes. The energy efficiency of the MnMoCoO electrodes improved significantly with the amount of Co in the plating solution. For the electrodeposited catalysts, physico-chemical and electrochemical measurements were conducted including static overpotentials. The better performance of the modified EMD was attributed to an improved charge transfer resistance (Rct; 0.290 Ω cm2), average roughness factor (rf; 429) and decrease in water content in the electrodeposited catalysts. The kinetic parameters obtained on MnMoCoO catalysts were compared and discussed according to the cobalt concentration. PMID:26469204

  13. Co/Mo bimetallic addition to electrolytic manganese dioxide for oxygen generation in acid medium

    NASA Astrophysics Data System (ADS)

    Delgado, Dario; Minakshi, Manickam; McGinnity, Justin; Kim, Dong-Jin

    2015-10-01

    An efficient electrocatalyst comprising inexpensive and earth-abundant materials for the oxygen evolution reaction (OER) is crucial for the development of water electrolysis. In this work, in-situ addition of cobalt/molybdenum ions to the electrolytic manganese dioxide has been shown to be beneficial for the OER in acid solution as its overpotential performed better (305 mV) than that of the commercial DSA® (341 mV) at 100 mA cm-2. The OER was investigated at ambient temperature in 2 M H2SO4 solution on the modified EMD (MnMoCoO) electrodes. The energy efficiency of the MnMoCoO electrodes improved significantly with the amount of Co in the plating solution. For the electrodeposited catalysts, physico-chemical and electrochemical measurements were conducted including static overpotentials. The better performance of the modified EMD was attributed to an improved charge transfer resistance (Rct; 0.290 Ω cm2), average roughness factor (rf; 429) and decrease in water content in the electrodeposited catalysts. The kinetic parameters obtained on MnMoCoO catalysts were compared and discussed according to the cobalt concentration.

  14. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    NASA Astrophysics Data System (ADS)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-01

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO4) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-ΔGr) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO4 concentrations, and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-ΔGr), the former in ethanol and ACN increases only linearly with the increase in driving force (-ΔGr). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.

  15. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    SciTech Connect

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  16. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall.

    PubMed

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data. PMID:27176352

  17. Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Vijayakumar, M.; Burton, Sarah D.; Huang, Cheng; Li, Liyu; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jianzhi; Skyllas-Kazacos, Maria

    The vanadium(IV) electrolyte solutions with various vanadium concentrations are studied by variable temperature 1H and 17O nuclear magnetic resonance (NMR) spectroscopy. The structure and kinetics of vanadium(IV) species in the electrolyte solutions are explored with respect to vanadium concentration and temperature. It was found that the vanadium(IV) species exist as hydrated vanadyl ion, i.e. [VO(H 2O) 5] 2+ forming an octahedral coordination with vanadyl oxygen in the axial position and the remaining positions occupied by water molecules. This hydrated vanadyl ion structure is stable in vanadium concentrations up to 3 M and in the temperature range of 240-340 K. The sulfate anions in the electrolyte solutions are found to be weekly bound to this hydrated vanadyl ion and occupies its second-coordination sphere. The possible effects of these sulfate anions in proton and water exchange between vanadyl ion and solvent molecules are discussed based on 1H and 17O NMR results.

  18. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall

    NASA Astrophysics Data System (ADS)

    Warshavsky, Vadim; Marucho, Marcelo

    2016-04-01

    A precise description of the structural and dielectric properties of liquid water is critical to understanding the physicochemical properties of solutes in electrolyte solutions. In this article, a mixture of ionic and dipolar hard spheres is considered to account for water crowding and polarization effects on ionic electrical double layers near a uniformly charged hard wall. As a unique feature, solvent hard spheres carrying a dipole at their centers were used to model water molecules at experimentally known concentration, molecule size, and dipolar moment. The equilibrium ionic and dipole density profiles of this electrolyte aqueous model were calculated using a polar-solvation classical density-functional theory (PSCDFT). These profiles were used to calculate the charge density distribution, water polarization, dielectric permittivity function, and mean electric potential profiles as well as differential capacitance, excess adsorptions, and wall-fluid surface tension. These results were compared with those corresponding to the pure dipolar model and unpolar primitive solvent model of electrolyte aqueous solutions to understand the role that water crowding and polarization effects play on the structural and thermodynamic properties of these systems. Overall, PSCDFT predictions are in agreement with available experimental data.

  19. Nuclear Magnetic Resonance Studies on Vanadium(IV) Electrolyte Solutions for Vanadium Redox Flow Battery

    SciTech Connect

    Vijayakumar, M.; Burton, Sarah D.; Huang, Cheng; Li, Liyu; Yang, Zhenguo; Graff, Gordon L.; Liu, Jun; Hu, Jian Z.; Skyllas-Kazacos, Maria

    2010-11-15

    The vanadium (IV) electrolyte solutions with various vanadium concentrations are studied by variable temperature 1H and 17O Nuclear Magnetic Resonance (NMR) spectroscopy. The structure and kinetics of vanadium (IV) species in the electrolyte solutions are explored with respect to vanadium concentration and temperature. It was found that the vanadium (IV) species exist as hydrated vanadyl ion, i.e. [VO(H2O)5]2+ forming an octahedral coordination with vanadyl oxygen in the axial position and the remaining positions occupied by water molecules. This hydrated vanadyl ion structure is stable in vanadium concentrations up to 3M and in the temperature range of 240 to 340 K. The sulfate anions in the electrolyte solutions are found to be weekly bound to this hydrated vanadyl ion and occupies its second coordination sphere. The possible effects of these sulfate anions in proton and water exchange between vanadyl ion and solvent molecules are discussed based on 1H and 17O NMR results.

  20. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

    SciTech Connect

    Moffat, Harry K.; Jove-Colon, Carlos F.

    2009-06-01

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species. The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.

  1. Nanostructured Fe(III) catalysts for water oxidation assembled with the aid of organic acid salt electrolytes

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Li, Dandan; Gao, Guofeng; Yuan, Wen; Hao, Genyan; Li, Jinping

    2016-11-01

    We describe the preparation of three partially ordered iron-based catalyst films (Fe-OAc, Fe-Pro, Fe-But) with nanoporous structure by electrodeposition from organate electrolytes containing Fe2+. The anions of the organic acids assisted the partial ordering of the nanostructured Fe(III) catalysts for water oxidation. A model involving an electrical double layer is invoked to explain the role of the organate electrolyte system in their formation. Analytical results have revealed the main component of the iron-based films to be a β-FeOOH structure. The Fe-But catalyst catalyzed water oxidation in 0.1 m potassium carbonate solution with an average activity of 1.48 mA cm-2 and an overpotential of 433 mV.

  2. Tin Coatings Electrodeposited from Sulfonic Acid-Based Electrolytes: Tribological Behavior

    NASA Astrophysics Data System (ADS)

    Bengoa, L. N.; Tuckart, W. R.; Zabala, N.; Prieto, G.; Egli, W. A.

    2015-06-01

    A high efficiency methane sulfonic acid electrolyte used for tin electrodeposition was studied, and the properties of the resulting deposits were compared to those of tin coatings obtained from an industrial phenol sulfonic acid electrolyte. Cyclic voltammetry was used to study the effect of organic additives on the reduction process to define the composition of the electrolytic bath. Thick tin electrodeposits were obtained on rotating cylinder steel electrodes, and their surface morphology, preferred crystal orientation, surface roughness, micro hardness, and tribological behavior were measured. Smooth, adherent, and bright tin coatings were obtained from the methane sulfonic acid electrolyte, which differed in morphology and texture from tin electrodeposited from the industrial bath. Influence of organic additives on preferred crystal orientation of the coatings was found to be stronger than changing the supporting sulfonic acid type. Tribological tests showed that the two types of deposits have a similar coefficient of friction. However, tin coatings obtained from methane sulfonic electrolytes presented a lower wear resistance and underwent galling at lower loads.

  3. Underwater microdischarge in arranged microbubbles produced by electrolysis in electrolyte solution using fabric-type electrode

    SciTech Connect

    Sakai, Osamu; Kimura, Masaru; Tachibana, Kunihide; Shirafuji, Tatsuru

    2008-12-08

    Pulsed microdischarge was generated in microbubbles produced by electrolysis in an electrolyte solution without external gas feed by using a fabric-type electrode. The electrode structure not only allowed low-voltage ignition of the atmospheric-pressure discharge in hydrogen or oxygen containing microbubbles but also worked effectively in producing and holding the bubbles on its surface. The generation of reactive species was verified by optical emissions from the produced microplasmas, and their transport into the solution was monitored by the change in hydrogen concentration.

  4. Ion hydration effects in aqueous solutions of strong electrolytes, according to proton magnetic relaxation measurements

    NASA Astrophysics Data System (ADS)

    Melnichenko, N. A.

    2014-12-01

    The concentration dependences of proton magnetic relaxation (PMR) rates measured at different temperatures in aqueous electrolyte solutions and concentrated seawater (SW) in a wide range of salt concentrations and for different seawater salinities are presented, along with the concentration dependences of PMR rates determined in salts dissolved directly in seawater. The coordination numbers of the basic ions in seawater were determined from the complete solvation limits and compared with those measured in single-component water-salt solutions. The attaining of complete solvation limits was determined using the PMR data for ions of different hydration signs.

  5. Solution nonideality related to solute molecular characteristics of amino acids.

    PubMed Central

    Keener, C R; Fullerton, G D; Cameron, I L; Xiong, J

    1995-01-01

    By measuring the freezing-point depression for dilute, aqueous solutions of all water-soluble amino acids, we test the hypothesis that nonideality in aqueous solutions is due to solute-induced water structuring near hydrophobic surfaces and solute-induced water destructuring in the dipolar electric fields generated by the solute. Nonideality is expressed with a single solute/solvent interaction parameter I, calculated from experimental measure of delta T. A related parameter, I(n), gives a method of directly relating solute characteristics to solute-induced water structuring or destructuring. I(n)-values correlate directly with hydrophobic surface area and inversely with dipolar strength. By comparing the nonideality of amino acids with progressively larger hydrophobic side chains, structuring is shown to increase with hydrophobic surface area at a rate of one perturbed water molecule per 8.8 square angstroms, implying monolayer coverage. Destructuring is attributed to dielectric realignment as described by the Debye-Hückel theory, but with a constant separation of charges in the amino-carboxyl dipole. By using dimers and trimers of glycine and alanine, this destructuring is shown to increase with increasing dipole strength using increased separation of fixed dipolar charges. The capacity to predict nonideal solution behavior on the basis of amino acid characteristics will permit prediction of free energy of transfer to water, which may help predict the energetics of folding and unfolding of proteins based on the characteristics of constituent amino acids. Images FIGURE 6 PMID:7711253

  6. THE INFLUENCE OF ELECTROLYTES ON THE SOLUTION AND PRECIPITATION OF CASEIN AND GELATIN

    PubMed Central

    Loeb, Jacques; Loeb, Robert F.

    1921-01-01

    1. Colloids have been divided into two groups according to the ease with which their solutions or suspensions are precipitated by electrolytes. One group (hydrophilic colloids), e.g., solutions of gelatin or crystalline egg albumin in water, requires high concentrations of electrolytes for this purpose, while the other group (hydrophobic colloids) requires low concentrations. In the latter group the precipitating ion of the salt has the opposite sign of charge as the colloidal particle (Hardy's rule), while no such relation exists in the precipitation of colloids of the first group. 2. The influence of electrolytes on the solubility of solid Na caseinate, which belongs to the first group (hydrophilic colloids), and of solid casein chloride which belongs to the second group (hydrophobic colloids), was investigated and it was found that the forces determining the solution are entirely different in the two cases. The forces which cause the hydrophobic casein chloride to go into solution are forces regulated by the Donnan equilibrium; namely, the swelling of particles. As soon as the swelling of a solid particle of casein chloride exceeds a certain limit it is dissolved. The forces which cause the hydrophilic Na caseinate to go into solution are of a different character and may be those of residual valency. Swelling plays no rôle in this case, and the solubility of Na caseinate is not regulated by the Donnan equilibrium. 3. The stability of solutions of casein chloride (requiring low concentrations of electrolytes for precipitation) is due, first, to the osmotic pressure generated through the Donnan equilibrium between the casein ions tending to form an aggregate, whereby the protein ions of the nascent micellum are forced apart again; and second, to the potential difference between the surface of a micellum and the surrounding solution (also regulated by the Donnan equilibrium) which prevents the further coalescence of micella already formed. This latter consequence

  7. Causes and mechanisms of acid-base and electrolyte abnormalities in cancer patients.

    PubMed

    Miltiadous, George; Christidis, Dimitrios; Kalogirou, Michalis; Elisaf, Moses

    2008-01-01

    Patients with cancer frequently exhibit acid-base and electrolyte disturbances that complicate their management and prolong their hospitalization. The mechanisms encountered for these abnormalities are multifactorial in origin. Both the underlying disease and the therapeutic interventions can contribute to the development of these disturbances. An understanding of the mechanisms involved in their pathogenesis is of paramount importance for their prevention and treatment in cancer patients. This article briefly reviews the causes and the pathophysiology of acid-base and electrolyte abnormalities observed in cancer patients. PMID:18206594

  8. [Detection of metal residue in aqueous solutions by electrolyte cathode atmospheric glow discharge emission spectroscopy].

    PubMed

    Zheng, Pei-chao; Wang, Hong-mei; Li, Jian-quan; Han, Hai-yan; Xi, Xiao-qin; Chu, Yan-nan

    2010-07-01

    Toxic metal elements in waters and wastewaters contaminate the environment and greatly threaten the health of human beings, therefore developing a rapid monitor for metal residues in aqueous solutions is urgently required. In the present work, a new homemade apparatus of electrolyte cathode atmospheric glow discharge emission spectroscopy was developed and described. It can detect and discriminate many kinds of trace mental elements by atomic emission spectrum from atmospheric pressure liquid cathode glow discharge. In order to estimate the analytical performance of the present atmospheric pressure electrolyte cathode glow discharge emission spectroscopy system, the detection limit values for Na, Li, Cu, Pb and Mn were obtained based on 3sigma of the background signal, and the current limits of detection were 0.008, 0.005, 1.1, 2.06 and 1.95 mg L(-1), respectively. It demonstrates that the atmospheric pressure electrolyte cathode glow discharge emission spectroscopy has a promising application in real time measurements of metal residues in aqueous solutions. PMID:20828006

  9. Kinetics of the Elementary Act of Electrochemical Reactions at the Semiconductor-Electrolyte Solution Interface

    NASA Astrophysics Data System (ADS)

    Kovalenko, Sergii; Soloviev, Veniamin

    2014-12-01

    In the framework of the quantum-mechanical theory of elementary act of non-adiabatic electrochemical reactions, it is carried out the calculation of the discharge current of ions at the semiconductor-electrolyte solution interface using the model of isotropic spherically symmetric band. It is shown that our results generalize the well-known formulae for the current density obtained by Dogonadze, Kuznetsov, and Chizmadzhev [R. R. Dogonadze, A. M. Kuznetsov, and Yu. A. Chizmadzhev, The kinetics of some heterogeneous reactions at semiconductor-electrolyte interface, Zhur. Fiz. Khim. 38, 1195 (1964)]. The average densities of states in the valence band and the conduction band of the semiconductor electrode in the heterogeneous charge transfer are found.

  10. Design of an efficient electrolyte circulation system for the lead-acid battery

    SciTech Connect

    Thuerk, D.

    1982-01-01

    Application of lead-acid batteries to electric vehicle and other repetitive deep-cycle services produces a non-desirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. Water, which is generated during discharge, rises to the electrolyte surface due to gravity differences, whereas the concentrated sulfuric acid generated during charge falls to the bottom of the container. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The industry presently overcomes the stratification problem by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. The amount of recharge typically used to mix the electrolyte ranges from 120% to 140% of the prior discharge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates. The design and operation of an electrolyte circulation system are described. (WHK)

  11. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  12. The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution

    SciTech Connect

    Ma, Y.; Doyle, M.; Doeff, M.M.; De Jonghe, L.C.; Newman, J.; Fuller, T.F.

    1995-06-01

    Polymer electrolytes based on alkali metal salts in poly(ethylene oxides) are important for possible use in rechargeable batteries for both electric vehicle and consumer electronics applications. The authors measure a complete set of transport properties for one particular binary salt solution: sodium trifluoromethanesulfonate in poly(ethylene oxide), over a wide range of salt concentrations (0.1 to 2.6M) at 85 C. The properties measured include the conductivity, the salt diffusion coefficient, and the Na ion transference number. The mean molar activity coefficient of the salt is also determined. The conductivity and diffusion coefficients of NaCF{sub 3}SO{sub 3} are similar in magnitude to those of LiCF{sub 3}SO{sub 3} in (polyethylene oxide). The transference number and thermodynamic factor are found by combining concentration cell data with the results of galvanostatic polarization experiments. A theoretical analysis of the experimental method based on concentrated-solution theory is given. The study verifies that the transference numbers derived from the experiments retain fundamental significance in applications involving both steady and transient processes and in systems coupling the polymer electrolyte with electrodes of all types (stoichiometries). The relevant transference numbers can be determined independently of any knowledge of speciation of the polymer electrolyte. The transference numbers found here for the sodium ion are much lower than those reported for the lithium ion, especially in the concentrated solutions. The transference number of the sodium ion is negative in the more concentrated solutions and levels off at its maximum value of 0.31 in the dilute concentration range. The transference number results are interpreted in terms of complexation of the sodium ion with the anionic species.

  13. Solvent activity in electrolyte solutions from molecular simulation of the osmotic pressure

    NASA Astrophysics Data System (ADS)

    Kohns, Maximilian; Reiser, Steffen; Horsch, Martin; Hasse, Hans

    2016-02-01

    A method for determining the activity of the solvent in electrolyte solutions by molecular dynamics simulations is presented. The electrolyte solution is simulated in contact with the pure solvent. Between the two phases, there is a virtual membrane, which is permeable only for the solvent. In the simulation, this is realized by an external field which acts only on the solutes and confines them to a part of the simulation volume. The osmotic pressure, i.e., the pressure difference between both phases, is obtained with high accuracy from the force on the membrane, so that reliable data on the solvent activity can be determined. The acronym of the new method is therefore OPAS (osmotic pressure for activity of solvents). The OPAS method is verified using tests of varying complexity. This includes a comparison of results from the OPAS method for aqueous NaCl solutions to results from the literature which were obtained with other molecular simulation methods. Favorable agreement is observed not only for the solvent activity but also for the activity coefficient of NaCl, which is obtained by application of the Gibbs-Duhem equation.

  14. Onsager’s reciprocal relations in electrolyte solutions. I. Sedimentation and electroacoustics

    SciTech Connect

    Gourdin-Bertin, S.; Bernard, O.; Jardat, M.; Chassagne, C.

    2015-08-14

    In the framework of irreversible thermodynamics, we show that the sedimentation current in electrolyte solutions is mathematically equivalent to the low frequency limit of the ionic vibration current, appearing in the presence of an acoustic wave. This non-trivial result is obtained thanks to a careful choice of the reference frame used to express the mass fluxes in the context of electroacoustics. Coupled transport phenomena in electrolyte solutions can also be investigated in a mechanical framework, with a set of Newtonian equations for the dynamics of charged solutes. Both in the context of sedimentation and of electroacoustics, we show that the results obtained in the mechanical framework, in the ideal case (i.e., without interactions between ions), do satisfy the Onsager’s reciprocal relations. We also derive the general relation between corrective forces accounting for ionic interactions which must be fulfilled so that the Onsager’s reciprocal relations are verified. Finally, we show that no additional diffusion term needs to be taken into account in the flux of solutes (far from the walls), even if local concentration gradients exist, contrarily to what was done previously in the literature.

  15. Electrogenerated chemiluminescence induced by sequential hot electron and hole injection into aqueous electrolyte solution.

    PubMed

    Salminen, Kalle; Kuosmanen, Päivi; Pusa, Matti; Kulmala, Oskari; Håkansson, Markus; Kulmala, Sakari

    2016-03-17

    Hole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation. The analytical power of the present excitation waveforms are that they allow detection of electrochemiluminescent labels at very low detection limits in bioaffinity assays such as in immunoassays or DNA probe assays. The two important properties of the present waveforms are: (i) they provide in situ oxidation of the electrode surface resulting in the desired oxide film thickness and (ii) they can provide one-electron oxidants for the system by hole injection either via F- and F(+)-center band of the oxide or by direct hole injection to valence band of water at highly anodic pulse amplitudes.

  16. Design of an efficient electrolyte circulation system for the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Thuerk, D.

    The design and operation of an electrolyte circulation system are described. Application of lead acid batteries to electric vehicle and other repetitive deep cycle services produces a nondesirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The stratification problem was overcome by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates.

  17. The effect of acidity of electrolyte on the porosity and the nanostructure morphology of electrolytic manganese dioxide

    NASA Astrophysics Data System (ADS)

    Adelkhani, H.

    2012-06-01

    The effects of acidity of electrolyte (pH) on the hysteresis behavior, the specific surface area, and nanostructure morphology of electrolytic manganese dioxides (EMDs) have been studied by using the Barrett-Joyner-Halenda (BJH) analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) images analysis. EMD samples are electrodeposited at a variable pH (6 to 1) and many fixed pH (2, 3, 4, 5, and 6). Results indicate that pH play key roles in the characteristics of EMD. The samples obtained at low pH (2 and 3) show multi-branched morphology and represent a H4 hysteresis loop. At pH 4 and 5, a uniform and dense structure of MnO2 is obtained without hysteresis behavior. The sample electrodeposited at pH 6 shows a regular reticulate, that its adsorption-desorption isotherm show hysteresis behavior. By electrodeposition at a variable pH, the sample shows a cauliflower-like and multi-branched form. From the viewpoint of classification of isotherm, pH strongly affects on Type of isotherm. The results show that γ-MnO2 is as main-product of electrodeposition and α-MnO2 and β-MnO2 were obtained as side-product at low and high pH, respectively.

  18. Studies on zinc nodules electrodeposited from acid electrolytes

    SciTech Connect

    Anderson, R.; Tobias, C.W.

    1984-12-01

    The development of morphology of electrodeposited zinc was investigated by studying the initial stages of deposition. Zinc was deposited galvanostatically from 1.0 M ZnCl/sub 2/ electrolyte (0.7 < pH < 4.6) on rotating disc electrodes at current densities from 5 to 130 ma/cm/sup 2/. Pine glassy carbon, Union Carbide pyrolytic graphite, Gould pyrolytic graphite, Exxon graphite loaded polymer, and platinum substrates were used. The number densities of nodules (diameter greater than 1 ..mu..m), typically encountered during incipient morphological development, were measured using scanning electron microscopy and image analysis. Nodule densities up to 7 x 10/sup 4/ nodules/mm/sup 2/ were measured.

  19. Formulation of amphiphilic drug amitriptyline hydrochloride by polyoxyethylene sorbitan esters in aqueous electrolytic solution.

    PubMed

    Kabir-ud-Din; Yaseen, Zahid

    2012-05-01

    In the present work, the interaction between an antidepressant drug amitriptyline hydrochloride and nonionic polyoxyethylene surfactants, with special attention to the possible contribution from the ion-dipole type of interaction, has been investigated by using multitechnique approach. Tensiometric and conductometric studies show steeper decrease on the critical micellar concentration gradient of the drug in the presence of electrolyte (NaCl) as well as nonionic surfactants. Critical assessments by applying Clint, Rubingh, Rosen, Motomura and other thermodynamic models confirm strong interactions in the mixed monolayer at the surface and in mixed micelle in the bulk of aqueous electrolytic solution. The structural difference in the drug and nonionic surfactants also plays a role in tuning the aggregational behavior of the drug-surfactant mixtures. Finally, it is shown by DLS measurements that the micellar growth of drug-surfactant aggregates is favored in terms of increase in hydrodynamic radii in the presence of electrolyte. However, the nonionic surfactants provide sufficient steric crowding causing dissociation of larger micelles into smaller ones with small radii.

  20. Molecular dynamics study of n-alcohols adsorbed on an aqueous electrolyte solution

    NASA Astrophysics Data System (ADS)

    Daiguji, Hirofumi

    2001-07-01

    The distribution of normal alcohol (n-alcohol) on water and the effect of salt on the structural and dynamical properties of n-alcohol on aqueous electrolyte solutions were investigated using molecular dynamics simulation. The stability of the alcohol distribution was studied for three types of n-alcohol (n-propanol, C3H7OH; n-heptanol, C7H15OH; and n-undecanol, C11H23OH), four or five concentrations of alcohol, and three concentrations of salt. The simulation results reveal the following. The distribution of n-propanol on water is homogeneous at all n-alcohol concentrations studied here and the distribution of n-heptanol and n-undecanol on water is heterogeneous. The n-alcohol concentration at which fluctuations in the alcohol distribution begin to increase depends on the length of the hydrocarbon chain of the n-alcohol. Salt concentration affects the surface excess concentration of n-alcohol and the stability of the adsorbed layer of n-alcohol. The degree of each effect depends on the length of the hydrocarbon chain of the n-alcohol. For n-undecanol, the surface structure of n-alcohol is independent of salt concentration because interaction between the hydrocarbon chains is sufficiently strong. In absorption refrigeration technology, to enhance the absorption rate of water vapor into a highly concentrated aqueous electrolyte solution, a small amount of alcohols is added to the aqueous electrolyte solution, which induces cellular convection referred to as Marangoni instability. Among the three types of n-alcohol studied here, only n-heptanol induces strong cellular convection. The simulations reveal two required conditions for Marangoni instability: generation of fluctuations in the alcohol distribution on water, and strong correlation between the structural and dynamical properties and salt concentration. Among the three types of n-alcohol studied here, based on the simulations, only n-heptanol satisfies both conditions.

  1. An amino acid-electrolyte beverage may increase cellular rehydration relative to carbohydrate-electrolyte and flavored water beverages

    PubMed Central

    2014-01-01

    Background In cases of dehydration exceeding a 2% loss of body weight, athletic performance can be significantly compromised. Carbohydrate and/or electrolyte containing beverages have been effective for rehydration and recovery of performance, yet amino acid containing beverages remain unexamined. Therefore, the purpose of this study is to compare the rehydration capabilities of an electrolyte-carbohydrate (EC), electrolyte-branched chain amino acid (EA), and flavored water (FW) beverages. Methods Twenty men (n = 10; 26.7 ± 4.8 years; 174.3 ± 6.4 cm; 74.2 ± 10.9 kg) and women (n = 10; 27.1 ± 4.7 years; 175.3 ± 7.9 cm; 71.0 ± 6.5 kg) participated in this crossover study. For each trial, subjects were dehydrated, provided one of three random beverages, and monitored for the following three hours. Measurements were collected prior to and immediately after dehydration and 4 hours after dehydration (3 hours after rehydration) (AE = −2.5 ± 0.55%; CE = −2.2 ± 0.43%; FW = −2.5 ± 0.62%). Measurements collected at each time point were urine volume, urine specific gravity, drink volume, and fluid retention. Results No significant differences (p > 0.05) existed between beverages for urine volume, drink volume, or fluid retention for any time-point. Treatment x time interactions existed for urine specific gravity (USG) (p < 0.05). Post hoc analysis revealed differences occurred between the FW and EA beverages (p = 0.003) and between the EC and EA beverages (p = 0.007) at 4 hours after rehydration. Wherein, EA USG returned to baseline at 4 hours post-dehydration (mean difference from pre to 4 hours post-dehydration = -0.0002; p > 0.05) while both EC (-0.0067) and FW (-0.0051) continued to produce dilute urine and failed to return to baseline at the same time-point (p < 0.05). Conclusion Because no differences existed for fluid retention, urine or drink volume at any time point, yet USG returned to

  2. Effects of surfactants and electrolyte solutions on the properties of soil

    NASA Astrophysics Data System (ADS)

    Park, Junboum; Vipulanandan, Cumaraswamy; Kim, Jee Woong; Oh, Myoung Hak

    2006-04-01

    Biosurfactants are frequently used in petroleum hydrocarbon and dense non-aqueous phase liquids (DNAPLs) remediation. The applicability of biosurfactant use in clayey soils requires an understanding and characterization of their interaction. Comprehensive effects of surfactants and electrolyte solutions on kaolinite clay soil were investigated for index properties, compaction, strength characteristics, hydraulic conductivities, and adsorption characteristics. Sodium dodecyl sulfate (SDS) and NaPO3 decreased the liquid limit and plasticity index of the test soil. Maximum dry unit weights were increased and optimum moisture contents were decreased as SDS and biosurfactant were added for the compaction tests for mixtures of 30% kaolinite and 70% sand. The addition of non-ionic surfactant, biosurfactant, and CaCl2 increased the initial elastic modulus and undrained shear strength of the kaolinite-sand mixture soils. Hydraulic conductivities were measured by fixed-wall double-ring permeameters. Results showed that the hydraulic conductivity was not significantly affected, but slightly decreased from 1×10-7 cm/s (water) to 0.3×10-7 cm/s for Triton X-100 and SDS. The adsorption characteristics of the chemicals onto kaolinite were also investigated by developing isotherm curves. SDS adsorbed onto soil particles with the strongest bonding strength of the fluids tested. Correlations among parameters were developed for surfactants, electrolyte solutions, and clayey soils.

  3. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  4. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  5. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  6. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  7. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  8. Nanomembrane Containing a Nanopore in an Electrolyte Solution: A Molecular Dynamics Approach.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2014-09-01

    Molecular dynamics simulation is used to acquire information about the characteristics of a nanographene membrane immersed in an electrolyte solution of KCl and subjected to an electric field. The membrane possesses one nanopore. It is shown that the solution contains in addition to hydrated ions, hydrated ion pairs, and hydrated clusters with more than two ions. The fractions of hydrated ions, hydrated ion pairs and hydrated clusters as well as their hydration numbers were also calculated. It was found that the hydration numbers remain constant at low electric fields but decrease at high electric fields. Under the action of an electric field, the K(+) and Cl(-) ions separate on the two sides of graphene, thus generating hydrated ion polarization layers, which result in negative charge density layers and positive ones on the left and right interfaces of the water/graphene. Thus, the neutral graphene becomes asymmetrically charged. PMID:26278246

  9. Three-phase contact line and line tension of electrolyte solutions in contact with charged substrates

    NASA Astrophysics Data System (ADS)

    Ibagon, Ingrid; Bier, Markus; Dietrich, S.

    2016-06-01

    The three-phase contact line formed by the intersection of a liquid–vapor interface of an electrolyte solution with a charged planar substrate is studied in terms of classical density functional theory applied to a lattice model. The influence of the substrate charge density and of the ionic strength of the solution on the intrinsic structure of the three-phase contact line and on the corresponding line tension is analyzed. We find a negative line tension for all values of the surface charge density and of the ionic strength considered. The strength of the line tension decreases upon decreasing the contact angle via varying either the temperature or the substrate charge density.

  10. A statistical mechanical theory of the self-diffusion coefficient of simple ions in electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Yuan Mou, Chung; Thacher, Thomas S.; Lin, Jeong-long

    1983-07-01

    A statistical mechanical theory of the self-diffusion coefficient of ions in solutions of simple electrolytes has been developed. Beginning with a generalized Langevin equation the self-diffusion coefficients of ions may be evaluated at the zero-frequency limit of the Laplace transform of the random force correlation function. We assume that the random force acting on the tagged ion may be separated into contributions from the solvent part, due to the surrounding solvent molecules and an ionic part due to all the other ions. Further, we assume that the evolution of the ionic random force is governed by the Smoluchowski operator. With these assumptions and using the Debye-Hückel pair correlation function, the Onsager limiting law may be derived. Numerical calculations using the HNC pair correlation function shows that our theory can describe experimental data of moderately concentrated solutions adequately.

  11. Self-diffusion coefficients of ions in electrolyte solutions by nonequilibrium Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Raineri, Fernando O.; Wood, Mark D.; Friedman, Harold L.

    1990-01-01

    The self-diffusion coefficients of the ions in a model electrolyte solution are calculated with a novel implementation of the nonequilibrium Brownian dynamics technique. The ions are coupled to an external color field E by color charges in such a way that each ionic species as a whole is electrically neutral to E. The ion-ion forces are not directly affected by the color charges or E. The method is tested on a model of a 1 M NaCl aqueous solution without hydrodynamic interactions and the results are compared with those of a previous equilibrium simulation for the same model system. The self-diffusion coefficients of Na+ and Cl- are determined with 2%-3% accuracy and, within this margin, agree with the results of the equilibrium simulation obtained with more than twice the computational effort. Furthermore, within the range of field strengths studied, the average color flows depend linearly on E.

  12. Theory of space-charge polarization for determining ionic constants of electrolytic solutions.

    PubMed

    Sawada, Atsushi

    2007-06-14

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA+(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  13. Nanomembrane Containing a Nanopore in an Electrolyte Solution: A Molecular Dynamics Approach.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2014-09-01

    Molecular dynamics simulation is used to acquire information about the characteristics of a nanographene membrane immersed in an electrolyte solution of KCl and subjected to an electric field. The membrane possesses one nanopore. It is shown that the solution contains in addition to hydrated ions, hydrated ion pairs, and hydrated clusters with more than two ions. The fractions of hydrated ions, hydrated ion pairs and hydrated clusters as well as their hydration numbers were also calculated. It was found that the hydration numbers remain constant at low electric fields but decrease at high electric fields. Under the action of an electric field, the K(+) and Cl(-) ions separate on the two sides of graphene, thus generating hydrated ion polarization layers, which result in negative charge density layers and positive ones on the left and right interfaces of the water/graphene. Thus, the neutral graphene becomes asymmetrically charged.

  14. Evaluation of the tapered PMMA fiber sensor response due to the ionic interaction within electrolytic solutions

    NASA Astrophysics Data System (ADS)

    Batumalay, M.; Rahman, H. A.; Kam, W.; Ong, Y. S.; Ahmad, F.; Zakaria, R.; Harun, S. W.; Ahmad, H.

    2014-01-01

    A tapered plastic multimode fiber (PMMA) optical sensor is proposed and demonstrated for continuous monitoring of solutions based on different concentration of sodium chloride and glucose in deionized water The tapered PMMA fiber was fabricated using an etching method involving deionized water and acetone to achieve a waist diameter and length of 0.45 mm and 10 mm, respectively, and was used to investigate the effect of straight, U-shape, and knot shape against concentration for both sodium chloride and glucose. The results show that there is a strong dependence of the electrolytic and non-electrolytic nature of the chemical solutions on the sensor output. It is found that the sensitivity of the sodium chloride concentration sensor with the straight tapered fiber probe was 0.0023 mV/%, which was better than the other probe arrangements of U-shape and knot. Meanwhile, the glucose sensor performs with the highest sensitivity of 0.0026 mV/wt % with the knot-shaped tapered fiber probe. In addition, a tapered PMMA probe which was coated by silver film was fabricated and demonstrated using calcium hypochlorite (G70) solution. The working mechanism of such a device is based on the observed increment in the transmission of the sensor that is immersed in solutions of higher concentration. As the concentration varies from 0 ppm to 6 ppm, the output voltage of the sensor increases linearly from 3.61 mV to 4.28 mV with a sensitivity of 0.1154 mV/ppm and a linearity of more than 99.47%. The silver film coating increases the sensitivity of the proposed sensor due to the effective cladding refractive index, which increases with the coating and thus allows more light to be transmitted from the tapered fiber.

  15. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  16. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries

    SciTech Connect

    Doe, RE; Han, R; Hwang, J; Gmitter, AJ; Shterenberg, I; Yoo, HD; Pour, N; Aurbach, D

    2014-01-01

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  17. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes

    PubMed Central

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-01-01

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%. PMID:26975216

  18. Effect of fulvic acids on the electrolytes physiology in vertebrates

    NASA Astrophysics Data System (ADS)

    Morales, O. Y.; Navarrete, J. M.; Gracia, I.; Macias, L.; Rivera, M.; Sanchez, F.

    2011-10-01

    Fulvic acids are the active principle in humus fertilizers which are the cause of better absorption of mineral ions from soil to plant tissues. Tested in mice by making use of radioactive labeled ions, they showed their action of enhancing by a factor greater than two the filtration through liver of PO 43- and Ca 2+ from digestive tract to blood serum as well as through kidney from blood serum to urine. Following this research, Fe 3+ and I 1- ions labeled with 59Fe and 131I have been tested and reported in the present paper. Results showed that iron ions are completely fixed in red cells, with no residue eliminated by urine, while iodine ions are fixed in thyroid gland, with some residue eliminated by urine. Both ions were fixed in said tissues by factors larger than two when they are escorted by fulvic acids. A general distribution of these ions in blood, urine, feces, liver, kidney and thyroid gland has been surveyed, trying to find the earliest effect of fulvic acids in the physiology of vertebrates.

  19. Sulfuric acid-methanol electrolytes as an alternative to sulfuric-hydrofluoric acid mixtures for electropolishing of niobium

    SciTech Connect

    Zhao, Xin; Corcoran, Sean G.; Kelley, Michael J.

    2011-06-01

    Attainment of the greatest possible interior surface smoothness is critical to meeting the performance demands placed upon niobium superconducting radiofrequency (SRF) accelerator cavities by next generation projects. Electropolishing with HF-H{sub 2}SO{sub 4} electrolytes yields cavities that meet SRF performance goals, but a less-hazardous, more environmentally-friendly process is desirable. Reported studies of EP on chemically-similar tantalum describe the use of sulfuric acid-methanol electrolytes as an HF-free alternative. Reported here are the results of experiments on niobium samples with this electrolyte. Voltammetry experiments indicate a current plateau whose voltage range expands with increasing acid concentration and decreasing temperature. Impedance spectroscopy indicates that a compact salt film is responsible for the current plateau. Equivalent findings in electropolishing chemically-similar tantalum with this electrolyte were interpreted due to as mass transfer limitation by diffusion of Ta ions away from the anode surface. We infer that a similar mechanism is at work here. Conditions were found that yield leveling and brightening comparable to that obtained with HF-H{sub 2}SO{sub 4} mixtures.

  20. Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions

    PubMed Central

    Dabeka, Robert; Fouquet, Andre; Belisle, Stephane; Turcotte, Stephane

    2011-01-01

    Lead (Pb), cadmium (Cd) and aluminum (Al) were determined in 437 individual samples of infant formulae, oral electrolytes and 5% glucose solutions available in Canada. In the electrolytes, Cd and Pb concentrations were all below 0.01 and 0.041 ng g−1, respectively. In the 5% glucose solutions, Pb and Cd levels averaged 0.01 and 0.09 ng g−1, respectively. Reported on an as-consumed basis, Pb levels in milk- and soya-based formulae averaged 0.90 and 1.45 ng g−1, respectively, while Cd levels averaged 0.23 and 1.18 ng g−1, respectively Average Al levels on an as-consumed basis were 440 ng g−1 (range 10–3400 ng g−1) in milk-based formulae and 730 ng g−1 (range 230–1100 ng g−1) in soy-based formulae. Al concentrations increased in the following order: plain formula < low-iron formula < iron-supplemented formula < casein hydrolysate formula ≈ premature formula ≤ soy formula. For example, in the powdered formulae, average Al concentrations were 18 ng g−1 for plain milk-based, 37 ng g−1 for low-iron, 128 ng g−1 for iron supplemented, 462 ng g−1 for lactose-free, 518 ng g−1 for hypoallergenic and 619 ng g−1 for soy-based formula. Al concentrations, as-consumed, increased with decreasing levels of concentration: powder < concentrated liquid < ready-to-use. Formulae stored in glass bottles contained between 100 and 300 ng g−1 more Al than the same formulae stored in cans. The source of the increased Al did not appear to be the glass itself, because most electrolytes and glucose solutions, also stored in glass, contained less than 8 ng g−1 Al. Corresponding differences in Pb and Cd levels were not observed. Al concentrations varied substantially among manufacturers; however, all manufacturers were able to produce plain milk-based formulae containing less than 50 ng g−1 Al, i.e. within the range of Al concentrations found in human milk. Next to soya-based and hypoallergenic formulae, premature formulae contained among the highest

  1. Predicting the surface tension of aqueous 1:1 electrolyte solutions at high salinity

    NASA Astrophysics Data System (ADS)

    Leroy, Philippe; Lassin, Arnault; Azaroual, Mohamed; André, Laurent

    2010-10-01

    The surface tension of the air/water interface is a phenomenon of particular interest in the water-unsaturated zone of porous media because it influences the contact angle and consequently the capillary water volume. A mechanistic model based on the modified Poisson-Boltzmann equation and the Pitzer theory is described and used to predict, under isothermal and isobaric conditions, the surface tension of 1:1 electrolytes at high salinity. These theories enable the determination of the electrical potential at the air/water interface and the activity coefficient of the ionic species in the bulk pore water, respectively. Hydration free energies of the structure-making and structure-breaking ions that influence the surface tension at high salinity are taken into account. Structure-making ions flee the air/water surface because they can better organize the water dipoles in bulk water than at the interface. Structure-breaking ions are positively adsorbed at the air/water interface because the bulk water can better organize their hydrogen-bonding network without these ions. The resulting surface tension increases and decreases, respectively, compared to the surface tension of pure water. The predictions are in good agreement with the surface tension data of 1:1 electrolytes (NaCl, KCl, HCl, NaNO 3, KNO 3, HNO 3 aqueous solutions) and the optimized parameters depend on the effective electrostatic diameters of cations and on the hydration free energies of the ions at the interface.

  2. Electrolytic regeneration of acid cupric chloride printed circuit board etchant. Final report, August 1, 1995--October 31, 1996

    SciTech Connect

    Oxley, J.E.; Smialek, R.J.

    1997-04-18

    The overall objective of this ERIP program was to make substantial progress in further developing a process for electrolytic regeneration of acid cupric chloride etchant - a process which was initially demonstrated in in-house studies and EPA Phase I and Phase II SBIRs. Specific objectives of the work were: (1) to define optimum system operating conditions by conducting a systematic study of process parameters, (2) to develop or find a superior electrolyic cell separator material, (3) to determine an optimum activation procedure for the flow-through carbon/graphite felt electrodes which are so critical to process performance, (4) to demonstrate - on the pre-prototype scale - electrolytic compensation for oxygen ingress - which causes etchant solution growth, and (5) to begin engineering design work on a prototype-scale regeneration unit. Parametric studies looked at the effect that key plating parameters have on copper deposit quality. Parameters tested included (a) velocity past the plating cathodes, (b) copper concentration in the catholyte solution from which the copper is being plated, (c) plating current density, and (d) catholyte cupric ion concentration. The most significant effects were obtained for velocity changes. The work showed that catholyte velocities above 0.5 ft/sec were needed to get adequate plating at 77.5 mA/cm{sup 2} and higher currents, and that even higher flow was better.

  3. Plasma osmotic and electrolyte concentrations of largemouth bass from some acidic Florida lakes

    SciTech Connect

    Canfield, D.E. Jr.; Maceina, M.J.; Nordlie, F.G.; Shireman, J.V.

    1985-05-01

    Five acidic clear (pH 3.7-4.9), three acidic colored (pH 4.1-4.6), and three neutral (pH 6.9-7.3) north-central Florida lakes were surveyed in 1983 to determine plasma osmotic and electrolyte concentrations, growth, and coefficients of condition for largemouth bass Micropterus salmoides floridanus. Plasma osmotic concentrations averaged greater than 273 milliosmoles/kg in fish from acidic colored and circumneutral lakes, but averaged less than 269 milliosmoles/kg in four of the acidic clear lakes. Growth and coefficients of condition of largemouth bass > 305 mm total length in the acidic lakes were significantly lower than in the neutral lakes. Reductions in fish growth and condition, however, could be related to either acidic conditions or lake trophic status. 29 references, 3 tables.

  4. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. PMID:22483872

  5. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels.

  6. Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes

    SciTech Connect

    Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F.; McGrath, Kathryn M.

    2012-02-06

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.

  7. Prediction of surface tension of monovalent aqueous electrolytic solutions at high salinity

    NASA Astrophysics Data System (ADS)

    Leroy, P.; Lassin, A.; Azaroual, M.

    2009-12-01

    The surface tension between gas and pore water may be of crucial importance in some geological contexts like the storage of carbon dioxide in saline aquifers, which is a promising option for reducing CO2 atmospheric concentration. As an example, the problematic of capillary failure is, to a large extent, controlled by the gas/water surface tension. The higher the surface tension, the higher is the pressure difference between the two phases to attain capillary failure. The complexity of such a geochemical system (i.e., gas/brine interface) requires to start by studying simple systems where the physical chemical parameters are well constrained. Air/water surface tension depends on pressure, temperature, and on the chemical composition of the aqueous solution. At constant pressure and temperature, any solute that increases the surface tension of water may exhibit a negative total adsorption at the air/water interface. At high ionic strength (> 1 eq/kg H2O), the effect of ions on water structure is responsible for the variation of the surface tension. Structure-making ions (i.e., Na+ in the NaCl electrolyte) are fleeing the interface because they can better organize the water dipoles in bulk water than at the interface. The opposite is true for the structure-breaking ions (i.e., Cl- in the NaCl electrolyte): the total free energy of the system is minimized by pushing the structure-breaking ions toward the interface, because the bulk water can better organize their hydrogen bonding network without these ions. In the present study, we focus our attention on the characterization of the influence of ions at air/water interface on surface tension in the case of NaCl, NaNO3, KCl, KNO3, HCl, and HNO3 electrolytes. We use an electrostatic model based on the generalized Poisson-Boltzmann approach to describe attraction and repulsion of ions at air/water interface. This approach takes into account the mean electrostatic potential at the interface and a free energy of interaction

  8. Electroanalytical behavior of poly-L-lysine dendrigrafts at the interface between two immiscible electrolyte solutions.

    PubMed

    Herzog, Grégoire; Flynn, Shane; Johnson, Colm; Arrigan, Damien W M

    2012-07-01

    In this work, the electrochemical behavior of nonredox-active poly-L-lysine dendrigraft molecules of four different generations was investigated at the interface between two immiscible electrolyte solutions (ITIES). The influence of the dendrigraft generation on the electrochemical response, sensitivity of the calibration curves, and limit of detection was studied. Cyclic voltammetry at the ITIES revealed that the sensitivity increased (1840 to 25 800 nA μM(-1)) and the limit of detection decreased (11.10 to 0.65 μM) as the dendrigraft generation increased from generation G2 through to generation G5, respectively. The results are compared to those for protein voltammetry at the ITIES. Our studies suggest that the sensitivity expected for a synthetic ionized macromolecule can be predicted on the basis of its net charge and its diffusion coefficient. However, electrochemistry at the ITIES demonstrates a greater sensitivity toward proteins, which is attributed to their tertiary structure.

  9. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface.

    PubMed

    Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo

    2016-07-15

    Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01-1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica.

  10. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface

    NASA Astrophysics Data System (ADS)

    Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo

    2016-07-01

    Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01-1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica.

  11. CONDUCTIVITY TITRATION OF GELATIN SOLUTIONS WITH ACIDS.

    PubMed

    Hitchcock, D I

    1923-11-20

    Titrations have been made, by the conductivity method, of gelatin solutions with hydrochloric and sulphuric acids. The results indicate an end-point at about 8.6 cc. of N/10 acid per gm. of gelatin, or a combining weight of about 1,160. These results are in fair agreement with those previously obtained by the hydrogen electrode method. Better agreement between the two methods was found in the case of deaminized gelatin. The data are in accord with a purely chemical conception of the combination between protein and acid.

  12. Electrical conductivity of acidic sulfate solution

    NASA Astrophysics Data System (ADS)

    Majima, Hiroshi; Peters, Ernest; Awakura, Yasuhiro; Park, Sung Kook

    1987-03-01

    The electrical conductivities of the aqueous solution system of H2SO4-MSO4 (involving ZnSO4, MgSO4, Na2SO4, and (NH4)2SO4), reported by Tozawa et al., were examined in terms of a (H2O) and H+ ion concentration. The equations to compute the concentrations of various species in aqueous sulfuric acid solutions containing metal sulfates were derived for a typical example of the H2SO4-ZnSO4-MgSO4-(Na2SO4)-H2O system. It was found that the H+ ion concentrations in concentrated sulfuric acid solutions corresponding to practical zinc electrowinning solutions are very high and remain almost constant with or without the addition of metal sulfates. The addition of metal sulfates to aqueous sulfuric acid solution causes a decrease in electrical conductivity, and this phenomenon is attributed to a decrease in water activity, which reflects a decrease in the amount of free water. The relationship between conductivity and water activity at a constant H+ ion concentration is independent of the kind of sulfates added. On the other hand, any increase in H+ ion concentration results in an increase in electrical conductivity. A novel method for the prediction of electrical conductivity of acidic sulfate solution is proposed that uses the calculated data of water activity and the calculated H+ ion concentration. Also, the authors examined an extension of the Robinson-Bower equation to calculate water activity in quarternary solutions based on molarity instead of molality, and found that such calculated values are in satisfactory agreement with those determined experimentally by a transpiration method.

  13. NMR spectroscopy of some electrolyte solutions to 1.9 GPa

    NASA Astrophysics Data System (ADS)

    Ochoa, Gerardo; Colla, Christopher A.; Klavins, Peter; Augustine, Matthew P.; Casey, William H.

    2016-11-01

    Nuclear-magnetic resonance (NMR) spectra of CsCl and LaCl3 in D2O/H2O solutions were collected up to pressures of 1.9 GPa using a new NMR probe design that considerably extends the pressure range available for geochemical experiments. The longitudinal-relaxation times (T1) for 2H compare well with those reported in the previous studies of Lee et al. (1974), who examined lower pressures, and indicate that the probe functions properly. In some experiments, 133Cs and 1H NMR spectra could be taken on solutions to pressures well beyond the nominal freezing pressure of D2O or H2O to form Ice VI (near 0.9 GPa). Freezing to form the high-pressure ice is kinetically slow on an experimental time scale (minutes to hours). The data indicate that the electrolyte concentrations increase the freezing pressure of the solution. This result means that solution NMR spectra can be collected at pressures that are nearly twice the nominal freezing pressure of pure D2O or H2O. Pulsed-magnetic-field-gradient NMR methods are used to independently measure the self-diffusion coefficient of H2O in these solutions, which yields estimates of solution viscosity via the Stokes-Einstein relation. The increased viscosity accounts for the pressure variation of T1 values as rates of molecular tumbling are affected. Accounting for such changes is essential if NMR spectral line widths are used to infer pressure-enhanced rates of geochemical reactions, such as interconversion of aqueous complexes.

  14. Electrolytic dissolver

    DOEpatents

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  15. Improved fiber optic device for in situ determination of electrolyte stratification in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Gajdátsy, G.; Benedek, F.; Kokavecz, J.; Szabó, G.; Kornis, J.

    2009-12-01

    A three-channel, highly sensitive, fiber optic device is presented to measure acid concentration in lead-acid batteries during their operation. The refractive index and thereby the concentration of sulfuric acid is measured by a bent, silica glass fiber tip, stripped off its cladding. Sensor heads of the device are small enough to be inserted at different positions in the cell of an ordinary, flooded lead-acid battery. Measuring the concentration of the electrolyte at different depths of the battery cell, acid stratification can be accurately determined. During the test of the instrument, about 0.3 Hz temporal and 0.05 wt % concentration resolutions were achieved while the temperature drift was found to be -0.25 wt %/°C.

  16. Improved fiber optic device for in situ determination of electrolyte stratification in lead-acid batteries.

    PubMed

    Gajdátsy, G; Benedek, F; Kokavecz, J; Szabó, G; Kornis, J

    2009-12-01

    A three-channel, highly sensitive, fiber optic device is presented to measure acid concentration in lead-acid batteries during their operation. The refractive index and thereby the concentration of sulfuric acid is measured by a bent, silica glass fiber tip, stripped off its cladding. Sensor heads of the device are small enough to be inserted at different positions in the cell of an ordinary, flooded lead-acid battery. Measuring the concentration of the electrolyte at different depths of the battery cell, acid stratification can be accurately determined. During the test of the instrument, about 0.3 Hz temporal and 0.05 wt % concentration resolutions were achieved while the temperature drift was found to be -0.25 wt %/degrees C. PMID:20059171

  17. Effects of electrolyte concentration and counterion valence on the microstructural flow regimes in dilute cetyltrimethylammonium tosylate micellar solutions.

    PubMed

    Tepale, N; Macías, E R; Bautista, F; Puig, J E; Manero, O; Gradzielski, M; Escalante, J I

    2011-11-15

    The shear thickening behavior and the transition to shear thinning are examined in dilute cetyltrimethylammonium tosylate (CTAT) micellar solutions as a function of surfactant concentration and ionic strength using electrolytes with different counterion valence. Newtonian behavior at low shear rates, followed by shear thickening and shear thinning at higher shear rates, are observed at low and intermediate surfactant and electrolyte concentrations. Shear thickening diminishes with increasing surfactant concentration and ionic strength. At higher surfactant or electrolyte concentration, only a Newtonian region followed by shear thinning is detected. A generalized flow diagram indicates two controlling regimes: one in which electrostatic screening dominates and induces micellar growth, and another, at higher electrolyte and surfactant concentrations, where chemical equilibrium among electrolyte and surfactant counterions controls the rheological behavior by modifying micellar breaking and reforming. Analysis of the shear thickening behavior reveals that not only a critical shear rate is required for shear thickening, but also a critical deformation, which appears to be unique for all systems examined, within experimental error. Moreover, a superposition of the critical shear rate for shear thickening with surfactant and electrolyte concentration is reported.

  18. Mechanism of hydrofluoric acid formation in ethylene carbonate electrolytes with fluorine salt additives

    NASA Astrophysics Data System (ADS)

    Tebbe, Jonathon L.; Fuerst, Thomas F.; Musgrave, Charles B.

    2015-11-01

    We utilized density functional theory to examine HF generation in lithium-ion battery electrolytes from reactions between H2O and the decomposition products of three electrolyte additives: LiPF6, LiPOF4, and LiAsF6. Decomposition of these additives produces PF5, AsF5, and POF3 along with LiF precipitates. We found PF5 and AsF5 react with H2O in two sequential steps to form two HF molecules and POF3 and AsOF3, respectively. PF5 (or AsF5) complexes with H2O and undergoes ligand exchange to form HF and PF4OH (AsF4OH) with an activation barrier of 114.2 (30.5) kJ mol-1 and reaction enthalpy of 14.6 (-11.3) kJ mol-1. The ethylene carbonate (EC) electrolyte forms a Lewis acid-base complex with the PF4OH (AsF4OH) product, reducing the barrier to HF formation. Reactions of POF3 were examined and are not characterized by complexation of POF3 with H2O or EC, while PF5 and AsF5 complex favorably with H2O and EC. HF formation from POF3 occurs with a reaction enthalpy of -3.8 kJ mol-1 and a 157.7 kJ mol-1 barrier, 43.5 kJ mol-1 higher than forming HF from PF5. HF generation in electrolytes employing LiPOF4 should be significantly lower than those using LiPF6 or LiAsF6 and LiPOF4 should be further investigated as an alternative electrolyte additive.

  19. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    NASA Astrophysics Data System (ADS)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10‑4 S cm‑1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  20. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol.

    PubMed

    Chai, M N; Isa, M I N

    2016-01-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10(-4) S cm(-1) for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor. PMID:27265642

  1. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    PubMed Central

    Chai, M. N.; Isa, M. I. N.

    2016-01-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10−4 S cm−1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor. PMID:27265642

  2. Nonideal effects in electroacoustics of solutions of charged particles: combined experimental and theoretical analysis from simple electrolytes to small nanoparticles.

    PubMed

    Pusset, R; Gourdin-Bertin, S; Dubois, E; Chevalet, J; Mériguet, G; Bernard, O; Dahirel, V; Jardat, M; Jacob, D

    2015-05-01

    The electric signal induced by an ultrasonic wave in aqueous solutions of charged species is measured and analyzed. A device is developed which measures the raw induced electric signal for small sample volumes (few milliliters) and without any preceding calibration. The potential difference generated between two identical electrodes, called the ionic vibration potential (IVP), is thus easily deduced. In parallel, a theory for the IVP is built based on a robust analytical theory already used successfully to account for other transport coefficients in electrolyte solutions. From the analysis of the IVP measured for several aqueous electrolyte solutions, which are well-defined model systems for this technique, we explain and validate the different contributions to the signal. In particular, the non-ideal effects at high concentrations are thoroughly understood. A first step towards colloidal systems is presented by the analysis of the signal in solutions of a polyoxometallate salt, opening the possibility of determinations of reliable electrophoretic mobilities in dispersions of nanoobjects.

  3. Capillary zone electrophoresis in non-aqueous solutions: pH of the background electrolyte.

    PubMed

    Porras, Simo P; Kenndler, Ernst

    2004-05-28

    Although the establishment of a pH scale and the determination of the pH in water is not problematic, it is not a straightforward task in non-aqueous solvents. As capillary zone electrophoresis (CZE) in organic solvents has gained increasing interest, it seems to be valuable to re-discuss the concept of the pH in such media, especially pointing to those aspects, which make pH measurement uncertain in non-aqueous solvents. In this review, the relevant aspects when dealing with primary standard (PS) and secondary standard (SS) as recommended by the International Union of Pure and Applied Chemistry (IUPAC), and the usage of the operational pH are discussed with special emphasis to non-aqueous solvents. Here, different liquid junction potentials, incomplete dissociation of the electrolytes (especially in solvents with low or moderate relative permittivity) and the occurrence of homo- and heteroconjugation must be taken into account. Problems arising in capillary zone electrophoresis practice are addressed, e.g. when the background electrolyte (BGE) consists of organic solvents, but the measuring electrode (normally the glass electrode) is calibrated with aqueous buffers, and the liquid junction potentials between the solvents do not cancel each other. The alternative concept of establishing a certain pH is described, using mixtures of reference acids or bases with known pKa in the organic solvent, and their respective salts, at a certain concentration ratio, relying to the Henderson-Hasselbalch equation. Special discussion is directed to those organic solvents most common in capillary zone electrophoresis, methanol (MeOH) and acetonitrile (ACN), but other solvents are included as well. The potential significance of small amounts of water present in the organic solvent on changes in pKa values, and thus on the pH of the buffering components is pointed out. PMID:15214682

  4. Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.

    PubMed

    Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho

    2015-05-19

    Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems. PMID:25893445

  5. Equilibrium, Kinetics, and Spectroscopic Studies of SF6 Hydrate in NaCl Electrolyte Solution.

    PubMed

    Seo, Youngrok; Moon, Donghyun; Lee, Changho; Park, Jeong-Woo; Kim, Byeong-Soo; Lee, Gang-Woo; Dotel, Pratik; Lee, Jong-Won; Cha, Minjun; Yoon, Ji-Ho

    2015-05-19

    Many studies have focused on desalination via hydrate formation; however, for their potential application, knowledge pertaining to thermodynamic stability, formation kinetics, and guest occupation behavior in clathrate hydrates needs to be determined. Herein, the phase equilibria of SF6 hydrates in the presence of NaCl solutions (0, 2, 4, and 10 wt %) were monitored in the temperature range of 277-286 K and under pressures of up to 1.4 MPa. The formation kinetics of SF6 hydrates in the presence of NaCl solutions (0, 2, and 4 wt %) was also investigated. Gas consumption curves of SF6 hydrates showed that a pure SF6 hydrate system allowed fast hydrate growth as well as high conversion yield, whereas SF6 hydrate in the presence of NaCl solutions showed retarded hydrate growth rate as well as low conversion yield. In addition, structural identification of SF6 hydrates with and without NaCl solutions was performed using spectroscopic tools such as Raman spectroscopy and X-ray diffraction. The Raman spectrometer was also used to evaluate the temperature-dependent release behavior of guest molecules in SF6 and SF6 + 4 wt % NaCl hydrates. The results indicate that whereas SF6 hydrate starts to decompose at around 240 K, the escape of SF6 molecules in SF6 + 4 wt % NaCl hydrate is initiated rapidly at around 205 K. The results of this study can provide a better understanding of guest-host interaction in electrolyte-containing systems.

  6. Solvation Behavior of Short-chain Polystyrene Sulfonate in Aqueous Electrolyte Solutions: A Molecular Dyamics Study

    SciTech Connect

    Chialvo, Ariel A; Simonson, J Michael {Mike}

    2005-01-01

    We analyze the solvation behavior of short-chain polystyrene sulfonate (PSS) in aqueous electrolyte solutions by isothernal-isochoric molecular dynamics simulation to determine the solvation effects on the structure and conformation of the polyelectrolyte as a function of the aqueous environment. To that end, we study these aqueous systems including the explicit atomistic description of water, the PSS chain, and their interactions with all species in solution. In addition, we investigate the effect of the degree of sulfonation and its distribution along the PSS chain on the resulting conformation as well as solvation structure. Moreover, we assess the impact of added salts on the net charge of the PSS backbone, placing emphasis on the valence of the counterion and the extent of the ion-pair formation between the sulfonate group and the counterions. Finally, we present evidence for the so-called like-charge attraction between sulfonate groups through the formation of counterion-mediated interchain sulfonate-sulfonate and water-mediated intrachain sulfonate-sulfonate bridges, as well as between unlike counterion-counterion interactions.

  7. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation.

    PubMed

    Moucka, Filip; Bratko, Dusan; Luzar, Alenka

    2015-03-28

    Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores. PMID:25833601

  8. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation

    SciTech Connect

    Moucka, Filip; Bratko, Dusan Luzar, Alenka

    2015-03-28

    Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores.

  9. Measurement of interaction forces between lignin and cellulose as a function of aqueous electrolyte solution conditions.

    PubMed

    Notley, Shannon M; Norgren, Magnus

    2006-12-19

    The interaction between a lignin film and a cellulose sphere has been measured using the colloidal probe force technique as a function of aqueous electrolyte solution conditions. The lignin film was first studied for its roughness and stability using atomic force microscopy imaging and quartz crystal microbalance measurements, respectively. The film was found to be smooth and stable in the pH range of 3.5-9 and in ionic strengths up to and including 0.01 M. This range of ionic strength and pH was hence used to measure the surface force profiles between lignin and cellulose. Under these solution conditions, the measured forces behaved according to DLVO theory. The force-distance curves could be fitted between the limits of constant charge and constant potential, and the surface potential of the lignin films was determined as a function of pH. At a pH greater than 9.5, a short range steric repulsion was observed, indicating that the film was swelling to a large extent but did not dissolve. Thus, lignin films prepared in this manner are suitable for a range of surface force studies.

  10. Reaction behavior of Ni-Re alloys during direct current polarization in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Bryukvin, V. A.; Elemesov, T. B.; Levchuk, O. M.; Bol'shikh, A. O.

    2016-01-01

    The macrokinetic regularities of the reactivity of synthesized Ni-Re (20 and 60 wt %) alloys in a sulfuric acid solution (100 g/L, 25-40°C) during direct current polarization are studied using physicochemical methods. The phase composition of the synthesized alloys is determined by the formation of solid solutions as a function of the initial Ni/Re weight ratio. These are two types of nickel solid solutions (Ni16Re0.2 and Ni14Re0.9) and one rhenium solution (Ni1.1Re). These solid solutions are anodically oxidized in the sequence of their structural rearrangement Ni16Re0.2 → Ni14Re0.9 → Ni1.1Re with a combined transition of the metals into an electrolyte solution. These solid solutions provide the reduction of Ni3+ to Ni2+ due to the depolarization ability of rhenium, being their component.

  11. Studies on electrolyte formulations to improve life of lead acid batteries working under partial state of charge conditions

    NASA Astrophysics Data System (ADS)

    Hernández, J. C.; Soria, M. L.; González, M.; García-Quismondo, E.; Muñoz, A.; Trinidad, F.

    For decades, valve regulated lead acid batteries with gel electrolyte have proved their excellent performance in deep cycling applications. However, their higher cost, when compared with flooded batteries, has limited their use in cost sensitive applications, such as automotive or PV installations. The use of flooded batteries in deep or partial state of charge working conditions leads to limited life due to premature capacity loss provoked by electrolyte stratification. Different electrolyte formulations have been tested, in order to achieve the best compromise between cost and life performance. Work carried out included electrochemical studies in order to determine the electrolyte stability and diffusional properties, and kinetic studies to check the processability of the electrolyte formulation. Finally, several 12 V batteries have been assembled and tested according to different ageing profiles.

  12. Epoxyeicosatrienoic Acids Affect Electrolyte Transport in Renal Tubular Epithelial Cells: Dependence on Cyclooxygenase and Cell Polarity

    PubMed Central

    Nüsing, Rolf M.; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C.; Wegmann, Markus

    2007-01-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, MDCK C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short circuit current (Isc) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Further, both a Cl−-free bath solution and the Ca2+ antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE2 receptors EP2, EP3, and EP4 was demonstrated, apically added PGE2 was ineffective and basolaterally added PGE2 caused a different kinetics in ion transport compared to 5,6-EET. Moreover, PGE2 sythesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE1 in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE1. 5,6-epoxy-PGE1 the precursor of 5,6-dihydroxy-PGE1, caused a similar ion transport as 5,6-EET. Cytochrome P450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl-transport in renal distal tubular cells independent of PGE2 but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE1 by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  13. Speciation in aqueous solutions of nitric acid.

    PubMed

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  14. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  15. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility

    NASA Astrophysics Data System (ADS)

    Miao, Rongrong; Yang, Jun; Feng, Xuejiao; Jia, Hao; Wang, Jiulin; Nuli, Yanna

    2014-12-01

    Metallic lithium is the most promising negative electrode for high energy rechargeable batteries due to its extremely high specific capacity and the lowest redox potential. However, the low cycle efficiency and lithium dendrite formation during charge/discharge processes consistently hinder its practical application. Here a new dual-salts electrolyte composed of Li[N(SO2F)2] and Li[N(SO2CF3)2] has been explored to simultaneously cope with these two problems. Under the unique protection of solid electrolyte interphase (SEI) film formed in this electrolyte solution and the improvement in Li crystal growth pattern, high cycle efficiency of ca. 99% and dendrite-free Li deposit have been achieved. Moreover, the excellent cycling performance and favorable lithium morphology can be retained even at high current density of 10 mA cm-2. This study will greatly promote the development of Li-metal rechargeable batteries with high power and high energy density.

  16. Wet oxidation of salicylic acid solutions.

    PubMed

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  17. Surface charge microscopy: novel technique for mapping charge-mosaic surfaces in electrolyte solutions.

    PubMed

    Yin, Xihui; Drelich, Jaroslaw

    2008-08-01

    The effective surface potential, called the zeta potential, is commonly determined from electrophoretic mobility measurements for particles moving in a solution in response to an electric field applied between two electrodes. The situation can be reversed, with the solution being forced to flow through a plug of packed particles, and the streaming potential of the particles can be calculated. A significant limitation of these electrokinetic measurements is that only an average value of the zeta potential/streaming potential is measured--regardless of whether the surface charge distribution is homogeneous or otherwise. However, in real-world situations, nearly all solids (and liquids) of technological significance exhibit surface heterogeneities. To detect heterogeneities in surface charge, analytical tools which provide accurate and spatially resolved information about the material surface potential--particularly at microscopic and submicroscopic resolutions--are needed. In this study, atomic force microscopy (AFM) was used to measure the surface interaction forces between a silicon nitride AFM cantilever and a multiphase volcanic rock. The experiments were conducted in electrolyte solutions with different ionic strengths and pH values. The colloidal force measurements were carried out stepwise across the boundary between adjacent phases. At each location, the force-distance curves were recorded. Surface charge densities were then calculated by fitting the experimental data with a DLVO theoretical model. Significant differences between the surface charge densities of the two phases and gradual transitions in the surface charge density at the interface were observed. It is demonstrated that this novel technique can be applied to examine one- and two-dimensional distributions of the surface potential. PMID:18620435

  18. Surface charge microscopy: novel technique for mapping charge-mosaic surfaces in electrolyte solutions.

    PubMed

    Yin, Xihui; Drelich, Jaroslaw

    2008-08-01

    The effective surface potential, called the zeta potential, is commonly determined from electrophoretic mobility measurements for particles moving in a solution in response to an electric field applied between two electrodes. The situation can be reversed, with the solution being forced to flow through a plug of packed particles, and the streaming potential of the particles can be calculated. A significant limitation of these electrokinetic measurements is that only an average value of the zeta potential/streaming potential is measured--regardless of whether the surface charge distribution is homogeneous or otherwise. However, in real-world situations, nearly all solids (and liquids) of technological significance exhibit surface heterogeneities. To detect heterogeneities in surface charge, analytical tools which provide accurate and spatially resolved information about the material surface potential--particularly at microscopic and submicroscopic resolutions--are needed. In this study, atomic force microscopy (AFM) was used to measure the surface interaction forces between a silicon nitride AFM cantilever and a multiphase volcanic rock. The experiments were conducted in electrolyte solutions with different ionic strengths and pH values. The colloidal force measurements were carried out stepwise across the boundary between adjacent phases. At each location, the force-distance curves were recorded. Surface charge densities were then calculated by fitting the experimental data with a DLVO theoretical model. Significant differences between the surface charge densities of the two phases and gradual transitions in the surface charge density at the interface were observed. It is demonstrated that this novel technique can be applied to examine one- and two-dimensional distributions of the surface potential.

  19. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  20. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data. PMID:27222917

  1. Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Łatoszyńska, Anna A.; Żukowska, Grażyna Zofia; Rutkowska, Iwona A.; Taberna, Pierre-Louis; Simon, Patrice; Kulesza, Pawel J.; Wieczorek, Władysław

    2015-01-01

    A mechanically-stable non-aqueous proton-conducting gel polymer electrolyte that is based on methacrylate monomers, is considered here for application in solid-state type supercapacitors. An electrochemical cell using activated carbon as active materials and the new gel polymer electrolyte has been characterized at room temperature using cyclic voltammetry, galvanostatic charge-discharge cycle tests as well as impedance spectroscopy. The use of phosphoric acid ester (instead of phosphoric acid) as a proton donor has led to an increase of both the operation voltage window (up to 1.3 V) and the electrolyte ionic conductivity (on the level of an order of magnitude). The resulting double layer capacitance of the microporous activated carbon was found to be as high as 120 F g-1; even more important, the supercapacitor utilizing non-aqueous proton-conducting gel polymer electrolyte is well-behaved in the wide temperature range (namely, from -40 to 80 °C).

  2. A hybrid Li-air battery with buckypaper air cathode and sulfuric acid electrolyte

    SciTech Connect

    Li, YF; Huang, K; Xing, YC

    2012-10-30

    We demonstrate a type of carbon nanotube based buckypaper cathode in a hybrid electrolyte Li-air battery (HyLAB) that showed outstanding discharging performances. The HyLAB has sulfuric acid as the catholyte and a large active electrode area (10 cm(2)). The active cathode layer was made from a buckypaper with 5 wt.% Pt supported on carbon nanotubes (Pt/CNTs) for oxygen reduction and evolution. A similar cathode was constructed with a catalyst of 5 wt.% Pt supported on carbon black (Pt/CB). It is demonstrated that sulfuric acid can achieve high discharging current densities while maintaining relatively high cell potentials. The cell with Pt/CNTs showed a much better performance than with Pt/CB at high current densities. The HyLAB with Pt/CNTs achieved a discharging capacity of 306 mAh/g and a cell voltage of 3.15 V at 0.2 mA/cm(2). The corresponding specific energy is 1067 Wh/kg based on the total weight of the sulfuric acid. Slow decrease in performance was observed, but it can be recovered by refilling the cell with new electrolyte after continuous discharging of more than 75 h. A charge-discharge experiment at 0.2 mA/cm(2) showed that the cell was rechargeable with a capacity of more than 300 mAh/g. (c) 2012 Elsevier Ltd. All rights reserved.

  3. Investigation of electrolyte wetting in lithium ion batteries: Effects of electrode pore structures and solution

    NASA Astrophysics Data System (ADS)

    Sheng, Yangping

    Beside natural source energy carriers such as petroleum, coal and natural gas, the lithium ion battery is a promising man-made energy carrier for the future. This is a similar process evolved from horse-powered era to engine driven age. There are still a lot of challenges ahead like low energy density, low rate performance, aging problems, high cost and safety etc. In lithium ion batteries, investigation about manufacturing process is as important as the development of material. The manufacturing of lithium ion battery, including production process (slurry making, coating, drying etc.), and post-production (slitting, calendering etc.) is also complicated and critical to the overall performance of the battery. It includes matching the capacity of anode and cathode materials, trial-and-error investigation of thickness, porosity, active material and additive loading, detailed microscopic models to understand, optimize, and design these systems by changing one or a few parameters at a time. In the manufacturing, one of the most important principles is to ensure good wetting properties between porous solid electrodes and liquid electrolyte. Besides the material surface properties, it is the process of electrolyte transporting to fill the pores in the electrode after injection is less noticed in academic, where only 2-3 drops of electrolyte are needed for lab coin cell level. In industry, the importance of electrolyte transport is well known and it is considered as part of electrolyte wetting (or initial wetting in some situations). In consideration of practical usage term, electrolyte wetting is adopted to use in this dissertation for electrolyte transporting process, although the surface chemistry about wetting is not covered. An in-depth investigation about electrolyte wetting is still missing, although it has significant effects in manufacturing. The electrolyte wetting is determined by properties of electrolyte and electrode microstructure. Currently, only viscosity

  4. Pictorial Analogies XI: Concentrations and Acidity of Solutions.

    ERIC Educational Resources Information Center

    Fortman, John J.

    1994-01-01

    Presents pictorial analogies of several concepts relating to solutions for chemistry students. These include concentration of solution, strength of solution, supersaturated solution, and conjugate acid-base pairs. Among the examples are comparison of acid strength to percentage of strong soldiers or making supersaturated solution analogous to a…

  5. Structural and transport properties of Nafion in hydrobromic-acid solutions

    SciTech Connect

    Kusoglu, A; Cho, KT; Prato, RA; Weber, AZ

    2013-12-01

    Proton-exchange membranes are key solid-state ion carriers in many relevant energy technologies including flow batteries, fuel cells, and solar-fuel generators. In many of these systems, the membranes are in contact with electrolyte solutions. In this paper, we focus on the impact of different HBr, a flow-battery and exemplary acid electrolyte, external concentrations on the conductivity of Nafion, a perfluorosulfonic acid membrane that is commonly used in many energy-related applications. The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane. In addition, small-angle x-ray scattering is used to probe the nanostructure to correlate how the interactions of the bromide ion with the fixed sulfonic-acid sites impact conductivity and hydrophilic domain distance. It is also shown that membrane pretreatment has a large impact on the underlying structure/function relationship. The obtained data and results are useful for delineation of optimal operating regimes for flow batteries and similar technologies as well as in understanding underlying structure/function relationships of ionomers in electrolyte solutions. (C) 2013 Elsevier B.V. All rights reserved.

  6. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  7. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited.

    PubMed

    Salis, Andrea; Ninham, Barry W

    2014-11-01

    Specific effects of electrolytes have posed a challenge since the 1880's. The pioneering work was that of Franz Hofmeister who studied specific salt induced protein precipitation. These effects are the rule rather the exception and are ubiquitous in chemistry and biology. Conventional electrostatic theories (Debye-Hückel, DLVO, etc.) cannot explain such effects. Over the past decades it has been recognised that additional quantum mechanical dispersion forces with associated hydration effects acting on ions are missing from theory. In parallel Collins has proposed a phenomenological set of rules (the law of matching water affinities, LMWA) which explain and bring to order the order of ion-ion and ion-surface site interactions at a qualitative level. The two approaches appear to conflict. Although the need for inclusion of quantum dispersion forces in one form or another is not questioned, the modelling has often been misleading and inappropriate. It does not properly describe the chemical nature (kosmotropic/chaotropic or hard/soft) of the interacting species. The success of the LMWA rules lies in the fact that they do. Here we point to the way that the two apparently opposing approaches might be reconciled. Notwithstanding, there are more challenges, which deal with the effect of dissolved gas and its connection to 'hydrophobic' interactions, the problem of water at different temperatures and 'water structure' in the presence of solutes. They take us to another dimension that requires the rebuilding of theoretical foundations.

  8. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface.

    PubMed

    Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo

    2016-01-01

    Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01-1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica. PMID:27416784

  9. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface

    PubMed Central

    Martin-Jimenez, Daniel; Chacon, Enrique; Tarazona, Pedro; Garcia, Ricardo

    2016-01-01

    Interfacial liquid layers play a central role in a variety of phenomena ranging from friction to molecular recognition. Liquids near a solid surface form an interfacial layer where the molecular structure is different from that of the bulk. Here we report atomic resolution three-dimensional images of electrolyte solutions near a mica surface that demonstrate the existence of three types of interfacial structures. At low concentrations (0.01–1 M), cations are adsorbed onto the mica. The cation layer is topped by a few hydration layers. At higher concentrations, the interfacial layer extends several nanometres into the liquid. It involves the alternation of cation and anion planes. Fluid Density Functional calculations show that water molecules are a critical factor for stabilizing the structure of the interfacial layer. The interfacial layer stabilizes a crystal-like structure compatible with liquid-like ion and solvent mobilities. At saturation, some ions precipitate and small crystals are formed on the mica. PMID:27416784

  10. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.

    PubMed

    Docherty, H; Galindo, A; Sanz, E; Vega, C

    2007-08-01

    We calculate the excess chemical potential of methane in aqueous electrolyte solutions of NaCl using Monte Carlo computer simulations. In a recent work [Docherty et al. J. Chem. Phys. 2006, 125, 074510], we presented a new potential model for methane in water which is capable of describing accurately the excess chemical potential of methane in pure water over a range of temperatures, a quantity that can be related to the solubility and which is commonly used to study the hydrophobic effect. Here, we use the same potential model for the water-methane interactions and investigate the effect of added salt on the chemical potential of methane in the solution. The methane molecules are modeled as single Lennard-Jones (LJ) interaction sites, and the water molecules are modeled with the TIP4P/2005 model. A correcting factor of chi = 1.07 for the energetic Berthelot (geometric) combining rule of the methane-water interaction is also used, which mimics the polarization of methane in water. We consider NaCl as the salt and treat the ions with the Smith and Dang model (i.e., as charged LJ interaction sites). Ion-water, ion-ion, and ion-methane interactions are treated using Lorentz-Berthelot combining rules. In addition, the Coulombic potential is used to model charge-charge interactions which are calculated using the Ewald sum. We have carried out isobaric-isothermal (NpT) simulations to determine the equilibrium densities of the solutions. The simulation data is in excellent agreement with experimental densities of aqueous NaCl solutions of different concentration. Hydration numbers are also obtained and found to be in agreement with reported data. Canonical (NVT) simulations at the averaged densities are then performed using the Widom test-particle insertion method to obtain the excess chemical potential of methane in the saline solutions. An increase in the chemical potential of methane, corresponding to a salting out effect, is observed when salt is added to the solution

  11. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.

    PubMed

    Docherty, H; Galindo, A; Sanz, E; Vega, C

    2007-08-01

    We calculate the excess chemical potential of methane in aqueous electrolyte solutions of NaCl using Monte Carlo computer simulations. In a recent work [Docherty et al. J. Chem. Phys. 2006, 125, 074510], we presented a new potential model for methane in water which is capable of describing accurately the excess chemical potential of methane in pure water over a range of temperatures, a quantity that can be related to the solubility and which is commonly used to study the hydrophobic effect. Here, we use the same potential model for the water-methane interactions and investigate the effect of added salt on the chemical potential of methane in the solution. The methane molecules are modeled as single Lennard-Jones (LJ) interaction sites, and the water molecules are modeled with the TIP4P/2005 model. A correcting factor of chi = 1.07 for the energetic Berthelot (geometric) combining rule of the methane-water interaction is also used, which mimics the polarization of methane in water. We consider NaCl as the salt and treat the ions with the Smith and Dang model (i.e., as charged LJ interaction sites). Ion-water, ion-ion, and ion-methane interactions are treated using Lorentz-Berthelot combining rules. In addition, the Coulombic potential is used to model charge-charge interactions which are calculated using the Ewald sum. We have carried out isobaric-isothermal (NpT) simulations to determine the equilibrium densities of the solutions. The simulation data is in excellent agreement with experimental densities of aqueous NaCl solutions of different concentration. Hydration numbers are also obtained and found to be in agreement with reported data. Canonical (NVT) simulations at the averaged densities are then performed using the Widom test-particle insertion method to obtain the excess chemical potential of methane in the saline solutions. An increase in the chemical potential of methane, corresponding to a salting out effect, is observed when salt is added to the solution

  12. Electrolyte-free milk protein solution influences sodium and fluid retention in rats.

    PubMed

    Ishihara, Kengo; Kato, Yoshiho; Usami, Ayako; Yamada, Mari; Yamamura, Asuka; Fushiki, Tohru; Seyama, Yousuke

    2013-01-01

    Milk is an effective post-exercise rehydration drink that maintains the net positive fluid balance. However, it is unclear which components are responsible for this effect. We assessed the effect of milk protein solution (MPS) obtained by dialysis on body fluid retention. Milk, MPS, milk electrolyte solution (MES), sports drink and water were administered to male Wistar rats at a dose of 6 ml/rat after treadmill exercise. Total body fluid retention was assessed by urine volume 4 h after administration of hydrating liquids. The rate of gastric emptying was evaluated by a tracer method using (13)C-labelled acetate. Plasma osmolality, Na and K levels, and urinary Na and K were measured by HPLC and osmometry, respectively. The gastric emptying rate was not delayed by MPS. During 4 h of rehydration, cumulative urine volumes differed significantly between treatment groups (P < 0·05) with 4·9, 2·2 and 3·4 ml from water-, milk- and MPS-fed rats, respectively. Thus, MPS elicited 50 % of the total body fluid retention of milk. Plasma aldosterone levels were significantly higher in MPS- and milk-fed rats compared with water-fed rats. Plasma osmolality was maintained at higher levels in MPS-fed rats than in water- and MES-fed rats (P < 0·05). Cumulative urine Na excretion was also suppressed in the milk- and MPS-fed groups compared with the MES-fed group. Our results demonstrate that MPS obtained by dialysis clearly affects net body water balance without affecting gastric emptying after exercise. This effect was attributed to retention of Na and water, and maintenance of plasma osmolality.

  13. Lysozyme Net Charge and Ion Binding in Concentrated Aqueous Electrolyte Solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride, over the range of pH 2.5 - 11.5 and for ionic strengths to 2. 0 M. The dependence of lysozyme's net proton charge, zP' on pH and ionic-strength in potassium-chloride solution is measured. From the ionic-strength dependence of zP' interactions of lysozynie with potassium and chloride ions are calculated using the molecular-thennodynamic theory of Fraaije and Lyklema 1. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electricdouble-layer theory. New experimental pKa data are reported for eleven ammo acids in potassium-chloride solutions of ionic strength to 3.0 M.

  14. Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride over the range pH 2.5--11.5 and for ionic strengths to 2.0 M. The dependence of lysozyme`s net proton charge, z{sub p}, on pH and ionic strength in potassium chloride solution is measured. From the ionic-strength dependence of z{sub p}, interactions of lysozyme with potassium and chloride ions are calculated using the molecular-thermodynamic theory of Fraaije and Lyklema. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electric-double-layer theory. New experimental pK{sub a} data are reported for 11 amino acids in potassium chloride solutions of ionic strength to 3.0 M.

  15. Passive and transpassive anodic behavior of chalcopyrite in acid solutions

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Wadsworth, M. E.; El-Raghy, S. M.

    1992-01-01

    The electrochemical oxidation of CuFeS2 in various acid solutions was studied using electrodes made from massive samples. The primary techniques employed were potentiodynamic polarization and constant potential experiments supplemented by capacitance measurements. It was the purpose of this study to investigate the behavior of: (1) several sources of CuFeS2 in H2SO4 electrolytes, and (2) a single source of CuFeS2 in various dilute acids. Electrochemical characterization of CuFeS2 from various locations was performed in 1 M H2SO4 which showed significant differences in their behavior. All samples exhibited passive-like response during anodic polarization. The current density in this passive region was reproducible and showed differences of up to two orders of magnitude between samples from different sources which has been attributed mainly to the presence of impurities in some of the samples. During anodic polarization CuFeS2 was found to be sensitive to pH at higher potential, but insensitive at low potential in sulfate solution. In addition, current decay measurements at constant potential in the low potential-passive region were found to follow the Sato-Cohen (logarithmic) model for solid film formation. Based on current and mass balance measurements, two intermediate sulfide phases appeared to form in the sequence CuFeS2 → S, → S2. At higher potentials, in the transpassive region, the observed increase in current is compatible with the decomposition of water to form chemisorbed oxygen which releases copper and forms sulfate ions.

  16. Passive and transpassive anodic behavior of chalcopyrite in acid solutions

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Wadsworth, M. E.; El-Raghy, S. M.

    1982-12-01

    The electrochemical oxidation of CuFeS2 in various acid solutions was studied using electrodes made from massive samples. The primary techniques employed were potentiodynamic polarization and constant potential experiments supplemented by capacitance measurements. It was the purpose of this study to investigate the behavior of: (1) several sources of CuFeS2 in H2SO4 electrolytes, and (2) a single source of CuFeS2 in various dilute acids. Electrochemical characterization of CuFeS2 from various locations was performed in 1 M H2SO4 which showed significant differences in their behavior. All samples exhibited passive-like response during anodic polarization. The current density in this passive region was reproducible and showed differences of up to two orders of magnitude between samples from different sources which has been attributed mainly to the presence of impurities in some of the samples. During anodic polarization CuFeS2 was found to be sensitive to pH at higher potential, but insensitive at low potential in sulfate solution. In addition, current decay measurements at constant potential in the low potential-passive region were found to follow the Sato-Cohen (logarithmic) model for solid film formation. Based on current and mass balance measurements, two intermediate sulfide phases appeared to form in the sequence CuFeS2→S1→S2. At higher potentials, in the transpassive region, the observed increase in current is compatible with the decomposition of water to form chemisorbed oxygen which releases copper and forms sulfate ions.

  17. Reactive solute transport in acidic streams

    USGS Publications Warehouse

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  18. American Society of Nephrology Quiz and Questionnaire 2014: Acid-Base and Electrolyte Disorders

    PubMed Central

    2015-01-01

    The Nephrology Quiz and Questionnaire remains an extremely popular session for attendees of the Annual Kidney Week Meeting of the American Society of Nephrology. Once again, in 2014 the conference hall was overflowing with audience members and eager quiz participants. Topics covered by the expert discussants included electrolyte and acid-base disorders, glomerular disease, ESRD/dialysis, and transplantation. Complex cases from each of these categories along with single-best-answer questions were prepared and submitted by the panel of experts. Before the meeting, program directors of United States nephrology training programs and nephrology fellows answered the questions using an Internet-based questionnaire. During the live session, members of the audience tested their knowledge and judgment on a series of case-oriented questions prepared and discussed by the experts. They compared their answers in real time using audience response devices with the answers of the nephrology fellows and training program directors. The correct and incorrect answers were then discussed after the audience responses and the results of the questionnaire were displayed. As always, the audience, lecturers, and moderators enjoyed this educational session. This article recapitulates the acid-base and electrolyte disorders portion of the session and reproduces its educational value for the readers of the Clinical Journal of the American Society of Nephrology. Enjoy the clinical cases and expert discussions. PMID:25617429

  19. Base-acid hybrid water electrolysis.

    PubMed

    Chen, Long; Dong, Xiaoli; Wang, Fei; Wang, Yonggang; Xia, Yongyao

    2016-02-21

    A base-acid hybrid electrolytic system with a low onset voltage of 0.78 V for water electrolysis was developed by using a ceramic Li-ion exchange membrane to separate the oxygen-evolving reaction (OER) in a basic electrolyte solution containing the Li-ion and hydrogen-evolving reaction (HER) in an acidic electrolyte solution. PMID:26804323

  20. Separation of ions in acidic solution by capillary electrophoresis

    SciTech Connect

    Thornton, M.

    1997-10-08

    Capillary electrophoresis (CE) is an effective method for separating ionic species according to differences in their electrophoretic mobilities. CE separations of amino acids by direct detection are difficult due to their similar electrophoretic mobilities and low absorbances. However, native amino acids can be separated by CE as cations at a low pH by adding an alkanesulfonic acid to the electrolyte carrier which imparts selectivity to the system. Derivatization is unnecessary when direct UV detection is used at 185 nm. Simultaneous speciation of metal cations such as vanadium (IV) and vanadium (V) can easily be performed without complexation prior to analysis. An indirect UV detection scheme for acidic conditions was also developed using guanidine as the background carrier electrolyte (BCE) for the indirect detection of metal cations. Three chapters have been removed for separate processing. This report contains introductory material, references, and general conclusions. 80 refs.

  1. Irreversible morphological changes of a graphite negative-electrode at high potentials in LiPF6-based electrolyte solution.

    PubMed

    Domi, Yasuhiro; Doi, Takayuki; Tsubouchi, Shigetaka; Yamanaka, Toshiro; Abe, Takeshi; Ogumi, Zempachi

    2016-08-10

    The degradation mechanism of a graphite negative-electrode in LiPF6-based electrolyte solution was investigated using the basal plane of highly oriented pyrolytic graphite (HOPG) as a model electrode. Changes in the surface morphology were observed by in situ atomic force microscopy. In the initial cathodic scan, a number of pits appeared at around 1.75 V vs. Li(+)/Li, and fine particles formed on the terrace of the HOPG basal plane at about 1.5 V vs. Li(+)/Li. The fine particles were characterized by spectroscopic analysis, such as X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy. We added one of the components to LiClO4-based electrolyte solution, and successfully reproduced the formation of pits and fine particles on the basal plane of HOPG. Based on these results, the formation mechanisms of pits and fine particle layers were proposed.

  2. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1994-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  3. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1993-01-01

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid.

  4. Process for the extraction of strontium from acidic solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1994-09-06

    The invention is a process for selectively extracting strontium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant solution is a macrocyclic polyether in an aliphatic hydrocarbon diluent containing a phase modifier. The process will selectively extract strontium values from nitric acid solutions which are up to 6 molar in nitric acid. 4 figs.

  5. Vapor pressure measurements on non-aqueous electrolyte solutions. Part 2. Tetraalkylammonium salts in methanol. Activity coefficients of various 1-1 electrolytes at high concentrations

    SciTech Connect

    Barthel, J.; Lauermann, G.; Neueder, R.

    1986-10-01

    Precise vapor pressure data for solutions of Et/sub 4/NBr, Bu/sub 4/NBr, Bu/sub 4/Nl, Bu/sub 4/NClO/sub 4/, and Am/sub 4/NBr in methanol at 25/sup 0/C in the concentration range 0.04 < m(mol-(kg of solvent)/sup -1/) < 1.6 are communicated and discussed. Polynomials in molalities are given which may be used for calculating precise vapor pressure depressions of these solutions. Osmotic coefficients are calculated by taking into account the second virial coefficient of methanol vapor. Discussion of the data at low concentrations is based on the chemical model of electrolyte solutions taking into account non-coulombic interactions; ion-pair association constants are compared to those of conductance measurements. Pitzer equations are used to reproduce osmotic and activity coefficient at high concentrations; the set of Pitzer parameters b = 3.2, ..cap alpha../sub 1/ = 2.0 and ..cap alpha../sub 2/ = 20.0 is proposed for methanol solutions.

  6. [Adverse effects of drugs in intensive care units: analysis of the administration of electrolyte solutions and antibiotics].

    PubMed

    Manenti, S; Chaves, A B; Leopoldino, R S; Padilha, K G

    1998-12-01

    The aims of this study were: 1) to verify the incidence of adverse occurrences (AOs) with medication related to the time of electrolyte solutions infusion and the frequency of doses of antibiotics prescribed and administered to the patients; 2) to characterize the nature of those occurrences. The study was developed in two ICUs of a general hospital of São Paulo City. The population was composed by 51 patients that were in the ICUs in August of 1996. Sixty percent of the patients were older than 60 years, 58.8% were women, 49.1% remained in ICU from 1 to 4 days and 41.2% went to the Intermediate Care Units after ICU. Regarding the incidence of AOs related to the time of administration of the electrolyte solutions and the frequency of doses of antibiotics the non execution of the patient's medical prescriptions was verified in 76.3% and 38.8% respectively. The largest frequency of irregularities with the electrolyte solutions (60.2%) was the infusion faster than the prescribed time followed by the reduction of the number of doses of antibiotics administered. Taking these into consideration we have to invest in preventive measures to reduce those occurrences. PMID:10614484

  7. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  8. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  9. Separation of alpha-hydroxy acid enantiomers by high performance capillary electrophoresis using copper(II)-L-amino acid and copper(II)-aspartame complexes as chiral selectors in the background electrolyte.

    PubMed

    Desiderio, C; Aturki, Z; Fanali, S

    1994-06-01

    Optical isomers of some alpha-hydroxy acids, namely 2-, 3-phenyllactic acid, mandelic, p-hydroxy-, m-hydroxy and 3,4-di-hydroxymandelic acid, were separated by means of capillary zone electrophoresis in free solution, using copper (II) complexes with L-amino acid or aspartame ligands in the background electrolyte. The concentration and the pH dependence of the enantiomer separations have been studied in the cases of different chiral ligands and/or analytes. With the use of L-proline as ligand only the optical isomers of 3-phenyllactic acid were resolvable, whereas using L-hydroxyproline the D and L forms of all compounds, except for 2-phenyllactic acid, were separated. Better results were obtained with aspartame as chiral ligand. PMID:7982412

  10. Separation of alpha-hydroxy acid enantiomers by high performance capillary electrophoresis using copper(II)-L-amino acid and copper(II)-aspartame complexes as chiral selectors in the background electrolyte.

    PubMed

    Desiderio, C; Aturki, Z; Fanali, S

    1994-06-01

    Optical isomers of some alpha-hydroxy acids, namely 2-, 3-phenyllactic acid, mandelic, p-hydroxy-, m-hydroxy and 3,4-di-hydroxymandelic acid, were separated by means of capillary zone electrophoresis in free solution, using copper (II) complexes with L-amino acid or aspartame ligands in the background electrolyte. The concentration and the pH dependence of the enantiomer separations have been studied in the cases of different chiral ligands and/or analytes. With the use of L-proline as ligand only the optical isomers of 3-phenyllactic acid were resolvable, whereas using L-hydroxyproline the D and L forms of all compounds, except for 2-phenyllactic acid, were separated. Better results were obtained with aspartame as chiral ligand.

  11. The effect of solution electrolytes on the uptake of photosensitizers by liposomal membranes: a salting-out effect.

    PubMed

    Minnes, Refael; Ytzhak, Shany; Weitman, Hana; Ehrenberg, Benjamin

    2008-09-01

    In this study we investigated, spectroscopically, the effect of electrolytes on the partitioning of hematoporphyrin IX (HP) and hypericin (Hy) into non-charged lipid vesicles. Our aim was to assess the salting-out effect of electrolytes on membrane-partitioning. We titrated aqueous solutions of HP and Hy with lecithin liposomes, at different concentrations of several monovalent and divalent electrolytes in the suspension. The partitioning constant of HP to lecithin liposomes increased from 3.3 (mL/mg) in water containing only 5mM buffer to 8.7 (mL/mg) at 0.36M KCl. KF had a similar effect. NaCl caused a 3-fold increase in the partitioning of Hy to liposomes. MgSO(4) and MgCl(2) also increased the partitioning of HP, by a factor of more than 4 and this occurred already at 0.03M concentration. We analyze the comparative effects of the electrolytes in relation to the Hofmeister series. The salting-out effect could be utilized to enhance the uptake of HP and Hy, and possibly other photosensitizers as well, by artificial and natural membranes.

  12. Failure mechanism of layered lithium-rich oxide/graphite cell and its solution by using electrolyte additive

    NASA Astrophysics Data System (ADS)

    Zhu, Yunmin; Luo, Xueyi; Xu, Mengqing; Zhang, Liping; Yu, Le; Fan, Weizhen; Li, Weishan

    2016-06-01

    We report a failure mechanism of layered lithium-rich oxide/graphite cell and a solution to this failure. Charge/discharge tests demonstrate that Li1.2Mn0.54Ni0.13Co0.13O2/graphite full cell fails when it is performed with cycling and this issue can be solved effectively by using an electrolyte additive, tris (trimethylsilyl) phosphite (TMSPi). Further cycling tests on Li/Li1.2Mn0.54Ni0.13Co0.13O2 and Li/graphite half-cells and physical characterizations on the cycled cathode indicate that this failure involves the increased HF concentration and the subsequent corrosion for aluminum current collector of cathode due to the electrolyte decomposition during cycling. TMSPi contributes to the formation of a protective interphase on cathode due to its preferential oxidation compared with the base electrolyte, which suppresses the electrolyte decomposition and the HF formation, preventing aluminum current collector from corrosion.

  13. Effects of background electrolytes and ionic strength on enrichment of Cd(II) ions with magnetic graphene oxide-supported sulfanilic acid.

    PubMed

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; You, Shao-hong; Wang, Hui; Hu, Xi; Guo, Yi-ming; Tan, Xiao-fei; Guo, Fang-ying

    2014-12-01

    To elucidate the influence mechanisms of background electrolytes and ionic strength on Cd(II) removal, the adsorption of Cd(II) onto magnetic graphene oxide-supported sulfanilic acid (MGO-SA) in aqueous solutions containing different types and concentrations of background electrolytes was studied. The results indicate that Cd(II) adsorption was strongly dependent on pH and could be strongly affected by background electrolytes and ionic strength. The Cd(II) removal was decreased with the presence of background electrolyte cations (Na(+), K(+), Ca(2+), Mg(2+), Mn(2+), Zn(2+), and Ni(2+)), and the divalent cations exerted more obvious influences on the Cd(II) uptake than the monovalent cations at pH 6. Both Cl(-) and NO3(-) had negative effects on Cd(II) adsorption because they can form water-soluble metal-anion complexes with Cd(II) ions. The presence of 0.01molL(-1) Na3PO4 reduced the removal percentage of Cd(II) at pH<5 but extremely enhanced the Cd(II) removal when the pH>5. The Cd(II) adsorption was sensitive to changes in the concentration of NaCl, NaNO3, NaClO4, and Na3PO4. Besides, the adsorption isotherm of Cd(II) onto MGO-SA could be well described by the Freundlich model and was also influenced by the type of background electrolyte ions and the ionic strength.

  14. Non-aqueous electrolytes for lithium ion batteries

    SciTech Connect

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  15. In situ investigation of the interaction between graphite and electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Novák, Petr; Joho, Felix; Imhof, Roman; Panitz, Jan-Christoph; Haas, Otto

    The formation of a solid electrolyte interphase (SEI) before and during lithium intercalation was studied on graphite electrodes in ethylene carbonate based electrolytes. We demonstrated by using in situ mass spectrometry that during the first charge of the graphite electrode ethylene gas is evolved in a potential window that corresponds to the formation of a SEI. Moreover, development of hydrogen gas was detected even in dry electrolytes containing <10 ppm H 2O. No CO 2 is developed however, as confirmed by two in situ methods, mass spectrometry and infrared spectroscopy. We conclude that the formation of the SEI is a complex process which depends among other things on the amount of trace water present in the cell. In addition, in situ Raman mapping experiments revealed that lithium intercalation into graphite does not proceed homogeneously.

  16. Acid electrolyte fuel cell technology program. [for application to the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The development of an acid electrolyte fuel cell was investigated to provide a cost effective electrical power system for the space shuttle orbiter. Previous investigation showed the life capability of the fuel cell was improved by proper prehumidification of the reactant gases. Breadboard models were developed which incorporate reactant prehumidification and have a life duration time of 2000 hours. Fuel cell performance was found to be invariant with cell life, and reactant consumption was unchanged from start to end of life. Satisfactory start and stop procedures are demonstrated along with scale-up capabilities for the number of cells in a stack, and for cell active areas. Safety design features, which operate to isolate the affected module from the remainder of the system, to eliminate single point failure modes from affecting the entire electrical power system are included.

  17. Electrolyte depletion control laws for lead-acid battery discharge optimisation

    NASA Astrophysics Data System (ADS)

    Tenno, R.; Nefedov, E.

    2014-12-01

    The technique described in this paper balances the power and energy withdrawn from a battery in galvanostatic discharge control that aims for stabilisation of the electrolyte concentration above the depletion level. This aim is achieved with relatively simple proportional feedback controls that are exponentially stabilising controls for a simple diffusion process that is the core part of battery processes. Although the full mapping of the proposed controls to state is rather complex, it has shown that the transformation works. In practice, these controls can be approximated either with the integrated past controls or with a simple exponential function that depends on a few parameters adjusted to the electrochemical processes in a battery under consideration. The battery control is tested in simulation on a detailed model developed for a lead-acid electrochemical cell.

  18. Characterization of oxide coatings formed on tantalum by plasma electrolytic oxidation in 12-tungstosilicic acid

    NASA Astrophysics Data System (ADS)

    Petković, M.; Stojadinović, S.; Vasilić, R.; Zeković, Lj.

    2011-10-01

    Oxide coatings were formed on tantalum by plasma electrolytic oxidation (PEO) process in 12-tungstosilicic acid. The PEO process can be divided into three stages with respect to change of the voltage-time response. The contribution of electron current density in total current density during anodization results in the transformation of the slope of voltage-time curve. The surface morphology, chemical and phase composition of oxide coatings were investigated by AFM, SEM-EDX, XRD and Raman spectroscopy. Oxide coating morphology is strongly dependent of PEO time. The elemental components of PEO coatings are Ta, O, Si and W. The oxide coatings are partly crystallized and mainly composed of WO 3, Ta 2O 5 and SiO 2. Raman spectroscopy showed that the outer layer of oxide coatings formed during the PEO process is silicate tungsten bronze.

  19. A cerium-lead redox flow battery system employing supporting electrolyte of methanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Na, Zhaolin; Xu, Shengnan; Yin, Dongming; Wang, Limin

    2015-11-01

    A novel cerium-lead redox flow battery (RFB) employing Ce(IV)/Ce(III) and Pb(II)/Pb redox couples in the supporting electrolyte of methanesulfonic acid (MSA) is developed and preliminarily investigated. The RFB requires no additional catalyst and uses kinetically favorable reactions between low-cost reactants, and provides a desirable discharge voltage of approximately 1.7 V, with high average coulombic efficiency (CE) of 92% and energy efficiency (EE) of 86% over 800 cycles at 298 K. Stable cycling with an acceptable performance is achieved for a board operating temperature range of 253 K-313 K. The excellent performance obtained from the preliminary study suggests that the cerium-lead RFB promises to be applicable to large-scale energy storage for electricity grids.

  20. Pretreatment of microcrystalline cellulose in organic electrolyte solutions for enzymatic hydrolysis

    PubMed Central

    2011-01-01

    Background Previous studies have shown that the crystalline structure of cellulose is negatively correlated with enzymatic digestibility, therefore, pretreatment is required to break down the highly ordered crystalline structure in cellulose, and to increase the porosity of its surface. In the present study, an organic electrolyte solution (OES) composed of an ionic liquid (1-allyl-3-methylimidazolium chloride ([AMIM]Cl)) and an organic solvent (dimethyl sulfoxide; DMSO) was prepared, and used to pretreat microcrystalline cellulose for subsequent enzymatic hydrolysis; to our knowledge, this is the first time that this method has been used. Results Microcrystalline cellulose (5 wt%) rapidly dispersed and then completely dissolved in an OES with a molar fraction of [AMIM]Cl per OES (χ [AMIM]Cl) of greater than or equal to 0.2 at 110°C within 10 minutes. The cellulose was regenerated from the OES by precipitation with hot water, and enzymatically hydrolyzed. As the χ [AMIM]Cl of the OES increased from 0.1 to 0.9, both the hydrolysis yield and initial hydrolysis rate of the regenerated cellulose also increased gradually. After treatment using OES with χ [AMIM]Cl of 0.7, the glucose yield (54.1%) was 7.2 times that of untreated cellulose. This promotion of hydrolysis yield was mainly due to the decrease in the degree of crystallinity (that is, the crystallinity index of cellulose I). Conclusions An OES of [AMIM]Cl and DMSO with χ [AMIM]Cl of 0.7 was chosen for cellulose pretreatment because it dissolved cellulose rapidly to achieve a high glucose yield (54.1%), which was only slightly lower than the value (59.6%) obtained using pure [AMIM]Cl. OES pretreatment is a cost-effective and environmentally friendly technique for hydrolysis, because it 1) uses the less expensive OES instead of pure ionic liquids, 2) shortens dissolution time, 3) requires lower energy for stirring and transporting, and 4) is recyclable. PMID:22099703

  1. Development and Evaluation of a Multimedia e-Learning Resource for Electrolyte and Acid-Base Disorders

    ERIC Educational Resources Information Center

    Davids, Mogamat Razeen; Chikte, Usuf M. E.; Halperin, Mitchell L.

    2011-01-01

    This article reports on the development and evaluation of a Web-based application that provides instruction and hands-on practice in managing electrolyte and acid-base disorders. Our teaching approach, which focuses on concepts rather than details, encourages quantitative analysis and a logical problem-solving approach. Identifying any dangers to…

  2. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions

    DOE PAGES

    Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu; Sakamoto, Jeffrey; More, Karren Leslie; Chi, Miaofang

    2014-10-21

    Batteries with an aqueous catholyte and a Li metal anode have attracted interest owing to their exceptional energy density and high charge/discharge rate. The long-term operation of such batteries requires that the solid electrolyte separator between the anode and aqueous solutions must be compatible with Li and stable over a wide pH range. Unfortunately, no such compound has yet been reported. In this study, an excellent stability in neutral and strongly basic solutions was observed when using the cubic Li7La3Zr2O12 garnet as a Li-stable solid electrolyte. The material underwent a Li+/H+ exchange in aqueous solutions. Nevertheless, its structure remained unchangedmore » even under a high exchange rate of 63.6%. When treated with a 2 M LiOH solution, the Li+/H+ exchange was reversed without any structural change. Furthermore, these observations suggest that cubic Li7La3Zr2O12 is a promising candidate for the separator in aqueous lithium batteries.« less

  3. Effect of electrolyte volume on the acid dissolution of aluminum alloy 7075

    SciTech Connect

    McCafferty, E.

    1998-11-01

    Dissolution of aluminum alloy 7075 (UNS A97075) was studied using weight-loss measurements in a series of hydrochloric acid (HCl) solutions varying in concentration from 0.5 M to 2 M. The open-circuit reaction was observed to be first order in the hydrogen ion. In acid solutions having a fixed supply of hydrogen ions, corrosion of Al 7075 was arrested by depletion of that available supply. For a given initial acid molarity (M) and a given initial surface area, the total amount of corrosion (weight loss [G]) is given by G = 0.0101 V M, where V is the volume of solution. For a given set of conditions (initial acid concentration, initial surface area, and volume of solution), the time for cessation of the corrosion reaction as calculated from first-order reaction kinetics was in agreement with experimentally determined values. Two corrosion systems were discussed as possible applications involving cessation of a corrosion reaction in acid environments caused by depletion of the hydrogen ion supply.

  4. Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD).

    PubMed

    Oh, Eun-Ok; Whang, Chin-Myung; Lee, Yu-Ri; Park, Sun-Young; Prasad, Dasari Hari; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Lee, Hae-Weon

    2012-07-01

    An extremely thin bilayer electrolyte consisting of yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC) is successfully fabricated on a sintered NiO-YSZ substrate. Major processing flaws are effectively eliminated by applying local constraints to YSZ nanoparticles, and excellent open circuit voltage and cell performance are demonstrated in a solid oxide fuel cell (SOFC) at intermediate operating temperatures.

  5. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  6. Protonation equilibrium of the poly(allylammonium) cation in an aqueous solution of binary 1:1 electrolytes.

    PubMed

    Bohinc, Klemen; Kovačević, Davor; Požar, Josip

    2013-05-21

    The (de)protonation equilibrium of the poly(allylammonium) cation (PAH) in an aqueous solution of various binary 1:1 electrolytes of different concentrations (0.1 ≤ c(NaX)/mol dm(-3) ≤ 1.0; X = Cl(-), Br(-), I(-), NO3(-)) was investigated potentiometrically at 25 °C. The mixed and concentration apparent equilibrium deprotonation constants (Kap) were calculated from the experimentally collected data and concentration profiles of dissociated and undissociated functional groups were obtained. The standard pK value of monomers was estimated by extrapolating the pKap values determined at various concentrations of added electrolyte to the degree of dissociation α = 1. The dependence of pKap on the degree of dissociation could be well described by the two parameter model according to Mandel. The variation of pKap* with monomer dissociation degree was found to be in satisfactory agreement with the cylinder Stern model, based on the Poisson-Boltzmann (PB) equation, and a constant Stern capacitance. Generally, the derived apparent constants showed a pronounced dependence on the concentration of binary electrolytes and a weak dependence on the type of anion counterbalancing the polyion charge. The influence of the PAH chain length (polymers containing on average 150 and 700 monomers were examined) on the protonation equilibrium of PAH could not be observed.

  7. A general treatment for the conductivity of electrolytes in the whole concentration range in aqueous and nonaqueous solutions.

    PubMed

    Villullas, H Mercedes; Gonzalez, Ernesto R

    2005-05-12

    Despite the great importance of ion transport, most of the widely accepted models and theories are valid only in the not very practical limit of low concentrations. Aiming to extend the range of applicability to moderate concentrations, a number of modified models and equations (some approximate, some fundamented on different assumptions, and some just empirical) have been reported. In this work, a general treatment for the electrical conductivity of ionic solutions has been developed, considering the electrical conductivity as a transport phenomenon governed by dissipation and feedback. A general expression for the dependence of the specific conductivity on the solution viscosity (and indirectly on concentration), from which the whole conductivity curve can be obtained, has been derived. The validity of this general approach is demonstrated with experimental results taken from the literature for aqueous and nonaqueous solutions of electrolytes.

  8. Development of three-dimensional site-site Smoluchowski-Vlasov equation and application to electrolyte solutions

    SciTech Connect

    Kasahara, Kento; Sato, Hirofumi

    2014-06-28

    Site-site Smoluchowski-Vlasov (SSSV) equation enables us to directly calculate van Hove time correlation function, which describes diffusion process in molecular liquids. Recently, the theory had been extended to treat solute-solvent system by Iida and Sato [J. Chem. Phys. 137, 034506 (2012)]. Because the original framework of SSSV equation is based on conventional pair correlation function, time evolution of system is expressed in terms of one-dimensional solvation structure. Here, we propose a new SSSV equation to calculate time evolution of solvation structure in three-dimensional space. The proposed theory was applied to analyze diffusion processes in 1M NaCl aqueous solution and in lithium ion battery electrolyte solution. The results demonstrate that these processes are properly described with the theory, and the computed van Hove functions are in good agreement with those in previous works.

  9. Prediction of surface charge on oxides in salt solutions: Revisions for 1:1 (M +L -) electrolytes

    NASA Astrophysics Data System (ADS)

    Sverjensky, Dimitri A.

    2005-01-01

    Quantitative characterization of the development of proton surface charge on the surfaces of minerals is necessary for a fundamental understanding of reactions between minerals and aqueous electrolyte solutions. Despite many experimental studies of charge development, few attempts have been made to integrate the results of such studies with a theoretical framework that permits prediction. The present study builds on a theoretical framework to analyze a total of 55 sets of proton surface charge data referring to wide ranges of ionic strengths, and types of electrolyte and oxide. The resulting parameters were interpreted with the aid of crystal chemical, electrostatic, and thermodynamic theory, which enable a number of generalizations. Prediction of values of the pH ZPC and Δ pKnθ reduces the number of triple-layer parameters to be estimated. New standard states for the equilibrium constants for electrolyte adsorption ( KM+θ and KL-θ) permit direct comparison of samples with a range of surface areas or site densities. Predicted cation binding on high dielectric constant solids (e.g., rutile) shows KM+θ, increasing in the sequence Cs+, Rb+, K+, Na+, Li+. In contrast, on low dielectric constant solids (e.g., amorphous silica), the predicted sequence is Li+, Na+, K+, Rb+, Cs+. The opposite sequences are attributable to the large solvation energy contribution opposing adsorption on low-dielectric constant solids. Cation and anion binding constants are in general different, which enables direct prediction of the point-of-zero-salt effect ( pH PZSE) relative to the pristine point-of-zero charge. The inner and outer capacitances in the triple-layer model ( C1 and C2) are predictable parameters consistent with physically reasonable distances and interfacial dielectric constants for water. In summary, all the parameters in the triple-layer model can be estimated with the revised equations of this study, which enables prediction of proton surface charge for any oxide in 1

  10. The Stability Limits of the Surface Phases at the Polarized Interface of a Liquid Electrode with an Electrolyte Solution

    NASA Astrophysics Data System (ADS)

    Kuklin, Rudolf N.

    2004-03-01

    The thermodynamic stability limits of specific adsorption at the polarized liquid metal/ electrolyte solution interface are studied. Here the reversible starting and disappearance of the electroadsorption effects at a threshold potential are revealed, which are the result of Gibbs stability violation. The stability limits are determined by the bifurcation manifold of the critical states for which determinant of matrix of a second differential of the surface pressure equals zero. The equations of the critical states are equivalent to the spinodal equations used in the theory of phase transitions. The conception developed beneath will help provide to interpretate the anomalies of electrocapillary effects through the catastrophe theory.

  11. Evaluation of lead anode reactions in acid sulfate electrolytes. 1: Lead alloys with cobalt additives

    SciTech Connect

    Yu, P.; O`Keefe, T.J.

    1999-04-01

    Lead alloys, such as lead-calcium-tin and lead-silver, are the primary insoluble anodes used in the electrowinning of metals. While some difficulties are encountered in their use, there is no obvious replacement that is economically and technically competitive. Two of the specific problems with lead include decreased cathode purity due to incorporation from corrosion products and the relatively high overpotential which increases cell voltage. To gain an improved understanding of the fundamental behavior of lead anodes, the polarization behavior of six different alloys in sulfuric acid was evaluated. Some tests were also made with Co(II) in the acid sulfate electrolyte. Notable differences were found in the multiple activation-passivation cycles, stability, and relative activity for oxygen evolution for the alloys, and the relative trends in behavior were established. Electrochemical impedance spectroscopy studies were also conducted at selected potentials. Overall, the data show that the electrochemical response, particularly the degree of polarization for the oxygen evolution reaction, of the lead alloy anodes are dependent on the surface phases and structures present. The ability to depolarize the anode reaction using Co(II) was particularly sensitive to the lead composition.

  12. A comparison of three oral electrolyte solutions in the treatment of diarrheic calves.

    PubMed

    Naylor, J M; Petrie, L; Rodriguez, M I; Skilnick, P

    1990-11-01

    Thirty-six diarrheic calves infected with rota- and coronaviruses were randomly allocated to one of three oral electrolyte treatments: Ion-Aid (Syntex Agribusiness), Life-Guard (Norden Inc), or Revibe (Langford Inc). The calves were also allowed voluntary access to milk which was offered at the rate of 5% of body weight per feeding in two feedings daily. There were significant differences in recovery rate among calves treated with the different electrolytes. Only 33% of Ion-Aid-treated calves recovered; Revibe- and Life-Guard-treated calves had high recovery rates of 92% and 83%, respectively. The much higher recovery rates with Life-Guard and Revibe were attributed to the presence of an alkalizing agent in these preparations. Life-Guard uses bicarbonate to counteract acidosis and there was some evidence that this may have interfered with milk digestion. Revibe uses acetate; this was effectively metabolized within the calves' tissues and produced alkalization without interference with milk digestion.

  13. Modeling the heat capacities of aqueous 1-1 electrolyte solutions with Pitzer`s equations

    SciTech Connect

    Criss, C.M.; Millero, F.J.

    1996-01-25

    The apparent molal heat capacities {phi}{sub Cp} of 1-1 electrolytes at 25{degree}C have been fitted to the Pitzer equation, {phi}{sub Cp}=C{sub p,2}{degree}+(A{sub J}/1.2)ln(1+ 1.2I{1/2})-2RT{sup 2}[mB{sup J}{sub MX}+m{sup 2} C{sup J}{sub MX}], where C{sub p,2}{degree} is the partial molal heat capacity of at infinite dilution and B{sup J}{sub MX} and C{sup J}{sub MX} are empirical constants related to ion-ion interactions. The values of C{sub p,2}{degree} of the electrolytes have been used to determine partial molal heat capacities of ions. The coefficients B{sup J}{sub MX} and C{sup J}{sub MX} have been combined with Pitzer coefficients for enthalpies and osmotic coefficients to develop equations that can be used to determine activity coefficients of these electrolytes from 10 to 70{degree}C and from 0.1 to 2 m to within 1%. 44 refs., 4 figs., 3 tabs.

  14. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    SciTech Connect

    Lv, Yao-Kang; Feng, Yun-Long; Liu, Ji-Wei; Jiang, Zhan-Guo

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.

  15. Crystalline Li(sub 3)PO(sub 4)/SiO(sub 4) solid solutions as an electrolyte for film batteries using sputtered cathode layers

    NASA Technical Reports Server (NTRS)

    Whitacre, J. F.; West, W. C.

    2003-01-01

    Crystalline solid solutions of 1:1 Li3PO4/SiO4 were synthesized and tested electrochemically using thin film, physical vapor deposited electrodes. After cathode deposition, the electrolyte/cathode structures were annealed at 700 degrees Celsius for 2 hours, a process that resulted in cathode crystallization without encouraging deleterious interfacial reactions. Results indicate that the electrolyte functioned well in this configuration.

  16. Ionic conductivity of dual-phase polymer electrolytes comprised of NBR/SBR latex films swollen with lithium salt solutions

    SciTech Connect

    Matsumoto, Morihiko; Ichino, Toshihiro; Rutt, J.S.; Nishi, Shiro . NTT Interdisciplinary Research Lab.)

    1994-08-01

    Dual-phase polymer electrolytes (DPE) with high ionic conductivity and good mechanical strength were prepared by swelling poly(acrylonitrile-co-butadiene) rubber (NBR) and poly(styrene-co-butadiene) rubber (SBR) mixed latex films with lithium salt solutions (e.g., 1M LiClO[sub 4]/[gamma]-butyrolactone). The latex films retain particle morphology in the solid state. The NBR phase (formed from fused NBR latex particles) is polar and is impregnated selectively with polar lithium salt solutions, yielding ion-conductive channels, whereas the SBR phase (formed from fused SBR latex particles) is nonpolar and is not impregnated, providing a mechanically supportive matrix. The ionic conductivity of the DPE increased dramatically with increasing content of lithium salt solution, and higher amounts of solution were imbibed with increasing content of NBR relative to SBR. Several factors which affect the ionic conductivity of this system were examined, and the highest ionic conductivity (>10[sup [minus]3] S/cm) was obtained when either an NBR/SBR 70/30 (w/w) or a 50/50 (w/w) latex film was saturated with 1M LiClO[sub 4]/[gamma]-BL solution or 1M LiClO[sub 4]/[gamma]-BL/DME solution. Ion-conductive behavior changed critically with increasing lithium salt solution uptake. At low levels of lithium salt solution uptake, evidence suggested that ionic conductivity of the absorbed lithium salt solution was strongly influenced by the presence of the NBR in the ion-conductive channel, but at higher levels, the effects of the NBR were reduced and free'' lithium salt solution was present.

  17. [Computer modeling the hydrostatic pressure characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    PubMed

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    On the basis of model equation depending the membrane potential deltapsis, on mechanical pressure difference (deltaP), concentration polarization coefficient (zetas), concentration Rayleigh number (RC) and ratio concentration of solutions separated by membrane (Ch/Cl), the characteristics deltapsis = f(deltaP)zetas,RC,Ch/Cl for steady values of zetas, RC and Ch/Cl in single-membrane system were calculated. In this system neutral and isotropic polymeric membrane oriented in horizontal plane, the non-homogeneous binary electrolytic solutions of various concentrations were separated. Nonhomogeneity of solutions is results from creations of the concentration boundary layers on both sides of the membrane. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, RC and zetas. PMID:17022155

  18. Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution.

    PubMed

    Chanda, Sourayon; Das, Siddhartha

    2014-01-01

    We provide a theory to analyze the impact of finite ion sizes (or steric effect) in electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution. The theory is based on a free energy model that appropriately accounts for the contribution of finite ion sizes as well as the structural characteristics of a soft interface, represented by a combination of a rigid surface and a fixed charge layer (FCL), with the FCL being in contact with an electrolyte solution forming an electric double layer (EDL). This FCL contains a particular kind of ion which is impermeable to the electrolyte solution, and this impermeability is quantified in terms of the corresponding Donnan potential of the "membrane" represented by the FCL-electrolyte interface. We find that consideration of the finite ion size increases the magnitude of this Donnan potential, with the extent of increase being dictated by three length scales, namely, the thickness of the FCL, the thickness of the electrolyte EDL, and the thickness of an equivalent EDL within the FCL. Such regulation of the Donnan potential strongly affects the distribution of the permeable electrolyte ions within the FCL, which in turn will have significant implications in several processes involving "soft" biological membranes. PMID:24580227

  19. Low electrolytic conductivity standards

    SciTech Connect

    Wu, Y.C.; Berezansky, P.A.

    1995-09-01

    The monitoring and control of the quality of feedwater and boiler water are necessary for power plants. The generation of steam at high temperature and pressure requires that contaminants be strictly limited to very low levels to prevent corrosion and scaling. Standards of low electrolytic conductivity were developed to satisfy the demands of the US Navy and American industry for the measurement of high quality water. The criteria for the selection of appropriate solvent and solutes, based on the principles of equivalent conductivity and Onsager`s limiting law, are described. Dilute solutions of potassium chloride and benzoic acid in 30% n-propanol-water have been chosen as standards. The electrolytic conductivity of both sets of these solutions as a function of molality was determined. Solutions of potassium chloride and of benzoic acid are recommended for use as 5, 10, 15, 20, and 25 {micro}S/cm conductivity standards. Solutions prepared from potassium chloride in 30% n-propanol-water have been certified as Standard Reference Materials (SRMs). SRM 3198 and SRM 3199 are certified nominally at 5 and 15 {micro}S/cm, respectively, at 25.000 C.

  20. American Society of Nephrology Quiz and Questionnaire 2013: Electrolyte and Acid-Base

    PubMed Central

    2014-01-01

    The Nephrology Quiz and Questionnaire (NQ&Q) remains an extremely popular session for attendees of the annual meeting of the American Society of Nephrology. As in past years, the conference hall was overflowing with interested audience members. Topics covered by expert discussants included electrolyte and acid-base disorders, glomerular disease, ESRD/dialysis, and transplantation. Complex cases representing each of these categories along with single-best-answer questions were prepared by a panel of experts. Prior to the meeting, program directors of United States nephrology training programs answered questions through an Internet-based questionnaire. A new addition to the NQ&Q was participation in the questionnaire by nephrology fellows. To review the process, members of the audience test their knowledge and judgment on a series of case-oriented questions prepared and discussed by experts. Their answers are compared in real time using audience response devices with the answers of nephrology fellows and training program directors. The correct and incorrect answers are then briefly discussed after the audience responses, and the results of the questionnaire are displayed. This article recapitulates the session and reproduces its educational value for the readers of CJASN. Enjoy the clinical cases and expert discussions. PMID:24558051

  1. Water, electrolytes, and acid-base alterations in human immunodeficiency virus infected patients

    PubMed Central

    Musso, Carlos G; Belloso, Waldo H; Glassock, Richard J

    2016-01-01

    The clinical spectrum of human immunodeficiency virus (HIV) infection associated disease has changed significantly over the past decade, mainly due to the wide availability and improvement of combination antiretroviral therapy regiments. Serious complications associated with profound immunodeficiency are nowadays fortunately rare in patients with adequate access to care and treatment. However, HIV infected patients, and particularly those with acquired immune deficiency syndrome, are predisposed to a host of different water, electrolyte, and acid-base disorders (sometimes with opposite characteristics), since they have a modified renal physiology (reduced free water clearance, and relatively increased fractional excretion of calcium and magnesium) and they are also exposed to infectious, inflammatory, endocrinological, oncological variables which promote clinical conditions (such as fever, tachypnea, vomiting, diarrhea, polyuria, and delirium), and may require a variety of medical interventions (antiviral medication, antibiotics, antineoplastic agents), whose combination predispose them to undermine their homeostatic capability. As many of these disturbances may remain clinically silent until reaching an advanced condition, high awareness is advisable, particularly in patients with late diagnosis, concomitant inflammatory conditions and opportunistic diseases. These disorders contribute to both morbidity and mortality in HIV infected patients. PMID:26788462

  2. Water, electrolytes, and acid-base alterations in human immunodeficiency virus infected patients.

    PubMed

    Musso, Carlos G; Belloso, Waldo H; Glassock, Richard J

    2016-01-01

    The clinical spectrum of human immunodeficiency virus (HIV) infection associated disease has changed significantly over the past decade, mainly due to the wide availability and improvement of combination antiretroviral therapy regiments. Serious complications associated with profound immunodeficiency are nowadays fortunately rare in patients with adequate access to care and treatment. However, HIV infected patients, and particularly those with acquired immune deficiency syndrome, are predisposed to a host of different water, electrolyte, and acid-base disorders (sometimes with opposite characteristics), since they have a modified renal physiology (reduced free water clearance, and relatively increased fractional excretion of calcium and magnesium) and they are also exposed to infectious, inflammatory, endocrinological, oncological variables which promote clinical conditions (such as fever, tachypnea, vomiting, diarrhea, polyuria, and delirium), and may require a variety of medical interventions (antiviral medication, antibiotics, antineoplastic agents), whose combination predispose them to undermine their homeostatic capability. As many of these disturbances may remain clinically silent until reaching an advanced condition, high awareness is advisable, particularly in patients with late diagnosis, concomitant inflammatory conditions and opportunistic diseases. These disorders contribute to both morbidity and mortality in HIV infected patients. PMID:26788462

  3. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  4. Process for the recovery of strontium from acid solutions

    DOEpatents

    Horwitz, E.P.; Dietz, M.L.

    1992-03-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid. 5 figs.

  5. Process for the recovery of strontium from acid solutions

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.

    1990-12-31

    The invention is a process for selectively extracting strontium and technetium values from aqueous nitric acid waste solutions containing these and other fission product values. The extractant is a macrocyclic polyether in a diluent which is insoluble in water, but which will itself dissolve a small amount of water. The process will extract strontium and technetium values from nitric acid solutions which are up to 6 molar in nitric acid.

  6. Osmotic diuresis-induced hypernatremia: better explained by solute-free water clearance or electrolyte-free water clearance?

    PubMed

    Popli, Subhash; Tzamaloukas, Antonios H; Ing, Todd S

    2014-01-01

    Hypernatremia may result from inadequate water intake, excessive water loss or a combination of the two. Osmotic diuresis leads to losses of both solute and water. The relationship between solute and water losses determines the resulting changes in serum osmolality and sodium concentration. Total solute loss is routinely higher than loss of water in osmotic diuresis. Theoretically, then, decreases in serum osmolality (and serum sodium concentration) should follow. In clinical situations of osmotic diuresis, however, reduction in osmolality can take place, but not reduction in serum sodium concentration. It is of note that serum sodium concentration changes are related to urinary losses of sodium and potassium but not to the loss of total solute. In osmotic diuresis, the combined loss of sodium and potassium per liter of urine is lower than the concurrent serum sodium level. Consequently, hypernatremia can ensue. A patient who presented with osmotic diuresis and hypernatremia is described here. In this patient, we have shown that electrolyte-free water clearance is a better index of the effect of osmotic diuresis on serum sodium concentration than the classic solute-free water clearance.

  7. The Role of Concentration Dependent Static Permittivity of Electrolyte Solutions in the Debye-Hückel Theory.

    PubMed

    Shilov, Ignat Yu; Lyashchenko, Andrey K

    2015-08-01

    The Debye-Hückel theory has been extended to allow for arbitrary concentration dependence of the electrolyte solution static permittivity. The theory follows the lines advanced by Erich Hückel ( Hückel, E. Phys. Z. 1925, 26, 93) but gives rise to more general and lucid results. New theoretical expressions have been obtained for the excess free energy of solution, activity coefficient of water and mean ionic activity coefficient. The thermodynamic functions contain two terms representing interionic interactions and ion-water (solvation) interactions. The theory has been applied to calculate the activity coefficients of components in the aqueous solutions of alkali metal chlorides from LiCl to CsCl at ambient conditions making use of permittivities taken from experimental dielectric relaxation studies. Calculations without parameter adjustment have demonstrated a semiquantitative agreement with experimental data, reproducing both the nonmonotonic concentration dependence of the activity coefficients and the ordering of activity coefficients for the salts with different cations. A good agreement with experimental data is obtained for the aqueous solutions of LiCl in the concentration range up to 10 mol/kg. The nonmonotonic concentration dependence of activity coefficients is explained as a result of a balance between the effect of interionic interactions and the solvation contribution which appears quite naturally in the framework of the Debye-Hückel approach after incorporation of variable permittivity of solution.

  8. [Computer modeling the concentration characteristics of the membrane potential for polymeric membrane, separated non-homogeneous electrolyte solutions].

    PubMed

    Slezak, Izabella H; Jasik-Slezak, Jolanta; Rogal, Mirosława; Slezak, Andrzej

    2006-01-01

    The influence of the concentration boundary layers on membrane potential (deltapsis) in a single-membrane system on basis of the Kedem-Katchalsky equations was described in cases of horizontally mounted neutral polymeric membrane separates non-homogeneous (mechanically unstirred) binary electrolytic solutions at different concentrations. Results of calculations of deltapsis as a function of ratio solution concentrations (Ch/Cl) at constant values of: concentration Rayleigh number (Rc), concentration polarization coefficient (zetas) and hydrostatic pressure (deltaP) were presented. Calculations were made for the case where on a one side of the membrane aqueous solution of NaCl at steady concentration 10(-3) mol x l(-1) (Cl) was placed and on the other aqueous solutions of NaCl at concentrations from 10(-3) mol x l(-1) to 2 x 10(-2) mol x l(-1) (Ch). Their densities were greater than NaCl solution's at 10(-3) mol x l(-1). It was shown that membrane potential depends on hydrodynamic state of a complex concentration boundary layer-membrane-concentration boundary layer, what is controlled by deltaP, Ch/Cl, Rc and zetas. PMID:17022154

  9. Polymer electrolytes containing ionic liquids with acidic counteranion (DMRImH 2PO 4, R = ethyl, butyl and octyl)

    NASA Astrophysics Data System (ADS)

    Lalia, Boor Singh; Sekhon, S. S.

    2006-07-01

    Ionic liquids with acidic counteranion and having composition: 2,3-dimethyl-1-alkylimidazolium dihydrogenphosphate (DMRImH 2PO 4, R = ethyl, butyl, octyl) have been prepared and the effect of alkyl (R) sidechain length on the conductivity and viscosity behavior has been studied. DMEtImH 2PO 4 with highest conductivity (0.07 S/cm at 120 °C) has been incorporated in polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) to obtain polymer electrolytes in the membrane form. The conductivity of membranes has been found to depend upon the concentration of ionic liquid, phosphoric acid and temperature. Polymer electrolytes containing different ionic liquids are thermally stable up to 225 °C and can be used as high temperature membranes for fuel cells.

  10. A comparison of three oral electrolyte solutions in the treatment of diarrheic calves

    PubMed Central

    Naylor, Jonathan M.; Petrie, Lyall; Rodriguez, Maria I.; Skilnick, Patricia

    1990-01-01

    Thirty-six diarrheic calves infected with rota- and coronaviruses were randomly allocated to one of three oral electrolyte treatments: Ion-Aid (Syntex Agribusiness), Life-Guard (Norden Inc), or Revibe (Langford Inc). The calves were also allowed voluntary access to milk which was offered at the rate of 5% of body weight per feeding in two feedings daily. There were significant differences in recovery rate among calves treated with the different electrolytes. Only 33% of Ion-Aid-treated calves recovered; Revibe- and Life-Guard-treated calves had high recovery rates of 92% and 83%, respectively. The much higher recovery rates with Life-Guard and Revibe were attributed to the presence of an alkalizing agent in these preparations. Life-Guard uses bicarbonate to counteract acidosis and there was some evidence that this may have interfered with milk digestion. Revibe uses acetate; this was effectively metabolized within the calves' tissues and produced alkalization without interference with milk digestion. PMID:17423689

  11. The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, Valérie

    The lead acid technology is nowadays considered one of the best suited for stationary applications. Both gel and AGM batteries are complementary technologies and can provide reliability and efficiency due to the constant optimization of the battery design and components. However, gelled-electrolyte batteries remain the preferred technology due to a better manufacturing background and show better performance mainly at low and moderate discharge rates. Especially, using the gel technology allows to get rid of the numerous problems encountered in most AGM batteries: drainage, stratification, short circuits due to dendrites, and mostly premature capacity loss due to the release of internal cell compression. These limitations are the result of the evident lack of an optimal separation system. In gel batteries, on the contrary, highly efficient polymeric separators are nowadays available. Especially, microporous separators based on PVC and silica have shown the best efficiency for nearly 30 years all over the world, and especially in Europe, where the gel technology was born. The improved performance of these separators is explained by the unique extrusion process, which leads to excellent wettability, and optimized physical properties. Because they are the key for the battery success, continuous research and development on separators have led to improved properties, which render the separator even better adapted to the more recent gel technology: the pore size distribution has been optimized to allow good oxygen transfer while avoiding dendrite growth, the pore volume has been increased, the electrical resistance and acid displacement reduced to such an extent that the electrical output of batteries has been raised both in terms of higher capacity and longer cycle life.

  12. Some Lewis acid-base adducts involving boron trifluoride as electrolyte additives for lithium ion cells

    NASA Astrophysics Data System (ADS)

    Nie, Mengyun; Madec, L.; Xia, J.; Hall, D. S.; Dahn, J. R.

    2016-10-01

    Three complexes with boron trifluoride (BF3) as the Lewis acid and different Lewis bases were synthesized and used as electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2/graphite and Li[Ni0.42Mn0.42Co0.16]O2/graphite pouch cells. Lewis acid-base adducts with a boron-oxygen (Bsbnd O) bond were trimethyl phosphate boron trifluoride (TMP-BF) and triphenyl phosphine oxide boron trifluoride (TPPO-BF). These were compared to pyridine boron trifluoride (PBF) which has a boron-nitrogen (Bsbnd N) bond. The experimental results showed that cells with PBF had the least voltage drop during storage at 4.2 V, 4.4 V and 4.7 V at 40 °C and the best capacity retention during long-term cycling at 55 °C compared to cells with the other additives. Charge-hold-discharge cycling combined with simultaneous electrochemical impedance spectroscopy measurements showed that impedance growth in TMP-BF and TPPO-BF containing cells was faster than cells containing 2%PBF, suggesting that PBF is useful for impedance control at high voltages (>4.4 V). XPS analysis of the SEI films highlighted a specific reactivity of the PBF-derived SEI species that apparently hinders the degradation of both LiPF6 and solvent during formation and charge-hold-discharge cycling. The modified SEI films may explain the improved impedance, the smaller voltage drop during storage and the improved capacity retention during cycling of cells containing the PBF additive.

  13. Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery

    NASA Astrophysics Data System (ADS)

    Kamenev, Yu.; Shtompel, G.; Ostapenko, E.; Leonov, V.

    2014-07-01

    The influence of the suspension of positive active mass particles in the electrolyte on the performance of the negative electrode in a lead-acid battery is studied. A significant increase in the rate of corrosion of the lead electrode is shown when slime particles get in contact with its surface, which may result in the rise of macro-defects on the lugs of the negative electrodes.

  14. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    PubMed

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  15. General electrokinetic model for concentrated suspensions in aqueous electrolyte solutions: Electrophoretic mobility and electrical conductivity in static electric fields.

    PubMed

    Carrique, Félix; Ruiz-Reina, Emilio; Roa, Rafael; Arroyo, Francisco J; Delgado, Ángel V

    2015-10-01

    In recent years different electrokinetic cell models for concentrated colloidal suspensions in aqueous electrolyte solutions have been developed. They share some of its premises with the standard electrokinetic model for dilute colloidal suspensions, in particular, neglecting both the specific role of the so-called added counterions (i.e., those released by the particles to the solution as they get charged), and the realistic chemistry of the aqueous solution on such electrokinetic phenomena as electrophoresis and electrical conductivity. These assumptions, while having been accepted for dilute conditions (volume fractions of solids well below 1%, say), are now questioned when dealing with concentrated suspensions. In this work, we present a general electrokinetic cell model for such kind of systems, including the mentioned effects, and we also carry out a comparative study with the standard treatment (the standard solution only contains the ions that one purposely adds, without ionic contributions from particle charging or water chemistry). We also consider an intermediate model that neglects the realistic aqueous chemistry of the solution but accounts for the correct contribution of the added counterions. The results show the limits of applicability of the classical assumptions and allow one to better understand the relative role of the added counterions and ions stemming from the electrolyte in a realistic aqueous solution, on electrokinetic properties. For example, at low salt concentrations the realistic effects of the aqueous solution are the dominant ones, while as salt concentration is increased, it is this that progressively takes the control of the electrokinetic response for low to moderate volume fractions. As expected, if the solids concentration is high enough the added counterions will play the dominant role (more important the higher the particle surface charge), no matter the salt concentration if it is not too high. We hope this work can help in

  16. Improved electrolytes for fuel cells

    SciTech Connect

    Gard, G.L.; Roe, D.K.

    1991-06-01

    Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

  17. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  18. A unified molecular picture of the surfaces of aqueous acid, base, and salt solutions

    SciTech Connect

    Mucha, M.; Frigato, Tomaso; Levering, Lori; Allen, Heather C.; Tobias, Douglas J.; Dang, Liem X.; Jungwirth, Pavel

    2005-04-28

    A unified view of the structure of the air/solution interface of simple aqueous electrolytes containing monovalent inorganic ions is developed using molecular dynamics simulations and vibrational sum frequency generation spectroscopy. In salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the air/solution interface, while the anions, such as halides or hydroxide, exhibit a varying propensity for the surface, correlated primarily with the polarizability of the ion. As a result, there is a net depletion of ions from the interfacial layer as a whole, which is connected via the Gibbs adsorption equation to an increase in surface tension with respect to neat water. The behavior of acids, such as aqueous HCl or HBr, is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids reduce the surface tension of water. The key to the qualitatively different surface behavior of aqueous salt solutions and bases on one side and acids on the other thus lies in the appreciable adsorption of hydronium cations at the air/solution interface with their “hydrophobic” oxygen side oriented towards the gas phase. The results of the molecular dynamics calculations are supported by surface selective non-linear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The propensity of inorganic ions for the air/solution interface has important implications for heterogeneous chemical processes, in particular for atmospheric chemistry.

  19. Electrodeposited Films from Aqueous Tungstic Acid-Hydrogen Peroxide Solutions for Electrochromic Display Devices

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazusuke

    1987-11-01

    Electrodeposited tungsten oxide films from aqueous tungstic acid-hydrogen peroxide solutions were investigated for applications to electrochromic devices. These films exhibited electrochromism in aprotic electrolyte solutions containing Li-salts. When the films were heat-treated for an hour at temperatures between 100 and 200°C, the electrochromic reactions were rich in reversibility. The coloring efficiency and response rate for the films were favorable and comparable to those for tungsten trioxide evaporated films. A cell life-test was performed on several clock-size cells by applying a 1.2-V, 1-Hz, continuous square wave. The typical amount of charge required for coloration was about 50 C / m2 and remained unchanged even after 107 coloration-bleaching cycles.

  20. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries.

    PubMed

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-01-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries. PMID:25907411

  1. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-04-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries.

  2. Radiolysis as a solution for accelerated ageing studies of electrolytes in Lithium-ion batteries

    PubMed Central

    Ortiz, Daniel; Steinmetz, Vincent; Durand, Delphine; Legand, Solène; Dauvois, Vincent; Maître, Philippe; Le Caër, Sophie

    2015-01-01

    Diethyl carbonate and dimethyl carbonate are prototype examples of eco-friendly solvents used in lithium-ion batteries. Nevertheless, their degradation products affect both the battery performance and its safety. Therefore, it is of paramount importance to understand the reaction mechanisms involved in the ageing processes. Among those, redox processes are likely to play a critical role. Here we show that radiolysis is an ideal tool to generate the electrolytes degradation products. The major gases detected after irradiation (H2, CH4, C2H6, CO and CO2) are identified and quantified. Moreover, the chemical compounds formed in the liquid phase are characterized by different mass spectrometry techniques. Reaction mechanisms are then proposed. The detected products are consistent with those of the cycling of Li-based cells. This demonstrates that radiolysis is a versatile and very helpful tool to better understand the phenomena occurring in lithium-ion batteries. PMID:25907411

  3. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hr running performance test.

    PubMed

    Rollo, Ian; Williams, Clyde

    2009-12-01

    The aim of this study was to investigate the influence of ingesting a carbohydrate-electrolyte solution (CHO-E) on performance during a 1-hr treadmill run. Eight male endurance-trained runners (age 31 +/- 8 yr, M +/- SD) completed three 1-hr performance runs separated by 1 wk. The study used a double-blind placebo (PLA) controlled design. On 2 occasions (P1, P2) runners consumed a placebo solution, 8 ml/kg body mass (BM), 30 min before and 2 ml/kg BM at 15-min intervals throughout the 1-hr run. On a separate occasion they consumed the same quantity of a 6.4% CHO-E solution (C). Total distances covered for P1, P2, and C trials were 13,685 +/- 1,116 m, 13,715 +/- 1,143 m, and 14,046 +/- 1,104 m, respectively. Although there was no difference between the 2 PLA trials (p > .05), the distance covered during the C trial was significantly greater than in either PLA trial (p < .05). CHO ingestion resulted in a higher blood glucose concentration only at the onset of exercise (p < .05) compared with the PLA trials. Blood lactate, respiratory-exchange ratio, and CHO oxidation were similar in all 3 trials. In conclusion, ingestion of a 6.4% CHO-E solution before and during exercise was associated with improved running performance in runners compared with the ingestion of a color- and taste-matched placebo.

  4. Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions.

    PubMed

    Ferrari, Lucia; Kaufmann, Josef; Winnefeld, Frank; Plank, Johann

    2014-04-01

    The inter-particle forces play a fundamental role for the flow properties of a particle suspension in response to shear stresses. In concrete applications, cement admixtures based on comb-polymers like polycarboxylate-ether-based superplasticizer (PCE) are used to control the rheological behavior of the fresh mixtures, as it is negatively impacted by certain early hydration products, like the mineral ettringite. In this work, dispersion forces due to PCE were measured directly at the surface of ettringite crystals in different electrolyte solutions by the means of atomic force microscopy (AFM) applying spherical and sharp silicon dioxide tips. Results show an effective repulsion between ettringite surface and AFM tips for solutions above the IEP of ettringite (pH∼12) and significant attraction in solution at lower pH. The addition of polyelectrolytes in solution provides dispersion forces exclusively between the sharp tips (radius ≈ 10 nm) and the ettringite surface, whereas the polymer layer at the ettringite surface results to be unable to disperse large colloidal probes (radius ≈ 10 μm). A simple modeling of the inter-particle forces explains that, for large particles, the steric hindrance of the studied PCE molecules is not high enough to compensate for the Van der Waals and the attractive electrostatic contributions. Therefore, in cement suspensions the impact of ettringite on rheology is probably not only related to the particle charge, but also related to the involved particle sizes. PMID:24491324

  5. Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions.

    PubMed

    Ferrari, Lucia; Kaufmann, Josef; Winnefeld, Frank; Plank, Johann

    2014-04-01

    The inter-particle forces play a fundamental role for the flow properties of a particle suspension in response to shear stresses. In concrete applications, cement admixtures based on comb-polymers like polycarboxylate-ether-based superplasticizer (PCE) are used to control the rheological behavior of the fresh mixtures, as it is negatively impacted by certain early hydration products, like the mineral ettringite. In this work, dispersion forces due to PCE were measured directly at the surface of ettringite crystals in different electrolyte solutions by the means of atomic force microscopy (AFM) applying spherical and sharp silicon dioxide tips. Results show an effective repulsion between ettringite surface and AFM tips for solutions above the IEP of ettringite (pH∼12) and significant attraction in solution at lower pH. The addition of polyelectrolytes in solution provides dispersion forces exclusively between the sharp tips (radius ≈ 10 nm) and the ettringite surface, whereas the polymer layer at the ettringite surface results to be unable to disperse large colloidal probes (radius ≈ 10 μm). A simple modeling of the inter-particle forces explains that, for large particles, the steric hindrance of the studied PCE molecules is not high enough to compensate for the Van der Waals and the attractive electrostatic contributions. Therefore, in cement suspensions the impact of ettringite on rheology is probably not only related to the particle charge, but also related to the involved particle sizes.

  6. Method for liquid chromatographic extraction of strontium from acid solutions

    DOEpatents

    Horwitz, E. Philip; Dietz, Mark L.

    1992-01-01

    A method and apparatus for extracting strontium and technetium values from biological, industrial and environmental sample solutions using a chromatographic column is described. An extractant medium for the column is prepared by generating a solution of a diluent containing a Crown ether and dispersing the solution on a resin substrate material. The sample solution is highly acidic and is introduced directed to the chromatographic column and strontium or technetium is eluted using deionized water.

  7. Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy.

    PubMed

    Eberhardt, S H; Marone, F; Stampanoni, M; Büchi, F N; Schmidt, T J

    2014-11-01

    Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40-100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.

  8. A multi-point sensor based on optical fiber for the measurement of electrolyte density in lead-acid batteries.

    PubMed

    Cao-Paz, Ana M; Marcos-Acevedo, Jorge; del Río-Vázquez, Alfredo; Martínez-Peñalver, Carlos; Lago-Ferreiro, Alfonso; Nogueiras-Meléndez, Andrés A; Doval-Gandoy, Jesús

    2010-01-01

    This article describes a multi-point optical fiber-based sensor for the measurement of electrolyte density in lead-acid batteries. It is known that the battery charging process creates stratification, due to the different densities of sulphuric acid and water. In order to study this process, density measurements should be obtained at different depths. The sensor we describe in this paper, unlike traditional sensors, consists of several measurement points, allowing density measurements at different depths inside the battery. The obtained set of measurements helps in determining the charge (SoC) and state of health (SoH) of the battery. PMID:22319262

  9. A Multi-Point Sensor Based on Optical Fiber for the Measurement of Electrolyte Density in Lead-Acid Batteries

    PubMed Central

    Cao-Paz, Ana M.; Marcos-Acevedo, Jorge; del Río-Vázquez, Alfredo; Martínez-Peñalver, Carlos; Lago-Ferreiro, Alfonso; Nogueiras-Meléndez, Andrés A.; Doval-Gandoy, Jesús

    2010-01-01

    This article describes a multi-point optical fiber-based sensor for the measurement of electrolyte density in lead-acid batteries. It is known that the battery charging process creates stratification, due to the different densities of sulphuric acid and water. In order to study this process, density measurements should be obtained at different depths. The sensor we describe in this paper, unlike traditional sensors, consists of several measurement points, allowing density measurements at different depths inside the battery. The obtained set of measurements helps in determining the charge (SoC) and state of health (SoH) of the battery. PMID:22319262

  10. Polyethylene Glycol Electrolyte Lavage Solution versus Colonic Hydrotherapy for Bowel Preparation before Colonoscopy: A Single Center, Randomized, and Controlled Study.

    PubMed

    Cao, Yan; Zhang, Kai-Yuan; Li, Jiao; Lu, Hao; Xie, Wan-Ling; Liao, Sheng-Tao; Chen, Dong-Feng; Zeng, Deng-Feng; Lan, Chun-Hui

    2014-01-01

    This single center, randomized, and controlled study aimed to compare the effectiveness and safety of polyethylene glycol electrolyte lavage (PEG-EL) solution and colonic hydrotherapy (CHT) for bowel preparation before colonoscopy. A total of 196 eligible outpatients scheduled for diagnostic colonoscopy were randomly assigned to the PEG-EL (n = 102) or CHT (n = 94) groups. Primary outcome measures included colonic cleanliness and adverse effects. Secondary outcome measures were patient satisfaction and preference, colonoscopic findings, ileocecal arrival rate, examiner satisfaction, and cecal intubation time. The results show that PEG-EL group was associated with significantly better colonic cleanliness than CHT group, fewer adverse effects, and increased examiner satisfaction. However, the CHT group had higher patient satisfaction and higher diverticulosis detection rates. Moreover, the results showed the same ileocecal arrival rate and patient preference between the two groups (P > 0.05). These findings indicate that PEG-EL is the preferred option in patients who followed the preparation instructions completely.

  11. Corrosion of dental amalgams in solutions of organic acids.

    PubMed

    Palaghias, G

    1986-06-01

    A conventional and two high copper amalgams were tested in 0.5% aqueous solutions of acetic, formic, lactic and succinic acid. The corrosion behavior of the amalgams in the different solutions was evaluated by analyzing the soluble corrosion products using an atomic absorption spectrophotometer every month during a 6-month experimental period. The high copper amalgams showed a high dissolution rate in formic and lactic acid solutions from the initial stages of immersion when compared to the conventional. Later a marked decrease of the dissolution rate could be observed but it still remained at high levels. In acetic acid the amounts of elements dissolved from high copper amalgams were much less. Conventional amalgam released much smaller amounts of elements in almost all solutions tested except in the case of silver in lactic acid. Finally, in succinic acid solution, the amounts of elements dissolved were unexpectedly small considering the low pH of the solution and the dissolution rates of the amalgams in the other organic acid solutions. PMID:3461548

  12. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    SciTech Connect

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha; Winie, Tan

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at various temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.

  13. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect

    Crawford, C.L.; Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  14. Molecular dynamics simulations of carbon dioxide hydrate growth in electrolyte solutions of NaCl and MgCl2

    NASA Astrophysics Data System (ADS)

    Yi, Lizhi; Liang, Deqing; Zhou, Xuebing; Li, Dongliang; Wang, Jianwei

    2014-12-01

    Molecular dynamics simulations are performed to study the growth of carbon dioxide (CO2) hydrate in electrolyte solutions of NaCl and MgCl2. The kinetic behaviour of the hydrate growth is examined in terms of cage content, density profile, and mobility of ions and water molecules, and how these properties are influenced by added NaCl and MgCl2. Our simulation results show that both NaCl and MgCl2 inhibit the CO2 hydrate growth. With a same mole concentration or ion density, MgCl2 exhibits stronger inhibition on the growth of CO2 hydrate than NaCl does. The growth rate of the CO2 hydrate in NaCl and MgCl2 solutions decreases slightly with increasing pressure. During the simulations, the Na+, Mg2+, and Cl- ions are mostly excluded by the growing interface front. We find that these ions decrease the mobility of their surrounding water molecules, and thus reduce the opportunity for these water molecules to form cage-like clusters toward hydrate formation. We also note that during the growth processes, several 51263 cages appear at the hydrate/solution interface, although they are finally transformed to tetrakaidecahedral (51262) cages. Structural defects consisting of one water molecule trapped in a cage with its hydrogen atoms being attracted by two Cl- ions have also been observed.

  15. A DFT Study on the Dissociation Property of Sulfonic Acids with Different Neighboring Pendants in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan-yuan; Tsuchida, Eiji; Choe, Yoong-Kee; Ikeshoji, Tamio; Ohira, Akihiro

    The proton dissociation property of four model compounds of polymer electrolyte membranes, M1-M4, has been studied based on density functional theory. These four model compounds have the same proton donor group, sulfonic acid, while differ by types of neighboring pendants, non-fluorinated and fluorinated. We find that the protons in the fluorinated model compounds can be dissociated when hydrated by 3 water molecules, comparable to Nafion, while for those non-fluorinated compounds, the protons can be dissociated only hydrated by 4 water molecules. The results indicate that the neighboring pendants have a significant effect on the proton dissociation property of the model compounds. The electron-withdrawing group involved in the neighboring pendants can improve the proton dissociation property of the compounds, which would be meaningful for finding a novel polymer electrolyte membrane with good conductivity.

  16. Substrate Selection for Fundamental Studies of Electrocatalysts and Photoelectrodes: Inert Potential Windows in Acidic, Neutral, and Basic Electrolyte

    PubMed Central

    Gorlin, Yelena; Jaramillo, Thomas F.

    2014-01-01

    The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community. PMID:25357131

  17. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte.

    PubMed

    Benck, Jesse D; Pinaud, Blaise A; Gorlin, Yelena; Jaramillo, Thomas F

    2014-01-01

    The selection of an appropriate substrate is an important initial step for many studies of electrochemically active materials. In order to help researchers with the substrate selection process, we employ a consistent experimental methodology to evaluate the electrochemical reactivity and stability of seven potential substrate materials for electrocatalyst and photoelectrode evaluation. Using cyclic voltammetry with a progressively increased scan range, we characterize three transparent conducting oxides (indium tin oxide, fluorine-doped tin oxide, and aluminum-doped zinc oxide) and four opaque conductors (gold, stainless steel 304, glassy carbon, and highly oriented pyrolytic graphite) in three different electrolytes (sulfuric acid, sodium acetate, and sodium hydroxide). We determine the inert potential window for each substrate/electrolyte combination and make recommendations about which materials may be most suitable for application under different experimental conditions. Furthermore, the testing methodology provides a framework for other researchers to evaluate and report the baseline activity of other substrates of interest to the broader community.

  18. Highly asymmetric electrolytes in the primitive model: hypernetted chain solution in arbitrary spatial dimensions.

    PubMed

    Heinen, Marco; Allahyarov, Elshad; Löwen, Hartmut

    2014-02-01

    The pair-correlation functions for fluid ionic mixtures in arbitrary spatial dimensions are computed in hypernetted chain (HNC) approximation. In the primitive model (PM), all ions are approximated as nonoverlapping hyperspheres with Coulomb interactions. Our spectral HNC solver is based on a Fourier-Bessel transform introduced by Talman (J. Comput. Phys. 1978, 29, 35), with logarithmically spaced computational grids. Numeric efficiency for arbitrary spatial dimensions is a commonly exploited virtue of this transform method. Here, we highlight another advantage of logarithmic grids, consisting in efficient sampling of pair-correlation functions for highly asymmetric ionic mixtures. For three-dimensional fluids, ion size and charge-ratios larger than 1000 can be treated, corresponding to hitherto computationally not accessed micrometer-sized colloidal spheres in 1-1 electrolyte. Effective colloidal charge numbers are extracted from our PM results. For moderately large ion size and charge-asymmetries, we present molecular dynamics simulation results that agree well with the approximate HNC pair correlations.

  19. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.

    PubMed

    Perez Sirkin, Yamila A; Factorovich, Matías H; Molinero, Valeria; Scherlis, Damian A

    2016-06-14

    The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach ( Factorovich , M. H. J. Chem. Phys. 2014 , 140 , 064111 ) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid-vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion-ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions.

  20. Vapor Pressure of Aqueous Solutions of Electrolytes Reproduced with Coarse-Grained Models without Electrostatics.

    PubMed

    Perez Sirkin, Yamila A; Factorovich, Matías H; Molinero, Valeria; Scherlis, Damian A

    2016-06-14

    The vapor pressure of water is a key property in a large class of applications from the design of membranes for fuel cells and separations to the prediction of the mixing state of atmospheric aerosols. Molecular simulations have been used to compute vapor pressures, and a few studies on liquid mixtures and solutions have been reported on the basis of the Gibbs Ensemble Monte Carlo method in combination with atomistic force fields. These simulations are costly, making them impractical for the prediction of the vapor pressure of complex materials. The goal of the present work is twofold: (1) to demonstrate the use of the grand canonical screening approach ( Factorovich , M. H. J. Chem. Phys. 2014 , 140 , 064111 ) to compute the vapor pressure of solutions and to extend the methodology for the treatment of systems without a liquid-vapor interface and (2) to investigate the ability of computationally efficient high-resolution coarse-grained models based on the mW monatomic water potential and ions described exclusively with short-range interactions to reproduce the relative vapor pressure of aqueous solutions. We find that coarse-grained models of LiCl and NaCl solutions faithfully reproduce the experimental relative pressures up to high salt concentrations, despite the inability of these models to predict cohesive energies of the solutions or the salts. A thermodynamic analysis reveals that the coarse-grained models achieve the experimental activity coefficients of water in solution through a compensation of severely underestimated hydration and vaporization free energies of the salts. Our results suggest that coarse-grained models developed to replicate the hydration structure and the effective ion-ion attraction in solution may lead to this compensation. Moreover, they suggest an avenue for the design of coarse-grained models that accurately reproduce the activity coefficients of solutions. PMID:27196963

  1. Toward a Molecular-Based Understanding of High-Temperature Solvation Phenomena in Aqueous Electrolyte Solutions

    SciTech Connect

    Chialvo, A.A.; Cummings, P.T.; Kusalik, P.G.; Simonson, J.M.

    1999-10-30

    The theoretical treatment of the solvation phenomenon of simple ions in aqueous solutions has been rather difficult, despite the apparent simplicity of the system. Long-range solvent-screened electrostatic interactions, coupled to the large variation (with state conditions) of the dielectric permittivity of water, give rise to a variety of rather complex solvation phenomena including dielectric saturation, electrostriction, and ion association. Notably, ion solvation in high-temperature/pressure aqueous solutions plays a leading role in hydrothermal chemistry, such as in the natural formation of ore deposits, the corrosion in boilers and reactors, and in high-temperature microbiology. Tremendous effort has been invested in the study of hydrothermal solutions to determine their thermodynamic, transport, and spectroscopic properties with the goal of elucidating the solute-solvent and solute-solute interactions over a wide range of state conditions. It is precisely at these conditions where our understanding and predictive capabilities are most precarious, in part, as a result of the coexistence of processes with two rather different length scales, i.e., short-ranged (solvation) and long-ranged (compressibility-driven) phenomena (Chialvo and Cummings 1994a). The latter feature makes hydrothermal systems extremely challenging to model, unless we are able to isolate the (compressibility-driven) propagation of the density perturbation from the (solvation-related) finite-density perturbation phenomena (Chialvo and Cummings 1995a).

  2. Vacuum-jacketed hydrofluoric acid solution calorimeter

    USGS Publications Warehouse

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  3. Nylon Dissolution in Nitric Acid Solutions

    SciTech Connect

    KESSINGER, GLENF.

    2004-06-16

    H Area Operations is planning to process Pu-contaminated uranium scrap in support of de-inventory efforts. Nylon bags will be used to hold materials to be dissolved in H-Canyon. Based on this set of twelve nylon dissolutions, it is concluded that (when other variables are held constant): increased acid concentration results in increased dissolution rates; increased acid concentration results in a lower dissolution onset temperature; little, if any, H plus is consumed during the depolymerization process; and 2.0-3.0 M HNO3, with 0.025 M KF and 2 g/L B, is satisfactory for the dissolution of nylon bag materials to be used during H-Canyon processing.

  4. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  5. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.

  6. Modelling of the thermodynamic and solvation properties of electrolyte solutions with the statistical associating fluid theory for potentials of variable range

    NASA Astrophysics Data System (ADS)

    Schreckenberg, Jens M. A.; Dufal, Simon; Haslam, Andrew J.; Adjiman, Claire S.; Jackson, George; Galindo, Amparo

    2014-09-01

    An improved formulation of the extension of the statistical associating fluid theory for potentials of variable range to electrolytes (SAFT-VRE) is presented, incorporating a representation for the dielectric constant of the solution that takes into account the temperature, density and composition of the solvent. The proposed approach provides an excellent correlation of the dielectric-constant data available for a number of solvents including water, representative alcohols and carbon dioxide, and it is shown that the methodology can be used to treat mixed-solvent electrolyte solutions. Models for strong electrolytes of the metal-halide family are considered here. The salts are treated as fully dissociated and ion-specific interaction parameters are presented. Vapour pressure, density, and mean ionic activity coefficient data are used to determine the ion-ion and solvent-ion parameters, and mixed-salt electrolyte solutions (brines) are then treated predictively. We find that the resulting intermolecular potential models follow physical trends in terms of energies and ion sizes with a close relationship observed with well-established ionic diameters. A good description is obtained for the densities, mean ionic activity coefficients, and vapour pressures of the electrolyte solutions studied. The theory is also seen to provide excellent predictions of the osmotic coefficient and of the depression of the freezing temperature, and provides a qualitative estimate of the solvation free energy. The vapour pressure of aqueous brines is predicted accurately, as is the density of these solutions, although not at the highest pressures considered. Calculations for the vapour-liquid and liquid-liquid equilibria of salts in water+methanol and water+n-butan-1-ol are presented. In addition, it is shown that the salting-out of carbon dioxide in sodium chloride solutions is captured well using a predictive model.

  7. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  8. Improved method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  9. Precipitation of plutonium from acidic solutions using magnesium oxide

    SciTech Connect

    Jones, S.A.

    1994-12-05

    Magnesium oxide will be used as a neutralizing agent for acidic plutonium-containing solutions. It is expected that as the magnesium oxide dissolves, the pH of the solution will rise, and plutonium will precipitate. The resulting solid will be tested for suitability to storage. The liquid is expected to contain plutonium levels that meet disposal limit requirements.

  10. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  11. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  12. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  13. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  14. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  15. Effects of electrolyte and nutrient solutions on performance and metabolic balance.

    PubMed

    Johnson, H L; Nelson, R A; Consolazio, C F

    1988-02-01

    Three commercial sport drinks, solutions of their individual minerals and glucose, and water were used to maintain water balances in six men during 4 h of physical activity in a 35 degrees C room. Each solution was provided for 5 consecutive days to each man during the 12-wk study. Complete mineral and water balances (including sweat losses) were conducted. Oxygen consumption and carbon dioxide production were measured during two levels of sub-maximal and during a maximal treadmill performance test. All of the solutions, including water, were equally effective in maintaining water and mineral balances, and moderate physical performance while the men were consuming an adequate all liquid diet. All of the solutions containing carbohydrates increased respiratory exchange ratios. These increases were significant during maximal performance for only two of the commercial products. These two products also produced the higher values for most of the performance evaluations, although they were not generally significantly different from values obtained while other solutions or water were consumed. The major benefit of these commercial sport drinks are their prevention of hypohydration due to an increase in voluntary fluid intakes. PMID:3343913

  16. Simulated Surface Potentials at the Vapor-Water Interface for the KCl Aqueous Electrolyte Solution

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.; Jungwirth, Pavel

    2006-07-14

    Classical molecular dynamics simulations with polarizable potential models were carried out to quantitatively determine the effects of KCl salt concentrations on the electrostatic surface potentials of the vapor-liquid interface of water. To the best of our knowledge, the present work is the first calculation of the aqueous electrolyte surface potentials. Results showed that increased salt concentration enhanced the electrostatic surface potentials, in agreement with the corresponding experimental measurements. Furthermore, the decomposition of the potential drop into static charges and induced dipoles showed a very strong effect on the potential drop (an increase of {approx}1V per 1M) due to the double layers formed by KCl. However, this was mostly negated by the negative contribution from induced dipoles, resulting in a relatively small overall increase ({approx}0.05V per 1M) in potential drop with increased salt concentration. This work was supported by the Office of Basic Energy Sciences of the Department of Energy, in part by the Chemical Sciences program and in part by the Engineering and Geosciences Division. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. The funding of the Center for Biomolecules and Complex Molecular Systems is provided by the Ministry of Education of the Czech Republic under the project number LC512. The work performed at the Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic was a part of the research project Z40550506 and via the NSF-funded Environmental Molecular Science Institute (grants CHE 0431512 and 0209719) is gratefully acknowledged.

  17. A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II). Part VI. Studies of the lead dioxide positive electrode

    NASA Astrophysics Data System (ADS)

    Pletcher, Derek; Zhou, Hantao; Kear, Gareth; Low, C. T. John; Walsh, Frank C.; Wills, Richard G. A.

    The structure of thick lead dioxide deposits (approximately 1 mm) formed in conditions likely to be met at the positive electrode during the charge/discharge cycling of a soluble lead-acid flow battery is examined. Compact and well adherent layers are possible with current densities >100 mA cm -2 in electrolytes containing 0.1-1.5 M lead(II) and methanesulfonic acid concentrations in the range 0-2.4 M; the solutions also contained 5 mM hexadecyltrimethylammonium cation, C 16H 33(CH 3) 3N +. From the viewpoint of the layer properties, the limitation is stress within the deposit leading to cracking and lifting away from the substrate; the stress appears highest at high acid concentration and high current density. There are, however, other factors limiting the maximum current density for lead dioxide deposition, namely oxygen evolution and the overpotential associated with the deposition of lead dioxide. A strategy for operating the soluble lead-acid flow battery is proposed.

  18. Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate.

    PubMed

    Kolb, V; Orgel, L E

    1996-02-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%. PMID:11536746

  19. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  20. Titratable macroions in multivalent electrolyte solutions: Strong coupling dressed ion approach

    NASA Astrophysics Data System (ADS)

    Adžić, Nataša; Podgornik, Rudolf

    2016-06-01

    We present a theoretical description of the effect of polyvalent ions on the interaction between titratable macroions. The model system consists of two point-like macroions with dissociable sites, immersed in an asymmetric ionic mixture of monovalent and polyvalent salts. We formulate a dressed ion strong coupling theory, based on the decomposition of the asymmetric ionic mixture into a weakly electrostatically coupled monovalent salt and into polyvalent ions that are strongly electrostatically coupled to the titratable macro-ions. The charge of the macroions is not considered as fixed, but is allowed to respond to local bathing solution parameters (electrostatic potential, pH of the solution, and salt concentration) through a simple charge regulation model. The approach presented, yielding an effective polyvalent-ion mediated interaction between charge-regulated macroions at various solution conditions, describes the strong coupling equivalent of the Kirkwood-Schumaker interaction.

  1. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    DOE PAGES

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  2. Ion Association versus Ion Interaction Models in Examining Electrolyte Solutions: Application to Calcium Hydroxide Solubility Equilibrium

    ERIC Educational Resources Information Center

    Menéndez, M. Isabel; Borge, Javier

    2014-01-01

    The heterogeneous equilibrium of the solubility of calcium hydroxide in water is used to predict both its solubility product from solubility and solubility values from solubility product when inert salts, in any concentration, are present. Accepting the necessity of including activity coefficients to treat the saturated solution of calcium…

  3. REMOVAL OF CHLORIDE FROM ACIDIC SOLUTIONS USING NO2

    SciTech Connect

    Visser, A; Robert Pierce, R; James Laurinat, J

    2006-08-22

    Chloride (Cl{sup -}) salt processing in strong acids is used to recycle plutonium (Pu) from pyrochemical residues. The Savannah River National Laboratory (SRNL) is studying the potential application of nitrogen dioxide (NO{sub 2}) gas to effectively convert dissolved pyrochemical salt solutions to chloride-free solutions and improve recovery operations. An NO{sub 2} sparge has been shown to effectively remove Cl{sup -} from solutions containing 6-8 M acid (H{sup +}) and up to 5 M Cl{sup -}. Chloride removal occurs as a result of the competition of at least two reactions, one which is acid-dependent. Below 4 M H+, NO2 reacts with Cl- to produce nitrosyl chloride (ClNO). Between 6 M and 8 M H{sup +}, the reaction of hydrochloric acid (HCl) with nitric acid (HNO{sub 3}), facilitated by the presence of NO{sub 2}, strongly affects the rate of Cl{sup -} removal. The effect of heating the acidic Cl{sup -} salt solution without pre-heating the NO{sub 2} gas has minimal effect on Cl{sup -} removal rates when the contact times between NO{sub 2} and the salt solution are on the order of seconds.

  4. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins.

    PubMed

    Reif, Maria M; Winger, Moritz; Oostenbrink, Chris

    2013-02-12

    The GROMOS 54A8 force field [Reif et al. J. Chem. Theory Comput.2012, 8, 3705-3723] is the first of its kind to contain nonbonded parameters for charged amino acid side chains that are derived in a rigorously thermodynamic fashion, namely a calibration against single-ion hydration free energies. Considering charged moieties in solution, the most decisive signature of the GROMOS 54A8 force field in comparison to its predecessor 54A7 can probably be found in the thermodynamic equilibrium between salt-bridged ion pair formation and hydration. Possible shifts in this equilibrium might crucially affect the properties of electrolyte solutions or/and the stability of (bio)molecules. It is therefore important to investigate the consequences of the altered description of charged oligoatomic species in the GROMOS 54A8 force field. The present study focuses on examining the ability of the GROMOS 54A8 force field to accurately model the structural properties of electrolyte solutions, lipid bilayers, and proteins. It is found that (i) aqueous electrolytes involving oligoatomic species (sodium acetate, methylammonium chloride, guanidinium chloride) reproduce experimental salt activity derivatives for concentrations up to 1.0 m (1.0-molal) very well, and good agreement between simulated and experimental data is also reached for sodium acetate and methylammonium chloride at 2.0 m concentration, while not even qualitative agreement is found for sodium chloride throughout the whole range of examined concentrations, indicating a failure of the GROMOS 54A7 and 54A8 force-field parameter sets to correctly account for the balance between ion-ion and ion-water binding propensities of sodium and chloride ions; (ii) the GROMOS 54A8 force field reproduces the liquid crystalline-like phase of a hydrated DPPC bilayer at a pressure of 1 bar and a temperature of 323 K, the area per lipid being in agreement with experimental data, whereas other structural properties (volume per lipid, bilayer

  5. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins

    PubMed Central

    2013-01-01

    The GROMOS 54A8 force field [Reif et al. J. Chem. Theory Comput.2012, 8, 3705–3723] is the first of its kind to contain nonbonded parameters for charged amino acid side chains that are derived in a rigorously thermodynamic fashion, namely a calibration against single-ion hydration free energies. Considering charged moieties in solution, the most decisive signature of the GROMOS 54A8 force field in comparison to its predecessor 54A7 can probably be found in the thermodynamic equilibrium between salt-bridged ion pair formation and hydration. Possible shifts in this equilibrium might crucially affect the properties of electrolyte solutions or/and the stability of (bio)molecules. It is therefore important to investigate the consequences of the altered description of charged oligoatomic species in the GROMOS 54A8 force field. The present study focuses on examining the ability of the GROMOS 54A8 force field to accurately model the structural properties of electrolyte solutions, lipid bilayers, and proteins. It is found that (i) aqueous electrolytes involving oligoatomic species (sodium acetate, methylammonium chloride, guanidinium chloride) reproduce experimental salt activity derivatives for concentrations up to 1.0 m (1.0-molal) very well, and good agreement between simulated and experimental data is also reached for sodium acetate and methylammonium chloride at 2.0 m concentration, while not even qualitative agreement is found for sodium chloride throughout the whole range of examined concentrations, indicating a failure of the GROMOS 54A7 and 54A8 force-field parameter sets to correctly account for the balance between ion–ion and ion–water binding propensities of sodium and chloride ions; (ii) the GROMOS 54A8 force field reproduces the liquid crystalline-like phase of a hydrated DPPC bilayer at a pressure of 1 bar and a temperature of 323 K, the area per lipid being in agreement with experimental data, whereas other structural properties (volume per lipid

  6. Electrolytical properties of solutions of lithium hydroxide at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. N.; Lukashov, Yu. Yu.; Lukashov, Yu. M.

    2013-04-01

    This paper presents experimental and calculated data on dissociation constants and specific and molar (limiting) electric conductivity of aqueous and vapor solutions of LiOH at concentrations ranging from 7.24 × 10-7 to 3.34 × 10-1 mol/kg and temperatures ranging from 298.15 to 646.65 K on the saturation line. To extend the capabilities of estimating the physico-chemical processes at lithium water chemistry under conditions of high temperatures, the graphical dependence of the specific conductivity of aqueous solutions of LiOH on concentration and temperature is given, which shows the advisability of determining concentration from a specific conductivity in the region of a maximum of curves describing the dependence of the specific conductivity on temperature. The values of pH and pOH of solutions of LiOH within the indicated range of concentrations and temperatures have been calculated. It is shown that on dosing LiOH solutions into the boiler water at concentrations from 7.24 × 10-7 to 8.7 × 10-6 mol/kg the values of pH for LiOH and H2O are virtually the same at the temperature of 553 K, which scarcely affects the formation of protective lithium-ferrite film. Five relationships for calculating pH at different values of concentration and specific conductivity of LiOH solutions on isotherms ranging from 373.15 to 616.35 K have been worked out.

  7. Solubility of NaCl in aqueous electrolyte solutions from 10 to 100°C

    USGS Publications Warehouse

    Clynne, M.A.; Potter, R.W.; Haas, J.L.

    1981-01-01

    The solubilities of NaCl in aqueous KCl, MgCl2, CaCl2, and mixed CaCl2-KCl solutions have been determined from 10 to 100??C. The data were fit to an equation, and the equation was used to calculate values of the change in solubility of NaCl, ???[NaCl]/???T. These values are required for calculations of the rate of migration of fluids in a thermal gradient in rock salt. The data obtained here indicate that the values of ???[NaCl]/???T are 36-73% greater for solutions containing divalent ions than for the NaCl-H2O system.

  8. Electrokinetic potential and stability of SiC suspensions in electrolyte solutions

    NASA Technical Reports Server (NTRS)

    Eremenko, B. V.; Kolesnik, V. O.

    1984-01-01

    The dependence of zeta potential on pH of an aqueous Si carbide suspension was studied by an electroosmosis method. The effect of pH on the Si carbide electrical double layer is attributed to the participation of H and OH ions in the surface dissociation reactions of weak acid OH groups on an oxidized carbide surface. Maximum stability of the suspensions was observed at maximum negative zeta potentials.

  9. Does Nitric Acid Dissociate at the Aqueous Solution Surface?

    SciTech Connect

    Lewis, Tanza; Winter, Berndt; Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.; Hemminger, J. C.

    2011-11-03

    Nitric acid is a prevalent component of atmospheric aerosols, and the extent of nitric acid dissociation at aqueous interfaces is relevant to its role in heterogeneous atmospheric chemistry. Several experimental and theoretical studies have suggested that the extent of dissociation of nitric acid near aqueous interfaces is less than in bulk solution. Here, dissociation of HNO3 at the surface of aqueous nitric acid is quantified using X-ray photoelectron spectroscopy of the nitrogen local electronic structure. The relative amounts of undissociated HNO3(aq) and dissociated NO3-(aq) are identified by the distinguishable N1s core-level photoelectron spectra of the two species, and we determine the degree of dissociation, αint, in the interface (the first ~3 layers of solution) as a function of HNO3 concentration. Our measurements show that dissociation is decreased by approximately 20% near the solution interface compared with bulk, and furthermore that dissociation occurs even in the top-most solution layer. The experimental results are supported by first-principles MD simulations, which show that hydrogen-bonds between HNO3 and water molecules at the solution surface stabilize the molecular form at low concentration, in analogy to the stabilization of molecular HNO3 that occurs in bulk solution at high concentration. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  10. Graphene quantum dots as the electrolyte for solid state supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization.

  11. Graphene quantum dots as the electrolyte for solid state supercapacitors

    PubMed Central

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  12. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2015-12-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  13. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  14. Transport properties of long straight nano-channels in electrolyte solutions: a systematic approach.

    PubMed

    Yaroshchuk, Andriy E

    2011-10-14

    The principle of local thermodynamic equilibrium is systematically employed for obtaining various transport properties of long straight nano-channels. The concept of virtual solution is used to describe situations of non-negligible overlap of diffuse parts of electric double layers (EDLs) in nano-channels. Generic expressions for a variety of transport properties of long straight nano-channels are obtained in terms of quasi-equilibrium distribution coefficients of ions and functionals of quasi-equilibrium distribution of electrostatic potential. Further, the Poisson-Boltzmann approach is used to specify these expressions for long straight slit-like nano-channels. In the approximation of non-overlapped diffuse parts of double electric layers in nano-channels, simple analytical expressions are obtained for the apparent electrophoretic mobilities of (trace) analytes of arbitrary charge as well as for the salt reflection coefficient (osmotic pressure), salt diffusion permeability and electro-viscosity (electrokinetic energy conversion). The approximate solutions are compared with the results of rigorous solution of non-linearized Poisson-Boltzmann equation, and the accuracy of approximation is shown to be typically excellent when the nano-channel half-height exceeds ca.3 Debye screening lengths. Due to non-negligible electrostatic adsorption of ions by nano-channels, the apparent electrophoretic mobilities of counter-ionic analytes in nano-channels are smaller than in micro-channels whereas those of co-ionic analytes are larger. This dependence on the charge is useful for the separation of analytes of close electrophoretic mobilities. The osmotic pressure is shown to be positive, negative or pass through maxima as a function of applied salt-concentration difference within a fairly narrow range of ratios of nano-channel height to the Debye screening length. The diffusion permeability of charged nano-channels to single salts is demonstrated (for the first time) to be

  15. Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-13

    Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

  16. γ-Irradiation of malic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Negron-Mendoza, Alicia; Graff, Rebecca L.; Ponnamperuma, Cyril

    1980-12-01

    The γ-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the γ-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  17. Voluntary drinking behaviour, fluid balance and psychological affect when ingesting water or a carbohydrate-electrolyte solution during exercise.

    PubMed

    Peacock, Oliver J; Thompson, Dylan; Stokes, Keith A

    2012-02-01

    This study investigated the effects of drink composition on voluntary intake, hydration status, selected physiological responses and affective states during simulated gymnasium-based exercise. In a randomised counterbalanced design, 12 physically active adults performed three 20-min intervals of cardiovascular exercise at 75% heart rate maximum, one 20-min period of resistance exercise and 20 min of recovery with ad libitum access to water (W), a carbohydrate-electrolyte solution (CES) or with no access to fluids (NF). Fluid intake was greater with CES than W (1706±157 vs. 1171±152 mL; P<0.01) and more adequate hydration was achieved in CES trials (NF vs. W vs. CES: -1668±73 vs. -700±99 vs. -273±78 g; P<0.01). Plasma glucose concentrations were highest with CES (CES vs. NF vs. W: 4.26±0.12 vs. 4.06±0.08 vs. 3.97±0.10 mmol/L; P<0.05). Pleasure ratings were better maintained with ad libitum intake of CES (CES vs. NF vs. W: 2.72±0.23 vs. 1.09±0.20 vs. 1.74±0.33; P<0.01). Under conditions of voluntary drinking, CES resulted in more adequate hydration and a better maintenance of affective states than W or NF during gymnasium-based exercise.

  18. Solid polymer electrolyte from phosphorylated chitosan

    SciTech Connect

    Fauzi, Iqbal Arcana, I Made

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  19. Direct electron transfer involving free-solute ferrocene in fluid electrolyte on an oxocuprate (Bi(Pb) 2223) electrode in the superconducting state

    SciTech Connect

    Green, S.J.; Rosseinsky, D.R.; Toohey, M.J.

    1992-11-18

    High critical temperatures T{sub c} invite the probing of the electronic spectra of superconducting oxocuprates by electrochemical study of charge transfer at the superconductor/electrolyte interface. Hitherto solid electrolytes or frozen aqueous glasses have been employed, the latter involving irresolvably complex proton reductions or poorly-resolved Fe{sup II/III} processes. Electron transfer affected between a superconducting electrode and free electroactive species in a fluid solution offers a wider choice of systems and more intimate electrode/electrolyte contact. Following experimental advances i-v, we can now report free-solute ferrocene electrochemistry in fluid electrolyte at 102-104 K (i.e., < T{sub c}) on superconducting Bi(Pb) 2223 oxocuprate itself (Pb{sub 0.34}Bi{sub 1.84}Sr{sub 1.91}Ca{sub 2.03}Cu{sub 3.06}O{sub x}), T{sub c} being established as 105 K by four-probe resistivity measurements. 15 refs., 3 figs.

  20. Highly accurate boronimeter assay of concentrated boric acid solutions

    SciTech Connect

    Ball, R.M. )

    1992-01-01

    The Random-Walk Boronimeter has successfully been used as an on-line indicator of boric acid concentration in an operating commercial pressurized water reactor. The principle has been adapted for measurement of discrete samples to high accuracy and to concentrations up to 6000 ppm natural boron in light water. Boric acid concentration in an aqueous solution is a necessary measurement in many nuclear power plants, particularly those that use boric acid dissolved in the reactor coolant as a reactivity control system. Other nuclear plants use a high-concentration boric acid solution as a backup shutdown system. Such a shutdown system depends on rapid injection of the solution and frequent surveillance of the fluid to ensure the presence of the neutron absorber. The two methods typically used to measure boric acid are the chemical and the physical methods. The chemical method uses titration to determine the ionic concentration of the BO[sub 3] ions and infers the boron concentration. The physical method uses the attenuation of neutrons by the solution and infers the boron concentration from the neutron absorption properties. This paper describes the Random-Walk Boronimeter configured to measure discrete samples to high accuracy and high concentration.

  1. Radiolysis of aqueous solutions of 2-aminoethanethiosulfuric acid. [Gamma radiation

    SciTech Connect

    Grachev, S.A.; Koroleva, I.K.; Kropachev, E.V.; Litvyakova, G.I.

    1982-07-10

    In the radiolysis products of aerated and deaerated solutions of the 2-aminoethanethiosulfuric acid the authors have identified cystamine monoxide, cystamine, taurine, mercamine, the sulfate ion, the sulfite ion, and the dithionate ion. The yields of these products under different conditions have been determined. Results indicated that the sulfate ion is formed both from the divalent and the hexavalent sulfur atom of the 2-aminoethanethiosulfuric acid moelcule. A possible radiolysis mechanism is discussed.

  2. The effect of porosity on performance of phosphoric acid doped polybenzimidazole polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Celik, Muhammet; Genc, Gamze; Elden, Gulsah; Yapici, Huseyin

    2016-03-01

    A polybenzimidazole (PBI) based polymer electrolyte fuel cells, which called high temperature polymer electrolyte fuel cells (HT-PEMS), operate at higher temperatures (120-200°C) than conventional PEM fuel cells. Although it is known that HT-PEMS have some of the significant advantages as non-humidification requirements for membrane and the lack of liquid water at high temperature in the fuel cell, the generated water as a result of oxygen reduction reaction causes in the degradation of these systems. The generated water absorbed into membrane side interacts with the hydrophilic PBI matrix and it can cause swelling of membrane, so water transport mechanism in a membrane electrode assembly (MEA) needs to be well understood and water balance must be calculated in MEA. Therefore, the water diffusion transport across the electrolyte should be determined. In this study, various porosity values of gas diffusion layers are considered in order to investigate the effects of porosity on the water management for two phase flow in fuel cell. Two-dimensional fuel cell with interdigitated flow-field is modelled using COMSOL Multiphysics 4.2a software. The operating temperature and doping level is selected as 160°C and 6.75mol H3PO4/PBI, respectively.

  3. Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements.

    PubMed Central

    Kuehner, D E; Heyer, C; Rämsch, C; Fornefeld, U M; Blanch, H W; Prausnitz, J M

    1997-01-01

    The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. PMID:9414232

  4. A growth mechanism of porous film formed on Al in 0.6 M oxalic acid electrolyte.

    PubMed

    Han, Seong Ho; Kim, Hyoung Chan

    2012-04-01

    Understanding of mechanism of porous film formation is of fundamental importance for anodizing in general because, the onset of pore initiation terminates the barrier film growth process over the macroscopic metal surface. Several mechanisms have been proposed to explain pore formation. They include direct injection of aluminum ions into electrolyte and a field-assisted dissolution mechanism. High-resolution scanning electron microscopy of anodized surfaces and direct TEM of ion beam thinned films and ultrarmicrotomed film sections have been employed to gain further insight into the mechanism of initial porous film growth in 0.6 M oxalic acid. From detailed examination of the behavior of the xenon-tagged layer in the film during pore initiation and development in oxalic acid, the film structure of the barrier layer is found to be unstable during pore initiation and the instability of the film structure is possibly related to the field-assisted structure modification process.

  5. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hour run in fed endurance-trained runners.

    PubMed

    Rollo, Ian; Williams, Clyde

    2010-04-01

    The aim of this study was to determine whether the ingestion of a carbohydrate-electrolyte solution would improve 1-h running performance in runners who had consumed a meal 3 h before exercise. Ten endurance-trained male runners completed two trials that required them to run as far as possible in 1 h on an automated treadmill that allowed changes in running speed without manual input. Following the consumption of the pre-exercise meal, which provided 2.5 g carbohydrate per kilogram body mass (BM), runners ingested either a 6.4% carbohydrate-electrolyte solution or placebo solution (i.e. 8 ml x kg BM(-1)) 30 min before and 2 ml x kg BM(-1) at 15-min intervals throughout the 1-h run. There were no differences in total distance covered (placebo: 13,680 m, s = 1525; carbohydrate: 13,589 m, s = 1635) (P > 0.05). Blood glucose and lactate concentration, respiratory exchange ratio, and carbohydrate oxidation during exercise were not different between trials (P > 0.05). There were also no differences in ratings of perceived exertion, felt arousal or pleasure-displeasure between trials (P > 0.05). In conclusion, the ingestion of a 6.4% carbohydrate-electrolyte solution did not improve 1-h running performance when a high carbohydrate meal was consumed 3 h before exercise.

  6. Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Huanhuan; Li, Hongxiao; Fan, Li-Zhen; Shi, Qiao

    2014-03-01

    Gel polymer electrolytes (GPE) composed of triethylene glycol diacetate (TEGDA)-2-propenoic acid butyl ester (BA) copolymer and commercial used liquid organic electrolyte are prepared via in situ polymerization. The ionic conductivity of the as-prepared GPE can reach 5.5 × 10-3 S cm-1 with 6 wt% monomers and 94 wt% liquid electrolyte at 25 °C. Additionally, the temperature dependence of the ionic conductivity is consistent with an Arrhenius temperature behavior in a temperature range of 20-90 °C. Furthermore, the electrochemical stability window of the GPE is 5 V at 25 °C. A Li|GPE|(Li[Li1/6Ni1/4Mn7/12]O2) cell has been fabricated, which shows good charge-discharge properties and stable cycle performance compared to liquid electrolyte under the same test conditions.

  7. Titania nanotubes from weak organic acid electrolyte: fabrication, characterization and oxide film properties.

    PubMed

    Munirathinam, Balakrishnan; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO2 nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5h, 1h, 2h and 3h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600°C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10(5)-10(6)Ωcm(2)) and lower passive current density (10(-7)Acm(-2)) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity.

  8. Fluorinated Alkoxide-Based Magnesium-Ion Battery Electrolytes that Demonstrate Li-Ion-Battery-Like High Anodic Stability and Solution Conductivity.

    PubMed

    Crowe, Adam J; Stringham, Kyle K; Bartlett, Bart M

    2016-09-01

    Based on DFT predictions, a series of highly soluble fluorinated alkoxide-based electrolytes were prepared, examined electrochemically, and reversibly cycled. The alcohols react with ethylmagnesium chloride to generate a fluoroalkoxy-magnesium chloride intermediate, which subsequently reacts with aluminum chloride to generate the electrolyte. Solutions starting from a 1,1,1,3,3,3-hexafluoro-2-methylpropan-2-ol precursor exhibit high anodic stability, 3.2 V vs Mg(2+/0), and a record 3.5 mS/cm solution conductivity. Excellent galvanostatic cycling and capacity retention (94%) is observed with more than 300 h of cycle time while employing the standard Chevrel phase-Mo6S8 cathode material.

  9. Jejunal mucosal lactase activity from birth to three weeks in conventionally raised calves fed an electrolyte solution on days 5, 6 and 7 instead of milk.

    PubMed

    St Jean, G D; Schmall, L M; Rings, D M; Hoffsis, G F; Hull, B L

    1991-01-01

    The purpose of this study was to evaluate the effect of withdrawal of lactose from the diet for 72 hours on lactase activity in the jejunal mucosa of conventionally raised calves. The descending portion of the duodenum of six Holstein calves less than 24 hours old was cannulated. The calves were fed milk except on days 5, 6 and 7 when they were given the same volume of an electrolyte solution. Sequential biopsy specimens of the proximal jejunal mucosa were obtained for three weeks and the lactase activity determined. Lactase activity was highest on day 1 and a trend toward decreased lactase activity from birth until three weeks was observed. Mean lactase activity was significantly (p less than 0.05) higher for days 1, and 3 compared to days 9, 13 and 17. The withdrawal of milk and replacement by an electrolyte solution during three days had no significant effect on jejunal mucosal lactase activity in neonatal calves.

  10. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  11. Fluid, electrolyte, and acid-base balances in three-day, combined-training horses.

    PubMed

    White, S L

    1998-04-01

    Horses competing in 3-day, combined-training events develop a metabolic acidosis that is partially compensated for by a respiratory alkalosis immediately after phases B and D. By the end of phase C and 30 minutes to 2 hours after phase D, the acidosis is resolved by the oxidation of lactate, and a metabolic alkalosis prevails. A reduction in TBW and cation content occurs, which often is not replenished 12 to 24 hours after the event, even though the serum or plasma concentration of various constituents may be within normal limits. Hypochloremia and hypocalcemia, however, may persist 12 or more hours after the speed and endurance test. All of the data cited in this article are from horses that successfully completed their respective tests. Nevertheless, some horses developed substantial fluid and cation losses. In horses that are not well conditioned or in competitions in which terrain, footing, or hot environments increase the thermal load or decrease heat loss, greater losses of fluids and electrolytes can be expected. Body weight losses exceeding 5% and cation losses exceeding 4000 mEq/L occur in endurance horses suffering from exhaustion and synchronous diaphragmatic flutter. In one study, two thirds of the Na+ lost during exercise-induced sweating in cool, dry conditions was replenished from salt supplements added to a balanced forage and concentrated diet. Consequently, horses in regular training and competition may benefit from salt supplementation. The composition of the salt supplement and the amount fed should be based on the composition of the horse's diet, degree of work, and environmental conditions. Horses competing in a 3-day, combined-training event may be expected to have persistent losses of weight and cations, particularly if conditions result in heavy sweating. Many horses in the field studies had minimal changes in weight and cation balance compared with pre-event values. The diet and electrolyte supplementation of the horses in the majority of

  12. A fuel cell operating between room temperature and 250 °C based on a new phosphoric acid based composite electrolyte

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Xu, Xiaoxiang; Tao, Shanwen; Irvine, John T. S.

    A phosphoric acid based composite material with core-shell microstructure has been developed to be used as a new electrolyte for fuel cells. A fuel cell based on this electrolyte can operate at room temperature indicating leaching of H 3PO 4 with liquid water is insignificant at room temperature. This will help to improve the thermal cyclability of phosphoric acid based electrolyte to make it easier for practical use. The conductivity of this H 3PO 4-based electrolyte is stable at 250 °C with addition of the hydrophilic inorganic compound BPO 4 forming a core-shell microstructure which makes it possible to run a PAFC at a temperature above 200 °C. The core-shell microstructure retains after the fuel cell measurements. A power density of 350 mW/cm 2 for a H 2/O 2 fuel cell has been achieved at 200 °C. The increase in operating temperature does not have significant benefit to the performance of a H 2/O 2 fuel cell. For the first time, a composite electrolyte material for phosphoric acid fuel cells which can operate in a wide range of temperature has been evaluated but certainly further investigation is required.

  13. Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid

    NASA Astrophysics Data System (ADS)

    Cecchetto, Laura; Salomon, Mark; Scrosati, Bruno; Croce, Fausto

    2012-09-01

    Recent studies have clearly demonstrated that cyclic and linear carbonates are unstable when used in rechargeable Li-air batteries employing aprotic solvents mostly due to the cathodic formation of superoxide during the oxygen reduction reaction. In particular, it has been ascertained that nucleophilic attack by superoxide anion radical, O2-rad , at O-alkyl carbon is a common mechanism of decomposition of organic carbonates. Moreover, theoretical calculations showed that ether chemical functionalities are stable against nucleophilic substitution induced by superoxide. Aim of this study is to report on a new electrolyte solution for Li-air battery formed by a mixture of an ether-based aprotic solvent with an ionic liquid (IL). The IL-based electrolyte was obtained by mixing the pure ionic liquid N-methyl-(n-butyl) pyrrolidinium bis(trifluoromethane sulfonyl) imide (here denoted as PYR14TFSI) to a 0.91 M solution of lithium triflate (LiCF3SO3) in tetra ethylene glycol dimethyl etcher (TEGDME). We observed that the presence of IL beneficially affects the kinetics and the reversibility of the oxygen reactions involved at the cathode. The most significant result being a lower overvoltage for the charge reaction, compared to a Li/air cell containing the same electrolyte solution without IL.

  14. Characterization of metal ion-nucleic acid interactions in solution.

    PubMed

    Pechlaner, Maria; Sigel, Roland K O

    2012-01-01

    Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.

  15. Effect of alumina on triethylene glycol diacetate-2-propenoic acid butyl ester composite polymer electrolytes for flexible lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qiujun; Song, Wei-Li; Fan, Li-Zhen; Shi, Qiao

    2015-04-01

    Triethylene glycol diacetate-2-propenoic acid butyl ester (TEGDA-BA) based composite polymer electrolytes (CPE) are fabricated by incorporating alumina (Al2O3) nanoparticles (average particle size 10-20 nm) as inorganic filler via in situ polymerization. Effects of Al2O3 concentration on ionic conductivities, Li+ transfer numbers and charge/discharge properties are studied in details. Due to the uniformly dispersed Al2O3 nanoparticles, significant improvements in the mechanical flexibility and bendability are presented in the resulting polymer electrolytes. The CPE with 5 wt% Al2O3 nanoparticles exhibits the highest ionic conductivity up to 6.02 × 10-3 S cm-1 at 25 °C and the highest Li+ transference number (0.675), coupled with the most stable electrochemical window (>4.5 V vs. Li/Li+). With the presence of Al2O3, the growth of interface resistance is retarded, which increases the interface stability. The Li|CPE|Li4Ti5O12 and Li|CPE|LiFePO4 cells demonstrate remarkably stable charge/discharge performance and excellent capacity retention during cycling test. The results suggest that the CPE holds great application potential in flexible lithium ion batteries.

  16. Maintaining hydration with a carbohydrate-electrolyte solution improves performance, thermoregulation, and fatigue during an ice hockey scrimmage.

    PubMed

    Linseman, Mark E; Palmer, Matthew S; Sprenger, Heather M; Spriet, Lawrence L

    2014-11-01

    Research in "stop-and-go" sports has demonstrated that carbohydrate ingestion improves performance and fatigue, and that dehydration of ∼1.5%-2% body mass (BM) loss results in decreased performance, increased fatigue, and increased core temperature. The purpose of this investigation was to assess the physiological, performance, and fatigue-related effects of maintaining hydration with a carbohydrate-electrolyte solution (CES) versus dehydrating by ∼2% BM (no fluid; NF) during a 70-min ice hockey scrimmage. Skilled male hockey players (n = 14; age, 21.3 ± 0.2 years; BM, 80.1 ± 2.5 kg; height, 182.0 ± 1.2 cm) volunteered for the study. Subjects lost 1.94% ± 0.1% BM in NF, and 0.12% ± 0.1% BM in CES. Core temperature (Tc) throughout the scrimmage (10-50 min) and peak Tc (CES: 38.69 ± 0.10 vs. NF: 38.92 ± 0.11 °C; p < 0.05) were significantly reduced in CES compared with NF. Players in CES had increased mean skating speed and time at high effort between 30-50 min of the scrimmage. They also committed fewer puck turnovers and completed a higher percentage of passes in the last 20 min of play compared with NF. Postscrimmage shuttle skating performance was improved in CES versus NF and fatigue was lower following the CES trial. The results indicated that ingesting a CES to maintain BM throughout a 70-min hockey scrimmage resulted in improved hockey performance and thermoregulation, and decreased fatigue as compared with drinking no fluid and dehydrating by ∼2%.

  17. The effect of fatal carbon monoxide poisoning on the equilibria between cell membranes and the electrolyte solution.

    PubMed

    Petelska, Aneta D; Kotyńska, Joanna; Figaszewski, Zbigniew A

    2015-02-01

    The effect of fatal carbon monoxide poisoning on equilibria between cell membranes and surrounding ions was described using a theoretical four-equilibria model. The model was developed to obtain parameters characterizing the interactions between solution ions and erythrocyte or thrombocyte membrane surface. The parameters are the total surface concentrations of both acidic and basic groups C A, C B and their association constants with solution ions K AH, K BOH. These parameters were used to calculate the theoretical values of surface charge density. The model was validated by comparison of these values to experimental data, which were determined from the electrophoretic mobility measurements of the blood cells. The experimental and theoretical surface charge density values agree at pH 2-8, and at higher pH, the deviation was observed.

  18. Evaporation kinetics of acetic acid-water solutions

    NASA Astrophysics Data System (ADS)

    Duffey, K.; Wong, N.; Saykally, R.; Cohen, R. C.

    2012-12-01

    The transport of water molecules across vapor-liquid interfaces in the atmosphere is a crucial step in the formation and evolution of cloud droplets. Despite decades of study, the effects of solutes on the mechanism and rate of evaporation and condensation remain poorly characterized. The present work aims to determine the effect of atmospherically-relevant solutes on the evaporation rate of water. In our experiments, we create a train of micron-sized droplets and measure their temperature via Raman thermometry as they undergo evaporation without condensation. Analysis of the cooling rate yields the evaporation coefficient (γ). Previous work has shown that inorganic salts have little effect on γ, with surface-adsorbing anions causing a slight reduction in the coefficient from that measured for pure water. Organic acids are ubiquitous in aqueous aerosol and have been shown to disrupt the surface structure of water. Here we describe measurements of the evaporation rate of acetic acid solutions, showing that acetic acid reduces γ to a larger extent than inorganic ions, and that γ decreases with increasing acetic acid concentration.

  19. Solution Preserves Nucleic Acids in Body-Fluid Specimens

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.

    2004-01-01

    A solution has been formulated to preserve deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in specimens of blood, saliva, and other bodily fluids. Specimens of this type are collected for diagnostic molecular pathology, which is becoming the method of choice for diagnosis of many diseases. The solution makes it possible to store such specimens at room temperature, without risk of decomposition, for subsequent analysis in a laboratory that could be remote from the sampling location. Thus, the solution could be a means to bring the benefits of diagnostic molecular pathology to geographic regions where refrigeration equipment and diagnostic laboratories are not available. The table lists the ingredients of the solution. The functions of the ingredients are the following: EDTA chelates divalent cations that are necessary cofactors for nuclease activity. In so doing, it functionally removes these cations and thereby retards the action of nucleases. EDTA also stabilizes the DNA helix. Tris serves as a buffering agent, which is needed because minor contaminants in an unbuffered solution can exert pronounced effects on pH and thereby cause spontaneous degradation of DNA. SDS is an ionic detergent that inhibits ribonuclease activity. SDS has been used in some lysis buffers and as a storage buffer for RNA after purification. The use of the solution is straightforward. For example, a sample of saliva is collected by placing a cotton roll around in the subject's mouth until it becomes saturated, then the cotton is placed in a collection tube. Next, 1.5 mL of the solution are injected directly into the cotton and the tube is capped for storage at room temperature. The effectiveness of the solution has been demonstrated in tests on specimens of saliva containing herpes simplex virus. In the tests, the viral DNA, as amplified by polymerase chain reaction, was detected even after storage for 120 days.

  20. Electrolyte and acid/base changes in dogs undergoing autologous blood transfusion via a cell salvage device.

    PubMed

    Lamb, Jodie L; Thieman Mankin, Kelley M; Levine, Gwendolyn J; Thompson, James

    2015-09-01

    This study reports electrolyte and acid/base disturbances observed in clinical cases receiving autologous transfusion of blood processed by a cell salvage device. The records of 12 client-owned dogs that received an autologous transfusion via a cell salvage device with pre- and post-autologous transfusion blood work available were reviewed. Blood work from the 12 case dogs was compared to blood work from 12 control dogs with similar diseases. Control dogs received similar surgical treatment and were administered a similar volume per kg of packed red blood cells as case dogs, but did not undergo autologous transfusion. Case dogs that received autologous transfusion via a cell salvage device were significantly more likely to experience a decrease in ionized calcium and magnesium levels post-transfusion than were control dogs. Calcium and magnesium levels should be closely monitored during and after autologous transfusion. Calcium and/or magnesium supplementation may be required.

  1. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  2. Microfluidic hydrogen fuel cell with a liquid electrolyte.

    PubMed

    Jayashree, Ranga S; Mitchell, Michael; Natarajan, Dilip; Markoski, Larry J; Kenis, Paul J A

    2007-06-19

    We report the design and characterization of a microfluidic hydrogen fuel cell with a flowing sulfuric acid solution instead of a Nafion membrane as the electrolyte. We studied the effect of cell resistance, hydrogen and oxygen flow rates, and electrolyte flow rate on fuel cell performance to obtain a maximum power density of 191 mW/cm2. This flowing electrolyte design avoids water management issues, including cathode flooding and anode dry out. Placing a reference electrode in the outlet stream allows for independent analysis of the polarization losses on the anode and the cathode, thereby creating an elegant catalyst characterization and optimization tool.

  3. Method for extracting lanthanides and actinides from acid solutions

    DOEpatents

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  4. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  5. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  6. Planetary Resources and Astroecology. Planetary Microcosm Models of Asteroid and Meteorite Interiors: Electrolyte Solutions and Microbial Growth- Implications for Space Populations and Panspermia

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.

    2002-03-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain >3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 × 105 algae and 6 × 106 bacteria and fungi for long periods (>8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 1018 kg, comprising 1032 microorganisms and a human population of 1014. The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia.

  7. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  8. Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy

    SciTech Connect

    Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

    2014-02-21

    One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

  9. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    PubMed

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles. PMID:26990320

  10. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    PubMed

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles.

  11. DC diaphragm discharge in water solutions of selected organic acids

    NASA Astrophysics Data System (ADS)

    Vyhnankova, Edita J.; Hammer, Malte U.; Reuter, Stephan; Krcma, Frantisek

    2015-07-01

    Effect of four simple organic acids water solution on a DC diaphragm discharge was studied. Efficiency of the discharge was quantified by the hydrogen peroxide production determined by UV-VIS spectrometry of a H2O2 complex formed with specific titanium reagent. Automatic titration was used to study the pH behaviour after the plasma treatment. Optical emission spectroscopy overview spectra were recorded and detailed spectra of OH band and Hβ line were used to calculate the rotational temperature and comparison of the line profile (reflecting electron concentration) in the acid solutions. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  12. Interaction of Ethyl Alcohol Vapor with Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun

    2006-01-01

    We investigated the uptake of ethyl alcohol (ethanol) vapor by sulfuric acid solutions over the range approx.40 to approx.80 wt % H2SO4 and temperatures of 193-273 K. Laboratory studies used a fast flow-tube reactor coupled to an electron-impact ionization mass spectrometer for detection of ethanol and reaction products. The uptake coefficients ((gamma)) were measured and found to vary from 0.019 to 0.072, depending upon the acid composition and temperature. At concentrations greater than approx.70 wt % and in dilute solutions colder than 220 K, the values approached approx.0.07. We also determined the effective solubility constant of ethanol in approx.40 wt % H2SO4 in the temperature range 203-223 K. The potential implications to the budget of ethanol in the global troposphere are briefly discussed.

  13. An ellipsometric study of mild steel in hydrochloric acid solutions

    NASA Astrophysics Data System (ADS)

    Brakenbury, W. R. E.; Grzeskowiak, R.

    1986-04-01

    An ellipsometric study has been made on mild steel in hydrochloric acid solutions, in a situation where film growth is not expected. The results are considered to be due to roughening and have been interpreted in terms of a Fenstermaker-McCrackin type roughening model. It appears that the ellipsometer is sensitive mainly to a small scale roughening consisting of etch pits of a few nanometers in dimensions rather than the larger roughened features easily seen by microscopic examination.

  14. Recovery of rhenium from sulfuric acid solutions with activated coals

    SciTech Connect

    Troshkina, I.D.; Naing, K.Z.; Ushanova, O.N.; P'o, V.; Abdusalomov, A.A.

    2006-09-15

    Equilibrium and kinetic characteristics of rhenium sorption from sulfuric acid solutions (pH 2) by activated coals produced from coal raw materials (China) were studied. Constants of the Henry equation describing isotherms of rhenium sorption by activated coals were calculated. The effective diffusion coefficients of rhenium in the coals were determined. The dynamic characteristics of rhenium sorption and desorption were determined for the activated coal with the best capacity and kinetic characteristics.

  15. Effect of hydrochloric acid on sound absorption and relaxation frequency in magnesium sulfate solutions

    NASA Astrophysics Data System (ADS)

    Fisher, F. H.

    2002-05-01

    The epic work of Kurtze and Tamm on sound absorption spectroscopy in divalent sulfate electrolyte solutions (1953) from the low-kHz region up to over 200 MHz revealed astonishing variability at frequencies below 10 MHz and a common relaxation frequency at about 200 MHz. For magnesium sulfate [Epsom salts] solutions, the salt producing 30× the absorption of fresh water below the 100-kHz region in the oceans at low concentrations [~0.02 moles/liter], Kurtze and Tamm investigated the effects of adding HC1 or H2SO4. They found that as formal pH increased, the results were different for these acids in reducing the sound absorption. Fisher (1983) found that if the absorption was plotted against free hydrogen, ion concentration was the same. We used the 100-liter titanium sphere, a spare ballast tank from the WHOI submarine ALVIN. With precise temperature control, we found an increase in the relaxation frequency as HC1 was added in conjunction with the reduction in sound absorption. The results will be presented and an explanation will be proposed in the context of the Eigen and Tamm multistate dissociation model for MgSO4 (1962) which explains the effects of pressure on both absorption and conductance. [Work supported by ONR.] The author acknowledges C. C. Hsu for his work on this project.

  16. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    NASA Astrophysics Data System (ADS)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  17. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  18. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions

    SciTech Connect

    Ma, Cheng; Rangasamy, Ezhiylmurugan; Liang, Chengdu; Sakamoto, Jeffrey; More, Karren Leslie; Chi, Miaofang

    2014-10-21

    Batteries with an aqueous catholyte and a Li metal anode have attracted interest owing to their exceptional energy density and high charge/discharge rate. The long-term operation of such batteries requires that the solid electrolyte separator between the anode and aqueous solutions must be compatible with Li and stable over a wide pH range. Unfortunately, no such compound has yet been reported. In this study, an excellent stability in neutral and strongly basic solutions was observed when using the cubic Li7La3Zr2O12 garnet as a Li-stable solid electrolyte. The material underwent a Li+/H+ exchange in aqueous solutions. Nevertheless, its structure remained unchanged even under a high exchange rate of 63.6%. When treated with a 2 M LiOH solution, the Li+/H+ exchange was reversed without any structural change. Furthermore, these observations suggest that cubic Li7La3Zr2O12 is a promising candidate for the separator in aqueous lithium batteries.

  19. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ebenezer, D.; Deshpande, Abhijit P.; Haridoss, Prathap

    2016-02-01

    Proton exchange membrane fuel cell (PEMFC) performance with a cross-linked poly (vinyl alcohol)/sulfosuccinic acid (PVA/SSA) polymer is compared with Nafion® N-115 polymer. In this study, PVA/SSA (≈5 wt. % SSA) polymer membranes are synthesized by a solution casting technique. These cross-linked PVA/SSA polymers and Nafion are used as electrolytes and ionomers in catalyst layers, to fabricate different membrane electrode assemblies (MEAs) for PEMFCs. Properties of each MEA are evaluated using scanning electron microscopy, contact angle measurements, impedance spectroscopy and hydrogen pumping technique. I-V characteristics of each cell are evaluated in a H2-O2 fuel cell testing fixture under different operating conditions. PVA/SSA ionomer causes only an additional ≈4% loss in the anode performance compared to Nafion ionomer. The maximum power density obtained from PVA/SSA based cells range from 99 to 117.4 mW cm-2 with current density range of 247 to 293.4 mA cm-2. Ionic conductivity of PVA/SSA based cells is more sensitive to state of hydration of MEA, while maximum power density obtained is less sensitive to state of hydration of MEA. Maximum power density of cross-linked PVA/SSA membrane based cell is about 35% that of Nafion® N-115 based cell. From these results, cross-linked PVA/SSA polymer is identified as potential candidate for PEMFCs.

  20. The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes

    SciTech Connect

    Pearman, Benjamin P; Mohajeri, Nahid; Slattery, Darlene; Hampton, Michael; Seal, Sudipta; Cullen, David A

    2013-01-01

    Perfluorosulfonic acid membranes, the polymer of choice for polymer electrolyte hydrogen fuel cells, are susceptible to degradation due to attacks on polymer chains from radicals. Mitigation of this attack by cerium-based radical scavengers is an approach that has shown promise. In this work, two formulations of single-crystal cerium oxide nanoparticles, with an order of magnitude difference in particle size, are incorporated into said membranes and subjected to proton conductivity measurements and ex-situ durability tests. We found that ceria is reduced to Ce(III) ions in the acidic environment of a heated, humidified membrane which negatively impacts proton conductivity. In liquid and gas Fenton testing, fluoride emission is reduced by an order of magnitude, drastically increasing membrane longevity. Side-product analysis demonstrated that in the liquid Fenton test, the main point of attack are weak polymer end groups, while in the gas Fenton test, there is additional side-chain attack. Both mechanisms are mitigated by the addition of the ceria nanoparticles, whereby the extent of the durability improvement is found to be independent of particle size.

  1. Effect of acid dopants in biodegradable gel polymer electrolyte and the performance in an electrochemical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Sudhakar, Y. N.; Selvakumar, M.; Krishna Bhat, D.

    2015-09-01

    Proton-conducting biodegradable gellan gum gel polymer electrolytes (GPEs) have been prepared using three different dopants, namely ortho-phosphoric (o-H3PO4), sulfuric (H2SO4) and hydrochloric acids (HCl). The GPEs were cross-linked using borax. The polymeric gels were characterized by spectroscopic, thermal, ionic conductivities and dielectric measurements. Proton conductivity was in the range of 5.1 × 10-3 to 3.7 × 10-4 s cm-1 and activation energies were between 0.14 meV and 0.19 meV, at different temperatures. Among the doped acids, the H3PO4 doped GPE exhibited thermal stability at varying temperature. Electrochemical double layer capacitors (EDLCs) were fabricated using activated carbon as electrode material and GPEs. The EDLCs were tested using cyclic voltammetry, ac impedance spectroscopic and galvanostatic charge-discharge techniques. The maximum specific capacitance value was 146 F g-1 at a scan rate of 2 mV s-1. Quite stable values were obtained at a constant current density up to 1000 cycles.

  2. Selection of background electrolyte for CZE analysis by a chemometric approach. Part I. Separation of a mixture of acidic non-steroidal anti-inflammatory drugs.

    PubMed

    Furlanetto, Sandra; Lanteri, Silvia; Orlandini, Serena; Gotti, Roberto; Giannini, Iacopo; Pinzauti, Sergio

    2007-03-12

    This paper is the first part of the presentation of a chemometric approach for the rapid selection of a suitable background electrolyte (BGE) in CZE analysis of small drug molecules. The strategy is based on principal component analysis and experimental design. In this first section, the approach is applied to the analysis of a mixture of six arylpropionic anti-inflammatory drugs. Initially, 222 possible aqueous background electrolytes (objects) were characterized using as descriptors pH, conductivity, ionic strength and relative viscosity. In order to allow the dissociation of the acidic analytes, this original data set was reduced to 154 background electrolytes with pH values higher than or equal to 5. Principal component analysis made it possible to graphically represent the new set of objects, described by the four variables, in a two-dimensional space. Among these electrolytes, Kennard-Stone algorithm selected ten objects to be tested by CZE, covering homogeneously principal component space. CZE analyses were carried out with the selected electrolytes, and 0.1 M borax was identified as the most suitable one for the specified application. Finally, the characteristics of the analysis were finely tuned by means of a response surface study, which allowed the best conditions to be determined: borax concentration, 0.09 M; methanol, 6% (v/v); temperature, 24 degrees C, voltage, 20 kV. Applying these conditions, a baseline resolution among the six compounds was obtained in less than 10 min.

  3. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-08-01

    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface.

  4. Toluene nitration in irradiated nitric acid and nitrite solution

    SciTech Connect

    Gracy Elias; Bruce J. Mincher; Stephen P. Mezyk; Jim Muller; Leigh R. Martin

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the aryl alkyl mild ortho-para director - toluene, in irradiated nitric acid and neutral nitrite solutions were investigated using ?, and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection was primarily used to assess the stable reaction products. GC-MS and LC-MS were used to confirm the results from HPLC. Free-radical nitration reaction products were found in irradiated acidic and neutral media. In acidic medium, the ring substitution and side chain substitution and oxidation produced different nitro products. In ring substitution, nitrogen oxide radicals were added mainly to hydroxyl radical-produced cyclohexadienyl radical, and in side chain substitution they were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite toluene solution, radiolytic ring nitration products approached a statistically random distribution, suggesting a free-radical reaction involving addition of the •NO2 radical.

  5. Effect of phytic acid, ethylenediaminetetraacetic acid, and chitosan solutions on microhardness of the human radicular dentin

    PubMed Central

    Nikhil, Vineeta; Jaiswal, Shikha; Bansal, Parul; Arora, Rohit; Raj, Shalya; Malhotra, Pulkit

    2016-01-01

    Aim: The purpose of this study was to evaluate the effect of phytic acid, ethylenediaminetetraacetic acid (EDTA), and chitosan solutions on the microhardness of human radicular dentin. Materials and Methods: Thirty dentin specimens were randomly divided into three groups of 10 specimens each according to the irrigant used: G1 — 1% phytic acid, G2 — 17% EDTA, and G3 — 0.2% chitosan. A standardized volume of each chelating solution was used for 3 min. Dentin microhardness was measured before and after application at the cervical, middle, and apical levels with a Vickers indenter under a 200-g load and a 10-s dwell time. The results were analyzed using one-way analysis of variance (ANOVA) and Student's t test. Results: Microhardness of the radicular dentin varied at the cervical, middle, and apical levels. EDTA had the greatest overall effect, causing a sharp percentage reduction in dentin microhardness with a significant difference from phytic acid and chitosan (P = 0.002). However, phytic acid and chitosan differed insignificantly from each other (P = 0.887). Conclusion: All tested chelating solutions reduced microhardness of the radicular dentin layer at all the levels. However, reduction was least at the apical level. EDTA caused more reduction in dentin microhardness than chitosan while phytic acid reduced the least. PMID:27099428

  6. Adsorption and self-assembly of aromatic carboxylic acids on Au/electrolyte interfaces.

    PubMed

    Han, Bo; Li, Zhihai; Wandlowski, Thomas

    2007-05-01

    The adsorption and self-assembly of benzoic acid (BA), isophthalic acid (IA), and trimesic acid (TMA) on Au(111) single crystals and on Au(111-25 nm) quasi-single crystalline film electrodes have been investigated in 0.1 M HClO4 by combining in situ surface-enhanced infrared reflection absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM) with cyclic voltammetry. All three acids are physisorbed on the electrode surface in a planar orientation at negative charge densities. Excursion to positive charge densities (or more positive potentials) causes an orientation change from planar to perpendicular. Chemisorbed structures are formed through the coordination of a deprotonated carboxyl group to the positively charged electrode surface. The three acid molecules assemble in different ordered patterns, which are controlled by pi-stacking (BA) or intermolecular hydrogen bonds between COOH groups (IA, TMA). A detailed analysis of the potential and time dependencies of the nu(C=O), nus(OCO), and nu(C-OH) vibration modes shows that the strength of lateral interactions increases upon chemisorption with an increasing number of COOH groups in the sequence of BA

  7. Voltammetry and conductivity of a polyether-pyridinium room temperature molten salt electrolyte and of its polymer electrolyte solutions in polydimethylsiloxane

    SciTech Connect

    Pyati, R.; Murray, R.W.

    1996-02-01

    This report describes the synthesis, microelectrode voltammetry, and ionic conductivity of a new room temperature molten salt N-(methoxy(ethoxy){sub 2}ethyl)pyridinium p-toluene sulfonate (abbreviated as[Py(E{sub 3}M){sup +}][Tos{sup {minus}}]) and of its solution in a hydroxy-terminated polydimethylsiloxane. Both ionically conductive liquids (conductivity = 1 {times} 10{sup {minus}4} {Omega}{sup {minus}1} cm{sup {minus}1}) exhibit voltammetric potential windows of about 1.5 V. The negative potential limit is determined by the reduction of the [Py(E{sub 3}M){sup +}] pyridinium species, with subsequent radical coupling to form a voltammetrically observed viologen dimer. The estimated diffusivities of the [Py(E{sub 3}M){sup +}] species, of a diethyleneglycol-tailed ferrocene redox solute studied, and by application of Nernst-Einstein relation to the ionic charge carriers, all lie in the 10{sup {minus}7} to 10{sup {minus}8} cm{sup 2}/s range. Viscosities and glass transition thermal observations are reported as is the fit of the temperature dependencies of ionic conductivity in [Py(E{sub 3}M){sup +}][Tos{sup {minus}}] and in [Py(E{sub 3}M){sup +}][TOS{sup {minus}}]/PDMS mixtures to Vogel-Tamman-Fulcher predictions.

  8. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R.

    2012-02-22

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. For 6 M HNO{sub 3}, 10.5 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2 g/L and 0.25 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}.

  9. Electrolytes Test

    MedlinePlus

    ... include other tests such as BUN , creatinine , and glucose . Electrolyte measurements may be used to help investigate conditions that cause electrolyte imbalances such as dehydration , kidney disease , lung diseases , or heart conditions . Repeat testing may then ...

  10. Systems solutions by lactic acid bacteria: from paradigms to practice.

    PubMed

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  11. Systems solutions by lactic acid bacteria: from paradigms to practice

    PubMed Central

    2011-01-01

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications. PMID:21995776

  12. Systems solutions by lactic acid bacteria: from paradigms to practice.

    PubMed

    de Vos, Willem M

    2011-08-30

    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications.

  13. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    SciTech Connect

    Valiskó, Mónika; Boda, Dezső

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.

  14. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions.

    PubMed

    Valiskó, Mónika; Boda, Dezső

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, "The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations," J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of "solvated ionic radius" assumed by earlier studies.

  15. Split-dose vs same-day reduced-volume polyethylene glycol electrolyte lavage solution for morning colonoscopy

    PubMed Central

    Chan, Wah-Kheong; Azmi, Najib; Mahadeva, Sanjiv; Goh, Khean-Lee

    2014-01-01

    AIM: To compare same-day whole-dose vs split-dose of 2-litre polyethylene glycol electrolyte lavage solution (PEG-ELS) plus bisacodyl for colon cleansing for morning colonoscopy. METHODS: Consecutive adult patients undergoing morning colonoscopy were allocated into two groups i.e., same-day whole-dose or split-dose of 2-litre PEG-ELS. Investigators and endoscopists were blinded to the allocation. All patients completed a questionnaire that was designed by Aronchick and colleagues to assess the tolerability of the bowel preparation regime used. In addition, patients answered an ordinal five-value Likert scale question on comfort level during bowel preparation. Endoscopists graded the quality of bowel preparation using the Boston bowel preparation scale (BBPS). In addition, endoscopists gave an overall grading of the quality of bowel preparation. Cecal intubation time, withdrawal time, total colonoscopy time, adenoma detection rate and number of adenomas detected for each patient were recorded. Sample size was calculated using an online calculator for binary outcome non-inferiority trial. Analyses was based upon intent-to-treat. Significance was assumed at P-value < 0.05. RESULTS: Data for 295 patients were analysed. Mean age was 62.0 ± 14.4 years old and consisted of 50.2 % male. There were 143 and 152 patients in the split-dose and whole-dose group, respectively. Split-dose was as good as whole-dose for quality of bowel preparation. The total BBPS score was as good in the split-dose group compared to the whole-dose group [6 (6-8) vs 6 (6-7), P = 0.038]. There was no difference in cecal intubation rate, cecal intubation time, withdrawal time, total colonoscopy time and adenoma detection rate. Median number of adenoma detected was marginally higher in the split-dose group [2 (1-3) vs 1 (1-2), P = 0.010]. Patients in the whole-dose group had more nausea (37.5% vs 25.2%, P = 0.023) and vomiting (16.4% vs 8.4%, P = 0.037), and were less likely to complete the bowel

  16. Electrochemically stable electrolytes

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1999-01-01

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.

  17. Electrochemically stable electrolytes

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  18. Sorption of acid red 57 from aqueous solution onto sepiolite.

    PubMed

    Alkan, Mahir; Demirbaş, Ozkan; Celikçapa, Sermet; Doğan, Mehmet

    2004-12-10

    Sepiolite, a highly porous mineral, is becoming widely used as an alternative material in areas where sorptive, catalytic and rheological applications are required. High ion exchange capacity and high surface area and more importantly its relatively cheap price make it an attractive adsorbent. In this study, the adsorption of acid red 57 by natural mesoporous sepiolite has been examined in order to measure the ability of this mineral to remove coloured textile dyes from wastewater. For this purpose, a series of batch adsorption tests of acid red 57 from aqueous sepiolite solutions have been systematically investigated as a function of parameters such as pH, ionic strength and temperature. Adsorption equilibrium was reached within 1h. The removal of acid red 57 decreases with pH from 3 to 9 and temperature from 25 to 55 degrees C, whereas it increases with ionic strength from 0 to 0.5 mol L(-1). Adsorption isotherms of acid red on sepiolite were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. It was found that the Langmuir model appears to fit the isotherm data better than the Freundlich model. The physical properties of this adsorbent were consistent with the parameters obtained from the isotherm equations. Approximately, 21.49% weight loss was observed. The surface area value of sepiolite was 342 m2 g(-1) at 105 degrees C, and it increased to 357 m2 g(-1) at 200 degrees C. Further increase in temperature caused channel plugging and crystal structure deformation, as a result the surface area values showed a decrease with temperature. The data obtained from adsorption isotherms at different temperatures have been used to calculate some thermodynamic quantities such as the Gibbs energy, heat and entropy of adsorption. The thermodynamic data indicate that acid red 57 adsorption onto sepiolite is characterized by physical adsorption. The dimensionless separation factor (RL) have shown that sepiolite can be used for

  19. Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth--implications for space populations and panspermia.

    PubMed

    Mautner, Michael N

    2002-01-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain > 3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 x 10(5) algae and 6 x 10(6) bacteria and fungi for long periods (> 8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 10(18) kg, comprising 10(32) microorganisms and a human population of 10(14). The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia. PMID:12449855

  20. Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth--implications for space populations and panspermia.

    PubMed

    Mautner, Michael N

    2002-01-01

    Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain > 3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 x 10(5) algae and 6 x 10(6) bacteria and fungi for long periods (> 8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 10(18) kg, comprising 10(32) microorganisms and a human population of 10(14). The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia.

  1. Effect of solvent permittivity on the thermodynamic behavior of HCl solutions: analysis using the smaller-ion shell model of strong electrolytes.

    PubMed

    Fraenkel, Dan

    2011-12-15

    The recently introduced smaller-ion shell (SiS) treatment of strong binary electrolyte solutions [Fraenkel, D. Mol. Phys. 2010, 108, 1435] that extends the Debye-Hückel theory to size-dissimilar ions is very effective for many electrolytes of various families up to moderate ionic concentration. The (molal) mean ionic activity coefficient, γ(±), as a function of the reciprocal screening length, κ, hence ionic strength, I, is given by an analytic mathematical expression that incorporates the three ion-size parameters (ISPs). Experimental γ(±) data are fitted with calculated values derived from ISPs that seem to adequately represent the relevant mean effective ionic sizes. The SiS analysis has been lately shown effective for aqueous HCl, HBr, HI, and HClO(4) at 25 °C, at which the solvent permittivity, ε, is 78.4 [Fraenkel, D. J. Phys. Chem. B 2011, 115, 557]. In this paper, the behavior of HCl in solvents ranging in ε between approximately 10 and 80 is analyzed and discussed. The SiS treatment is found again suitable for computing γ(±) values that agree with experiment. Within the concentration range of the available experimental data, ion pairing is not indicated and, contrary to literature claims, HCl appears fully ionized even at 0.5 m (molal) with ε < 10. ISPs do not seem to be affected by temperature, but co-ion ISPs increase linearly with 1/ε. The chemical nature of the solution has no observable effect on γ(±) and on ISPs. The present analysis supports the view that electrolyte theories in which the solvent is considered at the McMillan-Mayer level can be successful and valuable.

  2. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution.

    PubMed

    Kwon, Youngkook; Birdja, Yuvraj Y; Raoufmoghaddam, Saeed; Koper, Marc T M

    2015-05-22

    Electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) is studied on solid metal electrodes in acidic solution (0.5 M H2 SO4 ) by correlating voltammetry with on-line HPLC product analysis. Three soluble products from HMF hydrogenation are distinguished: 2,5-dihydroxymethylfuran (DHMF), 2,5-dihydroxymethyltetrahydrofuran (DHMTHF), and 2,5-dimethyl-2,3-dihydrofuran (DMDHF). Based on the dominant reaction products, the metal catalysts are divided into three groups: (1) metals mainly forming DHMF (Fe, Ni, Cu, and Pb), (2) metals forming DHMF and DMDHF depending on the applied potentials (Co, Ag, Au, Cd, Sb, and Bi), and (3) metals forming mainly DMDHF (Pd, Pt, Al, Zn, In, and Sb). Nickel and antimony are the most active catalysts for DHMF (0.95 mM cm(-2) at ca. -0.35 VRHE and -20 mA cm(-2) ) and DMDHF (0.7 mM cm(-2) at -0.6 VRHE and -5 mA cm(-2) ), respectively. The pH of the solution plays an important role in the hydrogenation of HMF: acidic condition lowers the activation energy for HMF hydro-genation and hydrogenates the furan ring further to tetrahydrofuran.

  3. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Li, Xiao-Yan; Gu, Ji-Dong

    2004-11-01

    Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight. PMID:15488923

  4. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Li, Xiao-Yan; Gu, Ji-Dong

    2004-11-01

    Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight.

  5. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  6. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  7. Influence of the ionic strength of acidic background electrolytes on the separation of proteins by capillary electrophoresis.

    PubMed

    Bekri, Samya; Leclercq, Laurent; Cottet, Hervé

    2016-02-01

    The ionic strength is one of the key parameters for optimizing CE separations. However, only a few data are available in the literature about the ionic strength effect on the separation of proteins. The effect of ionic strength on separation performances is rather complex since many different parameters are involved: such as the protein effective mobility, the electroosmotic mobility, the separation efficiency via the electromigration dispersion, as well as the viscosity and temperature of the background electrolyte. In the present work, the influence of ionic strength on the electrophoretic separation of five model proteins has been investigated in acidic conditions, on successive multi-ionic layers coated capillary, in counter-electroosmotic mode with anodic electroosmotic flow. The decrease in effective and electroosmotic mobilities with increasing ionic strength were compared using the slope-plot approach, which is very helpful for understanding the observed changes in apparent selectivity and resolution. The relative decrease of the protein effective mobility was about 30-40% of the mobility determined at 5mM ionic strength per ionic strength decade. It was found that relatively low ionic strength (∼5-10mM) was preferable to optimize the overall separation of the five model proteins. PMID:26780847

  8. Solid Polymer Electrolytes Based on Functionalized Tannic Acids from Natural Resources for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Shim, Jimin; Bae, Ki Yoon; Kim, Hee Joong; Lee, Jin Hong; Kim, Dong-Gyun; Yoon, Woo Young; Lee, Jong-Chan

    2015-12-21

    Solid polymer electrolytes (SPEs) for all-solid-state lithium-ion batteries are prepared by simple one-pot polymerization induced by ultraviolet (UV) light using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as an ion-conducting monomeric unit and tannic acid (TA)-based crosslinking agent and plasticizer. The crosslinking agent and plasticizer based on natural resources are obtained from the reaction of TA with glycidyl methacrylate and glycidyl poly(ethylene glycol), respectively. Dimensionally stable free-standing SPE having a large ionic conductivity of 5.6×10(-4)  Scm(-1) at room temperature can be obtained by the polymerization of PEGMA into P(PEGMA) with a very small amount (0.1 wt %) of the crosslinking agent and 2.0 wt % of the plasticizer. The ionic conductivity value of SPE with a crosslinked structure is one order of magnitude larger than that of linear P(PEGMA) in the waxy state.

  9. Electrocatalytic activities of cathode electrodes for water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid as electrolyte

    NASA Astrophysics Data System (ADS)

    Fiegenbaum, Fernanda; de Souza, Michèle O.; Becker, Márcia R.; Martini, Emilse M. A.; de Souza, Roberto F.

    2015-04-01

    The hydrogen evolution reaction (HER) performed with platinum (Pt), nickel (Ni), stainless steel 304 (SS) or glassy carbon (GC) cathodes in 0.1 M 3-triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS.BF4) solution is studied using quasi-potentiostatic and impedance spectroscopy techniques. The objective is to compare the catalytic effect on the cathode using different materials to obtain hydrogen by water electrolysis. Furthermore, the catalytic effect of the ionic liquid (IL) on the cathode compared with that of a hydrochloric acid (HCl) solution with same pH value (0.8) is reported. A low activation energy (Ea) of 8.7 kJ mol-1 is found for the glassy carbon cathode. Tafel plots obtained with TEA-PS.BF4 IL suggest the formation of an electroactive layer of IL on the cathode, which may be responsible for the catalytically enhanced performance observed.

  10. Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts.

    PubMed

    Chen, Hong; Hsieh, You-Lo

    2005-05-20

    Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. PMID:15816022

  11. Potential Use of Lime as Nitric Acid Source for Alternative Electrolyte Fuel-Cell Method

    NASA Astrophysics Data System (ADS)

    Christianto, V.; Smarandache, Florentin

    2011-04-01

    Despite growing popularity for the use of biofuel and other similar methods to generate renewable energy sources from natural plantation in recent years, there is also growing concern over its disadvantage, i.e. that the energy use of edible plants may cause unwanted effects, because the plantation price tends to increase following the oil price. Therefore an alternative solution to this problem is to find `natural plantation' which have no direct link to `food chain' (for basic foods, such as palm oil etc.).

  12. Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl2) solutions.

    PubMed

    Bourg, Ian C; Sposito, Garrison

    2011-08-15

    We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces. PMID:21571296

  13. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    PubMed

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-01

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. PMID:26705889

  14. Adaptation of sweeteners in water and in tannic acid solutions.

    PubMed

    Schiffman, S S; Pecore, S D; Booth, B J; Losee, M L; Carr, B T; Sattely-Miller, E; Graham, B G; Warwick, Z S

    1994-03-01

    Repeated exposure to a tastant often leads to a decrease in magnitude of the perceived intensity; this phenomenon is termed adaptation. The purpose of this study was to determine the degree of adaptation of the sweet response for a variety of sweeteners in water and in the presence of two levels of tannic acid. Sweetness intensity ratings were given by a trained panel for 14 sweeteners: three sugars (fructose, glucose, sucrose), two polyhydric alcohols (mannitol, sorbitol), two terpenoid glycosides (rebaudioside-A, stevioside), two dipeptide derivatives (alitame, aspartame), one sulfamate (sodium cyclamate), one protein (thaumatin), two N-sulfonyl amides (acesulfame-K, sodium saccharin), and one dihydrochalcone (neohesperidin dihydrochalcone). Panelists were given four isointense concentrations of each sweetener by itself and in the presence of two concentrations of tannic acid. Each sweetener concentration was tasted and rated four consecutive times with a 30 s interval between each taste and a 2 min interval between each concentration. Within a taste session, a series of concentrations of a given sweetener was presented in ascending order of magnitude. Adaptation was calculated as the decrease in intensity from the first to the fourth sample. The greatest adaptation in water solutions was found for acesulfame-K, Na saccharin, rebaudioside-A, and stevioside. This was followed by the dipeptide sweeteners, alitame and aspartame. The least adaptation occurred with the sugars, polyhydric alcohols, and neohesperidin dihydrochalcone. Adaptation was greater in tannic acid solutions than in water for six sweeteners. Adaptation of sweet taste may result from the desensitization of sweetener receptors analogous to the homologous desensitization found in the beta adrenergic system.

  15. Jacques Loeb (1859-1924) and His Forgotten Contributions to Electrolyte and Acid-Base Physiology in The Organism as a Whole.

    PubMed

    Sgambato, Francesco; Sgambato, Ester; De Santo, Natale Gaspare

    2016-02-01

    Jacques Loeb (1859-1924) was the founder of the Journal of General Physiology which he co-directed in association with W.J.V. Osterhout in the years 1918-1924. Having worked (1889-1891)at the Marine Zoological Station of Naples, newly founded by Anton Dohrn, he was imprinted for life. A strong investigator used to perform the experiments personally. Loeb was engaged lifelong in the explanation of life on physico-chemical basis. He touched various fields (being a creative scientist full of ideas), and centered on the exchanges of electrolytes, acids and bases between the body and sea water in fish. He identified two equations: {[K+]+[Na+]}: {[Ca++]+[Mg++]} (Loebs 1st equation) {[K+]+[Na+]}: {[H+]+[Ca++]+[Mg++]} (Loebs final equation) Even nowadays these equations may have applications in a wide list of electrolyte and acid-base disturbances. Unfortunately his heredity has been dissipated.

  16. Precipitation of plutonium from acidic solutions using magnesium oxide

    SciTech Connect

    Jones, S.A.

    1994-09-06

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria.

  17. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media.

  18. Infrared optical constants of H2O ice, amorphous nitric acid solutions, and nitric acid hydrates

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Koehler, Birgit G.; Middlebrook, Ann M.; Tolbert, Margaret A.; Jordon, Joseph

    1994-01-01

    We determined the infrared optical constants of nitric acid trihydrate, nitric acid dihydrate, nitric acid monohydrate, and solid amorphous nitric acid solutions which crystallize to form these hydrates. We have also found the infrared optical constants of H2O ice. We measured the transmission of infrared light throught thin films of varying thickness over the frequency range from about 7000 to 500/cm at temperatures below 200 K. We developed a theory for the transmission of light through a substrate that has thin films on both sides. We used an iterative Kramers-Kronig technique to determine the optical constants which gave the best match between measured transmission spectra and those calculated for a variety of films of different thickness. These optical constants should be useful for calculations of the infrared spectrum of polar stratospheric clouds.

  19. Ion-Sensitive Characteristics of an Electrolyte-Solution-Gate ZnO/ZnMgO Heterojunction Field-Effect Transistor as a Biosensing Transducer

    NASA Astrophysics Data System (ADS)

    Koike, Kazuto; Takagi, Daisuke; Kawasaki, Motoki; Hashimoto, Takahito; Inoue, Tomoyuki; Ogata, Ken-ichi; Sasa, Shigehiko; Inoue, Masataka; Yano, Mitsuaki

    2007-10-01

    Characteristics of an ion-sensitive ZnO/ZnMgO heterojunction field-effect transistor (HFET) with an amine-modified single-crystalline O-polar ZnMgO gate electrode are discussed to develop the application to biosensing transducers. The ion-sensitivity was based on the proton transfer to/from the amino groups on the gate electrode, the amine-modification of which was performed using a silanization technique by immersing the HFET into an aminosilane based solution. Stable operation in electrolyte solution in accordance with the standard FET theory with small hysteresis and small leakage current was confirmed, and the amperometric operation revealed a high pH sensitivity of -20 μA/pH with a reproducible result. A potential application of the ion-sensitive HFET to amperometric biosensing transducers was also demonstrated by immobilizing enzyme molecules of glucose oxidase on the amine-modified gate electrode.

  20. Dependence of the frequency dispersion of the bulk viscosity coefficient of solutions of electrolytes on the nature of the decay of relaxing fluxes

    NASA Astrophysics Data System (ADS)

    Odinaev, S.; Akdodov, D. M.

    2016-06-01

    The region of the frequency dispersion of the bulk viscosity coefficient η V (ω) of solutions of electrolytes is studied as a function of the nature of the decay of the stress tensor in the momentum and configuration space, the analytical expressions of which are derived by means of kinetic equations. Numerical calculations of η V (ω) for a water solution of NaCl are performed over a wide range of frequencies, temperatures, and densities using a selection of the potentials of intermolecular interaction Φ{in{itab}}(|ěc r|) and radial distribution function {itg}{in{itab}}(|ěc r|). It is shown that the region of frequency dispersion η V (ω) based on the power law of the decay of the stress tensor is wide ( 105 Hz), while the region based on the exponential law is narrow ( 102 Hz).

  1. Electrorefining of copper from a cuprous ion complexing electrolyte. II. Experimental comparison of possible alternative electrolytes and preliminary cost engineering analysis

    SciTech Connect

    Brown, A.P.; Loutfy, R.O.; Cook, G.M.

    1980-04-01

    The energy saving potential and refining capability of three copper(I)/electrolyte systems for the electrorefining of copper were compared experimentally. The alternative electrolyte systems studied were copper(I)/acid chloride, copper(I)/acetonitrile and sulfuric acid, and copper(I)/ammonia solutions. These were compared to the conventional copper(II)/sulfuric acid electrolyte. All of the alternative electrolyte systems demonstrated at least some potential for saving energy when run at an equal deposition rate to the conventional process; the chloride electrolyte showed the greatest energy saving potential, about 70%, and the ammonia electrolyte showed the least, about 25%. All of the alternative electrolyte systems, however, exhibited performance problems, primarily with regard to inadequate separation of impurities. A preliminary capital cost estimate was made for the copper(I)/chloride system. This estimate showed that, for the alternative electrolyte system to be cost competitive (that is, a reduction of capital cost of about 15 to 20%) with the conventional electrorefining process, the refining cells would have to be operated at a current density of about 25 to 30 mA-cm/sup -2/. At this current density, the estimated energy saving potential for the copper(I)/chloride system was still about 50%.

  2. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  3. Theoretical study of the morphology of self-assembled amphoteric oxide colloid nanocrystals in weak electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Alfimov, A. V.; Aryslanova, E. M.; Chivilikhin, S. A.

    2016-08-01

    The present paper is devoted to the theoretical study of the morphology of nanocrystals formed through self-assembly of amphoteric oxide colloidal nanoparticles in weak electrolytes. A mathematical model of multi-particle colloidal interaction was developed within the framework of the Derjaguin, Landau, Verwey, Overbeak (DLVO) theory. This model accounts for the surface charge regulation during the multi-particle interaction and reveals the presence of orientation effects during nanoparticle aggregation. These effects are presumed to affect the morphology of the self-assembled nanocrystals and may present the means of controlling the structure of synthesised nanomaterials.

  4. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Yuta; Zhang, Tao; Imanishi, Nobuyuki; Im, Dongmin; Lee, Dong Joon; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    The stability of the high lithium ion conducting glass ceramics, Li 1+ x+ yTi 2- xAl xSi yP 3- yO 12 (LTAP) in alkaline aqueous solutions with and without LiCl has been examined. A significant conductivity decrease of the LTAP plate immersed in 0.057 M LiOH aqueous solution at 50 °C for 3 weeks was observed. However, no conductivity change of the LTAP plate immersed in LiCl saturated LiOH aqueous solutions at 50 °C for 3 weeks was observed. The pH value of the LiCl-LiOH-H 2O solution with saturated LiCl was in a range of 7-9. The molarity of LiOH and LiCl in the LiOH and LiCl saturated aqueous solution were estimated to be 5.12 and 11.57 M, respectively, by analysis of Li + and OH -. The high concentration of LiOH and the low pH value of 8.14 in this solution suggested that the dissociation of LiOH into Li + and OH - is too low in the solution with a high concentration of Li +. These results suggest that the water stable LTAP could be used as a protect layer of the lithium metal anode in the lithium/air cell with LiCl saturated aqueous solution as the electrolyte, because the content of OH - ions in the LiCl saturated aqueous solution does not increase via the cell reaction of Li + 1/2O 2 + H 2O → 2LiOH, and LTAP is stable under a deep discharge state.

  5. The extraction of actinides from nitric acid solutions with diamides of dipicolinic acid

    NASA Astrophysics Data System (ADS)

    Lapka, Joseph L.; Paulenova, Alena; Alyapyshev, Mikhail Yu; Babain, Vasiliy A.; Law, Jack D.; Herbst, R. Scott

    2010-03-01

    Diamides of dipicolinic acid (N,N'-diethyl-N,N'-ditolyl-dipicolinamide, EtTDPA) were synthesized and evaluated for their extraction capability for actinides. In this work the extractions of neptunium(V), protactinium(V), and thorium(IV) with EtTDPA in a polar fluorinated diluent from nitric acid were investigated. EtTDPA shows a high affinity for Th(IV) even at millimolar concentrations. Np(V) and Pa(V) are both reasonably extractable with EtTDPA; however, near saturated solutions are required to achieve appreciable distribution ratios. A comparison with previously published actinide extraction data is given.

  6. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb. PMID:27548978

  7. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  8. Radiolysis gases from nitric acid solutions containing HSA and HAN

    SciTech Connect

    Smith, J.R.

    1994-10-28

    The concentration of hydrogen (H{sub 2}) in the radiolytically produced off-gas from 2.76-4.25M HNO{sub 3}/PU solutions has been found to be greatly reduced in the presence of sulfamic acid (HSA) and hydroxylamine nitrate (HAN). The H{sub 2} concentration ([H{sub 2}]) is reduced from 35 percent to about 4 percent by dilution caused from an increase in the production rates of nitrogen (N{sub 2}), nitrous oxide (N{sub 2}O), and oxygen (O{sub 2}) gases. The generation rate of H{sub 2} was not affected by HSA or HAN giving a measured radiolytic yield, G(H{sub 2}), value of 0.201 molecules/100 eV for 2.765M NO{sub 3}{sup -} solution (a value of 0.213 is predicted from previous data). The G(H{sub 2}) values are dependent on the solution nitrate concentration ([NO{sub 3}{sup -}]). The generation rates of N{sub 2}, N{sub 2}O, and O{sub 2} are not dependent on the [NO{sub 3}{sup -}] in this narrow range, but are dependent on the presence of HSA and the concentration of HAN. The percentage [H{sub 2}] for the 2.5 to 3.0M NO{sub 3}{sup -} range expected in the off- from the FB-Line Pu{sup +3} Hold Tanks is conservatively estimated to be about 3.5 to 4.5 % for Pu + 3 solutions initially containing 0.023M HAN/0.165M HSA. The upper limit [H{sub 2}] may actually be about 4.1 % (4.3 % at 90 % confidence limits) but more {open_quotes}initial{close_quotes} off-gas rate data is needed at about 2.9M [NO{sub 3}{sup -}] in Pu{sup +3} solution for verification. Addition of ascorbic acid had no effect on the off-gas rate of Pu{sup +3} solutions containing HSA and NO{sub 3}{sup -} concentrations higher than those expected in the hold tanks. The maximum {open_quotes}hold time{close_quotes} for 50 grams/liter Pu{sup +3}/0.165M HSA/0.023M HAN/2.5-3.0M HNO{sub 3} solution is 20.3{+-}2.1 days. After this time the HSA initially present will become exhausted and the [H{sub 2}] will increase to 35 %. This hold time may be longer in [NO{sub 3}{sup -}] < 3.0M, but again more study is needed.

  9. GADOLINIUM OXALATE SOLUBILITY MEASUREMENTS IN NITRIC ACID SOLUTIONS

    SciTech Connect

    Pierce, R. A.

    2012-03-12

    HB-Line will begin processing Pu solutions during FY2012 that will involve the recovery of Pu using oxalate precipitation and filtration. After the precipitation and filtration processes, the filtrate solution will be transferred from HB-Line to H-Canyon. The presence of excess oxalate and unfiltered Pu oxalate solids in these solutions create a criticality safety issue if they are sent to H-Canyon without controls in H-Canyon. One approach involves H-Canyon receiving the filtrate solution into a tank that is poisoned with soluble gadolinium (Gd). Decomposition of the oxalate will occur within a subsequent H-Canyon vessel. The receipt of excess oxalate into the H-Canyon receipt tanks has the potential to precipitate a portion of the Gd poison in the receipt tanks. Because the amount of Gd in solution determines the maximum amount of Pu solids that H-Canyon can receive, H-Canyon Engineering requested that SRNL determine the solubility of Gd in aqueous solutions of 4-10 M nitric acid (HNO{sub 3}), 4-12 g/L Gd, and 0.15-0.25 M oxalic acid (H{sub 2}C{sub 2}O{sub 4}) at 25 °C. The target soluble Gd concentration is 6 g/L. The data indicate that the target can be achieved above 6 M HNO{sub 3} and below 0.25 M H{sub 2}C{sub 2}O{sub 4}. At 25 °C, for 6 M HNO{sub 3}, 11 g/L and 7 g/L Gd are soluble in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. In 4 M HNO{sub 3}, the Gd solubility drops significantly to 2.5 g/L and 0.8 g/L in 0.15 M and 0.25 M H{sub 2}C{sub 2}O{sub 4}, respectively. The solubility of Gd at 8-10 M HNO{sub 3} exceeds the solubility at 6 M HNO{sub 3}. The data for 4 M HNO{sub 3} showed good agreement with data in the literature. To achieve a target of 6 g/L soluble Gd in solution in the presence of 0.15-0.25 M oxalate, the HNO{sub 3} concentration must be maintained at or above 6 M HNO{sub 3}. The solubility of Gd in 4 M HNO{sub 3} with 0.15 M oxalate at 10 °C is about 1.5 g/L. For 6 M HNO{sub 3} with 0.15 M oxalate, the solubility of Gd at 10

  10. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    NASA Astrophysics Data System (ADS)

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  11. Effect of Fluid Flow on Zinc Electrodeposits from Acid Chloride Electrolytes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Abdelmassir, A. A.

    1982-01-01

    Zinc was deposited potentiostatically from acid chloride baths. Once bath chemistry and electrochemistry were controlled, the study was focused on convective mass transfer at horizontal electrodes and its effect on cell performance. A laser schlieren imaging technique allowed in situ observations of flow patterns and their correlation with current transients. Convection was turbulent and mass transfer as a function of Rayleigh number was well correlated by: Sh = 0.14 R to the 1/3 power. Similarly, convection initiation time was correlated by DT/d squared = 38 Ra to the -2/3 power. Time scale of fluctuations was about half the initiation time. Taking the boundary layer thickness as a characteristic length, a critical Rayleigh number for the onset of convection was deduced: Ra sub CR = 5000. Placing the anode on the top of the cathode completely changed the flow pattern but kept the I-t curves identical whereas the use of a cathode grid doubled the limiting current. A well defined plateau in the current voltage curves suggested that hydrogen evolution has been successfully inhibited. Finally, long time deposition showed that convection at horizontal electrodes increased the induction time for dentrite growth by at least a factor of 2 with respect to a vertical wire.

  12. Planetary Bioresources and Astroecology. 1. Planetary Microcosm Bioassays of Martian and Carbonaceous Chondrite Materials: Nutrients, Electrolyte Solutions, and Algal and Plant Responses

    NASA Astrophysics Data System (ADS)

    Mautner, Michael N.

    2002-07-01

    The biological fertilities of planetary materials can be assessed using microcosms based on meteorites. This study applies microcosm tests to martian meteorites and analogues and to carbonaceous chondrites. The biological fertilities of these materials are rated based on the soluble electrolyte nutrients, the growth of mesophile and cold-tolerant algae, and plant tissue cultures. The results show that the meteorites, in particular the Murchison CM2 carbonaceous chondrite and DaG 476 martian shergottite, contain high levels of water-extractable Ca, Mg, and SO 4-S. The martian meteorites DaG 476 and EETA 79001 also contain higher levels of extractable essential nutrients NO 3-N (0.013-0.017 g kg -1) and PO 4-P (0.019-0.046 g kg -1) than the terrestrial analogues. The yields of most of the water-extractable electrolytes vary only by factors of 2-3 under a wide range of planetary conditions. However, the long-term extractable phosphate increases significantly under a CO 2 atmosphere. The biological yields of algae and plant tissue cultures correlate with extractable NO 3-N and PO 4-P, identifying these as the limiting nutrients. Mesophilic algae and Asparagus officinalis cultures are identified as useful bioassay agents. A fertility rating system based on microcosm tests is proposed. The results rate the fertilities in the order martian basalts > terrestrial basalt, agricultural soil > carbonaceous chondrites, lava ash > cumulate igneous rock. The results demonstrate the application of planetary microcosms in experimental astroecology to rate planetary materials as targets for astrobiology exploration and as potential space bioresources. For example, the extractable materials in Murchison suggest that concentrated internal solutions in carbonaceous asteroids (3.8 mol L -1 electrolytes and 10 g L -1 organics) can support and disperse microorganisms introduced by natural or directed panspermia in early solar systems. The results also suggest that carbonaceous asteroids

  13. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    NASA Astrophysics Data System (ADS)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  14. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2015-03-01

    Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  15. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE PAGES

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung; Wu, Pu -Wei; Lee, Jyh -Fu

    2014-11-22

    Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1more » M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  16. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  17. Solution structures of europium(III) complexes of ethylenediaminetetraacetic acid

    SciTech Connect

    Latva, M.; Kankara, J.; Haapakka, K.

    1996-04-01

    Coordination of ethylenediaminetetraacetic acid (EDTA) with europium(III) has been studied at different concentrations in solution using {sup 7}F{sub 0}{yields}{sup 5}D{sub 0} excitation spectroscopy and excited-state lifetime measurements. EDTA forms with Eu(III) ion three different species in equimolar solutions at room temperature. At low pH values EuEDTAH is formed and at higher pH values than 1.5 two EuEDTA{sup -} complexes, which differ from each other with one water molecule in the first coordination sphere of the Eu(III) ion, total coordination number and coordination geometry, are also formed. When the concentration of EDTA is higher than the concentration of Eu(III), an EuEDTA(EDTAH){sup 4-} species where the second EDTA is weakly coordinated to EuEDTA{sup -}, is formed. If the concentration of Eu(III) ion is higher than EDTA, the extra Eu(III) ions associate with EuEDTA{sup -} and link to one of the carboxylate groups of EDTA thus causing a shortening of the excited-state lifetime of the EuEDTA{sup -} complex.

  18. Electrolytic oxidation of anthracite

    USGS Publications Warehouse

    Senftle, F.E.; Patton, K.M.; Heard, I.

    1981-01-01

    An anthracite slurry can be oxidized only with difficulty by electrolytic methods in which aqueous electrolytes are used if the slurry is confined to the region of the anode by a porous pot or diaphragm. However, it can be easily oxidized if the anthracite itself is used as the anode. No porous pot or diaphragm is needed. Oxidative consumption of the coal to alkali-soluble compounds is found to proceed preferentially at the edges of the aromatic planes. An oxidation model is proposed in which the chief oxidants are molecular and radical species formed by the electrolytic decomposition of water at the coal surface-electrolyte interface. The oxidation reactions proposed account for the opening of the aromatic rings and the subsequent formation of carboxylic acids. The model also explains the observed anisotropic oxidation and the need for the porous pot or diaphragm used in previous studies of the oxidation of coal slurries. ?? 1981.

  19. Effect of potassium sodium tartrate and sodium citrate on the preparation of {alpha}-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution

    SciTech Connect

    Shen, Z.X.; Guan, B.H.; Fu, H.L.; Yang, L.C.

    2009-12-15

    Flue gas desulfurization (FGD) gypsum mainly composed of calcium sulfate dihydrate (DH) was used as a raw material to obtain alpha-calcium sulfate hemihydrate ({alpha}-HH) through dehydration in a Ca-Mg-K-Cl-solution medium at 95{sup o}C under atmospheric pressure. The effects of potassium sodium tartrate and sodium citrate on the preparation of alpha-HH in the electrolyte solution were investigated. The results revealed that the addition of potassium sodium tartrate (1.0 x 10{sup -2} - 2.5 x 10{sup -2}M) decreased the dehydration rate of FGD gypsum and increased the length/width (l/w) ratio of {alpha}-HH crystals, which could yield unfavorable strength properties. Addition of sodium citrate (1.0 x 10{sup -5} - 2.0 x 10{sup -5}M) slightly increased the dehydration rate of FGD gypsum and decreased the l/w ratio of {alpha}-HH crystals, which could be beneficial to increase strength. However, it also led to a partial formation of anhydrite (AH) crystals. AH was also the only dehydration product when the concentration of sodium citrate increased to 1.0 x 10{sup -4}M. Therefore, sodium citrate rather than potassium sodium tartrate could be used as an additive in Ca-Mg-K-Cl electrolyte solutions if alpha-HH with a shorter l/w ratio is the desired product from FGD gypsum dehydration. The concentration of sodium citrate should be properly controlled to reduce the formation of AH.

  20. Electrolytic cell

    NASA Astrophysics Data System (ADS)

    Bullock, J. S.; Hale, B. D.

    1984-09-01

    An apparatus is described for the separation of the anolyte and the catholyte during electrolysis. The electrolyte flows through an electrolytic cell between the oppositely charged electrodes. The cell is equipped with a wedge-shaped device, the tapered end is located between the electrodes on the effluent side of the cell. The wedge diverts the flow of the electrolyte to either side of the wedge, substantially separating the anolyte and the catholyte.

  1. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE-MS.

    PubMed

    Kler, Pablo A; Huhn, Carolin

    2014-11-01

    Isotachophoresis (ITP) has long been used alone but also as a preconcentration technique for capillary electrophoresis (CE). Unfortunately, up to now, its application is restricted to relatively strong acids and bases as either the degree of (de)protonation is too low or the water dissociation is too high, evoking zone electrophoresis. With the comprehensive ITP analysis of all 20 proteinogenic amino acids as model analytes, we, here, show that non-aqueous ITP using dimethylsulfoxide as a solvent solves this ITP shortcoming. Dimethylsulfoxide changes the pH regime of analytes and electrolytes but, more importantly, strongly reduces the proton mobility by prohibiting hydrogen bonds and thus, the so-called Zundel-Eigen-Zundel electrical conduction mechanism of flipping hydrogen bonds. The effects are demonstrated in an electrolyte system with taurine or H(+) as terminator, and imidazole as leader together with strong acids such as oxalic and even trifluoroacetic acid as counterions, both impossible to use in aqueous solution. Mass spectrometric as well as capacitively coupled contactless conductivity detection (C(4)D) are used to follow the ITP processes. To demonstrate the preconcentration capabilities of ITP in a two-dimensional set-up, we, here, also demonstrate that our non-aqueous ITP method can be combined with capillary electrophoresis-mass spectrometry in a column-coupling system using a hybrid approach of capillaries coupled to a microfluidic interface. For this, C(4)D was optimized for on-chip detection with the electrodes aligned on top of a thin glass lid of the microfluidic chip.

  2. Direct Electric Current Treatment under Physiologic Saline Conditions Kills Staphylococcus epidermidis Biofilms via Electrolytic Generation of Hypochlorous Acid

    PubMed Central

    Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  3. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.

  4. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  5. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C-80 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tsay, Ken; Bock, Christina; Zhang, Jiujun

    2016-08-01

    To increase the operating temperature of the supercapacitors (SCs) without compromising their high cycle-life, several typical fluoro- and non-fluoro containing ionic liquids (EMI-mesylate, EMI-hydrogen sulfate, PP13-triflate, PP13-TFSI, and EMI-TFSI, as shown in Fig. 1) are studied as the electrolytes to prepare organic solutions for SC performance measurements using a two-electrode cell. Both cyclic voltammograms and charge/discharge curves at various temperatures such as 20, 40, 60 and 80 °C are collected. At 60 °C, the increased performance order in both rating and cyclability measurements are found to be as follows: 1) EMI-hydrogen sulfate < PP13-TFSI < EMI-mesylate < PP13-triflate < EMI-TFSI for rating; and 2) EMI-hydrogen sulfate < EMI-mesylate < PP13-Triflate < PP13-TFSI < EMI-TFSI for life-time. The fluoro-containing group of ILs, i.e., PP13-Triflate, PP13-TFSI and EMI-TFSI can give a specific capacitance between 100 and 170 F/g for various scan rates for a conventional carbon electrode, and an extended lifetime test of 10, 000 cycles with a capacitance degradation of less than 10%, indicating that these two ion liquids can be used for SC electrolytes operated at high temperature.

  6. Integral equation theory for the electrode-electrolyte interface with the central force water model. Results for an aqueous solution of sodium chloride

    NASA Astrophysics Data System (ADS)

    Vossen, M.; Forstmann, F.

    1995-12-01

    The structure of an aqueous solution of sodium chloride at a planar surface is investigated by integral equation techniques. With the central force water model the aqueous electrolyte is modelled as a mixture of sodium and chloride ions, and partially charged hydrogen and oxygen atoms interacting via effective spherically symmetric pair potentials. The correlation functions obtained from the Ornstein-Zernike equation with reference hypernetted chain closure give a good description of the bulk structure (e.g., hydrogen bonded water network, solvation shell). With the bulk information and the Wertheim-Lovett-Mou-Buff equation we have calculated the density profiles at the uncharged and charged surfaces. The rather rigid ice-like water structure found previously at the neutral surface strongly repels the ions. Steric interactions between the ions of different sizes and the ice-like water structure dominate the ionic distribution near the surface. This model electrolyte also responds differently to opposite charges on the surface. We found the asymmetry in the differential capacitance curve determined entirely by the response of the interfacial water structure.

  7. Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 °C-80 °C

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Tsay, Ken; Bock, Christina; Zhang, Jiujun

    2016-08-01

    To increase the operating temperature of the supercapacitors (SCs) without compromising their high cycle-life, several typical fluoro- and non-fluoro containing ionic liquids (EMI-mesylate, EMI-hydrogen sulfate, PP13-triflate, PP13-TFSI, and EMI-TFSI, as shown in Fig. 1) are studied as the electrolytes to prepare organic solutions for SC performance measurements using a two-electrode cell. Both cyclic voltammograms and charge/discharge curves at various temperatures such as 20, 40, 60 and 80 °C are collected. At 60 °C, the increased performance order in both rating and cyclability measurements are found to be as follows: 1) EMI-hydrogen sulfate < PP13-TFSI < EMI-mesylate < PP13-triflate < EMI-TFSI for rating; and 2) EMI-hydrogen sulfate < EMI-mesylate < PP13-Triflate < PP13-TFSI < EMI-TFSI for life-time. The fluoro-containing group of ILs, i.e., PP13-Triflate, PP13-TFSI and EMI-TFSI can give a specific capacitance between 100 and 170 F/g for various scan rates for a conventional carbon electrode, and an extended lifetime test of 10, 000 cycles with a capacitance degradation of less than 10%, indicating that these two ion liquids can be used for SC electrolytes operated at high temperature.

  8. Representation of CO{sub 2} and H{sub 2}S absorption by aqueous solutions of diethanolamine using an electrolyte equation of state

    SciTech Connect

    Vallee, G.; Fuerst, W.; Mougin, P.; Jullian, S.

    1999-09-01

    The electrolyte equation of state published in 1993 by Fuerst and Renon (AIChE J. 1993, 39, 335) has been applied to the representation of CO{sub 2} and H{sub 2}S solubility in diethaloamine (DEA) aqueous solutions. This equation of state extends the classical Redlich-Kwong-Soave equation of state associated with a Wong-Sandler mixing rule to the case of systems containing ions. The study of binary systems allowed the authors to determine the parameters of the nonelectrolyte part of the equation of state. The ionic parameters have been fitted from experimental solubility data covering a wide range of experimental conditions (temperature range, 25--100 C; amine concentration, from 0.5 to 3.5 M; loadings up to 2.34 mol{sub Co{sub 2}}/mol{sub amine}). With the assumption used in previous applications of their model to various electrolyte systems, the adjusted ionic parameters are interaction ones involving protonated amine and anions as well as molecular compounds. The resulting model represents experimental data with deviations consistent with the experimental ones and close to the deviations obtained in previous studies.

  9. Observation of pH Value in Electrokinetic Remediation using various electrolyte (MgSO4, KH2PO4 and Na(NO3)) for Barren Acidic Soil at Ayer Hitam, Johor, Malaysia

    NASA Astrophysics Data System (ADS)

    Norashira, J.; Zaidi, E.; Aziman, M.; Saiful Azhar, A. T.

    2016-07-01

    Barren acidic soil collected at Ayer Hitam, Johor Malaysia was recorded at pH value of 2.36 with relative humidity of 86%. This pH value is not suitable for the growth of any plants especially for the soil stabilization purposes. Gradation weathering within the range of 4 to 6 indicates an incomplete/partial weathering process. The soil grade in this range is known as a black shale mudstone. Beside, this also influences to a factor of the high surface water runoff at this particular soil species. As the acidic pH become a major problem for soil fertilizing hence an appropriate technique was implemented known as using ‘Electrokinetic Remediation’, EKR. This technique has a great potential in changing the soil pH value from acidic to less acidic and also kept maintain the pH at the saturated rate of electrochemical process. This research study presents the monitoring data of pH value due to the effect of various electrolyte consist of 0.5M of MgSO4, KH2PO4, and Na(NO3). Here, the distilled water (DW) was used as reference solution. The electric field was provided by dipping two pieces of identical rectangular aluminum foil as anode and cathode. The EKR was conducted under a constant voltage gradient of 50 V/m across the sample bulk at 0.14 m length measured between both electrodes. The data collection was conducted during the total period of 7 days surveillance. The variation of pH values at the remediation area between anode and cathode for various type of electrolyte indicates that there are a significant saturated value as it reaches 7 days of treatment. During the analysis, it is found that the highest pH value at the remediation area after 7 days treatment using Na(NO3), KH2PO4 and MgSO4 was 3.93, 3.33 and 3.39 respectively. Hence from the last stage of pH value observation, it can be conclude that the best electrolyte for barren soil treatment is Na(NO3) whereby it contribute to highest pH value and turn the soil to be less acidic.

  10. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  11. Interaction of trace elements in acid mine drainage solution with humic acid.

    PubMed

    Suteerapataranon, Siripat; Bouby, Muriel; Geckeis, Horst; Fanghänel, Thomas; Grudpan, Kate

    2006-06-01

    The release of metal ions from a coal mining tailing area, Lamphun, Northern Thailand, is studied by leaching tests. Considerable amounts of Mn, Fe, Al, Ni and Co are dissolved in both simulated rain water (pH 4) and 10 mg L(-1) humic acid (HA) solution (Aldrich humic acid, pH 7). Due to the presence of oxidizing pyrite and sulfide minerals, the pH in both leachates decreases down to approximately 3 combined with high sulfate concentrations typical to acid mine drainage (AMD) water composition. Interaction of the acidic leachates upon mixing with ground- and surface water containing natural organic matter is simulated by subsequent dilution (1:100; 1:200; 1:300; 1:500) with a 10 mg L(-1) HA solution (ionic strength: 10(-3) mol L(-1)). Combining asymmetric flow field-flow fractionation (AsFlFFF) with UV/Vis and ICP-MS detection allows for the investigation of metal ion interaction with HA colloid and colloid size evolution. Formation of colloid aggregates is observed by filtration and AsFlFFF depending on the degree of the dilution. While the average HA size is initially found to be 2 nm, metal-HA complexes are always found to be larger. Such observation is attributed to a metal induced HA agglomeration, which is found even at low coverage of HA functional groups with metal ions. Increasing the metal ion to HA ratio, the HA bound metal ions and the HA entities are growing in size from <3 to >450 nm. At high metal ion to HA ratios, precipitation of FeOOH phases and HA agglomeration due to colloid charge neutralization by complete saturation of HA complexing sites are responsible for the fact that most of Fe and Al precipitate and are found in a size fraction >450 nm. In the more diluted solutions, HA is more relevant as a carrier for metal ion mobilization.

  12. Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode.

    PubMed

    Markevich, Elena; Salitra, Gregory; Fridman, Katia; Sharabi, Ronit; Gershinsky, Gregory; Garsuch, Arnd; Semrau, Guenter; Schmidt, Michael A; Aurbach, Doron

    2014-07-01

    The effect of fluorinated ethylene carbonate (FEC) as a cosolvent in alkyl carbonates/LiPF6 on the cycling performance of high-voltage (5 V) cathodes for Li-ion batteries was investigated using electrochemical tools, X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HRSEM). An excellent cycling stability of LiCoPO4/Li, LiNi0.5Mn1.5O4/Si, and LiCoPO4/Si cells and a reasonable cycling of LiCoPO4/Si cells was achieved by replacing the commonly used cosolvent ethylene carbonate (EC) by FEC in electrolyte solutions for high-voltage Li-ion batteries. The roles of FEC in the improvement of the cycling performance of high-voltage Li-ion cells and of surface chemistry on the cathode are discussed.

  13. Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors

    NASA Astrophysics Data System (ADS)

    Fukutsuka, Tomokazu; Nakagawa, Takuya; Miyazaki, Kohei; Abe, Takeshi

    2016-02-01

    Compatibility of LiF + anion receptors/propylene carbonate (PC) electrolyte solution with high potential positive electrode for lithium-ion batteries was examined by cyclic voltammetry. As anion receptors, tripropyl borate (TPB), tris(pentafluorophenyl) borane (TPFPB), and tris(hexafluoroisopropyl) borate (THFIPB) were used. LiCoPO4 thin-film electrodes were prepared by sol-gel method and used as both carbon- and binder-free model electrodes. From cyclic voltammograms, LiCoPO4 showed better cycleability in 0.1 mol dm-3 LiF + 0.1 mol dm-3 THFIPB/PC, however, other anion receptors did not give positive influence. It is indicated that the surface protecting layer from F--THFIPB complex and made LiCoPO4 stable. Electrochemical behavior depending on anion receptors was discussed according to reaction activity of F-.

  14. Radiation-electrochemical oxidation of water on semiconductor (TiO 2, SrTiO 3) electrodes in aqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Pleskov, Yu. V.; Krotova, M. D.; Revina, A. A.

    Irradiation of an electrochemical cell with a semiconductor (TiO 2, SrTiO 3) anode, a metal cathode, and an aqueous electrolyte solution with ionizing radiation (accelerated electrons with the energy 4 MeV, X-radiation 70 keV, γ radiation, and neutron radiation of a nuclear reactor) stimulates the process of electrochemical decomposition of water resulting in O 2 evolution at a semiconductor anode. The radiation-electrochemical process is caused by generation in the semiconductor of minority carriers (holes) necessary for anodic oxidation of water. The possibility of converting by radiation-electrochemical means the energy of ionizing radiation into chemical energy has been thus demonstrated.

  15. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    NASA Astrophysics Data System (ADS)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  16. Electrolyte system strategies for anionic isotachophoresis with electrospray-ionization mass-spectrometric detection. 1. Regular isotachophoresis and free-acid isotachophoresis.

    PubMed

    Malá, Zdena; Gebauer, Petr; Boček, Petr

    2013-11-01

    The subject of this work is the definition of a simple model based on general ITP theory that allows describing and predicting the behavior of ITP systems compatible with ESI-MS detection. The model is exemplified by anionic ITP of weak acids that represent an interesting potential application field of ITP-ESI-MS. Suitable ESI-compatible electrolyte systems of very simple composition are proposed including a special free-acid ITP arrangement. The properties of these systems are discussed using illustrative diagrams of their stacking windows. The use of anionic ITP-ESI-MS in negative-ion ESI mode is reported for the first time and its suitability for sensitive trace analysis is demonstrated. The presented ITP-ESI-MS application example comprises a free-acid ITP system formed of formic and propionic acids and direct injection analysis of ibuprofen and diclofenac in waters with quantitation limits of the order 10(-10) M.

  17. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions.

    PubMed

    Scharko, Nicole K; Berke, Andrew E; Raff, Jonathan D

    2014-10-21

    Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry.

  18. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.

    PubMed

    Heaton, James C; Russell, Joseph J; Underwood, Tim; Boughtflower, Robert; McCalley, David V

    2014-06-20

    The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic interaction chromatography (HILIC) stationary phases that showed both strong and weak ionic retention characteristics, using aqueous-acetonitrile mobile phases containing either formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic solvent concentration on the results was also studied. Peak shape was good for neutrals under most mobile phase conditions. However, peak shapes for ionised solutes, particularly for basic compounds, were considerably worse in FA than AF. Even neutral compounds showed deterioration in performance with FA when the mobile phase water concentration was reduced. The poor performance in FA cannot be entirely attributed to the negative impact of ionic retention on ionised silanols on the underlying silica base materials, as results using PA at lower pH (where their ionisation is suppressed) were inferior to those in AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that salt buffers improve peak shape due to the increased ionic strength of the mobile phase and its impact on the formation of the water layer on the column surface.

  19. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    PubMed

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb

  20. The role of electrolyte anions (ClO{sub 4}{sup {minus}}, NO{sub 3}{sup {minus}}, and Cl{sup {minus}}) in divalent metal (M{sup 2+}) adsorption on oxide and hydroxide surfaces in salt solutions

    SciTech Connect

    Criscenti, L.J.; Sverjensky, D.A.

    1999-12-01

    Adsorption of divalent metal ions (M{sup 2+}) onto oxide and hydroxide surfaces from solutions of strong electrolytes has typically been inferred to take place without the involvement of the electrolyte anion. Only in situations where M{sup 2+} forms a strong enough aqueous complex with the electrolyte anion (for example, CdCl{sup +} or PbCl{sup +}) has it been frequently suggested that the metal and the electrolyte anion adsorb simultaneously. A review of experimental data for the adsorption of Cd{sup 2+}, Pb{sup 2+}, Co{sup 2+}, UO{sub 2}{sup 2+}, Zn{sup 2+}, Cu{sup 2+}, Ba{sup 2+}, Sr{sup 2+}, and Ca{sup 2+} onto quartz, silica, goethite, hydrous ferric oxide, corundum, {gamma}-alumina, anatase, birnessite, and magnetite, from NaNO{sub 3}, KNO{sub 3}, NaCl, and NaClO{sub 4} solutions over a wide range of ionic strengths (0.0001 M-1.0 M), reveals that transition and heavy metal adsorption behavior with ionic strength is a function of the type of electrolyte. In NaNO{sub 3} solutions, metal adsorption exhibits little or no dependence on the ionic strength of the solution. However, in NaCl solutions, transition and heavy metal adsorption decreases strongly with increasing ionic strength. In NaClO{sub 4} solutions, metal adsorption decreases strongly with increasing ionic strength. In NaClO{sub 4} solutions, metal adsorption exhibits little dependence on ionic strength but is often suggestive of an increase in metal adsorption with increasing ionic strength. Analysis of selected adsorption edges was carried out using the extended triple-layer model and aqueous speciation models that included metal-nitrate, metal-chloride, and metal-hydroxide complexes.

  1. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  2. Characterization of p-type CdTe electrodes in acetonitrile/electrolyte solutions. Nearly ideal behavior from reductive surface pretreatments

    NASA Astrophysics Data System (ADS)

    White, H. S.; Ricco, A. J.; Wrighton, M. S.

    1983-06-01

    Single crystal p-CdTe (Eg equal 1.4 eV) electrodes have been characterized in CH3CN/electrolyte solutions. Deliberate modification of the p-CdTe surface by etching in strongly oxidizing (Cr2072-/HNO3) or reducing (S2042-/OH-) solutions alters the p-CdTe surface to give rise to large differences in the electrochemical response in the dark and under illumination. The oxidative pretreatment apparently yields a p-CdTe surface that is Fermi level pinned, whereas the reductive pretreatment yields nearly ideal response. The pretreated electrodes were characterized by XPS, impedance measurements, and cyclic voltammetry in the presence of a number of reversible, one-electron redox couples. XPS indicates the presence of a number of reversible, one-electron redox couples. XPS indicates the presence of a Te-rich surface overlayer, composed of Te0 and Te02, on CdTe etched in oxidizing media. Electrodes etched in reducing solutions yield XPS spectra nearly identical to those of an Ar ion-sputtered CdTe sample, in terms of stoichiometry (1:1) and chemical state (Cd2+ and Te2-) of cadmium and telluride.

  3. Influence of anionic substitution on the electrolyte electroreflectance study of band edge transitions in single crystal Cu2ZnSn(SxSe1-x)4 solid solutions

    NASA Astrophysics Data System (ADS)

    Levcenco, S.; Dumcenco, D.; Wang, Y. P.; Huang, Y. S.; Ho, C. H.; Arushanov, E.; Tezlevan, V.; Tiong, K. K.

    2012-06-01

    Single crystals of Cu2ZnSn(SxSe1-x)4 (CZTSSe) solid solutions were grown by chemical vapor transport technique using iodine trichloride as a transport agent. As confirmed by X-ray investigations, the as-grown CZTSSe solid solutions are single phase and crystallized in kesterite structure. The lattice parameters of CZTSSe were determined and the S contents of the obtained crystals were estimated by Vegard's law. The composition dependent band gaps of CZTSSe solid solutions were studied by electrolyte electroreflectance (EER) measurements at room temperature. From a detailed lineshape fit of the EER spectra, the band gaps of CZTSSe were determined accurately and were found to decrease almost linearly with the increase of Se content, which agreed well with the recent theoretical first-principle calculations by S. Chen, A. Walsh, J.H. Yang, X.G. Gong, L. Sun, P. X. Yang, J.H. Chu, S.H. Wei, Phys. Rev. B 83 (2011) 125201 (5pp).

  4. Experimental observation of the ion-ion correlation effects on charge inversion and strong adhesion between mica surfaces in aqueous electrolyte solutions.

    PubMed

    Tan, Qiyan; Zhao, Gutian; Qiu, Yinghua; Kan, Yajing; Ni, Zhonghua; Chen, Yunfei

    2014-09-16

    Direct force measurements between two mica surfaces in aqueous electrolyte solutions over broad ranges of LaCl3 concentrations and pH values were carried out with a surface forces apparatus. Charge inversion on mica surfaces is detected once the LaCl3 concentration reaches a critical value. With the continual increase of LaCl3 concentrations, the mica surface will be overscreened by the counterions. It is demonstrated that the two mica surfaces may experience the jump-in contact even at high LaCl3 concentrations, which is seldom seen in monovalent salt solutions. The strong adhesion cannot be attributed to the van der Waals force alone, but should include the ion-ion correlation forces. Through adjusting the pH values in LaCl3 solutions, the ion-ion correlation force can be evaluated quantitatively. These results provide important insight into the fundamental understanding in the role of ion-ion correlations in ion screening mechanism and interactions between charged objects.

  5. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1983-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered.

  6. Stresses due to Squeeze Flow between Particles Surrounded by an Electrolyte Solution with Application to Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; Zhang, Cong

    2013-11-01

    Large stresses are induced during lithium-ion battery charging and discharging, termed intercalation and deintercalation stresses. Current models of the stresses in lithium-ion batteries in the literature seldom consider the influence of the interaction between the particles within the electrodes on the stress distribution. The particles within lithium-ion battery electrodes can undergo relative motion with relative velocities of different magnitudes and directions. One important mode of motion manifests itself as two particles approaching each other. The interaction is mediated by the electrolyte between the particles. The relative motion of the particles induces significant pressures and the primary objective of this work is to propose a source of mechanical stresses as a consequence of the dynamic squeezing motion as opposed to a static environment considered in the battery literature. Other applications in the biomedical field are also discussed. Supported by DOE Graduate Automotive Technology Education (GATE), OSU Center for Automotive Research and OSU NSEC Center for the Affordable Nanoengineering of Polymeric Biomedical Devices.

  7. Large-scale production of anhydrous nitric acid and nitric acid solutions of dinitrogen pentoxide

    DOEpatents

    Harrar, Jackson E.; Quong, Roland; Rigdon, Lester P.; McGuire, Raymond R.

    2001-01-01

    A method and apparatus are disclosed for a large scale, electrochemical production of anhydrous nitric acid and N.sub.2 O.sub.5. The method includes oxidizing a solution of N.sub.2 O.sub.4 /aqueous-HNO.sub.3 at the anode, while reducing aqueous HNO.sub.3 at the cathode, in a flow electrolyzer constructed of special materials. N.sub.2 O.sub.4 is produced at the cathode and may be separated and recycled as a feedstock for use in the anolyte. The process is controlled by regulating the electrolysis current until the desired products are obtained. The chemical compositions of the anolyte and catholyte are monitored by measurement of the solution density and the concentrations of N.sub.2 O.sub.4.

  8. EVALUATING EFFECTS OF NEPTUNIUM ON THE SRS METHOD FOR CONTROLLED POTENTIAL COULOMETRIC ASSAY OF PLUTONIUM IN SULFURIC ACID SUPPORTING ELECTROLYTE

    SciTech Connect

    Holland, M; Sheldon Nichols, S

    2008-05-09

    A study of the impact of neptunium on the coulometric assay of plutonium in dilute sulfuric acid was performed. Weight aliquots of plutonium standard solutions were spiked with purified neptunium solution to evaluate plutonium measurement performance for aliquots with Pu:Np ratios of 50:1, 30:1, 20:1, 15:1, and 10:1. Weight aliquots of the pure plutonium standard solution were measured as controls. Routine plutonium instrument control standards were also measured. The presence of neptunium in plutonium aliquots significantly increases the random uncertainty associated with the plutonium coulometric measurement performed in accordance with ISO12183:2005.7 However, the presence of neptunium does not appear to degrade electrode performance and conditioning as aliquots of pure plutonium that were interspersed during the measurement of the mixed Pu:Np aliquots continued to achieve the historical short-term random uncertainty for the method. Lack of adequate control of the neptunium oxidation state is suspected to be the primary cause of the elevated measurement uncertainty and will be pursued in a future study.

  9. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kishore, Kamal; Mukherjee, T.

    2006-01-01

    Reactions of H, OH, eaq- and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of eaq- with these compounds were of the order of 10 9 dm 3 mol -1 s -1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>10 10 dm 3 mol -1 s -1) while O rad - radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N 3rad and SO 4rad - could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO 4- radicals indicating that while one-electron reduction potential for semi-oxidized SA may be<1.33 V vs. NHE (the E o1 for N 3rad radical), it is more than 1.33 V vs. NHE for semi-oxidized SSA species.

  10. Fluid and electrolyte therapy in ruminants.

    PubMed

    Constable, Peter

    2003-11-01

    chloride-rich electrolytes such as KCl; the latter provides a physiologically more appropriate treatment than oral administration of vinegar or acetic acid solutions. Hypocalcemia is treated best by administering intravenous calcium borogluconate solutions or oral CaCl2 gels. Hypomagnesemia is treated best by intravenous or subcutaneous administration of combined calcium and magnesium solutions. Hypophosphatemia is treated best by oral administration of feed-grade monosodium phosphate. Hypokalemia is treated best by oral administration of feed-grade KCl; hyperkalemia is treated best by intravenous administration of 8.0% NaHCO3 or HS. The major challenges in treating fluid and electrolyte disorders in ruminants are making treatment protocols more practical and less expensive and formulating an optimal electrolyte solution for oral administration to adult ruminants.

  11. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  12. Theoretical and experimental study of mixed solvent electrolytes. Final report

    SciTech Connect

    P.T. Cummings; J.P. O'Connell

    1995-01-31

    The goals of the research program evolved into six areas: Molecular simulation of phase equilibria in aqueous and mixed solvent electrolyte solutions. Molecular simulation of solvation and structure in supercritical aqueous systems. Extension of experimental database on mixed solvent electrolytes. Analysis of the thermodynamic properties of mixed solvent electrolyte solutions and mixed electrolyte solutions using fluctuation solution theory. Development of analytic expressions for thermodynamic properties of mixed solvent electrolyte solutions using analytically solved integral equation approximations. Fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories.

  13. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    PubMed

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  14. Unsaturated fatty acids in alkane solution: adsorption to steel surfaces.

    PubMed

    Lundgren, Sarah M; Persson, Karin; Mueller, Gregor; Kronberg, Bengt; Clarke, Jim; Chtaib, Mohammed; Claesson, Per M

    2007-10-01

    The adsorption of the unsaturated fatty acids oleic, linoleic, and linolenic acid on steel surfaces has been investigated by means of a quartz crystal microbalance (QCM). Two different solvents were used, n-hexadecane and its highly branched isomer, viz., 2,2,4,4,6,8,8-heptamethylnonane. The area occupied per molecule of oleic acid at 1 wt % corresponds to what is needed for adsorption parallel to the surface. At the same concentration, the adsorbed amount of linoleic acid and linolenic acid indicates that they adsorb in multilayers. The chemisorbed amount estimated from static secondary ion mass spectroscopy (SIMS) measurements was found to be similar for the three unsaturated fatty acids. In the case of linolenic acid, it was found that the presence of water significantly alters the adsorption, most likely because of the precipitation of fatty acid/water aggregates. Furthermore, static SIMS results indicate that the amount of water used here inhibits the chemisorption of linolenic acid.

  15. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  16. Isothermal heat measurements of TBP-nitric acid solutions

    SciTech Connect

    Smith, J.R.; Cavin, W.S.

    1994-12-16

    Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min{sup {minus}1} at 110 C for an open ``vented`` system as compared to 1.33 E-3 min{sup {minus}1} in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols` (1.33E-3 min{sup {minus}1}) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ``reacting`` 14.3M HNO{sub 3} aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO{sub 3} reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk.

  17. Surface Analytical Study of CuInSe2 Treated in Cd-Containing Partial Electrolyte Solution

    SciTech Connect

    Asher, S. E.; Ramanathan, K.; Wiesner H.; Moutinho, H.; Niles, D. W.

    1998-11-19

    Junction formation in CuInSe2 (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH4OH and CdSO4. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and by ion-beam mixing and topography in the single-crystal sample.

  18. Surface analytical study of CuInSe[sub 2] treated in Cd-containing partial electrolyte solution

    SciTech Connect

    Asher, S.E.; Ramanathan, K.; Wiesner, H.; Moutinho, H. ) Niles, D.W. )

    1999-03-01

    Junction formation in CuInSe[sub 2] (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH[sub 4]OH and CdSO[sub 4]. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and by ion-beam mixing and topography in the single-crystal sample. [copyright] [ital 1999 American Institute of Physics.

  19. Surface analytical study of CuInSe{sub 2} treated in Cd-containing partial electrolyte solution

    SciTech Connect

    Asher, S.E.; Ramanathan, K.; Wiesner, H.; Moutinho, H. Niles, D.W.

    1999-03-01

    Junction formation in CuInSe{sub 2} (CIS) has been studied by exposing thin films and single-crystal samples to solutions containing NH{sub 4}OH and CdSO{sub 4}. The treated samples were analyzed by secondary ion mass spectrometry to determine the amount and distribution of Cd deposited on the surface of the films. Cadmium is found to react with the surface for all the solution exposure times and temperatures studied. The reaction rapidly approaches the endpoint and remains relatively unchanged for subsequent solution exposure. Cadmium in-diffusion, as measured by secondary ion mass spectrometry, is obscured by topography effects in the thin-film samples and by ion-beam mixing and topography in the single-crystal sample. {copyright} {ital 1999 American Institute of Physics.}

  20. Thermal and volumetric properties of complex aqueous electrolyte solutions using the Pitzer formalism - The PhreeSCALE code

    NASA Astrophysics Data System (ADS)

    Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre

    2016-07-01

    The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.

  1. Effect of citric acid on the acidification of artificial pepsin solution for metacercariae isolation from fish.

    PubMed

    Kim, Min-Ki; Pyo, Kyoung-Ho; Hwang, Young-Sang; Chun, Hyang Sook; Park, Ki Hwan; Ko, Seong-Hee; Chai, Jong-Yil; Shin, Eun-Hee

    2013-11-15

    Artificial digestive solution based on pepsin is essential for collecting metacercariae from fish. To promote the enzymatic reactivity of pepsin, the pH of the solution has to be adjusted to pH 1.0-2.0. Hydrochloride (HCl) is usually used for this purpose, but the use of HCl raises safety concerns. The aim of this work was to address the usefulness of citric acid as an alternative for HCl for the acidification of pepsin solution, and to examine its potential to damage metacercariae during in vitro digestion as compared with HCl. Changes in pH after adding 1-9% of citric acid (m/v) to pepsin solution were compared to a 1% HCl (v/v) addition. Digestion of fish muscle was evaluated by measuring released protein concentrations by spectrophotometry. In addition, survival rates of metacercariae in pepsin solution were determined at different citric acid concentrations and were compared that of with 1% HCl. The present study shows that addition of citric acid reduced the pH of pepsin solutions to the required level. Addition of more than 5% of citric acid resulted in the effective digestion of fish muscle over 3h in vitro, and 5% citric acid was less lethal to metacercariae than 1% HCl in pepsin solution. Pepsin solution containing 5% citric acid had digestive capacity superior to pepsin solution containing 1% HCl after 3h incubation with released protein concentrations of 12.0 ng/ml for 5% citric acid and 9.6 ng/ml for 1% HCl. Accordingly, the present study suggests that the addition of 5% citric acid to pepsin solution is a good alternative to 1% HCl in infection studies because citric acid is a stable at room temperature and has a good safety profile. In addition, we suggest that the use of citric acid enables the preparation of commercial digestive solutions for the detection of microorganisms in fish and other vertebrate muscle tissue.

  2. Studies of the pulse charge of lead-acid batteries for PV applications. Part III. Electrolyte concentration effects on the electrochemical performance of the positive plate

    NASA Astrophysics Data System (ADS)

    Kirchev, A.; Delaille, A.; Karoui, F.; Perrin, M.; Lemaire, E.; Mattera, F.

    2008-05-01

    In the third part of this work the effects of the sulphuric acid concentration on the positive plate discharge capacity, impedance and oxygen overvoltage are discussed. It has been found that the full discharge capacity of the positive plate is available down to electrolyte concentrations of 3 mol l-1 (s.g. 1.18 g ml-1). At further acid dilution, capacity of the positive plate declines, keeping the utilization of the sulphuric acid about 50%. Decreasing the acid concentration, the oxygen overvoltage decreases with a factor of 12-18 mV M-1, excluding the effect of the equilibrium potential of the oxygen electrode as a function of pH. The capacitance of the electrical double layer decrease linearly with the dilution of the sulphuric acid suggesting strong adsorption effects. This suggestion has been confirmed from the measurements of potential of the zero charge of the positive plate, which increases from 1.11 to 1.34 V vs. Ag/Ag2SO4 in the region 1.11-4.60 M H2SO4. From the measurement of the time constant of the electronic transfer through the gel part of the lead dioxide (Tgel) as a function of the acid concentration and the applied potential, a change in the mechanism of the lead dioxide hydration has been estimated-below 1 M H2SO4Tgel increases sharply, showing sharp increases of the extent of the hydration. The dilution of the electrolyte increases substantially the value of average double layer current in the beginning of the charge. During the pulse overcharge at the employed frequency of 1 Hz, the average double layer current is equal to the pulse amplitude, suggesting that the maximal efficiency of the pulse charge is reached.

  3. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  4. Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl₂) solutions

    SciTech Connect

    Bourg, Ian C.; Sposito, Garrison

    2011-01-01

    We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl–CaCl2 electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO2 or high-level radioactive waste (0.34–1.83 molc dm-3). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) “indifferent electrolyte” ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl+ ion pairs. Therefore, at concentrations {>=0.34 molc dm-3}, properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid “ice-like” structures for water on clay mineral surfaces.

  5. The role of external electric fields in enhancing ion mobility, drift velocity, and drift-diffusion rates in aqueous electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Murad, Sohail

    2011-03-01

    Molecular simulations have been carried out using the method of molecular dynamics to investigate the role of external electric fields on the ion mobility, drift velocity, and drift-diffusion rate of ions in aqueous electrolyte solutions. These properties are critical for a range of processes including electrodialysis, electro-deionization, electrophoresis, and electroosmosis. Our results show that external electric fields relax the hydrated ion structure at significantly larger time scales (between 300 and 800 ps), than most other relaxation processes in solutions (generally of the order of 1 ps). Previous studies that did not account for the much longer relaxation times did not observe this behavior for ions even with very high electric fields. External electric fields must also overcome several (at least two or more) activation energy barriers to significantly change the structure of hydrated ions. As a result, the dynamic behavior changes almost in bands as a function of electric field strengths, rather than linearly. Finally, the effect of the field is much less dramatic on water than the ions. Thus electric fields will be of more significance in processes that involve the transport of ions (such as electro-deionization) than the transport of water (electroosmosis).

  6. Solid electrolyte battery

    SciTech Connect

    Cipriano, R.A.; Snelgrove, R.V.; McCullough, F.P. Jr.

    1990-08-28

    This patent describes a primary rechargeable electrical storage device, a housing, at least one cell position in the housing, each cell comprising an anode consisting of a metal selected from the group consisting of alkaline earth metal, alkaline earth metal alloy, alkali metal, alkali metal alloy and alkali metal eutectic mixtures, a separator surrounding the anode. The separator being capable of transporting or passing ionic species and electrically isolating the anode, a cathode, and an electrolyte associated with the cathode. The electrolyte comprising a membrane of a non-porous solid polymeric material containing a sulfonic acid group.

  7. Ultrasonic degradation of oxalic acid in aqueous solutions.

    PubMed

    Dükkanci, M; Gündüz, G

    2006-09-01

    This paper describes the ultrasonic degradation of oxalic acid. The effects of ultrasonic power, H(2)O(2), NaCl, external gases on the degradation of oxalic acid were investigated. Reactor flask containing oxalic acid was immersed in the ultrasonic bath with water as the coupling fluid. Representative samples withdrawn were analysed by volumetric titration. Degradation degree of oxalic acid increased with increasing ultrasonic power. It was observed that H(2)O(2) has negative contribution on the degradation of oxalic acid and there was an optimum concentration of NaCl for enhancing the degradation degree of oxalic acid. Although bubbling nitrogen gave higher degradation than that for bubbling air, both gases (for 20 min before sonication and during sonication together) could not help to enhance the degradation of oxalic acid when compared with the degradation without gas passage. PMID:16352455

  8. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  9. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  10. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  11. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  12. 49 CFR 173.229 - Chloric acid solution or chlorine dioxide hydrate, frozen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chloric acid solution or chlorine dioxide hydrate, frozen. 173.229 Section 173.229 Transportation Other Regulations Relating to Transportation PIPELINE AND... Than Class 1 and Class 7 § 173.229 Chloric acid solution or chlorine dioxide hydrate, frozen. When...

  13. Fructose-maltodextrin ratio in a carbohydrate-electrolyte solution differentially affects exogenous carbohydrate oxidation rate, gut comfort, and performance.

    PubMed

    O'Brien, Wendy J; Rowlands, David S

    2011-01-01

    Solutions containing multiple carbohydrates utilizing different intestinal transporters (glucose and fructose) show enhanced absorption, oxidation, and performance compared with single-carbohydrate solutions, but the impact of the ratio of these carbohydrates on outcomes is unknown. In a randomized double-blind crossover, 10 cyclists rode 150 min at 50% peak power, then performed an incremental test to exhaustion, while ingesting artificially sweetened water or one of three carbohydrate-salt solutions comprising fructose and maltodextrin in the respective following concentrations: 4.5 and 9% (0.5-Ratio), 6 and 7.5% (0.8-Ratio), and 7.5 and 6% (1.25-Ratio). The carbohydrates were ingested at 1.8 g/min and naturally (13)C-enriched to permit evaluation of oxidation rate by mass spectrometry and indirect calorimetry. Mean exogenous carbohydrate oxidation rates were 1.04, 1.14, and 1.05 g/min (coefficient of variation 20%) in 0.5-, 0.8-, and 1.25-Ratios, respectively, representing likely small increases in 0.8-Ratio of 11% (90% confidence limits; ± 4%) and 10% (± 4%) relative to 0.5- and 1.25-Ratios, respectively. Comparisons of fat and total and endogenous carbohydrate oxidation rates between solutions were unclear. Relative to 0.5-Ratio, there were moderate improvements to peak power with 0.8- (3.6%; 99% confidence limits ± 3.5%) and 1.25-Ratio (3.0%; ± 3.7%) but unclear with water (0.4%; ± 4.4%). Increases in stomach fullness, abdominal cramping, and nausea were lowest with the 0.8- followed by the 1.25-Ratio solution. At high carbohydrate-ingestion rate, greater benefits to endurance performance may result from ingestion of 0.8- to 1.25-Ratio fructose-maltodextrin solutions. Small perceptible improvements in gut comfort favor the 0.8-Ratio and provide a clearer suggestion of mechanism than the relationship with exogenous carbohydrate oxidation.

  14. Chemical evaluation of soil-solution in acid forest soils

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.

    1996-01-01

    Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and

  15. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  16. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  17. The ototoxic effect of boric acid solutions applied into the middle ear of guinea pigs.

    PubMed

    Oztürkcan, Sedat; Dündar, Riza; Katilmis, Hüseyin; Ilknur, Ali Ekber; Aktaş, Sinem; Haciömeroğlu, Senem

    2009-05-01

    This study analyzed the ototoxic effects of boric acid solutions. Boric acid solutions have been used as otologic preparations for many years. Boric acid is commonly found in solutions prepared with alcohol or distilled water but can also be found in a powder form. These preparations are used for both their antiseptic and acidic qualities in external and middle ear infections. We investigated the ototoxic effect of boric acid solutions on guinea pigs. We are unaware of any similar, previously published study of this subject in English. The study was conducted on 28 young albino guinea pigs. Prior to application of the boric acid solution under general anesthesia, an Auditory Brainstem Response (ABRs) test was applied to the right ear of the guinea pigs. Following the test, a perforation was created on the tympanic membrane of the right ear of each guinea pig and small gelfoam pieces were inserted into the perforated area. Test solutions were administered to the middle ear for 10 days by means of a transcanal route. Fifteen days after inserting the gelfoams in all of the guinea pigs, we anasthesized the guinea pigs and removed the gelfoams from the perforated region of the ear and then performed an ABRs on each guinea pig. The ABRs were within the normal range before the applications. After the application, no significant changes were detected in the ABRs thresholds in neither the saline group nor the group administered boric acid and distilled water solution; however, significant changes were detected in the ABRs thresholds of the Gentamicine and boric acid and alcohol solution groups. We believe that a 4% boric acid solution prepared with distilled water can be a more reliable preparation than a 4% boric acid solution prepared with alcohol.

  18. Food-based solutions are a viable alternative to glucose-electrolyte solutions for oral hydration in acute diarrhoea--studies in a rat model of secretory diarrhoea.

    PubMed

    Rolston, D D; Mathew, P; Mathan, V I

    1990-01-01

    A survey of acute diarrhoea and its treatment, in 3 groups of villages in south India, revealed that use of the World Health Organization oral rehydration solution (WHO-ORS) was poor or virtually non-existent and that several liquid foods were given to children during acute diarrhoea. The effects of the most commonly used, boiled and cooled supernatants of these liquid foods [rice (Oryza sativa)-water, ragi (Eleusine coracana)-water, arrowroot (Maranta arundinacea)-water], and tender coconut-water, and of the bicarbonate- and citrate-WHO-ORS on intestinal water transport were evaluated using a rat model of secretory diarrhoea. All solutions either decreased cholera toxin-induced net water secretion (arrowroot-water) or reversed it to net absorption. Ragi-water produced maximum net water absorption, significantly greater than the WHO oral rehydration solutions. WHO-ORS utilization is poor in some developing countries, and locally used food-based solutions could be used for maintaining hydration or correcting the dehydration due to acute diarrhoea once their effectiveness has been proved by clinical trials. PMID:2345922

  19. Food-based solutions are a viable alternative to glucose-electrolyte solutions for oral hydration in acute diarrhoea--studies in a rat model of secretory diarrhoea.

    PubMed

    Rolston, D D; Mathew, P; Mathan, V I

    1990-01-01

    A survey of acute diarrhoea and its treatment, in 3 groups of villages in south India, revealed that use of the World Health Organization oral rehydration solution (WHO-ORS) was poor or virtually non-existent and that several liquid foods were given to children during acute diarrhoea. The effects of the most commonly used, boiled and cooled supernatants of these liquid foods [rice (Oryza sativa)-water, ragi (Eleusine coracana)-water, arrowroot (Maranta arundinacea)-water], and tender coconut-water, and of the bicarbonate- and citrate-WHO-ORS on intestinal water transport were evaluated using a rat model of secretory diarrhoea. All solutions either decreased cholera toxin-induced net water secretion (arrowroot-water) or reversed it to net absorption. Ragi-water produced maximum net water absorption, significantly greater than the WHO oral rehydration solutions. WHO-ORS utilization is poor in some developing countries, and locally used food-based solutions could be used for maintaining hydration or correcting the dehydration due to acute diarrhoea once their effectiveness has been proved by clinical trials.

  20. Effects of Fluid Resuscitation With 0.9% Saline Versus a Balanced Electrolyte Solution on Acute Kidney Injury in a Rat Model of Sepsis*

    PubMed Central

    Zhou, Feihu; Peng, Zhi-Yong; Bishop, Jeffery V.; Cove, Matthew E.; Singbartl, Kai; Kellum, John A.

    2014-01-01

    Objective To compare the acute effects of 0.9% saline versus a balanced electrolyte solution on acute kidney injury in a rat model of sepsis. Design Controlled laboratory experiment. Setting University laboratory. Subjects Sixty adult, male Sprague-Dawley rats. Interventions We induced sepsis by cecal ligation and puncture and randomized animals to receive fluid resuscitation with either 0.9% saline or Plasma-Lyte solution for 4 hours after 18 hours of cecal ligation and puncture (10 mL/kg in the first hour and 5 mL/kg in the next 3 hr). Blood and urine specimens were obtained from baseline, 18 hours after cecal ligation and puncture, immediately after 4 hours fluid resuscitation, and 24 hours later. We measured blood gas, plasma electrolytes, creatinine, interleukin-6, cystatin C, and neutrophil gelatinase-associated lipocalin concentrations. We also analyzed urine for cystatin C and neutrophil gelatinase-associated lipocalin. We used Risk, Injury, Failure, Loss and End-stage criteria for creatinine to assess severity of acute kidney injury. We observed all animals for survival up to 1 day after resuscitation. Surviving animals were killed for kidney histology. Finally, we carried out an identical study in 12 healthy animals. Measurements and Main Results Compared with Plasma-Lyte, 0.9% saline resuscitation resulted in significantly greater blood chloride concentrations (p < 0.05) and significantly decreased pH and base excess. Acute kidney injury severity measured by RIFLE criteria was increased with 0.9% saline compared with Plasma-Lyte resuscitation (p < 0.05), and these results were consistent with kidney histology and biomarkers of acute kidney injury. Twenty-four-hour survival favored Plasma-Lyte resuscitation (76.6% vs 53.3%; p = 0.03). Finally, in healthy animals, we found no differences between fluids and no evidence of acute kidney injury. Conclusion Volume resuscitation with Plasma-Lyte resulted in less acidosis and less kidney injury and improved short