Sample records for acid electrolyte solution

  1. Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-12-01

    The decrease in the efficiency and capacity of a vanadium redox flow battery (VRB) caused by an electrolyte imbalance is an important impediment to its long-term operation. Knowing the state of charge (SOC) of an electrolyte solution can quantify the level of the electrolyte imbalance in the VRB. In this study, a four-pole cell device is devised and employed to predict the SOC. The proposed method directly measures the ionic resistance of the electrolyte solution and is sufficiently precise to be applied in real-time mode. Experimental studies on the effects of the operating current on the four-pole cell and the concentrations of vanadium and sulfuric acid in the electrolyte solution are carried out. The results show that the four-pole cell method can be utilized to measure the electrolyte SOC. The concentrations of vanadium and sulfuric acid in the electrolyte solution affect the ionic resistance of the solution. Regarding the capacity and efficiency of the VRB system, the results indicate that the electrical charge is determined from the concentration of vanadium and that the cell voltage depends on the concentration of sulfuric acid in the electrolyte solution. The decreased vanadium concentration and increased sulfuric acid concentration improves the cell voltage efficiency.

  2. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  3. A prospective randomized trial of two solutions for intrapartum amnioinfusion: effects on fetal electrolytes, osmolality, and acid-base status.

    PubMed

    Pressman, E K; Blakemore, K J

    1996-10-01

    Our purpose was to compare the effects of intrapartum amnioinfusion with normal saline solution versus lactated Ringer's solution plus physiologic glucose on neonatal electrolytes and acid-base balance. Patients undergoing amnioinfusion for obstetric indications were randomized to receive normal saline solution or lactated Ringer's solution plus physiologic glucose at standardized amnioinfusion rates. Data were collected prospectively on maternal demographics, course of labor, and maternal and neonatal outcome. Arterial cord blood was obtained for analysis of electrolytes, glucose, osmolality, lactic acid, and blood gases. Control subjects with normal fetal heart rate patterns, and clear amniotic fluid not receiving amnioinfusion were studied concurrently. Data were collected on 59 patients (21 normal saline solution, 18 lactated Ringer's solution plus physiologic glucose, and 20 controls). Maternal demographics, course of labor, and neonatal outcome were similar in all three groups. Cesarean sections were performed more often in the amnioinfusion groups (33.3% for normal saline solution, 38.9% for lactated Ringer's solution plus physiologic glucose) than in the control group (5.0%), p < 0.05. Cord arterial electrolytes, glucose, osmolality, lactic acid, and blood gases were not altered by amnioinfusion with either solution. Intrapartum amnioinfusion with normal saline solution or lactated Ringer's solution plus physiologic glucose has no effect on neonatal electrolytes or acid-base balance.

  4. Electrolytic Polishing and Etching Techniques for Preparing Specimens of Bismuth and Antimony and Their Alloys: Materials and Structures.

    DTIC Science & Technology

    Electrolytic polishing was performed in a solution of methyl alcohol, sulphuric acid , hydrocloric acid and ethylene glycol. Etching was done...electrolytically in a 5 percent chromic acid solution. Use of these techniques has permitted detailed studies of the microstructures of bismuth-antimony single

  5. Multi-electrolyte-step anodic aluminum oxide method for the fabrication of self-organized nanochannel arrays

    PubMed Central

    2012-01-01

    Nanochannel arrays were fabricated by the self-organized multi-electrolyte-step anodic aluminum oxide [AAO] method in this study. The anodization conditions used in the multi-electrolyte-step AAO method included a phosphoric acid solution as the electrolyte and an applied high voltage. There was a change in the phosphoric acid by the oxalic acid solution as the electrolyte and the applied low voltage. This method was used to produce self-organized nanochannel arrays with good regularity and circularity, meaning less power loss and processing time than with the multi-step AAO method. PMID:22333268

  6. First-principles molecular dynamics simulation study on electrolytes for use in redox flow battery

    NASA Astrophysics Data System (ADS)

    Choe, Yoong-Kee; Tsuchida, Eiji; Tokuda, Kazuya; Ootsuka, Jun; Saito, Yoshihiro; Masuno, Atsunobu; Inoue, Hiroyuki

    2017-11-01

    Results of first-principles molecular dynamics simulations carried out to investigate structural aspects of electrolytes for use in a redox flow battery are reported. The electrolytes studied here are aqueous sulfuric acid solutions where its property is of importance for dissolving redox couples in redox flow battery. The simulation results indicate that structural features of the acid solutions depend on the concentration of sulfuric acid. Such dependency arises from increase of proton dissociation from sulfuric acid.

  7. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance.

    PubMed

    Wu, Ying; Wang, Jixiao; Ou, Bin; Zhao, Song; Wang, Zhi; Wang, Shichang

    2018-02-12

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD) in the range of ultraviolet and visible (UV-Vis) light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ), p-benzoquinone (BQ), co-oligomers of aniline and p-benzoquinone (CAB) and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM) and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization.

  8. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance

    PubMed Central

    Wu, Ying; Wang, Jixiao; Ou, Bin; Zhao, Song; Wang, Zhi; Wang, Shichang

    2018-01-01

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD) in the range of ultraviolet and visible (UV-Vis) light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ), p-benzoquinone (BQ), co-oligomers of aniline and p-benzoquinone (CAB) and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM) and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization. PMID:29439514

  9. NREL Establishes World Record for Solar Hydrogen Production | News | News |

    Science.gov Websites

    acid/water solution (electrolyte) where the water-splitting reaction occurs to form hydrogen and oxygen efficiency and to partially protect the critical underlying layers from the corrosive electrolyte solution

  10. Isotherm-Based Thermodynamic Model for Solute Activities of Asymmetric Electrolyte Aqueous Solutions.

    PubMed

    Nandy, Lucy; Dutcher, Cari S

    2017-09-21

    Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. J. Phys. Chem. A/C 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute-solvent energy interactions (Ohm et al. J. Phys. Chem. A 2015, Nandy et al. J. Phys. Chem. A 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1-2 and 1-3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate the osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute-solute and solute-solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter that accounts for the dissociation ratio of the dissociated ions to nondissociated ions.

  11. Graphene quantum dots as the electrolyte for solid state supercapacitors

    PubMed Central

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  12. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  13. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  14. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  15. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  16. Electrolyte diodes with weak acids and bases. I. Theory and an approximate analytical solution.

    PubMed

    Iván, Kristóf; Simon, Péter L; Wittmann, Mária; Noszticzius, Zoltán

    2005-10-22

    Until now acid-base diodes and transistors applied strong mineral acids and bases exclusively. In this work properties of electrolyte diodes with weak electrolytes are studied and compared with those of diodes with strong ones to show the advantages of weak acids and bases in these applications. The theoretical model is a one dimensional piece of gel containing fixed ionizable groups and connecting reservoirs of an acid and a base. The electric current flowing through the gel is measured as a function of the applied voltage. The steady-state current-voltage characteristic (CVC) of such a gel looks like that of a diode under these conditions. Results of our theoretical, numerical, and experimental investigations are reported in two parts. In this first, theoretical part governing equations necessary to calculate the steady-state CVC of a reverse-biased electrolyte diode are presented together with an approximate analytical solution of this reaction-diffusion-ionic migration problem. The applied approximations are quasielectroneutrality and quasiequilibrium. It is shown that the gel can be divided into an alkaline and an acidic zone separated by a middle weakly acidic region. As a further approximation it is assumed that the ionization of the fixed acidic groups is complete in the alkaline zone and that it is completely suppressed in the acidic one. The general solution given here describes the CVC and the potential and ionic concentration profiles of diodes applying either strong or weak electrolytes. It is proven that previous formulas valid for a strong acid-strong base diode can be regarded as a special case of the more general formulas presented here.

  17. Application of refractometry to quality assurance monitoring of parenteral nutrition solutions.

    PubMed

    Chang, Wei-Kuo; Chao, You-Chen; Yeh, Ming-Kung

    2008-01-01

    Parenteral nutrition (PN) solution contains various concentrations of dextrose, amino acids, lipids, vitamins, electrolytes, and trace elements. Incorrect preparation of PN solution could lead to patient death. In this study we used the refractive index as a quality assurance tool to monitor the preparation of PN solution. Refractive indices of single nutrient components and PN solutions consisting of various concentrations of dextrose, amino acids, electrolytes, and lipids were measured. A mathematical equation and its linear plot were generated then used to predict the refractive index of the PN solution. The best-fit refractive index for PN solution (i.e., the predicted refractive index)=0.9798x(% dextrose)+1.2889x(% amino acids)+1.1017x(% lipids)+0.9440x(% sum of the electrolytes)+0.5367 (r2=0.99). This equation was validated by comparing the measured refractive indices of 500 clinical PN solutions to their predicted refractive indices. We found that 2 of the 500 prepared samples (0.4%) had less than the predicted refractive index (<95%). Refractive index can be used as a reliable quality assurance tool for monitoring PN preparation. Such information can be obtained at the bedside and used to confirm the accuracy of the PN solution composition.

  18. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  19. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  20. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Wang, Wei; Nie, Zimin

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approachmore » reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.« less

  1. Modification of the surface adsorption properties of alumina-supported Pd catalysts for the electrocatalytic hydrogenation of phenol.

    PubMed

    Cirtiu, Ciprian Mihai; Hassani, Hicham Oudghiri; Bouchard, Nicolas-Alexandre; Rowntree, Paul A; Ménard, Hugues

    2006-07-04

    The electrocatalytic hydrogenation (ECH) of phenol has been studied using palladium supported on gamma-alumina (10% Pd-Al2O3) catalysts. The catalyst powders were suspended in aqueous supporting electrolyte solutions containing methanol and short-chain aliphatic acids (acetic acid, propionic acid, or butyric acid) and were dynamically circulated through a reticulated vitreous carbon cathode. The efficiency of the hydrogenation process was measured as a function of the total electrolytic charge and was compared for different types of supporting electrolyte and for various solvent compositions. Our results show that these experimental parameters strongly affect the overall ECH efficiency of phenol. The ECH efficiency and yields vary inversely with the quantity of methanol present in the electrolytic solutions, whereas the presence of aliphatic carboxylic acids increased the ECH efficiency in proportion to the chain length of the specific acids employed. In all cases, ECH efficiency was directly correlated with the adsorption properties of phenol onto the Pd-alumina catalyst in the studied electrolyte solution, as measured independently using dynamic adsorption isotherms. It is shown that the alumina surface binds the aliphatic acids via the carboxylate terminations and transforms the catalyst into an organically functionalized material. Temperature-programmed mass spectrometry analysis and diffuse-reflectance infrared spectroscopy measurements confirm that the organic acids are stably bound to the alumina surface below 200 degrees C, with coverages that are independent of the acid chain length. These reproducibly functionalized alumina surfaces control the adsorption/desorption equilibrium of the target phenol molecules and allow us to prepare new electrocatalytic materials to enhance the efficiency of the ECH process. The in situ grafting of specific aliphatic acids on general purpose Pd-alumina catalysts offers a new and flexible mechanism to control the ECH process to enhance the selectivity, efficiency, and yields according to the properties of the specific target molecule.

  2. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  3. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOEpatents

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  4. Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors

    NASA Astrophysics Data System (ADS)

    Wasiński, Krzysztof; Walkowiak, Mariusz; Lota, Grzegorz

    2014-06-01

    Novel electrolyte additive for electrochemical capacitors has been reported. It has been demonstrated for the first time that addition of humic acids (HA) to KOH-based electrolyte significantly increases capacitance of symmetrical capacitors with electrodes made of activated carbon. Specific capacitances determined by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy consistently showed increases for HA concentrations ranging from 2% w/w up to saturated solution with maximum positive effect observed for 5% w/w of the additive. The capacitance increase has been attributed to complex faradaic processes involving oxygen-containing groups of HA molecules. Due to abundant resources, low cost and easy processability the reported solution can find application in electrochemical capacitor technologies.

  5. Process for electrolytic deposition of metals on zirconium materials

    DOEpatents

    Donaghy, Robert E.

    1979-01-30

    A process for the electrolytic deposition of a metal layer on an article comprised of zirconium or a zirconium alloy is disclosed. The article is activated in an aged aqueous solution comprising from about 10 to about 20 grams per liter ammonium bifluoride and from about 0.75 to about 2 grams per liter of sulfuric acid. The solution is aged by immersion of pickled zirconium in the solution for at least about 10 minutes. The loosely adhering film formed on the article in the activating step is removed and the article is contacted with an electrolytic plating solution containing the metal to be deposited on the article in the presence of an electrode receiving current.

  6. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at variousmore » temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.« less

  7. Non-aqueous electrolytes for lithium ion batteries

    DOEpatents

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  8. Effect of the additives on clouding behavior and thermodynamics of coenzyme Q10-Kolliphor HS15 micelle aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hu, Li; Zhang, Jing; Zhu, Chao; Pan, Hong-chun; Liu, Hong

    2017-11-01

    Herein we investigate the effect of different additives (electrolytes, amino acids, PEG, and sugars) on the cloud points (CP) of coenzyme Q10 (CoQ10) - Kolliphor HS15 (HS15) micelle aqueous solutions. The CP values were decreased with the increase of electrolytes and sugars, following: CPAl3+ < CPMg2+ < CPCa2+ < CPNa+ < CPK+ < CPNH4+; CPdisaccharide < CPmonosaccharide. The presences of Arginine and Tryptophan significantly increased the CP; while the other amino acids reduced the CP. A depression of CP for CoQ10-HS15 micelle solution with PEG was molecular weight of PEG dependent. The significant thermodynamic parameters were also evaluated and discussed.

  9. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  10. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    PubMed

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (<10%). This was due to the highly acid-consuming nature of the battery waste. Multistage leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  12. Utilization of aloe vera extract as electrolyte for an accumulator

    NASA Astrophysics Data System (ADS)

    Azmi, F.; Sispriatna, D.; Ikhsan, K.; Masrura, M.; Azzahra, S. S.; Mahidin; Supardan, M. D.

    2018-03-01

    Aloe vera contains acid, which has the potential to generate electric current. The objective of this research is to study the potency of aloe vera extract as electrolyte for an accumulator. Experimental results showed that aloe vera extract has no a stable value of voltage and currency. The voltage and currency of aloe vera extract were reduced more than 50% for 60 minutes. Then, aloe vera extract was mixed with accu zuur to produce electrolyte solution. The mixture composition of aloe vera extract to accu zuur of 50:50 (v/v) generated stable voltage and currency. The experimental results showed the potential use of aloe vera extract to reduce the chemicals used in a conventional electrolyte solution.

  13. Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Mingo, B.; Arrabal, R.; Mohedano, M.; Llamazares, Y.; Matykina, E.; Yerokhin, A.; Pardo, A.

    2018-03-01

    The effect of three different post-treatments carried out on Plasma Electrolytic Oxidation (PEO) coated magnesium alloys are evaluated in terms of characterisation and corrosion resistance. Special interest is given to the role of a common additive (NaF) to the coating properties. The post-treatments are based on immersion sealing processes in aqueous solutions of inorganic salts (cerium and stannate based salts) and alcoholic solution of an organic acid (octodecylphosphate acid, ODP). Sealing mechanisms for each post-treatment are proposed. Cerium and stannate sealings are based on filling of the pores with the products of dissolution/precipitation reactions, while the ODP acid sealing is based on the formation of a thin layer of ODP over the coating through specific interactions between the polar part of the organic acid and the coating surface. All coatings are evaluated by salt fog test and analysed by electrochemical impedance spectroscopy. All sealings show a slight increase in the corrosion resistance of the coatings formed in the NaF-free electrolyte, but their positive influence is boosted in case of the coatings obtained in the NaF-containing electrolyte. This is related to the chemical and morphological changes at the coating surface induced by the presence of NaF in the electrolyte.

  14. Improved fabrication of electrolytic capacitors

    NASA Technical Reports Server (NTRS)

    Gamari, F. J.; Moresi, J. L.

    1975-01-01

    After processing parts for assembly, insulative cup is fitted to bottom of can, then electrolytic solution consisting of white sulfuric acid gel is inserted into can. Pellet is put in can and is fitted tightly into cup. Finally, bead weld is formed between can and header plug.

  15. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  16. Use of Piggyback Electrolytes for Patients Receiving Individually Prescribed vs Premixed Parenteral Nutrition.

    PubMed

    Busch, Rebecca A; Curtis, Caitlin S; Leverson, Glen E; Kudsk, Kenneth A

    2015-07-01

    Parenteral nutrition (PN) is available as individualized prescriptions frequently prepared with an automated compounding device or as commercially prepared premixed solutions. Our institution exclusively used individualized PN until an amino acid shortage forced a temporary switch to premixed solutions. In general, premixed solutions contain lower electrolyte levels than individualized formulations prescribed for patients with normal organ function. We aimed to quantify supplemental intravenous piggyback (IVPB) electrolyte use in adult patients receiving individualized and premixed PN and to quantify any effect on difference in the cost of therapy. We compared use of supplemental IVPB electrolytes administered to patients receiving PN during consecutive periods prior to and during the amino acid shortage. Electrolyte IVPBs tabulated were potassium chloride, 10 and 20 mEq; magnesium sulfate, 2 g and 4 g; potassium phosphate, 7.5 and 15 mmol; and sodium phosphate, 7.5 and 15 mmol IVPB. There was no statistical difference in the number of PN formulations administered per day during each period (14.7 ± 3.9 vs 14.0 ± 2.6, individualized vs premixed, respectively). Total IVPB electrolytes prescribed per day increased significantly from the individualized PN period to the premixed PN period (7.03 ± 3.8 vs 13.8 ± 6.8; P < .0001). The additional IVPB electrolyte supplementation required in patients receiving premixed PN was associated with an additional $11,855.74 cost per 30 days of therapy compared with those who received individualized PN. Inpatient use of premixed PN results in a significant increase in IVPB electrolyte supplementation and cost compared with individualized PN use. © 2014 American Society for Parenteral and Enteral Nutrition.

  17. Antimicrobial effects of electrolytic products of sodium chloride--comparative evaluation with sodium hypochlorite solution and efficacy in handwashing.

    PubMed

    Hitomi, S; Baba, S; Yano, H; Morisawa, Y; Kimura, S

    1998-11-01

    We examined the in vitro bactericidal effects and efficacy on handwashing of water containing electrolytic products of sodium chloride (electrolytic water). The electrolytic water, whose pH and concentration of free residual chlorine were 6.7-6.9 and 20-22 ppm, respectively, showed equal reduction of both Staphylococcus aureus and Escherichia coli to dilution of commercially available sodium hypochlorite containing 60 ppm of free residual chlorine. This bactericidal effect was calculated to be due to hypochlorous acid, based on the pH and the amount of chlorine in solution. Handwashing with the electrolytic water reduced the numbers of S. aureus on hands by 1/10(2), while running water and 0.2% benzalkonium chloride with 80% ethanol gave a 1/10 and 1/10(5) reduction, respectively. We conclude that electrolytic water might be applicable for handwashing in place of running water.

  18. [Massive transfusion of washed red blood cells: acid-base and electrolyth changes for different wash solutions].

    PubMed

    Sümpelmann, R; Schürholz, T; Marx, G; Ahrenshop, O; Zander, R

    2003-09-01

    The composition of normal saline (NaCl), the standard wash solution for cell saver autotransfusion, is considerably different from physiologic plasma values in small infants. Therefore, we investigated acid-base and electrolyte changes during massive cell saver autotransfusion with different wash solutions in young pigs. After approval by the animal protection authorities 15 young pigs (weight 10.6 +/- 1.1 kg, blood volume 848 +/- 88 ml, mean+/-SD) underwent 15 cycles of cell saver autotransfusion (Haemolite 2plus, Haemonetics). For each cycle, 100 ml arterial blood was withdrawn, washed with NaCl, physiologic multielectrolyte solution (PME, V Infusionslösung 296 mval Elektrolyte, Baxter) or physiologic erythrocyte protection solution (PEP, 3.2 % gelatine, pH 7.40, cHCO3 24 mmol/l), and then retransfused. Analyses of acid-base, electrolyte, and hematologic parameters were performed for systemic and washed blood samples. For NaCl there was a progressive decrease in systemic pH, HCO3 and base excess (BE) and an increase in chloride values (Cl) (p < 0.05). Use of PME slightly decreased pH (n. s.), whereas HCO3, BE and Cl remained stable. PEP slightly increased pH, HCO3 and BE, and decreased Cl (n. s.). Free hemoglobin increased in NaCl and PME (p < 0.05) and was below baseline in PEP (n. s.). Lactic acid course was comparable in all groups. The use of NaCl as wash solution for massive autotransfusion resulted in metabolic acidosis caused by dilution of HCO3 and increased Cl values. Fewer systemic acid-base and electrolyte changes were observed, when blood was washed with PME or PEP. The decreased hemoglobin release with PEP is possibly due to a gelatine specific electrostatic surface coating of erythrocyte membranes. For massive transfusion of washed red blood cells, physiologic multielectrolyte solution and physiologic erythrocyte protection solution should be preferred to NaCl, especially for small infants.

  19. Conductivity of gel polymer electrolytes doped with solutions of phosphonic acid or protic ionic liquids

    NASA Astrophysics Data System (ADS)

    Shmukler, Liudmila E.; Fadeeva, Yuliya A.; Glushenkova, Ekaterina V.; Nguyen, Van Thuc; Safonova, Liubov P.

    2018-04-01

    The proton-conducting gel electrolytes (PCGEs) based on PMMA, PVdF or PVdF-HFP doped with solutions of phosphonic acid or ammonium based protic ionic liquids (PILs) in DMF have been synthesized. Rather high values of the conductivity (10-4-10-3 S cm-1) have been reached at low dopant concentrations (up to 1 mol l-1). The influence of the nature of both polymeric matrix and dopant as well as dopant concentration on the conductivity values was discussed. It was established that the dependence of conductivity on the nature of dopant, but not the polymeric matrix, was more pronounced.

  20. Separation of 2-aminobenzoic acid-derivatized glycosaminoglycans and asparagine-linked glycans by capillary electrophoresis.

    PubMed

    Sato, Kae; Sato, Kiichi; Okubo, Akira; Yamazaki, Sunao

    2005-01-01

    A capillary electrophoresis method was developed for the analysis of oligosaccharides combined with derivatization with 2-aminobenzoic acid. Glycosaminoglycan delta-disaccharides were effectively resolved on a fused-silica capillary tube using 150 mM borate, pH 8.5, as a running electrolyte solution. This analytical method was applied to the identification of glycosaminoglycan in combination with enzymatic digestion. The separation of N-glycans or glucose-oligomers was performed with a phosphate buffer containing polyethylene glycol or borate as an electrolyte solution. This method is expected to be useful in the determination of oligosaccharide structures in a glycoprotein.

  1. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-01-01

    A process for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H.sub.2 O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg.sub.2 Cl.sub.2. The method for doing this involves dissolving a precise amount of Hg.sub.2 Cl.sub.2 in an electrolyte solution comprised of concentrated HCl and H.sub.2 O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg.

  2. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  3. Method of preparing mercury with an arbitrary isotopic distribution

    DOEpatents

    Grossman, Mark W.; George, William A.

    1986-01-01

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg.sub.2 Cl.sub.2, corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H.sub.2 O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H.sub.2 O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered.

  4. Method of preparing mercury with an arbitrary isotopic distribution

    DOEpatents

    Grossman, M.W.; George, W.A.

    1986-12-16

    This invention provides for a process for preparing mercury with a predetermined, arbitrary, isotopic distribution. In one embodiment, different isotopic types of Hg[sub 2]Cl[sub 2], corresponding to the predetermined isotopic distribution of Hg desired, are placed in an electrolyte solution of HCl and H[sub 2]O. The resulting mercurous ions are then electrolytically plated onto a cathode wire producing mercury containing the predetermined isotopic distribution. In a similar fashion, Hg with a predetermined isotopic distribution is obtained from different isotopic types of HgO. In this embodiment, the HgO is dissolved in an electrolytic solution of glacial acetic acid and H[sub 2]O. The isotopic specific Hg is then electrolytically plated onto a cathode and then recovered. 1 fig.

  5. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  6. Electrochemical system and method for electropolishing superconductive radio frequency cavities

    DOEpatents

    Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy

    2015-04-14

    An electrochemical finishing system for super conducting radio frequency (SCRF) cavities including a low viscosity electrolyte solution that is free of hydrofluoric acid, an electrode in contact with the electrolyte solution, the SCRF cavity being spaced apart from the electrode and in contact with the electrolyte solution and a power source including a first electrical lead electrically coupled to the electrode and a second electrical lead electrically coupled to the cavity, the power source being configured to pass an electric current between the electrode and the workpiece, wherein the electric current includes anodic pulses and cathodic pulses, and wherein the cathodic pulses are interposed between at least some of the anodic pulses. The SCRF cavity may be vertically oriented during the finishing process.

  7. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications

    NASA Astrophysics Data System (ADS)

    Gelman, Danny; Lasman, Itay; Elfimchev, Sergey; Starosvetsky, David; Ein-Eli, Yair

    2015-07-01

    The severe corrosion accompanied with hydrogen evolution process is the main obstacle preventing the implementation of Al as an anode in alkaline batteries. It impairs the functionality of alkaline battery, due to a drastic capacity loss and a short shelf life. The possibility to reduce Al corrosion rate in alkaline solution with the use of hybrid organic∖inorganic inhibitor based on poly (ethylene glycol) di-acid (PEG di-acid) and zinc oxide (ZnO) was examined in this work. A correlation between an Al corrosion rates and the concentrations of both PEG di-acid and ZnO in alkaline is shown. Selecting 5000 ppm PEG di-acid and 16 gr/l ZnO provides substantial corrosion protection of Al, reducing the corrosion rate in a strong alkaline solution by more than one order of magnitude. Moreover, utilizing the same formulation results in increase in Al-air battery discharge capacity, from 44.5 (for a battery utilizing only KOH in the electrolyte) to 70 mhA/cm2 (for a battery utilizing ZnO/PEG di-acid hybrid inhibitor in the electrolyte). The morphology and composition of the Al electrode surface (studied by SEM, EDS, and XRD) depend on PEG di-acid and ZnO concentrations.

  8. Morphological changes of porphine films on graphite by perchloric and phosphoric electrolytes. An electrochemical-AFM study

    NASA Astrophysics Data System (ADS)

    Yivlialin, Rossella; Penconi, Marta; Bussetti, Gianlorenzo; Biroli, Alessio Orbelli; Finazzi, Marco; Duò, Lamberto; Bossi, Alberto

    2018-06-01

    Organic molecules have been proposed as promising candidates for electrode protection in acidic electrolytes. The use of tetraphenyl-porphines (H2TPP) as graphite surface-protecting agents in sulphuric acid (H2SO4) is one of the newest. With the aim of unveiling the mechanism of such a protective effect, in this paper we test the stability of a H2TPP thin film immersed in perchloric and phosphoric acid solutions that differently interact with porphyrins. The protective role of H2TPP is tested in the electrochemical potential range where the pristine graphite undergoes an oxidation process that erodes the surface and eventually exfoliate the stratified crystal. The electrochemical analysis is performed in a three-electrode cell, while the surface morphology is monitored ex-situ and in-situ by atomic force microscopy. Electrospray mass analysis is also employed to investigate the presence of H2TPP fragments in the solution. We find that the organic film is not stable in perchloric solution, while it is stable and avoids graphite surface corrosion in phosphoric acid solution. These results provide a rationale for the role played by free-base porphines in graphite protection.

  9. Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane

    NASA Technical Reports Server (NTRS)

    Olah, George A. (Inventor); Surampudi, Subbarao (Inventor); Vamos, Eugene (Inventor); Halpert, Gerald (Inventor); Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Prakash, G. K. Surya (Inventor)

    1997-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  10. Synthesis of nickel germanide (Ge12Ni19) nanoparticles for durable hydrogen evolution reaction in acid solutions.

    PubMed

    Chen, Jee-Yee; Jheng, Shao-Lou; Tuan, Hsing-Yu

    2018-06-14

    Desigining advanced materials as electrochemical catalysts for the hydrogen evolution reaction (HER) has caught great attention owing to the growing demand for clean and renewable energy. Nickel (Ni)-based compounds and alloys are promising non-noble-metal electrocatalysts due to their low cost and high activity. However, in most cases, Ni-based compounds and alloys have low durability in acid electrolyte, which limits their application in the electrolytic processes. In this study, monoclinic Ge12Ni19 nanoparticles were synthesized and exhibited high electrocatalytic activity and stability for the HER in acidic solution. Ge12Ni19 nanoparticles achieve an overpotential of 190 mV at cathodic current density of 10 mA cm-2 and a Tafel slope of 88.5 mV per decade in 0.50 M H2SO4 electrolyte. Moreover, the performance is maintained after a 10 000-cycle CV sweep (-0.3 to +0.1 V vs. RHE) or under a static overpotential of -0.7 V vs. RHE for 24 hours. The reported electrocatalytic performance of the Ge12Ni19 nanoparticles sufficiently proves the excellent endurance at lower required active overpotentials in acidic solution, enabling the broad applications of the Ni-based electrocatalysts. Finally, a large-area (5 cm2) electrocatalyst for HER was demonstrated for the first time. The great efficiency of the energy conversion performance sufficiently represented the potential of Ge12Ni19 nanoparticles as electrocatalysts in commercial fuel cells.

  11. Thermodynamic characteristics of protolytic equilibria of L-serine in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Volkov, A. V.; Khokhlova, E. A.; Krutova, O. N.

    2011-05-01

    The heat effects of the reaction of aqueous solution of L-serine with aqueous solutions of HNO3 and KOH were determined by calorimetry at temperatures of 288.15, 298.15, and 308.15 K, and ionic strength values of 0.2, 0.5, and 1.0 (background electrolyte, KNO3). Standard thermodynamic characteristics (Δr H o, Δr G o, Δr S o, Δ C {/p o}) of the acid-base reactions in aqueous solutions of L-serine were calculated. The effect of the concentration of background electrolyte and temperature on the heats of dissociation of amino acid was considered. The combustion energy of L-serine by bomb calorimetry in the medium of oxygen was determined. The standard combustion and formation enthalpies of crystalline L-serine were calculated. The heats of dissolution of crystalline L-serine in water and solutions of potassium hydroxide at 298.15 K were measured by direct calorimetry. The standard enthalpies of formation of L-serine and products of its dissociation in aqueous solution were calculated.

  12. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    NASA Astrophysics Data System (ADS)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  13. Rate of Bubble Coalescence following Quasi-Static Approach: Screening and Neutralization of the Electric Double Layer

    PubMed Central

    Katsir, Yael; Marmur, Abraham

    2014-01-01

    Air-bubble coalescence in aqueous electrolytic solutions, following quasi-static approach, was studied in order to understand its slow rate in purified water and high rate in electrolytic solutions. The former is found to be due to surface charges, originating from the speciation of dissolved CO2, which sustain the electric double layer repulsion. Rapid coalescence in electrolytic solutions is shown to occur via two different mechanisms: (1) neutralization of the carbonaceous, charged species by acids; or (2) screening of the repulsive charge effects by salts and bases. The results do not indicate any ion specificity. They can be explained within the DLVO theory for the van der Waals and electric double layer interactions between particles, in contrast to observations of coalescence following dynamic approach. The present conclusions should serve as a reference point to understanding the dynamic behavior. PMID:24589528

  14. Development of Scientific Approach Based on Discovery Learning Module

    NASA Astrophysics Data System (ADS)

    Ellizar, E.; Hardeli, H.; Beltris, S.; Suharni, R.

    2018-04-01

    Scientific Approach is a learning process, designed to make the students actively construct their own knowledge through stages of scientific method. The scientific approach in learning process can be done by using learning modules. One of the learning model is discovery based learning. Discovery learning is a learning model for the valuable things in learning through various activities, such as observation, experience, and reasoning. In fact, the students’ activity to construct their own knowledge were not optimal. It’s because the available learning modules were not in line with the scientific approach. The purpose of this study was to develop a scientific approach discovery based learning module on Acid Based, also on electrolyte and non-electrolyte solution. The developing process of this chemistry modules use the Plomp Model with three main stages. The stages are preliminary research, prototyping stage, and the assessment stage. The subject of this research was the 10th and 11th Grade of Senior High School students (SMAN 2 Padang). Validation were tested by the experts of Chemistry lecturers and teachers. Practicality of these modules had been tested through questionnaire. The effectiveness had been tested through experimental procedure by comparing student achievement between experiment and control groups. Based on the findings, it can be concluded that the developed scientific approach discovery based learning module significantly improve the students’ learning in Acid-based and Electrolyte solution. The result of the data analysis indicated that the chemistry module was valid in content, construct, and presentation. Chemistry module also has a good practicality level and also accordance with the available time. This chemistry module was also effective, because it can help the students to understand the content of the learning material. That’s proved by the result of learning student. Based on the result can conclude that chemistry module based on discovery learning and scientific approach in electrolyte and non-electrolyte solution and Acid Based for the 10th and 11th grade of senior high school students were valid, practice, and effective.

  15. Electrochemical system and method for electropolishing hollow metal bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, E. Jennings; Inman, Maria E.; Hall, Timothy

    A method and system for electrochemically machining a hollow body of a metal or a metal alloy. An electrode is positioned within a hollow body including a metal or metal alloy, where the hollow body has a variable internal diameter. The hollow body is oriented vertically, with the electrode oriented vertically therein. The hollow body is at least partially filled with an aqueous, acidic electrolyte solution, the electrolyte solution being devoid of hydrofluoric acid and having a viscosity less than 15 cP. An electric current is passed between the hollow body and the electrode, where the electric current includes amore » plurality of anodic pulses and a plurality of cathodic pulses, and where the cathodic pulses are interposed between at least some of the anodic pulses.« less

  16. Acid-Base and Plasma Biochemical Changes Using Crystalloid Fluids in Stranded Juvenile Loggerhead Sea Turtles (Caretta caretta).

    PubMed

    Camacho, María; Quintana, María Del Pino; Calabuig, Pascual; Luzardo, Octavio P; Boada, Luis D; Zumbado, Manuel; Orós, Jorge

    2015-01-01

    The aim of this study was to compare the efficacy and effects on acid-base and electrolyte status of several crystalloid fluids in 57 stranded juvenile loggerhead turtles. Within a rehabilitation program four different crystalloid fluids were administered (0.9% Na Cl solution; 5% dextrose + 0.9% Na Cl solutions 1:1; 0.9% Na Cl + lactated Ringer's solutions 1:1; lactated Ringer's solution). Crystalloid fluids were intracoelomically administered during three days (20 ml/kg/day). Animals were sampled at three different moments: Upon admission for evaluating the type of acid-base or biochemical disorder, post-fluid therapy treatment for controlling the evolution of the disorder, and post-recovery period for obtaining the baseline values for rehabilitated loggerhead turtles. Each sample was analyzed with a portable electronic blood analyzer for pH, pO2, pCO2, lactate, sodium, potassium, chloride, glucose, and BUN concentration. Admission and post-fluid therapy treatment values were compared with those obtained for each turtle immediately before release. The highest percentage of acid-base recovery and electrolyte balance was observed in turtles treated with mixed saline-lactated Ringer's solution (63.6%), followed by turtles treated with physiological saline solution (55%), lactated Ringer's solution (33.3%), and dextrose-saline solutions (10%). Most turtles treated with lactated Ringer's solution had lower lactate concentrations compared with their initial values; however, 66.6% of turtles treated with lactated Ringer's solution had metabolic alkalosis after therapy. Significant higher concentrations of glucose were detected after saline-dextrose administration compared with all the remaining fluids. This is the first study evaluating the effects of several crystalloid fluids on the acid-base status and plasma biochemical values in stranded loggerhead sea turtles. Reference convalescent venous blood gas, acid-base, and plasma biochemical values, useful for veterinary surgeons involved in sea turtle conservation, are also provided.

  17. Method for electrochemical decontamination of radioactive metal

    DOEpatents

    Ekechukwu, Amy A [Augusta, GA

    2008-06-10

    A decontamination method for stripping radionuclides from the surface of stainless steel or aluminum material comprising the steps of contacting the metal with a moderately acidic carbonate/bicarbonate electrolyte solution containing sodium or potassium ions and thereafter electrolytically removing the radionuclides from the surface of the metal whereby radionuclides are caused to be stripped off of the material without corrosion or etching of the material surface.

  18. Assessing the influence of humic acids on the weathering of galena and its environmental implications.

    PubMed

    Liu, Qingyou; Li, Heping; Jin, Guoheng; Zheng, Kai; Wang, Luying

    2018-08-30

    Galena weathering often occurs in nature and releases metal ions during the process. Humic acid (HA), a critical particle of natural organic matter, binds metal ions, thus affecting metal transfer and transformation. In this work, an electrochemical method combined with spectroscopic techniques was adopted to investigate the interfacial processes involved in galena weathering under acidic and alkaline conditions, as well as in the presence of HA. The results show that the initial step of galena weathering involved the transformation Pb 2+ and S°, regardless of whether the solution was acidic or alkaline. Under acidic conditions, S° and Pb 2+ further transform into anglesite, and HA adsorbs on the galena surface, inhibiting the transformation of sulfur. HA and Pb (II) ions form bridging complexes. Under alkaline conditions without HA, the sulfur produced undergoes no transformation, whereas Pb 2+ will transform into PbO. The presence of HA changes the galena weathering mechanism via ionization effect, and Pb 2+ is ultimately converted into anglesite. Higher acidity in acidic conditions or higher alkalinity in alkaline conditions causes galena corrosion when the electrolyte does not contain HA. Conversely, higher pH always accelerates galena corrosion when the electrolyte contains HA, whether the electrolyte is acidic or alkaline. At the same acidity/alkalinity, increasing the concentration of HA inhibits galena weathering. Galena will release 134.7 g m -2 ·y -1 Pb 2+ to solution at pH 2.5, and the amount decreases to 28.09 g m -2 ·y -1 in the presence of 1000 mg/L HA. This study provides an in situ electrochemical method for the assessment of galena weathering. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  20. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce 4+ may not be well suited for use in RFB technology.

  1. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  2. New High Aspect-Ratio Titania Nanotubes

    NASA Astrophysics Data System (ADS)

    Panaitescu, Eugen; Richter, Christiaan; Menon, Latika

    2007-03-01

    Titanium oxide nanotubes show great promise in photocatalytic, gas sensing, biological, and other applications. Techniques for the fabrication of titania nanotubes include electrodeposition in polymer molds starting from alumina templates, anodization of titanium in fluoride containing solutions, and hydrothermal treatment of nano- and micropowders. We have developed a new synthesis route for the production of new ultra-high aspect-ratio (over 1000:1) titania nanotubes by anodization in chloride containing acid solutions. The fabrication process occurs rapidly, in a fraction of the time when compared with other methods such as anodization in the highly toxic fluoride-containing electrolytes. We have demonstrated nanotubes with diameters as small as 25 nm, and lengths of up to 50 μm, and we have produced them with varying carbon content through the addition of organic acids in the electrolyte. This opens up new possibilities for many advanced applications of such nanotubes. Various synthesis conditions (pH, chloride content, electrolyte nature), and their influence on morphology, composition, and crystalline structure will be presented. Preliminary results on photocatalytic and transmission properties will also be discussed.

  3. Dissolution mechanism of aluminum hydroxides in acid media

    NASA Astrophysics Data System (ADS)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  4. Influence of electrolytes (TEABF4 and TEMABF4) on electrochemical performance of graphite oxide derived from needle coke.

    PubMed

    Yang, Sunhye; Kim, Ick-Jun; Choi, In-Sik; Bae, Mi-Kyeong; Kim, Hyun-Soo

    2013-05-01

    The structure of needle coke was changed to graphite oxide structure after oxidation treatment with 70 wt.% of nitric acid and sodium chlorate (NaClO3), and the inter-layer distance of the oxidized needle coke was expanded to 6.9 angstroms. The first charge profile of the oxidized needle coke-cell with 1.2 M TEMABF4/acetonitrile solution displayed that the intercalation of electrolyte ions into the inter-layer occurred at 1.0 V, which value is lower than 1.3 V of the oxidized needle coke-cell with 1.2 M TEABF4/acetonitrile solution. After first charge/discharge, the cell using TEMABF4 electrolyte exhibited smaller electrode resistance of 0.05 omega, and larger specific volume capacitance of 25.5 F/ml at the two-electrode system in the potential range 0-2.5 V than those of the cell using TEABF4 electrolyte. Compared to the TEABF4 electrolyte, better electrochemical performance of the TEMABF4 electrolyte in the oxidized needle coke may be caused by the smaller cation (TEMA+) size and better ion mobility in the nanopores between inter-layers.

  5. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    PubMed

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID ® (AF), BFLUID ® (BF), PARESAFE ® (PS) and PAREPLUS ® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli , Serratia marcescens , Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans , they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  6. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated.more » It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.« less

  7. Functional interface of polymer modified graphite anode

    NASA Astrophysics Data System (ADS)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  8. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    DOEpatents

    Peng, Yu-Min; Wang, Jih-Wen; Liue, Chun-Ying; Yeh, Shinn-Horng

    1994-01-01

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  9. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhong, Ming; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Wang, Zifeng; Xue, Qi; Xie, Xuming; Zhi, Chunyi

    2015-12-01

    Superior self-healability and stretchability are critical elements for the practical wide-scale adoption of personalized electronics such as portable and wearable energy storage devices. However, the low healing efficiency of self-healable supercapacitors and the small strain of stretchable supercapacitors are fundamentally limited by conventional polyvinyl alcohol-based acidic electrolytes, which are intrinsically neither self-healable nor highly stretchable. Here we report an electrolyte comprising polyacrylic acid dual crosslinked by hydrogen bonding and vinyl hybrid silica nanoparticles, which displays all superior functions and provides a solution to the intrinsic self-healability and high stretchability problems of a supercapacitor. Supercapacitors with this electrolyte are non-autonomic self-healable, retaining the capacitance completely even after 20 cycles of breaking/healing. These supercapacitors are stretched up to 600% strain with enhanced performance using a designed facile electrode fabrication procedure.

  10. Reaction of Cl- ions in electrolyte solution induced electrical discharge plasma in the presence of argon fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.

  11. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Kotovsky, Jack [Oakland, CA; Graff, Robert T [Modesto, CA

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  12. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  13. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Prakash, G. K. Surya (Inventor); Vamos, Eugene (Inventor); Olah, George A. (Inventor)

    2001-01-01

    A liquid organic fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  14. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Vamos, Eugene (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Frank, Harvey A. (Inventor); Prakash, G. K. Surya (Inventor)

    2004-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  15. Organic fuel cell methods and apparatus

    NASA Technical Reports Server (NTRS)

    Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Olah, George A. (Inventor); Vamos, Eugene (Inventor); Narayanan, Sekharipuram R. (Inventor); Prakash, G. K. Surya (Inventor)

    2008-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  16. Effects of two different strategies of fluid administration on inflammatory mediators, plasma electrolytes and acid/base disorders in patients undergoing major abdominal surgery: a randomized double blind study

    PubMed Central

    2013-01-01

    Background Administration of normal saline might increase circulating levels of pro-inflammatory cytokines and may cause variation of plasmatic electrolytic and hyperchloremic acidosis, which in turn can impair renal function. Hence the use of balanced solutions could influence the inflammatory cascade triggered by the surgical procedures, the plasmatic electrolyte concentration, the acid–base equilibrium, and the renal function. Methods This is a double blind randomized trial. Forty patients undergoing major abdominal surgery (bowel cancer) were allocated in two groups, the balanced solution (BS) group in which the fluids administered were balanced solutions (colloids and crystalloids); and the unbalanced solution (UBS) group in which the fluids administered were unbalanced solutions (colloids and crystalloids). Measurements were performed after anaesthesia induction (T0), at the end of surgery (T1), within 2 h after surgery (T2) and 24 h after the beginning of surgery (T3). The following data were collected: 1) active matrix metalloproteinase 9 (MMP-9) and its tissue inhibitor (TIMP-1), IL-6, IL-8, IL-10; 2) blood gases variables; 3) electrolytes, albumin, total serum protein and the strong ion difference; 4) neutrophil gelatinase-associated lipocalin (NGAL) from urinary sample. Results The BS group exhibited higher circulating level of IL-10 and TIMP-1 and lower level of active MMP-9. The UBS group experienced hypercloremia, hypocalcemia, hypomagnesemia, worse acid–base equilibrium and higher level of NGAL. Conclusions The use of balanced solutions was responsible of less alteration of plasmatic electrolytes, acid–base equilibrium, kidney function and it might be associated with an early anti-inflammatory mechanisms triggering. Trial registration ClinicalTrials.gov (Ref: NCT01320891). PMID:24059479

  17. Corrosion Mechanisms and Behavior of a P-130X GR/6063 Al Composite in Aqueous Environments

    DTIC Science & Technology

    1990-09-01

    form sulfuric and sulfurous acids . Of these, sulfurous acid is the most serious corrosive material and can exist in a variety of concentrations...performed on the composite in 3.5% sodium chloride and 5.0% >dium sulfate solutions. The effects of pH, the presence of sulfite ions, various heat...sodium sulfate solutions. The effects of pH, the presence of sulfite ions, various heat treatments, and electrolyte aeration were investigated. Some tests

  18. Convenient UV-spectrophotometric determination of citrates in aqueous solutions with applications in the pharmaceutical analysis of oral electrolyte formulations.

    PubMed

    Krukowski, Sylwester; Karasiewicz, Mateusz; Kolodziejski, Waclaw

    2017-07-01

    Herein, we present a convenient method for quantitative spectrophotometric determination of citrate ions in aqueous solutions in the middle-UV range. It involves measuring the absorbance of citric acid at 209 nm under suppressed dissociation at pH < 1.0 in the presence of hydrochloric acid. Validation of the method was performed according to the guidelines of the International Conference on Harmonization. A very good linear dependence of the absorbance on concentration (r 2  = 0.9999) was obtained in a citrate concentration range of 0.5-5.0 mmol/L. This method is characterized by excellent precision and accuracy; the coefficient of variation in each case is below the maximal permissible value (%RSD < 2). The proposed analytical procedure has been successfully applied to the determination of citrates in oral electrolyte formulations. Copyright © 2017. Published by Elsevier B.V.

  19. ZrB 2-HfB 2 solid solutions as electrode materials for hydrogen reaction in acidic and basic solutions

    DOE PAGES

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    2016-11-09

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  20. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Nguyen, Tam D.; Whitehead, Adam; Scherer, Günther G.; Wai, Nyunt; Oo, Moe O.; Bhattarai, Arjun; Chandra, Ghimire P.; Xu, Zhichuan J.

    2016-12-01

    Despite many desirable properties, the vanadium redox flow battery is limited, in the maximum operation temperature that can be continuously endured, before precipitation begins in the positive electrolyte. Many additives have been proposed to improve the thermal stability of the charged positive electrolyte. However, we have found that the apparent stability, revealed in laboratory testing, is often simply an artifact of the test method and arises from the oxidation of the additive, with corresponding partial reduction of V(V) to V(IV). This does not improve the stability of the electrolyte in an operating system. Here, we examined the oxidation of some typical organic additives with carboxyl, alcohol, and multi-functional groups, in sulfuric acid solutions containing V(V). The UV-vis measurements and titration results showed that many compounds reduced the state-of-charge (SOC) of vanadium electrolyte, for example, by 27.8, 88.5, and 81.9% with the addition of 1%wt of EDTA disodium salt, pyrogallol, and ascorbic acid, respectively. The cell cycling also indicated the effect of organic additives on the cell performance, with significant reduction in the usable charge capacity. In addition, a standard screening method for thermally stable additives was introduced, to quickly screen suitable additives for the positive vanadium electrolyte.

  1. Study of metal corrosion using ac impedance techniques in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.

    1989-01-01

    AC impedance measurements were performed to investigate the corrosion resistance of 19 alloys under conditions similar to the STS launch environment. The alloys were: Zirconium 702, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, Inconel 600, 7Mo + N, Ferralium 255, Inco Alloy G-3, 20Cb-3, SS 904L, Inconel 825, SS 304LN, SS 316L, SS 317L, ES 2205, SS 304L, Hastelloy B-2, and Monel 400. AC impedance data were gathered for each alloy after one hour immersion time in each of the following three electrolyte solutions: 3.55 percent NaCl, 3.55 percent NaCl-0.1N HCl, and 3.55 percent NaCl-1.0N HCl. The data were analyzed qualitatively using the Nyquist plot and quantitatively using the Bode plot. Polarization resistance, Rp, values were obtained using the Bode plot. Zirconium 702 was the most corrosion resistant alloy in the three electrolytes. The ordering of the other alloys according the their resistance to corrosion varied as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of Zirconium 702 and Ferralium 255 increased as the concentration of hydrochloric acid in the electrolyte increased. The corrosion resistance of the other 17 alloys decreased as the concentration of the hyrdochloric acid in the electrolyte increased.

  2. Optimization of Aluminum Anodization Conditions for the Fabrication of Nanowires by Electrodeposition

    NASA Technical Reports Server (NTRS)

    Fucsko, Viola

    2005-01-01

    Anodized alumina nanotemplates have a variety of potential applications in the development of nanotechnology. Alumina nanotemplates are formed by oxidizing aluminum film in an electrolyte solution.During anodization, aluminum oxidizes, and, under the proper conditions, nanometer-sized pores develop. A series of experiments was conducted to determine the optimal conditions for anodization. Three-micrometer thick aluminum films on silicon and silicon oxide substrates were anodized using constant voltages of 13-25 V. 0.1-0.3M oxalic acid was used as the electrolyte. The anodization time was found to increase and the overshooting current decreased as both the voltage and the electrolyte concentrations were decreased. The samples were observed under a scanning electron microscope. Anodizing with 25V in 0.3M oxalic acid appears to be the best process conditions. The alumina nanotemplates are being used to fabricate nanowires by electrodeposition. The current-voltage characteristics of copper nanowires have also been studied.

  3. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte

    PubMed Central

    Huang, Yan; Zhong, Ming; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Wang, Zifeng; Xue, Qi; Xie, Xuming; Zhi, Chunyi

    2015-01-01

    Superior self-healability and stretchability are critical elements for the practical wide-scale adoption of personalized electronics such as portable and wearable energy storage devices. However, the low healing efficiency of self-healable supercapacitors and the small strain of stretchable supercapacitors are fundamentally limited by conventional polyvinyl alcohol-based acidic electrolytes, which are intrinsically neither self-healable nor highly stretchable. Here we report an electrolyte comprising polyacrylic acid dual crosslinked by hydrogen bonding and vinyl hybrid silica nanoparticles, which displays all superior functions and provides a solution to the intrinsic self-healability and high stretchability problems of a supercapacitor. Supercapacitors with this electrolyte are non-autonomic self-healable, retaining the capacitance completely even after 20 cycles of breaking/healing. These supercapacitors are stretched up to 600% strain with enhanced performance using a designed facile electrode fabrication procedure. PMID:26691661

  4. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    PubMed Central

    Ovanesyan, Zaven; Fenley, Marcia O.; Guerrero-García, Guillermo Iván; Olvera de la Cruz, Mónica

    2014-01-01

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models. PMID:25494770

  5. Graphene-oxide stabilization in electrolyte solutions using hydroxyethyl cellulose for drug delivery application.

    PubMed

    Mianehrow, Hanieh; Moghadam, Mohamad Hasan Mohamadzadeh; Sharif, Farhad; Mazinani, Saeedeh

    2015-04-30

    Stabilization of graphene oxide (GO) in physiological solution is performed using hydroxyethyl cellulose (HEC) to make the resultant nanohybrid suitable for targeted drug delivery purposes. Short and long term stability of GO suspensions with different ionic strengths were assessed using ultraviolet-visible spectroscopy (UV-vis), atomic force microscopy (AFM) and zeta potential measurements. Results depicted that HEC effectively stabilized GO in electrolyte solutions and the mechanism of stabilization appeares to be depended on HEC content. Drug loading and release behavior of folic acid (FA) as a model drug, from GO-HEC nanohybrid were studied to assess its application in drug delivery systems. Results showed the nanohybrid could be highly loaded by folic acid. Moreover, HEC content in the nanohybrid played an important role in final application to make it applicable either as a carrier for controllable drug release or as a folate-targeted drug carrier. In addition, according to cytotoxicity results, the nanohybrid showed good biocompatibility which indeed confirms its potential application as a drug carrier. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  7. Electrolyte for batteries with regenerative solid electrolyte interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  8. The impact of phosphate-balanced crystalloid infusion on acid-base homeostasis (PALANCE study): study protocol for a randomized controlled trial.

    PubMed

    Pagel, Judith-Irina; Hulde, Nikolai; Kammerer, Tobias; Schwarz, Michaela; Chappell, Daniel; Burges, Alexander; Hofmann-Kiefer, Klaus; Rehm, Markus

    2017-07-10

    This study aims to investigate the effects of a modified, balanced crystalloid including phosphate in a perioperative setting in order to maintain a stable electrolyte and acid-base homeostasis in the patient. This is a single-centre, open-label, randomized controlled trial involving two parallel groups of female patients comparing a perioperative infusion regime with sodium glycerophosphate and Jonosteril® (treatment group) or Jonosteril® (comparator) alone. The primary endpoint is to maintain a stable concentration of weak acids [A - ] according to the Stewart approach of acid-base balance. Secondary endpoints are measurement of serum phosphate levels, other acid-base parameters such as the strong ion difference (SID), the onset and severity of postoperative nausea and vomiting (PONV), electrolyte levels and their excretion in the urine, monitoring of renal function and glycocalyx components, haemodynamics, amounts of catecholamines and other vasopressors used and the safety of the infusion regime. Perioperative fluid replacement with the use of currently available crystalloid preparations still fail to maintain a stable acid-base balance and experts agree that common balanced solutions are still not ideal. This study aims to investigate the effectivity and safety of a new crystalloid solution by adding sodium glycerophosphate to a standardized crystalloid preparation in order to maintain a balanced perioperative acid-base homeostasis. EudraCT number 201002422520 . Registered on 30 November 2010.

  9. High conductivity electrolyte solutions and rechargeable cells incorporating such solutions

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1998-10-20

    This invention relates generally to electrolyte solvents for use in liquid or rubbery polymer electrolyte solutions as are used, for example, in electrochemical devices. More specifically, this invention relates to sulfonyl/phospho-compound electrolyte solvents and sulfonyl/phospho-compound electrolyte solutions incorporating such solvents. 9 figs.

  10. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  11. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  12. Biomaterials for the Decorporation of Sr-85 in the Rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Creim, Jeffrey A.; Curry, Terry L.

    2010-09-01

    Although four stable isotopes of strontium occur naturally, strontium-90 is produced by nuclear fission and is present in surface soil around the world as a result of fallout from atmospheric nuclear weapons tests. It can easily transfer to man in the event of a nuclear/radiological emergency or through the plant-animal-human food chain causing long-term exposures. Strontium is chemically and biologically similar to calcium, and is incorporated primarily into bone following internal deposition. Alginic acid (alginate) obtained from seaweed (kelp) extract selectively binds ingested strontium in the GI tract blocking its systemic uptake and reducing distribution to bone in rats, whilemore » other natural polysaccharides including chitosan and hyaluronic acid had little in vivo affinity for strontium. Alginate exhibits the unique ability to discriminate between strontium and calcium and has been previously shown to reduce intestinal absorption and skeletal retention of strontium without changing calcium metabolism. In our studies, the effect of commercially available alginate on strontium intestinal absorption was examined. One problem associated with alginate treatment is its limited solubility and gel formation in water. The aqueous solubility of sodium alginate was improved in a sodium chloride/sodium bicarbonate electrolyte solution containing low molecular weight polyethylene glycol (PEG). Furthermore, oral administration of the combined alginate/electrolyte//PEG solution synergistically accelerated removal of internal strontium in rats when compared to treatment with individual sodium alginate/electrolyte or electrolyte/PEG solutions. Importantly, both alginate and PEG are nontoxic, readily available materials that can be easily administered orally in case of a national emergency when potentially large numbers of the population may require medical treatment for internal depositions. Our results suggest further studies to optimize in vivo decorporation performance of engineered alginate material via modification of its chemical and physicochemical properties is warranted.« less

  13. Wide electrochemical window solvents for use in electrochemical devices and electrolyte solutions incorporating such solvents

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1998-01-01

    The present invention relates to electrolyte solvents for use in liquid or rubbery electrolyte solutions. Specifically, this invention is directed to boron-containing electrolyte solvents and boron-containing electrolyte solutions.

  14. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yao-Kang; Feng, Yun-Long, E-mail: sky37@zjnu.edu.c; Liu, Ji-Wei

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexesmore » based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.« less

  15. High-pressure nuclear magnetic resonance studies of fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in water at different concentrations: proton (1H) and phosphorus (31P) nuclei have been performed using the static field gradient spin-echo nuclear magnetic resonance. This study is expected to be helpful in improving the understanding of phosphoric acid fuel cell technology.

  16. Acid-base and hemodynamic status of patients with intraoperative hemorrhage using two solution types: Crystalloid Ringer lactate and 1.3% sodium bicarbonate in half-normal saline solution.

    PubMed

    Hashemi, Sayed Jalal; Heidari, Sayed Morteza; Yaraghi, Ahmad; Seirafi, Reza

    2016-01-01

    Intraoperative hemorrhage is one of the problems during surgery and, if it happens in a high volume without an immediate action to control, it can be fatal. Nowadays, various injectable solutions are used. The aim of this study was to compare the acid-base and hemodynamic status of the patient using two solutions, Ringer lactate and 1.3% sodium bicarbonate, in half saline solution. This clinical trial was performed at the Al-Zahra Hospital in 2013 on 66 patients who were randomly selected and put in two studied groups at the onset of hemorrhage. For the first group, crystalloid Ringer lactate solution and for the second group, 1.3% sodium bicarbonate in half-normal saline solution was used. Electrocardiogram, heart rate, O2 saturation non-invasive blood pressure and end-tidal CO2 were monitored. The arterial blood gas, blood electrolytes, glucose and blood urea nitrogen were measured before serum and blood injection. After the infusion of solutions and before blood transfusions, another sample was sent for measurement of blood parameters. Data were analyzed using SPSS software. The mean arterial pressure was significantly higher in the second group than in the first group at some times after the infusion of solutions. pHh levels, base excess, bicarbonate, sodium, strong ion differences and osmolarity were significantly greater and potassium and chloride were significantly lower in the second group than in the first group after the infusion of solutions. 1.3% sodium bicarbonate in half-normal saline solution can lead to a proper correction of hemodynamic instability. By maintaining hemodynamic status, osmolarity and electrolytes as well as better balance of acid-base, 1.3% sodium bicarbonate solution in half-normal saline solution can be more effective than Ringer lactate solution during intraoperative bleeding.

  17. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the determination of the activation energy of the thiosulphate-acid reaction, an experiment on hydrolysis of similar metal salt solutions, the preparation and electrolytic properties of iodine monochloride and iodine trochloride, and instructions for apparatus enabling laboratory study of the thermal cracking of ethylbenzene. (AL)

  18. Method for providing uranium articles with a corrosion resistant anodized coating

    DOEpatents

    Waldrop, Forrest B.; Washington, Charles A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  19. Activity inhibition and its mitigation in high temperature proton exchange membrane fuel cells: The role of phosphoric acid, ammonium trifluoromethanesulfonate, and polyvinylidene difluoride

    NASA Astrophysics Data System (ADS)

    Holst-Olesen, Kaspar; Nesselberger, Markus; Perchthaler, Markus; Hacker, Viktor; Arenz, Matthias

    2014-12-01

    In the presented work we systematically study the influence of phosphoric acid, ammonium trifluoromethanesulfonate (ATFMS), and polyvinylidene difluoride (PVDF) on the oxygen reduction reaction (ORR) activity of carbon supported, Pt based catalysts. The influence of phosphoric acid is investigated in a mixed solution of perchloric acid with small amounts of phosphoric acid added. Thin-film rotating disk electrode (TF-RDE) measurements show that such a mixed electrolyte is advantageous as the oxygen reduction reaction (ORR) is inhibited without influencing the oxygen solubility in the electrolyte. In contrast to previous reports it is seen when investigating additives that ATFMS acts as a catalyst poison; whereas the results provide evidence of a better performance in case of the PVDF incorporated catalysts as compared to reference samples without PVDF. The technological relevance of the PVDF improvements and its stability over prolonged time was validated by membrane electrode assembly (MEA) tests.

  20. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1983-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered.

  1. Investigation of DBS electro-oxidation reaction in the aqueous-organic solution of LiClO4.

    PubMed

    Darlewski, Witold; Popiel, Stanisław; Nalepa, Tomasz; Gromotowicz, Waldemar; Szewczyk, Rafał; Stankiewicz, Romuald

    2010-03-15

    A process of dibutyl sulphide (DBS) electro-oxidation using electrolysis and cyclic voltamperometry was investigated in water-methanol solution using different electrodes (platinum, boron doped diamond, graphite and glassy carbon). Obtained results indicate that the DBS electro-oxidation process is irreversible in voltamperometric conditions. It was shown that during DBS electrolytic oxidation on Pt, at the low anode potential (1.8 V), DBS was oxidized to sulphoxide and sulphone. Electrolysis at higher potential (up to 3.0 V) resulted in complete DBS oxidation and formation of various products, including: butyric acid, sulphuric acid, butanesulphinic acid, butanesulphonic acid, identified using gas chromatography (GC-AED) and mass spectrometry (GC-MS) methods. (c) 2009 Elsevier B.V. All rights reserved.

  2. Artificially-built solid electrolyte interphase via surface-bonded vinylene carbonate derivative on graphite by molecular layer deposition

    NASA Astrophysics Data System (ADS)

    Chae, Seulki; Lee, Jeong Beom; Lee, Jae Gil; Lee, Tae-jin; Soon, Jiyong; Ryu, Ji Heon; Lee, Jin Seok; Oh, Seung M.

    2017-12-01

    Vinylene carbonate (VC) is attached in a ring-opened form on a graphite surface by molecular layer deposition (MLD) method, and its role as a solid electrolyte interphase (SEI) former is studied. When VC is added into the electrolyte solution of a graphite/LiNi0.5Mn1.5O4 (LNMO) full-cell, it is reductively decomposed to form an effective SEI on the graphite electrode. However, VC in the electrolyte solution has serious adverse effects due to its poor stability against electrochemical oxidation on the LNMO positive electrode. A excessive acid generation as a result of VC oxidation is observed, causing metal dissolution from the LNMO electrode. The dissolved metal ions are plated on the graphite electrode to destroy the SEI layer, eventually causing serious capacity fading and poor Coulombic efficiency. The VC derivative on the graphite surface also forms an effective SEI layer on the graphite negative electrode via reductive decomposition. The detrimental effects on the LNMO positive electrode, however, can be avoided because the bonded VC derivative on the graphite surface cannot move to the LNMO electrode. Consequently, the graphite/LNMO full-cell fabricated with the VC-attached graphite outperforms the cells without VC or with VC in the electrolyte, in terms of Coulombic efficiency and capacity retention.

  3. Capillary electrophoresis separation of neutral organic compounds, pharmaceutical drugs, proteins and peptides, enantiomers, and anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Wei -Liang

    1999-02-12

    Addition of a novel anionic surfactant, namely lauryl polyoxyethylene sulfate, to an aqueous-acetonitrile electrolyte makes it possible to separate nonionic organic compounds by capillary electrophoresis. Separation is based on differences in the association between analytes and the surfactant. Highly hydrophobic compounds such as polyaromatic hydrocarbons are well separated by this new surfactant. Migration times of analytes can be readily changed over an unusually large range by varying the additive concentration and the proportion of acetonitrile in the electrolyte. Several examples are given, including the separation of four methylbenz[a]anthracene isomers and the separation of normal and deuterated acetophenone. The effect ofmore » adding this new surfactant to the acidic electrolyte was also investigated. Incorporation of cetyltrimethylammonium bromide in the electrolyte is shown to dynamically coat the capillary and reverse electroosmotic flow. Chiral recognition mechanism is studied using novel synthetic surfactants as chiral selectors, which are made from amino acids reacting with alkyl chloroformates. A satisfactory separation of both inorganic and organic anions is obtained using electrolyte solutions as high as 5 M sodium chloride using direct photometric detection. The effect of various salts on electrophoretic and electroosmotic mobility is further discussed. Several examples are given under high-salt conditions.« less

  4. Kinetics of nonoxidative leaching of galena in perchloric, hydrobromic, and hydrochloric acid solutions

    NASA Astrophysics Data System (ADS)

    Núñez, C.; Espiell, F.; García-Zayas, J.

    1988-08-01

    Several kinetic studies are presented on the nonoxidative leaching of galena with solutions of hydrocloric, hydrobromic, and perchloric acid. The kinetic parameters were set up in terms of the mean ionic activities of the electrolytes. The apparent order of reaction for the mean ionic activity of perchloric acid is one. For hydrochloric acid the order of reaction over a wide range of concentrations is 3/2 with respect to its mean activity. For hydrobromic acid, whose anion has greater complex-forming power for lead than HC1, the order of reaction is 2. Activation energies are 64.4 kJ/mole for HC1, 71.5 kJ/mole for HC104, and 66.5 kJ mole for HBr. The complete kinetic equations are given for the three reactions.

  5. Electrolyte-gated transistors based on conducting polymer nanowire junction arrays.

    PubMed

    Alam, Maksudul M; Wang, Jun; Guo, Yaoyao; Lee, Stephanie P; Tseng, Hsian-Rong

    2005-07-07

    In this study, we describe the electrolyte gating and doping effects of transistors based on conducting polymer nanowire electrode junction arrays in buffered aqueous media. Conducting polymer nanowires including polyaniline, polypyrrole, and poly(ethylenedioxythiophene) were investigated. In the presence of a positive gate bias, the device exhibits a large on/off current ratio of 978 for polyaniline nanowire-based transistors; these values vary according to the acidity of the gate medium. We attribute these efficient electrolyte gating and doping effects to the electrochemically fabricated nanostructures of conducting polymer nanowires. This study demonstrates that two-terminal devices can be easily converted into three-terminal transistors by simply immersing the device into an electrolyte solution along with a gate electrode. Here, the field-induced modulation can be applied for signal amplification to enhance the device performance.

  6. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  7. Synthesis, characterization and application of doped electrolytic manganese dioxides

    NASA Astrophysics Data System (ADS)

    Jantscher, Wolfgang; Binder, Leo; Fiedler, Dirk A.; Andreaus, Reinhard; Kordesch, Karl

    Electrolytic manganese dioxides (EMDs) were prepared on the 100 g scale by anodic deposition from acidic aqueous solutions of manganese sulfate. In situ doping with titanium ions was achieved by addition of tetra- n-butoxytitanium to the electrolytic bath. Samples were also doped ex situ by washing the products with aqueous barium hydroxide solution. The EMDs were characterized by electron microscopy studies and BET surface area determinations. Cyclic abrasive stripping voltammetry was successfully applied to evaluate the rechargeability of the newly synthesized undoped and doped EMDs in 9 M KOH. Relative discharge capacities at different depths of discharge (DOD) with respect to the first one-electron reduction of γ-MnO 2 are compared for different EMDs. At about 30% DOD, resulting relative discharge capacities show essentially the same trend as those measured in AA cells from about 10 to 20 discharge/charge cycles onwards. Accordingly, titanium-doped EMD was shown to exhibit superior charge retention and rechargeability when compared to the titanium-free samples.

  8. Electrochemistry in Colloids and Dispersions. Volume 1. Electroanalytical Methods and Applications, Electrosynthesis and Electrocatalysis, Polymers and Latexes

    DTIC Science & Technology

    1992-02-04

    derived from dissociation of surface acid groups of the microparticles. The surface charges of these particles are provided by sulfate groups... sulfate micellar solution as a function of electrolyte concentration3 Jon R. Kirchhoff, John D. Skelton, Jr., and Kregg T. Brooks Department of...films on the voltamnmetric curve obtained for the oxidation of benzilic acid on a platinum anode in 2M sodium hydroxide. The acid is soluble in this

  9. Nanostructural characterization of large-scale porous alumina fabricated via anodizing in arsenic acid solution

    NASA Astrophysics Data System (ADS)

    Akiya, Shunta; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2017-05-01

    Anodizing of aluminum in an arsenic acid solution is reported for the fabrication of anodic porous alumina. The highest potential difference (voltage) without oxide burning increased as the temperature and the concentration of the arsenic acid solution decreased, and a high anodizing potential difference of 340 V was achieved. An ordered porous alumina with several tens of cells was formed in 0.1-0.5 M arsenic acid solutions at 310-340 V for 20 h. However, the regularity of the porous alumina was not improved via anodizing for 72 h. No pore sealing behavior of the porous alumina was observed upon immersion in boiling distilled water, and it may be due to the formation of an insoluble complex on the oxide surface. The porous alumina consisted of two different layers: a hexagonal alumina layer that contained arsenic from the electrolyte and a pure alumina honeycomb skeleton. The porous alumina exhibited a white photoluminescence emission at approximately 515 nm under UV irradiation at 254 nm.

  10. An induced current method for measuring zeta potential of electrolyte solution-air interface.

    PubMed

    Song, Yongxin; Zhao, Kai; Wang, Junsheng; Wu, Xudong; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2014-02-15

    This paper reports a novel and very simple method for measuring the zeta potential of electrolyte solution-air interface. When a measuring electrode contacts the electrolyte solution-air interface, an electrical current will be generated due to the potential difference between the electrode-air surface and the electrolyte solution-air interface. The amplitude of the measured electric signal is linearly proportional to this potential difference; and depends only on the zeta potential at the electrolyte solution-air interface, regardless of the types and concentrations of the electrolyte. A correlation between the zeta potential and the measured voltage signal is obtained based on the experimental data. Using this equation, the zeta potential of any electrolyte solution-air interface can be evaluated quickly and easily by inserting an electrode through the electrolyte solution-air interface and measuring the electrical signal amplitude. This method was verified by comparing the obtained results of NaCl, MgCl2 and CaCl2 solutions of different pH values and concentrations with the zeta potential data reported in the published journal papers. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Method for providing uranium articles with a corrosion-resistant anodized coating

    DOEpatents

    Waldrop, F.B.; Washington, C.A.

    1981-01-07

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  12. Treated Carbon Nanofibers for Storing Energy in Aqueous KOH

    NASA Technical Reports Server (NTRS)

    Firsich, David W.

    2004-01-01

    A surface treatment has been found to enhance the performances of carbon nanofibers as electrode materials for electrochemical capacitors in which aqueous solutions of potassium hydroxide are used as the electrolytes. In the treatment, sulfonic acid groups are attached to edge plane sites on carbon atoms. The treatment is applicable to a variety of carbon nanofibers, including fibrils and both single- and multiple-wall nanotubes. The reason for choosing nanofibers over powders and other forms of carbon is that nanofibers offer greater power features. In previous research, it was found that the surface treatment of carbon nanofibers increased energy-storage densities in the presence of acid electrolytes. Now, it has been found that the same treatment increases energy-storage densities of carbon nanofibers in the presence of alkaline electrolytes when the carbon is paired with a NiOOH electrode. This beneficial effect varies depending on the variety of carbon substrate to which it is applied. It has been conjectured that the sulfonic acid groups, which exist in a deprotonated state in aqueous KOH solutions, undergo reversible electro-chemical reactions that are responsible for the observed increases in energystorage capacities. The increases can be considerable: For example, in one case, nanofibers exhibited a specific capacitance of 34 Farads per gram before treatment and 172 Farads per gram (an increase of about 400 percent) after treatment. The most promising application of this development appears to lie in hybrid capacitors, which are devices designed primarily for storing energy. These devices are designed to be capable of (1) discharge at rates greater than those of batteries and (2) storing energy at densities approaching those of batteries. A hybrid capacitor includes one electrode like that of a battery and one electrode like that of an electrochemical capacitor. For example, a hybrid capacitor could contain a potassium hydroxide solution as the electrolyte, a carbon capacitor electrode, and a nickel hydroxide battery electrode. By making the capacitor electrode of treated carbon nanofibers instead of another carbon material, one could obtain greater energy-storage capacity.

  13. Electrochemical Reduction of Oxygen in Aprotic Ionic Liquids Containing Metal Cations: A Case Study on the Na-O2 system.

    PubMed

    Azaceta, Eneko; Lutz, Lukas; Grimaud, Alexis; Vicent-Luna, Jose Manuel; Hamad, Said; Yate, Luis; Cabañero, German; Grande, Hans-Jurgen; Anta, Juan A; Tarascon, Jean-Marie; Tena-Zaera, Ramon

    2017-04-10

    Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (M n+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate M n+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of M n+ on oxygen reduction. A case study on the Na-O 2 system is described in detail. Among other things, the Na + concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation of bioactive titania films on titanium metal via anodic oxidation.

    PubMed

    Cui, X; Kim, H-M; Kawashita, M; Wang, L; Xiong, T; Kokubo, T; Nakamura, T

    2009-01-01

    To research the crystal structure and surface morphology of anodic films on titanium metal in different electrolytes under various electrochemical conditions and investigate the effect of the crystal structure of the oxide films on apatite-forming ability in simulated body fluid (SBF). Titanium oxide films were prepared using an anodic oxidation method on the surface of titanium metal in four different electrolytes: sulfuric acid, acetic acid, phosphoric acid and sodium sulfate solutions with different voltages for 1 min at room temperature. Anodic films that consisted of rutile and/or anatase phases with porous structures were formed on titanium metal after anodizing in H(2)SO(4) and Na(2)SO(4) electrolytes, while amorphous titania films were produced after anodizing in CH(3)COOH and H(3)PO(4) electrolytes. Titanium metal with the anatase and/or rutile crystal structure films showed excellent apatite-forming ability and produced a compact apatite layer covering all the surface of titanium after soaking in SBF for 7d, but titanium metal with amorphous titania layers was not able to induce apatite formation. The resultant apatite layer formed on titanium metal in SBF could enhance the bonding strength between living tissue and the implant. Anodic oxidation is believed to be an effective method for preparing bioactive titanium metal as an artificial bone substitute even under load-bearing conditions.

  15. Electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue.

    PubMed

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Du, Jun; Tao, Changyuan

    2015-10-01

    Electrolytic manganese residue (EMR) is a solid waste found in filters after sulphuric acid leaching of manganese carbonate ore, which mainly contains manganese and ammonia nitrogen and seriously damages the ecological environment. This work demonstrated the use of electrokinetic (EK) remediation to remove ammonia nitrogen and manganese from EMR. The transport behavior of manganese and ammonia nitrogen from EMR during electrokinetics, Mn fractionation before and after EK treatment, the relationship between Mn fractionation and transport behavior, as well as the effects of electrolyte and pretreatment solutions on removal efficiency and energy consumption were investigated. The results indicated that the use of H2SO4 and Na2SO4 as electrolytes and pretreatment of EMR with citric acid and KCl can reduce energy consumption, and the removal efficiencies of manganese and ammonia nitrogen were 27.5 and 94.1 %, respectively. In these systems, electromigration and electroosmosis were the main mechanisms of manganese and ammonia nitrogen transport. Moreover, ammonia nitrogen in EMR reached the regulated level, and the concentration of manganese in EMR could be reduced from 455 to 37 mg/L. In general, the electrokinetic remediation of EMR is a promising technology in the future.

  16. Resolution in QCM sensors for the viscosity and density of liquids: application to lead acid batteries.

    PubMed

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H(2)SO(4) solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical "resolution limit" to measure the square root of the density-viscosity product [Formula: see text] of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for [Formula: see text] measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency.

  17. Resolution in QCM Sensors for the Viscosity and Density of Liquids: Application to Lead Acid Batteries

    PubMed Central

    Cao-Paz, Ana María; Rodríguez-Pardo, Loreto; Fariña, José; Marcos-Acevedo, Jorge

    2012-01-01

    In battery applications, particularly in automobiles, submarines and remote communications, the state of charge (SoC) is needed in order to manage batteries efficiently. The most widely used physical parameter for this is electrolyte density. However, there is greater dependency between electrolyte viscosity and SoC than that seen for density and SoC. This paper presents a Quartz Crystal Microbalance (QCM) sensor for electrolyte density-viscosity product measurements in lead acid batteries. The sensor is calibrated in H2SO4 solutions in the battery electrolyte range to obtain sensitivity, noise and resolution. Also, real-time tests of charge and discharge are conducted placing the quartz crystal inside the battery. At the same time, the present theoretical “resolution limit” to measure the square root of the density-viscosity product (ρη) of a liquid medium or best resolution achievable with a QCM oscillator is determined. Findings show that the resolution limit only depends on the characteristics of the liquid to be studied and not on frequency. The QCM resolution limit for ρη measurements worsens when the density-viscosity product of the liquid is increased, but it cannot be improved by elevating the work frequency. PMID:23112618

  18. Effect of dissolved oxygen on the corrosion behavior of 304 SS in 0.1 N nitric acid containing chloride

    NASA Astrophysics Data System (ADS)

    Khobragade, Nilay N.; Bansod, Ankur V.; Patil, Awanikumar P.

    2018-04-01

    A study was undertaken in several selected mixed nitric acid/chloride ({{{{NO}}}3}-/{{{Cl}}}- ratio) electrolytes with the nitric acid concentration of 0.1 N and chloride concentration of 0, 10, 100, 1000 and 10 000 ppm. Electrochemical tests like potentiodynamic polarization test, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis (M-S) were carried out when the electrolytes were in deaerated condition and were in open to air (OTA) condition, and the effect of dissolved oxygen was evaluated on the corrosion behavior of 304 SS. It was found that at a critical {{{{NO}}}3}-/{{{Cl}}}- ratio, a passive state is attained at the earliest in OTA condition. Also, the passive film resistance showed higher values in OTA condition than in deaerated condition exhibiting the effect of dissolved oxygen. The results of EIS results confirmed the results obtained by potentiodynamic polarization wherein the low passive current densities were obtained in OTA condition. Mott-Schottky analysis revealed the lowest defect densities in 100 ppm Cl‑ solution in OTA condition and in 10 ppm Cl‑ solution in deaerated condition indicating less defective films formed in these solutions. XPS analysis showed that the film was bilayer in nature in confirmation with M-S analysis. The results were discussed with point defect model (PDM) and by competitive surface adsorption.

  19. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  20. InGaN/GaN quantum dots as optical probes for the electric field at the GaN/electrolyte interface

    NASA Astrophysics Data System (ADS)

    Teubert, J.; Koslowski, S.; Lippert, S.; Schäfer, M.; Wallys, J.; Dimitrakopulos, G.; Kehagias, Th.; Komninou, Ph.; Das, A.; Monroy, E.; Eickhoff, M.

    2013-08-01

    We investigated the electric-field dependence of the photoluminescence-emission properties of InGaN/GaN quantum dot multilayers in contact with an electrolyte. Controlled variations of the surface potential were achieved by the application of external electric fields using the electrolytic Schottky contact and by variation of the solution's pH value. Prior to characterization, a selective electrochemical passivation process was required to suppress leakage currents. The quantum dot luminescence is strongly affected by surface potential variations, i.e., it increases exponentially with cathodic bias and acidic pH values. The results cannot be explained by a modification of intra-dot polarization induced electric fields via the quantum confined Stark effect but are attributed to the suppression/enhancement of non-radiative recombination processes, i.e., mainly hole transfer into the electrolyte. The results establish a link between the photoluminescence intensity and the magnitude of electric fields at the semiconductor/electrolyte interface.

  1. Influence of electrical double-layer interaction on coal flotation.

    PubMed

    Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M

    2002-06-15

    In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.

  2. Composite gel polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their electrochemical performance upon the enhancement of acidic properties of the CGPE, gaining the reversible specific capacity of 314 mAh.g-1 in acidic CGPE vs. 247 mAh.g-1 in basic CGPE C/20 after 33 cycles. The CGPE exhibited submicron pore size while the ionic conductivities were in order of 10-3 and 10-5 Scm-1 with and without modified nano-fillers respectively.

  3. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on-off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.

  4. The thermodynamic parameters of the step dissociation of L-phenylalanyl in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Emel'Yanov, A. V.; Krutova, O. N.; Gorboletova, G. G.

    2007-10-01

    The heats of interaction of L-phenylalanine with solutions of nitric acid and potassium and lithium hydroxides were determined calorimetrically at 288.15, 298.15, and 308.15 K and solution ionic strengths of 0.5, 0.75, and 1.0 in the presence of LiNO3 and KNO3. The standard thermodynamic characteristics (Δr H°, Δr G°, Δr S°, and Δ C {/p °} of acid-base interactions in aqueous solutions of L-phenylalanine were calculated. The influence of the concentration of background electrolytes and temperature on the heats of dissociation of L-phenylalanine was considered. A comparative analysis of the standard thermodynamic characteristics of step dissociation of L-phenylalanine and alanine was performed in terms of the modern concepts of the structure and physicochemical properties of these compounds and their solutions.

  5. Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes

    NASA Technical Reports Server (NTRS)

    Chin, D. T.; Hsueh, K. L.; Chang, H. H.

    1984-01-01

    Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures.

  6. Thai Grade 11 students' alternative conceptions for acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Artdej, Romklao; Ratanaroutai, Thasaneeya; Coll, Richard Kevin; Thongpanchang, Tienthong

    2010-07-01

    This study involved the development of a two-tier diagnostic instrument to assess Thai high school students' understanding of acid-base chemistry. The acid-base diagnostic test (ABDT) comprising 18 items was administered to 55 Grade 11 students in a science and mathematics programme during the second semester of the 2008 academic year. Analysis of students' responses from this study followed the methodology outlined by Çalik and Ayas. The research findings suggest that the ABDT, the multiple choice diagnostic instrument, enables researchers and teachers to classify students' understanding at different levels. Most students exhibited alternative conceptions for several concepts: acid-base theory, dissociation of strong acids or bases, and dissociation of weak acids/bases. Interestingly, one of the concepts that students appeared to find most difficult, and for which they exhibited the most alternative conceptions, was acid-base theory. Some alternative conceptions revealed in this study differ from earlier reports, such as the concept of electrolyte and non-electrolyte solutions as well as the concentration changes of H3O+and OH- in water. These research findings present valuable information for facilitating better understanding of acid-base chemistry by providing insight into the preventable and correctable alternative conceptions exhibited by students.

  7. Acid and alkali doped PBI electrolyte in electrochemical system

    NASA Astrophysics Data System (ADS)

    Xing, Baozhong

    In this work the conductivity of blank PBI membrane, acid doped PBI and alkaline doped PBI was systematically studied. A new methodology for sorption kinetics study in electrolyte solution has been established by monitoring the conductivity change during the sorption process. The model of the doping process and mechanism of conductivity are proposed. The performance of PBI (doped under optimum conditions) in fuel cell as PEM was evaluated. The experimental results show that the blank PBI in acid solution is an ionic insulator. It clarified the long time confusion in this area. The acid doped PBI membrane is an ionic conductor. The conductivity increases with the concentration of the acid solution. In high concentration acid solution, the conductivity increases with the type of acid in the order: H2SO 4 > H3PO4 > HClO4 > HNO3 > HCl. The kinetics of the doping process was studied, by a continuous method. The ionic conductivity mechanism was established. The PBI membranes doped with H2SO4 and H3PO4 exhibit better performance than NafionRTM. The doped FBI has more resistance to CO poison. 3% CO in H2 has little effect on the H3PO 4 doped PBI membrane at 185°C. The conductivity of the alkali doped PBI membrane changes with the concentration of the alkaline solution and the type of the alkalis. The conductivity has a maximum in KOH and NaOH solution. The maximum conductivity in KOH is higher than in NaOH and LiOH. It is about 5 times of that of NafionRTM in alkaline solution. The two-step sorption process in alkaline solution was observed. The first step is the permeation process of the alkalis in the PBI membrane. The permeation is the results of diffusion and interaction. It is concluded that the permeation process is controlled by the rate of interaction between the alkali and PBI molecule. The second step is the relaxation process in the membrane. This step contributes more to the conductivity for the membrane than the first step. The ionic conductivity mechanism was established. In solution the cations and OH- all participate in the transport of current. It is the OH- that breaks the bonds between PBI molecules and enables the cations pass through the membrane. The performance of alkali doped PBI (doped under optimum conditions) in fuel cell as PEM is as good as NafionRTM.

  8. Electrochemically-driven large amplitude pH cycling for acid-base driven DNA denaturation and renaturation.

    PubMed

    Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu

    2011-06-15

    In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.

  9. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    NASA Astrophysics Data System (ADS)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10-4 S cm-1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  10. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-10-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

  11. Probe diffusion of labeled polymers inside polyacrylic acid solutions: A polyelectrolyte effect

    NASA Astrophysics Data System (ADS)

    Mishra, Banani; Mithra, K.; Khandai, Santripti; Jena, Sidhartha S.

    2018-05-01

    Probe diffusion of fluorescently labeled Dextran 40 inside polyelectrolyte solution of polyacrylic acid (PAA) was investigated using Fluorescence Recovery After Photobleaching technique. The crowding and interaction effects on probe diffusion were controlled by tuning background polymer and added external electrolyte concentration. For all the salt concentration, an overall decrease in diffusion coefficient is observed with rise in polymer concentration. The diffusion coefficient decreases with decrease in salt concentration whereas the solution viscosity increases, indicating a competition between viscous drag and electrostatic interaction. A large positive deviation from the ideal Stokes-Einstein relation is observed for high polymer and low salt concentration, which reduces markedly with addition of salt confirming polyelectrolyte effects, plays a major role in deciding the probe diffusion.

  12. Thermodynamic Studies of Levitated Microdroplets of Highly Supersaturated Electrolyte Solutions

    NASA Technical Reports Server (NTRS)

    Myerson, Allan S.; Izmailov, Alexander F.; Na, Han-Soo

    1996-01-01

    Highly supersaturated electrolyte solutions are studied by employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. A correspondence of 96-99% between the theory and experiment for the all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin) and its calculation for various electrolyte solutions at 298 K.

  13. Feasibility study of NaOH regeneration in acid gas removal unit using membrane electrolysis

    NASA Astrophysics Data System (ADS)

    Taufany, Fadlilatul; Pratama, Alvian; Romzuddin, Muhammad

    2017-05-01

    The world's energy demand is increasing with the development of human civilization. Due to limited energy resource, after 2020 fossil fuels thus is predicted will be replaced by renewable resources. Taking an example, one of the potential renewable energy to be considered is biogas, as its high content of methane, which can be produced via the fermentation process of the organic compounds under controlled anaerobic environment by utilizing the methanogen bacteria. However, prior the further use, this biogas must be purified from its impurities contents, i.e. acid gas of CO2 and H2S, up to 4% and 16 ppmv, respectively, in the acid gas removal unit. This such of purification efforts, will significantly increase the higher heating value of biogas, approximately from 600 to 900 Btu/Scf. During the purification process in this acid gas removal unit, NaOH solution is used as a liquid absorbent to reduce those acid gases content, in which the by-product of alkali salt (brine) was produced as waste. Here we report the feasibility study of the NaOH regeneration process in acid gas removal unit via membrane electrolysis technology, in which both the technical and economic aspects are taken account. To be precise in procedure, the anode semi-cell was filled with the brine solution, while the cathode semi-cell was filled with demineralized water, and those electrodes were separated by the cation exchange membrane. Furthermore, the applied potential was varied ranging from 5, 10, 15 and to 20 V, while the concentration of KCl electrolyte solutions were varied ranging from 0.01, 0.05, 0.1, and to 0.03 M. This study was conducted under controlled temperatures of 30 and 50 °C. Here we found that the % sodium recovery was increased along with the applied potential, temperature, and the decrease in KCl electrolyte concentration. We found that the best results, by means of the highest % sodium recovery, i.e. 97.26 %, was achieved under the experimental condition of temperature at 30 °C, applied potential at 15 V, and KCl electrolyte concentration at 0.01 M. At such electrolysis condition, the energy efficiency was calculated to be 0,009 M-NaOH/Wh, or was equal to operating cost at 0.04/kg-NaOH.

  14. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  15. Molecular adsorption at electrolyte/α-Al2O3 interface of aluminum electrolytic capacitor revealed by sum frequency vibrational spectroscopy.

    PubMed

    Jia, Ming; Hu, Xiaoyu; Liu, Jin; Liu, Yexiang; Ai, Liang

    2017-05-21

    The operating voltage of an aluminum electrolytic capacitor is determined by the breakdown voltage (U b ) of the Al 2 O 3 anode. U b is related to the molecular adsorption at the Al 2 O 3 /electrolyte interface. Therefore, we have employed sum-frequency vibrational spectroscopy (SFVS) to study the adsorption states of a simple electrolyte, ethylene glycol (EG) solution with ammonium adipate, on an α-Al 2 O 3 surface. In an acidic electrolyte (pH < 6), the Al 2 O 3 surface is positively charged. The observed SFVS spectra show that long chain molecules poly ethylene glycol and ethylene glycol adipate adopt a "lying" orientation at the interface. In an alkaline electrolyte (pH > 8), the Al 2 O 3 surface is negatively charged and the short chain EG molecules adopt a "tilting" orientation. The U b results exhibit a much higher value at pH < 6 compared with that at pH > 8. Since the "lying" long chain molecules cover and protect the Al 2 O 3 surface, U b increases with a decrease of pH. These findings provide new insights to study the breakdown mechanisms and to develop new electrolytes for high operating voltage capacitors.

  16. SEVERAL METHODS FOR PREPARING RADIOACTIVE STANDARDS FOR ALPHA AND BETA URANIUM SOURCES (in Serbo-Croatian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemoda, D.

    1963-03-01

    Electrolytic methods for obtaining U radiation sources are described. The radiochemical and electrochemical characteristics of U are described which permit the preparation of a thin or a thick oxide saturation layer on the cathode. Experiments are described representing the deposit of U on metallic surfaces by acido-suifuric solutions with adapted acidity. The influence of acidity, temperature, concentration, reaction period, and surface size was studied. Under the optimal (NH/sub 4/)2CO/sub 3/ acidity, Fe, Al, and Cu are receptive in that order. (OID)

  17. Electrolytic Conductance of the Ternary System of Nitric Acid--Nitrogen Dioxide--Water at 32 deg F and Atmospheric Pressure

    DTIC Science & Technology

    1951-11-12

    solutions of nitrogen dioxide in nitric acid where nitrosonium ions (NO+) and nitrate ions (NO-) have been identified (Cf. Ref. 4). The nitrogen...0.97 weight fraction nitric acid, hydrogen and nitrate ions are the predominant conducting species. In the range 0.97 to 1.00 weight fraction nitric...self-ionization to yield nitronium ions (NJ2) and nitratej2 ions (NO3) according to the expression 2HNO3--NO+ + NO- + H2 0 It is evident from this

  18. Metal and Non-Metal Inorganic Coatings. Methods of Checking

    DTIC Science & Technology

    1979-07-20

    base metal (15) Copper (16) Steel (17) Zinc alloy (18) Nickel (19) Copper and its alloys (20) Nickel (21) Chromium (22) Silver (23) Copper and its alloys... Silver (9) Copper-tine alloy (for solution #6)1 NOTE,. The value (H )is given for the ninc coatings from cyanide, sulfateo ammoniat4, and zincate...fluoborlc; silver from cyanide and thiocyanic acid; dull chromium - from sulfate; copper -from sulfate and cyanide electrolytes (for solution 06). -Q -gp

  19. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    PubMed Central

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new results leads to a reevaluation of the strengths and limitations of Poisson–Boltzmann theory and highlights the need for next-generation atomic-level models of the ion atmosphere. PMID:26517731

  20. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    PubMed

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Monitoring of oxidation steps of ascorbic acid redox reaction by kinetics-sensitive voltcoulometry in unsupported and supported aqueous solutions and real samples.

    PubMed

    Orlický, Jozef; Gmucová, Katarína; Thurzo, Ilja; Pavlásek, Juraj

    2003-04-01

    Aqueous solutions of ascorbic acid in unsupported and supported aqueous solutions and real samples were studied by the kinetics-sensitive double-step voltcoulommetric method with the aim to contribute to a better understanding of its behavior in biological systems. The data obtained from measurements made on analytes prepared in the laboratory, as well as those made on real samples (some commercial orange drinks, flash of the fresh fruits) point to the redox reaction of L-ascorbic acid (L-AH2) being very sensitive to both the presence of dissolved gaseous species (O2, CO2) and the ionic strenght in the analyte. Either the dissolved gaseous species, or the higher ionic strength caused by both the presence of supporting electrolyte and increased total concentration of ascorbic acid, respectively, give birth to the degradation of L-AH2. Naturally, the highest percentage of L-AH2 was spotted in fresh fruit.

  2. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells.

    PubMed

    Vargas-Barbosa, Nella M; Geise, Geoffrey M; Hickner, Michael A; Mallouk, Thomas E

    2014-11-01

    Membranes are important in water-splitting solar cells because they prevent crossover of hydrogen and oxygen. Here, bipolar membranes (BPMs) were tested as separators in water electrolysis cells. Steady-state membrane and solution resistances, electrode overpotentials, and pH gradients were measured at current densities relevant to solar photoelectrolysis. Under forward bias conditions, electrodialysis of phosphate buffer ions creates a pH gradient across a BPM. Under reverse bias, the BPM can maintain a constant buffer pH on both sides of the cell, but a large membrane potential develops. Thus, the BPM does not present a viable solution for electrolysis in buffered electrolytes. However, the membrane potential is minimized when the anode and cathode compartments of the cell contain strongly basic and acidic electrolytes, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The influence of current collector corrosion on the performance of electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Jarosław; Kolanowski, Łukasz; Bund, Andreas; Lota, Grzegorz

    2017-11-01

    This paper discusses the effect of current collector (stainless steel 316L) corrosion on the performance of electrochemical capacitors operated in aqueous electrolytes. This topic seems to be often neglected in scientific research. The studied electrolytes were 1 M H2SO4, 1 M KI, 1 M Na2SO4, 1 M KOH and 6 M KOH. The corrosion process was investigated by means of selected direct and alternating current techniques. The surface of the current collectors as well as the corrosion products were characterised using scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy and atomic force microscopy. Stainless steel 316L in alkaline solutions is characterised by the lowest values of corrosion potentials whereas the potentials in acidic media become the most noble. Our studies show that corrosion potentials increase with decreasing pH value. This phenomenon can be explained with the formation of passive oxide films on the stainless steel current collectors. The passive oxide films are usually thicker and more porous in alkaline solutions than that in the other electrolytes. The processes occurring at the electrode/electrolyte interfaces strongly influence the working parameters of electrochemical capacitors such as voltage, working potentials of single electrodes, self-discharge as well as the internal resistance and cycling stability.

  4. Characterization of Sulfonated Diels-Alder Poly(phenylene) Membranes for Electrolyte Separators in Vanadium Redox Flow Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zhijiang; Lawton, Jamie S.; Sun, Che-Nan

    2014-09-03

    Here, sulfonated Diels-Alder poly(phenylene) (SDAPP) membranes were synthesized and characterized as potential electrolyte separators for vanadium redox flow batteries. The SDAPP membranes studied had ion exchange capacities of 1.4, 1.8 and 2.3 meq/g. Transmission electron microscopy imaging shows that the ionic domains in SDAPP are roughly 0.5 nm in dimension, while Nafion has a hydrophilic phase width of around 5 nm. The sulfuric acid uptake by SDAPP was higher than that for Nafion, but the materials had similar water uptake from solutions of various sulfuric acid concentrations. In equilibration with sulfuric acid concentrations ranging from 0–17.4 mol·kg -1, SDAPP withmore » a IEC of 2.3 meq/g had the highest conductivity, ranging from 0.21 to 0.05 S·cm -1, while SDAPP with a IEC of 1.8 had conductivity close to Nafion 117, ranging from 0.11 to 0.02 S·cm -1. With varying sulfuric acid concentration and temperature, vanadium permeability in SDAPP is positively correlated to the membrane's IEC. The vanadium permeability of SDAPP 2.3 is similar to that of Nafion, but permeability values for SDAPP 1.8 and SDAPP 1.4 are substantially lower. The vanadium permeation decreases with increasing electrolyte sulfuric acid concentration. Lastly, vanadium diffusion activation energy is about 20 kJ·mol -1 in both SDAPP and Nafion.« less

  5. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    NASA Astrophysics Data System (ADS)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  6. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  7. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Y.; Zhang, T.; Johnson, P.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N.

    The stability of a NASICON-type lithium ion conducting solid electrolyte, Li 1+ x+ yTi 2- xAl xP 3- ySi yO 12 (LTAP), in acetic acid and formic acid solutions was examined. XRD patterns of the LTAP powders immersed in 100% acetic acid and formic acid at 50 °C for 4 months showed no change as compared to the pristine LTAP. However, the electrical conductivity of LTAP drastically decreased. On the other hand, no significant electrical conductivity change of LTAP immersed in lithium formate saturated formic acid-water solution was observed, and the electrical conductivity of LTAP immersed in lithium acetate saturated acetic acid-water increased. Cyclic voltammogram tests suggested that acetic acid was stable up to a high potential, but formic acid decomposed under the decomposition potential of water. The acetic acid solution was considered to be a candidate for the active material in the air electrode of lithium-air rechargeable batteries. The cell reaction was considered as 2Li + 2 CH 3COOH + 1/2O 2 = 2CH 3COOLi + H 2O. The energy density of this lithium-air system is calculated to be 1477 Wh kg -1 from the weights of Li and CH 3COOH, and an observed open-circuit voltage of 3.69 V.

  8. A molecular Debye-Hückel theory and its applications to electrolyte solutions: The size asymmetric case

    DOE PAGES

    Xiao, Tiejun; Song, Xueyu

    2017-03-28

    We developed a molecular Debye-Hückel theory for electrolyte solutions with size asymmetry, where the dielectric response of an electrolyte solution is described by a linear combination of Debye-Hückel-like response modes. Furthermore, as the size asymmetry of an electrolyte solution leads to a charge imbalanced border zone around a solute, the dielectric response to the solute is characterized by two types of charge sources, namely, a bare solute charge and a charge distribution due to size asymmetry. These two kinds of charge sources are screened by the solvent differently, our theory presents a method to calculate the mean electric potential asmore » well as the electrostatic contributions to thermodynamic properties. Finally, the theory was successfully applied to binary as well as multi-component primitive models of electrolyte solutions.« less

  9. Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Jiang, Yiliang; Jensen, Jens Oluf; Cleemann, Lars N.; Li, Qingfeng

    2018-01-01

    Phosphoric acid is the common electrolyte for high-temperature polymer electrolyte fuel cells (HT-PEMFCs) that have advantages such as enhanced CO tolerance and simplified heat and water management. The currently used rotating disk electrode technique is limited to tests in dilute solutions at low temperatures and hence is not suitable for catalyst evaluation for HT-PEMFCs. In this study, we have designed and constructed a half-cell setup to measure the intrinsic activities of catalysts towards the oxygen reduction reaction (ORR) in conditions close to HT-PEMFC cathodes. By optimization of the hydrophobic characteristics of electrodes and the catalyst layer thickness, ORR activities of typical Pt/C catalysts are successfully measured in concentrated phosphoric acid at temperatures above 100 °C. In terms of mass-specific activities, the catalyst exhibits about two times higher activity in the half-cell electrode than that observed in fuel cells, indicating the feasibility of the technique as well as the potential for further improvement of fuel cell electrode performance.

  10. Balanced Fluid Versus Saline-Based Fluid in Post-operative Severe Traumatic Brain Injury Patients: Acid-Base and Electrolytes Assessment.

    PubMed

    Hassan, Mohamad Hasyizan; Hassan, Wan Mohd Nazaruddin Wan; Zaini, Rhendra Hardy Mohd; Shukeri, Wan Fadzlina Wan Muhd; Abidin, Huda Zainal; Eu, Chong Soon

    2017-10-01

    Normal saline (NS) is a common fluid of choice in neurosurgery and neuro-intensive care unit (ICU), but it does not contain other electrolytes and has the potential to cause hyperchloremic metabolic acidosis with prolonged infusion. These problems may be reduced with the availability of balanced fluid (BF), which becomes a more physiological isotonic solution with the presence of complete electrolyte content. This study aimed to compare the changes in electrolytes and acid-base between NS and BF (Sterofundin® ISO) therapy for post-operative severe traumatic brain injury (TBI) patients in neuro-ICU. Sixty-six severe TBI patients who required emergency craniotomy or craniectomy and were planned for post-operative ventilation were randomised into NS ( n = 33) and BF therapy groups ( n = 33). The calculation of maintenance fluid given was based on the Holliday-Segar method. The electrolytes and acid-base parameters were assessed at an 8 h interval for 24 h. The data were analysed using repeated measures ANOVA. The NS group showed a significant lower base excess (-3.20 versus -1.35, P = 0.049), lower bicarbonate level (22.03 versus 23.48 mmol/L, P = 0.031), and more hyperchloremia (115.12 versus 111.74 mmol/L, P < 0.001) and hypokalemia (3.36 versus 3.70 mmol/L, P < 0.001) than the BF group at 24 h of therapy. The BF group showed a significantly higher level of calcium (1.97 versus 1.79 mmol/L, P = 0.003) and magnesium (0.94 versus 0.80 mmol/L, P < 0.001) than the NS group at 24 h of fluid therapy. No significant differences were found in pH, pCO 2 , lactate, and sodium level. BF therapy showed better effects in maintaining higher electrolyte parameters and reducing the trend toward hyperchloremic metabolic acidosis than the NS therapy during prolonged fluid therapy for postoperative TBI patients.

  11. Self-association of analgesics in aqueous solution: micellar properties of dextropropoxyphene hydrochloride and methadone hydrochloride.

    PubMed

    Attwood, D; Tolley, J A

    1980-08-01

    The solution properties of several analgesics including dextropropoxyphene hydrochloride, methadone hydrochloride, dextromoramide acid tartrate and dipipanone hydrochloride have been examined using light scattering, conductivity, vapour pressure osmometry and surface tension techniques. A micellar pattern of association was established for dextropropoxyphene hydrochloride and methadone hydrochloride and critical micelle concentrations and aggregation numbers are reported. The hydrophobic contribution to the free energy of micellization of dextropropoxyphene was determined from measurement of the critical micelle concentration in the presence of added electrolyte.

  12. Electrocrystallization and Properties of Supersaturated Solid Solutions of Copper

    NASA Astrophysics Data System (ADS)

    Povetkin, V. V.; Ivanova, T. E.; Ismagilova, A. V.

    2018-03-01

    The role of the alloying element in the formation of the structure and properties of electrolytic copper alloys has been determined. The X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) have shown that electrochemical alloying of copper with low-melting metals leads to the formation of supersaturated solid solutions (SSS) on the cathode, crushing of the crystal structure, smoothing of the surface relief, hardening of the deposits obtained, increasing their solderability and corrosive resistance to acidic media.

  13. Acid-base behavior of the gaspeite (NiCO3(s)) surface in NaCl solutions.

    PubMed

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S; Schott, Jacques

    2010-08-03

    Gaspeite is a low reactivity, rhombohedral carbonate mineral and a suitable surrogate to investigate the surface properties of other more ubiquitous carbonate minerals, such as calcite, in aqueous solutions. In this study, the acid-base properties of the gaspeite surface were investigated over a pH range of 5 to 10 in NaCl solutions (0.001, 0.01, and 0.1 M) at near ambient conditions (25 +/- 3 degrees C and 1 atm) by means of conventional acidimetric and alkalimetric titration techniques and microelectrophoresis. Over the entire experimental pH range, surface protonation and electrokinetic mobility are strongly affected by the background electrolyte, leading to a significant decrease of the pH of zero net proton charge (PZNPC) and the pH of isoelectric point (pH(iep)) at increasing NaCl concentrations. This challenges the conventional idea that carbonate mineral surfaces are chemically inert to background electrolyte ions. Multiple sets of surface complexation reactions (i.e., ionization and ion adsorption) were formulated within the framework of three electrostatic models (CCM, BSM, and TLM) and their ability to simulate proton adsorption and electrokinetic data was evaluated. A one-site, 3-pK, constant capacitance surface complexation model (SCM) reproduces the proton adsorption data at all ionic strengths and qualitatively predicts the electrokinetic behavior of gaspeite suspensions. Nevertheless, the strong ionic strength dependence exhibited by the optimized SCM parameters reveals that the influence of the background electrolyte on the surface reactivity of gaspeite is not fully accounted for by conventional electrostatic and surface complexation models and suggests that future refinements to the underlying theories are warranted.

  14. Titanium surface modification by microarc oxidation in electrolyte based on wollastonite and hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yu. P.; Sedelnikova, M. B.; Komarova, E. G.; Khlusov, I. A.

    2015-11-01

    An investigation of titanium surface modification by microarc oxidation in the electrolyte based on wollastonite and hydroxyapatite was presented. The dependences of the coating properties on the microarc oxidation parameters were found. A variation of the process parameters allowed producing wollastonite-calcium phosphate coatings with aplate-like structure, thickness 25-30 µm, roughness 2.5-5.0 µm, and adhesion strength 57 MPa. The optimum microarc oxidation parameters such as the electrical voltage of 150 V, process duration of 5-10 min, and pulse duration of 100-300 µs were revealed. The wollastonite addition to the electrolyte based on the aqueous solution of phosphoric acid and hydroxyapatite allowed us to form wollastonite-calcium phosphate coatings on the titanium surface by the microarc oxidation method with enhanced strength properties and an increased ability to osseointegration.

  15. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  16. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. Copyright © 2016. Published by Elsevier B.V.

  17. Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids

    NASA Astrophysics Data System (ADS)

    Kao, Tzung-Ta; Chang, Yao-Chung

    2014-01-01

    The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.

  18. Synthesis and characterization of nanoporous anodic oxide film on aluminum in H3PO4 + KMnO4 electrolyte mixture at different anodization conditions

    NASA Astrophysics Data System (ADS)

    Verma, Naveen; Jindal, Jitender; Singh, Krishan Chander; Mari, Bernabe

    2016-04-01

    The micro structural properties of nanoporous anodic oxide film formed in H3PO4 were highly influenced by addition of a low concentration of KMnO4 (0.0005 M) in 1 M H3PO4 solution. The KMnO4 as additive enhanced the growth rate of oxide film formation as well as thickness of pore walls. Furthermore the growth rate was found increased with increase in applied current density. The increase in temperature and lack of stirring during anodization causes the thinness of pore wall which leads to increase in pore volume. With the decrease in concentration of H3PO4 in anodizing electrolyte from 1M to 0.3 M, keeping all other conditions constant, the decrease in porosity was observed. This might be due to the dissolution of aluminium oxide film in highly concentrated acidic solution.

  19. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from themore » anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.« less

  20. Ionic liquid as an electrolyte additive for high performance lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Deyab, M. A.

    2018-06-01

    The performance of lead-acid battery is improved in this work by inhibiting the corrosion of negative battery electrode (lead) and hydrogen gas evolution using ionic liquid (1-ethyl-3-methylimidazolium diethyl phosphate). The results display that the addition of ionic liquid to battery electrolyte (5.0 M H2SO4 solution) suppresses the hydrogen gas evolution to very low rate 0.049 ml min-1 cm-2 at 80 ppm. Electrochemical studies show that the adsorption of ionic liquid molecules on the lead electrode surface leads to the increase in the charge transfer resistance and the decrease in the double layer capacitance. I also notice a noteworthy improvement of battery capacity from 45 mAh g-1 to 83 mAh g-1 in the presence of ionic liquid compound. Scanning electron microscopy and energy dispersive X-ray analysis confirm the adsorption of ionic liquid molecules on the battery electrode surface.

  1. Propolis as a green corrosion inhibitor for bronze in weakly acidic solution

    NASA Astrophysics Data System (ADS)

    Varvara, Simona; Bostan, Roxana; Bobis, Otilia; Găină, Luiza; Popa, Florin; Mena, Vicente; Souto, Ricardo M.

    2017-12-01

    In the present work, the inhibitive action of natural propolis on bronze corrosion in a weakly acidic solution containing Na2SO4 and NaHCO3 at pH 5 was evaluated using multiscale electrochemical techniques, namely potentiodynamic polarization, electrochemical impedance spectroscopy and scanning vibrating electrode technique measurements. The major constituents of propolis were identified by HPLC. Surface characterization was performed by SEM-EDX and AFM analysis. Experiments were performed as a function of the propolis concentration and immersion time in the corrosive electrolyte. The obtained results showed that propolis presents good anticorrosive properties on bronze, acting as a mixed-type inhibitor, but its protective effectiveness is time-dependent. The highest inhibiting efficiency of 98.9% was obtained in the presence of 100 ppm propolis, after about 12 h of exposure to inhibitor-containing electrolyte through the stabilization of Cu2O on the bronze surface. The inhibitive properties of propolis on bronze corrosion are likely due to the adsorption of its main constituents (flavonoids and phenolic compounds), through the oxygen atoms in their functional groups and aromatic rings, which have been evidenced by FT-IR spectra. The adsorption of propolis on bronze was found to follow Langmuir adsorption isotherm.

  2. Flow microcapillary plasma mass spectrometry-based investigation of new Al-Cr-Fe complex metallic alloy passivation.

    PubMed

    Ott, N; Beni, A; Ulrich, A; Ludwig, C; Schmutz, P

    2014-03-01

    Al-Cr-Fe complex metallic alloys are new intermetallic phases with low surface energy, low friction, and high corrosion resistance down to very low pH values (0-2). Flow microcapillary plasma mass spectrometry under potentiostatic control was used to characterize the dynamic aspect of passivation of an Al-Cr-Fe gamma phase in acidic electrolytes, allowing a better insight on the parameters inducing chemical stability at the oxyhydroxide-solution interface. In sulfuric acid pH 0, low element dissolution rates (in the µg cm(-2) range after 60 min) evidenced the passive state of the Al-Cr-Fe gamma phase with a preferential over-stoichiometric dissolution of Al and Fe cations. Longer air-aging was found to be beneficial for stabilizing the passive film. In chloride-containing electrolytes, ten times higher Al dissolution rates were detected at open-circuit potential (OCP), indicating that the spontaneously formed passive film becomes unstable. However, electrochemical polarization at low passive potentials induces electrical field generated oxide film modification, increasing chemical stability at the oxyhydroxide-solution interface. In the high potential passive region, localized attack is initiated with subsequent active metal dissolution. © 2013 Published by Elsevier B.V.

  3. Non-aqueous electrolytes for isotachophoresis of weak bases and its application to the comprehensive preconcentration of the 20 proteinogenic amino acids in column-coupling ITP/CE-MS.

    PubMed

    Kler, Pablo A; Huhn, Carolin

    2014-11-01

    Isotachophoresis (ITP) has long been used alone but also as a preconcentration technique for capillary electrophoresis (CE). Unfortunately, up to now, its application is restricted to relatively strong acids and bases as either the degree of (de)protonation is too low or the water dissociation is too high, evoking zone electrophoresis. With the comprehensive ITP analysis of all 20 proteinogenic amino acids as model analytes, we, here, show that non-aqueous ITP using dimethylsulfoxide as a solvent solves this ITP shortcoming. Dimethylsulfoxide changes the pH regime of analytes and electrolytes but, more importantly, strongly reduces the proton mobility by prohibiting hydrogen bonds and thus, the so-called Zundel-Eigen-Zundel electrical conduction mechanism of flipping hydrogen bonds. The effects are demonstrated in an electrolyte system with taurine or H(+) as terminator, and imidazole as leader together with strong acids such as oxalic and even trifluoroacetic acid as counterions, both impossible to use in aqueous solution. Mass spectrometric as well as capacitively coupled contactless conductivity detection (C(4)D) are used to follow the ITP processes. To demonstrate the preconcentration capabilities of ITP in a two-dimensional set-up, we, here, also demonstrate that our non-aqueous ITP method can be combined with capillary electrophoresis-mass spectrometry in a column-coupling system using a hybrid approach of capillaries coupled to a microfluidic interface. For this, C(4)D was optimized for on-chip detection with the electrodes aligned on top of a thin glass lid of the microfluidic chip.

  4. Evaluating Transport Properties and Ionic Dissociation of LiPF 6 in Concentrated Electrolyte

    DOE PAGES

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung; ...

    2017-08-17

    The presence of lithium hexafluorophosphate (LiPF 6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This paper, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and themore » generalized Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF 6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF 6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Finally, transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less

  5. Evaluating Transport Properties and Ionic Dissociation of LiPF 6 in Concentrated Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung

    2017-01-01

    The presence of lithium hexafluorophosphate (LiPF6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This work, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and the generalized.more » Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit

    Spark plasma sintered transition metal diborides such as HfB 2, ZrB 2 and their solid solutions were investigated as electrode materials for electrochemical hydrogen evolutions reactions (HER) in 1 M H 2SO 4 and 1 M NaOH electrolytes. HfB 2 and ZrB 2 formed complete solid solutions when mixed in 1:1, 1:4, and 4:1 ratios and they were stable in both electrolytes. The HER kinetics of the diborides were slower in the basic solution than in the acidic solutions. The Tafel slopes in 1 M H 2SO 4 were in the range of 0.15 - 0.18 V/decade except for puremore » HfB 2 which showed a Tafel slope of 0.38 V/decade. In 1 M NaOH the Tafel slopes were in the range of 0.12 - 0.27 V/decade. The composition of Hf xZr 1-xB 2 solid solutions with x = 0.2 - 0.8, influenced the exchange current densities, overpotentials and Tafel slopes of the HER. As a result, the EIS data were fitted with a porous film equivalent circuit model in order to better understand the HER behavior. In addition, modeling calculations, using density functional theory approach, were carried out to estimate the density of states and band structure of the boride solid solutions.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensilemore » resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.« less

  8. [Adsorbent effect of activated carbon on small molecular uremic toxin and its influence factors].

    PubMed

    Yang, Bo; Jiang, Yun-sheng; Li, Jun

    2003-06-01

    To analyze the adsorbent effect of activated carbon on uremic toxin and its influence factors. Uremic toxins (urea, creatinine and uric acid) were dissolved in the distilled water to obtain uremic toxic solution. Activated carbon was added to the solution, and the concentrations of uremic toxins were measured at different time spots. To determine the influence factors, some possible related materials, such as bile, amino acid, Ringer's, solution of glucose, HCl or NaOH respectively were added simultaneously. The concentrations of toxins in uremic toxic solution decreased 5 min after adding the activated carbon. The concentration of urea was the lowest at 30 min, but it increased after 50 min; while the concentrations of creatinine and uric acid reached the lowest level from 10 to 30 min after adding the activated carbon, and maintained at the same level after that. The bile, amino acid, electrolyte, glucose and pH value did not influence the adsorption of uric acid significantly, but they influenced the adsorption of urea and creatinine. Bile and amino acid influenced the concentration of urea remarkably, following glucose, NaOH and HCl. The effect of pH 2.0 solution on the creatinine concentration was the most significant, following glucose. Activated carbon has adsorptive effect on uremic toxins, but its adsorptive effect decreases as time goes on. Bile, glucose, amino acid, NaOH and HCl can affect the adsorptive effect of activated carbon on uremic toxins to some extent.

  9. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOEpatents

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  10. A fundamental study on the [(μ-Cl) 3 Mg 2 (THF) 6 ] + dimer electrolytes for rechargeable Mg batteries

    DOE PAGES

    Liu, Tianbiao; Cox, Jonathan T.; Hu, Dehong; ...

    2015-01-05

    We present a fundamental study on [(μ-Cl) 3 Mg 2 (THF) 6 ] + dimer electrolytes using various physical methods including Subambient Pressure Ionization with Nanoelectrospray Mass spectrometry (SPIN-MS), Raman spectroscopy, 25Mg{ 1H} NMR, 27Al{ 1H} NMR and electrochemical analysis. For the first time, long time sought THF solvated [MgCl] + species was experimentally characterized by SPIN mass spectrometry in the solution of the Mgdimer containing electrolyte, confirming the mono-Cl- abstraction reaction between MgCl 2 and an Al Lewis acid. Solvated MgCl 2 in the electrolyte was confirmed by Raman spectroscopy. The experimental results establish the previously proposed dimerization equilibriummore » of solvated [MgCl] + and MgCl2 with [(μ-Cl) 3Mg 2(THF)6] +. 25Mg{ 1H} NMR, 27Al{ 1H} NMR and electrochemical analysis on chloration reaction of [(μ-Cl) 3Mg 2(THF) 6]AlPh 3Cl with external Cl- led to further insights on the coordination chemistry of the dimer electrolyte. Finally, a comprehensive mechanism is proposed for the reversible electrochemical Mg deposition and stripping and Mg 2+ and Cl- ion transports of the Mg dimer electrolytes in rechargeable Mg batteries.« less

  11. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.

    PubMed

    Santos, Lídia; Nunes, Daniela; Calmeiro, Tomás; Branquinho, Rita; Salgueiro, Daniela; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2015-01-14

    Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

  12. Effect of pH and Electrolytes on Adsorption of 2,4-D onto Kaolinite

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2006-12-01

    The fate and transport of pesticides in soil can be greatly influenced by adsorption onto clay minerals such as kaolinite. The ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) is one of the most commonly used herbicides. The purpose of this study is to investigate the effect of electrolytes and pH on the adsorption of 2,4- D onto kaolinite. The adsorption coefficient (Kd) of 2,4-D on two types of kaolinite was measured in batch experiments using water and 4 different electrolytes (0.005M CaSO4, 0.005M CaCl2, 0.01M KCl, and 0.01M NaCl). The experiments were carried out with 0.5 g kaolinite at a solid:liquid ratio of 1:20 and at different pH (1.9-6.3). The pH of the solution was controlled by addition of 0.2N of HCl. X-ray diffraction analysis of both kaolinite with and without adsorbed 2,4-D was also done to understand the location of 2,4-D adsorption. The effects of pH and electrolytes on Kd were compared and possible adsorption mechanisms were revealed for 2,4-D adsorption onto the two different types of kaolinite. The results implied that 2,4-D adsorption was higher for an electrolyte solution with monovalent cation than with divalent cation for one type of kaolinite, while no such trend was observed for the other kaolinite. The adsorption of 2,4-D increased significantly with decreasing pH for both types of kaolinite.

  13. Theoretical voltammetric response of electrodes coated by solid polymer electrolyte membranes.

    PubMed

    Gómez-Marín, Ana M; Hernández-Ortíz, Juan P

    2014-09-24

    A model for the differential capacitance of metal electrodes coated by solid polymer electrolyte membranes, with acid/base groups attached to the membrane backbone, and in contact with an electrolyte solution is developed. With proper model parameters, the model is able to predict a limit response, given by Mott-Schottky or Gouy-Chapman-Stern theories depending on the dissociation degree and the density of ionizable acid/base groups. The model is also valid for other ionic membranes with proton donor/acceptor molecules as membrane counterions. Results are discussed in light of the electron transfer rate at membrane-coated electrodes for electrochemical reactions that strongly depend on the double layer structure. In this sense, the model provides a tool towards the understanding of the electro-catalytic activity on modified electrodes. It is shown that local maxima and minima in the differential capacitance as a function of the electrode potential may occur as consequence of the dissociation of acid/base molecular species, in absence of specific adsorption of immobile polymer anions on the electrode surface. Although the model extends the conceptual framework for the interpretation of cyclic voltammograms for these systems and the general theory about electrified interfaces, structural features of real systems are more complex and so, presented results only are qualitatively compared with experiments. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Coulometrische titration von hypochloriten und chloraten.

    PubMed

    Gründler, P; Holzapfel, H

    1970-03-01

    Hypochlorite was determined by direct coulometric titration with iron(II) in an acetate buffered solution. Chlorate was titrated with titanium(III) in 2M hydrochloric acid. Amperometric indication with one and two electrodes, respectively, was used. Mixtures of hypochlorites and chlorates, e.g., in industrial electrolytes, may be analysed. On a déterminé l'hypochlorite par titrage coulométrique direct avec le fer(II) dans une solution tamponnée à l'acétate. On a titré le chlorate avec le titane(III) en acide chlorhydrique 2M. On a utilisé l'indication ampérométrique une et deux électrodes respectivement. On peut analyser des mélanges d'hypochlorites et de chlorates, par exemple dans des électrolytes industriels.

  15. The effect of relative solubility on crystal purity

    NASA Astrophysics Data System (ADS)

    Givand, Jeffrey Christopher

    This study establishes the relationship between impurity incorporation in a crystal by lattice substitution and the solubility of that impurity in solution. The model system studied was L-isoleucine crystals contaminated by the isomorphic impurity L-leucine. Upon crystallization from aqueous solution by cooling, leucine is concentrated in the isoleucine unit cell through lattice substitution mechanisms. Attempts to reduce the degree of leucine incorporation via adjustments of the rate at which supersaturation is generated yielded marginal success. This work demonstrates that incorporation of leucine in the crystal can be considerably suppressed by reducing the solubility of product relative to the solubility of impurity. Changes to the relative solubility of the impurity were accomplished by the addition of various electrolytes and organic co-solvents to the aqueous amino acid solutions. The solubilities of the two amino acids were measured and compared to their solubilities in pure water. Changes in the ratio of pure-component solubilities were directly related to changes in crystal purity. This thermodynamic quantity of relative solubility was shown to be a key factor in determining impurity uptake by lattice substitution. In addition to the experimental observations, a fundamental thermodynamic link between relative solubility and crystal purity is established through this research. First, the amino acid solubility data as a function of temperature in all solvent mixtures were accurately correlated using a thermodynamic model. The parameters from this model were then adapted to a novel solid-solution thermodynamic model to express the crystal purity in terms of equilibrium solution impurity concentration. After the determination of one system specific parameter, the model is able to predict the crystal purity in a new solvent in which the pure-component solubilities are known. The ability of an electrolyte or co-solvent to improve crystal purity from a given level can now be determined based on existing solubility and purity measurements and solubilities of the product and impurity in the new solvent mixture.

  16. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  17. Branched Rod-Coil Polyimide-Poly(Alkylene Oxide) Copolymers and Electrolyte Compositions

    NASA Technical Reports Server (NTRS)

    Meador, Maryann B. (Inventor); Tigelaar, Dean M. (Inventor)

    2014-01-01

    Crosslinked polyimide-poly(alkylene oxide) copolymers capable of holding large volumes of liquid while maintaining good dimensional stability. Copolymers are derived at ambient temperatures from amine endcapped amic-acid oligomers subsequently imidized in solution at increased temperatures, followed by reaction with trifunctional compounds in the presence of various additives. Films of these copolymers hold over four times their weight at room temperature of liquids such as ionic liquids (RTIL) and/or carbonate solvents. These rod-coil polyimide copolymers are used to prepare polymeric electrolytes by adding to the copolymers various amounts of compounds such as ionic liquids (RTIL), lithium trifluoromethane-sulfonimide (LiTFSi) or other lithium salts, and alumina.

  18. Underpotential Deposition of Silver on Pt(111). Part 1. Concentration Dependence

    DTIC Science & Technology

    1990-01-01

    acid (ULTREX, J.T. Baker) was used as the supporting electrolyte. Silver solutions of 1.00 mM, 0.10 mM, and 0.005 mM were prepared by dissolving Ag 2SO 4...were immersed in hot nitric acid for 10 minutes. For the ultra-high vacuum (UHV) experiments a thermocouple was also spot-welded to the edge of the...a Ford Foundation Post Doctoral Fellowship. HDA is a A.P. Sloan Foundation Fellow (1987-1991). 16 REFERENCES 1. G.W. Tindall and S. Bruckenstein

  19. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    PubMed Central

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer. PMID:25922850

  20. Usage of neural network to predict aluminium oxide layer thickness.

    PubMed

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.

  1. Electrolytes for Hydrocarbon Air Fuel Cells.

    DTIC Science & Technology

    1981-01-01

    finding an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially...and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially available materials received prime consideration. However, ECO’s...was to obtain an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. This

  2. Separation and/or sequestration apparatus and methods

    DOEpatents

    Rieke, Peter C; Towne, Silas A; Coffey, Greg W; Appel, Aaron M

    2015-02-03

    Apparatus for separating CO.sub.2 from an electrolyte solution are provided. Example apparatus can include: a vessel defining an interior volume and configured to house an electrolyte solution; an input conduit in fluid communication with the interior volume; an output conduit in fluid communication with the interior volume; an exhaust conduit in fluid communication with the interior volume; and an anode located within the interior volume. Other example apparatus can include: an elongated vessel having two regions; an input conduit extending outwardly from the one region; an output conduit extending outwardly from the other region; an exhaust conduit in fluid communication with the one region; and an anode located within the one region. Methods for separating CO.sub.2 from an electrolyte solution are provided. Example methods can include: providing a CO.sub.2 rich electrolyte solution to a vessel containing an anode; and distributing hydrogen from the anode to acidify the electrolyte solution.

  3. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte.

    PubMed

    Hou, Jun; Zhang, Mingzhi; Wang, Peifang; Wang, Chao; Miao, Lingzhan; Xu, Yi; You, Guoxiang; Lv, Bowen; Yang, Yangyang; Liu, Zhilin

    2017-10-01

    This study investigated the transport and long-term release of stabilized silver nanoparticles (AgNPs), including polyvinylpyrrolidone-coated AgNPs (PVP-AgNPs) and bare AgNPs (Bare-AgNPs), in the presence of natural organic matters (NOMs; both humic acids (HA) and alginate (Alg)) and an electrolyte (Ca 2+ ) in a sand-packed column. Very low breakthrough rate (C/C 0 ) of AgNPs (below 0.04) occurred in the absence of NOM and the electrolyte. Increasing the concentration of NOM and decreasing the influent NOM solution's ionic strength (IS) reduced the retention of AgNPs. The reduced NP retention at high NOM and low IS was mainly attributed to the increased energy barrier between the AgNPs and the sand grain surface. Notably, the retention of PVP-AgNPs was enhanced at high Alg concentration and low IS, which mainly resulted from the improved hydrophobicity that could increase the interaction between the PVP-AgNPs and the collector. The total release amount of PVP-AgNPs (10.03%, 9.50%, 28.42%, 6.37%) and Bare-AgNPs (3.28%, 2.58%, 10.36%, 1.54%) were gained when exposed to four kinds of NOM solutions, including deionized water, an electrolyte solution (1 mM Ca 2+ ), HA with an electrolyte (1 mM Ca 2+ ), and a Alg (40 mg/L) solution with an electrolyte (1 mM Ca 2+ ). The long-term release of retained silver nanoparticles in the quartz sand was mostly through the form of released Ag NPs. The factors that increased the mobility of AgNPs in quartz sand could improve the release of the AgNPs. The release of AgNPs had no significant change in the presence Ca 2+ but were increased in the presence of HA. The Alg slightly decreased the release of AgNPs by increasing the hydrophobicity of AgNPs. The results of the study indicated that all the tested NOM and Ca 2+ have prominent influence on the transport and long-term release behavior of silver nanoparticles in saturated quartz sand. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluation of the antimicrobial effect of super-oxidized water (Sterilox®) and sodium hypochlorite against Enterococcus faecalis in a bovine root canal model

    PubMed Central

    ROSSI-FEDELE, Giampiero; de FIGUEIREDO, José Antonio Poli; STEIER, Liviu; CANULLO, Luigi; STEIER, Gabriela; ROBERTS, Adam P.

    2010-01-01

    Ideally root canal irrigants should have, amongst other properties, antimicrobial action associated with a lack of toxicity against periapical tissues. Sodium hypochlorite (NaOCl) is a widely used root canal irrigant, however it has been shown to have a cytotoxic effect on vital tissue and therefore it is prudent to investigate alternative irrigants. Sterilox's Aquatine Alpha Electrolyte® belongs to the group of the super-oxidized waters; it consists of a mixture of oxidizing substances, and has been suggested to be used as root canal irrigant. Super-oxidized waters have been shown to provide efficient cleaning of root canal walls, and have been proposed to be used for the disinfection of medical equipment. Objective To compare the antimicrobial action against Enterococcus faecalis of NaOCl, Optident Sterilox Electrolyte Solution® and Sterilox's Aquatine Alpha Electrolyte® when used as irrigating solutions in a bovine root canal model. Methodology Root sections were prepared and inoculated with E. faecalis JH2-2. After 10 days of incubation the root canals were irrigated using one of three solutions (NaOCl, Optident Sterilox Electrolyte Solution® and Sterilox's Aquatine Alpha Electrolyte®) and subsequently sampled by grinding dentin using drills. The debris was placed in BHI broth and dilutions were plated onto fresh agar plates to quantify growth. Results Sodium hypochlorite was the only irrigant to eliminate all bacteria. When the dilutions were made, although NaOCl was still statistically superior, Sterilox's Aquatine Alpha Electrolyte® solution was superior to Optident Sterilox Electrolyte Solution®. Conclusion Under the conditions of this study Sterilox's Aquatine Alpha Electrolyte® appeared to have significantly more antimicrobial action compared to the Optident Sterilox Electrolyte Solution® alone, however NaOCl was the only solution able to consistently eradicate E. faecalis in the model. PMID:21085808

  5. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    DOEpatents

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-11-07

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  6. Charge transfer mediator based systems for electrocatalytic oxygen reduction

    DOEpatents

    Stahl, Shannon S.; Gerken, James B.; Anson, Colin W.

    2017-07-18

    Disclosed are systems for the electrocatalytic reduction of oxygen, having redox mediator/redox catalyst pairs and an electrolyte solution in contact with an electrode. The redox mediator is included in the electrolyte solution, and the redox catalyst may be included in the electrolyte solution, or alternatively, may be in contact with the electrolyte solution. In one form a cobalt redox catalyst is used with a quinone redox mediator. In another form a nitrogen oxide redox catalyst is used with a nitroxyl type redox mediator. The systems can be used in electrochemical cells wherein neither the anode nor the cathode comprise an expensive metal such as platinum.

  7. Charge regulation at semiconductor-electrolyte interfaces.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guanguang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2016-06-14

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  9. Iron-sulfide redox flow batteries

    DOEpatents

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  10. Calculating the refractive index for pediatric parenteral nutrient solutions.

    PubMed

    Nelson, Scott; Barrows, Jason; Haftmann, Richard; Helm, Michael; MacKay, Mark

    2013-02-15

    The utility of refractometric analysis for calculating the refractive index (RI) of compounded parenteral nutrient solutions for pediatric patients was examined. An equation for calculating the RI of parenteral nutrient solutions was developed by chemical and linear regression analysis of 154 pediatric parenteral nutrient solutions. This equation was then validated by analyzing 1057 pediatric parenteral nutrition samples. The RI for the parenteral nutrient solutions could be calculated by summing the RI contribution for each ingredient and then adding the RI of water. The RI contribution for each ingredient was determined by multiplying the RI of the manufacturer's concentrate by the volume of the manufacturer's concentrate mixed into the parenteral nutrient solution divided by the total volume of the parenteral nutrient solution. The calculated RI was highly correlated with the measured RI (R(2) = 0.94, p < 0.0001). Using a range of two standard deviations (±0.0045), 99.8% of the samples fell into the comparative range. RIs of electrolytes, vitamins, and trace elements in the concentrations used did not affect the RI, similar to the findings of other studies. There was no statistical difference between the calculated RI and the measured RI in the final product of a pediatric parenteral nutrient solution. This method of quality control can be used by personnel compounding parenteral nutrient solutions to confirm the compounding accuracy of dextrose and amino acid concentrations in the final product, and a sample can be sent to the hospital laboratory for electrolyte verification.

  11. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  12. Electrolytic orthoborate salts for lithium batteries

    DOEpatents

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  13. Recovery of lead from smelting fly ash of waste lead-acid battery by leaching and electrowinning.

    PubMed

    Chen, Chuh-Shun; Shih, Yu-Jen; Huang, Yao-Hui

    2016-06-01

    Fly ash that was enriched with lead (Pb), formed as an intermediate in waste lead-acid battery (WLAB) smelting, was recycled by the hydro-electrometallurgy. Characterization of fly ash thereof indicated that the Pb was in the forms of PbSO4 (anglesite) and Pb2OSO4 (lanarkite). Nitric acid and sodium hydroxide were firstly used to study the leaching of the fly ash sample, which was affected by leachant dosage and solid-to-liquid ratio (S/L). At an S/L of 60gL(-1), the leachability of Pb was 43% and 67% in 2M acidic and basic solutions, respectively, based on an average 70wt% of Pb in the original fly ash. Anglesite was completely soluble in NaOH and lanarkite was mildly soluble in HNO3. Pb was recovered from the pregnant leach solution within an electrolytic cell constructed with graphite or RuO2/IrO2-coated titanium (Ti-DSA) anodes and a stainless steel cathode. Properties of anodes deposited with lead dioxides were analyzed by cyclic voltammetry. The optimized parameters of electrowinning were 2M NaOH leachant, a current density of 0.75Adm(-2) and an electrolytic process duration of 120min, which yielded a Pb removal of higher than 99% and a specific energy consumption of 0.57Whg(-1). This process constitutes an eco-friendly and economic alternative to the presently utilized secondary pyrometallurgy for treating lead-containing fly ash. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Mechanism and kinetics of electrochemical degradation of uric acid using conductive-diamond anodes.

    PubMed

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed

    2016-12-01

    Uric acid (UA) is one of the principal effluents of urine wastewaters, widely used in agriculture as fertilizer, which is potentially dangerous and biorefractory. Hence, the degradation of UA (2,6,8-trihydroxy purine) in aqueous solution of pH 3.0 has been studied by conductive-diamond electrochemical oxidation. Hydroxyl radicals formed from water oxidation at the surface of boron-doped diamond anodes were the main oxidizing agents. Effects of current density and supporting electrolyte on the degradation rate and process efficiency are assessed. Results show that the increase of current density from 20 to 60 mA cm(-2) leads to a decrease in the efficiency of the electrochemical process. In addition, the best degradation occurred in the presence of NaCl as conductive electrolyte. Interestingly, an almost total mineralization of 50 ppm UA was obtained when anodic oxidation was performed at low current densities (20 mA cm(-2)) and in the presence of NaCl. This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of UA. The identification of UA transformation products was performed by high-performance liquid chromatography (HPLC). HPLC analysis of treated solutions revealed that oxalic acid and urea were the two intermediates found. Oxalic acid was the most persistent product. Based on detected intermediates and bibliographic research, a mechanism of UA mineralization by anodic oxidation has been proposed. Ionic chromatography analysis confirmed the release of [Formula: see text] and [Formula: see text] ions during UA mineralization.

  15. Fluid therapy in vomiting and diarrhea.

    PubMed

    Brown, Andrew J; Otto, Cynthia M

    2008-05-01

    Fluid therapy in the patient with vomiting and diarrhea is essential to correct hypovolemia, dehydration, acid-base imbalance, and serum electrolyte abnormalities. Prediction of acid-base or electrolyte disturbances is difficult; therefore, point of care testing is beneficial to optimize therapy. This article focuses on the pathophysiology and treatment of hypovolemia, dehydration, electrolyte disturbances, and acid-base derangements resulting from and associated with vomiting and diarrhea.

  16. Supersaturated Electrolyte Solutions: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.; Na, Han-Soo

    1995-01-01

    Highly supersaturated electrolyte solutions can be prepared and studied employing an electrodynamic levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This allows very high supersaturations to be achieved. A theoretical study of the experimental results obtained for the water activity in microdroplets of various electrolyte solutions is based on the development of the Cahn-Hilliard formalism for electrolyte solutions. In the approach suggested the metastable state for electrolyte solutions is described in terms of the conserved order parameter omega(r,t) associated with fluctuations of the mean solute concentration n(sub 0). Parameters of the corresponding Ginzburg-Landau free energy functional which defines the dynamics of metastable state relaxation are determined and expressed through the experimentally measured quantities. A correspondence of 96-99 % between theory and experiment for all solutions studied was achieved and allowed the determination of an analytical expression for the spinodal concentration n(sub spin), and its calculation for various electrolyte solutions at 298 K. The assumption that subcritical solute clusters consist of the electrically neutral Bjerrum pairs has allowed both analytical and numerical investigation of the number-size N(sub c) of nucleation monomers (aggregates of the Bjerrum pairs) which are elementary units of the solute critical clusters. This has also allowed estimations for the surface tension Alpha, and equilibrium bulk energy Beta per solute molecule in the nucleation monomers. The dependence of these properties on the temperature T and on the solute concentration n(sub 0) through the entire metastable zone (from saturation concentration n(sub sat) to spinodal n(sub spin) is examined. It has been demonstrated that there are the following asymptotics: N(sub c), = I at spinodal concentration and N(sub c) = infinity at saturation.

  17. Enhancing the stability of lithium ion Li1+x+yAlxTi2-xSiyP3-yO12 glass - ceramic conductors in aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Ioanniti, Marina Maria; Tenhaeff, Wyatt E.

    2017-12-01

    The stability of NASICON-type conducting glass-ceramic electrolyte, Li1+x+yAlxTi2-xSiyP3-yO12 (Ohara LICGC) has been characterized after prolonged exposure to deionized water and HCl(aq) solutions supported with LiCl. X-ray diffraction shows that the bulk crystallographic structure of the LICGC membranes remains unchanged when exposed to these solutions. Electrochemical impedance spectroscopy (EIS) shows that the conductivity of LICGC membranes immersed in deionized water remains stable over a one month period, while there is a significant increase in resistance when exposed to the acidic solutions. When exposed to pH 4 and 2 solutions for just 24 h, the resistances of the LICGC membrane increase by a factor of 8.5 and 23.5, respectively. EIS coupled with morphological characterization by scanning electron microscopy, shows that this resistance growth is due to the development of a surface layer on the LICGC membrane. However, this substantial increase in resistance can be mitigated by adding LiCl to the HCl solutions. For a pH 4 solution supported with 6.75 M LiCl, the impedance spectrum and surface morphology are qualitatively comparable to pristine, dry LICGC material, suggesting that surface layer formation was suppressed. This was also confirmed via cyclic voltammetry measurements in four-electrode electrochemical cells.

  18. Programmable pH buffers

    DOEpatents

    Gough, Dara Van; Huber, Dale L.; Bunker, Bruce C.; Roberts, Mark E.

    2017-01-24

    A programmable pH buffer comprises a copolymer that changes pK.sub.a at a lower critical solution temperature (LCST) in water. The copolymer comprises a thermally programmable polymer that undergoes a hydrophobic-to-hydrophilic phase change at the LCST and an electrolytic polymer that exhibits acid-base properties that are responsive to the phase change. The programmable pH buffer can be used to sequester CO.sub.2 into water.

  19. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  20. Waste isolation safety assessment program. Task 4. Collection and generation of transport data theoretical and experimental evaluation of waste transport in selected rocks. Annual progress report, October 1, 1978-September 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, R.J.; Benson, L.V.; Yee, A.W.

    1979-09-30

    The objective of the program is to establish a basis for the prediction of radionuclide sorption in geologic environments. In FY 79, experimental and theoretical efforts were concentrated on a study of the sorption of cesium on the solid substrates Min-u-sil (quartz) and Belle Fourche clay (montmorillonite). Cesium sorption isotherms were obtained for the two substrates at 26/sup 0/C as a function of initial Cs concentration in solution (10/sup -3/M to 10/sup -9/M), pH (5 to 10) and supporting electrolyte concentration (0.002M, 0.01M, 0.1M, and 1M) NaCl and a simulated basalt groundwater in batch-type experiments using crushed material. Characterization ofmore » the solid phases included measurements of chemical compositions, particle sizes, surface areas, and cation-exchange capacities. In addition, potentiometric acid/base titrations of the solid phases were conducted in order to determine the acid dissociation and electrolyte exchange constants of the surfaces. Preliminary analysis of the sorption data indicate that while the clay data could be explained by simple mass-action expressions, the quartz data could not. Theoretical efforts were aimed at developing and testing an electrolyte binding electrical double-layer model to predict sorption isotherms. A computerized version of the model, MINEQL, which simultaneously considers surface and solution chemical equilibria, was brought to operational status. Input parameters required by MINEQL were determined and sorption isotherms for Cs on the Belle Fourche clay were calculated over the same range of parameters as the experimental measurements. Comparisons showed that the model was able to simulate the isotherms quite well except at the lowest pH values for the 0.002M and 0.01M NaCl solutions.« less

  1. Methodology of analysis of very weak acids by isotachophoresis with electrospray-ionization mass-spectrometric detection: Anionic electrolyte systems for the medium-alkaline pH range.

    PubMed

    Malá, Zdena; Gebauer, Petr

    2018-01-15

    This work describes for the first time a functional electrolyte system setup for anionic isotachophoresis (ITP) with electrospray-ionization mass-spectrometric (ESI-MS) detection in the neutral to medium-alkaline pH range. So far no application was published on the analysis of very weak acids by anionic ITP-MS although there is a broad spectrum of potential analytes with pK a values in the range 5-10, where application of this technique promises interesting gains in both sensitivity and specificity. The problem so far was the lack of anionic ESI-compatible ITP systems in the mentioned pH range as all typical volatile anionic system components are fully ionized at neutral and alkaline pH and thus too fast to suit as terminators. We propose an original solution of the problem based on the combination of two ITP methods: (i) use of the hydroxyl ion as a natural and ESI-compatible terminator, and (ii) use of configurations based on moving-boundary ITP. The former method ensures effective stacking of analytes by an alkaline terminator of sufficiently low mobility and the latter offers increased flexibility for tuning of the separation window and selectivity according to actual needs. A theoretical description of the proposed model is presented and applied to the design of very simple functional electrolyte configurations. The properties of example systems are demonstrated by both computer simulation and experiments with a group of model analytes. Potential effects of carbon dioxide present in the solutions are demonstrated for particular systems. Experimental results confirm that the proposed methodology is well capable of performing sensitive and selective ITP-MS analyses of very weak acidic analytes (e.g. sulfonamides or chlorophenols). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  3. ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES

    DOEpatents

    McLaren, J.A.; Goode, J.H.

    1958-05-13

    An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

  4. Novel inorganic materials for polymer electrolyte and alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tadanaga, Kiyoharu

    2012-06-01

    Inorganic materials with high ionic conductivity must have big advantages for the thermal and long term stability when the materials are used as the electrolyte of fuel cells. In the present paper, novel ionic conductive inorganic materials for polymer electrolyte fuel cells (PEFCs) and all solid state alkaline fuel cells (AFCs) that have been developed by our group have been reviewed. PEFCs which can operate in temperature range from 100 to 200 °C are intensively studied because of some advantages such as reduction of CO poisoning of Pt catalyst and acceleration of electrode reactions. We showed that the fuel cells using the composite membranes prepared from phosphosilicate gel powder and polyimide precursor can operate in the temperature range from 30 to 180 °C. We also found that the inorganic-organic hybrid membranes with acid-base pairs from 3-aminopropyl triethoxy silane and H2SO4 or H3PO4 show high proton conductivity under dry atmosphere, and the membranes are thermally stable at intermediate temperatures. On the other hand, because the use of noble platinum is the serious problem for the commercialization of PEFCs and because oxidation reactions are usually faster than those of acid-type fuel cells, alkaline type fuel cells, in which a nonplatinum catalyst can be used, are attractive. Recently, we have proposed an alkaline-type direct ethanol fuel cell (DEFC) using a natural clay electrolyte with non-platinum catalysts. So-called hydrotalcite clay, Mg-Al layered double hydroxide intercalated with CO32- (Mg-Al CO32- LDH), has been proved to be a hydroxide ion conductor. An alkalinetype DEFC using Mg-Al CO32- LDH as the electrolyte and aqueous solution of ethanol and potassium hydroxide as a source of fuel exhibited excellent electrochemical performance.

  5. A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

    PubMed Central

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc

    2017-01-01

    Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof‐of‐concept of a membrane‐free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L−1, and is able to deliver 90 % of its theoretical capacity while showing excellent long‐term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). PMID:28658538

  6. Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions.

    PubMed

    Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan

    2018-05-11

    Most photoanodes commonly applied in solar fuel research (e.g., of Fe 2 O 3 , BiVO 4 , TiO 2 , or WO 3 ) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%.

  7. The electric double layer at a metal electrode in pure water

    NASA Astrophysics Data System (ADS)

    Brüesch, Peter; Christen, Thomas

    2004-03-01

    Pure water is a weak electrolyte that dissociates into hydronium ions and hydroxide ions. In contact with a charged electrode a double layer forms for which neither experimental nor theoretical studies exist, in contrast to electrolytes containing extrinsic ions like acids, bases, and solute salts. Starting from a self-consistent solution of the one-dimensional modified Poisson-Boltzmann equation, which takes into account activity coefficients of point-like ions, we explore the properties of the electric double layer by successive incorporation of various correction terms like finite ion size, polarization, image charge, and field dissociation. We also discuss the effect of the usual approximation of an average potential as required for the one-dimensional Poisson-Boltzmann equation, and conclude that the one-dimensional approximation underestimates the ion density. We calculate the electric potential, the ion distributions, the pH-values, the ion-size corrected activity coefficients, and the dissociation constants close to the electric double layer and compare the results for the various model corrections.

  8. Differential electrolytic potentiometric titration method for the determination of ciprofloxacin in drug formulations.

    PubMed

    Abulkibash, Abdalla M; Sultan, Salah M; Al-Olyan, Abeer M; Al-Ghannam, Sheikha M

    2003-10-17

    A simple and rapid differential electrolytic potentiometric titration method for the determination of ciprofloxacin was developed. The work is based on the fast complexation reaction between iron(III) and ciprofloxacin in a ratio of 1:3, respectively, in sulfuric acid media of 0.09 mol dm(-3). Among the electrodes tested silver amalgam electrodes were found to be a suitable indicating system. By applying a current density of 0.5 muA cm(-2) to these electrodes and using iron(III) solution of 0.097 mol dm(-3) as a titrant, normal titration curves were obtained. The method was successfully applied for the determination of ciprofloxacin in drug formulations as low as 4.0 ppm.

  9. The influence of water versus carbohydrate-electrolyte hydration on blood components during a 16-km military march.

    PubMed

    de Carvalho, Moisés Vieira; Marins, João Carlos Bouzas; Silami-Garcia, Emerson

    2007-01-01

    The purpose of this study was to identify and to compare the effects of ingesting liquids during a 16-km military march under moderate environmental conditions. Twenty-six volunteer male subjects were randomly divided into two groups. Group GW received water (n=12), and group GP received an electrolytic carbohydrate solution (n=14). Blood and urine samples were obtained immediately before and after the march. No significant differences between the drinks were found for any of the measured variables. However, important results (p < 0.05) were observed by comparing variables before and after exercise. The variables included sodium, hematocrit, red blood cell, hemoglobin, and lactic acid levels and body weight (group GW) and sodium, potassium, hematocrit, red blood cell, hemoglobin, and lactic acid levels (group GP). Under the environmental conditions and hydration procedures applied, the results of this study showed similarities in the behavior of the variables, regardless of the kind of beverage consumed.

  10. Methods and electrolytes for electrodeposition of smooth films

    DOEpatents

    Zhang, Jiguang; Xu, Wu; Graff, Gordon L; Chen, Xilin; Ding, Fei; Shao, Yuyan

    2015-03-17

    Electrodeposition involving an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and/or film surface. For electrodeposition of a first conductive material (C1) on a substrate from one or more reactants in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second conductive material (C2), wherein cations of C2 have an effective electrochemical reduction potential in the solution lower than that of the reactants.

  11. Disorders of Acid-Base Balance: New Perspectives

    PubMed Central

    Seifter, Julian L.; Chang, Hsin-Yun

    2017-01-01

    Background Disorders of acid-base involve the complex interplay of many organ systems including brain, lungs, kidney, and liver. Compensations for acid-base disturbances within the brain are more complete, while limitations of compensations are more apparent for most systemic disorders. However, some of the limitations on compensations are necessary to survival, in that preservation of oxygenation, energy balance, cognition, electrolyte, and fluid balance are connected mechanistically. Summary This review aims to give new and comprehensive perspective on understanding acid-base balance and identifying associated disorders. All metabolic acid-base disorders can be approached in the context of the relative losses or gains of electrolytes or a change in the anion gap in body fluids. Acid-base and electrolyte balance are connected not only at the cellular level but also in daily clinical practice. Urine chemistry is essential to understanding electrolyte excretion and renal compensations. Key Messages Many constructs are helpful to understand acid-base, but these models are not mutually exclusive. Electroneutrality and the close interconnection between electrolyte and acid-base balance are important concepts to apply in acid-base diagnoses. All models have complexity and shortcuts that can help in practice. There is no reason to dismiss any of the present constructs, and there is benefit in a combined approach. PMID:28232934

  12. Electrolyte Solutions and Specific Ion Effects on Interfaces

    ERIC Educational Resources Information Center

    Friedman, Ran

    2013-01-01

    Introductory general and physical chemistry courses often deal with colligative properties of solutions and do not discuss nonideal solutions in detail. Yet, a growing body of evidence reveals that even at physiological concentrations electrolyte solutions cannot be treated as ideal when a charged or partially charged solute (such as a protein) is…

  13. Promotive effects of alginate-derived oligosaccharides on the inducing drought resistance of tomato

    NASA Astrophysics Data System (ADS)

    Liu, Ruizhi; Jiang, Xiaolu; Guan, Huashi; Li, Xiaoxia; Du, Yishuai; Wang, Peng; Mou, Haijin

    2009-09-01

    In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato ( Lycopersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO (0.05%, 0.10%, 0.20%, 0.30% and 0.50%) after drought stress was simulated by exposing the roots to 0.6 molL-1 PEG-6000 solution for 6 h. Changes in biomass, electrolyte leakage and malondialdehyde (MDA), free proline, total soluble sugars (TSS) and abscisic acid (ABA), the enzyme activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) were measured to investigate the effects of ADO treatment. The results showed that the treatment with an ADO concentration of 0.20% exhibited the highest performance of drought stress resistance in the tomato seedlings by decreasing the electrolyte leakage and the concentration of MDA, increasing the contents of free proline, TSS and ABA, and increasing the activities of CAT, SOD, POD and PAL after treatment with ADO. It is suggested that changes in electrolyte leakage, MDA, osmotic solutes, ABA, anti-oxidative enzyme and PAL activities were responsible for the increased drought stress resistance in tomato seedlings. To our best knowledge, this is the first report of the effect of ADO treatment on enhancing the drought stress resistance of tomato seedlings.

  14. Apatite grown in niobium by two-step plasma electrolytic oxidation.

    PubMed

    Pereira, Bruno Leandro; Lepienski, Carlos Maurício; Mazzaro, Irineu; Kuromoto, Neide Kazue

    2017-08-01

    Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes. Some samples were oxidized by PEO in electrolyte containing calcium, while in other samples it was used two mixtures of phosphoric acid and calcium acetate monohydrate solutions. Three different surface layers were obtained. The morphology and chemical composition of the films were analyzed by scanning electronic microscopy (SEM), and energy dispersive spectroscopy (EDS) respectively. It was observed that all samples submitted to two-step oxidation shown porous surface and a calcium and phosphorus rich layer. Average surface roughness (Ra) was measured by a profilometer remaining in the sub-micrometric range. The contact angle by sessile drop technique, using 1μL of distilled water was performed with an optical goniometer. It was verified a higher hydrophilicity in all surfaces compared to the polished niobium. Orthorhombic Nb 2 O 5 was identified by XRD in the oxide layer. Crystalline apatite was identified by XRD in surfaces after the second oxidation made with the Ca-rich electrolyte and a mixture of an electrolyte richer in Ca compared to P. These results indicate that a two-step oxidized niobium surface present great features for applications in the osseointegration processes: favorable chemical composition that increase the biocompatibility, the formation of crystalline niobium pentoxide (orthorhombic), high hydrophilicity and formation of crystalline calcium phosphate (apatite) under adequate electrolyte composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.

  16. Combined processing of lead concentrates

    NASA Astrophysics Data System (ADS)

    Kubasov, V. L.; Paretskii, V. M.; Sidorin, G. N.; Travkin, V. F.

    2013-06-01

    A combined scheme of processing of lead concentrates with the production of pure metallic lead and the important components containing in these concentrates is considered. This scheme includes sulfating roasting of the lead concentrates and two-stage leaching of the formed cinder with the formation of a sulfate solution and lead sulfate. When transformed into a carbonate form, lead sulfate is used for the production of pure metallic lead. Silver, indium, copper, cadmium, nickel, cobalt, and other important components are separately extracted from a solution. At the last stage, zinc is extracted by either extraction followed by electrolytic extraction of a metal or the return of the forming solution of sulfuric acid to cinder leaching.

  17. Biosorption and Biomineralization of U(VI) by the Marine Bacterium Idiomarina loihiensis MAH1: Effect of Background Electrolyte and pH

    PubMed Central

    Morcillo, Fernando; González-Muñoz, María T.; Reitz, Thomas; Romero-González, María E.; Arias, José M.; Merroun, Mohamed L.

    2014-01-01

    The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy (HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5·10−4 to 10−5 M (environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally resembling meta-autunite [Ca(UO2)2(PO4)2 2–6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At acidic conditions, pH 2, 3 and 4.3 ([U] = 5·10−4 M, background electrolyte  = 0.1 M NaClO4), the removal of U from solution was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The L III-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3, respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4 solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the uranium concentration and the chemical composition of the solution. PMID:24618567

  18. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  19. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  20. Cation-enhanced capillary electrophoresis separation of atropoisomer anions.

    PubMed

    Na, Yun-Cheol; Berthod, Alain; Armstrong, Daniel W

    2015-12-01

    CE was used to study the separation of the atropoisomers of four phosphoric acids and two sulfonic acids and the enantiomers of two phosphoric acids. All solutes are in their anionic forms in aqueous electrolytes. The chiral additives were two hydroxypropyl cyclodextrins (CDs) and cyclofructan 6 (CF6). The CDs were able to separate four solutes and the CF6 additive could separate only one: 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (BHP). Since CF6 is able to bind with cations, nitrate of alkaline metals, Ba(2+) , and Pb(2+) were added, greatly improving the BHP separation at the expense of longer migration times. There seems to be a link between CF6-cation-binding constants and BHP resolution factors. Cation additions were also performed with CD selectors that are less prone to form complexes with cations. Significant improvements of enantiomer or atropoisomer separations were observed also associated with longer migration times. It is speculated that the anionic solutes associate with the added cations forming larger entities better differentiated by CDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung

    The presence of lithium hexafluorophosphate (LiPF 6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This paper, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and themore » generalized Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF 6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF 6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Finally, transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.« less

  2. Preparation of Platinum (Pt) Counter Electrode Coated by Electrochemical Technique at High Temperature for Dye-sensitized Solar Cell (DSSC) Application

    NASA Astrophysics Data System (ADS)

    Ponken, Tanachai; Tagsin, Kamonlapron; Suwannakhun, Chuleerat; Luecha, Jakkrit; Choawunklang, Wijit

    2017-09-01

    Pt counter electrode was coated by electrochemical method. Electrolyte solution was synthesized by platinum (IV) choloride (PtCl4) powder dissolved in hydrochloric acid solution. Pt films were deposited on the FTO substrate. Deposition time of 10, 30 and 60 minutes, the coating current of 5, 10, 15 and 20 mA and electrolyte solution temperatures for Pt layer synthesis of 25, 30 and 40°C were varied. Surface morphology and optical properties was analyzed by digital microscopic and UV-vis spectrophotometer. Pt films exhibit uniform surface area highly for all the conditions of coating current in the deposition time of 30 and 40 minutes at 40°C. Transmittance values of Pt films deposited on FTO substrate has approximately of 5 to 50 % show that occur high reflection corresponding to dye molecule absorption increases. DSSC device was fabricated from the TiO2 standard and immersed in dye N719 for 24 hours. Efficiency was measured by solar simulator. Efficiency value obtains as high as 5.91 % for the coating current, deposition time and solution temperature of 15 mA, 30 minutes and 40°C. Summary, influence of temperature effects efficiency increasing. Pt counter electrode can be prepared easily and the suitable usefully for DSSC.

  3. Improvement of sensitivity of electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury using acetic acid medium.

    PubMed

    Shekhar, R

    2012-05-15

    A method has been developed to improve the sensitivity of the electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES) for mercury determination. Effects of various low molecular weight organic solvents at different volume percentages as well as at different acid molarities on the mercury signal were investigated using ELCAD-AES. The addition of few percent of organic solvent, acetic acid produced significant enhancement in mercury signal. Acetic acid of 5% (v/v) with the 0.2M acidity has been found to give 500% enhancement for mercury signal in flow injection mode. Under the optimized parameters the repeatability, expressed as the percentage relative standard deviation of spectral peak area for mercury with 5% acetic acid was found to be 10% for acid blank solution and 5% for 20 ng/mL mercury standard based on multiple measurements with a multiple sample loading in flow injection mode. Limit of detection of this method was determined to be 2 ng/mL for inorganic mercury. The proposed method has been validated by determining mercury in certified reference materials, Tuna fish (IAEA-350) and Aquatic plant (BCR-060). Accuracy of the method for the mercury determination in the reference materials has been found to be between 3.5% and 5.9%. This study enhances the utility of ELCAD-AES for various types of biological and environmental materials to quantify total mercury at very low levels. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    DOEpatents

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  5. Tellurate and periodate solutions as media for paper electrophoresis of carbohydrates.

    PubMed

    Alesofie, B M; Popiel, W J

    1973-02-01

    Electrophoretic separations of sugars and other polyhydroxy compounds may be performed in 0.2M telluric acid media adjusted to pH 10 with sodium hydroxide, and in 0.07M sodium metaperiodate at pH 11. Oxidation by periodate appears to be only slight under these conditions. Migration rates of 21 compounds are reported relative to the movement of d-ribose. In both electrolytes the compounds form anionic complexes.

  6. Electrolyte salts for power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, Narayan; Ingersoll, David

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  7. ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries

    NASA Astrophysics Data System (ADS)

    Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.

    Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.

  8. Effect of the layer of anodized 7075-T6 aluminium corrosion properties

    NASA Astrophysics Data System (ADS)

    Montoya Z, R. D.; L, E. Vera; Pineda T, Y.; Cedeño, M. L.

    2017-01-01

    Aluminium alloys are widely used in various sectors of industry. The 7075-T6 alloy corresponding to an Al-Zn T6, is mostly used as structural component in the aviation industry, due to the good relationship between weight and mechanical properties. However, the negative point of this alloys is the resistance to corrosion, which is why they need to be coated with an anodic film. Different surface treatments, such as anodizing, are used to improve corrosion resistance. Anodizing is an electrolytic process by which a protective layer on aluminium known as “alumina” is formed, this is formed by the passage of an electric current in an acidic electrolyte. This investigation presents a study of the effect of the thickness of layers of alumina deposited by anodized method, in the corrosion resistance of 7075-T6 aluminium. This study was performed by using in a solution of tartaric acid - sulfuric acid and an inorganic salt. To evaluate the influence alumina layer thickness on the corrosion properties some tests were carried out by using the electrochemical spectroscopy impedances (EIS) technique and Tafel polarization curves. It was found that the grown of the thickness of film favourably influences in the corrosion resistance.

  9. Formation, Structure and Electrochemical Impedance Analysis of Microporous Polyelectrolyte Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula

    2007-03-01

    Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.

  10. Lead-Free Sn-Ce-O Composite Coating on Cu Produced by Pulse Electrodeposition from an Aqueous Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Das, Karabi; Das, Siddhartha

    2017-10-01

    Pulse-electrodeposited Sn-Ce-O composite solder coatings were synthesized on a Cu substrate from an aqueous acidic solution containing stannous sulfate (SnSO4·3H2O), sulfuric acid (H2SO4), and Triton X-100 as an additive. The codeposition was achieved by adding nano-cerium oxide powder in varying concentrations from 5 g/L to 20 g/L into the electrolytic bath. Microstructural characterization was carried out using x-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD analysis showed that the deposits consist mainly of tetragonal β (Sn) with reduced cerium oxide species. The composite coatings thus obtained exhibit a smaller grain size, possess higher microhardness, and a lower melting point than the monolithic Sn coating. The electrical resistivity of the developed composites increases, however, but lies within the permissible limits for current lead-free solder applications. Also, an optimum balance of properties in terms of microhardness, adhesion, melting point and resistivity can be obtained with 0.9 wt.% cerium oxide in the Sn matrix, which enables potential applications in solder joints and packaging.

  11. Investigation of Crimean-Congo Hemorrhagic Fever and Hemorrhagic Fever with Renal Syndrome in Greece

    DTIC Science & Technology

    1993-12-20

    collect a 24-h urine sample, wich was sent to the laboratory for total protein excretion, electrolytes, uric acid , 3 and creatinine measurements. On...electrolytes, uric acid , total protein, and globulins was also obtained. Urinary comcentrating ability was studied using the protocol of Gyory et al., in...Electrolytes in sera and urine were determined by flame photometry, and creatinine by the method of Hare. Urice acid was determined by a uricase method

  12. Review—Multifunctional Materials for Enhanced Li-Ion Batteries Durability: A Brief Review of Practical Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch

    Transition metal (TM) ions dissolution from positive electrodes, migration to and deposition on negative electrodes, followed by Mn-catalyzed reactions of solvents and anions, with loss of Li+ ions, is a major degradation (DMDCR) mechanism in Li-ion batteries (LIBs) with spinel positive electrode materials. While the details of the DMDCR mechanism are still under debate, it is clear that HF and other acid species’ attack is the main cause in solutions with LiPF6 electrolyte. We first review the work on various mitigation measures for the DMDCR mechanism, now spanning more than two decades. We then discuss recent progress on our understandingmore » of Mn species in electrolyte solutions and the extension of a mitigation measure first proposed by Tarascon and coworkers in 1999, namely chelation of TM cations, to Mn cation trapping, HF scavenging, and alkali metal ions dispensing multi-functional materials. We focus on practicable, drop-in technical solutions, based on placing such materials in the inter-electrode space, with significant benefits for LIBs performance: increased capacity retention during operation at room and above-ambient temperatures as well as robust (both maximally ionically conducting and electronically insulating) solid-electrolyte interfaces, having reduced charge transfer and film resistances at both negative and positive electrodes. We illustrate the multifunctional materials approach with both new and previously published data. We also discuss and offer our evaluation regarding the merits and drawbacks of the various mitigation measures, with an eye for practically relevant technical solutions capable to meet both the performance requirements and cost constraints for commercial LIBs, and end with recommendations for future work.« less

  13. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes

    NASA Astrophysics Data System (ADS)

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-03-01

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.

  14. Enhanced Performance of PbS-quantum-dot-sensitized Solar Cells via Optimizing Precursor Solution and Electrolytes.

    PubMed

    Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong

    2016-03-15

    This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.

  15. Polynuclear Speciation of Trivalent Cations near the Surface of an Electrolyte Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Mrinal K.; Antonio, Mark R.

    Despite long-standing efforts, there is no agreed upon structural model for electrolyte solutions at air-liquid interfaces. We report the simultaneous detection of the near-surface and bulk coordination environments of a trivalent metal cation (europium) in an aqueous solution by use of X-ray absorption spectroscopy. Within the first few nanometers of the liquid surface, the cations exhibit oxygen coordination typical of inner-sphere hydration of an aquated Eu3+ cation. Beyond that, outer-sphere ion-ion correlations are observed that are otherwise not present in the bulk electrolyte. The combination of near-surface and bulk sensitivities to probe metal ion speciation in electrolyte solutions is achievedmore » by detecting electron-yield and X-ray fluorescence signals from an inverted pendant drop. The results provide new knowledge about the near-surface chemistry of aqueous solutions of relevance to aerosols and ion transport processes in chemical separations and biological systems.« less

  16. Halogen-free boron based electrolyte solution for rechargeable magnesium batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi

    2014-02-01

    All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.

  17. Electrolytes, sugar, calories, osmolarity and pH of beverages and coconut water.

    PubMed

    Chavalittamrong, B; Pidatcha, P; Thavisri, U

    1982-09-01

    Oral rehydration has been recommended in patients with diarrhoea to replace fluid loss from the gastrointestinal tract and reduce the need for intravenous therapy. Beverages (i.e. Cola, Sprite etc.) and coconut water may be used as sources of oral fluid when glucose-electrolyte solution is not available. To evaluate the usefulness and effectiveness of these soft drinks, the basic data such as electrolytes, sugar, calories, osmolarity and pH were determined. The electrolytes of the beverages were significantly lower (p less than 0.001) than the coconut water, especially potassium. The osmolarity of the beverages, which were 693 mOsm/l, was significantly higher (p less than 0.001) than the coconut water (288 mOsm/l); pH of the beverages (3.1) was more acidic (p less than 0.001) than the coconut water (5.4). While the sugar content of the beverages, which were 8.7 gm/dl, was significantly higher (p less than 0.001) than the coconut water (1.1 gm/dl). On comparison, all brands of beverages would give more calories than the coconut water however the coconut water would be absorbed more easily than any brand of soft drink beverage.

  18. Oral salt supplements to compensate for jejunostomy losses: comparison of sodium chloride capsules, glucose electrolyte solution, and glucose polymer electrolyte solution.

    PubMed

    Nightingale, J M; Lennard-Jones, J E; Walker, E R; Farthing, M J

    1992-06-01

    Six patients with jejunostomies and residual jejunal lengths of 105 to 250 cm took the same food and water each day for eight study days. In random order, three methods of salt replacement were tested, each over 48 hours, against a period without added salt. During the three test periods the patients took 120 mmol of sodium chloride daily, as salt in gelatine capsules, as an isotonic glucose electrolyte (280 mOsmol/kg; 30 kcal) solution, and as a glucose polymer (Maxijul) solution (280 mOsmol/kg; 200 kcal). The daily stomal output remained constant for each patient during the four test periods but varied between patients from 0.60 to 2.84 kg (daily intestinal fluid balance 0.74-2.61 kg). Without a salt supplement, three patients lost more sodium from the stoma than they took in by mouth (-25, -94, and -101 mmol/day) and the mean sodium balance for all six subjects was -16 mmol (range -101 to 79) daily. Extra salt was absorbed with each form of supplement (p less than 0.05); no patient with the glucose electrolyte solution (mean 96, range 0 to 226 mmol), but one patient with the glucose-polymer solution (mean 96, range -25 to 164 mmol) and two with the salt capsules (mean 66, range -8 to 145 mmol) were in negative balance. Two patients vomited with the salt capsules. There was only a small increase in energy absorption (mean 115 kcal) with the glucose polymer solution compared with the glucose electrolyte solution. A sipped glucose electrolyte solution seems to be the optimal mode of sodium replacement in patients with a high output jejunostomy.

  19. Oral salt supplements to compensate for jejunostomy losses: comparison of sodium chloride capsules, glucose electrolyte solution, and glucose polymer electrolyte solution.

    PubMed Central

    Nightingale, J M; Lennard-Jones, J E; Walker, E R; Farthing, M J

    1992-01-01

    Six patients with jejunostomies and residual jejunal lengths of 105 to 250 cm took the same food and water each day for eight study days. In random order, three methods of salt replacement were tested, each over 48 hours, against a period without added salt. During the three test periods the patients took 120 mmol of sodium chloride daily, as salt in gelatine capsules, as an isotonic glucose electrolyte (280 mOsmol/kg; 30 kcal) solution, and as a glucose polymer (Maxijul) solution (280 mOsmol/kg; 200 kcal). The daily stomal output remained constant for each patient during the four test periods but varied between patients from 0.60 to 2.84 kg (daily intestinal fluid balance 0.74-2.61 kg). Without a salt supplement, three patients lost more sodium from the stoma than they took in by mouth (-25, -94, and -101 mmol/day) and the mean sodium balance for all six subjects was -16 mmol (range -101 to 79) daily. Extra salt was absorbed with each form of supplement (p less than 0.05); no patient with the glucose electrolyte solution (mean 96, range 0 to 226 mmol), but one patient with the glucose-polymer solution (mean 96, range -25 to 164 mmol) and two with the salt capsules (mean 66, range -8 to 145 mmol) were in negative balance. Two patients vomited with the salt capsules. There was only a small increase in energy absorption (mean 115 kcal) with the glucose polymer solution compared with the glucose electrolyte solution. A sipped glucose electrolyte solution seems to be the optimal mode of sodium replacement in patients with a high output jejunostomy. PMID:1624155

  20. The effects of electrolysis on operational solutions in electromembrane extraction: The role of acceptor solution.

    PubMed

    Kubáň, Pavel; Boček, Petr

    2015-06-12

    Fundamental operational principle and instrumental set-up of electromembrane extraction (EME) suggest that electrolysis may play an important role in this recently developed micro-extraction technique. In the present study, the effect of electrolysis in EME is described comprehensively for the first time and it is demonstrated that electrolysis considerably influences EME performance. Micro-electromembrane extraction (μ-EME) across free liquid membrane formed by 1-pentanol was utilized for real-time monitoring of the electrolytically induced changes in composition of μ-EME solutions. These changes were visualized with a set of acid-base indicators. Changes in colours of their aqueous solutions revealed serious variations in their pH values, which occurred within seconds to minutes of the μ-EME process. Variations of up to eight pH units were observed for indicator solutions initially prepared in 1, 5 and 10mM hydrochloric acid. No or only negligible pH changes (less than 0.15 pH unit) were observed for indicator solutions prepared in 50 and 100mM acetic acid demonstrating that initial composition of the aqueous solutions was the crucial parameter. These results were also confirmed by theoretical calculations of maximum pH variations in the solutions, which were based on total electric charge transfers measured in the μ-EME systems, and by exact measurements of their pH values after μ-EMEs. Acceptor solutions that, in the current practice, consist predominantly of low concentrations of strong mineral acids or alkali hydroxides may thus not always ensure adequate EME performance, which was manifested by decrease in extraction recoveries of a basic drug papaverine. A suitable remedy to the observed effects is the application of acceptor solutions containing high concentrations of weak acids or bases. These solutions not only eliminate the decrease in recoveries but also serve well as matrices of extracted samples for subsequent analysis by capillary electrophoresis. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Improved electrolyte for zinc-bromine flow batteries

    NASA Astrophysics Data System (ADS)

    Wu, M. C.; Zhao, T. S.; Wei, L.; Jiang, H. R.; Zhang, R. H.

    2018-04-01

    Conventional zinc bromide electrolytes offer low ionic conductivity and often trigger severe zinc dendrite growth in zinc-bromine flow batteries. Here we report an improved electrolyte modified with methanesulfonic acid, which not only improves the electrolyte conductivity but also ameliorates zinc dendrite. Experimental results also reveal that the kinetics and reversibility of Zn2+/Zn and Br2/Br- are improved in this modified electrolyte. Moreover, the battery's internal resistance is significantly reduced from 4.9 to 2.0 Ω cm2 after adding 1 M methanesulfonic acid, thus leading to an improved energy efficiency from 64% to 75% at a current density of 40 mA cm-2. More impressively, the battery is capable of delivering an energy efficiency of about 78% at a current density of as high as 80 mA cm-2 when the electrode is replaced by a thermally treated one. Additionally, zinc dendrite growth is found to be effectively suppressed in methanesulfonic acid supported media, which, as a result, enables the battery to be operated for 50 cycles without degradation, whereas the one without methanesulfonic acid suffers from significant decay after only 40 cycles, primarily due to severe zinc dendrite growth. These superior results indicate methanesulfonic acid is a promising supporting electrolyte for zinc-bromine flow batteries.

  2. Molecular interactions in high conductive gel electrolytes based on low molecular weight gelator.

    PubMed

    Bielejewski, Michał; Łapiński, Andrzej; Demchuk, Oleg

    2017-03-15

    Organic ionic gel (OIG) electrolytes, also known as gel electrolytes or ionogels are one example of modern functional materials with the potential to use in wide range of electrochemical applications. The functionality of OIGs arises from the thermally reversible solidification of electrolytes or ionic liquids and their superior ionic conductivity. To understand and to predict the properties of these systems it is important to get the knowledge about the interactions on molecular level between the solid gelator matrix and the electrolyte solution. This paper reports the spectroscopic studies (FT-IR, UV-Vis and Raman) of the gel electrolyte based on low molecular weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside and solution of quaternary ammonium salt, tetramethylammonium bromide. The solidification process was based on sol-gel technique. Below characteristic temperature, defined as gel to sol phase transition temperature, T gs , the samples were solid-like and showed high conductivity values of the same order as observed for pure liquid electrolytes. The investigations were performed for a OIGs in a wide range of molar concentrations of the electrolyte solution. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Whole-bowel irrigation for mechanical colon cleansing.

    PubMed

    Michael, K A; DiPiro, J T; Bowden, T A; Tedesco, F J

    1985-01-01

    The physiology, solution composition, indications, efficacy, and safety of whole-bowel irrigation (WBI) for mechanical bowel cleansing are reviewed. WBI with isotonic electrolyte solutions produces diarrhea when the infusion rate exceeds the capacity of the intestine to distend and absorb the solution. A number of solutions are used for WBI, including 0.9% sodium chloride, balanced electrolyte solutions, lactated Ringer's, mannitol, and electrolyte solutions containing polyethylene glycol 3350 (PEG). WBI solution administration rates vary from 15-90 mL/min, by oral ingestion or nasogastric tube, with total volumes ranging from 1 to 20 L. The onset of diarrhea occurs as soon as 20 minutes with clearing of the effluent as early as 90 minutes. Faster administration rates appear to shorten overall cleansing time. Two PEG-electrolyte lavage solutions (ELSs) have recently gained FDA approval. The recommended dosage rate is 1.2-1.8 L/hr orally or by nasogastric tube until rectal effluent is clear. In most patients, this requires a maximum of 4-6 L. Initial data indicate that PEG-ELSs are safe for elderly patients and for patients who have an increased risk of fluid overload, but these solutions have not been evaluated in children, pregnant women, or patients with inflammatory bowel disease. WBI is an effective alternative to other regimens for removing fecal material and reducing bowel lumen bacterial counts before colonoscopy and colorectal surgery. Retention of bacterial counts before colonoscopy and colorectal surgery. Retention of excess WBI solution may interfere with the quality of barium enema radiographs; this can be minimized by completing the irrigation the evening before the examination. Gastrointestinal side effects occur in about one third of the patients following WBI, but do not generally require discontinuing the irrigation. Solutions containing PEG with sodium sulfate as the primary electrolyte result in the least net water and electrolyte movement and are preferred over other solutions.

  4. [Rice water with and without electrolytes in diarrhea with a high stool output].

    PubMed

    Mota-Hernández, F; Posadas-Tello, N M; Rodríguez-Leyva, G

    1993-12-01

    The objective of the study was to determine the efficacy and safety of two rice-based oral rehydration solutions, with and without added electrolyte in children presenting acute diarrheal dehydration with high stool output (> 10 mL/kg/h) during a two-hour rehydration period. Twenty-two patients of one to 18 months old were recruited and randomly distributed into two groups: group A received the rice-based solution without electrolytes, and group B received the rice-based solution with electrolytes. A stool output diminishing was observed in both groups and rehydration was achieved in 4.0 +/- 0.9 hours in 21 patients from group A and in 4.6 +/- 0.9 hours in 13 patients group group B. There was not a statistically significant difference between the groups regarding the laboratory results. The rice-based oral rehydration solution without added electrolytes was useful for rehydration of children presenting high stool output, after administering the WHO/ORS recommended formula during a two-hour period.

  5. Nickel extraction from nickel matte

    NASA Astrophysics Data System (ADS)

    Subagja, R.

    2018-01-01

    In present work, the results of research activities to make nickel metal from nickel matte are presented. The research activities were covering a) nickel matte characterization using Inductively Couple plasma (ICP), Electron Probe Micro Analyzer (EPMA) and X-Ray Diffraction (XRD), b) nickel matte dissolution process to dissolve nickel from nickel matte into the spent electrolyte solutions that contains hydrochloric acid, c) purification of nickel chloride leach solution by copper cementation process to remove copper using nickel matte, selective precipitation process to remove iron, solvent extraction using Tri normal octyl amine to separate cobalt from nickel chloride solutions and d) Nickel electro winning process to precipitate nickel into the cathode surface from purified nickel chloride solution by using direct current. The research activities created 99, 72 % pure nickel metal as the final product of the process.

  6. Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes.

    PubMed

    Vijayakumar, M; Li, Liyu; Nie, Zimin; Yang, Zhenguo; Hu, JianZhi

    2012-08-07

    The vanadium(III) cation structure in mixed acid based electrolyte solution from vanadium redox flow batteries is studied by (17)O and (35/37)Cl nuclear magnetic resonance (NMR) spectroscopy, electronic spectroscopy and density functional theory (DFT) based computational modelling. Both computational and experimental results reveal that the V(III) species can complex with counter anions (sulfate/chlorine) depending on the composition of its solvation sphere. By analyzing the powder precipitate it was found that the formation of sulfate complexed V(III) species is the crucial process in the precipitation reaction. The precipitation occurs through nucleation of neutral species formed through deprotonation and ion-pair formation process. However, the powder precipitate shows a multiphase nature which warrants multiple reaction pathways for precipitation reaction.

  7. A sealed optical cell for the study of lithium-electrode|electrolyte interfaces

    NASA Astrophysics Data System (ADS)

    Howlett, P. C.; MacFarlane, D. R.; Hollenkamp, A. F.

    A sealed, symmetrical, lithium optical cell, which enables optical images of lithium surface deposits and in situ Raman spectra to be obtained simply and conveniently during charge-discharge cycling of lithium metal electrodes, has been designed and tested. A conventional aprotic liquid, 1 M lithium hexafluorophosphate in propylene carbonate, and an experimental ionic liquid, 20 mol% lithium bis(trifluoromethanesulfonyl)amide in 1-ethyl 3-methyl imidazolium bis(trifluoromethanesulfonyl)amide, are investigated as electrolyte solutions. Images obtained from the cell with the former electrolyte solution demonstrate the problems associated with cycling lithium metal electrodes. Images obtained with the latter electrolyte solution provide clear evidence that continued investigation of ionic liquids for use with lithium metal electrodes is warranted. Operation of the cell with the conventional electrolyte yields Raman spectra of good quality. The spectra display vibrational modes which arise from the electrolyte, as well as several additional modes which are associated with the deposits formed during cycling.

  8. Electrolytes

    MedlinePlus

    ... Chloride Magnesium Phosphorus Potassium Sodium Electrolytes can be acids, bases, or salts. They can be measured by different ... Saunders; 2013:464-467. DuBose TD. Disorders of acid-base balance. In: Skorecki K, Chertow GM, Marsden PA, ...

  9. In Situ Raman Spectroscopic Studies on Concentration of Electrolyte Salt in Lithium-Ion Batteries by Using Ultrafine Multifiber Probes.

    PubMed

    Yamanaka, Toshiro; Nakagawa, Hiroe; Tsubouchi, Shigetaka; Domi, Yasuhiro; Doi, Takayuki; Abe, Takeshi; Ogumi, Zempachi

    2017-03-09

    Lithium-ion batteries have attracted considerable attention due to their high power density. The change in concentration of salt in the electrolyte solution in lithium-ion batteries during operation causes serious degradation of battery performance. Herein, a new method of in situ Raman spectroscopy with ultrafine multifiber probes was developed to simultaneously study the concentrations of ions at several different positions in the electrolyte solution in deep narrow spaces between the electrodes in batteries. The total amount of ions in the electrolyte solution clearly changed during operation due to the low permeability of the solid-electrolyte interphase (SEI) at the anode for Li + permeation. The permeability, which is a key factor to achieve high battery performance, was improved (enhanced) by adding film-forming additives to the electrolyte solution to modify the properties of the SEI. The results provide important information for understanding and predicting phenomena occurring in a battery and for designing a superior battery. The present method is useful for analysis in deep narrow spaces in other electrochemical devices, such as capacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    PubMed

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-04

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  11. A new sensitive method of dissociation constants determination based on the isohydric solutions principle.

    PubMed

    Michałowski, Tadeusz; Pilarski, Bogusław; Asuero, Agustin G; Dobkowska, Agnieszka

    2010-10-15

    The paper provides a new formulation and analytical proposals based on the isohydric solutions concept. It is particularly stated that a mixture formed, according to titrimetric mode, from a weak acid (HX, C(0)mol/L) and a strong acid (HB, Cmol/L) solutions, assumes constant pH, independently on the volumes of the solutions mixed, provided that the relation C(0)=C+C(2)·10(pK(1)) is valid, where pK(1)=-log K(1), K(1) the dissociation constant for HX. The generalized formulation, referred to the isohydric solutions thus obtained, was extended also to more complex acid-base systems. Particularly in the (HX, HB) system, the titration occurs at constant ionic strength (I) value, not resulting from presence of a basal electrolyte. This very advantageous conjunction of the properties provides, among others, a new, very sensitive method for verification of pK(1) value. The new method is particularly useful for weak acids HX characterized by low pK(1) values. The method was tested experimentally on four acid-base systems (HX, HB), in aqueous and mixed-solvent media and compared with the literature data. Some useful (linear and hyperbolic) correlations were stated and applied for validation of pK(1) values. Finally, some practical applications of analytical interest of the isohydricity (pH constancy) principle as one formulated in this paper were enumerated, proving the usefulness of such a property which has its remote roots in the Arrhenius concept. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. [Effects of Low-Molecular-Weight Organic Acids on the Speciation of Pb in Purple Soil and Soil Solution].

    PubMed

    Liu, Jiang; Jiang, Tao; Huang, Rong; Zhang, Jin-zhong; Chen, Hong

    2016-04-15

    Lead (Pb) in purple soil was selected as the research target, using one-step extraction method with 0.01 mol · L⁻¹ sodium nitrate as the background electrolyte to study the release effect of citric acid (CA), tartaric acid (TA) and acetic acid (AC) with different concentrations. Sequential extraction and geochemical model (Visual Minteq v3.0) were applied to analyze and predict the speciation of Pb in soil solid phase and soil solution phase. Then the ebvironmental implications and risks of low-molecule weight organic acid (LMWOA) on soil Pb were analyzed. The results indicated that all three types of LMWOA increased the desorption capacity of Pb in purple soil, and the effect followed the descending order of CA > TA > AC. After the action of LMWOAs, the exchangeable Pb increased; the carbonate-bound Pb and Fe-Mn oxide bound Pb dropped in soil solid phase. Organic bound Pb was the main speciation in soil solution phase, accounting for 45.16%-75.05%. The following speciation of Pb in soil solution was free Pb, accounting for 22.71%-50.25%. For CA and TA treatments, free Pb ions and inorganic bound Pb in soil solution increased with increasing LMWOAs concentration, while organic bound Pb suffered a decrease in this process. An opposite trend for AC treatment was observed compared with CA and TA treatments. Overall, LMWOAs boosted the bioavailability of Pb in purple soil and had a potential risk to contaminate underground water. Among the three LMWOAs in this study, CA had the largest potential to activate soil Pb.

  13. Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes-A Review.

    PubMed

    Rajput, Nav Nidhi; Seguin, Trevor J; Wood, Brandon M; Qu, Xiaohui; Persson, Kristin A

    2018-04-26

    Fundamental molecular-level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applications. In particular, exhaustive knowledge of solvation structure, stability, and transport properties is critical for developing stable electrolytes for fast-charging and high-energy-density next-generation energy storage systems. Accordingly, there is growing interest in the rational design of electrolytes for beyond lithium-ion systems by tuning the molecular-level interactions of solvate species present in the electrolytes. Here we present a review of the solvation structure of multivalent electrolytes and its impact on the electrochemical performance of these batteries. A direct correlation between solvate species present in the solution and macroscopic properties of electrolytes is sparse for multivalent electrolytes and contradictory results have been reported in the literature. This review aims to illustrate the current understanding, compare results, and highlight future needs and directions to enable the deep understanding needed for the rational design of improved multivalent electrolytes.

  14. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms. The optimized polymer electrolyte demonstrated even higher proton conductivity than pure HPAs and the enabled electrochemical capacitors have demonstrated an exceptionally high rate capability of 50 Vs-1 in cyclic voltammograms and a 10 ms time constant in impedance analyses.

  15. Studies on mathematical modeling of the leaching process in order to efficiently recover lead from the sulfate/oxide lead paste.

    PubMed

    Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina

    2017-02-01

    Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor.

    PubMed

    Grimshaw, Pengpeng; Calo, Joseph M; Shirvanian, Pezhman A; Hradil, George

    2011-08-17

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well.

  17. Probing Chemical Properties of Interstitial Micro-fluids in Ice

    NASA Astrophysics Data System (ADS)

    Cheng, J.; Colussi, A. J.; Hoffmann, M. R.

    2007-12-01

    Liquid is present as microscopic channels in polycrystalline ice at sub-freezing and even sub-eutectic temperatures. Not only do chemicals tend to concentrate substantially in this microscopic liquid phase, but local physicochemical properties may also differ widely from the bulk counterparts, therefore critically affecting the thermodynamics and kinetics of chemical processes occurring in frozen media such as snow, frost, and frost- flowers. This phenomenon has important implications in atmospheric chemistry such as affecting the composition of the atmospheric boundary layer in snow-covered regions. A method using con-focal laser scanning microscope equipped with a cryostat has been developed to measure physicochemical properties of the microscopic liquid phase in ice that are not readily extrapolated from the bulk data. The experimental setup allows for monitoring the freezing process of an aqueous solution with a sub- second time resolution and a submicron 3D spatial resolution. The physicochemical properties (e.g. viscosity, polarity, and acidity) can, in theory, be deduced from features of the fluorescence spectra of particular fluorescent indicators. For example, the acidity change during the freezing and melting process of electrolyte solutions has been monitored in real time by a pH-dependent dual emission fluorescent probe C-SNARF-1. The effects of temperature, freezing rate, and added electrolytes such as ammonium sulfate, sodium chloride and zwitterions are also examined. The findings complement the theory and previous experimental evidence of freezing hydrolysis.

  18. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry.

    PubMed

    Wang, Xiaohua; Liu, Ni; Liu, Yunguo; Jiang, Luhua; Zeng, Guangming; Tan, Xiaofei; Liu, Shaobo; Yin, Zhihong; Tian, Sirong; Li, Jiang

    2017-10-11

    Rice straw biochar that produced at three pyrolysis temperatures (400, 500 and 600 °C) were used to investigate the adsorption properties of 17β-estradiol (E2). The biochar samples were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), elemental analysis and BET surface area measurements. The influences of pyrolysis temperature, E2 concentration, pH, ionic strength, background electrolyte and humic acid were studied. Kinetic and isotherm results illustrated that the adsorption process could be well described by pseudo-second-order and Freundlich models. Experimental results showed that ionic strength had less influence on the adsorption of E2 by 500 and 600 °C rice straw biochar. Further, multivalent ions had positive impact on E2 removal than monovalent ions and the influence of the pyrolysis temperature was unremarkable when background electrolyte existed in solutions. The adsorption capacity of E2 decreased with the pH ranged from 3.0 to 12.0 and the humic acid concentration from 2 to 10 mg L -1 . Electrostatic attractions and π-π interaction were involved in the adsorption mechanisms. Compared to low-temperature biochar, high-temperature biochar exhibited a better adsorption capacity for E2 in aqueous solution, indicated it had a greater potential for E2 pollution control.

  19. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry

    PubMed Central

    Wang, Xiaohua; Liu, Ni; Liu, Yunguo; Jiang, Luhua; Zeng, Guangming; Tan, Xiaofei; Liu, Shaobo; Yin, Zhihong; Tian, Sirong; Li, Jiang

    2017-01-01

    Rice straw biochar that produced at three pyrolysis temperatures (400, 500 and 600 °C) were used to investigate the adsorption properties of 17β-estradiol (E2). The biochar samples were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), elemental analysis and BET surface area measurements. The influences of pyrolysis temperature, E2 concentration, pH, ionic strength, background electrolyte and humic acid were studied. Kinetic and isotherm results illustrated that the adsorption process could be well described by pseudo-second-order and Freundlich models. Experimental results showed that ionic strength had less influence on the adsorption of E2 by 500 and 600 °C rice straw biochar. Further, multivalent ions had positive impact on E2 removal than monovalent ions and the influence of the pyrolysis temperature was unremarkable when background electrolyte existed in solutions. The adsorption capacity of E2 decreased with the pH ranged from 3.0 to 12.0 and the humic acid concentration from 2 to 10 mg L−1. Electrostatic attractions and π-π interaction were involved in the adsorption mechanisms. Compared to low-temperature biochar, high-temperature biochar exhibited a better adsorption capacity for E2 in aqueous solution, indicated it had a greater potential for E2 pollution control. PMID:29019933

  20. Acoustical Studies of L-leucine and L-asparagine in aqueous electrolyte through thermal expansion coefficient

    NASA Astrophysics Data System (ADS)

    Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.

    2012-12-01

    Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (θD), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.

  1. Solubility of non-polar gases in electrolyte solutions

    NASA Technical Reports Server (NTRS)

    Walker, R. L., Jr.

    1970-01-01

    Solubility theory describes the effects of both concentration and temperature on solute activity coefficients. It predicts the salting-out effect and the decrease in solubility of non-polar gases with increased electrolyte concentration, and can be used to calculate heats of solution, entropies, and partial molal volumes of dissolved gases

  2. Potassium urine test

    MedlinePlus

    ... in the clinical evaluation of electrolyte, water, and acid-base disorders. In: Alpern RJ, Orson WM, Caplan M, ... Lin S-H, Halperin ML. Interpretation of electrolyte and acid-base parameters in blood and urine. In: Skorecki K, ...

  3. Drude-jellium model for the microwave conductivity of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Nhan, Tran Thi; Theu, Luong Thi; Tuan, Le; Viet, Nguyen Ai

    2018-05-01

    The microwave conductivity characteristics of electrolyte solutions have attracted much interest of researchers because a good understanding of their properties plays a key role to study fundamental processes in biology and chemistry. In this work, we consider the solution of sodium chloride as a plasma consisting of ions with water background. Its plasmon frequency is calculated by the jellium theory. The linear dependence of the microwave conductivity on the ion concentration of the electrolyte solutions is explained by a microscopic approach and described by a combination of this plasmon relationship and the simplified Drude formula for dielectric constant. Furthermore, the dependence of the microwave conductivity on the frequency of the salt solution is also examined. We suggest that it obeys the logistic distribution. We found a good agreement between theoretical calculations and experimental data. The values of the damping coefficient γ for the conductive solutions at low frequencies and the cutting frequency are estimated. The linear dependence of the diffusion coefficient on the temperature of the salt solution is also shown, in similarity with the result in the other model. The application of the Drude-jellium model could be done for the other electrolyte solutions in order to study theirs electro-dynamic properties.

  4. Ionogel Electrolytes through Sol-Gel Processing

    NASA Astrophysics Data System (ADS)

    Horowitz, Ariel I.

    Electrical energy needs have intensified due to the ubiquity of personal electronics, the decarbonization of energy services through electrification, and the use of intermittent renewable energy sources. Despite developments in mechanical and thermal methods, electrochemical technologies are the most convenient and effective means of storing electrical energy. These technologies include both electrochemical cells, commonly called batteries, and electrochemical double-layer capacitors, or "supercapacitors", which store energy electrostatically. Both device types require an ion-conducting electrolyte. Current devices use solutions of complex salts in organic solvents, leading to both toxicity and flammability concerns. These drawbacks can be avoided by replacing conventional electrolytes with room-temperature molten salts, known as ionic liquids (ILs). ILs are non-volatile, non-flammable, and offer high conductivity and good electrochemical stability. Device mass can be reduced by combining ILs with a solid scaffold material to form an "ionogel," further improving performance metrics. In this work, sol-gel chemistry is explored as a means of forming ionogel electrolytes. Sol-gel chemistry is a solution-based, industrially-relevant, well-studied technique by which solids such as silica can be formed in situ. Previous works used a simple acid-catalyzed sol-gel reaction to create brittle, glassy ionogels. Here, both the range of products that can be accomplished through sol-gel processing and the understanding of interactions between ILs and the sol-gel reaction network are greatly expanded. This work introduces novel ionogel materials, including soft and compliant silica-supported ionogels and PDMS-supported ionogels. The impacts of the reactive formulation, IL identity, and casting time are detailed. It is demonstrated that variations in formulation can lead to rapid gelation and open pore structures in the silica scaffold or slow gelation and more dense silica morphologies. The IL identity is shown to have an impact on the apparent strength of the acid catalyst, leading to significant shifts in gelation time. Delayed casting is proven to be an optimal technique for avoiding pore blockage when combining ionogels with high surface area electrodes for supercapacitor applications. Finally, a simple recycling process is proposed, establishing that ILs can be easily reclaimed from silica-supported ionogels and reused, thereby validating the reputation of ILs as "green" materials.

  5. Alternative Sources of Energy - An Introduction to Fuel Cells

    USGS Publications Warehouse

    Merewether, E.A.

    2003-01-01

    Fuel cells are important future sources of electrical power and could contribute to a reduction in the amount of petroleum imported by the United States. They are electrochemical devices similar to a battery and consist of a container, an anode, a cathode, catalysts, an intervening electrolyte, and an attached electrical circuit. In most fuel cell systems, hydrogen is supplied to the anode and oxygen to the cathode which results in the production of electricity, water, and heat. Fuel cells are comparatively efficient and reliable, have no moving parts, operate without combustion, and are modular and scale-able. Their size and shape are flexible and adaptable. In operation, they are nearly silent, are relatively safe, and generally do not pollute the environment. During recent years, scientists and engineers have developed and refined technologies relevant to a variety of fuel cells. Types of fuel cells are commonly identified by the composition of their electrolyte, which could be either phosphoric acid, an alkaline solution, a molten carbonate, a solid metal oxide, or a solid polymer membrane. The electrolyte in stationary power plants could be phosphoric acid, molten carbonates, or solid metal oxides. For vehicles and smaller devices, the electrolyte could be an alkaline solution or a solid polymer membrane. For most fuel cell systems, the fuel is hydrogen, which can be extracted by several procedures from many hydrogen-bearing substances, including alcohols, natural gas (mainly methane), gasoline, and water. There are important and perhaps unresolved technical problems associated with using fuel cells to power vehicles. The catalysts required in several systems are expensive metals of the platinum group. Moreover, fuel cells can freeze and not work in cold weather and can be damaged by impacts. Storage tanks for the fuels, particularly hydrogen, must be safe, inexpensive, of a reasonable size, and contain a supply sufficient for a trip of several hundred miles. Additional major problems will be the extensive and costly changes in the national infrastructure to obtain, store, and distribute large amounts of the fuels, and in related manufacturing

  6. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, Anton

    1988-01-01

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  7. Electrodeposition of magnesium and magnesium/aluminum alloys

    DOEpatents

    Mayer, A.

    1988-01-21

    Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

  8. A Modified Robinson-Stokes equation for describing the thermodynamic properties of aqueous solutions of 1-1 electrolytes

    NASA Astrophysics Data System (ADS)

    Rudakov, A. M.; Sergievskii, V. V.

    2008-05-01

    Equations relating osmotic, mean ionic activity, and water activity coefficients to electrolyte concentrations in binary aqueous solutions were substantiated within the framework of cluster concepts. The model includes the contribution to solution nonideality of electrostatic interactions in terms of the Debye-Hückel theory along with hydration and association of salts via relations containing hydration and association numbers in the standard states. According to the description of data on 54 aqueous solutions of 1-1 electrolytes, this model should be given preference compared with the most extensively used NRTL, NRTL-NRF, Wilson, and Pitzer models.

  9. Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter

    PubMed Central

    Peng, Cheng; Shen, Chensi; Zheng, Siyuan; Yang, Weiling; Hu, Hang; Liu, Jianshe; Shi, Jiyan

    2017-01-01

    Many studies have shown the effect of solution chemistry on the environmental behavior of metal-based nanoparticles (NPs), except CuO NPs. Here, we investigated the agglomeration, sedimentation, dissolution, and speciation of CuO NPs by varying pH, ionic strength, ionic valence, and natural organic matter (NOM). The results showed that as the pH moved away from 6, the size of CuO agglomerates decreased, along with the enhanced NP suspension stabilization, due to the increase of electrostatic repulsive force. Increasing ionic strength and valence intensified the agglomeration and sedimentation of CuO NPs because of the compression of electrical double layers. The presence of humic acid and citric acid enhanced the dispersion and stabilization of CuO NP suspension, but l-cysteine showed a different impact. Decreasing pH, increasing ionic strength and all NOM improved the dissolution of CuO NPs, but the divalent electrolyte (CaCl2) inhibited the Cu2+ release from CuO NPs compared to the monovalent electrolyte (NaCl). In addition, X-ray absorption near edge structure (XANES) analysis demonstrated that the presence of l-cysteine transformed more than 30% of CuO NPs to Cu(I)-cysteine by coordinating with thiol group. This study can give us an in-depth understanding on the environmental behavior and fate of CuO NPs in the aquatic environment. PMID:29036921

  10. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    DOEpatents

    Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  11. Electrolyte solutions including a phosphoranimine compound, and energy storage devices including same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaehn, John R.; Dufek, Eric J.; Rollins, Harry W.

    An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure ##STR00001## where X is an organosilyl group or a tert-butyl group and each of R.sup.1, R.sup.2, and R.sup.3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.

  12. Exploratory studies on some electrochemical cell systems

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Srikumar; Guha, D.

    Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.

  13. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.

    PubMed

    Song, Jinsuk; Kim, Mahn Won

    2010-03-11

    Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.

  14. Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions

    PubMed Central

    2018-01-01

    Most photoanodes commonly applied in solar fuel research (e.g., of Fe2O3, BiVO4, TiO2, or WO3) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%. PMID:29780886

  15. A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes.

    PubMed

    Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2017-10-02

    Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short-lifetimes, and expensive ion-selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane-free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, behaves as a reversible battery without any membrane. This proof-of-concept of a membrane-free battery has an open circuit voltage of 1.4 V with a high theoretical energy density of 22.5 Wh L -1 , and is able to deliver 90 % of its theoretical capacity while showing excellent long-term performance (coulombic efficiency of 100 % and energy efficiency of 70 %). © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems

    DOE PAGES

    Martinez, Ulises; Dumont, Joseph H.; Holby, Edward F.; ...

    2016-03-18

    Graphitic materials are very essential in energy conversion and storage because of their excellent chemical and electrical properties. The strategy for obtaining functional graphitic materials involves graphite oxidation and subsequent dissolution in aqueous media, forming graphene-oxide nanosheets (GNs). Restacked GNs contain substantial intercalated water that can react with heteroatom dopants or the graphene lattice during reduction. We demonstrate that removal of intercalated water using simple solvent treatments causes significant structural reorganization, substantially affecting the oxygen reduction reaction (ORR) activity and stability of nitrogen-doped graphitic systems. Amid contrasting reports describing the ORR activity of GN-based catalysts in alkaline electrolytes, we demonstratemore » superior activity in an acidic electrolyte with an onset potential of ~0.9 V, a half-wave potential (E ½) of 0.71 V, and a selectivity for four-electron reduction of >95%. Finally and further, durability testing showed E ½ retention >95% in N 2- and O 2-saturated solutions after 2000 cycles, demonstrating the highest ORR activity and stability reported to date for GN-based electrocatalysts in acidic media.« less

  17. Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Raschitor, A; Llanos, J; Cañizares, P; Rodrigo, M A

    2017-09-01

    This work presents a novel approach of wastewater treatment technology that consists of a combined electrodialysis/electro-oxidation process, specially designed to allow increasing the efficiency in the oxidation of ionic organic pollutants contained in diluted waste. Respect to conventional electrolysis, the pollutant is simultaneously concentrated and oxidized, enhancing the performance of the cell due to the higher concentration achieved in the nearness of the anode. A proof of concept is tested with the ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) and results show that the efficiency of this new technology overcomes that electrolysis by more than double, regardless the supporting electrolyte used (either NaCl or Na 2 SO 4 ). Moreover, the removal rate of 2,4-D when using NaCl was found to be more efficient, due to the best performance of the electrode material selected (DSA ® ) towards the formation of oxidants in chloride supporting electrolyte. These results open the way for overcoming the efficiency limitations of electrochemical treatment processes for the treatment of solutions with low concentrated ionic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Isotonicity of liver and of kidney tissue in solutions of electrolytes.

    PubMed

    OPIE, E L

    1959-07-01

    Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need.

  19. ISOTONICITY OF LIVER AND OF KIDNEY TISSUE IN SOLUTIONS OF ELECTROLYTES

    PubMed Central

    Opie, Eugene L.

    1959-01-01

    Solutions of a wide variety of electrolytes, isotonic with liver or with kidney tissue, have approximately the same osmotic pressure as solutions of sodium chloride isotonic with tissues of the two organs respectively; that is, with solutions approximately twice as concentrated as the sodium chloride of mammalian blood plasma. The molar concentration of various electrolytes isotonic with liver or with kidney tissue immediately after its removal from the body is determined by the molecular weight, valency, and ion-dissociation of these electrolytes in accordance with the well known conditions of osmosis. The plasma membranes of liver and of kidney cells are imperfectly semipermeable to electrolytes, and those that enter the cell, though retarded in so doing, bring about injury which increases permeability to water. The osmotic activity of cells of mammalian liver and kidney immediately after their removal from the body resembles that of plant cells, egg cells of marine invertebrates, and mammalian red blood corpuscles and presumably represents a basic property of living cells by which osmotic pressure may be adjusted to functional need. PMID:13664872

  20. Sensitive bridge circuit measures conductance of low-conductivity electrolyte solutions

    NASA Technical Reports Server (NTRS)

    Schmidt, K.

    1967-01-01

    Compact bridge circuit measures sensitive and accurate conductance of low-conductivity electrolyte solutions. The bridge utilizes a phase sensitive detector to obtain a linear deflection of the null indicator relative to the measured conductance.

  1. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.

    PubMed

    Peng, Ran; Li, Dongqing

    2015-02-15

    Effects of ionic concentration gradient on electroosmotic flow (EOF) mixing of one stream of a high concentration electrolyte solution with a stream of a low concentration electrolyte solution in a microchannel are investigated numerically. The concentration field, flow field and electric field are strongly coupled via concentration dependent zeta potential, dielectric constant and electric conductivity. The results show that the electric field and the flow velocity are non-uniform when the concentration dependence of these parameters is taken into consideration. It is also found that when the ionic concentration of the electrolyte solution is higher than 1M, the electrolyte solution essentially cannot enter the channel due to the extremely low electroosmotic flow mobility. The effects of the concentration dependence of zeta potential, dielectric constant and electric conductivity on electroosmotic flow mixing are studied. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    NASA Astrophysics Data System (ADS)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  3. Microelectrode generator-collector systems for electrolytic titration: theoretical and practical considerations.

    PubMed

    Bell, Christopher G; Seelanan, Parinya; O'Hare, Danny

    2017-10-23

    Electochemical generator-collector systems, where one electrode is used to generate a reagent, have a potentially large field of application in sensing and measurement. We present a new theoretical description for coplanar microelectrode disc-disc systems where the collector is passive (such as a potentiometric sensor) and the generator is operating at constant flux. This solution is then used to develop a leading order solution for such a system where the reagent reacts reversibly in solution, such as in acid-base titration, where a hydrogen ion flux is generated by electrolysis of water. The principal novel result of the theory is that such devices are constrained by a maximum reagent flux. The hydrogen ion concentration at the collector will only reflect the buffer capacity of the bulk solution if this constraint is met. Both mathematical solutions are evaluated with several microfabricated devices and reasonable agreement with theory is demonstrated.

  4. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Liang; Ferrandon, Magali; Barton, John L.

    The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemicalmore » and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.« less

  6. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    PubMed

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions.

  7. Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer's Physiological Solution

    NASA Astrophysics Data System (ADS)

    Roknian, Masoud; Fattah-alhosseini, Arash; Gashti, Seyed Omid

    2018-03-01

    Plasma electrolytic oxidation has been used as a relatively new method for applying ceramic coatings having different features. In the present study, commercially pure titanium is used as substrate, and effects of trisodium phosphate electrolyte concentration on the microstructure, as well as corrosion behavior of the coating in Ringer's physiological solution are investigated. The morphology and phase compositions of coatings were analyzed by using scanning electron microscopy (SEM) and x-ray diffraction patterns. The study on the corrosion behavior of samples in a Ringer's physiological solution was carried out using open-circuit potential potentiodynamic polarization and electrochemical impedance spectroscopy. The results of electrochemical analysis proved that higher concentration of phosphate electrolyte leads to increase in the corrosion resistance of applied coatings. Accordingly, obtained results revealed that the optimum electrolyte concentration for the best corrosion behavior was 20 g L-1. Furthermore, SEM images and reduction in the dielectric breakdown potential indicated that increase in the electrolyte concentration leads to morphological improvement and smoothening of the surface.

  8. Apparent Ionic Charge in Electrolyte and Polyelectrolyte Solutions

    ERIC Educational Resources Information Center

    Magdelenat, H.; And Others

    1978-01-01

    Compares average displacements of charged particles under thermal motion alone with those obtained by the action of an external electric field to develop a concept of "apparent charge" to approximate actual structural charge in an electrolyte solution. (SL)

  9. The application of electrolytic photoetching and photopolishing to AISI 304 stainless steel and the electrolytic photoetching of amorphous cobalt alloy

    NASA Astrophysics Data System (ADS)

    Thomaz, Marita Duarte Canhao da Silva Pereira Fernandes

    The results presented cover broad aspects of a quantitative investigation into the elecrolytic etching and polishing of metals and alloys through photographically produced dielectric stencils (Photoresists). A study of the potential field generated between a cathode and relatively smaller anode sites as those defined by a dielectric stencil was carried out. Numerical, analytical and graphical methods yielded answers to the factors determining lateral dissolution (undercut) at the anode/stencil interface. A quasi steady state numerical model simulating the transient behavior of the partially masked electrodes undergoing dissolution was obtained. AISI 304 stainless steel was electrolytically photoetched in 10% w/w HCl electrolyte. The optimised process parameters were utilised for quantifying the effects of galvanostatic etching of the anode as that defined by a relatively narrow adherent resist stencil. Stainless steel was also utilised in investigating electrolytic photopolishing. A polishing electrolyte (orthophosphoric acid-glycerol) was modified by the addition of a surfactant which yielded surface texture values of 70nm (Ra) and high levels of specular reflectance. These results were used in the production of features upon the metal surface through photographically produced precision stencils. The process was applied to the production of edge filters requiring high quality surface textures in precision recesses. Some of the new amorphous material exhibited high resistance to dissolution in commercially used spray etching formulations. One of these materials is a cobalt based alloy produced by chill block spinning. This material was also investigated and electro etched in 10% w/w HCl solution. Although passivity was not overcome, by selecting suitable operating parameters the successful electro photoetching of precision magnetic recording head laminations was achieved. Similarly, a polycrystalline nickel based alloy also exhibiting passivity in commercially used etchants was successfully etched in the above electrolyte.

  10. Theoretical analysis of aqueous solutions of mixed strong electrolytes by a smaller-ion shell electrostatic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraenkel, Dan, E-mail: dfraenkel@eltronresearch.com

    2014-02-07

    In spite of the great importance of mixed electrolytes in science and technology, no compelling theoretical explanation has been offered yet for the thermodynamic behavior of such systems, such as their deviation from ideality and the variation of their excess functions with ionic composition and concentration. Using the newly introduced Smaller-ion Shell treatment – an extension of the Debye–Hückel theory to ions of dissimilar size (hence DH–SiS) – simple analytic mathematical expressions can be derived for the mean and single-ion activity coefficients of binary electrolyte components of ternary ionic systems. Such expressions are based on modifying the parallel DH–SiS equationsmore » for pure binary ionic systems, by adding to the three ion-size parameters – a (of counterions), b{sub +} (of positive coions), and b{sub −} (of negative coions) – a fourth parameter. For the (+ + −) system, this is “b{sub ++},” the contact distance between non-coion cations. b{sub ++} is derived from fits with experiment and, like the other b’s, is constant at varying ion concentration and combination. Four case studies are presented: (1) HCl–NaCl–H{sub 2}O, (2) HCl–NH{sub 4}Cl–H{sub 2}O, (3) (0.01 M HX)–MX–H{sub 2}O with X = Cl, Br, and with M = Li, Na, K, Cs, and (4) HCl–MCl{sub n}–H{sub 2}O with n = 2, M = Sr, Ba; and n = 3, M = Al, Ce. In all cases, theory is fully consistent with experiment when using a of the measured binary electrolyte as the sole fitting parameter. DH–SiS is thus shown to explain known “mysteries” in the behavior of ternary electrolytes, including Harned rule, and to adequately predict the pH of acid solutions in which ionized salts are present at different concentrations.« less

  11. Comparative study on the removal of COD from POME by electrocoagulation and electro-Fenton methods: Process optimization

    NASA Astrophysics Data System (ADS)

    Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi

    2018-03-01

    This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.

  12. High-Performance Cells Containing Lithium Metal Anodes, LiNi0.6Co0.2Mn0.2O2 (NCM 622) Cathodes, and Fluoroethylene Carbonate-Based Electrolyte Solution with Practical Loading.

    PubMed

    Salitra, Gregory; Markevich, Elena; Afri, Michal; Talyosef, Yosef; Hartmann, Pascal; Kulisch, Joern; Sun, Yang-Kook; Aurbach, Doron

    2018-06-13

    We report on the highly stable lithium metal|LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM 622) cells with practical electrodes' loading of 3.3 mA h g -1 , which can undergo many hundreds of stable cycles, demonstrating high rate capability. A key issue was the use of fluoroethylene carbonate (FEC)-based electrolyte solutions (1 M LiPF 6 in FEC/dimethyl carbonate). Li|NCM 622 cells can be cycled at 1.5 mA cm -2 for more than 600 cycles, whereas symmetric Li|Li cells demonstrate stable performance for more than 1000 cycles even at higher areal capacity and current density. We attribute the excellent performance of both Li|NCM and Li|Li cells to the formation of a stable and efficient solid electrolyte interphase (SEI) on the surface of the Li metal electrodes cycled in FEC-based electrolyte solutions. The composition of the SEI on the Li and the NCM electrodes is analyzed by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. A drastic capacity fading of Li|NCM cells is observed, followed by spontaneous capacity recovery during prolonged cycling. This phenomenon depends on the current density and the amount of the electrolyte solution and relates to kinetic limitations because of SEI formation on the Li anodes in the FEC-based electrolyte solution.

  13. THE CONTRIBUTIONS OF NORMAL AND ANOMALOUS OSMOSIS TO THE OSMOTIC EFFECTS ARISING ACROSS CHARGED MEMBRANES WITH SOLUTIONS OF ELECTROLYTES

    PubMed Central

    Grim, Eugene; Sollner, Karl

    1957-01-01

    The osmotic effect arising across a porous membrane separating the solution of an electrolyte from water (or a more dilute solution) is ordinarily due to both normal osmosis, as it occurs also with non-electrolytes, and to "anomalous" osmosis. It is shown that the normal osmotic component cannot be measured quantitatively by the conventional comparison with a non-electrolytic reference solute. Anomalous osmosis does not occur with electroneutral membranes. Accordingly, with membranes which can be charged and discharged reversibly (without changes in geometrical structure), such as many proteinized membranes, the osmotic effects caused by an electrolyte can be measured both when only normal osmosis arises (with the membrane in the electroneutral state) and when normal as well as anomalous osmosis occurs (with the membrane in a charged state). The difference between these two effects is the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, with solutions of a variety of electrolytes using a concentration ratio of 2:1 over a wide range of concentrations. The rates of the movement of liquid across the membrane against an inconsequentially small hydrostatic head are recorded instead of, as conventional, the physiologically less significant pressure rises after a standard time. PMID:13439166

  14. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.

    PubMed

    Wang, Lixin; Yang, Xuezhi; Wang, Qi; Zeng, Yuxuan; Ding, Lei; Jiang, Wei

    2017-01-01

    The aggregation and deposition of carbon nanotubes (CNTs) determines their transport and fate in natural waters. Therefore, the aggregation kinetics of humic-acid treated multi-walled carbon nanotubes (HA-MWCNTs) was investigated by time-resolved dynamic light scattering in NaCl and CaCl 2 electrolyte solutions. Increased ionic strength induced HA-MWCNT aggregation due to the less negative zeta potential and the reduced electrostatic repulsion. The critical coagulation concentration (CCC) values of HA-MWCNTs were 80mmol/L in NaCl and 1.3mmol/L in CaCl 2 electrolyte, showing that Ca 2+ causes more serious aggregation than Na + . The aggregation behavior of HA-MWCNTs was consistent with Derjaguin-Landau-Verwey-Overbeek theory. The deposition kinetics of HA-MWCNTs was measured by the optical absorbance at 800nm. The critical deposition concentrations for HA-MWCNT in NaCl and CaCl 2 solutions were close to the CCC values, therefore the rate of deposition cannot be increased by changing the ionic strength in the diffusion-limited aggregation regime. The deposition process was correlated to the aggregation since larger aggregates increased gravitational deposition and decreased random Brownian diffusion. HA-MWCNTs hydrodynamic diameters were evaluated at 5, 15 and 25°C. Higher temperature caused faster aggregation due to the reduced electrostatic repulsion and increased random Brownian motion and collision frequency. HA-MWCNTs aggregate faster at higher temperature in either NaCl or CaCl 2 electrolyte due to the decreased electrostatic repulsion and increased random Brownian motion. Our results suggest that CNT aggregation and deposition are two correlated processes governed by the electrolyte, and CNT transport is favored at low ionic strength and low temperature. Copyright © 2016. Published by Elsevier B.V.

  15. Selection of new Kynar-based electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Christie, Alasdair M.; Christie, Lynn; Vincent, Colin A.

    New electrolyte solution compositions have been identified for use in lithium-ion batteries after gelling with an appropriate quantity of Kynar polymer. Since the Li + conducting medium is largely the liquid electrolyte component, the assessment of these solutions as suitable lithium-ion cell candidates were investigated before adding the polymer. Selected electrolyte solutions were then used in the preparation of polymer gels. The specific conductivities of Kynar-based gels were determined as a function of salt concentration and polymer concentration. Optimised self-supporting polymer films, based on mixtures of ethylene carbonate (EC), ethylmethyl carbonate (EMC) and lithium hexafluorophosphate (LiPF 6) or lithium tetrafluoroborate (LiBF 4), showed good high current density cycling performance when used as separators in coke and Li 1- xMn 2O 4 (spinel) half-cells.

  16. Contrasting the Influence of Cationic Amino Acids on the Viscosity and Stability of a Highly Concentrated Monoclonal Antibody.

    PubMed

    Dear, Barton J; Hung, Jessica J; Truskett, Thomas M; Johnston, Keith P

    2017-01-01

    To explain the effects of cationic amino acids and other co-solutes on the viscosity, stability and protein-protein interactions (PPI) of highly concentrated (≥200 mg/ml) monoclonal antibody (mAb) solutions to advance subcutaneous injection. The viscosities of ≥200 mg/ml mAb1 solutions with various co-solutes and pH were measured by capillary rheometry in some cases up to 70,000 s -1 . The viscosities are analyzed in terms of dilute PPI characterized by diffusion interaction parameters (k D ) from dynamic light scattering (DLS). MAb stability was measured by turbidity and size exclusion chromatography (SEC) after 4 weeks of 40°C storage. Viscosity reductions were achieved by reducing the pH, or adding histidine, arginine, imidazole or camphorsulfonic acid, each of which contains a hydrophobic moiety. The addition of inorganic electrolytes or neutral osmolytes only weakly affected viscosity. Systems with reduced viscosities also tended to be Newtonian, while more viscous systems were shear thinning. Viscosity reduction down to 20 cP at 220 mg/ml mAb1 was achieved with co-solutes that are both charged and contain a hydrophobic interaction domain for sufficient binding to the protein surface. These reductions are related to the DLS diffusion interaction parameter, k D , only after normalization to remove the effect of charge screening. Shear rate profiles demonstrate that select co-solutes reduce protein network formation.

  17. Effects of sulfate and nitrate anions on aluminum corrosion in slightly alkaline solution

    NASA Astrophysics Data System (ADS)

    Li, Shengyi; Church, Benjamin C.

    2018-05-01

    The corrosion mechanisms and kinetics of AA1085 in Li2SO4 and LiNO3 aqueous rechargeable lithium-ion battery electrolytes were investigated at pH 11 using chronoamperometry. The corrosion kinetics of AA1085 is controlled by the electrolyte concentration level and the anodic potentials. AA1085 is susceptible to crystallographic pitting corrosion in Li2SO4 electrolytes. The rates of pit nucleation and pit growth both decreased at higher Li2SO4 concentrations or at lower anodic potentials. AA1085 passivates against pitting corrosion in LiNO3 electrolytes due to the formation of a thick, uniform corrosion product layer. The growth rate of the passive film was slightly enhanced by increasing the electrolyte concentration and anodic potentials. X-ray photoelectron spectroscopy spectra showed the formation of a thin sulfate-incorporated passive film on the electrode, which comprises Al2(SO)418H2O, Al(OH)SO4 and Al(OH)3, before the occurrence of pitting growth in 2 M Li2SO4 electrolyte. The thick corrosion product layer formed in 5 M LiNO3 electrolyte was composed of Al(OH)3 and AlOOH. Raman spectroscopy on deionized water, LiOH solution, Li2SO4 and LiNO3 electrolytes depicted changes of solution structure with increasing electrolyte concentration. The influence of extrinsic and intrinsic factors on the corrosion kinetics of AA1085 in Li2SO4 and LiNO3 electrolytes at pH 11 are discussed in detail.

  18. Effect of humic acids on the adsorption of paraquat by goethite.

    PubMed

    Brigante, Maximiliano; Zanini, Graciela; Avena, Marcelo

    2010-12-15

    The adsorption of the herbicide paraquat (PQ(2+)) on goethite and on the binary system humic acid-goethite has been studied in batch experiments by performing adsorption isotherms under different conditions of pH, supporting electrolyte concentration and temperature. The results were completed with capillary electrophoresis (CE) in order to measure the binding isotherm between PQ(2+) and humic acid (HA) molecules in solution. PQ(2+) adsorption is negligible on the bare goethite surface but important on the HA-goethite adsorbent. In this last case, the adsorption increases by increasing pH and decreasing electrolyte concentration. There are no significant effects of temperature on the adsorption. The adsorption takes place by direct binding of PQ(2+) to adsorbed HA molecules leading to the formation of surface species of the type goethite-HA-PQ(2+). The results are consistent with a mechanism where PQ(2+) binds negatively charged groups of HA (carboxylates and phenolates) forming ionic pairs or outer-sphere complexes. Since goethite in nature usually contains adsorbed HA molecules, it may act as a good adsorbent for cationic herbicides. This will not only benefit the deactivation of the herbicides but also reduce their leaching and transport through groundwater. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Electrode effects on temporal changes in electrolyte pH and redox potential for water treatment

    PubMed Central

    Ciblak, Ali; Mao, Xuhui; Padilla, Ingrid; Vesper, Dorothy; Alshawabkeh, Iyad; Alshawabkeh, Akram N.

    2012-01-01

    The performance of electrochemical remediation methods could be optimized by controlling the physicochemical conditions of the electrochemical redox system. The effects of anode type (reactive or inert), current density and electrolyte composition on the temporal changes in pH and redox potential of the electrolyte were evaluated in divided and mixed electrolytes. Two types of electrodes were used: iron as a reactive electrode and mixed metal oxide coated titanium (MMO) as an inert electrode. Electric currents of 15, 30, 45 and 60 mA (37.5 mA L−1, 75 mA L−1, 112.5 mA L−1 and 150 mA L−1) were applied. Solutions of NaCl, Na2SO4 and NaHCO3 were selected to mimic different wastewater or groundwater composition. Iron anodes resulted in highly reducing electrolyte conditions compared to inert anodes. Electrolyte pH was dependent on electrode type, electrolyte composition and current density. The pH of mixed-electrolyte was stable when MMO electrodes were used. When iron electrodes were used, the pH of electrolyte with relatively low current density (37.5 mA L−1) did not show significant changes but the pH increased sharply for relatively high current density (150 mA L−1). Sulfate solution showed more basic and relatively more reducing electrolyte condition compared to bicarbonate and chloride solution. The study shows that a highly reducing environment could be achieved using iron anodes in divided or mixed electrolytes and the pH and redox potential could be optimized by using appropriate current and polarity reversal. PMID:22416866

  20. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  1. True Anomalous Osmosis in Multi-Solute Model Membrane Systems

    PubMed Central

    Grim, Eugene; Sollner, Karl

    1960-01-01

    The transport of liquid across charged porous membranes separating two electrolytic solutions of different composition consists of both a normal and an anomalous osmotic component. Anomalous osmosis does not occur with electroneutral membranes. Thus, with membranes which can be charged and discharged reversibly, normal osmosis can be measured with the membrane in the electroneutral state, and normal together with anomalous osmosis with the membrane in a charged state, the difference between these two effects being the true anomalous osmosis. Data are presented on the osmotic effects across an oxyhemoglobin membrane in the uncharged state at pH 6.75 and in two charged states, positive at pH 4.0 and negative at pH 10.0, in multi-solute systems with 0.2 and 0.4 osmolar solutions of a variety of electrolytes and of glucose against solutions of other solutes of the same, one-half, and twice these osmolarities. In the simpler systems the magnitude of the true anomalous osmosis can be predicted semiquantitatively by reference to appropriate single-solute systems. In isoosmolar systems with two electrolytic solutions the anomalous osmotic flow rates may reach 300 µl./cm.2 hr. and more; systems with electrolytic solutions against solutions of glucose can produce twice this rate. These fluxes are of the same order of magnitude as the liquid transport rates across such living structures as the mucosa of dog gall bladder, ileum, and urinary bladder. PMID:13708691

  2. High power density fuel cell comprising an array of microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopchak, David A; Morse, Jeffrey D; Upadhye, Ravindra S

    2014-05-06

    A phosphoric acid fuel cell according to one embodiment includes an array of microchannels defined by a porous electrolyte support structure extending between bottom and upper support layers, the microchannels including fuel and oxidant microchannels; fuel electrodes formed along some of the microchannels; and air electrodes formed along other of the microchannels. A method of making a phosphoric acid fuel cell according to one embodiment includes etching an array of microchannels in a substrate, thereby forming walls between the microchannels; processing the walls to make the walls porous, thereby forming a porous electrolyte support structure; forming anode electrodes along somemore » of the walls; forming cathode electrodes along other of the walls; and filling the porous electrolyte support structure with a phosphoric acid electrolyte. Additional embodiments are also disclosed.« less

  3. Design of an efficient electrolyte circulation system for the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Thuerk, D.

    The design and operation of an electrolyte circulation system are described. Application of lead acid batteries to electric vehicle and other repetitive deep cycle services produces a nondesirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The stratification problem was overcome by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates.

  4. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method.

    PubMed

    Wong, Y K; Ho, Y H; Leung, H M; Ho, K C; Yau, Y H; Yung, K K L

    2017-04-01

    This article explores the potential of using an electro-coagulation-flotation (ECF) harvester to allow flotation of microalgae cells for surface harvesting. A response surface methodology (RSM) model was used to optimize ECF harvesting by adjusting electrode plate material, electrode plate number, charge of the electrodes, electrolyte concentration, and pH value of the culture solution. The result revealed that three aluminum electrode plates (one anode and two cathodes), brine solution (8 g/L), and acidity (pH = 4) of culture solution (optimized ECF harvester) The highest flocculant concentration was measured at 2966 mg/L after 60 min and showed a 79.8 % increase of flocculation concentration. Such results can provide a basis for designing a large-scale microalgae harvester for commercial use in the future.

  5. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, P.R.

    1983-09-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solution and the supported liquid membranes are arranged to provide a continuous process.

  6. Ionic Liquid as an Effective Additive for Rechargeable Magnesium Batteries

    DOE PAGES

    Pan, Baofei; Lau, Ka -Cheong; Vaughey, John T.; ...

    2017-03-02

    Here, the effect of the addition of an ionic liquid DEME•TFSI to an electrolyte solution of Mg(HMDS) 2-MgCl 2 in THF was studied electrochemically and spectroscopically. Reversible magnesium deposition/dissolution was achieved with the DEME•TFSI-modified electrolyte. This electrolyte shows higher ionic conductivity, and a linear relationship was observed between the ionic conductivity and the concentration of DEME•TFSI in THF solution of Mg(HMDS) 2-MgCl 2. Mg-Mo 6S 8 coin cells have also been successfully cycled using Mg(HMDS) 2-MgCl 2 electrolyte with the addition of DEME•TFSI. Raman and NMR spectroscopy suggest that DEME•TFSI facilitates magnesium deposition/dissolution by improving ionic conductivity of the electrolyte.

  7. Unusual effect of the magnetic field component of the microwave radiation on aqueous electrolyte solutions.

    PubMed

    Horikoshi, Satoshi; Sumi, Takuya; Serpone, Nick

    2012-01-01

    The heating characteristics of aqueous electrolyte solutions (NaCl, KCl, CaCl2, NaBF4, and NaBr) of varying concentrations in ultrapure water by 2.45 GHz microwave radiation from a single-mode resonance microwave device and a semiconductor microwave generator were examined under conditions where the electric field (E-field) was dominant and where the magnetic field (H-field) dominated. Although magnetic field heating is not generally used in microwave chemistry, the electrolyte solutions were heated almost entirely by the microwaves' H-field. The heating rates under H-field irradiation at the higher concentrations of electrolytes (0.125 M to 0.50 M) exceeded the rates under E-field irradiation. This inversion phenomenon in heating is described in terms of the penetration depth of the microwaves. On the other hand, the action of the microwave radiation on ethylene glycol containing an electrolyte differed from that observed for water under E-field and H-field conditions.

  8. Effects of carbohydrate-hydration strategies on glucose metabolism, sprint performance and hydration during a soccer match simulation in recreational players.

    PubMed

    Kingsley, Michael; Penas-Ruiz, Carlos; Terry, Chris; Russell, Mark

    2014-03-01

    This study compared the effects of three carbohydrate-hydration strategies on blood glucose concentration, exercise performance and hydration status throughout simulated soccer match-play. A randomized, double-blind and cross-over study design was employed. After familiarization, 14 recreational soccer players completed the soccer match simulation on three separate occasions. Participants consumed equal volumes of 9.6% carbohydrate-caffeine-electrolyte (∼ 6 mg/kg BW caffeine) solution with carbohydrate-electrolyte gels (H-CHO), 5.6% carbohydrate-electrolyte solution with electrolyte gels (CHO) or electrolyte solution and electrolyte gels (PL). Blood samples were taken at rest, immediately before exercise and every 15 min during exercise (first half: 15, 30, 45 min; second half: 60, 75, 90 min). Supplementation influenced blood glucose concentration (time × treatment interaction: p<0.001); however, none of the supplementation regimes were effective in preventing a drop in blood glucose at 60 min. Mean sprint speed was 3 ± 1% faster in H-CHO when compared with PL (treatment: p=0.047). Supplementation caused a 2.3 ± 0.5% increase in plasma osmolality in H-CHO (p<0.001) without change in CHO or PL. Similarly, mean sodium concentrations were 2.1 ± 0.4% higher in H-CHO when compared with PL (p=0.006). Combining high carbohydrate availability with caffeine resulted in improved sprint performance and elevated blood glucose concentrations throughout the first half and at 90 min of exercise; however, this supplementation strategy negatively influenced hydration status when compared with 5.6% carbohydrate-electrolyte and electrolyte solutions. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. II. Electrodeposition/removal of nickel in a spouted electrochemical reactor

    PubMed Central

    Grimshaw, Pengpeng; Calo, Joseph M.; Shirvanian, Pezhman A.; Hradil, George

    2011-01-01

    An investigation is presented of nickel electrodeposition from acidic solutions in a cylindrical spouted electrochemical reactor. The effects of solution pH, temperature, and applied current on nickel removal/recovery rate, current efficiency, and corrosion rate of deposited nickel on the cathodic particles were explored under galvanostatic operation. Nitrogen sparging was used to decrease the dissolved oxygen concentration in the electrolyte in order to reduce the nickel corrosion rate, thereby increasing the nickel electrowinning rate and current efficiency. A numerical model of electrodeposition, including corrosion and mass transfer in the particulate cathode moving bed, is presented that describes the behavior of the experimental net nickel electrodeposition data quite well. PMID:22039317

  10. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200 °C - A potentiometric and spectrophotometric study

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Bénézeth, Pascale; Schott, Jacques

    2013-11-01

    Carbonic acid ionization and sodium bicarbonate and carbonate ion pair formation constants have been experimentally determined in dilute hydrothermal solutions to 200 °C. Two experimental approaches were applied, potentiometric acid-base titrations at 10-60 °C and spectrophotometric pH measurements using the pH indicators, 2-napthol and 4-nitrophenol, at 25-200 °C. At a given temperature, the first and second ionization constants of carbonic acid (K1, K2) and the ion pair formation constants for NaHCO(aq)(K) and NaCO3-(aq)(K) were simultaneously fitted to the data. Results of this study compare well with previously determined values of K1 and K2. The NaHCO(aq) and NaCO3-(aq) ion pair formation constants vary between 25 and 200 °C having values of logK=-0.18 to 0.58 and logK=1.01 to 2.21, respectively. These ion pairs are weak at low-temperatures but become increasingly important with increasing temperature under neutral to alkaline conditions in moderately dilute to concentrated NaCl solutions, with NaCO3-(aq) predominating over CO32-(aq) in ⩾0.1 M NaCl solution at temperatures above 100 °C. The results demonstrate that NaCl cannot be considered as an inert (non-complexing) electrolyte in aqueous carbon dioxide containing solutions at elevated temperatures.

  11. Selectivity and Sensitivity of Ultrathin Monolayer Electrodes

    NASA Astrophysics Data System (ADS)

    Cheng, Quan

    The objective of this work is to build a molecular architecture on the electrode surface with a well-defined morphology and desirable electrochemical characteristics. The goal is accomplished by means of self-assembly of thioctic acid, a sulfur-terminated organic molecule with a short alkyl chain and a hydrophilic carboxylic headgroup, on a gold electrode. Characterization of the monolayer structure and the electrochemical response of the monolayer electrodes is performed by means of capacitance measurements and voltammetry. Investigation of the capacitance of the self-assembled monolayers provides insight into the macroscopic permeability of the films and reveals that penetration of solvent/ions into the thioctic acid monolayer film occurs extensively. Voltammetric results demonstrate that permselectivity of the monolayer electrode can be obtained as a result of the induced electrostatic interactions between the monolayer interface and the electroactive species. Measurement of the voltammetric response of the redox probes at the monolayers as a function of the electrolyte concentration and composition is used to qualitatively analyze the effect of electrolyte on response. A model describing the role of the interfacial charge in the electrochemical response of the monolayers as a function of the solution composition and surface smoothness is proposed. A strategy is developed to further explore the applications of the monolayer electrodes to control the electrochemical response of the biological molecules such as catecholamines. The ability to control the surface hydrophobicity of the monolayer electrodes through coadsorption of thioctic acid and hexanethiol, to display different electrochemical properties towards biological molecules is tested. The optimum conditions for detection of the biological molecules on the monolayer electrodes are discussed. In order to pursue selective analysis in microenvironments, the thioctic acid monolayer formed on the ultramicroelectrodes (UME) is investigated, demonstrating high permselectivity and high sensitivity of the monolayer modified UMEs. Because of the more effective mass transport to the UMEs, effects of electrolyte on the monolayer response can be characterized facilely. Amperometric pH sensing on the thioctic acid UMEs using a redox mediator is discussed. Finally, the thioctic acid monolayer microelectrode is applied to investigate direct electrochemistry of a redox protein, cytochrome c. A sketch for developing a biosensor via mediation effects using the monolayer assembly is proposed.

  12. The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.

    PubMed

    Smith, Alexander M; Lee, Alpha A; Perkin, Susan

    2016-06-16

    According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.

  13. Highly uniform and monodisperse carbon nanospheres enriched with cobalt-nitrogen active sites as a potential oxygen reduction electrocatalyst

    NASA Astrophysics Data System (ADS)

    Wan, Xing; Wang, Hongjuan; Yu, Hao; Peng, Feng

    2017-04-01

    Uniform cobalt and nitrogen co-doped carbon nanospheres (CoN-CNS) with high specific surface area (865 m2 g-1) have been prepared by a simple but efficient method. The prepared CoN-CNS catalyst exhibits outstanding catalytic performance for the oxygen reduction reaction (ORR) in both alkaline and acidic electrolytes. In alkaline electrolyte, the prepared CoN-CNS has more positive half-wave potential and larger kinetic current density than commercial Pt/C. In acidic electrolyte, CoN-CNS also shows good ORR activity with high electron transfer number, its onset and half-wave potentials are all close to those of commercial carbon supported platinum catalyst (Pt/C). CoN-CNS catalyst shows more superior stability and higher methanol-tolerance than commercial Pt/C both in alkaline and in acidic electrolytes. The potassium thiocyanate-poisoning test further confirms that the cobalt-nitrogen active sites exist in CoN-CNS, which are dominating to endow high ORR catalytic activity in acidic electrolyte. This study develops a new method to prepare non-precious metal catalyst with excellent ORR performances for direct methanol fuel cells.

  14. Anomalously enhanced hydration of aqueous electrolyte solution in hydrophobic carbon nanotubes to maintain stability.

    PubMed

    Ohba, Tomonori

    2014-02-24

    An understanding of the structure and behavior of electrolyte solutions in nanoenvironements is crucial not only for a wide variety of applications, but also for the development of physical, chemical, and biological processes. We demonstrate the structure and stability of electrolyte in carbon nanotubes using hybrid reverse Monte Carlo simulations of X-ray diffraction patterns. Hydrogen bonds between water are adequately formed in carbon nanotubes, although some hydrogen bonds are restricted by the interfaces of carbon nanotubes. The hydrogen bonding network of water in electrolyte in the carbon nanotubes is further weakened. On the other hand, formation of the ion hydration shell is significantly enhanced in the electrolyte in the carbon nanotubes in comparison to ion hydration in bulk electrolyte. The significant hydrogen bond and hydration shell formation are a result of gaining stability in the hydrophobic nanoenvironment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Submicroporous/microporous and compatible/incompatible multi-functional dual-layer polymer electrolytes and their interfacial characteristics with lithium metal anode

    NASA Astrophysics Data System (ADS)

    Lee, Young-Gi; Kyhm, Kwangseuk; Choi, Nam-Soon; Ryu, Kwang Sun

    A novel multi-functional dual-layer polymer electrolyte was prepared by impregnating the interconnected pores with an ethylene carbonate (EC)/dimethyl carbonate (DMC)/lithium hexafluorophosphate (LiPF 6) solution. An incompatible layer is based on a microporous polyethylene (PE) and a compatible layer, based on a poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) is sub-microporous and compatible with an electrolyte solution. The Li electrode/the dual-layer polymer electrolyte/Li[Ni 0.15Li 0.23M n0.62]O 2 cell showed stable cycle performance under prolonged cycle number. This behavior is due to the enhanced compatibility between the matrix polymer and the liquid electrolytes within the submicroporous compatible layer, which could lead to a controlled Li + deposition on the Li anode surface by forming homegeneous electrolyte zone near the anode.

  16. Electrolyte and Acid-Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach.

    PubMed

    Jiménez, José Víctor; Carrillo-Pérez, Diego Luis; Rosado-Canto, Rodrigo; García-Juárez, Ignacio; Torre, Aldo; Kershenobich, David; Carrillo-Maravilla, Eduardo

    2017-08-01

    Electrolyte and acid-base disturbances are frequent in patients with end-stage liver disease; the underlying physiopathological mechanisms are often complex and represent a diagnostic and therapeutic challenge to the physician. Usually, these disorders do not develop in compensated cirrhotic patients, but with the onset of the classic complications of cirrhosis such as ascites, renal failure, spontaneous bacterial peritonitis and variceal bleeding, multiple electrolyte, and acid-base disturbances emerge. Hyponatremia parallels ascites formation and is a well-known trigger of hepatic encephalopathy; its management in this particular population poses a risky challenge due to the high susceptibility of cirrhotic patients to osmotic demyelination. Hypokalemia is common in the setting of cirrhosis: multiple potassium wasting mechanisms both inherent to the disease and resulting from its management make these patients particularly susceptible to potassium depletion even in the setting of normokalemia. Acid-base disturbances range from classical respiratory alkalosis to high anion gap metabolic acidosis, almost comprising the full acid-base spectrum. Because most electrolyte and acid-base disturbances are managed in terms of their underlying trigger factors, a systematic physiopathological approach to their diagnosis and treatment is required.

  17. Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions.

    PubMed

    Brooks, Emily K; Der, Stephanie; Ehrensberger, Mark T

    2016-03-01

    Magnesium (Mg) and its alloys, including Mg-9%Al-1%Zn (AZ91), are biodegradable metals with potential use as temporary orthopedic implants. Invasive orthopedic procedures can provoke an inflammatory response that produces hydrogen peroxide (H2O2) and an acidic environment near the implant. This study assessed the influence of inflammation on both the corrosion and mechanical properties of AZ91. The AZ91 samples in the inflammatory protocol were immersed for three days in a complex biologically relevant electrolyte (AMEM culture media) that contained serum proteins (FBS), 150 mM of H2O2, and was titrated to a pH of 5. The control protocol immersed AZ91 samples in the same biologically relevant electrolyte (AMEM & FBS) but without H2O2 and the acid titration. After 3 days all samples were switched into fresh AMEM & FBS for an additional 3-day immersion. During the initial immersion, inflammatory protocol samples showed increased corrosion rate determined by mass loss testing, increased Mg and Al ion released to solution, and a completely corroded surface morphology as compared to the control protocol. Although corrosion in both protocols slowed once the test electrolyte solution was replaced at 3 days, the samples originally exposed to the simulated inflammatory conditions continued to display enhanced corrosion rates as compared to the control protocol. These lingering effects may indicate the initial inflammatory corrosion processes modified components of the surface oxide and corrosion film or initiated aggressive localized processes that subsequently left the interface more vulnerable to continued enhanced corrosion. The electrochemical properties of the interfaces were also evaluated by EIS, which found that the corrosion characteristics of the AZ91 samples were potentially influenced by the role of intermediate adsorption layer processes. The increased corrosion observed for the inflammatory protocol did not affect the flexural mechanical properties of the AZ91 at any time point assessed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The Interplay of Al and Mg Speciation in Advanced Mg Battery Electrolyte Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    See, Kimberly A.; Chapman, Karena W.; Zhu, Lingyang

    2016-01-13

    Mg batteries are an attractive alternative to Li-based energy storage due to the possibility of higher volumetric capacities with the added advantage of using sustainable materials. A promising emerging electrolyte for Mg batteries is the magnesium aluminum chloride complex (MACC) which shows high Mg electrodeposition and stripping efficiencies and relatively high anodic stabilities. As prepared, MACC is inactive with respect to Mg deposition; however, efficient Mg electrodeposition can be achieved following an electrolytic conditioning process. Through the use of Raman spectroscopy, surface enhanced Raman spectroscopy, 27Al and 35Cl nuclear magnetic resonance spectroscopy, and pair distribution function analysis, we explore themore » active vs inactive complexes in the MACC electrolyte and demonstrate the codependence of Al and Mg speciation. These techniques report on significant changes occurring in the bulk speciation of the conditioned electrolyte relative to the as-prepared solution. Analysis shows that the active Mg complex in conditioned MACC is very likely the [Mg2(μ–Cl)3·6THF]+ complex that is observed in the solid state structure. Additionally, conditioning creates free Cl– in the electrolyte solution, and we suggest the free Cl– adsorbs at the electrode surface to enhance Mg electrodeposition.« less

  19. Molecular Level Structure and Dynamics of Electrolytes Using 17O Nuclear Magnetic Resonance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi

    2017-03-19

    Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directlymore » involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.« less

  20. Control of electrolyte fill to fuel cell stack

    DOEpatents

    Pollack, William

    1982-01-01

    A fuel cell stack which can be operated with cells in a horizontal position so that the fuel cell stack does not have to be taken out of operation when adding an electrolyte such as an acid. Acid is supplied to each matrix in a stack of fuel cells at a uniform, low pressure so that the matrix can either be filled initially or replenished with acid lost in operation of the cell, without exceeding the bubble pressure of the matrix or the flooding pressure of the electrodes on either side of the matrix. Acid control to each cell is achieved by restricting and offsetting the opening of electrolyte fill holes in the matrix relative to openings in the plates which sandwich the matrix and electrodes therebetween.

  1. Confronting Practical Problems for Initiation of On-line Hemodiafiltration Therapy.

    PubMed

    Kim, Yang Wook; Park, Sihyung

    2016-06-01

    Conventional hemodialysis, which is based on the diffusive transport of solutes, is the most widely used renal replacement therapy. It effectively removes small solutes such as urea and corrects fluid, electrolyte and acid-base imbalance. However, solute diffusion coefficients decreased rapidly as molecular size increased. Because of this, middle and large molecules are not removed effectively and clinical problem such as dialysis amyloidosis might occur. Online hemodiafiltration which is combined by diffusive and convective therapies can overcome such problems by removing effectively middle and large solutes. Online hemodiafiltration is safe, very effective, economically affordable, improving session tolerance and may improve the mortality superior to high flux hemodialysis. However, there might be some potential limitations for setting up online hemodiafiltaration. In this article, we review the uremic toxins associated with dialysis, definition of hemodiafiltration, indication and prescription of hemodiafiltration and the limitations of setting up hemodiafiltration.

  2. The radiation enhancement of the sterility assurance levels of sterile fluids — A case study

    NASA Astrophysics Data System (ADS)

    Plessis, T. A. Du.; Rosekilly, I. C.

    1995-02-01

    A study was undertaken to determine the effect of low-dose gamma irradiation on aseptically admixed total parenteral nutrition (TPN) solutions to which large inocula of three test bacterial species, recognised as common contaminants of these products, were added. Attainable SALs of TPN solutions containing test bacteria were subsequently calculated. Results showed that a minimum absorbed radiation dose as low as 1.5 kGy improved the SAL of aseptically prepared TPN solutions from a SAL of 10 -3 to a value of less than 10 -8 for the microorganisms investigated. No measurable changes in amino acid, electrolyte, glucose and lipid components of the solutions were detected up to a dose of 8.3 kGy. Practical experience applying this radiation treatment of TPNs rendered excellent results leading to the routine application of the process in South Africa.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Soowhan; Thomsen, Edwin; Xia, Guanguang

    This paper explores demonstration of an advanced vanadium redox flow battery (VRFB) using a mixed acid (sulfuric and hydrochloric acid) supporting electrolyte in a kW scale. The prototype VRFB is capable of delivering more than 1.1 kW in the whole operation range (15~85% state of charge) at 80 mA/cm2 with high energy efficiency of 82% and energy content of 1.4 kWh. The system has been operated stably without any precipitation even at elevated electrolyte temperatures of > 45°C, while the control tests with the conventional sulfuric acid electrolyte suffered from precipitation after 80 cycles. The mixed acid system enabled operationmore » at elevated temperature (> 40°C), providing unique advantages over the conventional pure sulfate system; 1) high stack energy efficiency due to better kinetics and low electrolyte resistance, 2) low viscosity, resulting in reduced pumping loss, 3) elimination of additional heat exchanger, 4) high system efficiency and 5) simple system design and operation.« less

  4. Electrolyte and acid-base abnormalities associated with purging behaviors.

    PubMed

    Mehler, Philip S; Walsh, Kristine

    2016-03-01

    Eating disorders that are associated with purging behaviors are complicated by frequent blood electrolyte and acid-base abnormalities. Herein, we review the major electrolyte and acid-base abnormalities and their treatment methods. The body of rigorous, eating disorder-specific literature on this topical area is not robust enough to perform a systematic review as defined by PRISMA guidelines. Therefore, a qualitative review of mostly medical literature was conducted. Hypokalemia, hyponatremia, and sodium chloride-responsive metabolic alkalosis are the most common serum changes that occur as a result of purging behaviors. They vary depending on the mode and frequency of purging behaviors. They can all potentially cause dangerous medical complications and are in need of definitive medical treatment. Eating disorders that are associated with purging behaviors are associated with a number of electrolyte and acid-base changes which are complex in their origin, documented to be medically dangerous and this definitive treatment is necessary to help achieve a successful treatment outcome, and in need of definitive treatment as described herein. © 2016 Wiley Periodicals, Inc.

  5. Semi-empirical equation of limiting current for cobalt electrodeposition in the presence of magnetic field and additive electrolyte

    NASA Astrophysics Data System (ADS)

    Sudibyo, Aziz, N.

    2016-02-01

    One of the available methods to solve a roughening in cobalt electrodeposition is magneto electrodeposition (MED) in the presence of additive electrolyte. Semi-empirical equation of limiting current under a magnetic field for cobalt MED in the presence of boric acid as an additive electrolyte was successfully developed. This semi empirical equation shows the effects of the electrode area (A), the concentration of the electro active species (C), the diffusion coefficient of the electro active species (D), the kinematic viscosity of the electrolyte (v), magnetic strength (B) and the number of electrons involved in the redox process (n). The presence of boric acid led to decrease in the limiting current, but the acid was found useful as a buffer to avoid the local pH rise caused by parallel hydrogen evolution reaction (HER).

  6. Effect of Dilute Apple Juice and Preferred Fluids vs Electrolyte Maintenance Solution on Treatment Failure Among Children With Mild Gastroenteritis: A Randomized Clinical Trial.

    PubMed

    Freedman, Stephen B; Willan, Andrew R; Boutis, Kathy; Schuh, Suzanne

    2016-05-10

    Gastroenteritis is a common pediatric illness. Electrolyte maintenance solution is recommended to treat and prevent dehydration. Its advantage in minimally dehydrated children is unproven. To determine if oral hydration with dilute apple juice/preferred fluids is noninferior to electrolyte maintenance solution in children with mild gastroenteritis. Randomized, single-blind noninferiority trial conducted between the months of October and April during the years 2010 to 2015 in a tertiary care pediatric emergency department in Toronto, Ontario, Canada. Study participants were children aged 6 to 60 months with gastroenteritis and minimal dehydration. Participants were randomly assigned to receive color-matched half-strength apple juice/preferred fluids (n=323) or apple-flavored electrolyte maintenance solution (n=324). Oral rehydration therapy followed institutional protocols. After discharge, the half-strength apple juice/preferred fluids group was administered fluids as desired; the electrolyte maintenance solution group replaced losses with electrolyte maintenance solution. The primary outcome was a composite of treatment failure defined by any of the following occurring within 7 days of enrollment: intravenous rehydration, hospitalization, subsequent unscheduled physician encounter, protracted symptoms, crossover, and 3% or more weight loss or significant dehydration at in-person follow-up. Secondary outcomes included intravenous rehydration, hospitalization, and frequency of diarrhea and vomiting. The noninferiority margin was defined as a difference between groups of 7.5% for the primary outcome and was assessed with a 1-sided α=.025. If noninferiority was established, a 1-sided test for superiority was conducted. Among 647 randomized children (mean age, 28.3 months; 331 boys [51.1%]; 441 (68.2%) without evidence of dehydration), 644 (99.5%) completed follow-up. Children who were administered dilute apple juice experienced treatment failure less often than those given electrolyte maintenance solution (16.7% vs 25.0%; difference, -8.3%; 97.5% CI, -∞ to -2.0%; P < .001 for inferiority and P = .006 for superiority). Fewer children administered apple juice/preferred fluids received intravenous rehydration (2.5% vs 9.0%; difference, -6.5%; 99% CI, -11.6% to -1.8%). Hospitalization rates and diarrhea and vomiting frequency were not significantly different between groups. Among children with mild gastroenteritis and minimal dehydration, initial oral hydration with dilute apple juice followed by their preferred fluids, compared with electrolyte maintenance solution, resulted in fewer treatment failures. In many high-income countries, the use of dilute apple juice and preferred fluids as desired may be an appropriate alternative to electrolyte maintenance fluids in children with mild gastroenteritis and minimal dehydration. clinicaltrials.gov Identifier: NCT01185054.

  7. Water-Free Proton-Conducting Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Yen, Shiao-Pin

    2007-01-01

    Poly-4-vinylpyridinebisulfate (P4VPBS) is a polymeric salt that has shown promise as a water-free proton-conducting material (solid electrolyte) suitable for use in membrane/electrode assemblies in fuel cells. Heretofore, proton-conducting membranes in fuel cells have been made from perfluorinated ionomers that cannot conduct protons in the absence of water and, consequently, cannot function at temperatures >100 C. In addition, the stability of perfluorinated ionomers at temperatures >100 C is questionable. However, the performances of fuel cells of the power systems of which they are parts could be improved if operating temperatures could be raised above 140 C. What is needed to make this possible is a solid-electrolyte material, such as P4VPBS, that can be cast into membranes and that both retains proton conductivity and remains stable in the desired higher operating temperature range. A family of solid-electrolyte materials different from P4VPBS was described in Anhydrous Proton-Conducting Membranes for Fuel Cells (NPO-30493), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), page 48. Those materials notably include polymeric quaternized amine salts. If molecules of such a polymeric salt could be endowed with flexible chain structures, it would be possible to overcome the deficiencies of simple organic amine salts that must melt before being able to conduct protons. However, no polymeric quaternized amine salts have yet shown to be useful in this respect. The present solid electrolyte is made by quaternizing the linear polymer poly- 4-vinylpyridine (P4VP) to obtain P4VPBS. It is important to start with P4VP having a molecular weight of 160,000 daltons because P4VPBS made from lower-molecular-weight P4VP yields brittle membranes. In an experimental synthesis, P4VP was dissolved in methanol and then reacted with an excess of sulfuric acid to precipitate P4VPBS. The precipitate was recovered, washed several times with methanol to remove traces of acid, and dried to a white granular solid. In another synthesis, nanoparticles of silica rich with surface hydroxyl groups were added to P4VP in methanol solution, which was then reacted with excess sulfuric acid to precipitate granules of a composite that most probably had the composition (P4VPBS)-SiO2-SiO(HSO4)2. The granular P4VPBS produced in the first-mentioned synthesis was dissolved in water to make a glue-like, turbid solution; the granular P4VPBS/silica composite produced in the second-mentioned synthesis was mixed with water to make a turbid, glue-like suspension. The proportions of polymer salt to water in such preparations can be varied; it was found that approximately equal parts of water and polymer salt yield a solution or suspension amenable to further processing.

  8. Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV-Vis Spectroscopy.

    PubMed

    Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron

    2018-04-04

    Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.

  9. Nickel cobalt phosphorous low stress electroplating

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E. (Inventor); Ramsey, Brian D. (Inventor)

    2002-01-01

    An electrolytic plating process is provided for electrodepositing a nickel or nickel cobalt alloy which contains at least about 2% to 25% by atomic volume of phosphorous. The process solutions contains nickel and optionally cobalt sulfate, hypophosphorous acid or a salt thereof, boric acid or a salt thereof, a monodentate organic acid or a salt thereof, and a multidentate organic acid or a salt thereof. The pH of the plating bath is from about 3.0 to about 4.5. An electroplating process is also provided which includes electroplating from the bath a nickel or nickel cobalt phosphorous alloy. This process can achieve a deposit with high microyield of at least about 84 kg/mm.sup.2 (120 ksi) and a density lower than pure nickel of about 8.0 gm/cc. This process can be used to plate a deposit of essentially zero stress at plating temperatures from ambient to 70.degree. C.

  10. Chromatographic resolution of a salt into its parent acid and base constituents.

    PubMed

    Davankov, Vadim; Tsyurupa, Maria

    2006-12-08

    Based on the results of the earlier proposed process of separation of mixtures of mineral electrolytes by size-exclusion chromatography (SEC), it has been suggested that a mineral salt must spontaneously resolve, at least partially, into its parent acid and base constituents, provided that the separating media discriminates the anion and cation of the salt according to their size. Indeed, migration of a zone of an aqueous salt solution through a bed of neutral nanoporous hypercrosslinked polystyrene-type packing was shown to result in the generation of acidic and alkaline effluent fractions. The principle of spontaneous salt resolution has been extended to other types of discriminating interactions between the stationary phase and the two ions of the salt. The idea was exemplified by the resolution of ammonium acetate, due to hydrophobic retention of the acetate, into fractions enriched in ammoniac and then acetic acid.

  11. Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution.

    PubMed

    See, Kimberly A; Liu, Yao-Min; Ha, Yeyoung; Barile, Christopher J; Gewirth, Andrew A

    2017-10-18

    Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl 2 and AlCl 3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg 2 (μ-Cl) 3 ·6THF] + in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm -1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C 3v symmetric [Mg 2 (μ-Cl) 3 ·6THF] + . The 210 cm -1 mode is present in many electrolytes containing MgCl 2 , so its assignment is of broad interest to the Mg electrolyte community.

  12. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2017-08-25

    Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Sol-Gel Electrolytes Incorporated by Lanthanide Luminescent Materials and Their Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Yu, Chufang; Zhang, Zhengyang; Fu, Meizhen; Gao, Jinwei; Zheng, Yuhui

    2017-10-01

    A group of silica gel electrolytes with lanthanide luminescent hybrid materials were assembled and investigated. Photophysical studies showed that terbium and europium hybrids displayed characteristic green and red emissions within the electrolytes. The influence of different concentration of the lanthanide hybrids on the electrochemical behavior of a gelled electrolyte valve-regulated lead-acid battery were studied through cyclic voltammograms, electrochemical impedance spectroscopy, water holding experiments and mobility tests. The morphology and particle size were analyzed by scanning electron microscopy. The results proved that lanthanide (Tb3+/Eu3+) luminescent materials are effective additives which will significantly improve the electrochemical properties of lead-acid batteries.

  14. Probing pH difference between micellar solution and nanoscale water within common black film by fluorescent dye

    NASA Astrophysics Data System (ADS)

    Fu, Jingni; Zhang, Luning

    2018-03-01

    The protonation/deprotonation equilibrium of a fluorescent pH probe (carboxy-seminaphthorhodafluor-1, SNARF-1) within the nanoscale water layer confined in common black films (CBFs) has been studied. We find that SNARF-1 molecules feel a more acidic environment in CBFs than when they are in the bulk micellar solution, using the base/acid peak area ratio of the dye to indicate its microenvironment pH. Three surfactants are used to study the dependence of the pH drop versus charge: cationic (cetyltrimethylammonium bromide, CTAB), anionic (sodium dodecylsulphate, SDS) and nonionic (Triton X-100) species. The decrease of CBFs pH versus the pH of the micellar solution is the following: ΔpH ≈ 1.5 for CTAB (pH: 7.0-9.0), ΔpH ≈ 0.8 for SDS, and ΔpH ≈ 0.4 for Triton X-100. With the addition of electrolyte in CBFs, we observe large decrease the amplitude of the pH anomaly, thus suggesting an electrostatic origin of the pH change at nanoscale environment.

  15. Porous aluminum room temperature anodizing process in a fluorinated-oxalic acid solution

    NASA Astrophysics Data System (ADS)

    Dhahri, S.; Fazio, E.; Barreca, F.; Neri, F.; Ezzaouia, H.

    2016-08-01

    Anodizing of aluminum is used for producing porous insulating films suitable for different applications in electronics and microelectronics. Porous-type aluminum films are most simply realized by galvanostatic anodizing in aqueous acidic solutions. The improvement in application of anodizing technique is associated with a substantial reduction of the anodizing voltage at appropriate current densities as well as to the possibility to carry out the synthesis process at room temperature in order to obtain a self-planarizing dielectric material incorporated in array of super-narrow metal lines. In this work, the anodizing of aluminum to obtain porous oxide was carried out, at room temperature, on three different substrates (glass, stainless steel and aluminum), using an oxalic acid-based electrolyte with the addition of a relatively low amount of 0.4 % of HF. Different surface morphologies, from nearly spherical to larger porous nanostructures with smooth edges, were observed by means of scanning electron microscopy. These evidences are explained by considering the formation, transport and adsorption of the fluorine species which react with the Al3+ ions. The behavior is also influenced by the nature of the original substrate.

  16. Four-electron transfer tandem tetracyanoquinodimethane for cathode-active material in lithium secondary battery

    NASA Astrophysics Data System (ADS)

    Kurimoto, Naoya; Omoda, Ryo; Mizumo, Tomonobu; Ito, Seitaro; Aihara, Yuichi; Itoh, Takahito

    2018-02-01

    Quinoid compounds are important candidates of organic active materials for lithium-ion batteries. However, its high solubility to organic electrolyte solutions and low redox potential are known as their major drawbacks. To circumvent these issues, we have designed and synthesized a tandem-tetracyanoquinonedimethane type cathode-active material, 11,11,12,12,13,13,14,14-octacyano-1,4,5,8-anthradiquinotetramethane (OCNAQ), that has four redox sites per molecule, high redox potential and suppressed solubility to electrolyte solution. Synthesized OCNAQ has been found to have two-step redox reactions by cyclic voltammetry, and each step consists of two-electron reactions. During charge-discharge tests using selected organic cathode-active materials with a lithium metal anode, the cell voltages obtained from OCNAQ are higher than those for 11,11-dicyanoanthraquinone methide (AQM) as expected, due to the strong electron-withdrawing effect of the cyano groups. Unfortunately, even with the use of the organic active material, the issue of dissolution to the electrolyte solution cannot be suppressed completely; however, appropriate choice of the electrolyte solutions, glyme-based electrolyte solutions in this study, give considerable improvement of the cycle retention (98% and 56% at 10 and 100 cycles at 0.5C, respectively). The specific capacity and energy density obtained in this study are 206 mAh g-1 and 554 mWh g-1 with respect to the cathode active material.

  17. DNA hydrogel-based supercapacitors operating in physiological fluids

    PubMed Central

    Hur, Jaehyun; Im, Kyuhyun; Hwang, Sekyu; Choi, ByoungLyong; Kim, Sungjee; Hwang, Sungwoo; Park, Nokyoung; Kim, Kinam

    2013-01-01

    DNA nanostructures have been attractive due to their structural properties resulting in many important breakthroughs especially in controlled assemblies and many biological applications. Here, we report a unique energy storage device which is a supercapacitor that uses nanostructured DNA hydrogel (Dgel) as a template and layer-by-layer (LBL)-deposited polyelectrolyte multilayers (PEMs) as conductors. Our device, named as PEM-Dgel supercapacitor, showed excellent performance in direct contact with physiological fluids such as artificial urine and phosphate buffered saline without any need of additional electrolytes, and exhibited almost no cytotoxicity during cycling tests in cell culture medium. Moreover, we demonstrated that the PEM-Dgel supercapacitor has greater charge-discharge cycling stability in physiological fluids than highly concentrated acid electrolyte solution which is normally used for supercapacitor operation. These conceptually new supercapacitors have the potential to be a platform technology for the creation of implantable energy storage devices for packageless applications directly utilizing biofluids. PMID:23412432

  18. Flexible, Low-Cost Sensor Based on Electrolyte Gated Carbon Nanotube Field Effect Transistor for Organo-Phosphate Detection

    PubMed Central

    Bhatt, Vijay Deep; Joshi, Saumya; Becherer, Markus; Lugli, Paolo

    2017-01-01

    A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 μA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection. PMID:28524071

  19. Strategies for hydration and energy provision during soccer-specific exercise.

    PubMed

    Clarke, N D; Drust, B; MacLaren, D P M; Reilly, T

    2005-12-01

    The aim of the present study was to investigate the effect of manipulating the provision of sports drink during soccer-specific exercise on metabolism and performance. Soccer players (N = 12) performed a soccer-specific protocol on three occasions. On two, 7 mL/kg carbohydrate-electrolyte (CHOv) or placebo (PLA) solutions were ingested at 0 and 45 min. On a third, the same total volume of carbohydrate-electrolyte was consumed (CHOf) in smaller volumes at 0, 15, 30, 45, 60, and 75 min. Plasma glucose, glycerol, non-esterified free fatty acids (NEFA), cortisol, and CHO oxidation were not significantly different between CHOv and CHOf (P > 0.05). Sprint power was not significantly affected (P > 0.05) by the experimental trials. This study demonstrates when the total volume of carbohydrate consumed is equal, manipulating the timing and volume of ingestion elicits similar metabolic responses without affecting exercise performance.

  20. Formation and Entrapment of Tris(8-hydroxyquinoline)aluminum from 8-Hydroxyquinoline in Anodic Porous Alumina

    PubMed Central

    Yamaguchi, Shohei; Matsui, Kazunori

    2016-01-01

    The formation and entrapment of tris(8-hydroxyquinoline)aluminum (Alq3) molecules on the surface of anodic porous alumina (APA) immersed in an ethanol solution of 8-hydroxyquinoline (HQ) were investigated by absorption, fluorescence, and Raman spectroscopies. The effects of the selected APA preparation conditions (galvanostatic or potentiostatic anodization method, anodizing current and voltage values, one- or two-step anodizing process, and sulfuric acid electrolyte concentration) on the adsorption and desorption of Alq3 species were examined. Among the listed parameters, sulfuric acid concentration was the most important factor in determining the Alq3 adsorption characteristics. The Alq3 content measured after desorption under galvanostatic conditions was 2.5 times larger than that obtained under potentiostatic ones, regardless of the adsorbed quantities. The obtained results suggest the existence of at least two types of adsorption sites on the APA surface characterized by different magnitudes of the Alq3 bonding strength. The related fluorescence spectra contained two peaks at wavelengths of 480 and 505 nm, which could be attributed to isolated Alq3 species inside nanovoids and aggregated Alq3 clusters in the pores of APA, respectively. The former species were attached to the adsorption sites with higher binding energies, whereas the latter ones were bound to the APA surface more weakly. Similar results were obtained for the Alq3 species formed from the HQ solution, which quantitatively exceeded the number of the Alq3 species adsorbed from the Alq3 solution. Alq3 molecules were formed in the HQ solution during the reaction of HQ molecules with the Al3+ ions in the oxide dissolution zone near the oxide/electrolyte interface through the cracks and the Al3+ ions adsorbed on surface of pore and cracks. In addition, it was suggested that HQ molecules could penetrate the nanovoids more easily than Alq3 species because of their smaller sizes, which resulted in higher magnitudes of the adsorption. PMID:28773840

  1. Electrolytic dissolver

    DOEpatents

    Wheelwright, E.J.; Fox, R.D.

    1975-08-26

    This patent related to an electrolytic dissolver wherein dissolution occurs by solution contact including a vessel of electrically insulative material, a fixed first electrode, a movable second electrode, means for insulating the electrodes from the material to be dissolved while permitting a free flow of electrolyte therebetween, means for passing a direct current between the electrodes and means for circulating electrolyte through the dissolver. (auth)

  2. Electrolyte vapor condenser

    DOEpatents

    Sederquist, Richard A.; Szydlowski, Donald F.; Sawyer, Richard D.

    1983-01-01

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  3. Electrolyte vapor condenser

    DOEpatents

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  4. Modeling CO{sub 2} and H{sub 2}S solubility in MDEA and DEA: Design implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochelle, G.T.; Posey, M.

    1996-12-31

    The solubility of H{sub 2}S and CO{sub 2} in aqueous alkanolamines affects solution capacity and the required circulation rate for acid gas absorption. These thermodynamics also determine the relationship of steam rate and the lean loading of the solution which in turn sets the leak of acid gas from the top of the absorber. Finally, the mechanisms of mass transfer and the role of kinetics, especially in stripping, depend on the vapor/liquid equilibria. Published measurements of CO{sub 2} and H{sub 2}S solubility in methyldiethanolamine (MDEA) and diethanolamine (DEA) are not in general agreement, especially at low loading of acid gas.more » The available sets of solubility data have been regressed with the AspenPlus electrolyte/NRTL model. All of the parameters and constants that make up this model have been carefully evaluated. Independent thermodynamic data such as freezing point and heat of mixing have been included in the regression to strengthen the estimates of model parameters. The parameters for each set of solubility data have been evaluated in an attempt to determine which set is correct. Each evaluated model has been used to calculate the acid gas capacity and minimum stripping steam rate for several industrial cases of acid gas absorption/stripping.« less

  5. The Role of Electrolyte Upon the SEI Formation Characteristics and Low Temperature Performance of Lithium-Ion Cells With Graphite Anodes

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Greenbaum, S.; Surampudi, S.

    2000-01-01

    Quarternary lithium-ion battery electrolyte solutions containing ester co-solvents in mixtures of carbonates have been demonstrated to have high conductivity at low temperatures (< -20C). However, in some cases the presence of such co-solvents does not directly translate into improved low temperature cell performance, presumably due to the formation of ionically resistive surface films on carbonaceous anodes. In order to understand this behavior, a number of lithium-graphite cells have been studied containing electrolytes with various ester co-solvents, including methyl acetate (MA), ethyl acetate (EA), ethyl propionate (EP), and ethyl butyrate (EB). The charge/discharge characterization of these cells indicates that the higher molecular weight esters result in electrolytes which possess superior low temperature performance in contrast to the lower molecular weight ester-containing solutions, even though these solutions display lower conductivity values.

  6. Can oral rehydration solution be safely flavored at home?

    PubMed

    Nijssen-Jordan, C

    1997-12-01

    To determine the concentration of sodium, potassium, glucose, and osmolality of oral rehydration solutions (ORS) which have been flavored with varying amounts of unsweetened Kool-Aid powder, Jell-O powder, apple juice, or orange juice. Descriptive. Alberta Children's Hospital Chemistry Laboratory. None. Addition of varying amounts of flavoring easily available in all households to commercially available unsweetened ORS. Concentrations of electrolytes, glucose, and osmolality. Addition of fruit juices or flavor powders to commercially produced ORS does alter the electrolyte content and osmolality. When limited amounts of flavoring or juice is added, the osmolality of the solution approaches iso-osmolality. Small amounts of unsweetened Kool-Aid powder, Jell-O powder, and apple or orange juice can be added to oral rehydration solutions without significantly altering electrolyte composition and osmolality.

  7. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    NASA Astrophysics Data System (ADS)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  8. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    PubMed

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  9. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate.

    PubMed

    Chen, Wen-Shing; Huang, Chi-Pin

    2015-04-01

    Oxidative degradation of aniline in aqueous solution was carried out by coupling electrolysis with persulfate oxidation, in which a synergistic effect occurred. Experiments were performed under a batch-wise mode to evaluate the influence of various operation parameters on the electrolytic behavior, such as acidity of aqueous solution, temperature, electrode potential, persulfate anion concentration and nitrogen/oxygen gas dosage. The aniline pollutants could be almost entirely mineralized by means of electro-activated persulfate oxidation, wherein sulfate radicals were presumed to be principal oxidizing agents. Besides, electrogenerated hydrogen peroxide originated from cathodic reduction of oxygen, supplied chiefly by anodic oxidation of water, would contribute partially for decomposition of aniline. On the whole, the electro-activated persulfate process is a very promising method for treatment of aniline in wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High-performance liquid chromatography of quinoidal imminium compounds derived from triphenylmethanes

    USGS Publications Warehouse

    Abidi, S.L.

    1983-01-01

    A series of eleven p-aminotriphenylmethane dyes have been studied by high-performance liquid chromatography (HPLC). The combined use of HPLC and spectrophotometry permits specific detection of these compounds in the visible range around 600 nm. As the high affinity of the imminium cations for the active sites of the hydrocarbonaceous stationary phase has presented difficulties for reversed-phase HPLC with pure solvents, organic electrolytes were added to the mobile phase to facilitate the elution of the components with improved selectivity, sensitivity (minimum detection limit, 0.1 μg/ml), and peak symmetry. The effects of chromatographic variables on the component retentivity were investigated. Retention times of the dye analytes decreased with increasing concentration of the added ionic reagent and with decreasing number of the hydrophobic alkyl substituents on the nitrogen atom. The influence of pH on the retention parameters appears to parallel that observed previously for cationic quaternary ammonium compounds. Among the acidic reagents employed, naphthalenesulfonic acid yielded the most satisfactory results. The use of binary electrolyte systems invariably improved the chromatographic behavior of the imminium solutes analyzed. Results obtained with two different octadecylsilica columns have been compared.

  11. Potential of Zero Charge and Its Temperature Derivative for Au(111) Electrode|Alkanethiol SAM|1.0 M Aqueous Electrolyte Solution Interfaces: Impact of Electrolyte Solution Ionic Strength and Its Effect on the Structure of the Modified Electrode|Electrolyte Solution Interface

    DOE PAGES

    Smalley, John F.

    2017-04-06

    In this study, we demonstrate how small and rapid temperature perturbations (produced by the indirect laser-induced temperature jump (ILIT) technique) of solid metal electrode|electrolyte solution interfaces may be used to determine the potential of zero (total) charge (E pzc) and its temperature derivativemore » $$\\left(\\frac{dEpzc}{dT}\\right)$$ of Au(111) electrode surfaces modified by alkanethiol self-assembled monolayers in contact with high ionic strength (i.e., 1.0 M) aqueous electrolyte solutions. The E pzc’s measured for two different types of SAMs (made from either HS(CH 2) n-1CH 3 (5 ≤ n ≤ 12, E pzc = -(0.99 ± 0.12) V vs SSCE) or HS(CH 2) nOH (3 ≤ n ≤ 16, E pzc = (0.46 ± 0.22) V vs SSCE)) are considerably different than those measured previously at much lower electrolyte solution ionic strengths. For mixed monolayers made from both HS(CH 2) n-1CH 3 and HS(CH 2) nFc (where Fc refers to ferrocene), the difference in Epzc decreases as a function of the surface concentration of the Fc moiety (i.e., [Fc]), and it completely disappears at a surprisingly small [Fc] (~4.0 × 10 –11 mol cm –2). These observations for the Au(111)|hydrophobic (neat and mixed) SAM|aqueous electrolyte solution interfaces, along with the surface potentials (g Sml(dip)) evaluated for the contacting electrolyte solution surfaces of these interfaces, are consistent with a structure for the water molecule components of these surfaces where there is a net orientation of the dipoles of these molecules. Accordingly, the negative (oxygen) ends of these molecules point toward the SAM surface. The positive values of g Sml(dip) evaluated for hydrophilic SAM (e.g., made from HS(CH 2) nOH)|aqueous electrolyte solution interfaces) also indicate that the structure of these interfaces is similar to that of the hydrophobic interfaces. However, g Sml(dip) decreases with increasing ionic strength for the hydrophilic interfaces, while it increases with increasing ionic strength for the hydrophobic interfaces. The data (and calculations) reported in the present work and other studies of hydrophobic (and hydrophilic)|aqueous solution interfaces are as yet insufficient to support a complete explanation for the effects of ionic strength observed in the present study. Nevertheless, an analysis based upon the value of $$\\left(\\frac{dEpzc}{dT}\\right)$$ (= (0.51 ± 0.12) mV/K, essentially the same for SAMs made from both HS(CH 2) n-1CH 3 and HS(CH 2) nOH), determined in the present study provides a further indication that upon formation of the SAM there is a partial charge transfer of electrons from the relevant gold atoms on the Au(111) surface to the sulfur atoms of the alkanethiols.« less

  12. Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi

    2015-05-01

    Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.

  13. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  14. Effect of glycine and glucose on sodium and water absorption in patients with cholera

    PubMed Central

    Nalin, D. R.; Cash, R. A.; Rahman, M.; Yunus, Md.

    1970-01-01

    Electrolyte solutions containing glucose, glycine, or a combination of the two were absorbed sufficiently well from the intestine to supply maintenance fluid and the electrolytes required by cholera patients. Data on net absorption and duration and volume of diarrhoea show that a solution containing both glucose and glycine provides more effective therapy than solutions containing either glucose or glycine alone. PMID:5473608

  15. Conductometry of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Safonova, Lyubov P.; Kolker, Arkadii M.

    1992-09-01

    A review is given of the theories of the electrical conductance of electrolyte solutions of different ionic strengths and concentrations, and of the models of ion association. An analysis is made of the methods for mathematical processing of experimental conductometric data. An account is provided of various theories describing the dependence of the limiting value of the ionic electrical conductance on the properties of the solute and solvent. The bibliography includes 115 references.

  16. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  17. On the Consequences of Clausius-Duhem Inequality for Electrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Reis, Martina; Bassi, Adalberto Bono Maurizio Sacchi

    2014-03-01

    Based on the fundamentals of thermo-statics, non-equilibrium thermodynamics theories frequently employ an entropy inequality, where the entropy flux is collinear to the heat flux, and the entropy supply is proportional to the energy supply. Although this assumption is suitable for many material bodies, e.g. heat-conducting viscous fluids, there is a class of materials for which these assumptions are not valid. By assuming that the entropy flux and the entropy supply are constitutive quantities, in this work it is demonstrated that the entropy flux for a reacting ionic mixture of non-volatile solutes presents a non-collinear term due to the diffusive fluxes. The consequences of the collinearity between the entropy flux and the heat flux, as well as the proportionality of the entropy supply and the energy supply on the stability of chemical systems are also investigated. Furthermore, by considering an electrolyte solution of non-volatile solutes in phase equilibrium with water vapor, and the constitutive nature of the entropy flux, the stability of a vapor-electrolyte solution interface is studied. Despite this work only deals with electrolyte solutions, the results presented can be easily extended to more complex chemical reacting systems. The first author acknowledges financial support from CNPq (National Counsel of Technological and Scientific Development).

  18. Potential Use of Lime as Nitric Acid Source for Alternative Electrolyte Fuel-Cell Method

    NASA Astrophysics Data System (ADS)

    Christianto, V.; Smarandache, Florentin

    2011-04-01

    Despite growing popularity for the use of biofuel and other similar methods to generate renewable energy sources from natural plantation in recent years, there is also growing concern over its disadvantage, i.e. that the energy use of edible plants may cause unwanted effects, because the plantation price tends to increase following the oil price. Therefore an alternative solution to this problem is to find `natural plantation' which have no direct link to `food chain' (for basic foods, such as palm oil etc.).

  19. Method of preparing electrolyte for use in fuel cells

    DOEpatents

    Kinoshita, Kimio; Ackerman, John P.

    1978-01-01

    An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.

  20. Gelled-electrolyte batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  1. Technical trends in industrial lead/acid batteries in Japan

    NASA Astrophysics Data System (ADS)

    Iwata, Masashi; Tagawa, Yahachiro

    1994-02-01

    Although there have been only a few major technological changes in stationary lead/acid batteries in the past, some rapid and remarkable developments have occurred recently. The latter have included the introduction of catalyst plugs and valve-regulated lead/acid batteries (VRBs). Catalyst plugs have been used to avoid water addition with stationary lead/acid batteries. By virtue of their advantages (i.e., the elements retain electrolyte and equalizing charging and water addition are unnecessary), VRBs are being developed up to a maximum capacity of 3000 Ah. These designs have now captured about 50% of the stationary lead/acid battery market. The VRB technology has excellent characteristics, such as plate construction that can accommodate grid growth, explosion-resistant plugs, good discharge characteristics, and minimal electrolyte stratification. In addition, by utilizing the benefits of VRBs, horizontal and multistoried systems can be assembled, though in early stages of development the construction was only for interchangeability with flooded-electrolyte type batteries.

  2. Decontaminating metal surfaces

    DOEpatents

    Childs, E.L.

    1984-01-23

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g., >600 g/1 of NaNO/sub 3/, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH < 6.

  3. Decontaminating metal surfaces

    DOEpatents

    Childs, Everett L.

    1984-11-06

    Radioactively contaminated surfaces can be electrolytically decontaminated with greatly increased efficiencies by using electrolytes containing higher than heretofore conventional amounts of nitrate, e.g.,>600 g/l of NaNO.sub.3, or by using nitrate-containing electrolytes which are acidic, e.g., of a pH<6.

  4. Bubble coalescence suppression driven carbon monoxide (CO)-water mass transfer increase by electrolyte addition in a hollow fiber membrane bioreactor (HFMBR) for microbial CO conversion to ethanol.

    PubMed

    Jang, Nulee; Yasin, Muhammad; Kang, Hyunsoo; Lee, Yeubin; Park, Gwon Woo; Park, Shinyoung; Chang, In Seop

    2018-05-04

    This study investigated the effects of electrolytes (CaCl 2 , K 2 HPO 4 , MgSO 4 , NaCl, and NH 4 Cl) on CO mass transfer and ethanol production in a HFMBR. The hollow fiber membranes (HFM) were found to generate tiny gas bubbles; the bubble coalescence was significantly suppressed in electrolyte solution. The volumetric gas-liquid mass transfer coefficients (k L a) increased up to 414% compared to the control. Saturated CO (C ∗ ) decreased as electrolyte concentrations increased. Overall, the maximum mass transfer rate (R max ) in electrolyte solution ranged from 106% to 339% of the value obtained in water. The electrolyte toxicity on cell growth was tested using Clostridium autoethanogenum. Most electrolytes, except for MgSO 4 , inhibited cell growth. The HFMBR operation using a medium containing 1% MgSO 4 achieved 119% ethanol production compared to that without electrolytes. Finally, a kinetic simulation using the parameters got from the 1% MgSO 4 medium predicted a higher ethanol production compared to the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation.

    PubMed

    Tong, Liuchuan; Chen, Qing; Wong, Andrew A; Gómez-Bombarelli, Rafael; Aspuru-Guzik, Alán; Gordon, Roy G; Aziz, Michael J

    2017-12-06

    Quinone-based aqueous flow batteries provide a potential opportunity for large-scale, low-cost energy storage due to their composition from earth abundant elements, high aqueous solubility, reversible redox kinetics and their chemical tunability such as reduction potential. In an operating flow battery utilizing 9,10-anthraquinone-2,7-disulfonic acid, the aggregation of an oxidized quinone and a reduced hydroquinone to form a quinhydrone dimer causes significant variations from ideal solution behavior and of optical absorption from the Beer-Lambert law. We utilize in situ UV-Vis spectrophotometry to establish (a), quinone, hydroquinone and quinhydrone molar attenuation profiles and (b), an equilibrium constant for formation of the quinhydrone dimer (K QHQ ) ∼ 80 M -1 . We use the molar optical attenuation profiles to identify the total molecular concentration and state of charge at arbitrary mixtures of quinone and hydroquinone. We report density functional theory calculations to support the quinhydrone UV-Vis measurements and to provide insight into the dimerization conformations. We instrument a quinone-bromine flow battery with a Pd-H reference electrode in order to demonstrate how complexation in both the negative (quinone) and positive (bromine) electrolytes directly impacts measured half-cell and full-cell voltages. This work shows how accounting for electrolyte complexation improves the accuracy of electrochemical modeling of flow battery electrolytes.

  6. Bridging Redox Species-Coated Graphene Oxide Sheets to Electrode for Extending Battery Life Using Nanocomposite Electrolyte.

    PubMed

    Huang, Yi Fu; Ruan, Wen Hong; Lin, Dong Ling; Zhang, Ming Qiu

    2017-01-11

    Substituting conventional electrolyte for redox electrolyte has provided a new intriguing method for extending battery life. The efficiency of utilizing the contained redox species (RS) in the redox electrolyte can benefit from increasing the specific surface area of battery electrodes from the electrode side of the electrode-electrolyte interface, but is not limited to that. Herein, a new strategy using nanocomposite electrolyte is proposed to enlarge the interface with the aid of nanoinclusions from the electrolyte side. To do this, graphene oxide (GO) sheets are first dispersed in the electrolyte solution of tungstosilicic salt/lithium sulfate/poly(vinyl alcohol) (SiWLi/Li 2 SO 4 /PVA), and then the sheets are bridged to electrode, after casting and evaporating the solution on the electrode surface. By applying in situ conductive atomic force microscopy and Raman spectra, it is confirmed that the GO sheets doped with RS of SiWLi/Li 2 SO 4 can be bridged and electrically reduced as an extended electrode-electrolyte interface. As a result, the RS-coated GO sheets bridged to LiTi 2 (PO 4 ) 3 //LiMn 2 O 4 battery electrodes are found to deliver extra energy capacity (∼30 mAh/g) with excellent electrochemical cycling stability, which successfully extends the battery life by over 50%.

  7. Acid-base and electrolyte disorders in patients with diabetes mellitus.

    PubMed

    Sotirakopoulos, Nikolaos; Kalogiannidou, Irini; Tersi, Maria; Armentzioiou, Karmen; Sivridis, Dimitrios; Mavromatidis, Konstantinos

    2012-01-01

    Diabetes mellitus is the most common metabolic disorder in the community. The diabetics may suffer from acid-base and electrolyte disorders due to complications of diabetes mellitus and the medication they receive. In this study, acid-base and electrolyte disorders were evaluated among outpatient diabetics in our hospital. The study consisted of patients with diabetes mellitus who visited the hospital as outpatients between the period January 1, 2004 to December 31, 2006. The patients' medical history, age and type of diabetes were noted, including whether they were taking diuretics and calcium channel blockers or not. Serum creatinine, proteins, sodium, potassium and chloride and blood gases were measured in all patients. Proteinuria was measured by 24-h urine collection. Two hundred and ten patients were divided in three groups based on the serum creatinine. Group A consisted of 114 patients that had serum creatinine < 1.2 mg/dL, group B consisted of 69 patients that had serum creatinine ranging from 1.3 to 3 mg/dL and group C consisted of 27 patients with serum creatinine > 3.1 mg/dL. Of the 210 patients, 176 had an acid-base disorder. The most common disorder noted in group A was metabolic alkalosis. In groups B and C, the common disorders were metabolic acidosis and alkalosis, and metabolic acidosis, respectively. The most common electrolyte disorders were hypernatremia (especially in groups A and B), hyponatremia (group C) and hyperkalemia (especially in groups B and C). It is concluded that: (a) in diabetic outpatients, acid-base and electrolyte disorders occurred often even if the renal function is normal, (b) the most common disorders are metabolic alkalosis and metabolic acidosis (the frequency increases with the deterioration of the renal function) and (c) the common electrolyte disorders are hypernatremia and hypokalemia.

  8. Development of device producing electrolyzed water for home care

    NASA Astrophysics Data System (ADS)

    Umimoto, K.; Nagata, S.; Yanagida, J.

    2013-06-01

    When water containing ionic substances is electrolyzed, electrolyzed water with strong bactericidal ability due to the available chlorine(AC) is generated on the anode side. Slightly acidic to neutral electrolyzed water (pH 6.5 to 7.5) is physiological pH and is suitable for biological applications. For producing slightly acidic to neutral electrolyzed water simply, a vertical-type electrolytic tank with an asymmetric structure was made. As a result, a small amount of strongly alkaline water was generated in the upper cathodic small chamber, and a large amount of weakly acidic water generated in the lower anodic large chamber. The pH and AC concentration in solutin mixed with both electrolyzed water were 6.3 and 39.5 ppm, respectively, This solution was slightly acidic to neutral electrolyzed water and had strong bactericidal activity. This device is useful for producing slightly acidic to neutral electrolyzed water as a disinfectant to employ at home care, when considering economic and environmental factors, since it returns to ordinary water after use.

  9. Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, Harry K.; Jove-Colon, Carlos F.

    2009-06-01

    In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species.more » The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.« less

  10. Stresses due to Relative Sliding between Particles Surrounded by an Electrolyte Solution with Application to Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Conlisk, A. T.

    2013-11-01

    Mechanical stresses in the solid phase of the electrodes within lithium-ion batteries have been the subject of much work recently with the emphasis on the stresses induced by lithium insertion to or extraction from the active solid material. The particles within lithium-ion battery electrodes can undergo relative motion with relative velocities of different magnitudes and directions. One mode of the relative motion, resembling the slider bearing motion, manifests itself as two particles sliding relative to each other within an electrolyte solution. The electrolyte solution within the narrow pores between the particles is the medium through which the particles interact with each other. The effect of the electrolyte solution is not conventionally considered. The relative motion of the particles induces significant pressures. The primary objective of this work is to develop a model based on the lubrication approximation to investigate the magnitude and direction of the stresses induced by this sliding motion. Other applications in the biomedical field are also discussed. Supported by DOE Graduate Automotive Technology Education (GATE) and OSU Center for Automotive Research.

  11. The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems.

    PubMed

    Meini, Stefano; Elazari, Ran; Rosenman, Ariel; Garsuch, Arnd; Aurbach, Doron

    2014-03-06

    The development of Li2S electrodes is a crucial step toward industrial manufacturing of Li-S batteries, a promising alternative to Li-ion batteries due to their projected two times higher specific capacity. However, the high voltages needed to activate Li2S electrodes, and the consequent electrolyte solution degradation, represent the main challenge. We present a novel concept that could make feasible the widespread application of Li2S electrodes for Li-S cell assembly. In this concept, the addition of redox mediators as additives to the standard electrolyte solution allows us to recover most of Li2S theoretical capacity in the activation cycle at potentials as low as 2.9 VLi, substantially lower than the typical potentials >4 VLi needed with standard electrolyte solution. Those novel additives permit us to preserve the electrolyte solution from being degraded, allowing us to achieve capacity as high as 500 mAhg(-1)Li2S after 150 cycles with no major structural optimization of the electrodes.

  12. Pressure-assisted introduction of urine samples into a short capillary for electrophoretic separation with contactless conductivity and UV spectrometry detection.

    PubMed

    Makrlíková, Anna; Opekar, František; Tůma, Petr

    2015-08-01

    A computer-controlled hydrodynamic sample introduction method has been proposed for short-capillary electrophoresis. In the method, the BGE flushes sample from the loop of a six-way sampling valve and is carried to the injection end of the capillary. A short pressure impulse is generated in the electrolyte stream at the time when the sample zone is at the capillary, leading to injection of the sample into the capillary. Then the electrolyte flow is stopped and the separation voltage is turned on. This way of sample introduction does not involve movement of the capillary and both of its ends remain constantly in the solution during both sample injection and separation. The amount of sample introduced to the capillary is controlled by the duration of the pressure pulse. The new sample introduction method was tested in the determination of ammonia, creatinine, uric acid, and hippuric acid in human urine. The determination was performed in a capillary with an overall length of 10.5 cm, in two BGEs with compositions 50 mM MES + 5 mM NaOH (pH 5.1) and 1 M acetic acid + 1.5 mM crown ether 18-crown-6 (pH 2.4). A dual contactless conductivity/UV spectrometric detector was used for the detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. An electrochemical impedance spectroscopy study of polymer electrolyte membrane fuel cells electrocatalyst single wall carbon nanohorns-supported.

    PubMed

    Brandão, Lúcia; Boaventura, Marta; Passeira, Carolina; Gattia, Daniele Mirabile; Marazzi, Renzo; Antisari, Marco Vittori; Mendes, Adélio

    2011-10-01

    Electrochemical impedance spectroscopy (EIS) was used to study the polymer electrolyte membrane fuel cells (PEMFC) performance when using single wall carbon nanohorns (SWNH) to support Pt nanoparticles. Additionally, as-prepared and oxidized SWNH Pt-supports were compared with conventional carbon black. Two different oxidizing treatments were considered: oxygen flow at 500 degrees C and reflux in an acid solution at 85 degrees C. Both oxidizing treatments increased SWNH surface area; oxygen treatment increased surface area 4 times while acid treatment increased 2.6 times. The increase in surface area should be related to the opening access to the inner tube of SWNH. Acid treatment of SWNH increased chemical fragility and decreased electrocatalyst load in comparison with as-prepared SWNH. On the other hand, the oxygen treated SWNH sample allowed to obtain the highest electrocatalyst load. The use of as-prepared and oxygen treated SWNH showed in both cases catalytic activities 60% higher than using conventional carbon black as electrocatalyst support in PEMFC. Moreover, EIS analysis indicated that the major improvement in performance is related to the cathode kinetics in the as-prepared SWNH sample, while concerning the oxidized SWNH sample, the improvements are related to the electrokinetics in both anode and cathode electrodes. These improvements should be related with differences in the hydrophobic character between SWNH and carbon black.

  14. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Högström, Jonas; Fredriksson, Wendy; Edstrom, Kristina; Björefors, Fredrik; Nyholm, Leif; Olsson, Claes-Olof A.

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H2SO4 and acetic acid diluted with 0.02 M Na2B4O7 · 10H2O and 1 M H2O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  15. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery

    DOE PAGES

    Li, Bin; Nie, Zimin; Vijayakumar, M.; ...

    2015-02-24

    Large-scale energy storage systems are crucial for substantial deployment of renewable energy sources. Energy storage systems with high energy density, high safety, and low cost and environmental friendliness are desired. To overcome the major limitations of the current aqueous redox flow battery systems, namely lower energy density (~25 Wh L -1) and presence of strong acids and/or other hazardous, a high energy density aqueous zinc/polyiodide flow battery (ZIB) is designed with near neutral ZnI 2 solutions as catholytes. The energy density of ZIB could reach 322 Wh L -1 at the solubility limit of ZnI 2 in water (~7 M).more » We demonstrate charge and discharge energy densities of 245.9 Wh/L and 166.7 Wh L-1 with ZnI 2 electrolyte at 5.0 M, respectively. The addition of ethanol (EtOH) in ZnI 2 electrolyte can effectively mitigate the growth of zinc dendrite at the anode and improve the stability of catholytes with wider temperature window (-20 to 50°C), which enable ZIB system to be a promising alternative as a high-energy and high- safety stationary energy storage system.« less

  16. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers

    PubMed Central

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-01-01

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180o. PMID:26846891

  17. Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers.

    PubMed

    Lee, Hyena; Kim, Jungnam; Kim, Hwajeong; Kim, Youngkyoo

    2016-02-05

    We demonstrate strong photo-amplification effects in flexible organic capacitors which consist of small molecular solid-state electrolyte layers sandwiched between light-sensitive conjugated polymer nanolayers. The small molecular electrolyte layers were prepared from aqueous solutions of tris(8-hydroxyquinoline-5-sulfonic acid) aluminum (ALQSA3), while poly(3-hexylthiophene) (P3HT) was employed as the light-sensitive polymer nanolayer that is spin-coated on the indium-tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) film substrates. The resulting capacitors feature a multilayer device structure of PET/ITO/P3HT/ALQSA3/P3HT/ITO/PET, which were mechanically robust due to good adhesion between the ALQSA3 layers and the P3HT nanolayers. Results showed that the specific capacitance was increased by ca. 3-fold when a white light was illuminated to the flexible organic multilayer capacitors. In particular, the capacity of charge storage was remarkably (ca. 250-fold) enhanced by a white light illumination in the potentiostatic charge/discharge operation, and the photo-amplification functions were well maintained even after bending for 300 times at a bending angle of 180(°).

  18. In situ formation of leak-free polyethylene glycol (PEG) membranes in microfluidic fuel cells.

    PubMed

    Ho, W F; Lim, K M; Yang, K-L

    2016-11-29

    Membraneless microfluidic fuel cells operated under two co-laminar flows often face serious fuel cross-over problems, especially when flow rates are close to zero. In this study, we show that polyethylene glycol (PEG) monomers can be cross-linked inside microfluidic channels to form leak-free PEG membranes, which prevent mixing of two incompatible electrolyte solutions while allowing diffusion of certain molecules (e.g. glucose) and ions. By using PEG monomers of different molecular weights and cross-linking conditions, we are able to tailor selectivity of the membrane to allow passage of glucose while blocking larger molecules such as trypan blue. As a proof of principle, a microfluidic fuel cell with a PEG membrane and two incompatible electrolytes (acid and base) is demonstrated. Thanks to the leak-free nature of the PEG membrane, these two electrolytes do not mix together even at very slow flow rates. This microfluidic fuel cell is able to generate a voltage up to ∼450 mV from 10 mM of glucose with a flow rate of 20 μL min -1 . This microfluidic fuel cell is potentially useful as a miniature power source for many applications.

  19. Electrochemical deposited nickel nanowires: influence of deposition bath temperature on the morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.

    2017-10-01

    This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.

  20. Characterization of Nanocrystalline Nickel-Cobalt Alloys Synthesized by Direct and Pulse Electrodeposition

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Saidi, A.; Ahmadian, M.; Raeissi, K.

    2014-01-01

    Nanocrystalline Ni-Co alloys are electrodeposited by direct (DC) and pulse current (PC) in an electrolyte solution which consisted of nickel sulfate, cobalt sulfate and boric acid. Electrodeposition parameters including current density, electrolyte pH and pulse times in a single electrolyte bath were changed. XRD pattern showed that the structure of the alloys depends on Co content and the synthesis parameter and changed from single phase structure (fcc) to dual phase structure (fcc + hcp). The Co content in the deposited alloys declined from 70 at.% to 50 at.% by increasing in direct current from 70 mA/cm2 to 115 mA/cm2 and also decreased from 75 at.% to 33 at.% with decrease in pH values from 4 to 2. By applying PC the Co content changed from 76 at.% to 41 at.%. Magnetic properties measurements showed the saturation magnetization (Ms) increased with increasing the Co content. There was no significant effect on coercivity values (Hc) with change in Co content and about 40 Oe was obtained for all samples. The grain size of deposited alloys obtained between 24-58 nm and 15-21 nm by applying DC and PC, respectively.

  1. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    NASA Astrophysics Data System (ADS)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  2. Treating Vomiting

    MedlinePlus

    ... those descibed below. Estimated Oral Fluid and Electrolyte Requirements by Body Weight Body Weight (in pounds) Minimum Daily Fluid Requirements (in ounces)* Electrolyte Solution Requirements for Mild Diarrhea ( ...

  3. ELECTROLYTIC SEPARATION PROCESS AND APPARATUS

    DOEpatents

    McLain, M.E. Jr.; Roberts, M.W.

    1962-03-01

    A method is given for dissolving stainless steel-c lad fuel elements in dilute acids such as half normal sulfuric acid. The fuel element is made the anode in a Y-shaped electrolytic cell which has a flowing mercury cathode; the stainless steel elements are entrained in the mercury and stripped therefrom by a continuous process. (AEC)

  4. Effects of Additives on Electrochemical Growth of Cu Film on Co/SiO2/Si Substrate by Alternating Underpotential Deposition of Pb and Surface-Limited Redox Replacement by Cu

    NASA Astrophysics Data System (ADS)

    Fang, J. S.; Lin, L. Y.; Wu, C. L.; Cheng, Y. L.; Chen, G. S.

    2017-11-01

    The effects of additives to an acidic electrolyte for electrochemical deposition of copper film to prevent corrosion of the Co/SiO2/Si substrate have been investigated. A sacrificial Pb layer was formed by underpotential deposition (UPD), then a Cu layer was prepared using surface-limited redox replacement (SLRR) to exchange the UPD-Pb layer in an acidic copper electrolyte with trisodium citrate, sodium perchlorate, and ethylenediamine as additives. The additives significantly affected the replacement of UPD-Pb by Cu and prevented galvanic corrosion of the Co/SiO2/Si substrate in the acidic Cu electrolyte. The results showed that both sodium perchlorate and ethylenediamine reduced the corrosion of the Co substrate and resulted in Cu film with low electrical resistivity. However, residual Pb was present in the Cu film when using trisodium citrate, as the citrate ions slowed copper displacement. The proposed sequential UPD-Pb and SLRR-Cu growth method may enable electrochemical deposition for fabrication of Cu interconnects on Co substrate from acidic Cu electrolyte.

  5. SFG study of platinum electrodes in perchloric acid solutions

    NASA Astrophysics Data System (ADS)

    Zheng, W. Q.; Pluchery, O.; Tadjeddine, A.

    2002-04-01

    Infrared-visible sum-frequency generation (SFG) spectroscopy has been used to study the structure of water molecules (and/or its derivatives OH -, H 3O + etc.) at aqueous electrolyte/electrode interfaces. For Pt(1 1 0) and Pt(1 0 0) electrodes in 0.1 M perchloric acid solution, we did not observe any significant O-H stretching resonance. In striking contrast to the resonant SFG signal, the nonresonant SFG (NRSFG) signal varies sensitively with the applied electrochemical potential, indicating that the interaction of water molecules with platinum electrodes is relatively weak as compared to that of H + and ClO 4- ions. From changes in the NRSFG signal and on the basis of an ionic adsorption model, we can also deduce that the potential of zero charge of Pt(1 1 0) in 0.1 M HClO 4 should be located at about 0.22 V (vs. NHE). This value is in good agreement with that measured recently by electrochemical method.

  6. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    PubMed

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

  7. THE PREPARATION AND STABILITY OF CARRIER-FREE AMALGAMS. Annual Report, June 1960-July 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahn, M.; Hamester, H.L.

    1962-10-31

    Results of investigations concerning the preparation and properties of amalgams of 10.6-hour carrier-free Pb/sup 212/ and the radiocolloidal and adsorptive properties of carrierfree Ag/sup 110/ are reported. Data and discussion related to recovery of Pb/sup 212/ activity from active acetic acidhydroxylamine hydrochloride -potassium bitartrate electrolyte are presented along with similar information on stability and homogeneity of Pb/sup 212/ -Hg amalgams. In work on Ag/sup 110/ the rate of carrier-free Ag adsorption by glass, teflon, polyethylene, and precipitates, and the formation rate of carrier- free radiocolloids was initiated. Data are included on Ag adsorption from nitric acid solutions on pyrex atmore » 3l.8 deg C as a function of reagent concentration and time. Also included are data on adsorption of glass from water, ammonium hydroxide, and sodium carbonate, and from perchloric, hydrochloric, acetic, and sulfuric acid solutions. (J.R.D.)« less

  8. LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reddy, V. Prakash; Prakash, G. K. Syria; Hu, Jinbo; Yan, Ping; Smart, Marshall; Bugga, ratnakumar; Chin, Keith; Surampudi, Subarao

    2008-01-01

    Lithium tetrakis(trifluoromethane sulfo - nato)gallate [abbreviated "LiGa(OTf)4" (wherein "OTf" signifies trifluoro - methanesulfonate)] has been found to be promising as an electrolyte salt for incorporation into both liquid and polymer electrolytes in both rechargeable and non-rechargeable lithium-ion electrochemical cells. This and other ingredients have been investigated in continuing research oriented toward im proving the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. As described in more detail in those articles, lithiumion cells most commonly contain nonaqueous electrolyte solutions consisting of lithium hexafluorophosphate (LiPF6) dissolved in mixtures of cyclic and linear alkyl carbonates, including ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Although such LiPF6-based electrolyte solutions are generally highly ionically conductive and electrochemically stable, as needed for good cell performance, there is interest in identifying alternate lithium electrolyte salts that, relative to LiPF6, are more resilient at high temperature and are less expensive. Experiments have been performed on LiGa(OTf)4 as well as on several other candidate lithium salts in pursuit of this interest. As part of these experiments, LiGa(OTf)4 was synthesized by the reaction of Ga(OTf)3 with an equimolar portion of LiOTf in a solvent consisting of anhydrous acetonitrile. Evaporation of the solvent yielded LiGa(OTf)4 as a colorless crystalline solid. The LiGa(OTf)4 and the other salts were incorporated into solutions with PC and DMC. The resulting electrolyte solutions exhibited reasonably high ionic conductivities over a relatively wide temperature range down to 40 C (see figure). In cyclic voltammetry measurements, LiGa(OTf)4 and the other salts exhibited acceptably high electrochemical stability over the relatively wide potential window of 0 to 5 V versus Li+/Li. 13C nuclear-magneticresonance measurements yielded results that suggested that in comparison with the other candidate salts, LiGa(OTf)4 exhibits less ion pairing. Planned further development will include optimization of the salt and solvent contents of such electrolyte solutions and incorporation of LiGa(OTf)4 into gel and solid-state polymer electrolytes. Of the salts, LiGa(OTf)4 is expected to be especially desirable for incorporation into lithium polymer electrolytes, wherein decreased ion pairing is advantageous and the large delocalized anions can exert a plasticizing effect.

  9. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes.

    PubMed

    Sul, Y T; Johansson, C B; Jeong, Y; Albrektsson, T

    2001-06-01

    Titanium implants have a thin oxide surface layer. The properties of this oxide layer may explain the good biocompatibility of titanium implants. Anodic oxidation results in a thickening of the oxide film, with possible improved biocompatability of anodized implants. The aim of the present study was twofold: (1) firstly, to characterize the growth behaviour of galvanostatically prepared anodic oxide films on commercially pure (c.p.) titanium and (2) secondly, to establish a better understanding of the electroche0mical growth behaviour of anodic oxide on commercially pure titanium (ASTM grade 1) after changes of the electrochemical parameters in acetic acid, phosphoric acid, calcium hydroxide, and sodium hydroxide under galvanostatic anodizing mode. The oxide thickness was measured by Ar sputter etching in Auger Electron spectroscopy (AES) and the colours were estimated by an L*a*b* system (lightness, hue and saturation) using a spectrophotometer. In the first part of our study, it was demonstrated that the interference colours were useful to identify the thickness of titanium oxide. It was also found that the anodic forming voltages with slope (dV/dt) in acid electrolytes were higher than in alkaline electrolytes. Each of the used electrolytes demonstrates an intrinsically specific growth constant (nm/V) in the range of 1.4--2.78 nm/V. In the second part of our study we found, as a general trend, that an increase of electrolyte concentration and electrolyte temperature respectively decreases the anodic forming voltage, the anodic forming rate (nm/s) and the current efficiency (nm.cm(2)/C), while an increase of the current density and the surface area ratio of the anode to cathode increase the anodic forming voltage, the anodic forming rate and the current efficiency. The effects of electrolyte concentration, electrolyte temperature, and agitation speed were explained on the basis of the model of the electrical double layer.

  10. Influence of boric acid (H3BO3) concentration on the physical properties of electrochemical deposited nickel (Ni) nanowires

    NASA Astrophysics Data System (ADS)

    Kananathan, J.; Sofiah, A. G. N.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.

    2017-10-01

    Authors have investigated the influence of the stabilizer (Boric Acid) concentration during the template-assisted electrochemical deposition of Nickel (Ni) nanowires in Anodic Alumina Oxide (AAO) templates. The synthesis was performed using Ni Sulfate Hexahydrate (NiSO4.6H2O) as metal salts and Boric Acid (H3BO3) as a stabilizer. The mixture of both solutions creates electrolyte and utilized for the electrochemical deposition of Ni nanowires. During the experiment, the boric acid concentration varied between 5 g/L, 37.5 g/L and 60 g/L with a deposition temperature of 80 °C (constant). After the electrochemical deposition process, AAO templates were cleaned with distilled water before dissolution in Sodium Hydroxide (NaOH) solution to obtain the freestanding Ni nanowires. Physical properties of the synthesized Ni nanowires were analyzed using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD). The physical properties of obtained Ni nanowires has eloborated by taking into account the effect of boric acid concentration on the surface morphology, growth length, elemental composition and crystal orientation crystal of the synthesized nickel nanowires. The finding exposes that the boric acid concentration does not influence all aspects in the physicals properties of the synthesized Ni nanowires. The boric acid concentration did not affect the surface texture and crystal orientation. However, shorter Ni nanowires obtained as the concentration of boric acid increased.

  11. Scanning drop sensor

    DOEpatents

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  12. Photoelectrodialytic cell

    DOEpatents

    Murphy, George W.

    1983-01-01

    A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment.

  13. Stable dye-sensitized solar cells based on a gel electrolyte with ethyl cellulose as the gelator

    NASA Astrophysics Data System (ADS)

    Vasei, Maryam; Tajabadi, Fariba; Jabbari, Ali; Taghavinia, Nima

    2015-09-01

    A simple gelating process is developed for the conventional acetonitrile-based electrolyte of dye solar cells, based on ethyl cellulose as the gelator. The electrolyte becomes quasi-solid-state upon addition of an ethanolic solution of ethyl cellulose to the conventional acetonitrile-based liquid electrolyte. The photovoltaic conversion efficiency with the new gel electrolyte is only slightly lower than with the liquid electrolyte, e.g., 6.5 % for liquid electrolyte versus 5.9 % for gel electrolyte with 5.8 wt% added ethyl cellulose. Electrolyte gelation has small effect on the ionic diffusion coefficient of iodide, and the devices are remarkably stable for at least 550 h under irradiation at 55 °C.

  14. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    NASA Astrophysics Data System (ADS)

    Ali, Saima; Hannula, Simo-Pekka

    2017-05-01

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO4) solution (Process 1), and ethylene glycol (EG) mixture with HClO4 and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted to nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25-600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m2 g-1 is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes.

  15. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis.

    PubMed

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen

    2017-11-01

    It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.

  16. Durability of the Li 1+xTi 2–xAl x(PO 4) 3 Solid Electrolyte in Lithium–Sulfur Batteries

    DOE PAGES

    Wang, Shaofei; Ding, Yu; Zhou, Guangmin; ...

    2016-10-31

    Adoption of cells with a solid-state electrolyte is a promising solution for eliminating the polysulfide shuttle problem in Li-S batteries. Among the various known lithium-ion conducting solid electrolytes, the sodium superionic conductor (NASICON)-type Li 1+xTi 2-xAl x(PO 4) 3 offers the advantage of good stability under ambient conditions and in contact with air. Accordingly, we present here a comprehensive assessment of the durability of Li 1+xTi 2-xAl x(PO 4) 3 in contact with polysulfide solution and in Li-S cells. Because of its high reduction potential (2.5 V vs Li/Li +), Li 1+xTi 2-xAl x(PO 4) 3 gets lithiated in contactmore » with lithium polysulfide solution and Li 2CO 3 is formed on the particle surface, blocking the interfacial lithium-ion transport between the liquid and solid-state electrolytes. After the lithium insertion into the NASICON framework, the crystal expands in an anisotropic way, weakening the crystal bonds, causing fissures and resultant cracks in the ceramic, corroding the grain boundaries by polysulfide solution, and leaving unfavorable pores. The assembly of pores creates a gateway for polysulfide diffusion from the cathode side to the anode side, causing an abrupt decline in cell performance. Therefore, the solid-state electrolytes need to have good chemical compatibility with both the electrode and electrolyte, long-term stability under harsh chemical environment, and highly stable grain boundaries.« less

  17. The Significance of the Origin of Physical Chemistry for Physical Chemistry Education: The Case of Electrolyte Solution Chemistry

    ERIC Educational Resources Information Center

    de Berg, Kevin Charles

    2014-01-01

    Physical Chemistry's birth was fraught with controversy, a controversy about electrolyte solution chemistry which has much to say about how scientific knowledge originates, matures, and responds to challenges. This has direct implications for the way our students are educated in physical chemistry in particular and science in general. The…

  18. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene

    1995-01-01

    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  19. DNA/RNA sequencing using a semiconducting nanopore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleharty, Mark; Petsev, Dimiter N.; Van Swol, Frank B.

    The present disclosure provides novel apparatus including, though not necessarily limited to, biosensors utilizing semiconductor materials in electrolyte solutions and methods for using the same. The biosensors rely on a unique property wherein a charged body in the electrolyte solution produces a detectable change in the local conductivity of the semiconductor as the body approaches or travels near the semiconductor.

  20. Liquid junction schottky barrier solar cell

    DOEpatents

    Williams, Richard

    1980-01-01

    A mixture of ceric ions (Ce.sup.+4) and cerous ions (Ce.sup.+3) in an aqueous electrolyte solution forms a Schottky barrier at the interface between an active region of silicon and the electrolyte solution. The barrier height obtained for hydrogenated amorphous silicon using the Ce.sup.+4 /Ce.sup.+3 redox couple is about 1.7 eV.

  1. Enhancement in Diffusion of Electrolyte through Membrane Using Ultrasonic Dialysis Equipment with Plane Membrane

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ohdaira, Etsuzo; Ide, Masao

    1995-05-01

    Application of ultrasound to accelerate the dialysis separation of electrolytes through a membrane was studied with ultrasonic dialysis equipment. The experiments were conducted with cellophane membrane and KCl solution, CH3COONa solution, and a mixture of KCl and saponin solutions. It was found that the diffusion velocity of electrolyte through a membrane with ultrasonic irradiation is faster than that without ultrasonic irradiation, and it increases with acoustic pressure. It has become clear that the reasons for enhancement caused by ultrasound are increase in liquid particle velocity and diffusion coefficient due to ultrasonic vibration. It was confirmed that the permeability of the membrane was not degraded by ultrasound in the ranges of acoustic pressure and irradiation time in this study.

  2. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); West, William C. (Inventor); Smart, Marshall C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  3. Photoelectrodialytic cell

    DOEpatents

    Murphy, G.W.

    1983-09-13

    A multicompartment photoelectrodialytic demineralization cell is provided with a buffer compartment interposed between the product compartment and a compartment containing an electrolyte solution. Semipermeable membranes separate the buffer compartment from the product and electrolyte compartments. The buffer compartment is flushed to prevent leakage of the electrolyte compartment from entering the product compartment. 3 figs.

  4. Humic substance charge determination by titration with a flexible cationic polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Tan, Wen-Feng; Norde, Willem; Koopal, Luuk K.

    2011-10-01

    The anionic charge of humic substances (HS) plays a major role in the interaction of HS with other components. Therefore, the potential of the polyelectrolyte titration technique to obtain the charge density of HS in simple 1-1 electrolyte solutions has been investigated. Titrations are carried out with an automatic titrator combined with the "Mütek particle charge detector" which allows determination of the Mütek potential and the pH as a function of the added amount of titrant which is a solution of poly-diallyldimethylammonium chloride (polyDADMAC), a cationic strong polyelectrolyte. When the Mütek potential reverses its sign the iso-electric point (IEP) of the polyDADMAC-HS complex is reached. The polyDADMAC/HS mass ratio at the IEP gives information on the HS charge density and from the pH changes in solution an estimate of the charge regulation in the HS-polyDADMAC complex can be obtained. In general, for polyDADMAC-HS complexes an increase in the dissociation of the acid groups of HS is found (charge regulation). The charge regulation decreases with increasing concentration of 1-1 background electrolyte. Cation incorporation can be neglected at 1-1 electrolyte concentrations ⩽ 1 mmol L -1 and a 1-1 stoichiometry exists between the polyDADMAC and HS charge. However, at these low salt concentrations the charge regulation is substantial. A detailed analysis of purified Aldrich humic acid (PAHA) at pH 5 and a range of KCl concentrations reveals that the anionic charge of PAHA in the complex increases at 5 mmol L -1 KCl by 30% and at 150 mmol L -1 KCl by 12%. On the other hand, increasing amounts of K + become incorporated in the complex: at 5 mmol L -1 KCl 5% and at 150 mmol L -1 KCl 24% of the PAHA charge is balanced by K +. By comparing at pH 5 the mass ratios polyDADMAC/PAHA in the complex at the IEP with the theoretical mass ratios of polyDADMAC/PAHA required to neutralize PAHA in the absence of charge regulation and K + incorporation, it is found that at 50 mmol L -1 KCl the extra negative charge due to the interaction between polyDADMAC and PAHA is just compensated by K + incorporation in the complex. Therefore, a pseudo 1-1 stoichiometry exists at about 50 mmol L -1 1-1 electrolyte concentration and only at this salt concentration polyDADMAC titrations and conventional proton titrations give identical results. Most likely this is also true for other HA samples and other pH values. For FA further study is required to reveal the conditions for which polyDADMAC and proton titrations give identical results.

  5. Titania nanotube powders obtained by rapid breakdown anodization in perchloric acid electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Saima, E-mail: saima.ali@aalto.fi; Hannula, Simo-Pekka

    Titania nanotube (TNT) powders are prepared by rapid break down anodization (RBA) in a 0.1 M perchloric acid (HClO{sub 4}) solution (Process 1), and ethylene glycol (EG) mixture with HClO{sub 4} and water (Process 2). A study of the as-prepared and calcined TNT powders obtained by both processes is implemented to evaluate and compare the morphology, crystal structure, specific surface area, and the composition of the nanotubes. Longer TNTs are formed in Process 1, while comparatively larger pore diameter and wall thickness are obtained for the nanotubes prepared by Process 2. The TNTs obtained by Process 1 are converted tomore » nanorods at 350 °C, while nanotubes obtained by Process 2 preserve tubular morphology till 350 °C. In addition, the TNTs prepared by an aqueous electrolyte have a crystalline structure, whereas the TNTs obtained by Process 2 are amorphous. Samples calcined till 450 °C have XRD peaks from the anatase phase, while the rutile phase appears at 550 °C for the TNTs prepared by both processes. The Raman spectra also show clear anatase peaks for all samples except the as-prepared sample obtained by Process 2, thus supporting the XRD findings. FTIR spectra reveal the presence of O-H groups in the structure for the TNTs obtained by both processes. However, the presence is less prominent for annealed samples. Additionally, TNTs obtained by Process 2 have a carbonaceous impurity present in the structure attributed to the electrolyte used in that process. While a negligible weight loss is typical for TNTs prepared from aqueous electrolytes, a weight loss of 38.6% in the temperature range of 25–600 °C is found for TNTs prepared in EG electrolyte (Process 2). A large specific surface area of 179.2 m{sup 2} g{sup −1} is obtained for TNTs prepared by Process 1, whereas Process 2 produces nanotubes with a lower specific surface area. The difference appears to correspond to the dimensions of the nanotubes obtained by the two processes. - Graphical abstract: Titania nanotube powders prepared by Process 1 and Process 2 have different crystal structure and specific surface area. - Highlights: • Titania nanotube (TNT) powder is prepared in low water organic electrolyte. • Characterization of TNT powders prepared from aqueous and organic electrolyte. • TNTs prepared by Process 1 are crystalline with higher specific surface area. • TNTs obtained by Process 2 have carbonaceous impurities in the structure.« less

  6. Development and Evaluation of a Multimedia e-Learning Resource for Electrolyte and Acid-Base Disorders

    ERIC Educational Resources Information Center

    Davids, Mogamat Razeen; Chikte, Usuf M. E.; Halperin, Mitchell L.

    2011-01-01

    This article reports on the development and evaluation of a Web-based application that provides instruction and hands-on practice in managing electrolyte and acid-base disorders. Our teaching approach, which focuses on concepts rather than details, encourages quantitative analysis and a logical problem-solving approach. Identifying any dangers to…

  7. Analytical calculation of electrolyte water content of a Proton Exchange Membrane Fuel Cell for on-board modelling applications

    NASA Astrophysics Data System (ADS)

    Ferrara, Alessandro; Polverino, Pierpaolo; Pianese, Cesare

    2018-06-01

    This paper proposes an analytical model of the water content of the electrolyte of a Proton Exchange Membrane Fuel Cell. The model is designed by accounting for several simplifying assumptions, which make the model suitable for on-board/online water management applications, while ensuring a good accuracy of the considered phenomena, with respect to advanced numerical solutions. The achieved analytical solution, expressing electrolyte water content, is compared with that obtained by means of a complex numerical approach, used to solve the same mathematical problem. The achieved results show that the mean error is below 5% for electrodes water content values ranging from 2 to 15 (given as boundary conditions), and it does not overcome 0.26% for electrodes water content above 5. These results prove the capability of the solution to correctly model electrolyte water content at any operating condition, aiming at embodiment into more complex frameworks (e.g., cell or stack models), related to fuel cell simulation, monitoring, control, diagnosis and prognosis.

  8. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.

    PubMed

    Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan

    2018-03-01

    The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.

  9. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    NASA Astrophysics Data System (ADS)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  10. Studies on the Electrical Potential Profile across Rabbit Ileum

    PubMed Central

    Rose, Richard C.; Schultz, Stanley G.

    1971-01-01

    When isolated strips of mucosal rabbit ileum are bathed by physiological electrolyte solution the electrical potential difference (PD) across the brush border (ψmc) averages 36 mv, cell interior negative. Rapid replacement of Na in the mucosal solution with less permeant cations, Tris or choline, results in an immediate hyperpolarization of ψmc. Conversely, replacement of choline in the mucosal solution with Na results in an abrupt depolarization of ψmc. These findings indicate that Na contributes to the conductance across the brush border. The presence of actively transported sugars or amino acids in the mucosal solution brings about a marked depolarization of ψmc and a smaller increase in the transmural PD (Δψms). It appears that the Na influx that is coupled to the influxes of amino acids and sugars is electrogenic and responsible for the depolarization of ψmc. Under control conditions Δψms can be attributed to the depolarization of ψmc together with the presence of a low resistance transepithelial shunt, possibly the lateral intercellular spaces. However, quantitatively similar effects of amino acids on ψmc are also seen in tissues poisoned with metabolic inhibitors or ouabain. Under these conditions Δψmc is much smaller than under control conditions. Thus, the depolarization of ψmc might not account for the entire Δψms, observed in nonpoisoned tissue. An additional electromotive force which is directly coupled to metabolic processes might contribute to the normal Δψms. PMID:5576764

  11. Microdialysis of Soil P: A means to mimic root uptake?

    NASA Astrophysics Data System (ADS)

    Schack-Kirschner, Helmer; Demand, Dominic; Lang, Friederike

    2017-04-01

    Standard procedures to assess P availability in soils are based on batch experiments with various extractants. However, in most soils P nutrition is less limited by bulk stocks but by slow diffusion of phosphate through the soil solution. More comparable to the root's approach is to strip phosphate locally from the solid phase by lowering the soil-solution concentration, which can be achieved by establishing an infinite diffusional sink, such as DGT. An alternative diffusive sampling technique is microdialysis (MD), well established in pharmacokinetics. Briefly, this method uses miniaturized flow-through probes where the perfusate gets in diffusive contact to the external solution by a semipermeable membrane. Important aspects of P supply to roots resemble MD sampling. This is not only the mostly diffusive transport, but also an elongated capillary tube-like geometry of absorption. The diameter of typical commercial MD probes is around 500μm. One additional inherent feature of microdialysis is the possibility to release low-molecular substances from the perfusate by diffusion into the matrix, such as carboxylates. However, microdialysis has yet not been used for P in soils. We tested microdialysis in topsoils of an acid beech forest, of an unfertilized grassland and of a fertilized crop site. Three perfusates have been used: 1 mM KNO3, electrolyte + 0.1 mM citric acid, and electrolyte + 1 mM citric acid. We observed rates of uptake into the probes in a range between 1.5*10-15 and 6.7*10-14 mol s-1cm-1 in case of no citrate addition. Surprisingly, these uptake rates were mostly independent of the bulk stocks. Citrate addition increased P yields only in the higher concentration but not in the forest soil. The order of magnitude of MD uptake rates from the soil samples matched root-length related uptake rates from other studies. The micro-radial citrate release in MD reflects the processes controlling phosphate mobilization in the rhizosphere better than measurements based on "flooding" of soil samples with citric acid in batch experiments. Important challenges in MD with phosphate are small volumes of dialysate with extremely low concentrations and a high variability of results due to soil heterogeneity and between-probe variability. We conclude that MD is a promising tool to complement existing P-analytical procedures, especially when spatial aspects or the release of mobilizing substances are in focus.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, M.; Nie, Zimin; Walter, Eric D.

    Redox flow battery (RFB) is a promising candidate for energy storage component in designing resilient grid scale power supply due to the advantage of the separation of power and energy. However, poorly understood chemical and thermal stability issues of electrolytes currently limit the performance of RFB. Designing of high performance stable electrolytes requires comprehensive knowledge about the molecular level solvation structure and dynamics of their redox active species. The molecular level understanding of detrimental V2O5 precipitation process led to successful designing of mixed acid based electrolytes for vanadium redox flow batteries (VRFB). The higher stability of mixed acid based electrolytesmore » is attributed to the choice of hydrochloric acid as optimal co-solvent, which provides chloride anions for ligand exchange process in vanadium solvation structure. The role of chloride counter anion on solvation structure and dynamics of vanadium species were studied using combined magnetic resonance spectroscopy and DFT based theoretical methods. Finally, the solvation phenomenon of multiple vanadium species and their impact on VRFB electrolyte chemical stability were discussed.« less

  13. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    PubMed

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn 3+ and not Mn 2+ , as commonly accepted, is the dominant dissolved manganese cation in LiPF 6 -based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn 3+ fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn 3+ in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn 3+ occurs at a very slow rate.

  14. Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material

    NASA Astrophysics Data System (ADS)

    Hilder, Matthias; Howlett, Patrick C.; Saurel, Damien; Gonzalo, Elena; Armand, Michel; Rojo, Teófilo; Macfarlane, Douglas R.; Forsyth, Maria

    2017-05-01

    A saturated solution of 2.3 M sodium bis(fluorosulfonyl)imide in trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide ionic liquid shows a high conductivity (0.94 mScm-1 at 50 °C), low ion association, and a wide operational temperature window (-71 °C-305 °C) making it a promising electrolyte for sodium battery applications. Cycling with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode display excellent performance at 50 °C outperforming conventional organic solvent based electrolytes in terms of capacities (at C/10) and long term cycle stability (at C/2). Post analysis of the electrolyte shows no measurable changes while the sodium metal anode and the cathode surface shows the presence of electrolyte specific elements after cycling, suggesting the formation of a stabilizing solid electrolyte interface. Additionally, cycling changes the topography and particle morphology of the cathode. Thus, the electrolyte properties and cell performance match or outperform previously reported results with the additional benefit of replacing the hazardous and flammable organic solvent solutions commonly employed.

  15. Selecting enhancing solutions for electrokinetic remediation of dredged sediments polluted with fuel.

    PubMed

    Rozas, F; Castellote, M

    2015-03-15

    In this paper a procedure for selecting the enhancing solutions in electrokinetic remediation experiments is proposed. For this purpose, dredged marine sediment was contaminated with fuel, and a total of 22 different experimental conditions were tested, analysing the influence of different enhancing solutions by using three commercial non-ionic surfactants, one bio-surfactant, one chelating agent, and one weak acid. Characterisation, microelectrophoretic and electrokinetic remediation trials were carried out. The results are explained on the basis of the interactions between the fuel, the enhancing electrolytes and the matrix. For one specific system, the electrophoretic zeta potential, (ζ), of the contaminated matrix in the solution was found to be related to the electroosmotic averaged ζ in the experiment and not to the efficiency in the extraction. This later was correlated to a parameter accounting for both contributions, the contaminant and the enhancing solution, calculated on the basis of differences in the electrophoretic ζ in different conditions which has allowed to propose a methodology for selection of enhancing solutions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Comparison Between Premixed and Compounded Parenteral Nutrition Solutions in Hospitalized Patients Requiring Parenteral Nutrition.

    PubMed

    Beattie, Colleen; Allard, Johane; Raman, Maitreyi

    2016-04-01

    Parenteral nutrition (PN) may be provided through compounded or premixed solutions. To determine the proportion of stable custom-compounded PN prescriptions that would fit within a 20% deviance of an existing premixed PN solution. A retrospective study design was used. Inpatients who received PN in non-critical care units in the preceding year were screened for eligibility. Results are reported descriptively as means (95% confidence intervals) and proportions. We reviewed 97 PN prescriptions that met inclusion criteria. Stable hospital PN prescriptions compared with the reference premixed prescription provided 1838 (1777-1898) vs 1843 (1781-1905) kcal/d, P = .43; dextrose, 266 (254-277) vs 225 (216-234) g/d, P < .001; amino acids, 100 (95.9-104) vs 95.2 (91.7-98.7) g/d, P < .001; and lipids, 53.2 (51.3-55.1) vs 76.5 (73.8-79.2) g/d, P < .001. Fifty-eight of 97 (59.8%) matched for 2 of 3 macronutrients. Hospital compared with premixed lipid was lower 53.6 (43-64.2) g/d vs 75.5 (60.5-90.5) g/d, P < .001. Electrolytes differed between hospital and premixed solutions: sodium, 98.6 (95.0-102) vs 66.9 (64.6-69.9) mmol/L, P < .001; potassium, 93.7 (89.0-98.3) vs 57.4 (55.4-59.4) mmol/L, P < .001; and magnesium, 5.4 (4.8-5.4) vs 7.6 (7.4-7.9) mmol/L. Calories and protein were remarkably similar, but dextrose, lipid, and electrolytes differed between hospital PN and the reference premixed prescription. We believe that there may be a role for premixed solutions in quaternary centers in stable non-critically ill patients. © 2016 American Society for Parenteral and Enteral Nutrition.

  17. The effect of ingested lactulose on absorption of L-rhamnose, D-xylose, and 3-O-methyl-D-glucose in subjects with ileostomies.

    PubMed

    Jenkins, A P; Menzies, I S; Nukajam, W S; Creamer, B

    1994-09-01

    We have previously shown that small oral doses of poorly absorbed solute can significantly reduce absorption of test sugars in normal volunteers. To confirm these results and investigate the underlying mechanism, the effects of lactulose on absorption of three test sugars in subjects with ileostomies were studied. Ten fasted subjects with ileostomies ingested an isosmolar test solution containing 2.5 g 3-O-methyl-D-glucose, 5.0 g D-xylose, 1.0 g L-rhamnose, and 50 microCi 51Cr-labelled ethylenediaminetetraacetic acid together with a blue dye transit marker. Urine was collected for time periods of 0-5 h and 5-24 h, to measure excretion of absorbed sugars, and ileostomy effluent was saved from 0-5 h and from 5 h until blue dye transit marker was no longer present, to measure small-bowel output of unabsorbed sugars. After 1 week the test was repeated, including 5 g lactulose in the test solution. Inclusion of lactulose in the test solution significantly reduced the 5 h and 24 h urine excretion of L-rhamnose and D-xylose but not that of 3-O-methyl-D-glucose and increased 0- to 5-h and total ileostomy output of L-rhamnose and D-xylose but not of 3-O-methyl-D-glucose. The presence of lactulose also reduced the time for first appearance of the blue dye transit marker in the effluent and increased effluent volume together with output of electrolyte. Poorly absorbed solute reduces intestinal absorption by retention of fluid and electrolyte, with subsequent intraluminal dilution and acceleration of transit.

  18. A comparative study of nano-SiO2 and nano-TiO2 fillers on proton conductivity and dielectric response of a silicotungstic acid-H3PO4-poly(vinyl alcohol) polymer electrolyte.

    PubMed

    Gao, Han; Lian, Keryn

    2014-01-08

    The effects of nano-SiO2 and nano-TiO2 fillers on a thin film silicotungstic acid (SiWA)-H3PO4-poly(vinyl alcohol) (PVA) proton conducting polymer electrolyte were studied and compared with respect to their proton conductivity, environmental stability, and dielectric properties, across a temperature range from 243 to 323 K. Three major effects of these fillers have been identified: (a) barrier effect; (b) intrinsic dielectric constant effect; and (c) water retention effect. Dielectric analyses were used to differentiate these effects on polymer electrolyte-enabled capacitors. Capacitor performance was correlated to electrolyte properties through dielectric constant and dielectric loss spectra. Using a single-ion approach, proton density and proton mobility of each polymer electrolyte were derived as a function of temperature. The results allow us to deconvolute the different contributions to proton conductivity in SiWA-H3PO4-PVA-based electrolytes, especially in terms of the effects of fillers on the dynamic equilibrium of free protons and protonated water in the electrolytes.

  19. Amiloride-Sensitive and Amiloride-Insensitive Responses to NaCl + Acid Mixtures in Hamster Chorda Tympani Nerve

    PubMed Central

    Hettinger, Thomas P.; Savoy, Lawrence D.; Frank, Marion E.

    2012-01-01

    Component signaling in taste mixtures containing both beneficial and dangerous chemicals depends on peripheral processing. Unidirectional mixture suppression of chorda tympani (CT) nerve responses to sucrose by quinine and acid is documented for golden hamsters (Mesocricetus auratus). To investigate mixtures of NaCl and acids, we recorded multifiber responses to 50 mM NaCl, 1 and 3 mM citric acid and acetic acid, 250 μM citric acid, 20 mM acetic acid, and all binary combinations of each acid with NaCl (with and without 30 μM amiloride added). By blocking epithelial Na+ channels, amiloride treatment separated amiloride-sensitive NaCl-specific responses from amiloride-insensitive electrolyte-generalist responses, which encompass all of the CT response to the acids as well as responses to NaCl. Like CT sucrose responses, the amiloride-sensitive NaCl responses were suppressed by as much as 50% by citric acid (P = 0.001). The amiloride-insensitive electrolyte-generalist responses to NaCl + acid mixtures approximated the sum of NaCl and acid component responses. Thus, although NaCl-specific responses to NaCl were weakened in NaCl–acid mixtures, electrolyte-generalist responses to acid and NaCl, which tastes KCl-like, were transmitted undiminished in intensity to the central nervous system. The 2 distinct CT pathways are consistent with known rodent behavioral discriminations. PMID:22451526

  20. Effect of Protocatechuic Acid-Grafted-Chitosan Coating on the Postharvest Quality of Pleurotus eryngii.

    PubMed

    Liu, Jun; Meng, Chen-Guang; Wang, Xing-Chi; Chen, Yao; Kan, Juan; Jin, Chang-Hai

    2016-09-28

    Protocatechuic acid-grafted-chitosan (PA-g-CS) solution with antioxidant activity was developed as a novel edible coating material for Pleurotus eryngii postharvest storage. The effect of PA-g-CS coating on the postharvest quality of P. eryngii was investigated by determination of various physicochemical parameters and enzyme activities. Results showed that the antioxidant capacity and viscosity of PA-g-CS solutions were closely related to the grafting degree and were much higher than that of chitosan (CS) solution. At the end of 15 days of storage, serious mushroom browning was observed in the control and CS coating groups. By contrast, PA-g-CS coating groups with medium and high grafting degrees maintained better physical appearance. Among all of the treatment groups, P. eryngii in PA-g-CS III coating group exhibited the highest firmness and the lowest weight loss, browning degree, respiration rate, malondialdehyde content, electrolyte leakage rate, superoxide anion production rate, and hydrogen peroxide content. Moreover, P. eryngii in PA-g-CS III coating group maintained relatively higher antioxidant enzyme activities but lower polyphenol oxidase activity than other treatment groups. Therefore, PA-g-CS III is a promising preservation agent for P. eryngii.

  1. Development of taste sensing system using inorganic membrane

    NASA Astrophysics Data System (ADS)

    Kojima, Yohichiro; Hasegawa, Yuki

    2011-09-01

    We developed a novel taste sensor for liquid and verified its effectiveness using coffee. We fabricated an inorganic metal oxide membrane liquid sensor using the laser ablation method. The sensor shows a sufficient sensitivity for electrolyte solutions, while it shows a relatively low response for non-electrolyte solutions. We differentiated and identified five brands of commercially available coffee using the sensor.

  2. [Adverse effects of drugs in intensive care units: analysis of the administration of electrolyte solutions and antibiotics].

    PubMed

    Manenti, S; Chaves, A B; Leopoldino, R S; Padilha, K G

    1998-12-01

    The aims of this study were: 1) to verify the incidence of adverse occurrences (AOs) with medication related to the time of electrolyte solutions infusion and the frequency of doses of antibiotics prescribed and administered to the patients; 2) to characterize the nature of those occurrences. The study was developed in two ICUs of a general hospital of São Paulo City. The population was composed by 51 patients that were in the ICUs in August of 1996. Sixty percent of the patients were older than 60 years, 58.8% were women, 49.1% remained in ICU from 1 to 4 days and 41.2% went to the Intermediate Care Units after ICU. Regarding the incidence of AOs related to the time of administration of the electrolyte solutions and the frequency of doses of antibiotics the non execution of the patient's medical prescriptions was verified in 76.3% and 38.8% respectively. The largest frequency of irregularities with the electrolyte solutions (60.2%) was the infusion faster than the prescribed time followed by the reduction of the number of doses of antibiotics administered. Taking these into consideration we have to invest in preventive measures to reduce those occurrences.

  3. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  4. Negative Transference Numbers in Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Timachova, Ksenia; Balsara, Nitash

    Energy density and safety of conventional lithium-ion batteries is limited by the use of flammable organic liquids as a solvent for lithium salts. Polymer electrolytes have the potential to address both limitations. The poor performance of batteries with polymer electrolytes is generally attributed to low ionic conductivity. The purpose of our work is to show that another transport property, the cation transference number, t +, of polymer electrolytes is fundamentally different from that of conventional electrolytes. Our experimental approach, based on concentrated solution theory, indicates that t + of mixtures of poly(ethylene oxide) and LiTFSI salt are negative over most of the accessible concentration window. In contrast, approaches based on dilute solution theory suggest that t + in the same system is positive. In addition to presenting a new approach for determining t +, we also present data obtained from the steady-state current method, pulsed-field-gradient NMR, and the current-interrupt method. Discrepancies between different approaches are resolved. Our work implies that in the absence of concentration gradients, the net fluxes of both cations and anions are directed toward the positive electrode. Conventional liquid electrolytes do not suffer from this constraint.

  5. Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C

    USGS Publications Warehouse

    McCleskey, R. Blaine

    2011-01-01

    The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) mol•kg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.

  6. The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions

    NASA Astrophysics Data System (ADS)

    Boehnstedt, W.

    1980-09-01

    The paper describes the effect of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions. The dissolution is accelerated by the addition of small quantities of gallium or indium ions to the electrolyte indicated by the shift of the zero current potential by about 250 mV on the current-potential curve. Scanning electron microscope studies showed that gallium ions produce many small cracks in the aluminum electrode and collect at the grain boundary areas, increasing the electrode surface; this enlargement, in combination with increased electrolyte agitation due to greater hydrogen evolution, provides higher current densities at the same potential. It is concluded that this process will widen the possibilities of using aluminum and its alloys in high-rate batteries.

  7. Modeling Hofmeister Effects

    PubMed Central

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A.

    2009-01-01

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed. PMID:20161468

  8. Modeling Hofmeister Effects.

    PubMed

    Hribar-Lee, Barbara; Vlachy, Vojko; Dill, Ken A

    2009-03-11

    A two dimensional model of water, so-called Mercedes-Benz model, was used to study effects of the size of hydrophobic solute on the insertion thermodynamics in electrolyte solutions. The model was examined by the constant pressure Monte Carlo computer simulation. The results were compared with the experimental data for noble gasses and methane in water and electrolyte solution. The influence of different ions at infinite dilution on the free energy of transfer was explored. Qualitative agreement with the experimental results was obtained. The mechanism of Hofmeister effects was proposed.

  9. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  10. Borotungstic Acid (BWA)-Polyacrylamide (PAM) Solid Polymer Electrolytes for Electrochemical Capacitors

    NASA Astrophysics Data System (ADS)

    Foong, Yee Wei

    Solid polymer electrolytes (SPEs) are key enablers for thin and flexible electrochemical capacitors in wearable technologies. Polyacrylamide (PAM) is one such promising hygroscopic polymer host, but its performance had not been optimized. This thesis enhanced PAM with borotungstic acid (BWA) as the heteropolyacid conductors. The BWA-PAM electrolyte achieved a high initial conductivity of ca. 27 mS cm-1, but suffered from a short service life (< 40% conductivity retention after 28 days) due to dehydration. BWA-PAM modified with acidic (H3PO4) and neutral (glycerol) plasticizers showed improved conductivity of ca. 30 mS cm-1 and service life (≥ 70% conductivity retention after 28 days). The high BWA and H3PO4 content accelerated the hydrolysis of PAM to polyacrylic acid, resulting in the undesirable precipitation of NH4+-substituted BWA; whereas, glycerol was found to suppress this reaction. The solid CNT-graphite cells with the optimized electrolytes demonstrated a capacitance of ca. 19.5 mF cm -2; a high rate capability (≥ 75% capacitance retention) at 1Vs -1; excellent cycle life (≥ 90% retention of its initial capacitance); and maintained ca. -85° phase angle over 10,000 charging-discharging cycles.

  11. Chemical modification of electrolytes for lithium batteries

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Vladimir N.; Grechin, Aleksandr G.

    2002-09-01

    Modern approaches to modifying chemically electrolytes for lithium batteries are analysed with the aim of optimising the charge-transfer processes in liquid-phase and solid (polymeric) media. The main regularities of transport properties of lithium electrolyte solutions containing complex (encapsulated) ions in aprotic solvents and polymers are discussed. The prospects for the development of electrolytic solvosystems with the chain (ionotropic) mechanism of conduction with respect to lithium ions are outlined. The bibliography includes 126 references.

  12. Conversion of Carbon Dioxide into Ethanol by Electrochemical Synthesis Method Using Cu-Zn Electrode

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadan, S.; Fariduddin, S.; Aminudin, A. R.; Hayatri, A. K.

    2018-01-01

    Research on conversion of carbon dioxide into ethanol has been done. The conversion process is carried out in a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor. As cathode was used Cu-Zn, while as anode carbon was utilized. Variations of voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis were performed to determine the optimum conditions to convert carbon dioxide into ethanol. Sample of the electrochemical synthesis process was analyzed by gas chromatography. From the result, it is found that the optimum conditions of the electrochemical synthesis process of carbon dioxide conversion into ethanol are voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis are 3 volts, 0.4 M and 90 minutes with the ethanol concentration of 10.44%.

  13. Studies of thermochemical water-splitting cycles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Foh, S. E.

    1980-01-01

    Higher temperatures and more isothermal heat profiles of solar heat sources are developed. The metal oxide metal sulfate class of cycles were suited for solar heat sources. Electrochemical oxidation of SO2 and thermochemical reactions are presented. Electrolytic oxidation of sulfur dioxide in dilute sulfuric acid solutions were appropriate for metal oxide metal sulfate cycles. The cell voltage at workable current densities required for the oxidation of SO2 was critical to the efficient operation of any metal oxide metal sulfate cycle. A sulfur dioxide depolarized electrolysis cell for the splitting of water via optimization of the anode reaction is discussed. Sulfuric acid concentrations of 30 to 35 weight percent are preferred. Platinized platinum or smooth platinum gave the best anode kinetics at a given potential of the five materials examined.

  14. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media

    NASA Astrophysics Data System (ADS)

    Roy, Sanjay; Guin, Partha Sarathi; Mahali, Kalachand; Dolui, Bijoy Krishna

    2017-12-01

    Solubilities of L-cystine, L-tyrosine, and L-leucine in aqueous NaCl media at 298.15 K have been studied. Indispensable and related solvent parameters such as molar mass, molar volume, etc., were also determined. The results are used to evaluate the standard transfer Gibbs free energy, cavity forming enthalpy of transfer, cavity forming transfer Gibbs free energy and dipole-dipole interaction effects during the course of solvation. Various weak interactions involving solute-solvent or solvent-solvent molecules were characterized in order to find their role on the solvation of these amino acids.

  15. In situ hydride formation in titanium during focused ion milling.

    PubMed

    Ding, Rengen; Jones, Ian P

    2011-01-01

    It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.

  16. Influence of electrochemical potential on the displacement of aqueous electrolyte from a copper surface by oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendig, M.W.; Fadner, T.A.

    1985-02-01

    The forces responsible for the meniscus formed during the dynamic displacement of a 0.1 M H/sub 3/BO/sub 3/ + 0.5 M NaClO/sub 4/ solution by oil from a copper surface depend on the electrochemical potential of the copper and on an active component in the oil. For a nonpolar mineral oil containing oleic acid, a negative potential applied to copper produces hydrophilic behavior of the copper surface in the aqueous phase. This result is attribute largely to electrochemical destabilization of metallic soaps and possibly to electroosmotic transport.

  17. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.

    PubMed

    Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L

    2010-11-25

    A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.

  18. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyder, M L; Perkins, W C; Thompson, M C

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction withmore » dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.« less

  19. Efficacy and Safety of Combined Oral and Enema Therapy Using Polyethylene Glycol 3350-Electrolyte for Disimpaction in Pediatric Constipation

    PubMed Central

    Yoo, Taeyeon

    2017-01-01

    Purpose We evaluated the efficacy and safety of combined oral and enema therapy using polyethylene glycol (PEG) 3350 with electrolyte solution for disimpaction in hospitalized children. Methods We retrospectively studied 28 children having functional constipation who received inpatient treatment between 2008 and 2016. The amount of oral PEG 3350 electrolyte solution administered was 50–70 mL/kg/d (PEG 3350, 3–4.1 g/kg/d), and an enema solution was administered 1–2 times a day as a single dose of 15–25 mL/kg (PEG 3350, 0.975–1.625 g/kg/d). A colon transit time (CTT) test based on the Metcalf protocol was performed in some patients. Results Administration of oral and enema doses of PEG 3350 electrolyte solution showed 2.1±0.3 times and 2.9±0.4 times, respectively. After disimpaction, the frequency of defecation increased from 2.2±0.3 per week to once a day (1.1±0.1 per day). The number of patients who complained of abdominal pain was reduced from 15 (53.6%) to 4 (14.3%). Before hospitalization, nine patients underwent a CTT test, and 5 of 9 patients (55.6%) were classified as belonging to a group showing abnormalities. And in some patients, mild adverse effects were noted. We examined electrolytes and osmolality before and after disimpaction in 16 of 28 patients, and no abnormalities were noted. Conclusion In terms of therapeutic efficacy and safety, combined oral and enema therapy using high-dose PEG 3350 with electrolytes is considered superior to conventional oral monotherapy or combined oral and enema therapy on an outpatient basis. PMID:29302506

  20. Efficacy and Safety of Combined Oral and Enema Therapy Using Polyethylene Glycol 3350-Electrolyte for Disimpaction in Pediatric Constipation.

    PubMed

    Yoo, Taeyeon; Bae, Sun Hwan

    2017-12-01

    We evaluated the efficacy and safety of combined oral and enema therapy using polyethylene glycol (PEG) 3350 with electrolyte solution for disimpaction in hospitalized children. We retrospectively studied 28 children having functional constipation who received inpatient treatment between 2008 and 2016. The amount of oral PEG 3350 electrolyte solution administered was 50-70 mL/kg/d (PEG 3350, 3-4.1 g/kg/d), and an enema solution was administered 1-2 times a day as a single dose of 15-25 mL/kg (PEG 3350, 0.975-1.625 g/kg/d). A colon transit time (CTT) test based on the Metcalf protocol was performed in some patients. Administration of oral and enema doses of PEG 3350 electrolyte solution showed 2.1±0.3 times and 2.9±0.4 times, respectively. After disimpaction, the frequency of defecation increased from 2.2±0.3 per week to once a day (1.1±0.1 per day). The number of patients who complained of abdominal pain was reduced from 15 (53.6%) to 4 (14.3%). Before hospitalization, nine patients underwent a CTT test, and 5 of 9 patients (55.6%) were classified as belonging to a group showing abnormalities. And in some patients, mild adverse effects were noted. We examined electrolytes and osmolality before and after disimpaction in 16 of 28 patients, and no abnormalities were noted. In terms of therapeutic efficacy and safety, combined oral and enema therapy using high-dose PEG 3350 with electrolytes is considered superior to conventional oral monotherapy or combined oral and enema therapy on an outpatient basis.

  1. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficientsmore » of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO 3) 3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO 3) 3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO 3) 3 activity coefficients for the binary Ln(NO 3) 3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO 3) 3 activity coefficients in the ternary Nd(NO 3) 3/HNO 3/H2O, Eu(NO 3) 3/HNO 3/H 2O, and Eu(NO 3) 3/NaNO 3/H 2O systems. The main achievement of this work is the verified pathway for the estimation of the activity coefficients in the multicomponent aqueous electrolyte systems. The accurate Bromley electrolytes contributions obtained in this work for the entire series of lanthanide(III) nitrates (except Pm) can be applied for predicting activity coefficients and non-ideality effects for multi-component systems containing these species. This work also provides the proof-of-principle of extending the model to more complex multicomponent systems. Moreover, this approach can also be applied to actinide-containing electrolyte systems, for determination of the activity coefficients in concentrated radioactive solutions.« less

  2. Polyaspartic acid functionalized gold nanoparticles for tumor targeted doxorubicin delivery.

    PubMed

    Khandekar, Sameera V; Kulkarni, M G; Devarajan, Padma V

    2014-01-01

    In this paper, we present polyaspartic acid, a biodegradable polymer as a reducing and functionalizing agent for the synthesis of doxorubicin loaded gold nanoparticles by a green process. Gold nanoparticles were stable to electrolytes and pH. Secondary amino groups of polyaspartic acid enabled reduction of gold chloride to form gold nanoparticles of size 55 +/-10 nm, with face centered cubic crystalline structure as confirmed by UV, TEM, SAED and XRD studies. Cationic doxorubicin was readily loaded onto anionic polyaspartic acid gold nanoparticles by ionic complexation. Fluorescence studies confirmed doxorubicin loading while FTIR spectra confirmed ionic complexation. Doxorubicin loading onto polyaspartic acid gold nanoparticles was studied at doxorubicin/polyaspartic acid molar ratios 1:10 to 1:1. As the molar ratio tended to unity, although loading up to 60% was achieved, colloidal instability resulted and is attributed to effective covering of negative charges of polyaspartic acid. Stable doxorubicin loaded polyaspartic acid gold nanoparticles of 105 +/- 15.1 nm with doxorubicin loading of 23.85% w/w and zeta potential value of -28 +/- 0.77 mV were obtained at doxorubicin/polyaspartic acid molar ratio 1:10. Higher doxorubicin release rate from the doxorubicin loaded polyaspartic acid gold nanoparticles in an acid medium (i.e., pH 5.5) as compared to that in pH 7.4 and deionized water is a desirable characteristic for tumor targeted delivery. Enhanced cytotoxicity and 3 fold higher uptake of doxorubicin loaded polyaspartic acid gold nanoparticles as compared to doxorubicin solution were seen in MCF-7 breast cancer cells while polyaspartic acid gold nanoparticles revealed no cytotoxicity confirming safety. Prominent regression in tumor size in-vivo in fibrosarcoma tumor induced mouse model was observed upto 59 days with doxorubicin loaded polyaspartic acid gold nanoparticles while doxorubicin solution treated mice showed regrowth beyond 23rd day. Moreover, a decrease of body weight of 35% indicating severe toxicity with doxorubicin solution as compared to only 20% with gradual recovery after day 30 in case of doxorubicin loaded polyaspartic acid gold nanoparticles confirmed their lower toxicity and enhanced efficacy.

  3. The Effects of Phosphonic Acids in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    James, Keith Edward

    Novel methods for the construction of dye-sensitized solar cells (DSSCs) were developed. A thin dense underlayer of TiO2 was applied on fluorine-doped tin oxide (FTO) glass using as a precursor Tyzor AA-105. Subsequently a mesoporous film of P-25 TiO2 was applied by spreading a suspension uniformly over the surface of the underlayer and allowing the plate to slowly dry while resting on a level surface. After sintering at 500° C slides were treated with TCPP as a sensitizing dye and assembled into DSSCs. A novel method was used to seal the cells; strips of ParafilmRTM were used as spacers between the electrodes and to secure the electrodes together. The cells were filled with a redox electrolyte and sealed by dipping into molten paraffin. A series of phosphonic acids and one arsonic acid were employed as coadsorbates in DSSCs. The coadsorbates were found to compete for binding sites, resulting in lower levels of dye adsorption. The resulting loss of photocurrent was not linear with the reduction of dye loading, and in some cases photocurrent and efficiency were higher for cells with lower levels of dye loading. Electrodes were treated with coadsorbates by procedures including pre-adsorption, simultaneous (sim-adsorption), and post-adsorption, using a range of concentrations and treatment times and a variety of solvents. Most cells were tested using an iodide-triiodide based electrolyte (I3I-1) but some cells were tested using electrolytes based on a Co(II)/Co(III) redox couple (CoBpy electrolytes). Phosphonic acid post-adsorbates increased the Voc of cells using CoBpy electrolytes but caused a decrease in the Voc of cells using I3I-1 electrolyte. Phosphonic acids as sim-adsorbates resulted in a significant increase in efficiency and Jsc, and they show promise as a treatment for TCPP DSSCs.

  4. Improved low-cost, non-hazardous, all-iron cell for the developing world

    NASA Astrophysics Data System (ADS)

    Tucker, Michael C.; Lambelet, David; Oueslati, Mohamed; Williams, Benjamin; Wang, Wu-Chieh Jerry; Weber, Adam Z.

    2016-11-01

    A low-cost, non-hazardous personal-power system based on an aqueous all-iron electrochemical cell is demonstrated. The system is intended to be assembled and operated by developing-world households that lack sufficient access to electricity, thereby enabling LED lighting or mobile phone charging on demand. Lab-scale hardware is used to assess the performance of individual cell components. It is found that coffee filter paper is an effective low-cost separator. Carbon felt is a low-cost electrode material, and its performance and wetting by the electrolyte solution is greatly improved by pre-treatment with sulfuric acid. The carbon felt does not degrade after a week of daily use. By using these components, performance of the system is significantly improved over the previous baseline, with power density more than doubling to 40 mW cm-2, and iron utilization improving from 78% to 88%. The operating cost is estimated to be less than US0.03 per mobile phone charge. Based on the lab-scale results, a stand-alone prototype consumer product is designed, fabricated, and tested. It successfully provides 2.5 h of LED illumination while consuming 200 mL of electrolyte solution via gravity feed. We anticipate these results will enable deployment of this innovative system to energy-impoverished individuals in the developing world.

  5. Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors

    NASA Astrophysics Data System (ADS)

    Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B.

    2016-09-01

    The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer patterns are deposited into the fabric by screen printing processes, thus allowing the device to actually “disappear” into it. We demonstrate the reliability of the proposed textile OECTs as a platform for developing chemical sensors capable to detect in real-time various redox active molecules (adrenaline, dopamine and ascorbic acid), by assessing their performance in two different experimental contexts: i) ideal operation conditions (i.e. totally dipped in an electrolyte solution); ii) real-life operation conditions (i.e. by sequentially adding few drops of electrolyte solution onto only one side of the textile sensor). The OECTs response has also been measured in artificial sweat, assessing how these sensors can be reliably used for the detection of biomarkers in body fluids. Finally, the very low operating potentials (<1 V) and absorbed power (~10-4 W) make the here described textile OECTs very appealing for portable and wearable applications.

  6. Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors

    PubMed Central

    Gualandi, I.; Marzocchi, M.; Achilli, A.; Cavedale, D.; Bonfiglio, A.; Fraboni, B.

    2016-01-01

    The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer patterns are deposited into the fabric by screen printing processes, thus allowing the device to actually “disappear” into it. We demonstrate the reliability of the proposed textile OECTs as a platform for developing chemical sensors capable to detect in real-time various redox active molecules (adrenaline, dopamine and ascorbic acid), by assessing their performance in two different experimental contexts: i) ideal operation conditions (i.e. totally dipped in an electrolyte solution); ii) real-life operation conditions (i.e. by sequentially adding few drops of electrolyte solution onto only one side of the textile sensor). The OECTs response has also been measured in artificial sweat, assessing how these sensors can be reliably used for the detection of biomarkers in body fluids. Finally, the very low operating potentials (<1 V) and absorbed power (~10−4 W) make the here described textile OECTs very appealing for portable and wearable applications. PMID:27667396

  7. Biochemical composition of fluids for amnioinfusion during fetoscopy.

    PubMed

    Adama van Scheltema, P N; In't Anker, P S; Vereecken, A; Vandenbussche, F P H A; Deprest, J A; Devlieger, R

    2008-01-01

    To evaluate which of the commercially available solutions is best suited for amnioinfusion during fetoscopy, based on resemblance with the biochemical properties of amniotic fluid. Amniotic fluid samples from 10 pregnancies were studied. Specimens were obtained from 5 pathologic pregnancies (of which 3 were complicated by polyhydramnios) and 5 uncomplicated pregnancies. The concentrations of sodium, potassium, chloride, bicarbonate, calcium, glucose, osmolality, pH, total protein content and albumin were determined in each sample. A literature search (PubMed, Embase) was performed to identify commercially available fluids used for amnioinfusion in clinical practice. The composition of these infusion solutions was compared to the amniotic fluid samples mentioned above. We identified two different electrolyte solutions used in clinical practice for amnioinfusion. We identified four additional commercially available solutions that could potentially be used for amnioinfusion. Most of these infusion solutions differ considerably from midtrimester amniotic fluid samples both in electrolyte composition and pH, with the most striking difference in the latter. Lactated Ringer's solution approximates amniotic fluid the closest for both electrolyte composition and pH. This infusion solution seems to be the most suitable choice for amnioinfusion during fetoscopy. (c) 2008 S. Karger AG, Basel.

  8. Degradation of Remazol Red in batik dye waste water by contact glow discharge electrolysis method using NaOH and NaCl electrolytes

    NASA Astrophysics Data System (ADS)

    Saksono, Nelson; Putri, Dita Amelia; Suminar, Dian Ratna

    2017-03-01

    Contact Glow Discharge Electrolysis (CGDE) method is one of Plasma Electrolysis technology which has been approved to degrade organic waste water because it is very productive in producing hydroxyl radical. This study aims to degrade Remazol Red by CGDE method and evaluate important parameters that have influent in degradation process of Remazol Red in Batik dye waste water in batch system. The kind of electrolyte (acid and base) and the addition of metal ion such as Fe2+ have affected Remazol Red degradation percentage. Ultraviolet-Visible (UV-Vis) absorption spectra were used to monitor the degradation process. The result of study showed that percentage degradation was 99.97% which obtained by using NaCl 0.02 M with addition Fe2+ 20 ppm, applied voltage 700 volt, anode depth 0.5 cm, initial concentration of Remazol Red 250 ppm and the temperature of solutions was maintained 50-60 ˚C.

  9. High-performance graphene-based supercapacitors made by a scalable blade-coating approach

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Liu, Jinzhang; Mirri, Francesca; Pasquali, Matteo; Motta, Nunzio; Holmes, John W.

    2016-04-01

    Graphene oxide (GO) sheets can form liquid crystals (LCs) in their aqueous dispersions that are more viscous with a stronger LC feature. In this work we combine the viscous LC-GO solution with the blade-coating technique to make GO films, for constructing graphene-based supercapacitors in a scalable way. Reduced GO (rGO) films are prepared by wet chemical methods, using either hydrazine (HZ) or hydroiodic acid (HI). Solid-state supercapacitors with rGO films as electrodes and highly conductive carbon nanotube films as current collectors are fabricated and the capacitive properties of different rGO films are compared. It is found that the HZ-rGO film is superior to the HI-rGO film in achieving high capacitance, owing to the 3D structure of graphene sheets in the electrode. Compared to gelled electrolyte, the use of liquid electrolyte (H2SO4) can further increase the capacitance to 265 F per gram (corresponding to 52 mF per cm2) of the HZ-rGO film.

  10. Influence of lead ions on the macromorphology of electrodeposited zinc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuda, Tetsuaki; Tobias, Charles W.

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth ofmore » initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.« less

  11. Simultaneous determination of uranium carbide dissolution products by capillary zone electrophoresis.

    PubMed

    Sladkov, Vladimir; Fourest, Blandine

    2009-03-20

    Separation and simultaneous determination of a number of organic acid anions (oxalate, mellitate, trimellitate and benzoate) and U(VI) with direct UV detection is developed for analysis of uranium carbide (UC) dissolution products by capillary zone electrophoresis (CZE). Reverse polarity mode is used. It is found that complex formation of U(VI) with carbonate, used as a carrier electrolyte, allows U(VI) to be determined, as negatively charged species, in a single run with organic acid anions. Some parameters such as pH value, composition of electrolyte and detection wavelength are optimized. Under the chosen conditions (carbonate buffer (ionic strength of 100 mM), pH 9.8, 0.15 mM tetradecyltrimethylammonium bromide (TTAB)) a complete separation is achieved. Calibration plots are linear in two ranges of concentration for U(VI) ( approximately 1 x 10(-5) to 1 x 10(-3)), mellitate and trimellitate ( approximately 5 x 10(-6) to 5 x 10(-4)), and about one range ( approximately 1 x 10(-4) to 5 x 10(-3)) for oxalate and benzoate. Accuracy of the procedure is checked by the "added-found" method in standard mixture solutions. Relative standard deviation is within the range of 2-10% and the recovery is in the range of 90-110%. This method is applied for the analysis of real UC dissolution samples.

  12. Preparation and characterization of Y-Fe alloy nanowires by template-assisted electrodeposition from aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, XiaoChao; Han, Li; Zhang, YuanYuan; Xue, ShouHong

    2016-03-01

    In this study, a method was proposed for the preparation of Y-Fe alloy nanowires by PC membrane template-assisted electrodeposition from aqueous solution. Citric acid acted as complexing agent was used into the solution to fabricate Y-Fe alloy nanowires. The electrolyte solution consisted of 5 g L-1 YCl3, 12.5 g L-1 FeSO·6H2O, different concentrations of citric acid , 25 g L-1 boric acid in deionized water. The energy dispersive spectroscopy (EDS) found that the content of Y in the nanowires can be controlled by citric acid concentration and the current intensity, and the content of Y could reach up to 33.16 wt%. Scanning electron microscopy (SEM), BET specific surface area (BET), and X-ray diffraction (XRD) showed that there was a shift in the structure of nanowires from semicrystalline to amorphous due to the change of Y content, and their shapes were approximately 100 nm in diameter and 6 μm in length; the surface areas of nanowires were about 3.97 m2/g. Fourier transform infrared (FTIR) spectroscopy, UV-Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS) indicated the formation of Y-Fe alloy, Y2O3 and Fe2O3 existed in the outer layer of nanowires. The magnetic field applied both parallel and perpendicular to the nanowires by alternating gradient magnetometer (AGM) showed small magnetic anisotropy and low coercivity with easy axis of magnetization perpendicular to the nanowires. In addition, the magneto-optic Kerr effect (MOKE) was investigated, and a Kerr rotation angle of 29 mdeg was obtained.

  13. Conditions and chemometrics for the determination of heavy metals in natural and waste waters by stripping voltammetry with UV irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkova, V.N.; Zakharova, E.A.; Khustenko, L.A.

    The number of supporting electrolytes for stripping voltammetry with photochemical oxygen deactivation was broadened. The following agents are recommended: formic, lactic, tartaric, citric, and malonic acids at pH 2-4; salts of lactic, tartaric, and citric acids at pH 6-7; and salts of lactic, tartaric, citric, and glutaric acids at pH 12-14. A rapid method was developed for simultaneously determining Zn, Cd, Pb, and Cu in a 0.5 M formic acid supporting electrolyte. The method is chemometrically sound and cost-effective.

  14. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    DOEpatents

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  15. Fluid and Electrolyte Balance model (FEB)

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1973-01-01

    The effects of various oral input water loads on solute and water distribution throughout the body are presented in the form of a model. The model was a three compartment model; the three compartments being plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea were the only major solutes considered explicitly. The control of body water and electrolyte distribution was affected via drinking and hormone levels.

  16. Fuel cell with electrolyte feed system

    DOEpatents

    Feigenbaum, Haim

    1984-01-01

    A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

  17. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE PAGES

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    2017-10-05

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  18. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  19. The Effect of Ionic Strength on the Solubility of an Electrolyte

    ERIC Educational Resources Information Center

    Willey, Joan D.

    2004-01-01

    A simple experiment was conducted for studying and demonstrating visually and dramatically the effect of ionic strength on the solubility of an electrolyte is described. It is seen that the experiment visually illustrates the effect of ionic strength on electrolyte solubility by the appearance of the two solutions and by the difference in the…

  20. Preliminary study of application of Moringa oleifera resin as polymer electrolyte in DSSC solar cells

    NASA Astrophysics Data System (ADS)

    Saehana, Sahrul; Darsikin, Muslimin

    2016-04-01

    This study reports the preliminary study of application of Moringa oleifera resin as polymer electrolyte in dye-sensitized solar cell (DSSC). We found that polymer electrolyte membrane was formed by using solution casting methods. It is observed that polymer electrolyte was in elastic form and it is very potential to application as DSSC component. Performance of DSSC which employing Moringa oleifera resin was also observed and photovoltaic effect was found.

  1. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis

    PubMed Central

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen

    2017-01-01

    Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612

  2. An aqueous electrolyte of the widest potential window and its superior capability for capacitors.

    PubMed

    Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul

    2017-03-21

    A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO 2 and Fe 3 O 4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg -1 , which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts.

  3. How Does the Alkyl Chain Length of an Ionic Liquid Influence Solute Rotation in the Presence of an Electrolyte?

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2016-12-29

    Fluorescence anisotropies of a nonpolar solute, 9-phenylanthracene (9-PA), have been measured in 1-alkyl-3-methylimidazolium (alkyl = methyl, butyl, octyl, and dodecyl) bis(trifluoromethylsulfonyl)imides ([RMIM][Tf 2 N]) with varying amounts (0-0.3 mole fraction) of lithium bis(trifluoromethylsulfonyl)imide (LiTf 2 N). This study has been carried out to understand how the length of the alkyl chain and the concentration of the electrolyte influence the rotational diffusion of a nonpolar solute. It has been observed that the addition of an electrolyte to the ionic liquid increases the bulk viscosity of the system significantly, as the Li + cations strongly coordinate with the [Tf 2 N] anions in the polar domains. The reorientation times of 9-PA have been analyzed with the aid of Stokes-Einstein-Debye hydrodynamic (SED) theory, and they fall within the broad limits set by the hydrodynamic slip and stick boundary conditions. However, deviations from the SED theory have been noticed upon addition of LiTf 2 N, and the influence of the electrolyte is more pronounced in the case of ionic liquids with shorter alkyl chains. The observed trends have been rationalized in terms of electrolyte-induced structural changes in these ionic liquids.

  4. An aqueous electrolyte of the widest potential window and its superior capability for capacitors

    PubMed Central

    Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul

    2017-01-01

    A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO2 and Fe3O4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg−1, which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts. PMID:28322349

  5. Determination of hydroxide and carbonate contents of alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Otterson, D. A.

    1975-01-01

    A method to prevent zinc interference with the titration of OH- and CO3-2 ions in alkaline electrolytes with standard acid is presented. The Ba-EDTA complex was tested and shown to prevent zinc interference with acid-base titrations without introducing other types of interference. Theoretical considerations indicate that this method can be used to prevent interference by other metals.

  6. Electrolytes for lithium ion batteries

    DOEpatents

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  7. Raising the Corrosion Resistance of Low-Carbon Steels by Electrolytic-Plasma Saturation with Nitrogen and Carbon

    NASA Astrophysics Data System (ADS)

    Kusmanov, S. A.; Grishina, E. P.; Belkin, P. N.; Kusmanova, Yu. V.; Kudryakova, N. O.

    2017-05-01

    Structural features of the external oxide layer and internal nitrided, carbonitrided and carburized layers in steels 10, 20 and St3 produced by the method of electrolytic plasma treatment are studied. Specimens of the steels are tested for corrosion in a naturally aerated 1-N solution of sodium chloride. The condition of the metal/sodium chloride solution interface is studied by the method of electrochemical impedance spectroscopy. It is shown that the corrosion resistance of low-carbon steels can be raised by anode electrolytic-plasma saturation with nitrogen and carbon. Recommendations are given on the choice of carbonitriding modes for structural steels.

  8. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  9. Electrochemically stable electrolytes

    DOEpatents

    Angell, Charles Austen; Zhang, Sheng-Shui; Xu, Kang

    1999-01-01

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes.

  10. Electrochemically stable electrolytes

    DOEpatents

    Angell, C.A.; Zhang, S.S.; Xu, K.

    1999-01-05

    This invention relates generally to inorganic ionic liquids which function as electrolytes and do not crystallize at ambient temperature. More specifically, this invention is directed to quasi-salt inorganic ionic liquids which comprise the reaction product of a strong Lewis acid with an inorganic halide-donating molecule. This invention is further directed to quasi-salt inorganic ionic liquid mixtures which comprise combinations of electrolyte additives and quasi-salt inorganic ionic liquids. These quasi-salt inorganic ionic liquid mixtures are useful electrolytes. 16 figs.

  11. Polyethylene glycol-electrolyte solution (PEG-ES)

    MedlinePlus

    ... electrolytes to prevent dehydration and other serious side effects that may be caused by fluid loss as ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  12. "excess Heat" during Electrolysis in Platinium /K2CO3/ Nickel Light Water System

    NASA Astrophysics Data System (ADS)

    Tian, J.; Jin, L. H.; Weng, Z. K.; Song, B.; Zhao, X. L.; Xiao, Z. J.; Chen, G.; Du, B. Q.

    2006-02-01

    The characteristic variation of heating coefficients (k = ΔT/ΔP°C/W) of Pt(H)-Ni electrolytic system with K2CO3 and Na2CO3 solutions was studied in both situations of electric and electrolytic heating, respectively. The results in equilibrium revealed that there was an obvious difference of k in electrolytic-heating (Δk ≈ 30°C/W, kK2CO3 > kNa2CO3) between these two systems, whereas there was a little difference of k in electric heating (Δk ≈ 2°C/W, kK2CO3 < kNa2CO3 between them. "Excess heat" of about 2.5 × 104 J was produced during electrolysis of K2CO3 solution over 1 day of electrolysis. The differences of K2CO3 solution after electrolysis in the potential of hydrogen value (ΔpH = 0.15) and in absorbency (ΔA = 0.108) implied that some new Ca2+ might have formed in the electrolytic system.

  13. Surface-charge-governed electrolyte transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xue, Jian-Ming; Guo, Peng; Sheng, Qian

    2015-08-01

    The transport behavior of pressure-driven aqueous electrolyte solution through charged carbon nanotubes (CNTs) is studied by using molecular dynamics simulations. The results reveal that the presence of charges around the nanotube can remarkably reduce the flow velocity as well as the slip length of the aqueous solution, and the decreasing of magnitude depends on the number of surface charges and distribution. With 1-M KCl solution inside the carbon nanotube, the slip length decreases from 110 nm to only 14 nm when the number of surface charges increases from 0 to 12 e. This phenomenon is attributed to the increase of the solid-liquid friction force due to the electrostatic interaction between the charges and the electrolyte particles, which can impede the transports of water molecules and electrolyte ions. With the simulation results, we estimate the energy conversion efficiency of nanofluidic battery based on CNTs, and find that the highest efficiency is only around 30% but not 60% as expected in previous work. Project supported by the National Natural Science Foundation of China (Grant Nos. 11375031 and 11335003).

  14. Determination of the structural properties of the aqueous electrolyte LiCl6H 2 O at the supercooled state using the Reverse Monte Carlo (RMC) simulation

    NASA Astrophysics Data System (ADS)

    ZIANE, M.; HABCHI, M.; DEROUICHE, A.; MESLI, S. M.; BENZOUINE, F.; KOTBI, M.

    2017-03-01

    A structural study of an aqueous electrolyte whose experimental results are available. It is a solution of A structural study of an aqueous electrolyte whose experimental results are available. It is a solution LiCl6H 2 O type at supercooled state (162K) contrasted with pure water at room temperature by means of Partial Distribution Functions (PDF) issue from neutron scattering technique. The aqueous electrolyte solution of the chloride lithium LiCl presents interesting properties which is studied by different methods at different concentration and thermodynamical states: This system possesses the property to become a glass through a metastable supercooled state when the temperature decreases. Based on these partial functions, the Reverse Monte Carlo method (RMC) computes radial correlation functions which allow exploring a number of structural features of the system. The purpose of the RMC is to produce a consistent configuration with the experimental data. They are usually the most important in the limit of systematic errors (of unknown distribution).

  15. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation.

    PubMed

    Yamaguchi, T; Matsuoka, T; Koda, S

    2007-04-14

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  16. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Matsuoka, T.; Koda, S.

    2007-04-01

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  17. Durable electrooptic devices comprising ionic liquids

    DOEpatents

    Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Cronin,; John, P [Tucson, AZ; Tonazzi, Juan C. L. [Tucson, AZ; Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-12-15

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  18. Durable Electrooptic Devices Comprising Ionic Liquids

    DOEpatents

    Burrell, Anthony K.; Agrawal, Anoop; Cronin, John P.; Tonazzi, Juan C. L.; Warner, Benjamin P.; McCleskey, T. Mark

    2008-11-11

    Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.

  19. Balanced Fluid Versus Saline-Based Fluid in Post-operative Severe Traumatic Brain Injury Patients: Acid-Base and Electrolytes Assessment

    PubMed Central

    Hassan, Mohamad Hasyizan; Hassan, Wan Mohd Nazaruddin Wan; Zaini, Rhendra Hardy Mohd; Shukeri, Wan Fadzlina Wan Muhd; Abidin, Huda Zainal; Eu, Chong Soon

    2017-01-01

    Background Normal saline (NS) is a common fluid of choice in neurosurgery and neuro-intensive care unit (ICU), but it does not contain other electrolytes and has the potential to cause hyperchloremic metabolic acidosis with prolonged infusion. These problems may be reduced with the availability of balanced fluid (BF), which becomes a more physiological isotonic solution with the presence of complete electrolyte content. This study aimed to compare the changes in electrolytes and acid–base between NS and BF (Sterofundin® ISO) therapy for post-operative severe traumatic brain injury (TBI) patients in neuro-ICU. Methods Sixty-six severe TBI patients who required emergency craniotomy or craniectomy and were planned for post-operative ventilation were randomised into NS (n = 33) and BF therapy groups (n = 33). The calculation of maintenance fluid given was based on the Holliday-Segar method. The electrolytes and acid–base parameters were assessed at an 8 h interval for 24 h. The data were analysed using repeated measures ANOVA. Results The NS group showed a significant lower base excess (−3.20 versus −1.35, P = 0.049), lower bicarbonate level (22.03 versus 23.48 mmol/L, P = 0.031), and more hyperchloremia (115.12 versus 111.74 mmol/L, P < 0.001) and hypokalemia (3.36 versus 3.70 mmol/L, P < 0.001) than the BF group at 24 h of therapy. The BF group showed a significantly higher level of calcium (1.97 versus 1.79 mmol/L, P = 0.003) and magnesium (0.94 versus 0.80 mmol/L, P < 0.001) than the NS group at 24 h of fluid therapy. No significant differences were found in pH, pCO2, lactate, and sodium level. Conclusion BF therapy showed better effects in maintaining higher electrolyte parameters and reducing the trend toward hyperchloremic metabolic acidosis than the NS therapy during prolonged fluid therapy for postoperative TBI patients. PMID:29386975

  20. Formulation of Ionic-Liquid Electrolyte To Expand the Voltage Window of Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    An effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic-liquid (IL) electrolytes is reported. Using model electrochemical cells based on two identical onion-like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Also, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  1. A low-temperature electrolyte for lithium and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Plichta, E. J.; Behl, W. K.

    An electrolyte consisting of 1 M solution of lithium hexafluorophosphate in 1:1:1 ethylene carbonate(EC)-dimethyl carbonate(DMC)-ethyl methyl carbonate(EMC) is proposed for low temperature applications of lithium and lithium-ion cells. The new electrolyte has good conductivity and electrochemical stability. Lithium and lithium-ion cells using the new electrolyte were found to be operable at temperatures down to -40°C. The paper also reports on the electrochemical stability of aluminum metal, which is used as a substrate for the positive electrodes in lithium-ion cells, in the new electrolyte.

  2. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  3. INORGANIC ELECTROLYTES IN ANHYDROUS ACETONITRILE. Technical Report No. 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janz, G.J.; Marcinkowsky, A.E.

    Research concerned with the properties of inorganic electrolytes in anhydrous acetonitrile is reported. Infor mation related to ionic interactions, solute-solvent interactions and solute-solute interactions is emphasized. The work is differentiated into phases including that pertaining to the region of dilute concentration in which Kl was studied, the region of high concentration in which. AgNO/sub 3/ was studied, and systems which exhibit pronounced complexion behavior for which the cobaltous halide salts were investigated. Discussions of procedures, and result interpretation are included with data. (J.R.D.)

  4. A new method for multicomponent activity coefficients of electrolytes in aqueous atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Zaveri, Rahul A.; Easter, Richard C.; Wexler, Anthony S.

    2005-01-01

    Three-dimensional models of atmospheric inorganic aerosols need accurate and computationally efficient parameterizations of activity coefficients of various electrolytes in multicomponent aqueous solutions. In this paper, we extend the Taylor's series expansion mixing rule used by C. Wagner in 1952 for estimating activity coefficients in dilute alloy solutions to aqueous electrolyte solutions at any concentration. The resulting method, called the multicomponent Taylor expansion method (MTEM), estimates the mean activity coefficient of an electrolyte in a multicomponent solution on the basis of its values in binary solutions of all the electrolytes present in the mixture at the solution water activity aw, assuming aw is equal to the ambient relative humidity. MTEM is applied here for atmospheric aerosol systems containing H+, NH4+, Na+, Ca2+, SO42-, HSO4-, NO3-, and Cl- ions. The aerosol water content is calculated using the Zdanovskii-Stokes-Robinson (ZSR) method. For self-consistency, most of the MTEM and ZSR parameters are derived using the comprehensive Pitzer-Simonson-Clegg model at 298.15 K and are valid for an aw range of 0.2-0.97. Because CaSO4 is sparingly soluble, it is treated as a solid in the model over the entire aw range. MTEM is evaluated for several multicomponent systems representing various continental and marine aerosols and is contrasted against the mixing rule of C. L. Kusik and H. P. Meissner and of L. A. Bromley and the newer approach of S. Metzger and colleagues. Predictions of MTEM are found to be generally within a factor of 0.8-1.25 of the comprehensive Pitzer-Simonson-Clegg model and are shown to be significantly more accurate than predictions of the other three methods. MTEM also yields a noniterative solution of the bisulfate ion dissociation in sulfate-rich systems: a major computational advantage over other ionic-strength-based methods that require an iterative solution. CPU time requirements of MTEM relative to other methods for sulfate-poor and sulfate-rich systems are also discussed.

  5. Multilayered composite proton exchange membrane and a process for manufacturing the same

    DOEpatents

    Santurri, Pasco R; Duvall, James H; Katona, Denise M; Mausar, Joseph T; Decker, Berryinne

    2015-05-05

    A multilayered membrane for use with fuel cells and related applications. The multilayered membrane includes a carrier film, at least one layer of an undoped conductive polymer electrolyte material applied onto the carrier film, and at least one layer of a conductive polymer electrolyte material applied onto the adjacent layer of polymer electrolyte material. Each layer of conductive polymer electrolyte material is doped with a plurality of nanoparticles. Each layer of undoped electrolyte material and doped electrolyte material may be applied in an alternating configuration, or alternatively, adjacent layers of doped conductive polymer electrolyte material is employed. The process for producing a multilayered composite membrane includes providing a carrier substrate and solution casting a layer of undoped conductive polymer electrolyte material and a layer of conductive polymer electrolyte material doped with nanoparticles in an alternating arrangement or in an arrangement where doped layers are adjacent to one another.

  6. Electrical, structural, thermal and electrochemical properties of corn starch-based biopolymer electrolytes.

    PubMed

    Liew, Chiam-Wen; Ramesh, S

    2015-06-25

    Biopolymer electrolytes containing corn starch, lithium hexafluorophosphate (LiPF6) and ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) are prepared by solution casting technique. Temperature dependence-ionic conductivity studies reveal Vogel-Tamman-Fulcher (VTF) relationship which is associated with free volume theory. Ionic liquid-based biopolymer electrolytes show lower glass transition temperature (Tg) than ionic liquid-free biopolymer electrolyte. X-ray diffraction (XRD) studies demonstrate higher amorphous region of ionic liquid-added biopolymer electrolytes. In addition, the potential stability window of the biopolymer electrolyte becomes wider and stable up to 2.9V. Conclusively, the fabricated electric double layer capacitor (EDLC) shows improved electrochemical performance upon addition of ionic liquid into the biopolymer electrolyte. The specific capacitance of EDLC based on ionic liquid-added polymer electrolyte is relatively higher than that of ionic liquid-free polymer electrolyte as depicted in cyclic voltammogram. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Studies on the preparation of Caro’s acid by ultrasonic enhanced electrochemistry

    NASA Astrophysics Data System (ADS)

    Li, Linbo; Yu, Zeli; Hong, Tao; Fang, Zhao; Peng, Jishi; Yang, Zhao

    2017-06-01

    Ultrasonic cavitation effects can generate hydroxyl radicals and high energy, which is widely applied in the field of oxidation currently. Ultrasound-enhanced electrochemical is used to prepare Caro’s acid, which improves the generate rate of Caro’s acid. In this article, the influences of ultrasonic frequency and ultrasonic power on the electrolysis voltage, electrolyte temperature, electrolyte concentration and the concentration of additive in the process of electrochemical preparation of Caro’s acid was studied. And the optimal production conditions were determined. The research results showed that ultrasonic can significantly improve the production of Caro’s acid and the product can increase by about 20 g/L under the best condition.

  8. Advanced Double Layer Capacitor

    DTIC Science & Technology

    1989-07-01

    Membrane and Electrode Assemblies The Nafion electrolyte was introduced into the electrode by two different methods: 1) mixing of the Nafion solution with... electroosmotic transport of water, allows some liquid electrolyte to permeate into the structure, which causes partial flooding. On the basis of these...solution of Nafion 117) was mixed with the RuO x powder. The solvent was then allowed to evaporate and the resulting composite powder was crushed and

  9. A simple model of fluid flow and electrolyte balance in the body

    NASA Technical Reports Server (NTRS)

    White, R. J.; Neal, L.

    1973-01-01

    The model is basically a three-compartment model, the three compartments being the plasma, interstitial fluid and cellular fluid. Sodium, potassium, chloride and urea are the only major solutes considered explicitly. The control of body water and electrolyte distribution is affected via drinking and hormone levels. Basically, the model follows the effect of various oral input water loads on solute and water distribution throughout the body.

  10. New electrolyte may increase life of polarographic oxygen sensors

    NASA Technical Reports Server (NTRS)

    Albright, C. F.

    1967-01-01

    Electrolyte increases life on oxygen sensors in a polarograph used for measuring the partial pressure of oxygen in a gas mixture. It consists of a solution of lithium chloride, dimethyl acetamide and water.

  11. Composition and particle size of electrolytic copper powders prepared in water-containing dimethyl sulfoxide electrolytes

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul'; Abzhalov, B. S.; Mamyrbekova, Aizhan

    2017-07-01

    The possibility of the electroprecipitation of copper powder via the cathodic reduction of an electrolyte solution containing copper(II) nitrate trihydrate and dimethyl sulfoxide (DMSO) is shown. The effect electrolysis conditions (current density, concentration and temperature of electrolyte) have on the dimensional characteristics of copper powder is studied. The size and shape of the particles of the powders were determined by means of electron microscopy; the qualitative composition of the powders, with X-ray diffraction.

  12. Systems and methods for rebalancing redox flow battery electrolytes

    DOEpatents

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  13. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions.

    PubMed

    Chen, Ming; Wang, Dengjun; Yang, Fan; Xu, Xiaoyun; Xu, Nan; Cao, Xinde

    2017-11-01

    Land application of biochar has been increasingly recommended as a powerful strategy for carbon sequestration and soil remediation. However, the biochar particles, especially those in the nanoscale range, may migrate or carry the inherent contaminants along the soil profile, posing a potential risk to the groundwater. This study investigated the transport and retention of wood chip-derived biochar nanoparticles (NPs) in water-saturated columns packed with a paddy soil. The environmentally-relevant soil solution chemistry including ionic strength (0.10-50 mM), electrolyte type (NaCl and CaCl 2 ), and natural organic matter (0-10 mg L -1 humic acid) were tested to elucidate their effects on the biochar NPs transport. Higher mobility of biochar NPs was observed in the soil at lower ionic strengths, with CaCl 2 electrolyte being more effective than NaCl in decreasing biochar NPs transport. The retained biochar NPs in NaCl was re-entrained (∼57.7%) upon lowering transient pore-water ionic strength, indicating that biochar NPs were reversibly retained in the secondary minimum. In contrast, negligible re-entrainment of biochar NPs occurred in CaCl 2 due to the primary minimum and/or particle aggregation. Humic acid increased the mobility of biochar NPs, likely due to enhanced electrosteric repulsive interactions. The transport behaviors of biochar NPs can be well interpreted by a two-site kinetic retention model that assumes reversible retention for one site, and irreversible retention for the other site. Our findings indicated that the transport of wood chip biochar NPs is significant in the paddy soil, highlighting the importance of understanding the mobility of biochar NPs in natural soils for accurately assessing their environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Electrolyte solutions at curved electrodes. II. Microscopic approach

    NASA Astrophysics Data System (ADS)

    Reindl, Andreas; Bier, Markus; Dietrich, S.

    2017-04-01

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  15. Electrolyte solutions at curved electrodes. II. Microscopic approach.

    PubMed

    Reindl, Andreas; Bier, Markus; Dietrich, S

    2017-04-21

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  16. Characterization of stainless steel surface processed using electrolytic oxidation and titanium complex ion solution

    NASA Astrophysics Data System (ADS)

    Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae

    2017-09-01

    This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.

  17. Design of a Program for Expert Diagnosis of Acid Base and Electrolyte Disturbances,

    DTIC Science & Technology

    1979-05-01

    PIP) is a frame based [23) program for taking the present illnrvc irs the doina in of renal diseases. The PIP data base is implemented using disease...I- AD—A 078 ‘+13 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE—ETC F/B 6/5 DESIGN OF A PROGRA M FOR EXPERT DIAGNOSIS OF ACID BASE AND ELECT...132 / D ~~ C DEC -‘ç 1979 DESIGN OF A PROGRAN FOR EXPERT DIAGNOSIS OF ACID BASE MID ELECTROLYTE DISTURBANCES ~979 Ratuesh S. Path LIBRA Rya- 4

  18. Calculating the thermodynamic properties of aqueous solutions of alkali metal carboxylates

    NASA Astrophysics Data System (ADS)

    Rudakov, A. M.; Sergievskii, V. V.; Zhukova, T. V.

    2014-06-01

    A modified Robinson-Stokes equation with terms that consider the formation of ionic hydrates and associates is used to describe thermodynamic properties of aqueous solutions of electrolytes. The model is used to describe data on the osmotic coefficients of aqueous solutions of alkali metal carboxylates, and to calculate the mean ionic activity coefficients of salts and excess Gibbs energies. The key contributions from ionic hydration and association to the nonideality of solutions is determined by analyzing the contributions of various factors. Relations that connect the hydration numbers of electrolytes with the parameters of the Pitzer-Mayorga equation and a modified Hückel equation are developed.

  19. Effects of surface chemical properties of activated carbon modified by amino-fluorination for electric double-layer capacitor.

    PubMed

    Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak

    2012-09-01

    The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Neurologic complications of electrolyte disturbances and acid-base balance.

    PubMed

    Espay, Alberto J

    2014-01-01

    Electrolyte and acid-base disturbances are common occurrences in daily clinical practice. Although these abnormalities can be readily ascertained from routine laboratory findings, only specific clinical correlates may attest as to their significance. Among a wide phenotypic spectrum, acute electrolyte and acid-base disturbances may affect the peripheral nervous system as arreflexic weakness (hypermagnesemia, hyperkalemia, and hypophosphatemia), the central nervous system as epileptic encephalopathies (hypomagnesemia, dysnatremias, and hypocalcemia), or both as a mixture of encephalopathy and weakness or paresthesias (hypocalcemia, alkalosis). Disabling complications may develop not only when these derangements are overlooked and left untreated (e.g., visual loss from intracranial hypertension in respiratory or metabolic acidosis; quadriplegia with respiratory insufficiency in hypermagnesemia) but also when they are inappropriately managed (e.g., central pontine myelinolisis when rapidly correcting hyponatremia; cardiac arrhythmias when aggressively correcting hypo- or hyperkalemia). Therefore prompt identification of the specific neurometabolic syndromes is critical to correct the causative electrolyte or acid-base disturbances and prevent permanent central or peripheral nervous system injury. This chapter reviews the pathophysiology, clinical investigations, clinical phenotypes, and current management strategies in disorders resulting from alterations in the plasma concentration of sodium, potassium, calcium, magnesium, and phosphorus as well as from acidemia and alkalemia. © 2014 Elsevier B.V. All rights reserved.

Top