Science.gov

Sample records for acid equivalent antioxidant

  1. Equivalent weight of humic acid from peat

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    By means of discontinuous titration, the equivalent weight of humic acid isolated from a peat was found to increase from 144 to 183 between the third and fifty-second day after the humic acid was dissolved. Infra-red studies showed that the material had probably condensed with loss of carbonyl groups. ?? 1960.

  2. Composition of antioxidants and amino acids in Stevia leaf infusions.

    PubMed

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time. PMID:24293005

  3. Amino acids as antioxidants for frying oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  4. Antioxidant Activity of Selected Thyme (Thymus L.) Species and Study of the Equivalence of Different Measuring Methodologies.

    PubMed

    Orłowska, Marta; Kowalska, Teresa; Sajewicz, Mieczysław; Pytlakowska, Katarzyna; Bartoszek, Mariola; Polak, Justyna; Waksmundzka-Hajnos, Monika

    2015-01-01

    This study presents the results of comparative evaluation of the antioxidant activity of the phenolic fraction exhaustively extracted with aqueous methanol from 18 different thyme (Thymus L.) specimens and species. This evaluation is made with use of the same free radical source (DPPH• radical), three different free radical scavenging models (gallic acid, ascorbic acid, and Trolox), and three different measuring techniques (the dot blot test, UV-Vis spectrophotometry, and electron paramagnetic resonance spectroscopy, EPR). A comparison of the equivalence of these three different measuring techniques (performed with use of hierarchical clustering with Euclidean distance as a similarity measure and Ward's linkage) is particularly important in view of the fact that different laboratories use different antioxidant activity measuring techniques, which makes any interlaboratory comparison hardly possible. The results obtained confirm a semiquantitative equivalence among the three compared methodologies, and a proposal is made of a simple and cost-effective dot blot test that uses the DPPH• radical and provides differentiation of antioxidant activity of herbal matter comparable with the results of the UV-Vis spectrophotometry and EPR. PMID:26268966

  5. Recovery mechanism of the antioxidant activity from carnosic acid quinone, an oxidized sage and rosemary antioxidant.

    PubMed

    Masuda, Toshiya; Inaba, Yuzuru; Maekawa, Tomomi; Takeda, Yoshio; Tamura, Hirotoshi; Yamaguchi, Hidemasa

    2002-10-01

    A solution of carnosic acid quinone, which is a radical chain-termination product having no antioxidant activity in the antioxidant reaction of carnosic acid, recovers potent antioxidant activity upon standing. The HPLC analysis of an aged solution of carnosic acid quinone revealed that several antioxidants are produced in the solution. From the time-course and quantitative analyses of the formation of the products and their structural analysis, an antioxidant mechanism from carnosic acid quinone is proposed that includes a redox reaction of carnosic acid quinone in addition to the isomerization to lactone derivatives. In the first stage of antioxidation, carnosic acid, the reduction product from carnosic acid quinone, contributes to the potent antioxidant activity of the solution. This proposed mechanism can explain one of the reasons for the strong antioxidant activity of the extract of the popular herbs sage and rosemary. PMID:12358451

  6. Potentiometric titration and equivalent weight of humic acid

    USGS Publications Warehouse

    Pommer, A.M.; Breger, I.A.

    1960-01-01

    The "acid nature" of humic acid has been controversial for many years. Some investigators claim that humic acid is a true weak acid, while others feel that its behaviour during potentiometric titration can be accounted for by colloidal adsorption of hydrogen ions. The acid character of humic acid has been reinvestigated using newly-derived relationships for the titration of weak acids with strong base. Re-interpreting the potentiometric titration data published by Thiele and Kettner in 1953, it was found that Merck humic acid behaves as a weak polyelectrolytic acid having an equivalent weight of 150, a pKa of 6.8 to 7.0, and a titration exponent of about 4.8. Interdretation of similar data pertaining to the titration of phenol-formaldehyde and pyrogallol-formaldehyde resins, considered to be analogs for humic acid by Thiele and Kettner, leads to the conclusion that it is not possible to differentiate between adsorption and acid-base reaction for these substances. ?? 1960.

  7. Uric acid as a CNS antioxidant.

    PubMed

    Bowman, Gene L; Shannon, Jackilen; Frei, Balz; Kaye, Jeffrey A; Quinn, Joseph F

    2010-01-01

    Oxidative damage is a consistent finding in a number of central nervous system (CNS) disorders. Uric acid (UA) is a potent hydrophilic antioxidant that is modified by diet and drug. Several lines of evidence suggest that plasma UA may modulate outcomes in neurologic disease, but little attention has been paid to CNS levels of UA. Our objective was to test the hypothesis that cerebrospinal fluid (CSF) UA is determined by plasma UA, modified by blood-brain barrier (BBB) integrity and associated with rate of cognitive decline in Alzheimer's disease (AD). Also, since UA and ascorbic acid may act as antioxidants for one another, we also explored a potential interaction between them in the brain. Thirty-two patients with mild to moderate AD (Mini-Mental Status Exam 19 +/- 5) participated in a longitudinal biomarker study for one year involving standardized clinical assessments. CSF and blood were collected at baseline for UA, ascorbic acid, and albumin. Cognitive measures were collected at baseline and again one year later. CSF UA was independent of age, gender, and AD severity. CSF and plasma UA were positively correlated (r=0.669, p=0.001) and BBB impairment was associated with higher CSF levels of UA (p=0.028). Neither plasma nor CSF UA reached significant association with rates of cognitive decline over 1 year. CSF UA and CSF ascorbic acid were positively correlated (r=0.388, p=0.001). The hypothesis that CSF UA is determined by plasma UA and BBB integrity is supported, as is the hypothesis that UA and ascorbic acid are associated in CSF but not plasma. Adequately powered prospective studies would help assess any role for UA in primary and secondary prevention of AD. PMID:20061611

  8. Theoretical investigation on antioxidant activity of vitamins and phenolic acids for designing a novel antioxidant

    NASA Astrophysics Data System (ADS)

    Mohajeri, Afshan; Asemani, S. Somayeh

    2009-07-01

    Theoretical calculations have been performed to predict antioxidant property for two interesting classes of compounds including phenolic acids and vitamins. Important characteristics of antioxidants such as O-H bond dissociation enthalpy (BDE) and ionization potential (IP) were calculated in the gas-phase to analyze the effect of heterocyclic ring, intramolecular hydrogen bonding and presence of electron donating group near the O-H on the antioxidant activity. The results reveal that the presence of intramolecular hydrogen bonding through ortho-hydroxy group lowers BDE, IP and spin density. In general, phenolic acids were found to be more effective antioxidant than vitamins. The H-atom transfer (HAT) mechanism was selected to study the hydrogen abstraction from phenolic compounds by hydroperoxyl radical. It is found that the antioxidant with lower BDE undergoes hydrogen abstraction with low barrier and considerable exothermicity. On the basis of these results we were able to design a novel antioxidant with enhanced activity.

  9. Comparison of antioxidant effectiveness of lipoic acid and dihydrolipoic acid.

    PubMed

    Zhao, Feng; Liu, Zai-Qun

    2011-01-01

    The abilities of dihydrolipoic acid (DHLA) to scavenge peroxynitrite (ONOO(-) ), galvinoxyl radical, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cation radical (ABTS(+•) ), and 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) were higher than those of lipoic acid (LA). The effectiveness of DHLA to protect methyl linoleate against 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation was about 2.2-fold higher than that of LA, and DHLA can retard the autoxidation of linoleic acid (LH) in the β-carotene-bleaching test. DHLA can also trap ∼0.6 radicals in AAPH-induced oxidation of LH. Moreover, DHLA can scavenge ∼2.0 radicals in AAPH-induced oxidation of DNA and AAPH-induced hemolysis of erythrocytes, whereas LA can scavenge ∼1.5 radicals at the same experimental conditions. DHLA can protect erythrocytes against hemin-induced hemolysis, but accelerate the degradation of DNA in the presence of Cu(2+) . Therefore, the antioxidant capacity of -SH in DHLA is higher than S-S in LA. PMID:21812071

  10. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits

    PubMed Central

    Serce, Sedat; Ercisli, Sezai; Sengul, Memnune; Gunduz, Kazim; Orhan, Emine

    2010-01-01

    The fruits of eight myrtles, Myrtus communis L. accessions from the Mediterranean region of Turkey were evaluated for their antioxidant activities and fatty acid contents. The antioxidant activities of the fruit extracts were determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. The fatty acid contents of fruits were determined by using gas chromatography. The methanol extracts of fruits exhibited a high level of free radical scavenging activity. There was a wide range (74.51-91.65%) of antioxidant activity among the accessions in the β-carotene-linoleic acid assay. The amount of total phenolics (TP) was determined to be between 44.41-74.44 μg Gallic acid equivalent (GAE)/mg, on a dry weight basis. Oleic acid was the dominant fatty acid (67.07%), followed by palmitic (10.24%), and stearic acid (8.19%), respectively. These results suggest the future utilization of myrtle fruit extracts as food additives or in chemoprevention studies. PMID:20548930

  11. HPLC Quantification of Phenolic Acids from Vetiveria zizanioides (L.) Nash and Its Antioxidant and Antimicrobial Activity

    PubMed Central

    Prajna, Jha; Richa, Jindal; Dipjyoti, Chakraborty

    2013-01-01

    Extraction procedure was standardized and for the soluble, glycoside, and wall-bound fractions of phenolic acids from Vetiveria zizanioides. The water soluble alkaline extract which represents the cell wall-bound fraction contained the highest amount of phenolic acids (2.62 ± 1.2 μM/g fwt GA equivalents). Increased phenolic content in the cell wall indicates more lignin deposition which has an important role in plant defense and stress mitigation. Antioxidant property expressed as percentage TEAC value obtained by ABTS assay was correlated with the amount of phenolic acids and showed a Pearson's coefficient 0.988 (significant at 0.01 level). The compounds p-coumaric acid, p-dihydroxybenzoic acid, and ferulic acid were detected in the acidic extracts by HPLC analysis. The plant extracts exhibited considerable antimicrobial activity against tested bacterial and fungal strains. PMID:26555971

  12. Spectroscopic studies on the antioxidant activity of ellagic acid.

    PubMed

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-15

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTS+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties. PMID:24813273

  13. Spectroscopic studies on the antioxidant activity of ellagic acid

    NASA Astrophysics Data System (ADS)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  14. Antioxidant and DNA damage protection potentials of selected phenolic acids.

    PubMed

    Sevgi, Kemal; Tepe, Bektas; Sarikurkcu, Cengiz

    2015-03-01

    In this study, ten different phenolic acids (caffeic, chlorogenic, cinnamic, ferulic, gallic, p-hydroxybenzoic, protocatechuic, rosmarinic, syringic, and vanillic acids) were evaluated for their antioxidant and DNA damage protection potentials. Antioxidant activity was evaluated by using four different test systems named as β-carotene bleaching, DPPH free radical scavenging, reducing power and chelating effect. In all test systems, rosmarinic acid showed the maximum activity potential, while protocatechuic acid was determined as the weakest antioxidant in β-carotene bleaching, DPPH free radical scavenging, and chelating effect assays. Phenolic acids were also screened for their protective effects on pBR322 plasmid DNA against the mutagenic and toxic effects of UV and H2O2. Ferulic acid was found as the most active phytochemical among the others. Even at the lowest concentration value (0.002 mg/ml), ferulic acid protected all of the bands in the presence of H2O2 and UV. It is followed by caffeic, rosmarinic, and vanillic acids. On the other hand, cinnamic acid (at 0.002 mg/ml), gallic acid (at 0.002 mg/ml), p-hydroxybenzoic acid (at 0.002 and 0.004 mg/ml), and protocatechuic acid (at 0.002 and 0.004 mg/ml) could not protect plasmid DNA. PMID:25542528

  15. Antioxidant and antimicrobial activities of cinnamic acid derivatives.

    PubMed

    Sova, M

    2012-07-01

    Cinnamic acid is an organic acid occurring naturally in plants that has low toxicity and a broad spectrum of biological activities. In the search for novel pharmacologically active compounds, cinnamic acid derivatives are important and promising compounds with high potential for development into drugs. Many cinnamic acid derivatives, especially those with the phenolic hydroxyl group, are well-known antioxidants and are supposed to have several health benefits due to their strong free radical scavenging properties. It is also well known that cinnamic acid has antimicrobial activity. Cinnamic acid derivatives, both isolated from plant material and synthesized, have been reported to have antibacterial, antiviral and antifungal properties. Acids, esters, amides, hydrazides and related derivatives of cinnamic acid with such activities are here reviewed. PMID:22512578

  16. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  17. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Aktas, Nahit; Silan, Coskun

    2016-06-01

    From a natural polyphenol, Tannic acid (TA), poly(TA) nanoparticles were readily prepared using a single step approach with three different biocompatible crosslinkers; trimethylolpropane triglycidyl ether (TMPGDE), poly(ethylene glycol) diglycidyl ether (PEGGE), and trisodium trimetaphosphate (STMP). P(TA) particles were obtained with controllable diameters between 400 to 800nm with -25mV surface charge. The effect of synthesis conditions, such as the emulsion medium, pH values of TA solution, and the type of crosslinker, on the shape, size, dispersity, yield, and degradability of poly(Tannic Acid) (p(TA)) nanoparticles was systematically investigated. The hydrolytic degradation amount in physiological pH conditions of 5.4, 7.4, and 9.0 at 37.5°C were found to be in the order TMPGDEequivalent antioxidant capacity was found to be 2027±104mM trolox equivalent g(-1). Moreover, p(TA) nanoparticles demonstrated strong antimicrobial effects against common bacterial strains. More interestingly, with a higher concentration of p(TA) particles, higher blood clotting indices were obtained. PMID:26970821

  18. alpha-Lipoic acid as a biological antioxidant.

    PubMed

    Packer, L; Witt, E H; Tritschler, H J

    1995-08-01

    alpha-Lipoic acid, which plays an essential role in mitochondrial dehydrogenase reactions, has recently gained considerable attention as an antioxidant. Lipoate, or its reduced form, dihydrolipoate, reacts with reactive oxygen species such as superoxide radicals, hydroxyl radicals, hypochlorous acid, peroxyl radicals, and singlet oxygen. It also protects membranes by interacting with vitamin C and glutathione, which may in turn recycle vitamin E. In addition to its antioxidant activities, dihydrolipoate may exert prooxidant actions through reduction of iron. alpha-Lipoic acid administration has been shown to be beneficial in a number of oxidative stress models such as ischemia-reperfusion injury, diabetes (both alpha-lipoic acid and dihydrolipoic acid exhibit hydrophobic binding to proteins such as albumin, which can prevent glycation reactions), cataract formation, HIV activation, neurodegeneration, and radiation injury. Furthermore, lipoate can function as a redox regulator of proteins such as myoglobin, prolactin, thioredoxin and NF-kappa B transcription factor. We review the properties of lipoate in terms of (1) reactions with reactive oxygen species; (2) interactions with other antioxidants; (3) beneficial effects in oxidative stress models or clinical conditions. PMID:7649494

  19. URIC ACID: A NEW ANTIOXIDANT IN PATIENTS WITH PEMPHIGUS VULGARIS

    PubMed Central

    Yousefi, Maryam; Rahimi, Hoda; Barikbin, Behrooz; Toossi, Parviz; Lotfi, Sara; Hedayati, Mehdi; Younespour, Shima

    2011-01-01

    Background: Increased reactive oxygen species (ROS) and lipid peroxidation are seen in many dermatologic disorders, for example, atopic dermatitis, psoriasis, vitiligo, acne vulgaris, pemphigus vulgaris (PV), lichen planus, and alopecia areata. ROS has an important role in the inflammation process. In PV, increased production of ROS leads to decline of antioxidants in plasma and red blood cells which results in oxidative stress. We aimed to evaluate the level of these antioxidants in PV patients and compare it to the controls. Materials and Methods: Among patients attending the dermatology clinics, 30 patients with PV, who had never been on treatment, were enrolled to the study. The control group consisted of 30 age- and sex-matched healthy non-smoker individuals. Venous blood was collected from the subjects for the evaluation of plasma levels of glutathione peroxidase, vitamin C, selenium, bilirubin, and uric acid. Results: Age mean and standard deviation of the patients (40.83, 12.74) was comparable to the controls (41.96, 13.08). Mean level of uric acid was significantly lower in PV patients compared to the controls (P = 0.006). Other antioxidants were not different between the two groups. Uric acid of the patients with mucosal involvement was significantly lower than patients with mucocutaneous involvement (P = 0.049). Limitations: The blood level of other antioxidants (e.g. malondialdehyde) was not evaluated. Conclusions: Uric acid as an antioxidant in our study had similar changes to previous studies in the field of other diseases but selenium, bilirubin, and glutathione peroxidase did not differ between patients and controls. PMID:21772587

  20. Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property

    PubMed Central

    Srinivasan, Marimuthu; Sudheer, Adluri R.; Menon, Venugopal P.

    2007-01-01

    There has been considerable public and scientific interest in the use of phytochemicals derived from dietary components to combat human diseases. They are naturally occurring substances found in plants. Ferulic acid (FA) is a phytochemical commonly found in fruits and vegetables such as tomatoes, sweet corn and rice bran. It arises from metabolism of phenylalanine and tyrosine by Shikimate pathway in plants. It exhibits a wide range of therapeutic effects against various diseases like cancer, diabetes, cardiovascular and neurodegenerative. A wide spectrum of beneficial activity for human health has been advocated for this phenolic compound, at least in part, because of its strong antioxidant activity. FA, a phenolic compound is a strong membrane antioxidant and known to positively affect human health. FA is an effective scavenger of free radicals and it has been approved in certain countries as food additive to prevent lipid peroxidation. It effectively scavenges superoxide anion radical and inhibits the lipid peroxidation. It possesses antioxidant property by virtue of its phenolic hydroxyl group in its structure. The hydroxy and phenoxy groups of FA donate electrons to quench the free radicals. The phenolic radical in turn forms a quinone methide intermediate, which is excreted via the bile. The past few decades have been devoted to intense research on antioxidant property of FA. So, the present review deals with the mechanism of antioxidant property of FA and its possible role in therapeutic usage against various diseases. PMID:18188410

  1. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    PubMed

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals. PMID:23870885

  2. Photodynamics of potent antioxidants: ferulic and caffeic acids.

    PubMed

    Horbury, Michael D; Baker, Lewis A; Quan, Wen-Dong; Greenough, Simon E; Stavros, Vasilios G

    2016-07-14

    The dynamics of ferulic acid (3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid) and caffeic acid (3-(3,4-dihydroxyphenyl)-2-propenoic acid) in acetonitrile, dioxane and water at pH 2.2 following photoexcitation to the first excited singlet state are reported. These hydroxycinnamic acids display both strong ultraviolet absorption and potent antioxidant activity, making them promising sunscreen components. Ferulic and caffeic acids have previously been shown to undergo trans-cis photoisomerization via irradiation studies, yet time-resolved measurements were unable to observe formation of the cis-isomer. In the present study, we are able to observe the formation of the cis-isomer as well as provide timescales of relaxation following initial photoexcitation. PMID:27310931

  3. Stoichiometry of Reducing Equivalents and Splitting of Water in the Citric Acid Cycle.

    ERIC Educational Resources Information Center

    Madeira, Vitor M. C.

    1988-01-01

    Presents a solution to the problem of finding the source of extra reducing equivalents, and accomplishing the stoichiometry of glucose oxidation reactions. Discusses the citric acid cycle and glycolysis. (CW)

  4. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid

    PubMed Central

    Goufo, Piebiep; Trindade, Henrique

    2014-01-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice. PMID:24804068

  5. In Vivo Antioxidant Activity of Deacetylasperulosidic Acid in Noni

    PubMed Central

    Ma, De-Lu; Chen, Mai; Su, Chen X.; West, Brett J.

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  6. In vivo antioxidant activity of deacetylasperulosidic Acid in noni.

    PubMed

    Ma, De-Lu; Chen, Mai; Su, Chen X; West, Brett J

    2013-01-01

    Deacetylasperulosidic acid (DAA) is a major phytochemical constituent of Morinda citrifolia (noni) fruit. Noni juice has demonstrated antioxidant activity in vivo and in human trials. To evaluate the role of DAA in this antioxidant activity, Wistar rats were fed 0 (control group), 15, 30, or 60 mg/kg body weight per day for 7 days. Afterwards, serum malondialdehyde concentration and superoxide dismutase and glutathione peroxidase activities were measured and compared among groups. A dose-dependent reduction in malondialdehyde was evident as well as a dose-dependent increase in superoxide dismutase activity. DAA ingestion did not influence serum glutathione peroxidase activity. These results suggest that DAA contributes to the antioxidant activity of noni juice by increasing superoxide dismutase activity. The fact that malondialdehyde concentrations declined with increased DAA dose, despite the lack of glutathione peroxidase-inducing activity, suggests that DAA may also increase catalase activity. It has been previously reported that noni juice increases catalase activity in vivo but additional research is required to confirm the effect of DAA on catalase. Even so, the current findings do explain a possible mechanism of action for the antioxidant properties of noni juice that have been observed in human clinical trials. PMID:24371540

  7. Genotoxic effect of ethacrynic acid and impact of antioxidants.

    PubMed

    Ward, William M; Hoffman, Jared D; Loo, George

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. PMID:25817893

  8. Genotoxic effect of ethacrynic acid and impact of antioxidants

    SciTech Connect

    Ward, William M.; Hoffman, Jared D.; Loo, George

    2015-07-01

    It is known that ethacrynic acid (EA) decreases the intracellular levels of glutathione. Whether the anticipated oxidative stress affects the structural integrity of DNA is unknown. Therefore, DNA damage was assessed in EA-treated HCT116 cells, and the impact of several antioxidants was also determined. EA caused both concentration-dependent and time-dependent DNA damage that eventually resulted in cell death. Unexpectedly, the DNA damage caused by EA was intensified by either ascorbic acid or trolox. In contrast, EA-induced DNA damage was reduced by N-acetylcysteine and by the iron chelator, deferoxamine. In elucidating the DNA damage, it was determined that EA increased the production of reactive oxygen species, which was inhibited by N-acetylcysteine and deferoxamine but not by ascorbic acid and trolox. Also, EA decreased glutathione levels, which were inhibited by N-acetylcysteine. But, ascorbic acid, trolox, and deferoxamine neither inhibited nor enhanced the capacity of EA to decrease glutathione. Interestingly, the glutathione synthesis inhibitor, buthionine sulfoxime, lowered glutathione to a similar degree as EA, but no noticeable DNA damage was found. Nevertheless, buthionine sulfoxime potentiated the glutathione-lowering effect of EA and intensified the DNA damage caused by EA. Additionally, in examining redox-sensitive stress gene expression, it was found that EA increased HO-1, GADD153, and p21mRNA expression, in association with increased nuclear localization of Nrf-2 and p53 proteins. In contrast to ascorbic acid, trolox, and deferoxamine, N-acetylcysteine suppressed the EA-induced upregulation of GADD153, although not of HO-1. Overall, it is concluded that EA has genotoxic properties that can be amplified by certain antioxidants. - Highlights: • Ethacrynic acid (EA) caused cellular DNA damage. • EA-induced DNA damage was potentiated by ascorbic acid or trolox. • EA increased ROS production, not inhibited by ascorbic acid or trolox. • EA

  9. Role of antioxidant enzymes in bacterial resistance to organic acids.

    PubMed

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  10. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Sahiner, Mehtap; Silan, Coskun; Aktas, Nahit; Turk, Mustafa

    2016-01-01

    A novel resourceful bulk poly(Tannic Acid) (p(TA)) hydrogel was prepared by crosslinking TA molecules with an epoxy crosslinker, trimethylolpropane triglycidyl ether (TMPGDE), in an autoclave at 90°C for 2h. The obtained p(TA) hydrogels were in disk form and have highly porous morphology. The swelling characteristics of p(TA) hydrogels were investigated in wound healing pH conditions of pH 5.4, 7.4, and 9 at 37.5°C, and the hydrogels showed good swelling and moisture content behavior. Especially, p(TA) hydrogels were found to be sensitive to pH 9 with 1669% maximum swelling. P(TA) hydrogels were completely degraded at pH 9 hydrolytically in 9 days. Total phenol contents and the effects of scavenging ABTS(+) radicals of degraded p(TA) hydrogels at pH 5.4, 7.4, and 9 were evaluated and calculated in terms of gallic acid equivalent and trolox equivalent antioxidant capacity, respectively, and found to be very effective. Moreover, degraded p(TA) hydrogels display strong antimicrobial behavior against gram positive Staphylococcus aureus, Bacillus subtilis, gram negative Pseudomonas aeruginosa bacteria strains and Candida albicans fungus strain. The WST-1 results indicated that bulk p(TA) hydrogels have no cyctotoxicity to the L929 fibroblast cell line in vitro. PMID:26526171

  11. Protocatechuic acid grafted onto chitosan: Characterization and antioxidant activity.

    PubMed

    Liu, Jun; Meng, Chen-Guang; Yan, Ye-Hua; Shan, Ya-Na; Kan, Juan; Jin, Chang-Hai

    2016-08-01

    In this study, protocatechuic acid (PA) was grafted onto chitosan (CS) by a carbodiimide mediated cross-linking reaction. The structural characterization, physical property and antioxidant activity of PA grafted CS (PA-g-CS) was investigated. As results, three copolymers with different grafting ratios (61.64, 190.11 and 279.69mg PAE/g) were obtained by varying the molar ratios of reaction substrates. PA-g-CS showed the same UV absorption peaks as PA at 258 and 292nm. As compared to CS, PA-g-CS exhibited a decreased band at 1596cm(-1) and a new band at 1716cm(-1), suggesting the formation of amide and ester linkages between PA and CS. New proton signals at δ6.77-7⋅33ppm were observed on (1)H NMR spectrum of PA-g-CS, assigning to the methine protons of PA. Signals at δ 150.8-116.6 ppm on (13)C NMR spectrum of PA-g-CS was assigned to the aromatic ring carbon of PA moieties. All the structural information confirmed the successful grafting of PA onto CS. SEM observation showed CS had a smooth surface, while PA-g-CS had a rough surface. TGA revealed the thermal stability of PA-g-CS was lower than CS. Antioxidant activity assays further verified the reducing power and DDPH radical scavenging activity of PA-g-CS was much higher than CS. PMID:27164501

  12. Antioxidant poly(lactic-co-glycolic) acid nanoparticles made with α-tocopherol-ascorbic acid surfactant.

    PubMed

    Astete, Carlos E; Dolliver, Debra; Whaley, Meocha; Khachatryan, Lavrent; Sabliov, Cristina M

    2011-12-27

    The goal of the study was to synthesize a surfactant made of α-tocopherol (vitamin E) and ascorbic acid (vitamin C) of antioxidant properties dubbed as EC, and to use this surfactant to make poly(lactic-co-glycolic) acid (PLGA) nanoparticles. Self-assembled EC nanostructures and PLGA-EC nanoparticles were made by nanoprecipitation, and their physical properties (size, size distribution, morphology) were studied at different salt concentrations, surfactant concentrations, and polymer/surfactant ratios. EC surfactant was shown to form self-assembled nanostructures in water with a size of 22 to 138 nm in the presence of sodium chloride, or 12 to 31 nm when synthesis was carried out in sodium bicarbonate. Polymeric PLGA-EC nanoparticles presented a size of 90 to 126 nm for 40% to 120% mass ratio PLGA to surfactant. For the same mass ratios, the PLGA-Span80 formed particles measured 155 to 216 nm. Span80 formed bilayers, whereas EC formed monolayers at the interfaces. PLGA-EC nanoparticles and EC showed antioxidant activity based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay measurements using UV and EPR techniques, antioxidant activity which is not characteristic to commercially available Span80. The thiobarbituric acid reactive substances (TBARS) assay for lipid peroxidation showed that PLGA nanoparticles with EC performed better as antioxidants than the EC nanoassembly or the free vitamin C. Nanoparticles were readily internalized by HepG2 cells and were localized in the cytoplasm. The newly synthesized EC surfactant was therefore found successful in forming uniform, small size polymeric nanoparticles of intrinsic antioxidant properties. PMID:22017172

  13. The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures.

    PubMed

    Mullen, W; Nemzer, B; Ou, B; Stalmach, A; Hunter, J; Clifford, M N; Combet, E

    2011-04-27

    Commercial whole coffee fruit extracts and powder samples were analyzed for chlorogenic acids (CGA), caffeine and antioxidant activities. CGA and caffeine were characterized by LC-MS(n) and HPLC accordingly, and quantified by UV absorbance. ORAC, HORAC, NORAC, SORAC and SOAC (antioxidant capacities) were assessed. Three caffeoylquinic acids, three feruloylquinic acids, three dicaffeoylquinic acids, one p-coumaroylquinic acid, two caffeoylferuloylquinic acids and three putative chlorogenic lactones were quantified, along with a methyl ester of 5-caffeoylquinic acid (detected in one sample, the first such report in any coffee material). Multistep whole coffee fruit extracts displayed higher CGA content than single-step extracts, freeze-dried, or air-dried whole raw fruits. Caffeine in multistep extracts was lower than in the single-step extracts and powders. Antioxidant activity in whole coffee fruit extracts was up to 25-fold higher than in powders dependent upon the radical. Total antioxidant activity of samples displayed strong correlation to CGA content. PMID:21401105

  14. Allometric scaling of dietary linoleic acid on changes in tissue arachidonic acid using human equivalent diets in mice

    PubMed Central

    2011-01-01

    Background It is hypothesized that dietary linoleic acid (LA) promotes chronic and acute diseases in humans by enriching tissues with arachidonic acid (AA), its downstream metabolite, and dietary studies with rodents have been useful for validation. However, levels of LA in research diets of rodents, as published in the literature, are notoriously erratic making interspecies comparisons unreliable. Therefore, the ability to extrapolate the biological effects of dietary LA from experimental rodents to humans necessitates an allometric scaling model that is rooted within a human equivalent context. Methods To determine the physiological response of dietary LA on tissue AA, a mathematical model for extrapolating nutrients based on energy was used, as opposed to differences in body weight. C57BL/6J mice were divided into 9 groups fed a background diet equivalent to that of the US diet (% energy) with supplemental doses of LA or AA. Changes in the phospholipid fatty acid compositions were monitored in plasma and erythrocytes and compared to data from humans supplemented with equivalent doses of LA or AA. Results Increasing dietary LA had little effect on tissue AA, while supplementing diets with AA significantly increased tissue AA levels, importantly recapitulating results from human trials. Conclusions Thus, interspecies comparisons for dietary LA between rodents and humans can be achieved when rodents are provided human equivalent doses based on differences in metabolic activity as defined by energy consumption. PMID:21702942

  15. Environmental comparison of biobased chemicals from glutamic acid with their petrochemical equivalents.

    PubMed

    Lammens, Tijs M; Potting, José; Sanders, Johan P M; De Boer, Imke J M

    2011-10-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of biobased chemicals, thereby decreasing the dependency on fossil fuels. The objective of this paper was to compare the environmental impact of four biobased chemicals from glutamic acid with their petrochemical equivalents, that is, N-methylpyrrolidone (NMP), N-vinylpyrrolidone (NVP), acrylonitrile (ACN), and succinonitrile (SCN). A consequential life cycle assessment was performed, wherein glutamic acid was obtained from sugar beet vinasse. The removed glutamic acid was substituted with cane molasses and ureum. The comparison between the four biobased and petrochemical products showed that for NMP and NVP the biobased version had less impact on the environment, while for ACN and SCN the petrochemical version had less impact on the environment. For the latter two an optimized scenario was computed, which showed that the process for SCN can be improved to a level at which it can compete with the petrochemical process. For biobased ACN large improvements are required to make it competitive with its petrochemical equivalent. The results of this LCA and the research preceding it also show that glutamic acid can be a building block for a variety of molecules that are currently produced from petrochemical resources. Currently, most methods to produce biobased products are biotechnological processes based on sugar, but this paper demonstrates that the use of amino acids from low-value byproducts can certainly be a method as well. PMID:21870885

  16. Antioxidants from tropical herbs.

    PubMed

    Razab, Rasyidah; Abdul-Aziz, Azlina

    2010-03-01

    Plants that contain high amounts of polyphenolic compounds are potential candidates for natural antioxidant sources. Studies are on going in the search for new sources of antioxidants. Not much data are available on the antioxidant capacity of tropical herbs. With this in mind, 19 commonly consumed Malaysian herbs were analyzed for their polyphenolic content and antioxidant activities. A majority of these plants have never been studied before with regards to their polyphenolic content and antioxidant activities. The shoots of Anacardium occidentale, the shoots and fruits of Barringtonia racemosa, Pithecellobium jiringa and Parkia speciosa had high polyphenolic contents (> 150 microg gallic acid equivalents/mg dried plant) and antioxidant activities when measured using the ferric reducing antioxidant power (FRAP) (>1.2 mM) and Trolox equivalent antioxidant capacity (TEAC) assays (>2.4 mM). A strong correlation was observed between the two antioxidant assays (FRAP vs TEAC) implying that the plants could both scavenge free radicals and reduce oxidants. There was also a strong correlation between the antioxidant activities and polyphenolic content suggesting the observed antioxidant activities were contributed mainly by the polyphenolics in the plants. PMID:20420325

  17. Production of a novel antioxidant furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furan fatty acids (F-acids) have gained attention since they are known to play important roles in a variety of biological systems. Specifically F-acids are known to have strong antioxidant activity. Although widely distributed in most biological systems, F-acids are trace components and their biosyn...

  18. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    Popov, A M; Osipov, A N; Korepanova, E A; Krivoshapko, O N; Artiukov, A A

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25481945

  19. [Study of antioxidant and membrane activity of rosmarinic acid using different model systems].

    PubMed

    2013-01-01

    Rosmarinic acid is found in many species of different families of higher plants and its chemical structure is phenol propanoid with various biological activity. In this paper, we conducted a comparative study of antioxidant (radical-scavenging) properties of rosmarinic acid in systems of 2,2'-azo-bis(2-methylpropionamidin)dihydrochloride-luminol and hemoglobin-hydrogen peroxide-lu- minol, determined its protective potential in preventing peroxidation of linoleic acid, and evaluated the effect on the permeability of planar bilayer lipid membranes. Linoleic acid peroxidation was assessed by iron-thiocyanate method. In these studies, trolox was used as a reference antioxidant, and ascorbic acid, and dihydroquercetin were taken as standards. Rosmarinic acid is significantly superior to trolox, ascorbic acid and dihydroquercetin in the tests for antioxidant activity in the systems studied, as well as in inhibition of linoleic acid peroxidation. According to their activity the investigated substances can be arranged in the following order: rosmarinic acid > dihydroquercetin trolox > ascorbic acid. Rosmarinic acid does not cause significant changes in the permeability of planar bilayer membranes in a dose range of 0.5 to 10 mkg/mL. Antioxidant activity of rosmarinic acid is due to the neutralization of reactive oxygen species and/or luminol radicals generated in model systems. The observed features of the antioxidant and membrane activity of rosmarinic acid, which may underlie the previously mentioned pharmacological effects are discussed. PMID:25508797

  20. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  1. Enhanced anti-oxidative effect of fermented Korean mistletoe is originated from an increase in the contents of caffeic acid and lyoniresinol.

    PubMed

    Kim, Se-Yong; Yang, Eun-Ju; Son, Youn Kyoung; Yeo, Joo-Hong; Song, Kyung-Sik

    2016-05-18

    Viscum album var. coloratum (Korean mistletoe; KM) is an herbal medicine that is used worldwide for the treatment of various immunological disorders and cancers. KM extract showed enhanced anti-oxidative effects in 2,2-diphenyl-1-picrylhydrazyl, Trolox equivalent antioxidant capacity, and 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester assays after being fermented with a crude enzyme extract from a soybean paste fungus, Aspergillus kawachii. High-performance liquid chromatography analysis showed four increased peaks in enzyme treated KM. The increased peaks were isolated and identified as caffeic acid (1), hesperetin (2), syringaldehyde (3), and lyoniresinol (4). Among the four compounds, only 1 and 4 showed strong anti-oxidative activity. Therefore, the fermentation increased the contents of 1 and 4, which consequently increased the anti-oxidative activity of KM. PMID:27072079

  2. Changes of phenolic acids and antioxidant activities during potherb mustard (Brassica juncea, Coss.) pickling.

    PubMed

    Fang, Zhongxiang; Hu, Yuxia; Liu, Donghong; Chen, Jianchu; Ye, Xingqian

    2008-06-01

    Phenolic acids in potherb mustard (Brassica juncea, Coss.) were determined and the effects of pickling methods on the contents of total free phenolic acids, total phenolic acids, total phenolics, and antioxidant activities were investigated. Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, and sinapic acid were identified in the present study. The contents of total free phenolic acids, total phenolic acids and total phenolics in fresh potherb mustard were 84.8±0.58μg/g dry weight (DW), 539±1.36μg/g DW, and 7.95±0.28mg/g DW, respectively. The total free phenolic acids increased during the pickling processes, but the total phenolic acids, total phenolics, and antioxidant activities decreased. However, after 5 weeks of fermentation, all the pickling methods retained over 70% of total phenolic contents and above 65% of antioxidant capacities. The results indicated that pickling processes were relatively good methods for the preservation of phenolic acids and antioxidants for potherb mustard. PMID:26065739

  3. Higher Intakes of Antioxidants and Unsaturated Fatty Acid Reduce the Cardiac Autonomic Effects of Particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Higher intakes of antioxidants (vitamins C and E, carotene) found in foods such as cruciferous vegetables, and unsaturated fatty acids, including omega-3 from fish and monounsaturated fats from nuts and seeds, may prevent cardiovascular disease. We examined whether higher intake of such antioxidants...

  4. Enteral Omega-3 Fatty Acid, γ-Linolenic Acid, and Antioxidant Supplementation in Acute Lung Injury

    PubMed Central

    Rice, Todd W.; Wheeler, Arthur P.; Thompson, B. Taylor; deBoisblanc, Bennett P.; Steingrub, Jay; Rock, Peter

    2013-01-01

    Context The omega-3 (n-3) fatty acids docosahexaenoic acid and eicosapentaenoic acid, along with γ-linolenic acid and antioxidants, may modulate systemic inflammatory response and improve oxygenation and outcomes in patients with acute lung injury. Objective To determine if dietary supplementation of these substances to patients with acute lung injury would increase ventilator-free days to study day 28. Design, Setting, and Participants The OMEGA study, a randomized, double-blind, placebo-controlled, multicenter trial conducted from January 2, 2008, through February 21, 2009. Participants were 272 adults within 48 hours of developing acute lung injury requiring mechanical ventilation whose physicians intended to start enteral nutrition at 44 hospitals in the National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. All participants had complete follow-up. Interventions Twice-daily enteral supplementation of n-3 fatty acids, γ-linolenic acid, and antioxidants compared with an isocaloric control. Enteral nutrition, directed by a protocol, was delivered separately from the study supplement. Main Outcome Measure Ventilator-free days to study day 28. Results The study was stopped early for futility after 143 and 129 patients were enrolled in the n-3 and control groups. Despite an 8-fold increase in plasma eicosapentaenoic acid levels, patients receiving the n-3 supplement had fewer ventilator-free days (14.0 vs 17.2; P=.02) (difference, -3.2 [95% CI, -5.8 to -0.7]) and intensive care unit-free days (14.0 vs 16.7; P=.04). Patients in the n-3 group also had fewer nonpulmonary organ failure-free days (12.3 vs 15.5; P=.02). Sixty-day hospital mortality was 26.6% in the n-3 group vs 16.3% in the control group (P=.054), and adjusted 60-day mortality was 25.1% and 17.6% in the n-3 and control groups, respectively (P=.11). Use of the n-3 supplement resulted in more days with diarrhea (29% vs 21%; P=.001). Conclusions Twice-daily enteral supplementation of n-3

  5. Wheat germ oil enrichment in broiler feed with α-lipoic acid to enhance the antioxidant potential and lipid stability of meat

    PubMed Central

    2013-01-01

    Background Lipid peroxidation is the cause of declining the meat quality. Natural antioxidants plays a vital role in enhancing the stability and quality of meat. The supplementation of natural antioxidants in feed decreases lipid peroxidation and improves the stability of meat. Methods The present research was conducted to determine the effect of α-lipoic acid, α-tocopherol and wheat germ oil on the status of antioxidants, quality and lipid stability of broiler meat. One day old male broilers were fed with different feeds containing antioxidants i.e. natural (wheat germ oil) and synthetic α-tocopherol and α-lipoic acid during the two experimental years. Results The feed treatments have significant variation on the body weight and feed conversion ratio (FCR) while having no influence on the feed intake. The broilers fed on wheat germ oil (natural α-tocopherol) gained maximum body weight (2451.97 g & 2466.07 g) in the experimental years 2010–11 & 2011–12, respectively. The higher total phenolic contents were found in the broilers fed on wheat germ oil plus α-lipoic acid in breast (162.73±4.8 mg Gallic acid equivalent/100 g & 162.18±4.5 mg Gallic acid equivalent/100 g) and leg (149.67±3.3 mg Gallic acid equivalent/100 g & 146.07±3.2 mg Gallic acid equivalent/100 g) meat during both experimental years. Similar trend was observed for the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power assay (FRAP). The production of malondialdehydes in the breast and leg meat increased with progressive increase in the time period. The deposition of α-tocopherol (AT) and α-lipoic acid (ALA) contents were found to be higher in the broilers fed on wheat germ oil plus α-lipoic acid in breast and leg meat during the both experimental years. Conclusion In conclusion, the combination of wheat germ oil and α-lipoic acid has more beneficial for stability and the quality of the broiler meat and more work should be needed in future for the bio

  6. Spectroscopic studies on the antioxidant activity of p-coumaric acid.

    PubMed

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties. PMID:23892112

  7. Spectroscopic studies on the antioxidant activity of p-coumaric acid

    NASA Astrophysics Data System (ADS)

    Kiliç, Ismail; Yeşiloğlu, Yeşim

    2013-11-01

    p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.

  8. The pH at the First Equivalence Point in the Titration of a Diprotic Acid

    NASA Astrophysics Data System (ADS)

    Ault, Addison

    2003-12-01

    Some readers will note a similarity between this approach and the one I took in a paper entitled “Do pH in Your Head” (2). In an example in that article the isoelectric pH of glycine (the pH at which the average charge of a glycine molecule is zero), has the value of 6.0, which is exactly half-way between 2.4, the pKa of the carboxyl group of glycine, and 9.6, the pKa of the ammonium group of glycine. This is what one would expect when realizing that a solution of neutral glycine right out of the bottle is equivalent to glycine obtained by titration of the conjugate acid of glycine to the first equivalence point. Those who are interested might want to consider why the isoelectric pH of an “acidic” amino acid, such as alanine, is exactly half-way between the pKa values of the two carboxyl groups, and why the isoelectric pH of a “basic” amino acid such as lysine is exactly half-way between the pKa values of the two ammonium groups.

  9. Bolus consumption of a specifically designed fruit juice rich in anthocyanins and ascorbic acid did not influence markers of antioxidative defense in healthy humans.

    PubMed

    Ellinger, Sabine; Gordon, André; Kürten, Mira; Jungfer, Elvira; Zimmermann, Benno F; Zur, Berndt; Ellinger, Jörg; Marx, Friedhelm; Stehle, Peter

    2012-11-14

    Exotic fruits such as açai, camu-camu, and blackberries rich in natural antioxidants (ascorbic acid, anthocyanins) are marketed as "functional" foods supporting a pro-/antioxidant balance. Confirming data from human studies are lacking. Within a randomized controlled crossover trial, 12 healthy nonsmokers ingested 400 mL of a blended juice of these fruits or a sugar solution (control). Blood was drawn before and afterward to determine antioxidants in plasma, markers of antioxidant capacity [trolox equivalent antioxidant capacity, Folin-Ciocalteu reducing capacity, total oxidant scavenging capacity (TOSC)] and oxidative stress [isoprostane, DNA strand breaks in leukocytes in vivo], and their resistance versus H₂O₂-induced strand breaks. Compared with sugar solution, juice consumption increased plasma ascorbic acid and maintained TOSC and partly Folin-Ciocalteu reducing capacity (both P values < 0.05). Strand breaks in vivo increased after ingestion of both beverages (P < 0.001), probably due to postprandial and/or circadian effects. This anthocyanin-rich fruit juice may stabilize the pro-/antioxidant balance in healthy nonsmokers without affecting markers of oxidative stress. PMID:23072538

  10. Antioxidant and Antimelanogenic activities of polyamine conjugates from corn bran and related hydroxycinnamic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antioxidant activity of three major polyamine conjugates, N,N'-dicoumaroyl- putrescine (DCP), N-p-coumaroyl-N'-feruloylputrescine (CFP) and N,N'-diferuloyl- putrescine (DFP) isolated from corn bran, and their related hydroxycinnamic acids, p-coumaric acid (CA) and ferulic acid (FA), were evaluat...

  11. Acidic Potassium Permanganate Chemiluminescence for the Determination of Antioxidant Potential in Three Cultivars of Ocimum basilicum.

    PubMed

    Srivastava, Shivani; Adholeya, Alok; Conlan, Xavier A; Cahill, David M

    2016-03-01

    Ocimum basilicum, a member of the family Lamiaceae, is a rich source of polyphenolics that have antioxidant properties. The present study describes the development and application of an online HPLC-coupled acidic potassium permanganate chemiluminescence assay for the qualitative and quantitative assessment of antioxidants in three cultivars of O. basilicum grown under greenhouse conditions. The chemiluminescence based assay was found to be a sensitive and efficient method for assessment of total and individual compound antioxidant potential. Leaves, flowers and roots were found to be rich reserves of the antioxidant compounds which showed intense chemiluminescence signals. The polyphenolics such as rosmarinic, chicoric, caffeic, p-coumaric, m-coumaric and ferulic acids showed antioxidant activity. Further, rosmarinic acid was found to be the major antioxidant component in water-ethanol extracts. The highest levels of rosmarinic acid was found in the leaves and roots of cultivars "holy green" (14.37; 11.52 mM/100 g DW respectively) followed by "red rubin" (10.02; 10.75 mM/100 g DW respectively) and "subja" (6.59; 4.97 mM/100 g DW respectively). The sensitivity, efficiency and ease of use of the chemiluminescence based assay should now be considered for its use as a primary method for the identification and quantification of antioxidants in plant extracts. PMID:26803763

  12. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: analysis with interaction indexes and isobolograms.

    PubMed

    Enko, Jolanta; Gliszczyńska-Świgło, Anna

    2015-01-01

    Products containing natural additives, including antioxidants, are usually perceived by consumers as safer than those with synthetic ones. Natural antioxidants, besides having a preservative activity, may exert beneficial health effects. Interactions between antioxidants may significantly change their antioxidant activity, thus in designing functional foods or food/cosmetic ingredients knowledge about the type of interactions could be useful. In the present study, the interactions between ascorbic acid (AA; vitamin C) and different black and green tea extracts and the influence on their antioxidant activities were investigated. The antioxidant activities of tea extracts and their mixtures with AA prepared in several different weight ratios were measured using the trolox equivalent antioxidant capacity (TEAC), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and ferric-reducing antioxidant power (FRAP) methods. The type of interaction was determined by interaction indexes and isobolograms. It was found that the weight ratio of extracts to AA significantly influenced the antioxidant activity of a mixture and the type of interaction between these components. The weight ratio of tea extract to AA can cause the change of interaction, e.g. from antagonism to additivism or from additivism to synergism. The observed differences in the type of interactions were probably also a result of different extracts' polyphenol composition and content. The type of interaction may also be affected by the medium in which extracts and AA interact, especially its pH and the solvent used. To obtain the best antioxidant effect, all these factors should be taken into account during the design of a tea extract-AA mixture. PMID:26035225

  13. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry. PMID:27379913

  14. Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity.

    PubMed

    Fujioka, Kazutoshi; Shibamoto, Takayuki

    2006-08-01

    The antioxidant activities of a commercial brewed coffee were investigated by measuring malonaldehyde (MA) formation from oxidized cod liver oil using a gas chromatographic method (MA-GC assay) and a thiobarbituric acid method (TBA assay). The highest antioxidant activity obtained by the MA-GC assay was from regular whole brewed coffee (97.8%) at a level of 20%, and the highest antioxidant activity obtained by the TBA assay was from decaffeinated whole brewed coffee (96.6%) at a level of 5%. Among 31 chemicals identified in a dichloromethane extract, guaiacol, ethylguaiacol, and vinylguaiacol exhibited antioxidant activities, which were comparable to that of alpha-tocopherol. Among nine chlorogenic acids (three caffeoylquinic acids, three feruloylquinic acids, and three dicaffeoylquinic acids) identified, 5-caffeoylquinic acid contained the greatest amount both in regular (883.5 microg/mL) and in decaffeinated (1032.6 microg/mL) coffees; it exhibited 24.5% activity by the MA-GC assay and 45.3% activity by the TBA assay at a level of 10 microg/mL. Caffeic and ferulic acids showed moderate antioxidant activities in both assays. PMID:16881716

  15. Antioxidant activities of rosemary (Rosmarinus Officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic acid, rosmarinic acid and sesamol.

    PubMed

    Erkan, Naciye; Ayranci, Guler; Ayranci, Erol

    2008-09-01

    Antioxidant activities of three pure compounds: carnosic acid, rosmarinic acid and sesamol, as well as two plant extracts: rosemary extract and blackseed essential oil, were examined by applying DPPH and ABTS(+) radical-scavenging assays and the ferric thiocyanate test. All three test methods proved that rosemary extract had a higher antioxidant activity than blackseed essential oil. The order of antioxidant activity of pure compounds showed variations in different tests. This was attributed to structural factors of individual compounds. Phenolic contents of blackseed essential oil and rosemary extract were also determined. Rosemary extract was found to have a higher phenolic content than blackseed essential oil. This fact was utilised in explaining the higher antioxidant activity of rosemary extract. PMID:26050168

  16. Antioxidant activity, ascorbic acid and total phenol of exotic fruits occurring in Brazil.

    PubMed

    de Assis, Sandra Aparecida; Vellosa, José Carlos Rebuglio; Brunetti, Iguatemy Lourenço; Khalil, Najeh Maissar; Leite, Kátia Maria da Silva Cerqueira; Martins, Antonio Baldo Geraldo; Oliveira, Olga Maria Mascarenhas de Faria

    2009-08-01

    The antioxidant activity, ascorbic acid and phenolic content were studied in 10 exotic fruits from Brazil: abiu, acerola, wax jambu, cashew, mamey sapote, carambola or star fruit, Surinam cherry, longan, sapodilla and jaboticaba. The ascorbic acid was determined by 2,6-dichloroindophenol titrimetic methods and total phenols were measured colorimetrically using the Folin-Ciocalteu reagent. The antioxidant activity was investigated with three different methods: hypochlorous acid scavenging activity, 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation decolorization assay, and 2,2-diphenyl-1-picrylhydrazyl radical scavenging method. The highest content of vitamin C (1,525.00 mg/100 g pulp) occurred in acerola. The total phenol content was higher in abiu, acerola, Surinam cherry and sapodilla. In relation to antioxidant activity, acerola has showed the great values in all three different methods tested. It was found that the fruits have a significant antioxidant effect when tested by each method, respectively, and these antioxidant capacities are promising. The sample concentration also influenced its antioxidant power. PMID:18785051

  17. [An endogenous dithiol with antioxidant properties: alpha-lipoic acid, potential uses in cardiovascular diseases].

    PubMed

    Ghibu, S; Richard, C; Delemasure, S; Vergely, C; Mogosan, C; Muresan, A

    2008-06-01

    Alpha-Lipoic acid (ALA) is a natural compound, chemically named 1,2-dithiolane-3-pentanoic acid, also referred to as thioctic acid. In humans, ALA is synthetized by the liver and other tissues with high metabolic activity: heart, kidney. ALA is both water and fat soluble and therefore, is widely distributed in both cellular membranes and cytosol. Recently, a greater deal of attention has been given to antioxidant function for ALA and its reduced formed: dihydrolipoic acid (DHLA). ALA scavenges hydroxyl radicals, hypochlorous acid and singlet oxygen. It may also exert antioxidant effects in biological systems through transitional metal chelation. Dihydrolipoic acid has been shown to have antioxidant but also pro-oxidant properties in systems in which hydroxyl radical was generated. ALA/DHLA ratio has the capacity to recycle endogenous antioxidants such as vitamin E. A number of experimental as well as clinical studies point to the usefulness of ALA as a therapeutic agent for such diverse conditions as diabetes, atherosclerosis, insulin resistance, neuropathy, neurodegenerative diseases and ischemia-reperfusion injury. ALA represents a potential agent on the vascular endothelium, recording to ALA/DHLA redox couple is one of the most powerful biological antioxidant systems. PMID:18571145

  18. Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Choi, Jong-il; Park, Hyun

    2015-04-01

    Low molecular weight fucoidan, prepared by radical degradation using gamma ray was investigated for its antioxidant activities with different assay methods. As the molecular weight of fucoidan decreased with a higher absorbed dose, ferric-reducing antioxidant power values increased, but β-carotene bleaching inhibition did not change significantly. The antioxidant activity of acid-degraded fucoidan was also examined to investigate the effect of different degradation methods. At the same molecular weight, fucoidan degraded by gamma irradiation showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity than that observed with the acidic method. This result reveals that in addition to molecular weight, the degradation method affects the antioxidant activity of fucoidan.

  19. Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey.

    PubMed

    Aktumsek, Abdurrahman; Zengin, Gokhan; Guler, Gokalp Ozmen; Cakmak, Yavuz Selim; Duran, Ahmet

    2013-11-01

    This paper focused on the assessment of antioxidant property and fatty acid composition of four Centaurea species. The antioxidant activity of its methanol extract was evaluated by several in vitro experiments including phosphomolybedum assay, DPPH assay, β-carotene/linoleic acid, ferric and cupric reducing power. Total phenolic and flavonoid contents were also evaluated. The methanol extract of Centaurea pulcherrima var. pulcherrima showed the superior free radical scavenging activity, linoleic acid inhibition capacity, reducing power and also had the highest total phenolic content. A significant relationship between antioxidant capacity and total phenolic components was found. The oils of Centaurea taxa were also analysed for fatty acid concentration by gas chromatography. The principal fatty acids in the species were palmitic acid (23.38-30.49%) and linoleic acid (20.19-29.93%). These findings suggest that the Centaurea species could be used as a potential source of new natural antioxidants and unsaturated fatty acids in food industry, cosmetics and pharmaceutical preparations. PMID:23768332

  20. [The effect of antioxidants on the activity of acid hydrolases in blood leukocytes from patients with leukoplakia of mouth mucosa].

    PubMed

    Petrovich, Iu A; Mashkilleĭson, A L; Suleĭmanova, G G; Lagunov, A I

    1989-01-01

    Activity of acid hydrolases, alkaline phosphatase and leucine aminopeptidase was studied in leukocytes of patients with leukoplakia of mouth mucosa before and after the treatment involving antioxidant drugs. The enzymatic activity studied was increased in leukoplakia. Cryotherapy combined with antioxidants and the treatment with antioxidants only contributed to a decrease in these enzymes activity. PMID:2617939

  1. Phenolic Acids (Gallic and Tannic Acids) Modulate Antioxidant Status and Cisplatin Induced Nephrotoxicity in Rats

    PubMed Central

    Akomolafe, Seun F.; Akinyemi, Ayodele J.; Anadozie, Scholarstical O.

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum (II) or CDDP), used in the treatment of many solid-tissue cancers, has its chief side-effect in nephrotoxicity. Hence, this study sought to investigate and compare the protective effect of gallic acid (GA) and tannic acid (TA) against cisplatin induced nephrotoxicity in rats. The rats were given a prophylactic treatment of GA and TA orally at a dose of 20 and 40 mg/kg body weight for 7 consecutive days before the administration of a single intraperitoneal (i.p.) injection of cisplatin (CP) at 7.5 mg/kg bwt. The protective effects of both GA and TA on CP induced nephrotoxicity were investigated by assaying renal function, oxidative stress biomarkers, and histopathological examination of kidney architecture. A single dose of cisplatin (7.5 mg/kg bwt) injected i.p. caused a significant increase in some biomarkers of renal function (creatinine, uric acid, and urea levels), with a marked elevation in malondialdehyde (MDA) content accompanied by a significant (P < 0.05) decrease in reduced glutathione (GSH) content (103.27%) of kidney tissue as compared to control group. Furthermore, a significant (P < 0.05) reduction in kidney antioxidant enzymes (SOD, catalase, GPx, and GST) activity was observed. However, pretreatment with oral administration of tannic acid and gallic acid at a dose of 20 and 40 mg/kg body weight, respectively, for 7 days prior to cisplatin administration reduced histological renal damage and suppressed the generation of ROS, lipid peroxidation, and oxidative stress in kidney tissues. These results indicate that both gallic and tannic acids could serve as a preventive strategy against cisplatin induced nephrotoxicity. PMID:27382634

  2. Antioxidants

    MedlinePlus

    ... carotene Lutein Lycopene Selenium Vitamin A Vitamin C Vitamin E Vegetables and fruits are rich sources of antioxidants. There is good ... eating a diet with lots of vegetables and fruits is healthy and lowers risks ... smokers. High doses of vitamin E may increase risks of prostate cancer and ...

  3. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities.

    PubMed

    Liang, Ningjian; Xue, Wei; Kennepohl, Pierre; Kitts, David D

    2016-12-15

    Coffee bean source and roasting conditions significantly (p<0.05) affected the content of chlorogenic acid (CGA) isomers, several indices of browning and subsequent antioxidant values. Principal component analysis was used to interpret the correlations between physiochemical and antioxidant parameters of coffee. CGA isomer content was positively correlated (p<0.001) to capacity of coffee to reduce nitric oxide and scavenge Frémy's salt. Indices of browning in roasted coffee were positively correlated (p<0.001) to ABTS and TEMPO radical scavenging capacity, respectively. Only the CGA content of coffee corresponded to intracellular antioxidant capacity measured in Caco-2 intestinal cells. This study concluded that the intracellular antioxidant capacity that best describes potential health benefits of coffee positively corresponds best with CGA content. PMID:27451179

  4. Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith.

    PubMed

    Dutra, Richard Pereira; Abreu, Bruno Vinicius de Barros; Cunha, Mayara Soares; Batista, Marisa Cristina Aranha; Torres, Luce Maria Brandão; Nascimento, Flavia Raquel Fernandes; Ribeiro, Maria Nilce Sousa; Guerra, Rosane Nassar Meireles

    2014-03-26

    Geopropolis is a mixture of plant resins, waxes, and soil produced by the stingless bee Melipona fasciculata Smith. This paper describes the antioxidant activity and chemical composition of geopropolis produced by M. fasciculata. The total phenolic content determined with the Folin-Ciocalteu reagent was highest in the ethyl acetate fraction and hydroalcoholic extract. Antioxidant activity was assayed by the in vitro DPPH, ABTS, and FRAP assays. The hydroalcoholic extract and fractions of geopropolis, except for the hexane fraction, exhibited antioxidant activity against DPPH, ABTS, and FRAP. The phenolic compounds were identified by HPLC-DAD-MS on the basis of the evaluation of their UV-vis absorption maxima (λmax) and mass spectral analysis. Eleven compounds belonging to the classes of phenolic acids and hydrolyzable tannins (gallotannins and ellagitannins) were tentatively identified. These compounds are responsible for the antioxidant activity and high phenolic content of geopropolis produced by M. fasciculata. PMID:24571707

  5. Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan.

    PubMed

    Liu, Jun; Lu, Jian-feng; Kan, Juan; Tang, Ying-qing; Jin, Chang-hai

    2013-11-01

    In this study, three phenolic acids including gallic acid (GA), caffeic acid (CA) and ferulic acid (FA) were grafted onto N,O-carboxymethyl chitosan (NOCC) by a free radical mediated grafting method. The grafted copolymers obtained were all water-soluble samples. UV-vis absorption peaks of the grafted copolymers shifted toward longer wavelengths. FT-IR spectroscopy of the grafted copolymers exhibited additional phenolic characteristics of the aromatic ring CC stretching within 1450-1650 cm(-1). NMR spectroscopy of the grafted copolymers showed new peaks at 6.2-7.6 ppm assigned to the phenyl protons of phenolic acids. These results all confirmed the successful grafting of three phenolic acids to NOCC. The conjugation probably occurred at amine of NOCC and carboxyl groups of phenolic acids. The grafted copolymers exhibited decreased crystallinity as compared to NOCC and chitosan. Moreover, antioxidant activity in vitro assays showed that the antioxidant property decreased in the order of GA-g-NOCC>CA-g-NOCC>FA-g-NOCC>NOCC>chitosan. Our results suggested the potential of phenolic acids grafted NOCC for the development of effective antioxidant agents. PMID:23994782

  6. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice.

    PubMed

    Lee, H H; Loh, S P; Bong, C F J; Sarbini, S R; Yiu, P H

    2015-12-01

    Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars. PMID:26604353

  7. Antioxidant properties of sterilized yacon (Smallanthus sonchifolius) tuber flour.

    PubMed

    Sousa, Sérgio; Pinto, Jorge; Rodrigues, César; Gião, Maria; Pereira, Claúdia; Tavaria, Freni; Malcata, F Xavier; Gomes, Ana; Bertoldo Pacheco, M T; Pintado, Manuela

    2015-12-01

    The objective of this research work was to investigate the antioxidant properties of sterilized yacon tuber flour. The results revealed for the first time the high antioxidant activity of sterilized yacon flour. The best extract obtained by boiling 8.9% (w/v) of yacon flour in deionised water for 10 min exhibited a total antioxidant capacity of 222±2 mg (ascorbic acid equivalent)/100 g DW and a total polyphenol content of 275±3 mg (gallic acid equivalent)/100 g DW associated to the presence of four main phenolic compounds: chlorogenic acid, caffeic acid, coumaric acid and protocatechuic acid, as well as the amino acid tryptophan. The most abundant was chlorogenic acid, followed by caffeic acid. Biological assays revealed that the extract had indeed antioxidant protection, and no pro-oxidant activity. In conclusion, sterilized yacon tuber flour has the potential to be used in the food industry as a food ingredient to produce functional food products. PMID:26041224

  8. Four New Dicaffeoylquinic Acid Derivatives from Glasswort (Salicornia herbacea L.) and Their Antioxidative Activity.

    PubMed

    Cho, Jeong-Yong; Kim, Jin Young; Lee, Yu Geon; Lee, Hyoung Jae; Shim, Hyun Jeong; Lee, Ji Hye; Kim, Seon-Jae; Ham, Kyung-Sik; Moon, Jae-Hak

    2016-01-01

    Four new dicaffeoylquinic acid derivatives and two known 3-caffeoylquinic acid derivatives were isolated from methanol extracts using the aerial parts of Salicornia herbacea. The four new dicaffeoylquinic acid derivatives were established as 3-caffeoyl-5-dihydrocaffeoylquinic acid, 3-caffeoyl-5-dihydrocaffeoylquinic acid methyl ester, 3-caffeoyl-4-dihydrocaffeoylquinic acid methyl ester, and 3,5-di-dihydrocaffeoylquinic acid methyl ester. Their chemical structures were determined by nuclear magnetic resonance and electrospray ionization-mass spectroscopy (LC-ESI-MS). In addition, the presence of dicaffeoylquinic acid derivatives in this plant was reconfirmed by LC-ESI-MS/MS analysis. The isolated compounds strongly scavenged 1,1-diphenyl-2-picrylhydrazyl radicals and inhibited cholesteryl ester hydroperoxide formation during rat blood plasma oxidation induced by copper ions. These results indicate that the caffeoylquinic acid derivatives may partially contribute to the antioxidative effect of S. herbacea. PMID:27556430

  9. Effects of Essential Oils and Polyunsaturated Fatty Acids on Canine Skin Equivalents: Skin Lipid Assessment and Morphological Evaluation

    PubMed Central

    Cerrato, S.; Ramió-Lluch, L.; Fondevila, D.; Rodes, D.; Brazis, P.; Puigdemont, A.

    2013-01-01

    A canine skin equivalent model has been validated for the assessment of a topical formulation effects. Skin equivalents were developed from freshly isolated cutaneous canine fibroblasts and keratinocytes, after enzymatic digestion of skin samples (n = 8) from different breeds. Fibroblasts were embedded into a collagen type I matrix, and keratinocytes were seeded onto its surface at air-liquid interface. Skin equivalents were supplemented with essential oils and polyunsaturated fatty acid formulation or with vehicle. Skin equivalents were histopathologically and ultrastructurally studied, and the three main lipid groups (free fatty acids, cholesterol, and ceramides) were analyzed. Results showed that the culture method developed resulted in significant improvements in cell retrieval and confluence. Treated samples presented a thicker epidermis with increased number of viable cell layers, a denser and compact stratum corneum, and a more continuous basal membrane. Regarding lipid profile, treated skin equivalents showed a significant increase in ceramide content (51.7 ± 1.3) when compared to untreated (41.6  ±  1.4) samples. Ultrastructural study evidenced a compact and well-organized stratum corneum in both treated and control skin equivalents. In conclusion, cell viability and ceramides increase, after lipid supplementation, are especially relevant for the treatment of skin barrier disruptions occurring in canine atopic dermatitis. PMID:26464904

  10. Effect of Putrescine Treatment on Chilling Injury, Fatty Acid Composition and Antioxidant System in Kiwifruit.

    PubMed

    Yang, Qingzhen; Wang, Feng; Rao, Jingping

    2016-01-01

    We investigated the effects of different concentrations (0, 1, 2 and 4 mM) of putrescine on chilling injury, fruit quality, ethylene production rate, fatty acid composition and the antioxidant system of cold-stored kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hongyang'). We achieved a significant decrease in ethylene production, maintained fruit quality and alleviated chilling injury during storage via treatment with 2 mM putrescine. Furthermore, putrescine treatment inhibited increases in superoxide anion production rate and H2O2 concentration, while maintaining higher membrane lipid unsaturation as well as increased activities of superoxide dismutase and catalase. In addition, putrescine treatment enhanced the activities of antioxidant enzymes related to the ascorbate-glutathione cycle while causing higher levels of ascorbic acid and reduced glutathione. Our results suggest that induced tolerance against chilling injury via putrescine treatment in cold-stored kiwifruit may be due to enhanced antioxidant activity, increased unsaturation of membrane lipids, and inhibited ethylene production. PMID:27607076

  11. Housefly larvae hydrolysate: orthogonal optimization of hydrolysis, antioxidant activity, amino acid composition and functional properties

    PubMed Central

    2013-01-01

    C- 4°C and room temperature during the first 6 months of storage. Essential amino acids in the hydrolysate accounted for 43% of the total amino acids. Conclusions The results suggesting that hydrolysate could be added to food oils as an efficient antioxidant. It might be useful for food additives, diet nutrients and pharmaceutical agents. PMID:23683361

  12. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells.

    PubMed

    da Silva, E P; Nachbar, R T; Levada-Pires, A C; Hirabara, S M; Lambertucci, R H

    2016-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual's performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells. PMID:26386577

  13. Fluorinated amphiphilic amino acid derivatives as antioxidant carriers: a new class of protective agents.

    PubMed

    Ortial, Stéphanie; Durand, Grégory; Poeggeler, Burkhard; Polidori, Ange; Pappolla, Miguel A; Böker, Jutta; Hardeland, Rüdiger; Pucci, Bernard

    2006-05-01

    The use of classical antioxidants is limited by their low bioavailabilities, and therefore, high doses are usually required to display significant protective activity. In a recent article (J. Med. Chem. 2003, 46, 5230) we showed that the ability of the alpha-phenyl-N-tert-butylnitrone (PBN) to restore the viability of ATPase-deficient human skin fibroblasts was greatly enhanced by grafting it on a fluorinated amphiphilic carrier. With the aim of extending this concept to other antioxidants, we present here the design, the synthesis, and the physicochemical measurements of a new series of fluorinated amphiphilic antioxidant derivatives. The hydroxyl radical scavenging activity and the radical reducing potency of these newly designed compounds were respectively demonstrated in an ABTS competition and an ABTS(*+) reduction assay. We also showed that the protective effects of amphiphilic antioxidants derived from PBN, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) or lipoic acid (5-[1,2]-dithiolan-3-ylpentanoic acid) in primary cortical mixed cell cultures exposed to oxidotoxins are greatly improved compared to their parent compounds in the following rank-order: (1) PBN, (2) Trolox, and (3) lipoic acid. In contrast, the protective activity of indole-3-propionic acid was slightly decreased by grafting it on the amphiphilic carrier. Similar observations were made in in vivo experiments using aquatic invertebrate microorganisms, called rotifers, which were exposed to lethal concentrations of nonselective (H(2)O(2)) and mitochondria-selective (doxorubicin) oxidotoxins. The conclusion of these studies is that fluorinated amphiphilic PBN, Trolox, and lipoic acid derivatives exhibit very potent protective activities in in vitro and in vivo experiments. The findings demonstrated herein therefore strongly suggest that the amphiphilic character enhances the bioavailability of the antioxidants and allows for a selective targeting of mitochondria. PMID:16640342

  14. Formulation of poultry feed with polyunsaturated fatty acids and natural antioxidants to improve meat quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formulation of poultry feed with polyunsaturated fatty acids and natural antioxidants to improve meat quality Ronald Alan Holser* and Arthur Hinton, Jr Russell Research Center, USDA-ARS, 950 College Station Road, Athens, Georgia, 30605 USA *Corresponding author: Tel. +1 706-546-3361; Fax +1 706-546-...

  15. Antioxidant glucosylated caffeoylquinic acid derivatives in the invasive tropical soda apple, Solanum viarum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The eggplant (Solanum melongena) and other species within the “spiny solanums” (Solanum subgenus Leptostemonum) contain diverse and abundant antioxidant caffeoylquinic acid (CQA) derivatives. The fruit of an aggressive invasive species in the spiny solanums, Solanum viarum, contain numerous CQA deri...

  16. Phenolic acids and antioxidant capacity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants and analyzed for individual phenolic acids by high performance liquid chromatography coupled with diode array and/or mass spectrometry and for antioxidant capacity...

  17. Phenolic acids and antioxidant activity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sample sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants in Iowa. Phenolic acids were analyzed by high performance liquid chromatography coupled with diode array and/or mass spectrometry. The antioxidant activity was ...

  18. The effect of tea fermentation on rosmarinic acid and antioxidant properties using selected in vitro sprout culture of Orthosiphon aristatus as a model study.

    PubMed

    Hunaefi, Dase; Smetanska, Iryna

    2013-12-01

    Orthosiphon aristatus, an Indonesian medicinal plant, is normally used as a traditional herbal tea. Recently, this plant has begun to attract attention due to its antioxidant properties. However, little is known about tea fermentation effect on antioxidant properties of this plant. Thus, to extend the tea fermentation study, in vitro sprout culture of this plant was established as a new feature model. This model plant was selected based on three reasons. Firstly, as a native tropical plant, to grow this plant in sub-tropic area is considered difficult. Secondly, the in vitro sprout culture is more genetically stable compared to other types of in vitro cultures. Thirdly, results showed that this in vitro sprout culture grew faster and produced higher biomass than in vitro tissue culture. Both characteristics are important in producing tea leaves. Accordingly, the aim of the current study was twofold. First was to establish high rosmarinic acid line of in vitro sprout culture of Orthosiphon aristatus by elicitation. Second was to evaluate the effect of tea fermentation on antioxidant properties of this plant. Results showed that yeast extract (5 g/L) elicitation resulted in the highest production of rosmarinic acid. This elicited plant was subjected to partial and full tea fermentation. Results revealed that both tea fermentations decreased the level of rosmarinic acid, total phenolic compounds, flavonoids, and flavonols. These decreases were concomitant with reduced antioxidant activities as measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, Trolox equivalent antioxidant capacity (TEAC), and Superoxide dismutase (SOD)-like activity assays. HPLC results showed that the longer the tea fermentation was, the greater reduction rosmarinic acid was found. High correlation value of 0.922 between rosmarinic acid and antioxidant activities was also observed. These results indicated that rosmarinic acid is the major contributor to the antioxidant activities

  19. Changes in phenolic acids and antioxidant activity in Thai rice husk at five growth stages during grain development.

    PubMed

    Butsat, Sunan; Weerapreeyakul, Natthida; Siriamornpun, Sirithon

    2009-06-10

    Soluble and bound phenolic acids were isolated from Thai rice husk samples at five growth stages during grain development, and their antioxidant activities were evaluated. The results showed that ferulic acid was the major soluble phenolic acid in husk at all stages, and its concentration decreased steadily during grain development. The ratio of ferulic to p-coumaric acid was approximately 2:1 at all stages. The most abundant bound phenolic acid in all extracts was p-coumaric acid, followed by ferulic acid along with traces of syringic, vanilic, and p-hydroxybenzoic acids. Most of the antioxidant activities of soluble and bound phenolic acids in husk extracts were found at flowering stage, and there were high correlations of antioxidant activity to levels of soluble ferulic, gallic, and p-coumaric acids. PMID:19432451

  20. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

    PubMed

    Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello

    2015-12-01

    Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation. PMID:26340979

  1. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation.

    PubMed

    Feng, Yingshu; Sun, Congyong; Yuan, Yangyang; Zhu, Yuan; Wan, Jinyi; Firempong, Caleb Kesse; Omari-Siaw, Emmanuel; Xu, Yang; Pu, Zunqin; Yu, Jiangnan; Xu, Ximing

    2016-03-30

    In the present study, a formulation system consisting of cholesterol and phosphatidyl choline was used to prepare an effective chlorogenic acid-loaded liposome (CAL) with an improved oral bioavailability and an increased antioxidant activity. The developed liposomal formulation produced regular, spherical and multilamellar-shaped distribution nanoparticles. The pharmacokinetic analysis of CAL compared with chlorogenic acid (CA), showed a higher value of Cmax(6.42 ± 1.49 min versus 3.97 ± 0.39 min) and a delayed Tmax(15 min versus 10 min), with 1.29-fold increase in relative oral bioavailability. The tissue distribution in mice also demonstrated that CAL predominantly accumulated in the liver which indicated hepatic targeting potential of the drug. The increased activities of antioxidant enzymes (Total Superoxide Dismutase (T-SOD) and Glutathione Peroxidase (GSH-Px)) and total antioxidant capacity (T-AOC), in addition to decreased level of malondialdehyde (MDA) in CCl4-induced hepatotoxicity study further revealed that CAL exhibited significant hepatoprotective and antioxidant effects. Collectively, these findings present a liposomal formulation with significantly improved oral bioavailability and an increased in vivo antioxidant activity of CA. PMID:26861689

  2. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.

    PubMed

    Genaro-Mattos, Thiago C; Maurício, Ângelo Q; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here--in association with its reported signaling effects--could be an explanation to its beneficial effects

  3. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation—A Chemical Approach

    PubMed Central

    Genaro-Mattos, Thiago C.; Maurício, Ângelo Q.; Rettori, Daniel; Alonso, Antonio; Hermes-Lima, Marcelo

    2015-01-01

    Caffeic acid (CA) is a phenolic compound widely found in coffee beans with known beneficial effects in vivo. Many studies showed that CA has anti-inflammatory, anti-mutagenic, antibacterial and anti-carcinogenic properties, which could be linked to its antioxidant activity. Taking in consideration the reported in vitro antioxidant mechanism of other polyphenols, our working hypothesis was that the CA antioxidant activity could be related to its metal-chelating property. With that in mind, we sought to investigate the chemical antioxidant mechanism of CA against in vitro iron-induced oxidative damage under different assay conditions. CA was able to prevent hydroxyl radical formation promoted by the classical Fenton reaction, as determined by 2-deoxyribose (2-DR) oxidative degradation and DMPO hydroxylation. In addition to its ability to prevent hydroxyl radical formation, CA had a great inhibition of membrane lipid peroxidation. In the lipid peroxidation assays CA acted as both metal-chelator and as hydrogen donor, preventing the deleterious action promoted by lipid-derived peroxyl and alkoxyl radicals. Our results indicate that the observed antioxidant effects were mostly due to the formation of iron-CA complexes, which are able to prevent 2-DR oxidation and DMPO hydroxylation. Noteworthy, the formation of iron-CA complexes and prevention of oxidative damage was directly related to the pH of the medium, showing better antioxidant activity at higher pH values. Moreover, in the presence of lipid membranes the antioxidant potency of CA was much higher, indicating its enhanced effectiveness in a hydrophobic environment. Overall, our results show that CA acts as an antioxidant through an iron chelating mechanism, preventing the formation of free hydroxyl radicals and, therefore, inhibiting Fenton-induced oxidative damage. The chemical properties of CA described here—in association with its reported signaling effects—could be an explanation to its beneficial effects

  4. Synthesis of all nineteen appropriately protected chiral alpha-hydroxy acid equivalents of the alpha-amino acids for Boc solid-phase depsi-peptide synthesis.

    PubMed

    Deechongkit, Songpon; You, Shu-Li; Kelly, Jeffery W

    2004-02-19

    [reaction: see text] The preparation of depsi-peptides, amide-to-ester-substituted peptides used to probe the role of hydrogen bonding in protein folding energetics, is accomplished by replacing specific l-alpha-amino acid residues by their alpha-hydroxy acid counterparts in a solid-phase synthesis employing a t-Boc strategy. Herein we describe the efficient stereoselective synthesis of all 19 appropriately protected alpha-hydroxy acid equivalents of the l-alpha-amino acids, employing commercially available materials, expanding the number of available alpha-hydroxy acids from 9 to 19. PMID:14961607

  5. Trichloroacetic acid in urine as biological exposure equivalent for low exposure concentrations of trichloroethene.

    PubMed

    Csanády, György A; Göen, Thomas; Klein, Dominik; Drexler, Hans; Filser, Johannes G

    2010-11-01

    A urinary trichloroacetic acid (TCA) concentration of 100 mg/l at the end of the last work shift (8 h/day, 5 days/week) of the week has been established in workers as exposure equivalent for the carcinogenic substance trichloroethene (EKA for TRI) at an exposure concentration of 50 ppm TRI. Due to the continuous reduction of atmospheric TRI concentrations during the last years, the quantitative relation given by the EKA for TRI is revised for exposures to low TRI concentrations. A physiological two-compartment model is presented by which the urinary TCA concentrations are calculated that result from inhaled TRI in humans. The model contains one compartment for trichloroethanol (TCE) and one for TCA. Inhaled TRI is metabolized to TCA and to TCE. The latter is in part further oxidized to TCA. Urinary elimination of TCA is modeled to obey first order kinetics. All required model parameters were taken form the literature. In order to evaluate the model performance on the urinary TCA excretion at low exposure concentrations, predicted urinary TCA concentrations were compared with data obtained in two volunteer studies and in one field study. The model was evaluated at exposure concentrations as low as 12.5 ppm TRI. It is demonstrated that the correlation described by the hitherto used EKA for TRI is also valid at low TRI concentrations. For TRI exposure concentrations of 0.6 and 6 ppm, the resulting urinary TCA concentrations at the end of the last work shift of a week are predicted to be 1.2 and 12 mg/l, respectively. PMID:20414643

  6. Hydroxycinnamic acid bound arabinoxylans from millet brans-structural features and antioxidant activity.

    PubMed

    Bijalwan, Vandana; Ali, Usman; Kesarwani, Atul Kumar; Yadav, Kamalendra; Mazumder, Koushik

    2016-07-01

    Hydroxycinnamic acid bound arabinoxylans (HCA-AXs) were extracted from brans of five Indian millet varieties and response surface methodology was used to optimize the extraction conditions. The optimal condition to obtain highest yield of millet HCA-AXs was determined as follows: time 61min, temperature 66°C, ratio of solvent to sample 12ml/g. Linkage analysis indicated that hydroxycinnamic acid bound arabinoxylan from kodo millet (KM-HCA-AX) contained comparatively low branched arabinoxylan consisting of 14.6% mono-substituted, 1.2% di-substituted and 41.2% un-substituted Xylp residues. The HPLC analysis of millet HCA-AXs showed significant variation in the content of three major bound hydroxycinnamic acids (caffeic, p-coumaric and ferulic acid). The antioxidant activity of millet HCA-AXs were evaluated using three in vitro assay methods (DPPH, FRAP and β-carotene linoleate emulsion assays) which suggested both phenolic acid composition and structural characteristics of arabinoxylans could be correlated to their antioxidant potential, the detailed structural analysis revealed that low substituted KM-HCA-AX exhibited relatively higher antioxidant activity compared to other medium and highly substituted HCA-AXs from finger (FM), proso (PM), barnyard (BM) and foxtail (FOXM) millet. PMID:27050114

  7. Synthesis and antioxidant activity of polyhydroxylated trans-restricted 2-arylcinnamic acids.

    PubMed

    Miliovsky, Mitko; Svinyarov, Ivan; Prokopova, Elena; Batovska, Daniela; Stoyanov, Simeon; Bogdanov, Milen G

    2015-01-01

    A series of sixteen polyhydroxylated trans-restricted 2-arylcinnamic acid analogues 3a-p were synthesized through a one-pot reaction between homophthalic anhydrides and various aromatic aldehydes, followed by treatment with BBr3. The structure of the newly synthesized compounds was confirmed by spectroscopic methods and the configuration around the double bond was unequivocally estimated by means of gated decoupling 13C-NMR spectra. It was shown that the trans-cinnamic acid fragment incorporated into the target compounds' structure ensures the cis-configuration of the stilbene backbone and prevents further isomerization along the carbon-carbon double bond. The antioxidant activity of compounds 3a-p was measured against 1,1-diphenyl-2-picrylhydrazyl (DPPH●), hydroxyl (OH●) and superoxide (O2●▬) radicals. The results obtained showed that the tested compounds possess higher activities than natural antioxidants such as protocatechuic acid, caffeic acid and gallic acid. Moreover, it was shown that a combination of two different and independently acting fragments of well-known pharmacological profiles into one covalently bonded hybrid molecule evoke a synergistic effect resulting in higher than expected activity. To rationalize the apparent antioxidant activity and to establish the mechanism of action, a SAR analysis and DFT quantum chemical computations were also performed. PMID:25648597

  8. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay.

    PubMed

    Qwele, K; Hugo, A; Oyedemi, S O; Moyo, B; Masika, P J; Muchenje, V

    2013-03-01

    The present study determined the chemical composition, fatty acid (FA) content and antioxidant capacity of meat from goats supplemented with Moringa oleifera leaves (MOL) or sunflower cake (SC) or grass hay (GH). The meat from goat supplemented with MOL had higher concentrations of total phenolic content (10.62±0.27 mg tannic acid equivalent E/g). The MOL significantly scavenged 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic-acid (ABTS) radical to 93.51±0.19% (93.51±0.19%) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical to 58.95±0.3% than other supplements. The antioxidative effect of MOL supplemented meat on catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD) and lipid oxidation (LO) was significantly (P<0.05) higher than other meat from goat feed on grass hay or those supplemented with sunflower seed cake. The present study indicated that the anti-oxidative potential of MOL may play a role in improving meat quality (chemical composition, colour and lipid stability). PMID:23273450

  9. Characterization of phytochemicals and antioxidant activities of red radish brines during lactic acid fermentation.

    PubMed

    Jing, Pu; Song, Li-Hua; Shen, Shan-Qi; Zhao, Shu-Juan; Pang, Jie; Qian, Bing-Jun

    2014-01-01

    Red radish (Raphanus L.) pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5-19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15-30 µg/mL). 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2-92.2 µg/mL, whereas the total phenolic content was 206-220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants. PMID:25004074

  10. Antioxidant activity and physicochemical properties of an acidic polysaccharide from Morinda officinalis.

    PubMed

    Zhang, Hualin; Li, Jun; Xia, Jingmin; Lin, Sanqing

    2013-07-01

    An acidic polysaccharide APMO was isolated from Morinda officinalis by alkaline solvent extraction followed by fractionation treatments. Its antioxidant activities were evaluated by various methods in vitro, APMO presented excellent capability in scavenging DPPH radicals, chelating ferrous ions and inhibiting hemolysis of rats erythrocyte induced by H2O2, which was stronger than those of Vc at high concentration. Moreover, APMO displayed moderate reducing power. Physicochemical characteristics of APMO were observed by a combination of chemical and instrumental analysis. APMO predominantly consisted of galacturonic acid, arabinose and galactose. Galacturonic acid was assigned to be 1→4 glycosyl linkage in the skeleton of APMO. PMID:23511058

  11. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus.

    PubMed

    Xing, Yun; Cai, Le; Yin, Tian-Peng; Chen, Yang; Yu, Jing; Wang, Ya-Rong; Ding, Zhong-Tao

    2016-05-01

    The antioxidant activities and total phenolic content of fermented Salvia miltiorrhiza with fungus Geomyces luteus were investigated. The results revealed that G. luteus fermentation could significantly improve the antioxidant activity and total phenolic content of S. miltiorrhiza. The main antioxidant constituents were characterized by spectroscopic analysis as salvianolic acids. High-performance liquid chromatography (HPLC) quantification also showed the enhanced content of salvianolic acid B after fermentation. The present study suggests that G. luteus fermentations are effective in the S. miltiorrhiza salvianolic acids' enrichment process. PMID:27143267

  12. Composition of transgenic soybean seeds with higher γ-linolenic acid content is equivalent to that of conventional control.

    PubMed

    Qin, Fengyun; Kang, Linzhi; Guo, Liqiong; Lin, Junfang; Song, Jingshen; Zhao, Yinhua

    2012-03-01

    γ-Linolenic acid (GLA) has been used as a general nutraceutical for pharmacologic applications, particularly in the treatment of skin conditions such as eczema. Four transgenic soybean lines that produce GLA at high yields (4.21% of total fatty acids, up to 1002-fold) were generated through the stable insertion of the Delta-6-fatty acid desaturase gene isolated from Borago officinalis into the genome of a conventional soybean cultivar. As part of the safety assessment of genetically engineered crops, the transgenic soybean seeds were compared with their parental soybean seeds (nontransgenic) by applying the principle of substantial equivalence. Compositional analyses were conducted by measuring the fatty acids, proximate analysis (moisture, crude protein, crude fat, carbohydrates, TDF, and ash contents), amino acids, lectins, and trypsin inhibitor activity. The present results showed that the specific transgenic cultivar studied was similar to the conventional control. PMID:22324875

  13. Effect of ellagic acid on some haematological, immunological and antioxidant parameters of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Mişe Yonar, S; Yonar, M E; Yöntürk, Y; Pala, A

    2014-10-01

    In this study, effect of ellagic acid on some haematological, immunological and antioxidant parameters in the blood and various tissues of rainbow trout (Oncorhynchus mykiss) were examined. Four groups of rainbow trout were fed experimental diets containing either no ellagic acid (control) or supplemented with ellagic acid at 50 mg/kg diet (EA-50), 100 mg/kg diet (EA-100) or 150 mg/kg diet (EA-150) for 21 days. Samples of the blood and tissue (liver, kidney and spleen) were collected at the end of the experiment and analysed for their haematological profile (the red blood cell count, the haemoglobin concentration and the haematocrit level), immune response (the white blood cell count, the oxidative radical production (NBT activity), the total plasma protein and total immunoglobulin level) and oxidant/antioxidant status (the malondialdehyde level, the superoxide dismutase, catalase and glutathione peroxidase activity as well as the reduced glutathione concentration). The findings of this study demonstrated that ellagic acid had a positive effect on the haematological parameters, the immune response and the antioxidant enzyme activities of the fish. PMID:24401136

  14. Chlorogenic acid ameliorates intestinal mitochondrial injury by increasing antioxidant effects and activity of respiratory complexes.

    PubMed

    Zhou, Yan; Zhou, Lili; Ruan, Zheng; Mi, Shumei; Jiang, Min; Li, Xiaolan; Wu, Xin; Deng, Zeyuan; Yin, Yulong

    2016-05-01

    Dietary polyphenols are thought to be beneficial for human health by acting as antioxidants. Chlorogenic acid (CGA) is abundant in plant-based foods as an ester of caffeic acid and quinic acid. In this study, we investigated the effects of CGA on mitochondrial protection. Our results demonstrated that pretreatment with CGA ameliorated the intestinal mitochondrial injury induced by H2O2; membrane potential was increased, mitochondrial swelling, levels of reactive oxygen species, contents of 8-hydroxy-2-deoxyguanosine, and cytochrome c released were decreased. The beneficial effects of CGA were accompanied by an increase in antioxidant and respiratory-chain complex I, IV, and V activities. In trinitrobenzene-sulfonic acid-induced colitic rats indicated that CGA supplementation improved mitochondria ultrastructure and decreased mitochondrial injury. Our results suggest a promising role for CGA as a mitochondria-targeted antioxidant in combating intestinal oxidative injury. Daily intake of diets containing CGA, such as coffee and honeysuckle, may be useful for prevention of intestinal diseases. PMID:26824685

  15. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients

    PubMed Central

    TOORANG, Fatemeh; DJAZAYERY, Abolghassem; DJALALI, Mahmoud

    2016-01-01

    Background: Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients. Methods: A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids). Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA), which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes. Results: A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation. Conclusion: Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity. PMID:27141496

  16. Ellagic acid and flavonoid antioxidant content of muscadine wine and juice.

    PubMed

    Talcott, Stephen T; Lee, Joon-Hee

    2002-05-22

    Antioxidant properties of flavonoids and ellagic acid were characterized in eight wines and juices produced by various processing methodologies from red and white muscadine grape cultivars (Vitis rotundifolia). Juices and wines were produced by hot- and cold-pressed techniques, and additional wine was produced following on-hull fermentation for 3, 5, and 7 days. Chromatographic conditions were developed to simultaneously separate anthocyanins, ellagic acid, and flavonols and correlated to a measurement of overall antioxidant capacity (AOX), and their changes were monitored after storage for 60 days at 20 and 37 degrees C. Regression coefficients between concentrations of individual polyphenolics and AOX ranged from 0.55 for ellagic acid to 0.90 for kaempferol. Both red and white wines had higher AOX values after storage than juices made from an identical grape press, despite lower concentrations of individual polyphenolic compounds. Red wines fermented on-hull had higher initial concentrations of antioxidant polyphenolics as compared to a corresponding hot-pressed juice, but changes in AOX during storage were more affected by time than by storage temperature despite lower concentrations of flavonoids and ellagic acid present at 37 degrees C as compared to 20 degrees C. Oxidative or polymerization reactions significantly decreased levels of monomeric anthocyanins during storage with the greatest losses observed for delphinidin and petunidin 3,5-diglucosides. Processing methods for muscadine wine and juice production were important factors influencing concentrations of antioxidant flavonoids and ellagic acid, while the role of fermentation and time had the greatest influence on retention of AOX properties during storage. PMID:12009984

  17. Oxidation of flavonoids by hypochlorous acid: reaction kinetics and antioxidant activity studies.

    PubMed

    Krych-Madej, Justyna; Stawowska, Katarzyna; Gebicka, Lidia

    2016-08-01

    Flavonoids, plant polyphenols, ubiquitous components of human diet, are excellent antioxidants. Hypochlorous acid (HOCl), produced by activated neutrophils, is highly reactive chlorinating and oxidizing species. It has been reported earlier that flavonoids are chlorinated by HOCl. Here we show that flavonoids from flavonol subclass are also oxidized by HOCl, but only if the latter is in a large molar excess (≥ 10). The kinetics of this reaction was studied by stopped-flow spectrophotometry, at different pH. We found that flavonols were oxidized by HOCl with the rate constants of the order of 10(4)-10(5) M(-1) s(-1) at pH 7.5. Antioxidant activity of HOCl-modified flavonoids was measured by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) method. Slightly higher antioxidant activity, compared to parent compounds, was observed for flavonols after their reaction with equimolar or moderate excess of HOCl whereas flavonols treated with high molar excess of HOCl exhibited decrease in antioxidant activity. The mechanism of flavonoid reaction with HOCl at physiological pH is proposed, and biological consequences of this reaction are discussed. PMID:27225705

  18. Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese.

    PubMed

    Parashar, Akshaya; Yusuf, Mohammad; Fariduddin, Qazi; Ahmad, Aqil

    2014-09-01

    The aim was to explore the responses of varied doses of manganese in mustard plants and also to test the proposition that salicylic acid induced up-regulation of antioxidant system which protect photosynthetic apparatus. Seeds were sown in pots and allowed to germinate under natural environmental conditions. At 10 days stage, soils in the pots were enriched with different levels (0, 3, 6, or 9 mM) of Mn for three days and allowed to grow till 30 day stage. At 31st day, foliage of plants was sprayed with 10 μM of salicylic acid (SA) and then allowed to grow till 45 days. Then plants were harvested to assess various growth, leaf gas exchange traits and biochemical parameters. Mn-treated plants had diminished growth, water relations and photosynthetic attributes along with carbonic anhydrase activity whereas; the level of lipid peroxidation, electrolyte leakage, accumulation of H2O2 along with proline accumulation and antioxidant enzymes increased in a concentration dependent manner. Follow-up application of SA to the Mn-stressed plants improved growth, water relations and photosynthetic traits, accelerated the activity of antioxidant enzymes and also the accumulation of proline. SA mediated tolerance to Mn-stressed plants could have due to up-regulation of antioxidant enzymes and proline accumulation. PMID:25036598

  19. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids.

    PubMed

    Önen Bayram, F Esra; Sipahi, Hande; Acar, Ebru Türköz; Kahveci Ulugöl, Reyhan; Buran, Kerem; Akgün, Hülya

    2016-05-23

    Oxidative stress that corresponds to a significant increase in free radical concentration in cells can cause considerable damage to crucial biological macromolecules if not prevented by cellular defense mechanisms. The low-molecular-weight thiol glutathione (GSH) constitutes one of the main intracellular antioxidants. It is synthesized via cysteine, an amino acid found only in limited amounts in cells because of its neurotoxicity. Thus, to ensure an efficient GSH synthesis in case of an oxidative stress, cysteine should be provided extracellularly. Yet, given its nucleophilic properties and its rapid conversion into cystine, its corresponding disulfide, cysteine presents some toxicity and therefore is usually supplemented in a prodrug approach. Here, some thiazolidine-4-carboxylic acids were synthesized and evaluated for their antioxidant properties via the DDPH and CUPRAC assays. Then, the cysteine releasing capacity of the obtained compounds was investigated in aqueous and organic medium in order to correlate the relevant antioxidant properties of the molecules with their cysteine releasing pattern. As a result, the structures' antioxidative properties were not only attributed to cysteine release but also to the thiazolidine cycle itself. PMID:27017266

  20. Free phenolic acids from the seaweed Halimeda monile with antioxidant effect protecting against liver injury.

    PubMed

    Mancini-Filho, Jorge; Novoa, Alexis Vidal; González, Ana Elsa Batista; de Andrade-Wartha, Elma Regina S; de O e Silva, Ana Mara; Pinto, José Ricardo; Mancini, Dalva Assunção Portari

    2009-01-01

    Phenolic compounds are found in seaweed species together with other substances presenting antioxidant activity. The objective of this work was to evaluate the antioxidant activity of the free phenolic acids (FPA) fraction from the seaweed Halimeda monile, and its activity to protect the expression of hepatic enzymes in rats, under experimental CCl4 injury. The antioxidant activity was measured by the DPPH method. The FPA fraction (80 mg/kg, p.o.) was administered during 20 consecutive days to rats. The peroxidation was performed by thiobarbituric acid reactive substances (TBARS). The SOD and CAT enzymatic expressions were measured by RT/PCR. The histology technique was used to evaluate liver injuries. The expression of both, CAT and SOD genes, was more preserved by FPA. Only partial injury could be observed by histology in the liver of rats receiving FPA as compared with the control group; and CCl4 administration induced 60% more peroxidation as compared with the rats receiving FPA. These data suggest that FPA could modulate the antioxidant enzymes and oxidative status in the liver through protection against adverse effects induced by chemical agents. PMID:19957433

  1. Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation.

    PubMed

    Rosselin, Marie; Meyer, Grégory; Guillet, Pierre; Cheviet, Thomas; Walther, Guillaume; Meister, Annette; Hadjipavlou-Litina, Dimitra; Durand, Grégory

    2016-03-16

    We report herein the synthesis of a divalent amphiphilic carrier onto which α-phenyl-N-tert-butyl nitrone (PBN) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) antioxidants were grafted to give the divalent derivative called FATxPBN. The divalent carrier consists of two lysine amino acids as a scaffold upon which the antioxidant moieties are grafted, a perfluorinated chain that supplies hydrophobicity, and a sugar-based polar headgroup that ensures water solubility. For the sake of comparison, a divalent PBN derivative called FADiPBN was also synthesized. The self-aggregation properties of FATxPBN and FADiPBN were studied by means of surface tension, dynamic light scattering, and transmission electron microscopy methods, and showed they form small micelles (i.e., 12 and 6 nm diameter, respectively) at submillimolar concentrations (i.e., 0.01 and 0.05 mM, respectively), in agreement with partition coefficient values. The superior antioxidant properties of FATxPBN over FADiPBN and the parent compounds PBN and Trolox were demonstrated using in vitro ABTS(•+) reduction (98%) and soybean lipoxygenase inhibition (94%) assays. Finally, FATxPBN was found to significantly inhibit hyperglycemia-induced toxicity on an ex-vivo rat model, demonstrating its potency as a bioactive antioxidant against oxidative stress-induced damage. PMID:26850367

  2. Effect of 3-bromopyruvic acid on human erythrocyte antioxidant defense system.

    PubMed

    Sadowska-Bartosz, Izabela; Bartosz, Grzegorz

    2013-12-01

    3-Bromopyruvate (3-BP) is a promising compound for anticancer therapy, its main mode of action being the inhibition of glycolytic enzymes, but this compound also induces oxidative stress. This study aimed at characterisation of the effect of 3-BP on the antioxidant defense system of erythrocytes. Suspensions of erythrocytes in PBS containing 5 mM glucose were treated with different concentration of 3-BP at 37°C for 1 h. Activities of antioxidant enzymes were estimated by standard colorimetric methods. The antioxidant capacity of erythrocytes was estimated using the 2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS(•+)) decolorisation assay and ferricyanide reduction. The content of reduced and oxidized glutathione was estimated fluorimetrically with o-phtalaldehyde. 3-BP did not affect the integrity of the erythrocyte membrane (lack of changes in the osmotic fragility). However, it induced oxidative stress in erythrocytes, as evidenced by the decrease in the content of acid-soluble thiols and reduced glutathione (GSH). Superoxide dismutase (SOD) and glutathione S-transferase (GST) activities were significantly decreased. 3-BP also decreased the transmembrane reduction of ferricyanide. Thus induction of oxidative stress in erythrocytes by 3-BP is due to depletion of glutathione and inhibition of antioxidant enzymes. PMID:23881849

  3. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation

    PubMed Central

    Martinčič, Rok; Mravljak, Janez; Švajger, Urban; Perdih, Andrej; Anderluh, Marko; Novič, Marjana

    2015-01-01

    A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds. PMID:26474393

  4. In Silico Discovery of Novel Potent Antioxidants on the Basis of Pulvinic Acid and Coumarine Derivatives and Their Experimental Evaluation.

    PubMed

    Martinčič, Rok; Mravljak, Janez; Švajger, Urban; Perdih, Andrej; Anderluh, Marko; Novič, Marjana

    2015-01-01

    A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds. PMID:26474393

  5. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge

  6. Antioxidant and anti-inflammatory effect of conjugated linolenic acid isomers against streptozotocin-induced diabetes.

    PubMed

    Saha, Siddhartha S; Ghosh, Mahua

    2012-09-28

    The present study was undertaken to evaluate the effect of α-eleostearic acid and punicic acid, two isomers of conjugated linolenic acid (CLnA) present in bitter gourd (Momordica charantia) and snake gourd oil (Trichosanthes anguina), respectively, against oxidative stress, inflammatory challenge and aberration in erythrocyte morphology due to streptozotocin (STZ)-induced diabetes. Male albino rats were divided into four groups consisting of eight animals in each group. The first group served as control and diabetes was induced in rats in groups 2-4 by a single intraperitoneal injection of STZ. Moreover, rats in groups 3 and 4 were treated with 0·5 % of α-eleostearic acid and 0·5 % of punicic acid of the total lipid given, respectively, by oral administration once per d. After administration, CLnA isomers had significantly reduced oxidative stress, lipid peroxidation and restored antioxidant and pro-inflammatory enzymes such as superoxide dismutase, catalase, and glutathione peroxidase, reduced glutathione, NO synthase level in pancreas, blood and erythrocyte lysate. The ferric reducing antioxidant power (FRAP) assay of plasma showed that CLnA treatment caused improvement in the FRAP value which was altered after STZ treatment due to an increased level of free radicals. Expression of inflammatory cytokines such as TNF-α and IL-6 in blood and expression of hepatic NF-κB (p65) increased significantly after STZ treatment due to increased inflammation which was restored with the administration of CLnA isomers. From the obtained results, it could be concluded that α-eleostearic acid and punicic acid showed potent antioxidant and anti-inflammatory activity with varying effectivity. PMID:22182422

  7. Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.

    PubMed

    Liang, Chanjuan; Wang, Weimin

    2013-11-01

    Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress. PMID:23653318

  8. The antioxidant activities effect of neutral and acidic polysaccharides from Epimedium acuminatum Franch. on Caenorhabditis elegans.

    PubMed

    Xu, Zhou; Feng, Shiling; Shen, Shian; Wang, Handong; Yuan, Ming; Liu, Jing; Huang, Yan; Ding, Chunbang

    2016-06-25

    A neutral polysaccharide (EAP-1N) and an acidic polysaccharide (EAP-2A) were purified from Epimedium acuminatum by DEAE-52 cellulose anion-exchange chromatography and gel-filtration chromatography. Their structures were characterized by chemical composition analysis, high-performance size exclusion chromatography (HPSEC), Fourier transform infrared spectrometry (FT-IR), and gas chromatography-mass spectrometry (GC-MS). Further, their antioxidant activities were investigated both in vitro and in vivo. Results showed that EAP-2A had higher uronic acid content and larger average molecular weight than EAP-1N. Compared with EAP-1N, EAP-2A exhibited significantly scavenging activities against free radical in vitro, as well as strongly stimulating effect on antioxidant enzyme activities (including superoxide dismutases (SOD), catalases (CAT), and glutathione peroxidases (GSH-PX)) and preferably inhibitory effect on lipid peroxidation and protein carboxyl in the mode of Caenorhabditis elegans. PMID:27083801

  9. Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments.

    PubMed

    Giménez, María José; Valverde, Juan Miguel; Valero, Daniel; Guillén, Fabián; Martínez-Romero, Domingo; Serrano, María; Castillo, Salvador

    2014-10-01

    The effects of salicylic acid (SA) or acetylsalicylic acid (ASA) treatments during on-tree cherry growth and ripening on fruit quality attributes, especially those related with the content on bioactive compounds and antioxidant activity were analysed in this research. For this purpose, two sweet cherry cultivars, 'Sweet Heart' and 'Sweet Late', were used and SA or ASA treatments, at 0.5, 1.0 and 2.0mM concentrations, were applied at three key points of fruit development (pit hardening, initial colour changes and onset of ripening). These treatments increased fruit weight and ameliorated quality attributes at commercial harvest, and led to cherries with higher concentration in total phenolics and in total anthocyanins, as well as higher antioxidant activity, in both hydrophilic and lipophilic fractions. Thus, preharvest treatments with SA or ASA could be promising tools to improve sweet cherry quality and health beneficial effects for consumers. PMID:24799232

  10. Study of interaction between human serum albumin and three antioxidants: ascorbic acid, α-tocopherol, and proanthocyanidins.

    PubMed

    Li, Xiangrong; Chen, Dejun; Wang, Gongke; Lu, Yan

    2013-01-01

    Ascorbic acid, α-tocopherol and proanthocyanidins are three classic dietary antioxidants. In this study, the interaction between the three antioxidants and human serum albumin (HSA) was investigated by several spectroscopic techniques. Experimental results proved that the three antioxidants quench the fluorescence of HSA through a static (proanthocyanidins) or static-dynamic combined quenching mechanism (ascorbic acid and α-tocopherol). Thermodynamic investigations revealed that the combination between ascorbic acid or proanthocyanidins and HSA was driven mainly by electrostatic interaction, and the hydrophobic interactions play a major role for α-tocopherol-HSA association. Binding site I was found to be the primary binding site for ascorbic acid and proanthocyanidins, and site II for α-tocopherol. Additionally, the three antioxidants may induce conformational and microenvironmental changes of HSA. PMID:24140914

  11. Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt.

    PubMed

    Inns, Elizabeth L; Buggey, Lesley A; Booer, Christopher; Nursten, Harry E; Ames, Jennifer M

    2011-09-14

    Barley phenolic antioxidants change in response to the kilning regimen used to prepare malt. Green malt was kilned using four different regimens. There were no major differences among the finished malts in parameters routinely used by the malting industry, including, moisture, color, and diastatic activity. Ferulic acid esterase activity and free ferulic acid were higher in malts subjected to the coolest kilning regimen, but malt ethyl acetate extracts (containing ferulic acid) contributed only ∼5% of the total malt antioxidant activity. Finished malt from the hottest kilning regimen possessed the highest antioxidant activity, attributed to higher levels of Maillard reaction products. Modifying kilning conditions leads to changes in release of bound ferulic acid and antioxidant activity with potential beneficial effects on flavor stability in malt and beer. PMID:21819143

  12. Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus.

    PubMed

    Balakrishnan, Gayathri; Agrawal, Renu

    2014-12-01

    Probiotics are the class of beneficial microorganisms that have positive influence on the health when ingested in adequate amounts. Probiotic fermented milk is one of the dairy products that is prepared by using probiotic lactic acid bacteria. The study comprised preparation of fermented milk from various sources such as cow, goat and camel. Pediococcus pentosaceus which is a native laboratory isolate from cheese was utilized for the product formation. Changes in functional properties in the fermented milks obtained from three different species were evaluated. Antioxidant activity determined by DPPH assay showed activity in probiotic fermented milk obtained from all the products being highest in goat milk (93 %) followed by product from camel milk (86 %) and then product from cow milk (79 %). The composition of beneficial fatty acids such as stearic acid, oleic acid and linoleic acid were higher in fermented milk than the unfermented ones. Results suggested that probiotic bacteria are able to utilize the nutrients in goat and camel milk more efficiently compared to cow milk. Increase in antioxidant activity and fatty acid profile of fermented milks enhances the therapeutic value of the products. PMID:25477694

  13. Betalain, Acid Ascorbic, Phenolic Contents and Antioxidant Properties of Purple, Red, Yellow and White Cactus Pears

    PubMed Central

    Sumaya-Martínez, María Teresa; Cruz-Jaime, Sandra; Madrigal-Santillán, Eduardo; García-Paredes, Juan Diego; Cariño-Cortés, Raquel; Cruz-Cansino, Nelly; Valadez-Vega, Carmen; Martinez-Cardenas, Leonardo; Alanís-García, Ernesto

    2011-01-01

    Commercialization of cactus pears based on their antioxidant properties can generate competitive advantages, and these can turn into business opportunities and the development of new products and a high-value ingredient for the food industry. This work evaluated the antioxidant activities (1,1-diphenyl-2-picrylhydrazyl radical-scavenging, protection against oxidation of a β-carotene-linoleic acid emulsion, and iron (II) chelation), the content of total phenolic compounds, ascorbic acid, betacyanin, betaxanthin and the stability of betacyanin pigments in presence of Cu (II)-dependent hydroxyl radicals (OH•), in 18 cultivars of purple, red, yellow and white cactus pear from six Mexican states. Our results indicated that the antiradical activities from yellow and white cactus pear cultivars were not significantly different (p < 0.05) and were lower than the average antiradical activities in red and purple cultivars. The red cactus pear from the state of Zacatecas showed the highest antioxidant activity. The free radical scavenging activity for red cactus pears was significantly correlated (p < 0.05) to the concentration of total phenolic compounds (R2 = 0.90) and ascorbic acid (R2 = 0.86). All 18 cultivars of cactus pears studied showed significant chelating activity of ferrous ions. The red and purple cactus pears showed a great stability when exposed to OH•. PMID:22072899

  14. The oxidative stress, antioxidant profile and acid-base status in preterm and term canine neonates.

    PubMed

    Vannucchi, C I; Kishi, D; Regazzi, F M; Silva, L C G; Veiga, G A L; Angrimani, D S R; Lucio, C F; Nichi, M

    2015-04-01

    During the initiation of neonatal pulmonary respiration, there is an exponential increase in reactive oxygen species that must be scavenged by antioxidant defences. However, neonate and preterm newborns are known to possess immature antioxidant mechanisms to neutralize these toxic effects. The purposes of this study were to compare the development of antioxidant system between preterm and term canine neonates and to evaluate the magnitude of acid-base balance during the initial 4 h of life. A prospective study was conducted involving 18 neonatal puppies assigned to Term Group (63 days of gestation; n = 5), Preterm-57 Group (57 days of gestation; n = 8) and Preterm-55 Group (55 days of gestation; n = 5). Neonates were physically examined through Apgar score and venous haemogasometry within 5 min, 2 and 4 h after birth. No difference on amniotic fluid and serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and the marker of oxidative stress (thiobarbituric acid reactive substances; TBARS) was verified. Irrespective of prematurity, all neonates presented low vitality, hypothermia, acidosis, hypoxaemia and hypercapnia at birth. However, term puppies clinically evolved more rapidly than preterm newborns. During the course of the study, premature neonates presented more severe complications, such as prolonged hypoxaemia and even death. In conclusion, premature puppies have no signs of immature enzymatic mechanisms for controlling oxidative stress, although SOD and GPx may participate in achieving acid-base balance. Aside from initial unremarkable symptoms, premature puppies should be carefully followed up, as they are at high risk of succumbing to odds of prematurity. PMID:25611795

  15. Betalain, Acid ascorbic, phenolic contents and antioxidant properties of purple, red, yellow and white cactus pears.

    PubMed

    Sumaya-Martínez, María Teresa; Cruz-Jaime, Sandra; Madrigal-Santillán, Eduardo; García-Paredes, Juan Diego; Cariño-Cortés, Raquel; Cruz-Cansino, Nelly; Valadez-Vega, Carmen; Martinez-Cardenas, Leonardo; Alanís-García, Ernesto

    2011-01-01

    Commercialization of cactus pears based on their antioxidant properties can generate competitive advantages, and these can turn into business opportunities and the development of new products and a high-value ingredient for the food industry. This work evaluated the antioxidant activities (1,1-diphenyl-2-picrylhydrazyl radical-scavenging, protection against oxidation of a β-carotene-linoleic acid emulsion, and iron (II) chelation), the content of total phenolic compounds, ascorbic acid, betacyanin, betaxanthin and the stability of betacyanin pigments in presence of Cu (II)-dependent hydroxyl radicals (OH•), in 18 cultivars of purple, red, yellow and white cactus pear from six Mexican states. Our results indicated that the antiradical activities from yellow and white cactus pear cultivars were not significantly different (p < 0.05) and were lower than the average antiradical activities in red and purple cultivars. The red cactus pear from the state of Zacatecas showed the highest antioxidant activity. The free radical scavenging activity for red cactus pears was significantly correlated (p < 0.05) to the concentration of total phenolic compounds (R(2) = 0.90) and ascorbic acid (R(2) = 0.86). All 18 cultivars of cactus pears studied showed significant chelating activity of ferrous ions. The red and purple cactus pears showed a great stability when exposed to OH•. PMID:22072899

  16. Assessment of rosmarinic acid content in six Lamiaceae species extracts and their antioxidant and antimicrobial potential.

    PubMed

    Benedec, Daniela; Hanganu, Daniela; Oniga, Ilioara; Tiperciuc, Brindusa; Olah, Neli-Kinga; Raita, Oana; Bischin, Cristina; Silaghi-Dumitrescu, Radu; Vlase, Laurian

    2015-11-01

    In the present study, six indigenous species of Lamiaceae family (Origanum vulgare L., Melissa officinalis L., Rosmarinus officinalis L., Ocimum basilicum L., Salvia officinalis L. and Hyssopus officinalis L.), have been analyzed to assess the rosmarinic acid, phenyl propane derivatives and polyphenolic contents and their antioxidant and antimicrobial potential. HPLC-MS method has been used for the analysis ofrosmarinicacid. The phenyl propane derivatives and total phenolic contents were determined using spectrophotometric method. The ethanolic extracts were screened for antioxidant activities by DPPH radical scavenging, HAPX (hemoglobin ascorbate per oxidase activity inhibition), and EPR (electron paramagnetic resonance) methods. The ethanolic extracts revealed the presence of rosmarinic acid in the largest amount in O. vulgare (12.40mg/g) and in the lowest in R. officinalis (1.33 mg/g). O. vulgare extracts exhibited the highest antioxidant capacity, in line with the rosmarinic acid and polyphenolic contents. The antimicrobial testing showed a significant activity against L. monocytogenes, S. aureus and C. albicans for all six extracts. PMID:26687747

  17. Comparison of fatty acid profile and antioxidant potential of extracts of seven Citrus rootstock seeds.

    PubMed

    Plastina, Pierluigi; Fazio, Alessia; Gabriele, Bartolo

    2012-01-01

    The extracts of seven Citrus rootstock seeds have been compared regarding fatty acid profile and antioxidant potential. Sour orange (Citrus aurantium L.) was found to contain the highest oil amount (34%), while the Poncirus trifoliata cultivars contained the highest percentage of unsaturated fatty acids (84-87%). In addition, the antioxidant properties of the extracts from defatted seeds have been evaluated by measuring their radical scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl. The highest antioxidant activities were observed in the case of the acetone extract of sour orange and Citrumelo Swingle (76% and 75%, respectively), at a concentration of 0.17 mg mL(-1). Moreover, the total phenolic content of the extracts, determined using the Folin-Ciocalteau reagent, was found to be correlated with the radical scavenging activity results. The acetone extracts of sour orange and Citrumelo Swingle exhibited the highest phenolic content [112.3 and 103.4 mg gallic acid equivalent g(-1) dry sample weight, respectively]. PMID:22236049

  18. Skin penetration and antioxidant effect of cosmeto-textiles with gallic acid.

    PubMed

    Alonso, C; Martí, M; Barba, C; Lis, M; Rubio, L; Coderch, L

    2016-03-01

    In this work, the antioxidant gallic acid (GA) has been encapsulated in microspheres prepared with poly-ε-caprolactone (PCL) and incorporated into polyamide (PA) obtaining the cosmeto-textile. The topical application of the cosmeto-textile provides a reservoir effect in the skin delivery of GA. The close contact of the cosmeto-textile, containing microsphere-encapsulated GA (ME-GA), with the skin and their corresponding occlusion, may be the main reasons that explain the crossing of active principle (GA) through the skin barrier, located in the stratum corneum, and its penetration into the different compartments of the skin, epidermis and dermis. An ex vivo assessment was performed to evaluate the antioxidant effect of the ME-GA on the stratum corneum (SC) using the thiobarbituric acid-reactive species (TBARS) test. The test is based on a non-invasive ex vivo methodology that evaluates lipid peroxides formed in the outermost layers of the SC from human volunteers after UV radiation to determine the effectiveness of an antioxidant. In this case, a ME-GA cosmeto-textile or ME-GA formulation were applied to the skin in vivo and lipid peroxidation (LPO) in the horny layer were determined after UV irradiation. This methodology may be used as a quality control tool to determine ex vivo the percentage of LPO inhibition on human SC for a variety of antioxidants that are topically applied, in this case GA. Results show that LPO formation was inhibited in human SC when GA was applied directly or embedded in the cosmeto-textile, demonstrating the effectiveness of both applications. The percentage of LPO inhibition obtained after both topical applications was approximately 10% for the cosmeto-textile and 41% for the direct application of microspheres containing GA. This methodology could be used to determine the effectiveness of topically applied antioxidants encapsulated in cosmeto-textiles on human SC. PMID:26848532

  19. Impact of lipid oxidation-derived aldehydes and ascorbic acid on the antioxidant activity of model melanoidins.

    PubMed

    Kitrytė, Vaida; Adams, An; Venskutonis, Petras Rimantas; De Kimpe, Norbert

    2012-12-01

    As the heat-induced formation of antioxidants throughout the Maillard reaction is known, this study was undertaken to evaluate the impact of lipid oxidation-derived aldehydes and ascorbic acid in Maillard model systems on the resulting antioxidant activity. For this purpose, various fractions of melanoidin-like polycondensation products were obtained from mixtures of amino acids (glycine, lysine, arginine) and lipid oxidation-derived aldehydes (hexanal, (E)-2-hexenal), in the presence or absence of glucose or ascorbic acid. All fractions showed a significant radical scavenging capacity (DPPH assay) and ferric reducing power (FRAP assay). The activity varied according to the composition of the model system tested, although some similar trends were discovered in both assays applied. The presence of lipid oxidation products in the browning products augmented the antioxidant activity in specific cases. For instance, the combined presence of arginine, hexanal and glucose in heated model systems resulted in a significantly higher antioxidant capacity. With an exception of ascorbic acid-containing model systems, melanoidin-like polycondensation products possessed significantly stronger antioxidant activities than the corresponding unheated initial reactant mixtures. Water-soluble high molecular weight (>12kDa) and nonsoluble fractions comprised the major part of the antioxidants derived from amino acid/lipid oxidation product model systems, with or without glucose or ascorbic acid. PMID:22953854

  20. Improving the antioxidant activity and enriching salvianolic acids by the fermentation of Salvia miltiorrhizae with Geomyces luteus *

    PubMed Central

    Xing, Yun; Cai, Le; Yin, Tian-peng; Chen, Yang; Yu, Jing; Wang, Ya-rong; Ding, Zhong-tao

    2016-01-01

    The antioxidant activities and total phenolic content of fermented Salvia miltiorrhiza with fungus Geomyces luteus were investigated. The results revealed that G. luteus fermentation could significantly improve the antioxidant activity and total phenolic content of S. miltiorrhiza. The main antioxidant constituents were characterized by spectroscopic analysis as salvianolic acids. High-performance liquid chromatography (HPLC) quantification also showed the enhanced content of salvianolic acid B after fermentation. The present study suggests that G. luteus fermentations are effective in the S. miltiorrhiza salvianolic acids’ enrichment process. PMID:27143267

  1. Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films.

    PubMed

    Zhou, Bin; Hu, Xiaoqian; Zhu, Jinjin; Wang, Zhenzhen; Wang, Xichang; Wang, Mingfu

    2016-10-01

    Layer-by-layer (LBL) assembled films have been exploited for surface-mediated bioactive compound delivery. Here, an antioxidative hydrogen-bonded multilayer electrospun nanofibrous film was fabricated from tannic acid (TA), acting as a polyphenolic antioxidant, and poly(ethylene glycol) (PEG) via layer-by-layer assembly. It overcame the burst release behavior of nanofibrous carrier, due to the reversible/dynamic nature of hydrogen bond, which was responded to external stimuli. The PEG/TA nanofibrous films disassembled gradually and released TA to the media, when soaked in aqueous solutions. The release rate of TA increased with increasing bilayer number, pH and temperature, but decreased with enhancing ionic strength. The surface morphology of the nanofibrous mats was observed by scanning electron microscopy (SEM). The following antioxidant activity assay revealed that it could scavenge DPPH free radicals and ABTS(+) cation radicals, a major biological activity of polyphenols. This technology can be used to fabricate other phenolic-containing slowly releasing antioxidative nanofibrous films. PMID:27234492

  2. Effects of ensiling processes and antioxidants on fatty acid concentrations and compositions in corn silages

    PubMed Central

    2013-01-01

    Background Corn silage is the main dietary component used for ruminant breeding in China and is an important dietary source of fatty acids for these animals. However, little is known regarding effective means to protect the fatty acid (FA) contents in silages. In this study, we examined the changes in FA contents and compositions during corn ensiling and screened several antioxidants for their inhibition of lipid oxidation during corn ensiling. Methods We conducted two different experiments. In Experiment 1, corn was ensiled in 30 polyethylene bottles (bottle volume: 1 L, silage density: 600 g/dm3) and three bottles were opened at 0.5 d, 1 d, 1.5 d, 2 d, 2.5 d, 3 d, 5 d, 7 d, 14 d, and 28 d after ensiling. In Experiment 2, corn was treated with various antioxidants: (1) No additives (CK); (2) BHA (Butylated hydroxyanisole); (3) TBHQ (Tertiary butyl hydroquinone); (4) TPP (Tea polyphenols); and (5) VE (Vitamin E). These treatments were applied at 50 mg/kg and 100 mg/kg of fresh weight with each treatment replicated 3 times. Results During ensiling in Experiment 1, saturated fatty acids (SFA; C16:0 and C18:0) and malondialdehyde (MDA) contents tended to increase, whereas unsaturated fatty acids (UFA; C18:1, C18:2 and C18:3) tended to decrease. However, these changes were only significant on the first 2 days of ensiling. In Experiment 2, all of the antioxidants tested affected the total FA contents and those of unsaturated fatty acids (C18:1, C18:2 and C18:3) and MDA. The effects of TBHQ and TPP were greater than those of the other antioxidants. Conclusions The reduced total FA contents in corn silages were due to unsaturated fatty acids’ oxidation during the early stages of ensiling. Adding an antioxidant could prevent fatty acids’ oxidation in corn silages. PMID:24304647

  3. Antioxidant activity of caffeoyl quinic acid derivatives from the roots of Dipsacus asper Wall.

    PubMed

    Hung, Tran Manh; Na, MinKyun; Thuong, Phuong Thien; Su, Nguyen Duy; Sok, DaiEun; Song, Kyung Sik; Seong, Yeon Hee; Bae, KiHwan

    2006-11-24

    The methanol extract from Dipsacus asper Wall (Dipsacaceae) was found to show antioxidant activity against free radical and Cu(2+)-mediated LDL oxidation. In further study, to identify active constituents from the plant, six caffeoyl quinic acid derivatives: 3,4-di-O-caffeoylquinic acid (1), methyl 3,4-di-O-caffeoyl quinate (2), 3,5-di-O-caffeoylquinic acid (3), methyl 3,5-di-O-caffeoyl quinate (4), 4,5-di-O-caffeoylquinic acid (5) and methyl 4,5-di-O-caffeoyl quinate (6) were isolated. Their structures were identified by spectroscopic methods including 2D-NMR. The isolated compounds, 1-6, were found to be potent scavengers of the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), and are more potent than butylated hydroxyl toluene (BHT) used as a positive control. The compounds 1-6 also inhibited Cu(2+)-mediated low-density lipoprotein (LDL) oxidation. They increased the lag time of conjugated dienes formation and inhibited the generation of thiobarbituric acid reactive substances (TBARS) in a dose-dependent manner. These results suggested that Dipsacus asper due to its antioxidant constituents, 1-6, may have a role to play in preventing the development and progression of atherosclerotic disease. PMID:16809011

  4. Effects of bleomycin and antioxidants on the fatty acid profile of testicular cancer cell membranes.

    PubMed

    Cort, A; Ozben, T; Melchiorre, M; Chatgilialoglu, C; Ferreri, C; Sansone, A

    2016-02-01

    Bleomycin is used in chemotherapy regimens for the treatment of patients having testicular germ-cell tumor (TGCT). There is no study in the literature investigating the effects of bleomycin on membrane lipid profile in testicular cancer cells. We investigated membrane fatty acid (FA) profiles isolated, derivatized and analyzed by gas chromatography of NTera-2 testicular cancer cells incubated with bleomycin (Bleo) for 24 h in the absence and presence of N-Acetyl-L-Cysteine (NAC) and curcumin (Cur) as commonly used antioxidant adjuvants. At the same time the MAPK pathway and EGFR levels were followed up. Bleomycin treatment increased significantly saturated fatty acids (SFA) of phospholipids at the expense of monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). Bleomycin also led to a significant increase in the trans lipid isomers of oleic and arachidonic acids due to its free radical producing effect. Incubation with bleomycin increased the p38 MAPK and JNK levels and downregulated EGFR pathway. Coincubation of bleomycin with NAC reversed effects caused by bleomycin. Our results highlight the important role of membrane fatty acid remodeling occurring during the use of bleomycin and its concurrent use with antioxidants which can adjuvate the cytotoxic effects of the chemotherapeutic agents. PMID:26656160

  5. D-pantethine has vitamin activity equivalent to d-pantothenic acids for recovering from a deficiency of D-pantothenic acid in rats.

    PubMed

    Shibata, Katsumi; Kaneko, Mayu; Fukuwatari, Tsutomu

    2013-01-01

    D-Pantethine is a compound in which two molecules of D-pantetheine bind through an S-S linkage. D-Pantethine is available from commercial sources as well as from D-pantothenic acid. We investigated if D-pantethine has the same vitamin activity as D-pantothenic acid by comparing the recovery from a deficiency of D-pantothenic acid in rats. D-Pantothenic acid-deficient rats were developed by weaning rats on a diet lacking D-pantothenic acid for 47 d. At that time, the urinary excretion of D-pantothenic acid was almost zero, and the body weight extremely low, compared with the control (p<0.05); the contents of free D-pantothenic acid were also significantly reduced in comparison with those of controls (p<0.05). D-Pantothenic acid-deficient rats were administered a diet containing D-pantothenic acid or D-pantethine for 7 d. D-Pantethine and D-pantothenic acid contents of the diets were equimolar in forms of D-pantothenic acid. We compared various parameters concerning nutritional status between rats fed D-pantothenic acid- and D-pantethine-containing diets. The recoveries of body weight, tissue weights, and tissue concentrations of free D-pantothenic acid, dephospho-CoA, CoA, and acetyl-CoA were identical between rats fed diets containing D-pantothenic acid and D-pantethine. Thus, the biological efficiency for recovering from a deficiency of D-pantothenic acid in rats was equivalent between D-pantothenic acid and D-pantethine. PMID:23727638

  6. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae) from Turkey.

    PubMed

    Berber, Adnan; Zengin, Gokhan; Aktumsek, Abdurrahman; Sanda, Murad Aydin; Uysal, Tuna

    2014-03-01

    Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials). The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20 degrees C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g) was higher than that of mixed materials (13.79mgGAE/g). The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (microg/mL) (amount required to inhibit DPPH radical formation by 50%). The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061 microg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5). Fruit extract exhibited strong ferric reducing

  7. Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants.

    PubMed

    Berker, Kadriye Isil; Ozdemir Olgun, F Ayca; Ozyurt, Dilek; Demirata, Birsen; Apak, Resat

    2013-05-22

    The Folin-Ciocalteu (FC) method of performing a total phenolics assay, originally developed for protein determination, has recently evolved as a total antioxidant capacity assay but was found to be incapable of measuring lipophilic antioxidants due to the high affinity of the FC chromophore, that is, multivalent-charged phospho-tungsto-molybdate(V), toward water. Thus, the FC method was modified and standardized so as to enable simultaneous measurement of lipophilic and hydrophilic antioxidants in NaOH-added isobutanol-water medium. Optimal conditions were as follows: dilution ratio of aqueous FC reagent with iso-BuOH (1:2, v/v), final NaOH concentration of 3.5 × 10(-2) M, reaction time of 20 min, and maximum absorption wavelength of 665 nm. The modified procedure was successfully applied to the total antioxidant capacity assay of trolox, quercetin, ascorbic acid, gallic acid, catechin, caffeic acid, ferulic acid, rosmarinic acid, glutathione, and cysteine, as well as of lipophilic antioxidants such as α-tocopherol (vitamin E), butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, lauryl gallate, and β-carotene. The modified FC method reliably quantified ascorbic acid, whereas the conventional method could not. The modified method was reproducible and additive in terms of total antioxidant capacity values of constituents of complex mixtures such as olive oil extract and herbal tea infusion. The trolox equivalent antioxidant capacities of the tested antioxidant compounds correlated well with those found by the Cupric Reducing Antioxidant Capacity reference method. PMID:23627440

  8. Impact of Altitudes and Habitats on Valerenic Acid, Total Phenolics, Flavonoids, Tannins, and Antioxidant Activity of Valeriana jatamansi.

    PubMed

    Jugran, Arun K; Bahukhandi, Amit; Dhyani, Praveen; Bhatt, Indra D; Rawal, Ranbeer S; Nandi, Shyamal K

    2016-07-01

    The changes in total phenolics, flavonoids, tannins, valerenic acid, and antioxidant activity were assessed in 25 populations of Valeriana jatamansi sampled from 1200 to 2775 m asl and four habitat types of Uttarakhand, West Himalaya. Significant (p < 0.05) variations in total phenolics, flavonoids, valerenic acid, and antioxidant activity in aerial and root portions and across the populations were observed. Antioxidant activity measured by three in vitro antioxidant assays, i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic) (ABTS) radical scavenging, 2,2'-diphenyl-1-picryylhydrazyl (DPPH) free radical scavenging, and ferric-reducing antioxidant power (FRAP) assays, showed significant (p < 0.05) differences across the populations. However, no clear pattern was found in phytochemicals across the altitudinal range. Among habitat types, (pine, oak, mixed forest, and grassy land), variation in phytochemical content and antioxidant activity were observed. Equal class ranking, neighbor-joining cluster analysis, and principal component analysis (PCA) identified Talwari, Jaberkhet, Manjkhali, and Khirshu populations as promising sources with higher phytochemicals and antioxidant activity. The results recommended that the identified populations with higher value of phytochemicals and antioxidants can be utilized for mass multiplication and breeding program to meet the domestic as well as commercial demand. PMID:26971960

  9. In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid

    PubMed Central

    Qin, Lili; Wang, Wenrui; You, Songhui; Dong, Jingmei; Zhou, Yunhe; Wang, Jibing

    2014-01-01

    Folic acid antioxidants were successfully intercalated into layered double hydroxides (LDH) nanoparticles according to a previous method with minor modification. The resultant folic acid-LDH constructs were then characterized by X-ray powder diffraction and transmission electron microscopy. The in vitro antioxidant activities, cytotoxicity effect, and in vivo antifatigue were examined by a series of assays. The results showed that folic acid-LDH antioxidant system can scavenge 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and chelate pro-oxidative Cu2+. The in vitro cytotoxicity assays indicated that folic acid-LDH antioxidant system had no significant cytotoxic effect or obvious toxicity to normal cells. It also prolonged the forced swimming time of the mice by 32% and 51% compared to folic acid and control groups, respectively. It had an obvious effect on decreasing the blood urea nitrogen and blood lactic acid, while increasing muscle and hepatic glycogen levels. Therefore, folic acid-LDH might be used as a novel antioxidant and antifatigue nutritional supplement. PMID:25506219

  10. Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents.

    PubMed

    dos Santos, Juliana Alves; Polonini, Hudson Caetano; Suzuki, Érika Yoko; Raposo, Nádia R B; da Silva, Adilson David

    2015-06-01

    A series of 14 bile acids/azastilbenes conjugates (1a-g and 2a-g) was prepared through the condensation of bile amides (1 and 2) and aromatic aldehydes. The newly synthesized conjugates were evaluated in vitro for their antioxidant and photoprotective activities. Six compounds (1, 1a, 1b, 2, 2a and 2b) showed promising antioxidant activity with IC50 values of 19.60-31.83 μg mL(-1). The synthesized compounds presented a varied photoprotection profile, with the SPF ranging from 2 to 9. Among the 16 compounds tested for the protection against UVB sunrays, 3 compounds (2c, 2e and 2g) presented more significant protection than resveratrol and the free azastilbene 3; while the UVAPF increased from 2 in resveratrol and 5 in 3 to 5-11 in the majority of the conjugates. PMID:25814069

  11. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid

    PubMed Central

    Ma, Hanjun; Liu, Benguo

    2016-01-01

    In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes. PMID:26960205

  12. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots

    PubMed Central

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  13. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  14. Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid.

    PubMed

    Aruoma, O I; Halliwell, B; Aeschbach, R; Löligers, J

    1992-02-01

    1. Carnosol and carnosic acid have been suggested to account for over 90% of the antioxidant properties of rosemary extract. 2. Purified carnosol and carnosic acid are powerful inhibitors of lipid peroxidation in microsomal and liposomal systems, more effective than propyl gallate. 3. Carnosol and carnosic acid are good scavengers of peroxyl radicals (CCl3O2.) generated by pulse radiolysis, with calculated rate constants of 1-3 x 10(6) M-1 s-1 and 2.7 x 10(7) M-1 s-1 respectively. 4. Carnosic acid reacted with HOCl in such a way as to protect the protein alpha 1-antiproteinase against inactivation. 5. Both carnosol and carnosic acid stimulated DNA damage in the bleomycin assay but they scavenged hydroxyl radicals in the deoxyribose assay. The calculated rate constants for reaction with .OH in the deoxyribose system for carnosol and carnosic acid were 8.7 x 10(10) M-1 s-1 and 5.9 x 10(10) M-1 s-1 respectively. 6. Carnosic acid appears to scavenge H2O2, but it could also act as a substrate for the peroxidase system. 7. Carnosic acid and carnosol reduce cytochrome c but with a rate constant significantly lower than that of O2(-.). PMID:1378672

  15. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    PubMed

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. PMID:26706515

  16. Antioxidant effect of non-enzymatic browning reaction products on linoleic acid

    SciTech Connect

    Kim, N.S.K.

    1987-01-01

    In aqueous lysine-sucrose model systems, the effects of reaction time, pH and molar ratio were studied on the formation of non-enzymatic browning reaction (NBR) products. The extent of sucrose hydrolysis was measured and the antioxidant effect of NBR products on linoleic acid emulsions was examined. Nuclear magnetic resonance (NMR) spectra were obtained at various stages of browning. Sucrose produced NMR produces with lysine in an aqueous system at 100/sup 0/C. The C-13 NMR spectra indicated that the NBR started when sucrose and lysine were dissolved in water. The C-13 NMR spectra also showed that heating did not have an effect on the gross composition of polymeric species. The absorbance at 480 nm of 0.75 M lysine-sucrose solution heated up to 6 hours increased with reaction times. The pH values of heated lysine-sucrose solution gradually decreased with reaction time. When 0.75 M sucrose or lysine solution was heated separately up to 6 hours, there were no changes in absorbance in pH. In the pH range of 3.52-6.35, higher absorbance was obtained from heated lysine-sucrose solution at acidic pH levels than at neutral pH levels. As the concentration of lysine and sucrose solution was increased, the absorbance increased. At longer reaction times or acidic pH levels, enhanced hydrolysis of sucrose to reducing sugars resulted in more NBR products. NBR products obtained at a longer reaction time, an acidic pH, and higher concentration of reactants showed a darker brown color and were effective in preventing the formation of peroxides. The oxygen uptake of linoleic acid emulsion having NBR products was smaller than that of linoleic acid emulsion without NBR products. Based on these results, it was concluded that sucrose may act as an antioxidant in processed foods containing both amino acids and lipids.

  17. Studies on antioxidant activity, volatile compound and fatty acid composition of different parts of Glycyrrhiza echinata L.

    PubMed Central

    Çakmak, Yavuz Selim; Aktumsek, Abdurrahman; Duran, Ahmet

    2012-01-01

    The essential oil compound, fatty acid composition and the in vitro antioxidant activity of the root and aerial of Glycyrrhiza echinata L., a medicinal plant growing in Turkey, have been studied. The antioxidant capacity tests were designed to evaluate the antioxidant activities of methanol extracts. Total phenolic and flavonoid concentrations of each extract were also determined by using both Folin-Ciocalteu reagent and aluminum chloride. The aerial part was found to possess the highest total phenolic content (146.30 ± 4.58 mg GAE/g) and total antioxidant capacity (175.33 ± 3.98 mg AE/g). The essential oil from root and aerial parts was analyzed by gas chromatography mass spectroscopy (GC-MS) systems. The major components identified were n-hexadecanoic acid, hexahydro farnesyl acetone, α-caryophyllen, hexanal and phytol. In fatty acid profiles of plant, palmitic, stearic, oleic and linoleic acid were detected as the main components. The results of this study have shown that the extracts G. echinata are suitable as a natural antioxidant and food supplement source for pharmacological and food industries due to their beneficial chemical composition and antioxidant capacity. PMID:27418901

  18. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models.

    PubMed

    Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N; Siddiqui, Imtiaz A; Adhami, Vaqar M; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T; Wood, Gary S; Mukhtar, Hasan

    2013-05-01

    Delphinidin (Del), [3,5,7,3'-,4'-,5'-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10-40 μm; 24-48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741

  19. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models

    PubMed Central

    Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N.; Siddiqui, Imtiaz A.; Adhami, Vaqar M.; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T.; Wood, Gary S.; Mukhtar, Hasan

    2013-01-01

    Delphinidin (Del), [3,5,7,3′-,4′-,5′-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10–40 μm; 24–48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741

  20. Amino acid composition and antioxidant properties of pea seed ( Pisum sativum L.) enzymatic protein hydrolysate fractions.

    PubMed

    Pownall, Trisha L; Udenigwe, Chibuike C; Aluko, Rotimi E

    2010-04-28

    The amino acid composition and antioxidant activities of peptide fractions obtained from HPLC separation of a pea protein hydrolysate (PPH) were studied. Thermolysin hydrolysis of pea protein isolate and ultrafiltration (3 kDa molecular weight cutoff membrane) yielded a PPH that was separated into five fractions (F1-F5) on a C(18) reverse phase HPLC column. The fractions that eluted later from the column (F3-F5) contained higher contents hydrophobic and aromatic amino acids when compared to fractions that eluted early or the original PPH. Fractions F3-F5 also exhibited the strongest radical scavenging and metal chelating activities; however, hydrophobic character did not seem to contribute to reducing power of the peptides. In comparison to glutathione, the peptide fractions had significantly higher (p < 0.05) ability to inhibit linoleic acid oxidation and chelate metals. In contrast, glutathione had significantly higher (p < 0.05) free radical scavenging properties than the peptide fractions. PMID:20359226

  1. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit.

    PubMed

    Cao, Shifeng; Yang, Zhenfeng; Cai, Yuting; Zheng, Yonghua

    2014-11-15

    Two cultivars of loquat fruit were stored at 20°C for 10days to investigate the relationship between disease resistance, and fatty acid composition and activities of endogenous antioxidant enzymes. The results showed that decay incidence increased with storage time in both cultivars. A significantly lower disease incidence was observed in 'Qingzhong' fruit than in 'Fuyang', suggesting 'Qingzhong' had increased disease resistance. Meanwhile, 'Qingzhong' fruit also had lower levels of superoxide radical and hydrogen peroxide, and lower lipoxygenase activity, but higher levels of linolenic and linoleic acids and higher activities of catalase (CAT) and ascorbate peroxidase (APX) compared with 'Fuyang'. These results suggest that the higher levels of linolenic and linoleic acids and the higher activity of CAT and APX have a role in disease resistance of postharvest loquat fruit. PMID:24912701

  2. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    NASA Astrophysics Data System (ADS)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  3. Anti-inflammatory, analgesic and antioxidant activities of 3,4-oxo-isopropylidene-shikimic acid.

    PubMed

    Sun, Jin-Yao; You, Cui-Yu; Dong, Kai; You, Hai-Sheng; Xing, Jian-Feng

    2016-10-01

    Context 3,4-Oxo-isopropylidene-shikimic acid (ISA) is an analog of shikimic acid (SA). SA is extracted from the dry fruit of Illicium verum Hook. f. (Magnoliaceae), which has been used for treating stomachaches, skin inflammation and rheumatic pain. Objective To investigate the anti-inflammatory, analgesic and antioxidant activities of ISA. Materials and methods Analgesic and anti-inflammatory activities of ISA were evaluated using writhing, hot plate, xylene-induced ear oedema, carrageenan-induced paw oedema and cotton pellets-induced granuloma test, meanwhile the prostaglandin E2 (PGE2) and malondialdehyde (MDA) levels were assessed in the oedema paw tissue. ISA (60, 120 and 240 mg/kg in mice model and 50, 120 and 200 mg/kg in rat model) was administered orally, 30 min before induction of inflammation/pain. Additionally, ISA was administered for 12 d in rats from the day of cotton pellet implantation. The active oxygen species scavenging potencies of ISA (10(-3)-10(-5) M) were evaluated by the electron spin resonance spin-trapping technique. Results ISA caused a reduction of inflammation induced by xylene (18.1-31.4%), carrageenan (7.8-51.0%) and cotton pellets (11.4-24.0%). Furthermore, ISA decreased the production of PGE2 and MDA in the rat paw tissue by 1.0-15.6% and 6.3-27.6%, respectively. ISA also reduced pain induced by acetic acid (15.6-48.9%) and hot plate (10.5-28.5%). Finally, ISA exhibited moderate antioxidant activity by scavenging the superoxide radical and hydroxyl radical with IC50 values of 0.214 and 0.450 μg/mL, respectively. Discussion and conclusion Our findings confirmed the anti-inflammatory, analgesic and antioxidant activities of ISA. PMID:27609150

  4. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk.

    PubMed

    Lozano, Blanca; Castellote, Ana Isabel; Montes, Rosa; López-Sabater, M Carmen

    2014-09-01

    Although freezing is the most common method used to preserve human milk, nutritional and immunological components may be lost during storage. Freeze-drying could increase the shelf life of human milk, while preserving its original characteristics. Seventy-two samples of freeze-dried human milk were stored for different periods of time, up to a maximum of 3 months, at 4 °C or 40 °C. Vitamin C, tocopherols, antioxidant capacity, and fatty acids composition were analyzed. A new HILIC-UHPLC method improving vitamin C determination was also validated. Ascorbic acid and total vitamin C concentrations significantly decreased at both temperatures, while antioxidant capacity only decreased at 40 °C. Fatty acids composition and both γ-tocopherol and δ-tocopherol contents remained unaltered. The stability after storage of freeze-dried milk was higher than that reported for frozen or fresh milk indicating that freeze-drying is a promising option to improve the preservation of human milk in banks. PMID:24840090

  5. Comparative study of the antioxidative activities of caffeoylquinic and caffeic acids.

    PubMed

    Marković, Svetlana; Tošović, Jelena

    2016-11-01

    A detailed conformational analysis was performed to determine the most stable conformers of chlorogenic, cryptochlorogenic, and neochlorogenic acids. The simulated and experimental NMR spectra of caffeoylquinic acids are in excellent agreement. The bond dissociation enthalpies, proton affinities, electron transfer enthalpies, ionisation potentials, and proton dissociation enthalpies for these compounds and caffeic acid in benzene, methanol, and water were used for thermodynamic consideration of the major antioxidative mechanisms: HAT (Hydrogen Atom Transfer), SPLET (Sequential Proton-Loss Electron-Transfer), and SET-PT (Single Electron Transfer - Proton Transfer). All compounds are characterised with very similar values of each enthalpy, suggesting that they will exhibit comparable antioxidative activities. This assumption is in perfect accord with the experimental findings. It was suggested that HAT may be the predominant mechanism in nonpolar solvents, while HAT and SPLET are competitive pathways in polar media. All calculations were performed using the B3LYP-D2/6-311++G(d,p) and M06-2X/6-311++G(d,p) levels of theory and CPCM solvation model. PMID:27211685

  6. Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves.

    PubMed

    Pitakpawasutthi, Yamon; Thitikornpong, Worathat; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2016-01-01

    Chromolaena odorata (L.) R. M. King and H. Rob. is a Thai medicinal plant used for the treatment of wounds, rashes, diabetes, and insect repellent. The leaves of C. odorata were collected from 10 different sources throughout Thailand. The chemical constituents of essential oils were hydro-distilled from the leaves and were analyzed by gas chromatography-mass spectrometry. Chlorogenic acid contents were determined by thin-layer chromatography (TLC) - densitometry with winCATS software and TLC image analysis with ImageJ software. The TLC plate was developed in the mobile phase that consisted of ethyl acetate:water:formic acid (17:3:2). Antioxidant activities were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging and β-carotene bleaching assays. C. odorata essential oil has shown the major components of pregeijerene, dauca-5, 8-diene, (E)-caryophyllene, β-pinene, and α-pinene. The chlorogenic acid content of C. odorata leaves was determined by TLC-densitometry and TLC image analysis. Results have shown that TLC-densitometry and TLC image analysis method were not statistically significantly different. DPPH radical scavenging and β-carotene bleaching assays of ethanolic extract of C. odorata leaves showed its antioxidant potential. PMID:27144150

  7. Chlorogenic acid content, essential oil compositions, and in vitro antioxidant activities of Chromolaena odorata leaves

    PubMed Central

    Pitakpawasutthi, Yamon; Thitikornpong, Worathat; Palanuvej, Chanida; Ruangrungsi, Nijsiri

    2016-01-01

    Chromolaena odorata (L.) R. M. King and H. Rob. is a Thai medicinal plant used for the treatment of wounds, rashes, diabetes, and insect repellent. The leaves of C. odorata were collected from 10 different sources throughout Thailand. The chemical constituents of essential oils were hydro-distilled from the leaves and were analyzed by gas chromatography-mass spectrometry. Chlorogenic acid contents were determined by thin-layer chromatography (TLC) - densitometry with winCATS software and TLC image analysis with ImageJ software. The TLC plate was developed in the mobile phase that consisted of ethyl acetate:water:formic acid (17:3:2). Antioxidant activities were examined by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging and β-carotene bleaching assays. C. odorata essential oil has shown the major components of pregeijerene, dauca-5, 8-diene, (E)-caryophyllene, β-pinene, and α-pinene. The chlorogenic acid content of C. odorata leaves was determined by TLC-densitometry and TLC image analysis. Results have shown that TLC-densitometry and TLC image analysis method were not statistically significantly different. DPPH radical scavenging and β-carotene bleaching assays of ethanolic extract of C. odorata leaves showed its antioxidant potential. PMID:27144150

  8. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    PubMed

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  9. Effects of ferulic acid on antioxidant activity in Angelicae Sinensis Radix, Chuanxiong Rhizoma, and their combination.

    PubMed

    Wang, Lin-Yan; Tang, Yu-Ping; Liu, Xin; Zhu, Min; Tao, Wei-Wei; Li, Wei-Xia; Duan, Jin-Ao

    2015-06-01

    The present study aimed at exploring different roles of the same compound in different environment, using preparative HPLC, and the significance to investigating bio-active constituents in traditional Chinese medicine (TCM) on the basis of holism. In this study, the depletion of target component ferulic acid (FA) by using preparative HPLC followed by antioxidant activity testing was applied to investigate the roles of FA in Angelicae Sinensis Radix (DG), Chuanxiong Rhizoma (CX) and their combination (GX). The antioxidant activity was performed by 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity testing. FA was successfully and exclusively depleted from DG, CX, and GX, respectively. By comparing the effects of the samples, it was found that FA was one of the main antioxidant constituents in DG, CX and GX, and the roles of FA were DG > CX > GX. Furthermore, the effects of FA varied at different doses in these herbs. This study provided a reliable and effective approach to clarifying the contribution of same compound in different TCMs to their bio-activities. The role of a constituent in different TCMs might be different, and a component with the same content might have different effects in different chemical environments. Furthermore, this study also suggested the potential utilization of preparative HPLC in the characterization of the roles of multi-ingredients in TCM. PMID:26073335

  10. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity

    PubMed Central

    GOVEA-SALAS, MAYELA; RIVAS-ESTILLA, ANA MARIA; RODRÍGUEZ-HERRERA, RAUL; LOZANO-SEPÚLVEDA, SONIA A.; AGUILAR-GONZALEZ, CRISTOBAL N.; ZUGASTI-CRUZ, ALEJANDRO; SALAS-VILLALOBOS, TANYA B.; MORLETT-CHÁVEZ, JESUS ANTONIO

    2016-01-01

    Gallic acid (GA) is a natural phenolic compound that possesses various biological effects, including antioxidant, anti-inflammatory, antibiotic, anticancer, antiviral and cardiovascular protection activities. In addition, numerous studies have reported that antioxidants possess antiviral activities. Hepatitis C virus (HCV) is one of the most important causes of chronic liver diseases worldwide, but until recently, only a small number of antiviral agents had been developed against HCV. Therefore, the present study investigated whether GA exhibits an anti-HCV activity. The effects of GA on HCV expression were examined using a subgenomic HCV replicon cell culture system that expressed HCV nonstructural proteins (NSs). In addition, GA cytotoxicity was evaluated at concentrations between 100–600 mg/ml using an MTT assay. Huh-7 replicon cells were incubated with 300 mg/ml GA for different times, and the HCV-RNA and protein levels were measured by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Pyrrolidine dithiocarbamate (PDTC) was used as an antioxidant control and reactive oxygen species (ROS) production was measured during the exposure. The results indicated that GA did not produce a statistically significant cytotoxicity in parental and HCV replicon cells. Furthermore, GA downregulated the expression levels of NS5A-HCV protein (~55%) and HCV-RNA (~50%) in a time-dependent manner compared with the levels in untreated cells. Notably, GA treatment decreased ROS production at the early time points of exposure in cells expressing HCV proteins. Similar results were obtained upon PDTC exposure. These findings suggest that the antioxidant capacity of GA may be involved in the downregulation of HCV replication in hepatoma cells. PMID:26893656

  11. Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture.

    PubMed

    Mohamed, Ibrahim O

    2015-01-01

    The main goal of the present research is to restructure olive oil triacylglycerol (TAG) using enzymatic acidolysis reaction to produce structured lipids that is close to cocoa butter in terms of TAG structure and melting characteristics. Lipase-catalyzed acidolysis of refined olive oil with a mixture of palmitic-stearic acids at different substrate ratios was performed in an agitated batch reactor maintained at constant temperature and agitation speed. The reaction attained steady-state conversion in about 5 h with an overall conversion of 92.6 % for the olive oil major triacylglycerol 1-palmitoy-2,3-dioleoyl glycerol (POO). The five major TAGs of the structured lipids produced with substrate mass ratio of 1:3 (olive oil/palmitic-stearic fatty acid mixture) were close to that of the cocoa butter with melting temperature between 32.6 and 37.7 °C. The proposed kinetics model used fits the experimental data very well. PMID:25342261

  12. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  13. Amino acid sequence alignment of bacterial and mammalian pancreatic serine proteases based on topological equivalences.

    PubMed

    James, M N; Delbaere, L T; Brayer, G D

    1978-06-01

    The three-dimensional structures of the bacterial serine proteases SGPA, SGPB, and alpha-lytic protease have been compared with those of the pancreatic enzymes alpha-chymotrypsin and elastase. This comparison shows that approximately 60% (55-64%) of the alpha-carbon atom positions of the bacterial serine proteases are topologically equivalent to the alpha-carbon atom positions of the pancreatic enzymes. The corresponding value for a comparison of the bacterial enzymes among themselves is approximately 84%. The results of these topological comparisons have been used to deduce an experimentally sound sequence alignment for these several enzymes. This alignment shows that there is extensive tertiary structural homology among the bacteria and pancreatic enzymes without significant primary sequence identity (less than 21%). The acquisition of a zymogen function by the pancreatic enzymes is accompanied by two major changes to the bacterial enzymes' architecture: an insertion of 9 residues to increase the length of the N-terminal loop, and one of 12 residues to a loop near the activation salt bridge. In addition, in these two enzyme families, the methionine loop (residues 164-182) adopts very different comformations which are associated with their altered substrate specificities. PMID:96920

  14. Phenolic acids of the two major blueberry species in the US Market and their antioxidant and anti-inflammatory activities.

    PubMed

    Kang, Jie; Thakali, Keshari M; Jensen, Gitte S; Wu, Xianli

    2015-03-01

    Highbush (cultivated) and lowbush (wild) are the two major blueberry species in the US market. Eight phenolic acids were detected and quantified from these two species by HPLC-MS. Chlorogenic acid was found to be the predominant phenolic acid in both species, with 0.44 mg/g fresh weight in lowbush blueberries and 0.13 mg/g fresh weight in highbush blueberries. Total phenolic content in lowbush blueberries is over three times higher than that of highbush blueberries. The phenolic acid mixtures representing those in the two species were prepared by using authentic standards to assess their contribution to total antioxidant and anti-inflammatory activities of the whole berries. Neither lowbush nor highbush blueberry phenolic acid mixture contributed significantly to the total antioxidant capacity of their relevant whole berries measured by oxygen radical absorbance capacity (ORAC). Both phenolic acid mixtures were able to enter the cell and showed in cell antioxidant activities from the cell based antioxidant protection of erythrocytes (CAP-e) assay. Lowbush blueberry phenolic acid mixture was found to show anti-inflammatory activities by inhibiting the nuclear factor-κB (NF-κB) activation and the production of inflammatory cytokines (TNF-α and IL-6) at the high dose. PMID:25535004

  15. Antioxidant modulation of oxidant-stimulated uptake and release of arachidonic acid in eicosapentaenoic acid-supplemented human lymphoma U937 cells.

    PubMed

    Obajimi, Oluwakemi; Black, Kenneth D; Glen, Iain; Ross, Brian M

    2007-02-01

    Omega-3 polyunsaturated fatty acids (PUFA) are increasingly finding use as treatments for a variety of medical conditions. PUFA supplementation can, however, result in increased oxidative stress causing elevated turnover rate of membrane phospholipids, impairment of membrane integrity and increased formation of inflammatory mediators. The aim of this study was to determine which antioxidant compounds were most effective in ameliorating the stimulation of phospholipid turnover by oxidative stress. U937 cells were supplemented with eicosapentaenoic acid and either ascorbic acid, alpha-tocopherol, beta-carotene or astaxanthin prior to being challenged with oxidant. Although all antioxidants were found to be effective in decreasing oxidant-stimulated peroxide formation, only alpha-tocopherol significantly decreased oxidant-stimulated release of 3H-labeled arachidonic acid (AA), while ascorbic acid markedly increased release. All antioxidants except alpha-tocopherol decreased oxidant-stimulated 3H-AA uptake. Our data suggest that antioxidants are not equally effective in combating the effects of oxidative stress upon membrane phospholipid turnover, and that optimal protection will require mixtures of antioxidants. PMID:17198751

  16. Identification of Phenolic Acids and Flavonoids in Monofloral Honey from Bangladesh by High Performance Liquid Chromatography: Determination of Antioxidant Capacity

    PubMed Central

    Moniruzzaman, Mohammed; Yung An, Chua; Rao, Pasupuleti Visweswara; Hawlader, Mohammad Nurul Islam; Azlan, Siti Amirah Binti Mohd; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties. PMID:25045696

  17. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism.

    PubMed

    Mason, R Preston; Jacob, Robert F

    2015-02-01

    Lipid oxidation leads to endothelial dysfunction, inflammation, and foam cell formation during atherogenesis. Glucose also contributes to lipid oxidation and promotes pathologic changes in membrane structural organization, including the development of cholesterol crystalline domains. In this study, we tested the comparative effects of eicosapentaenoic acid (EPA), an omega-3 fatty acid indicated for the treatment of very high triglyceride (TG) levels, and other TG-lowering agents (fenofibrate, niacin, and gemfibrozil) on lipid oxidation in human low-density lipoprotein (LDL) as well as membrane lipid vesicles prepared in the presence of glucose (200 mg/dL). We also examined the antioxidant effects of EPA in combination with atorvastatin o-hydroxy (active) metabolite (ATM). Glucose-induced changes in membrane structural organization were measured using small angle x-ray scattering approaches and correlated with changes in lipid hydroperoxide (LOOH) levels. EPA was found to inhibit LDL oxidation in a dose-dependent manner (1.0-10.0 µM) and was distinguished from the other TG-lowering agents, which had no significant effect as compared to vehicle treatment alone. Similar effects were observed in membrane lipid vesicles exposed to hyperglycemic conditions. The antioxidant activity of EPA, as observed in glucose-treated vesicles, was significantly enhanced in combination with ATM. Glucose treatment produced highly-ordered, membrane-restricted, cholesterol crystalline domains, which correlated with increased LOOH levels. Of the agents tested in this study, only EPA inhibited glucose-induced cholesterol domain formation. These data demonstrate that EPA, at pharmacologic levels, inhibits hyperglycemia-induced changes in membrane lipid structural organization through a potent antioxidant mechanism associated with its distinct, physicochemical interactions with the membrane bilayer. PMID:25449996

  18. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    NASA Astrophysics Data System (ADS)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed

  19. Fish protein hydrolysates: proximate composition, amino acid composition, antioxidant activities and applications: a review.

    PubMed

    Chalamaiah, M; Dinesh Kumar, B; Hemalatha, R; Jyothirmayi, T

    2012-12-15

    The fish processing industry produces more than 60% by-products as waste, which includes skin, head, viscera, trimmings, liver, frames, bones, and roes. These by-product wastes contain good amount of protein rich material that are normally processed into low market-value products, such as animal feed, fish meal and fertilizer. In view of utilizing these fish industry wastes, and for increasing the value to several underutilised fish species, protein hydrolysates from fish proteins are being prepared by several researchers all over the world. Fish protein hydrolysates are breakdown products of enzymatic conversion of fish proteins into smaller peptides, which normally contain 2-20 amino acids. In recent years, fish protein hydrolysates have attracted much attention of food biotechnologists due to the availability of large quantities of raw material for the process, and presence of high protein content with good amino acid balance and bioactive peptides (antioxidant, antihypertensive, immunomodulatory and antimicrobial peptides). PMID:22980905

  20. Antioxidant Properties of Caffeic acid Phenethyl Ester and 4-Vinylcatechol in Stripped Soybean Oil.

    PubMed

    Jia, Cai-Hua; Wang, Xiang-Yu; Qi, Jin-Feng; Hong, Soon-Taek; Lee, Ki-Teak

    2016-01-01

    Caffeic acid was used to synthesize 4-vinylcatechol (4-VC) by thermal decarboxylation and to prepare caffeic acid phenethyl ester (CAPE) by esterification reaction. The identities of synthesized products were confirmed by (1)H NMR. Antioxidative activities of 4-VC and CAPE were compared with α-tocopherol and BHT in stripped soybean oil at 60 °C under the dark. To evaluate the degrees of oxidation at different concentrations and combinations, peroxide value (PV) and (1)H NMR were performed. From the results of PV, the formation of primary oxidation products (i.e., hydroperoxides) in stripped soybean oil containing 200 ppm CAPE was the slowest. The relative oxidation degree of 200 ppm CAPE (9.5%) was lower than other samples on 9 d. Similar results were obtained by (1)H NMR analysis. After 15 d of storage, levels of conjugated diene forms and aldehydes of 200 ppm CAPE sample (57.3 and 0.9 mmol/mol oil) were also lower than other treatments. In addition, 4-VC and α-tocopherol were found to have a synergistic antioxidant effect. PMID:26641978

  1. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential.

    PubMed

    Rochette, Luc; Ghibu, Stéliana; Richard, Carole; Zeller, Marianne; Cottin, Yves; Vergely, Catherine

    2013-01-01

    Diabetes has emerged as a major threat to worldwide health. The exact mechanisms underlying the disease are unknown; however, there is growing evidence that the excess generation of reactive oxygen species (ROS) associated with hyperglycemia, causes oxidative stress in a variety of tissues. In this context, various natural compounds with pleiotropic actions like α-lipoic acid (LA) are of interest, especially in metabolic diseases such as diabetes. LA, either as a dietary supplement or a therapeutic agent, modulates redox potential because of its ability to match the redox status between different subcellular compartments as well as extracellularly. Both the oxidized (disulfide) and reduced (di-thiol: dihydro-lipoic acid, DHLA) forms of LA show antioxidant properties. LA exerts antioxidant effects in biological systems through ROS quenching but also via an action on transition metal chelation. Dietary supplementation with LA has been successfully employed in a variety of in vivo models of disease associated with an imbalance of redox status: diabetes and cardiovascular diseases. The complex and intimate association between increased oxidative stress and increased inflammation in related disorders such as diabetes, makes it difficult to establish the temporal sequence of the relationship. PMID:23293044

  2. Effect of heat treatment on the antioxidant activity, color, and free phenolic acid profile of malt.

    PubMed

    Inns, Elizabeth L; Buggey, Lesley A; Booer, Christopher; Nursten, Harry E; Ames, Jennifer M

    2007-08-01

    Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(.+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(.+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health. PMID:17616212

  3. The effects of antioxidants on the content of polyunsaturated fatty acids in the hen's egg.

    PubMed

    Kassab, A; Abrams, J T; Sainsbury, D W

    1979-01-01

    In experiments to see whether, in the possible interests of human health, the polyunsaturated fatty acid (PUFA) content of the chicken's egg can be increased by nutritional means, three strains of hen, light, medium, and heavy, each at the peak of lay, were first fed a basal, commercial, low-fat diet. The hens were then transferred to one of the following diets: basal + safflower oil (SO); basal + SO + butylated hydroxytoluene; or basal + SO + dl-a-toco-pheryl acetate. The diets were designated "Blank", "BHT", and "Vitamin E", respectively, the second and third containing the added antioxidants. The eggs produced were weighed, and their yolks weighed and analysed for lipid components. Additional of SO (7.5%) to the basal diet led to the PUFA content of the yolk lipids rising by 15.4% (linoleic acid, 14.1%), the magnitude of the increases being unaffected by the antioxidants. Diet "BHT" produced larger eggs and yolks than the other diets, but the proportion of yolk was the same on the three types of feed. The total cholesterol content of egg yolks was significantly affected neither by diet, nor by strain or age of hen. The implications of these results are discussed. PMID:468476

  4. A novel method for the determination of ascorbic acid and antioxidant capacity in Opuntia ficus indica using in vivo microdialysis.

    PubMed

    Pretti, L; Bazzu, G; Serra, P A; Nieddu, G

    2014-03-15

    A simple and rapid method was developed for in vivo simultaneous determination of ascorbic-acid and antioxidant capacity in microdialysates from cladodes of Opuntia ficus-indica (L.) Miller. The method is verified in water-stressed plants, as compared with a well-watered test controls. The microdialysis probe construction and insertion procedure was specifically developed to minimise the tissue trauma of the plant and to obtain optimal dialysis performance. Microdialysis was performed using a flow rate of 3 μL/min and the samples were analysed by HPLC coupled to electrochemical detection of ascorbic-acid and DPPH-determined antioxidant capacity. Our data indicate exponential decay of the concentrations of the analysed compounds as a function of microdialysis sampling time. Water-stressed Opuntia show decreased ascorbic acid levels and increased the others antioxidants. PMID:24206696

  5. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice

    NASA Astrophysics Data System (ADS)

    Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.

    2010-12-01

    The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.

  6. Screening for antioxidants in complex matrices using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection.

    PubMed

    McDermott, Geoffrey P; Conlan, Xavier A; Noonan, Laura K; Costin, Jason W; Mnatsakanyan, Mariam; Shalliker, R Andrew; Barnett, Neil W; Francis, Paul S

    2011-01-17

    The use of high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection to screen for antioxidants in complex plant-derived samples was evaluated in comparison with two conventional post-column radical scavenging assays (2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(+))). In this approach, acidic potassium permanganate can react with readily oxidisable compounds (potential antioxidants), post-column, to produce chemiluminescence. Using flow injection analysis, experimental parameters that afforded the most suitable permanganate chemiluminescence signal for a range of known antioxidants were studied in a univariate approach. Optimum conditions were found to be: 1×10(-3)M potassium permanganate solution containing 1% (w/v) sodium polyphosphates adjusted to pH 2 with sulphuric acid, delivered at a flow rate of 2.5 mL min(-1) per line. Further investigations showed some differences in detection selectivity between HPLC with the optimised post-column permanganate chemiluminescence detection and DPPH and ABTS(+) assays towards antioxidant standards. However, permanganate chemiluminescence detection was more sensitive. Moreover, screening for antioxidants in green tea, cranberry juice and thyme using potassium permanganate chemiluminescence offers several advantages over the traditional DPPH and ABTS(+) assays, such as faster reagent preparation and superior stability; simpler post-column reaction manifold; and greater compatibility with fast chromatographic separations using monolithic columns. PMID:21167995

  7. Effects of salicylic acid and putrescine on storability, quality attributes and antioxidant activity of plum cv. 'Santa Rosa'.

    PubMed

    Davarynejad, Gholam Hossein; Zarei, Mehdi; Nasrabadi, Mohamad Ebrahim; Ardakani, Elham

    2015-04-01

    Plum fruit has a short shelf life with a rapid deterioration in quality after harvest. The primary goal of this study is to investigate and compare the effect of putrescine and salicylic acid on quality properties and antioxidant activity of plum during storage. The plum fruits (cv. 'Santa Rosa') were harvested at the mature ripe stage, and dipped in different concentrations of putrescine (1, 2, 3 and 4 mmol/L) and salicylic acid (1, 2, 3 and 4 mmol/L), as well as distilled water (control) for 5 min. The fruits were then packed in boxes with polyethylene covers and stored at 4 °C with 95 % relative humidity for 25 days. A factorial trial based on completely randomized block design with 4 replications was carried out. The weight loss, fruit firmness, total soluble solids, titratable acidity, pH, maturity index, ascorbic acid, total phenolics and antioxidant activity at 0, 5, 10, 15, 20 and 25 days after harvest were recorded. During the storage period, the weight loss, total soluble solids, pH and maturity index increased significantly while the fruit firmness, titratable acidity, ascorbic acid, total phenolics and antioxidant activity decreased significantly (P < 0.05) for all treatments. Statistically significant differences were observed between different treatments (putrescine, salicylic acid and control) in all measured parameters. The data showed that the weight loss and softening of the plum fruits were decreased significantly by the use of putrescine and salicylic acid. Also, exogenous treatments of putrescine and salicylic acid are found to be effective in maintaining titratable acidity, ascorbic acid, total phenolics and antioxidant activity in plum fruits during storage at 4 °C. It was concluded that postharvest treatment of plum fruit with putrescine and salicylic acid were effective on delaying the ripening processes and can be used commercially to extend the shelf life of plum fruit with acceptable fruit quality. PMID:25829585

  8. Effects of water-soluble natural antioxidants on photosensitized oxidation of conjugated linoleic acid in an oil-in-water emulsion system.

    PubMed

    Liu, T-T; Yang, T-S

    2008-05-01

    The effect of photosensitized oxidation of conjugated linoleic acid in an oil-in-water (o/w) emulsion system was studied. Water-soluble natural antioxidants, including apple polyphenols from apple extract, green tea extract, 4-hydroxy-2(or 5)-ethyl-5(or2)-methyl-3(2H)-furanone(HEMF), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), and ascorbic acid, were tested for antioxidant activity in this system. The green tea extract showed the highest antioxidant activity followed by ascorbic acid. Apple polyphenols did not give significant antioxidant activity. HEMF and HDMF exhibited a prooxidant effect. The antioxidant activity of tea catechins was also investigated. Of them, EGCG and ECG exhibited antioxidant activity at 50 ppm, but the antioxidant activity between them was not significantly different (P < 0.05). Comparatively, EC, EGC, and GCG showed no significant antioxidative effect at 50 ppm. When the concentration increased to 100 ppm, the antioxidant activity of ECG and EGCG significantly increased compared with that at 50 ppm, and EGCG had higher antioxidant activity than ECG. GCG also showed significant antioxidant activity at 100 ppm. EGCG exhibited the highest antioxidant activity among the tea catechins in the emulsion system at 100 ppm. PMID:18460119

  9. Isolation of Lactic Acid Bacteria Showing Antioxidative and Probiotic Activities from Kimchi and Infant Feces.

    PubMed

    Ji, Keunho; Jang, Na Young; Kim, Young Tae

    2015-09-01

    The purpose of this study was to investigate lactic acid bacteria with antioxidative and probiotic activities isolated from Korean healthy infant feces and kimchi. Isolates A1, A2, S1, S2, and S3 were assigned to Lactobacillus sp. and isolates A3, A4, E1, E2, E3, and E4 were assigned to Leuconostoc sp. on the basis of their physiological properties and 16S ribosomal DNA sequence analysis. Most strains were confirmed as safe bioresources through nonhemolytic activities and non-production of harmful enzymes such as β-glucosidase, β- glucuronidase and tryptophanase. The 11 isolates showed different resistance to acid and bile acids. In addition, they exhibited antibacterial activity against foodborne bacteria, especially Bacillus cereus, Listeria monocytogenes, and Escherichia coli. Furthermore, all strains showed significantly high levels of hydrophobicity. The antioxidant effects of culture filtrates of the 11 strains included 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging capacity, 2.2'- azino-bis (2-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity, and superoxide dismutase activity. The results revealed that most of the culture filtrates have effective scavenging activity for DPPH and ABTS radicals. All strains appeared to have effective superoxide dismutase activity. In conclusion, the isolated strains A1, A3, S1, and S3 have significant probiotic activities applicable to the development of functional foods and health-related products. These strains might also contribute to preventing and controlling several diseases associated with oxidative stress, when used as probiotics. PMID:25951843

  10. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.

    PubMed

    Sonni, Francesca; Clark, Andrew C; Prenzler, Paul D; Riponi, Claudio; Scollary, Geoffrey R

    2011-04-27

    Glutathione was assessed individually, and in combination with ascorbic acid, for its ability to act as an antioxidant with respect to color development in an oxidizing model white wine system. Glutathione was utilized at concentrations normally found in wine (30 mg/L), as well as at concentrations 20-fold higher (860 mg/L), the latter to afford ascorbic acid (500 mg/L) to glutathione ratios of 1:1. The model wine systems were stored at 45 °C without sulfur dioxide and at saturated oxygen levels, thereby in conditions highly conducive to oxidation. Under these conditions the results demonstrated the higher concentration of glutathione could initially provide protection against oxidative coloration, but eventually induced color formation. In the period during which glutathione offered a protective effect, the production of xanthylium cation pigment precursors and o-quinone-derived phenolic compounds was limited. When glutathione induced coloration, polymeric pigments were formed, but these were different from those found in model wine solutions without glutathione. In the presence of ascorbic acid, high concentrations of glutathione were able to delay the decay in ascorbic acid and inhibit the reaction of ascorbic acid degradation products with the wine flavanol compound (+)-catechin. However, on depletion, the glutathione again induced the production of a range of different polymeric pigments. These results highlight new mechanisms through which glutathione can offer both protection and spoilage during the oxidative coloration of a model wine. PMID:21384873

  11. In vitro antioxidant assay of medium chain fatty acid rich rice bran oil in comparison to native rice bran oil.

    PubMed

    Sengupta, Avery; Ghosh, Mahua; Bhattacharyya, D K

    2015-08-01

    The study aimed to evaluate the in vitro antioxidant activity of medium chain fatty acid (MCFA) rich-rice bran oils in comparison with native rice bran oil. Different in vitro methods were used to evaluate the free radical scavenging activity, metal chelation activity, reducing acitivity, ABTS radical scavenging activity, thiobarbituric acid (TBA) value and so on at different concentrations of the oils such as 10-100 μg/mL. Inhibition of lipid peroxidation was evaluated measuring thiobarbituric acid responsive substance (TBARS) and conjugated diene formation. All the oils showed potent antioxidant activity at 100 μg/mL concentration. TBARS formation and conjugated diene formation was lower with MCFA rich oils i.e. the inhibition of lipid peroxidation was more in MCFA rich oils than original rice bran oil. Caprylic acid rich rice bran oil showed maximum antioxidant activity in comparison to capric- and lauric acid rich rice bran oils. Overall the MCFA rich rice bran oils showed to be more potent antioxidant than rice bran oil due to their lower unsaturated fatty acid content. PMID:26243941

  12. Antioxidant assay-guided purification and LC determination of ellagic acid in pomegranate peel.

    PubMed

    Panichayupakarananta, Pharkphoom; Issuriya, Atcharaporn; Sirikatitham, Anusak; Wang, Wei

    2010-07-01

    On the basis of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay-guided purification, ellagic acid was isolated from the methanol extract of pomegranate fruit peel by liquid-liquid extraction and chromatographic techniques. A reversed-phase high-performance liquid chromatography was described for determination of ellagic acid in pomegranate fruit peel extract. The method involved the use of a TSK-gel ODS-80Tm column with a mixture of 2% aqueous acetic acid and methanol (gradient elution mode: 0-15 min, 40-60% v/v methanol and 15-20 min, 60% v/v methanol) as the mobile phase and detection at 254 nm. The parameters of linearity, repeatability, reproducibility, accuracy, and specificity of the method were evaluated. The recovery of the method was 98.5% and linearity (r(2) > 0.9995) was obtained for ellagic acid. A high degree of specificity as well as repeatability and reproducibility (relative standard deviation values less than 5%) were also achieved. The limits of detection and quantification were 1.00 and 2.50 microg/mL, respectively. The solvent for extraction of ellagic acid from pomegranate fruit peel was examined in order to maximize the ellagic acid content of the extract. A solution of 10% v/v water in methanol was capable of increasing the ellagic acid content in the extract up to 7.66% w/w. The ellagic acid content and antioxidant activity of the ethyl acetate fraction separated from the crude extract using water and ethyl acetate partition was higher than that of the crude extract. PMID:20822660

  13. Antioxidant activities of chick embryo egg hydrolysates

    PubMed Central

    Sun, Hao; Ye, Ting; Wang, Yuntao; Wang, Ling; Chen, Yijie; Li, Bin

    2014-01-01

    Chick embryo egg hydrolysates (CEEH) were obtained by enzymatic hydrolysis of chick embryo egg in vitro-simulated gastrointestinal digestion. The antioxidant activities of CEEH were investigated by employing three in vitro assays, including the 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate)/1,1-diphenyl-2-picrylhydrazyl (ABTS/DPPH)/hydroxyl radical-scavenging assays. The radical-scavenging effect of CEEH (1.0 mg/mL) was in a dose-dependent manner, with the highest trolox equivalent antioxidant capacity for ABTS, DPPH, and that of hydroxyl radicals found to be 569, 2097, and 259.6 μmol/L, respectively; whereas the trolox equivalent antioxidant capacity of unhatched egg for ABTS, DPPH, and that of hydroxyl radicals were found to be 199, 993, and 226.5 μmol/L, respectively. CEEH showed stronger scavenging activity than the hydrolysates of unhatched egg against free radicals such as ABTS, DPPH, and hydroxyl radicals. The antioxidant amino acid analysis indicated that the 14-day CEEH possess more antioxidant amino acids than that of the unhatched egg. In addition, essential amino acids analysis showed that the 14-day CEEH have the highest nutritional value. Combined with the results of the amino acid profiles, CEEH were believed to have higher nutritive value in addition to antioxidant activities than the unhatched egg. PMID:24804065

  14. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters.

    PubMed

    Espinosa, Raquel Rainho; Inchingolo, Raffaella; Alencar, Severino Matias; Rodriguez-Estrada, Maria Teresa; Castro, Inar Alves

    2015-09-01

    The effect of eleven compounds extracted from red propolis on the oxidative stability of a functional emulsion was evaluated. Emulsions prepared with Echium oil as omega 3 (ω-3 FA) source, containing 1.63 g/100mL of α-linolenic acid (ALA), 0.73 g/100 mL of stearidonic acid (SDA) and 0.65 g/100mL of plant sterol esters (PSE) were prepared without or with phenolic compounds (vanillic acid, caffeic acid, trans-cinnamic acid, 2,4-dihydroxycinnamic acid, p-coumaric acid, quercetin, trans-ferulic acid, trans,trans-farnesol, rutin, gallic acid or sinapic acid). tert-Butylhydroquinone and a mixture containing ascorbic acid and FeSO4 were applied as negative and positive controls of the oxidation. Hydroperoxide, thiobarbituric acid reactive substances (TBARS), malondialdehyde and phytosterol oxidation products (POPs) were evaluated as oxidative markers. Based on hydroperoxide and TBARS analysis, sinapic acid and rutin (200 ppm) showed the same antioxidant activity than TBHQ, representing a potential alternative as natural antioxidant to be applied in a functional emulsion containing ω-3 FA and PSE. PMID:25842314

  15. Antioxidant activity of Rafflesia kerrii flower extract.

    PubMed

    Puttipan, Rinrampai; Okonogi, Siriporn

    2014-02-01

    Rafflesia kerrii has been used in Thai traditional remedies for treatment of several diseases. However, scientific data particularly on biological activities of this plant is very rare. The present study explores an antioxidant activity of R. kerrii flower (RKF). Extracting solvent and extraction procedure were found to play an important role on the activity of RKF extract. The extract obtained from water-ethanol system showed higher antioxidant activity than that from water-propylene glycol system. Fractionated extraction using different solvents revealed that methanol fractionated extract (RM) possessed the highest antioxidant activity with Trolox equivalent antioxidant capacity (TEAC) and inhibitory concentration of 50% inhibition (IC50) values of approximately 39 mM/mg and 3 μg/mL, respectively. Phytochemical assays demonstrated that RM contained extremely high quantity of phenolic content with gallic antioxidant equivalent (GAE) and quercetin equivalent (QE) values of approximately 312 mg/g and 16 mg/g, respectively. Ultraviolet-visible spectroscopy (UV- VIS) and high-pressure liquid chromatography (HPLC) indicated that gallic acid was a major component. RM which was stored at 40°C, 75% RH for 4 months showed slightly significant change (p < 0.05) in phytochemical content and antioxidant activity with zero order degradation. The results of this study could be concluded that R. kerrii flower was a promising natural source of strong antioxidant compounds. PMID:24647154

  16. GSH-dependent antioxidant defense contributes to the acclimation of colon cancer cells to acidic microenvironment.

    PubMed

    Zhao, Minnan; Liu, Qiao; Gong, Yanchao; Xu, Xiuhua; Zhang, Chen; Liu, Xiaojie; Zhang, Caibo; Guo, Haiyang; Zhang, Xiyu; Gong, Yaoqin; Shao, Changshun

    2016-04-17

    Due to increased glycolysis and poor local perfusion, solid tumors are usually immersed in an acidic microenvironment. While extracellular acidosis is cytotoxic, cancer cells eventually become acclimated to it. While previous studies have addressed the acute effect of acidosis on cancer cells, little is known about how cancer cells survive chronic acidosis. In this study we exposed colorectal cancer (CRC) cells (HCT15, HCT116 and LoVo) to acidic pH (pH 6.5) continuously for over three months and obtained CRC cells that become acclimated to acidic pH, designated as CRC-acidosis-acclimated or CRC-AA. We unexpectedly found that while acute exposure to low pH resulted in an increase in the level of intracellular reactive oxygen species (ROS), CRC-AA cells exhibited a significantly reduced level of ROS when compared to ancestor cells. CRC-AA cells were found to maintain a higher level of reduced glutathione, via the upregulation of CD44 and glutathione reductase (GSR), among others, than their ancestor cells. Importantly, CRC-AA cells were more sensitive to agents that deplete GSH. Moreover, downregulation of GSR by RNA interference was more deleterious to CRC-AA cells than to control cells. Together, our results demonstrate a critical role of glutathione-dependent antioxidant defense in acclimation of CRC cells to acidic extracellular pH. PMID:26950675

  17. GSH-dependent antioxidant defense contributes to the acclimation of colon cancer cells to acidic microenvironment

    PubMed Central

    Zhao, Minnan; Liu, Qiao; Gong, Yanchao; Xu, Xiuhua; Zhang, Chen; Liu, Xiaojie; Zhang, Caibo; Guo, Haiyang; Zhang, Xiyu; Gong, Yaoqin; Shao, Changshun

    2016-01-01

    ABSTRACT Due to increased glycolysis and poor local perfusion, solid tumors are usually immersed in an acidic microenvironment. While extracellular acidosis is cytotoxic, cancer cells eventually become acclimated to it. While previous studies have addressed the acute effect of acidosis on cancer cells, little is known about how cancer cells survive chronic acidosis. In this study we exposed colorectal cancer (CRC) cells (HCT15, HCT116 and LoVo) to acidic pH (pH 6.5) continuously for over three months and obtained CRC cells that become acclimated to acidic pH, designated as CRC-acidosis-acclimated or CRC-AA. We unexpectedly found that while acute exposure to low pH resulted in an increase in the level of intracellular reactive oxygen species (ROS), CRC-AA cells exhibited a significantly reduced level of ROS when compared to ancestor cells. CRC-AA cells were found to maintain a higher level of reduced glutathione, via the upregulation of CD44 and glutathione reductase (GSR), among others, than their ancestor cells. Importantly, CRC-AA cells were more sensitive to agents that deplete GSH. Moreover, downregulation of GSR by RNA interference was more deleterious to CRC-AA cells than to control cells. Together, our results demonstrate a critical role of glutathione-dependent antioxidant defense in acclimation of CRC cells to acidic extracellular pH. PMID:26950675

  18. α-Lipoic Acid Antioxidant Treatment Limits Glaucoma-Related Retinal Ganglion Cell Death and Dysfunction

    PubMed Central

    Calkins, David J.; Horner, Philip J.

    2013-01-01

    Oxidative stress has been implicated in neurodegenerative diseases, including glaucoma. However, due to the lack of clinically relevant models and expense of long-term testing, few studies have modeled antioxidant therapy for prevention of neurodegeneration. We investigated the contribution of oxidative stress to the pathogenesis of glaucoma in the DBA/2J mouse model of glaucoma. Similar to other neurodegenerative diseases, we observed lipid peroxidation and upregulation of oxidative stress-related mRNA and protein in DBA/2J retina. To test the role of oxidative stress in disease progression, we chose to deliver the naturally occurring, antioxidant α-lipoic acid (ALA) to DBA/2J mice in their diet. We used two paradigms for ALA delivery: an intervention paradigm in which DBA/2J mice at 6 months of age received ALA in order to intervene in glaucoma development, and a prevention paradigm in which DBA/2J mice were raised on a diet supplemented with ALA, with the goal of preventing glaucoma development. At 10 and 12 months of age (after 4 and 11 months of dietary ALA respectively), we measured changes in genes and proteins related to oxidative stress, retinal ganglion cell (RGC) number, axon transport, and axon number and integrity. Both ALA treatment paradigms showed increased antioxidant gene and protein expression, increased protection of RGCs and improved retrograde transport compared to control. Measures of lipid peroxidation, protein nitrosylation, and DNA oxidation in retina verified decreased oxidative stress in the prevention and intervention paradigms. These data demonstrate the utility of dietary therapy for reducing oxidative stress and improving RGC survival in glaucoma. PMID:23755225

  19. Relationship between oxidizable fatty acid content and level of antioxidant glutathione peroxidases in marine fish

    PubMed Central

    Grim, Jeffrey M.; Hyndman, Kelly A.; Kriska, Tamas; Girotti, Albert W.; Crockett, Elizabeth L.

    2011-01-01

    SUMMARY Biological membranes can be protected from lipid peroxidation by antioxidant enzymes including catalase (CAT) and selenium-dependent glutathione peroxidases 1 and 4 (GPx1 and GPx4). Unlike GPx1, GPx4 can directly detoxify lipid hydroperoxides in membranes without prior action of phospholipase A2. We hypothesized that (1) GPx4 is enhanced in species that contain elevated levels of highly oxidizable polyunsaturated fatty acids (PUFA) and (2) activities of antioxidant enzymes are prioritized to meet species-specific oxidative stresses. In this study we examined (i) activities of the oxidative enzyme citrate synthase (CS) and antioxidant (CAT, GPx1 and GPx4) enzymes, (ii) GPx4 protein expression, and (iii) phospholipid composition in livers of five species of marine fish (Myxine glutinosa, Petromyzon marinus, Squalus acanthias, Fundulus heteroclitus and Myoxocephalus octodecemspinosus) that contain a range of PUFA. GPx4 activity was, on average, 5.8 times higher in F. heteroclitus and S. acanthias than in the other three marine fish species sampled. Similarly, activities of CAT and GPx1 were highest in S. acanthias and F. heteroclitus, respectively. GPx4 activity for all species correlates with membrane unsaturation, as well as oxidative activity as indicated by CS. These data support our hypothesis that GPx4 level in marine fish is a function, at least in part, of high PUFA content in these animals. GPx1 activity was also correlated with membrane unsaturation, indicating that marine species partition resources among glutathione-dependent defenses for protection from the initial oxidative insult (e.g. H2O2) and to repair damaged lipids within biological membranes. PMID:22031739

  20. Lactic Acid Bacterial Starter Culture with Antioxidant and γ-Aminobutyric Acid Biosynthetic Activities Isolated from Flatfish-Sikhae Fermentation.

    PubMed

    Won, Yeong Geol; Yu, Hyun-Hee; Chang, Young-Hyo; Hwang, Han-Joon

    2015-12-01

    The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter. PMID:26348620

  1. Contribution of ellagic acid on the antioxidant potential of medicinal plant Epilobium hirsutum.

    PubMed

    Karakurt, Serdar; Semiz, Asli; Celik, Gurbet; Gencler-Ozkan, Ayse Mine; Sen, Alaattin; Adali, Orhan

    2016-01-01

    In the present study, the possible role of ellagic acid (EA) on antioxidant potential of Epilobium hirsutum (EH) in rat liver was investigated. Wistar rats were intraperitoneally treated with 37.5 mg/kg of EH and 10 mg/kg of EA for 9 days. Effects of EH and EA on antioxidant [glutathione peroxidase (GPx) and superoxide dismutases (SOD)] and Phase II [NADPH quinone oxidoreductase 1 (NQO1) and glutathione S-transferases (GSTs)] enzyme activities, as well as protein and mRNA expressions of those, were investigated. Polyphenolic content of EH was determined by LC-MS/MS analysis. EH and EA injection to rats resulted in a significant increase of NQO1 (3.6-fold and 4.7-fold), GPx (1.45-fold), and SOD (1.34-fold and 1.27-fold) enzyme activities, whereas total GST (46% and 57%) and its isoforms,and GST mu (57% and 72%), and GST theta (60% and 68%) activities were significantly decreased. Western-blot and qRT-PCR analysis showed that NQO1 and GPx protein and mRNA expressions were increased significantly (P < 0.0001), whereas GST mu and GST theta were significantly decreased (P < 0.0001). PMID:26700224

  2. Antioxidative Reaction of Carotenes against Peroxidation of Fatty Acids Initiated by Nitrogen Dioxide: A Theoretical Study.

    PubMed

    Chen, Shau-Jiun; Huang, Li-Yen; Hu, Ching-Han

    2015-07-30

    In this study, we investigated the antioxidative functions of carotenes (CARs) against the peroxidation of lipids initiated by nitrogen dioxide using density functional theory. The hydrogen-atom transfer (HAT), radical adduct formation (RAF), and electron transfer (ET) mechanisms were investigated. We chose β-carotene (β-CAR) and lycopene (LYC) and compared their NO2(•) initiations and peroxidations with those of linoleic acid (LAH), the model of the lipid. We found that for CARs ET is more likely to occur in the most polar (water) environment than are HAT and RAF. In less polar environments, CARs react more readily with NO2(•) via HAT and RAF than does the lipid model, LAH. Comparatively, reaction barriers for the RAF between CARs and NO2(•) are smaller than those for the HAT. The additions of O2 to the radical intermediates O2N-CAR(•) and CAR(-H)(•) involve sizable barriers and are endergonic. Other than HAT of LAH, we revealed that lipid peroxidation is likely to be initiated by -NO2 addition and the subsequent barrierless addition of O2. Finally, LYC is a more effective antioxidative agent against NO2(•)-initiated lipid peroxidation than is β-CAR. PMID:26106906

  3. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants

    PubMed Central

    Wada, Naoki; Sakamoto, Toshio; Matsugo, Seiichi

    2015-01-01

    Mycosporine-like amino acids (MAAs) are water-soluble molecules that absorb UV-A and UV-B radiation and disperse the energy as heat. MAAs show great diversity in their molecular structures, which exhibit a range of molecular weights spanning 188 to 1050 Daltons. MAAs are utilized in a wide variety of organisms including prokaryotes and eukaryotic micro-organisms that inhabit aquatic, terrestrial, and marine environments. These features suggest that MAAs are stable and fundamental molecules that allow these organisms to live under UV irradiation. MAAs are thought to have been greatly important to ancient forms of life on Earth, functioning as a primary sunscreen to reduce short-wavelength light. Structurally different MAAs might have been developed in MAA-producing organisms during their environmental adaptation. Harmful irradiation directly damages biomolecules, including lipids, proteins and DNA, and induces oxidative stress through radical-propagating processes. Thus, MAAs are expected to play an additional role in the antioxidant system. This review focuses on MAAs with radical scavenging activities. To cover all the reported MAAs known thus far, we surveyed the CAS database and have summarized the structures and the chemical and physical properties of these MAAs, including their antioxidant activities. PMID:26783847

  4. Evaluation of antioxidant activity, polyphenolic compounds, amino acids and mineral elements of representative genotypes of Lonicera edulis.

    PubMed

    Sochor, Jiri; Jurikova, Tunde; Pohanka, Miroslav; Skutkova, Helena; Baron, Mojmir; Tomaskova, Lenka; Balla, Stefan; Klejdus, Borivoj; Pokluda, Robert; Mlcek, Jiri; Trojakova, Zuzana; Saloun, Jan

    2014-01-01

    The aim of this study was to evaluate the bioactive substances in 19 berry cultivars of edible honeysuckle (Lonicera edulis). A statistical evaluation was used to determine the relationship between the content of selected bioactive substances and individual cultivars. Regarding mineral elements, the content of sodium was measured using potentiometry and spectrophotometry. The content of selected polyphenolic compounds with high antioxidant activity was determined by a HPLC-UV/ED method. The total amount of polyphenols was determined by the Folin-Ciocalteu method. The antioxidant activity was determined using five methods (DPPH, FRAP, ABTS, FR and DMPD) that differ in their principles. The content of 13 amino acids was determined by ion-exchange chromatography. The experimental results obtained for the different cultivars were evaluated and compared by statistical and bioinformatic methods. A unique feature of this study lies in the exhaustive analysis of the chosen parameters (amino acids, mineral elements, polyphenolic compounds and antioxidant activity) during one growing season. PMID:24853714

  5. Antioxidant properties of chlorogenic acid and its alkyl esters in stripped corn oil in combination with phospholipids and/or water.

    PubMed

    Laguerre, Mickaël; Chen, Bingcan; Lecomte, Jérôme; Villeneuve, Pierre; McClements, D Julian; Decker, Eric A

    2011-09-28

    In bulk oil, it is generally thought that hydrophilic antioxidants are more active than lipophilic antioxidants. To test this hypothesis, the antioxidant activity of phenolics with increasing hydrophobicity was evaluated in stripped corn oil using both conjugated diene and hexanal measurements. Chlorogenic acid and its butyl, dodecyl, and hexadecyl esters were used as model phenolic antioxidants with various hydrophobicities. Results showed that hydrophobicity did not correlate well with antioxidant capacity. The combination of chlorogenic acid derivatives with dioleoylphosphatidylcholine (DOPC) and/or water was also studied to determine if the physical structure in the oil affected antioxidant activity. DOPC alone made hexadecyl chlorogenate a less effective antioxidant, but it did not change the antioxidant capacity of chlorogenic acid. In contrast, the combination of DOPC and water (∼400 ppm) renders chlorogenic acid a less active antioxidant, whereas it does not change the activity of hexadecyl chlorogenate. These results show, in bulk oil, that intrinsic parameters such as the hydrophobicity of lipophilized phenolics do not exert a strong influence on antioxidant capacity, but they can be highly influential if potentialized by extrinsic factors such as physical structures in the oil. PMID:21851125

  6. Acid Is Key to the Radical-Trapping Antioxidant Activity of Nitroxides.

    PubMed

    Haidasz, Evan A; Meng, Derek; Amorati, Riccardo; Baschieri, Andrea; Ingold, Keith U; Valgimigli, Luca; Pratt, Derek A

    2016-04-27

    Persistent dialkylnitroxides (e.g., 2,2,6,6-tetramethylpiperidin-1-oxyl, TEMPO) play a central role in the activity of hindered amine light stabilizers (HALS)-additives that inhibit the (photo)oxidative degradation of consumer and industrial products. The accepted mechanism of HALS comprises a catalytic cycle involving the rapid combination of a nitroxide with an alkyl radical to yield an alkoxyamine that subsequently reacts with a peroxyl radical to eventually re-form the nitroxide. Herein, we offer evidence in favor of an alternative reaction mechanism involving the acid-catalyzed reaction of a nitroxide with a peroxyl radical to yield an oxoammonium ion followed by electron transfer from an alkyl radical to the oxoammonium ion to re-form the nitroxide. In preliminary work, we showed that TEMPO reacts with peroxyl radicals at diffusion-controlled rates in the presence of acids. Now, we show that TEMPO can be regenerated from its oxoammonium ion by reaction with alkyl radicals. We have determined that this reaction, which has been proposed to be a key step in TEMPO-catalyzed synthetic transformations, occurs with k ∼ 1-3 × 10(10) M(-1) s(-1), thereby enabling it to compete with O2 for alkyl radicals. The addition of weak acids facilitates this reaction, whereas the addition of strong acids slows it by enabling back electron transfer. The chemistry is shown to occur in hydrocarbon autoxidations at elevated temperatures without added acid due to the in situ formation of carboxylic acids, accounting for the long-known catalytic radical-trapping antioxidant activity of TEMPO that prompted the development of HALS. PMID:27023326

  7. Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth.

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2013-01-01

    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals. PMID:23884129

  8. Alpha-lipoic acid protects against indomethacin-induced gastric oxidative toxicity by modulating antioxidant system.

    PubMed

    Kaplan, Kursat Ali; Odabasoglu, Fehmi; Halici, Zekai; Halici, Mesut; Cadirci, Elif; Atalay, Fadime; Aydin, Ozlem; Cakir, Ahmet

    2012-11-01

    Gastroprotective effects of α-lipoic acid (ALA) against oxidative gastric damage induced by indomethacin (IND) have been investigated. All doses (50, 75, 100, 150, 200, and 300 mg/kg body weight) of ALA reduced the ulcer index with 88.2% to 96.1% inhibition ratio. In biochemical analyses of stomach tissues, ALA administration decreased the level of lipid peroxidation (LPO) and activities of myeloperoxidase (MPO) and catalase (CAT) in gastric tissues, which were increased after IND application. ALA also increased the level of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) that were decreased in gastric damaged stomach tissues. In conclusion, the gastroprotective effect of ALA could be attributed to its ameliorating effect on the antioxidant defense systems. PMID:23057764

  9. Inhibition of Photodegradation of Highly Dispersed Folic Acid Nanoparticles by the Antioxidant Effect of Transglycosylated Rutin.

    PubMed

    Kadota, Kazunori; Semba, Kumi; Shakudo, Ryosuke; Sato, Hideyuki; Deki, Yuto; Shirakawa, Yoshiyuki; Tozuka, Yuichi

    2016-04-20

    We developed highly dispersible and photostable nanoparticles of vitamin, folic acid (FA). FA was wet bead milled with milling and dispersing adjuvants and transglycosylated compounds such as α-glucosyl hesperidin (Hesperidin-G) and rutin (Rutin-G), which solubilized FA. The milled slurries of FA particles with transglycosylated compounds consisted of nanosized particles with a median diameter of <100 nm. The lyophilized formulations of these slurries retained their nanometer size after resuspension in water with no aggregation. The apparent solubility of FA in these formulations was 100-fold higher than that of untreated FA. The solubilizing effect of Rutin-G may affect the particle size reduction and dispersibility of FA. The photostability results showed that the strong antioxidant activity of Rutin-G substantially increased the photostability of FA solution. On the basis of these results, bead milling of FA with Rutin-G is a promising technique for developing highly dispersible, photostable nanoparticle FA formulations. PMID:27039660

  10. Lipid peroxidation, antioxidant concentrations, and fatty acid contents of muscle tissue from malignant hyperthermia-susceptible swine.

    PubMed

    Duthie, G G; Wahle, K W; Harris, C I; Arthur, J R; Morrice, P C

    1992-08-01

    Homogenates of semitendinosus muscle from malignant hyperthermia (MH)-susceptible pigs produced threefold more pentane than those from MH-resistant pigs, indicating enhanced free radical-mediated peroxidation of n-6 fatty acids. This did not reflect a deficiency in tissue antioxidants or antioxidant-enzymes but glutathione concentrations and glutathione peroxidase activities were increased in the tissue from MH-susceptible swine, consistent with an adaptive response to a sustained oxidant stress. A lower proportion of linoleic acid (18:2 n-6) in phospholipids and neutral lipids in muscle from MHS pigs indicated increased peroxidation or metabolism (desaturation and elongation). The increased oleic acid (18:1 n-9) in the MHS muscle indicated that desaturase activity was elevated in all lipid classes. The results are consistent with the hypothesis that enhanced free radical activity and lipid peroxidation contributes to the abnormalities in Ca2+ homeostasis and polyunsaturated fatty acid metabolism in MH. PMID:1632646

  11. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

    PubMed

    Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

    2015-12-01

    The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature. PMID:26041208

  12. Quantitative HPLC Analysis of Rosmarinic Acid in Extracts of "Melissa officinalis" and Spectrophotometric Measurement of Their Antioxidant Activities

    ERIC Educational Resources Information Center

    Canelas, Vera; da Costa, Cristina Teixeira

    2007-01-01

    The students prepare tea samples using different quantities of lemon balm leaves ("Melissa officinalis") and measure the rosmarinic acid contents by an HPLC-DAD method. The antioxidant properties of the tea samples are evaluated by a spectrophotometric method using a radical-scavenging assay with DPPH. (2,2-diphenyl-1-picrylhydrazyl). Finally the…

  13. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference (gr...

  14. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac).

    PubMed

    Sharpe, Erica; Frasco, Thalia; Andreescu, Daniel; Andreescu, Silvana

    2013-01-01

    With increased awareness of nutrition and the advocacy for healthier food choices, there exists a great demand for a simple, easy-to-use test that can reliably measure the antioxidant capacity of dietary products. We report development and characterization of a portable nanoparticle based-assay, similar to a small sensor patch, for rapid and sensitive detection of food antioxidants. The assay is based on the use of immobilized ceria nanoparticles, which change color after interaction with antioxidants by means of redox and surface chemistry reactions. Monitoring corresponding optical changes enables sensitive detection of antioxidants in which the nanoceria provides an optical 'signature' of antioxidant power, while the antioxidants act as reducing agents. The sensor has been tested for the detection of common antioxidant compounds including ascorbic acid, gallic acid, vanillic acid, quercetin, caffeic acid, and epigallocatechin gallate and its function has been successfully applied for the assessment of antioxidant activity in real samples (teas and medicinal mushrooms). The colorimetric response was concentration dependent, with detection limits ranging from 20 to 400 μM depending on the antioxidant involved. Steady-state color intensity was achieved within seconds upon addition of antioxidants. The results are presented in terms of Gallic Acid Equivalents (GAE). The sensor performed favorably when compared with commonly used antioxidant detection methods. This assay is particularly appealing for remote sensing applications, where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Potential applications for antioxidant detection in remote locations are envisioned. PMID:23139929

  15. Free Radical Scavenging and Antioxidant Activities of Silymarin Components

    PubMed Central

    Anthony, Kevin P.; Saleh, Mahmoud A.

    2013-01-01

    Silymarin is an over the counter food supplement that is sold as a liver enhancement and liver protection preparation. It is a major constituent of the seeds of Silybum marianum which is composed of a mixture of seven major components and several minor compounds. The seven major components: taxifolin, silychristin, silydianin, silybin A, silybin B, iso-silybin A and iso-silybin B were isolated and purified from the crude mixture of silymarin using preparative high performance liquid chromatography to determine which were the most effective for liver protection. Free radical scavenging, hydroxyl radical antioxidant capacity, oxygen radical antioxidant capacity, trolox-equivalent antioxidant capacity and total antioxidant capacity antioxidant activities were determined for each of the individual purified components as well as the crude silymarin mixture. Taxifolin was the most effective component for scavenging free radicals in the DPPH assay with an EC50 of 32 µM far more effective than all other components which showed EC50 ranging from 115 to 855 µM. Taxifolin was also found to be the most effective antioxidant in the oxygen radical antioxidant capacity (ORAC) assay with a trolox equivalent of 2.43 and the second most effective in the hydroxyl radical antioxidant capacity (HORAC) assay with a gallic acid equivalent of 0.57. Other antioxidants assays did not show significant differences between samples. PMID:26784472

  16. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  17. Effect of Cooking on Isoflavones, Phenolic Acids, and Antioxidant Activity in Sprouts of Prosoy Soybean (Glycine max).

    PubMed

    Kumari, Shweta; Chang, Sam K C

    2016-07-01

    Soy sprouts possess health benefits and is required to be cooked before consumption. The effects of cooking on the phenolic components and antioxidant properties of soy sprouts with different germination days were investigated. A food-grade cultivar Prosoy with a high protein content was germinated for 1, 2, 3, 5, and 7 d and cooked till palatable for 20, 20, 5, 5, and 7 min, respectively. Total phenolic content (TPC), total flavonoids content (TFC), condensed tannins content (CTC), individual phenolic acids, isoflavones, DPPH, ferric-reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) of raw and cooked sprouts were measured. Cooking caused significant losses in phenolic content and antioxidant activities, and maximum loss was on day 3 > 5 > 7, including TPC (32%, 23%, and 15%), TFC (50%, 44%, and 20%), CTC (73%, 47%, and 12%), DPPH (31%, 15%, and 5%), FRAP (34%, 25%, and 1%), and ORAC (34%, 22%, 32%), respectively. Cooking caused significant losses in most individual phenolic acid, benzoic group, cinnamic group, total phenolic composition, individual isoflavones, and total isoflavones. The losses of phenolic acids such as gallic, protocatechuic, hydroxybenzoic, syringic, chlorogenic, or sinapic acids during cooking were not compensated by the increases in trihydroxybenzoic, vanillic or coumaric acids on certain days of germination. Cooking caused minimal changes in phenolic acid composition of day 1 and 2 sprouts compared to 3, 5, and 7 d sprouts. PMID:27258930

  18. Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

    PubMed Central

    Zambonin, Laura; Caliceti, Cristiana; Vieceli Dalla Sega, Francesco; Fiorentini, Diana; Hrelia, Silvana; Landi, Laura; Prata, Cecilia

    2012-01-01

    Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL), whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach. PMID:22792417

  19. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  20. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders. PMID:27322226

  1. Antioxidant capacity of hydrolyzed animal by-products and relation to amino acid composition and peptide size distribution.

    PubMed

    Damgaard, Trine; Lametsch, René; Otte, Jeanette

    2015-10-01

    The antioxidative capacity of six different tissue hydrolysates (porcine colon, heart and neck and bovine lung, kidney and pancreas) were tested by three different assays monitoring iron chelation, ABTS radical scavenging and inhibition of lipid oxidation in emulsions, respectively. The hydrolysates were also investigated with respect to amino acid composition and peptide size distribution. The hydrolysates contained peptides ranging from 20 kDa to below 100 Da with a predominance of peptides with low molecular weight (53.8 to 89.0 % below 3 kDa). All hydrolysates exhibited antioxidant activity as assessed with all three methods; inhibition of lipid oxidation ranging from 72 to 88 % (at a final protein concentration of 7 mg/mL), iron chelation capacity from 23 to 63 % (at 1.1 mg/mL), and ABTS radical scavenging from 38 to 50 % (at 10 μg /mL). The antioxidant activity did not correlate with the proportion of low molecular weight peptides in the hydrolysed tissues, but with the content of specific amino acid residues. The ABTS radical scavenging capacity of the tissues was found to correlate with the content of Trp, Tyr, Met and Arg, whereas the ability to inhibit the oxidation of lineoleic acid correlated with the content of Glu and His. The chosen animal by-products thus represent a natural source of antioxidants with potential for food application. PMID:26396396

  2. Effect of Dietary n − 3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    PubMed Central

    Guermouche, B.; Soulimane-Mokhtari, N. A.; Bouanane, S.; Merzouk, H.; Merzouk, S.; Narce, M.

    2014-01-01

    The aim of this work was to determine the effect of dietary n − 3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL), and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n − 3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control) or with the EPAX diet (enriched in n − 3 PUFAs), by streptozotocin. The macrosomic pups were killed at birth (day 0) and at adulthood (day 90). Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC), hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n − 3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation. PMID:24987679

  3. Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants.

    PubMed

    Liu, Xiaofang; Hou, Fen; Li, Guangke; Sang, Nan

    2015-08-01

    Nitrogen dioxide (NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species (ROS) production and antioxidant enzyme activity in Arabidopsis thaliana (Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m(3) NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll (Chl) content, and increased oxygen free radical (O2(-)) production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate (AsA) and glutathione (GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage. PMID:26257351

  4. Oxidative stability of milk influenced by fatty acids, antioxidants, and copper derived from feed.

    PubMed

    Havemose, M S; Weisbjerg, M R; Bredie, W L P; Poulsen, H D; Nielsen, J H

    2006-06-01

    Differences in the oxidative stability of milk from cows fed grass-clover silage or hay were examined in relation to fatty acid composition and contents of antioxidants and copper in the milk. The oxidation processes were induced by exposing the milk to fluorescent light. Protein oxidation was measured as an accumulation of dityrosine, whereas lipid oxidation was measured as an accumulation of lipid hydroperoxides as the primary oxidation product, and as the secondary oxidation products, pentanal, hexanal, and heptanal. No differences were found in the protein oxidation of the 2 types of milk measured as accumulation of dityrosine, but there was an increased accumulation of lipid hydroperoxides and hexanal in milk from cows fed grass-clover silage, compared with milk from cows fed hay. The higher degree of lipid oxidation in milk from cows fed grass-clover silage could not be explained from the concentration of alpha-tocopherol, carotenoids, uric acid, and copper in the milk. However, it was thought to be highly influenced by the significantly higher concentration of linolenic acid present in milk from cows fed grass-clover silage. A larger part of alpha-tocopherol and beta-carotene was transferred from the feed to the milk when cows were fed grass-clover silage than when cows were fed hay as roughage. The significantly higher concentration of polyunsaturated fatty acids in milk from cows fed grass-clover silage may be important for the better transfer of alpha-tocopherol from the feed to the milk. Other circumstances, as the different conditions in the rumen may also play a role, due to the different types of roughages and their digestibility, or be related to the mechanisms during milk production for the higher yielding cows fed grass-clover silage. PMID:16702260

  5. Lipid Lowering Effect of Antioxidant Alpha-Lipoic Acid in Experimental Atherosclerosis

    PubMed Central

    Amom, Zulkhairi; Zakaria, Zaiton; Mohamed, Jamaluddin; Azlan, Azrina; Bahari, Hasnah; Taufik Hidayat Baharuldin, Mohd; Aris Moklas, Mohd; Osman, Khairul; Asmawi, Zanariyah; Kamal Nik Hassan, Mohd

    2008-01-01

    Accumulating data demonstrated that hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group N, HCD and ALA (n = 6). Group N (normal control) was fed with normal chow, the rest (HCD and ALA) were fed with 100 g/head/day of 1% cholesterol rich diet to induce hypercholesterolemia. Four point two mg/body weight of alpha lipoic acid was concomintantly supplemented to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning, week 5 and week 10. Plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. At the end of the experiment, the animals were sacrificed and the aorta were excised for intimal lesion analysis. The plasma total cholesterol (TC) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the HCD group (p<0.05). Similarly, low level of MDA (p<0.05) in ALA group was observed compared to that of the HCD group showing a significant reduction of lipid peroxidation activity. Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to HCD group. These findings suggested that alpha lipoic acid posses a dual lipid lowering and anti-atherosclerotic properties indicated with low plasma TC and LDL levels and reduction of athero-lesion formation in hypercholesterolemic-induced rabbits. PMID:18818758

  6. Selection of grapevine leaf varieties for culinary process based on phytochemical composition and antioxidant properties.

    PubMed

    Lima, Adriano; Bento, Albino; Baraldi, Ilton; Malheiro, Ricardo

    2016-12-01

    Grapevine leaves are an abundant sub-product of vineyards which is devalued in many regions. The objective of this work is to study the antioxidant activity and phytochemical composition of ten grapevine leaf varieties (four red varieties: Tinta Amarela, Tinta Roriz, Touriga Franca, and Touriga Nacional; and six white varieties: Côdega do Larinho, Fernão Pires, Gouveio, Malvasia Fina, Rabigato, and Viosinho) to select varieties to be used as food ingredients. White grapevine leaves revealed higher antioxidant potential. Malvasia Fina reported better antioxidant properties contrasting with Touriga Franca. Phenolic content varied between 112 and 150mgGAEg(-1) of extract (gallic acid equivalents), hydroxycinnamic acid derivatives and flavonols varied between 76 and 108mgCAEg(-1) of extract (caffeic acid equivalents) and 39 and 54mgQEg(-1) of extract (quercetin equivalents). Malvasia Fina is a good candidate for culinary treatment due to its antioxidant properties and composition in bioactive compounds. PMID:27374535

  7. Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to α-tocopherol for the preservation of omega-3 oils.

    PubMed

    Guitard, Romain; Paul, Jean-François; Nardello-Rataj, Véronique; Aubry, Jean-Marie

    2016-12-15

    22 natural polyphenols are compared to 7 synthetic antioxidants including BHT, BHA, TBHQ and PG with regard to their ability to protect omega-3 oils from autoxidation. The antioxidant efficiency of phenols is assessed using the DPPH test and the measurement of oxygen consumption during the autoxidation of oils rich in omega-3 fatty acids. Also, the bond dissociation enthalpies (BDE) of the Ar-OH bonds are calculated and excellent correlations between thermodynamic, kinetic and oxidation data are obtained. It is shown that kinetic rates of hydrogen transfer, number of radicals scavenged per antioxidant molecule, BDE and formation of antioxidant dimers from the primary radicals play an important role regarding the antioxidant activity of phenols. Based on this, it is finally shown that myricetin, rosmarinic and carnosic acids are more efficient than α-tocopherol and synthetic antioxidants for the preservation of omega-3 oils. PMID:27451183

  8. Antioxidant activities, distribution of phenolics and free amino acids of Erica australis L. leaves and flowers collected in Algarve, Portugal.

    PubMed

    Nunes, Ricardo; Carvalho, Isabel S

    2013-01-01

    Leaves and flowers from Erica plant possess nutritional and medicinal properties. We determined the antioxidant activity, phenolic, flavonoid and amino acid profiles of the leaves and flowers of this plant. Total amino acid content varied from 28 to 49 and essential amino acids from 8 to 20 mg/g for flowers and leaves, respectively, with different distributions within the plant. From 16 phenolic compounds identified, delphinidin-3-glucoside, caffeic acid and cyanidin-3,5-glucoside in leaves and pelargonidin-3,5-glucoside in flowers were the compounds in highest amount, all with over 500 μg/g. Although flowers had higher contents of phenolic compounds (4000 μg/g) than leaves (3400 μg/g), they showed lower antioxidant activity, indicating that the antioxidant activity depends not only on the content of phenolics, but also on their type. This study shows that this plant has the potential to be used as an extra dietary source of amino acids and phenolic compounds and its consumption may provide health benefits. PMID:23237569

  9. Effects of rest time on discharge response and equivalent circuit model for a lead-acid battery

    NASA Astrophysics Data System (ADS)

    Devarakonda, Lalitha; Hu, Tingshu

    2015-05-01

    This work carries out a detailed investigation on the effects of rest time on the discharge response and the parameters of the Thevenin's equivalent circuit model for a lead acid battery. Traditional methods for battery modeling require a long rest time before a discharging test so that a steady state is reached for the open circuit voltage. In a recent work, we developed an algebraic method for parameter identification of circuit models for batteries by applying discharging tests after variable and possibly very short rest time. This new method opens a door to the understanding of the effects of rest time on battery behavior, which may be used for better simulation, analysis and design of battery powered systems for improved battery efficiency and state of health. As we used the new method to extract circuit parameters after different rest times, we observed some unexpected results on the relationship between the rest time and circuit parameters. The initial voltages on the capacitors can be negative and becomes more negative as the rest time is increased. We also observed that the time constants increase with rest time. Relationships between rest time and other parameters are also reported in this paper.

  10. Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus jujube Mill.) fruits.

    PubMed

    Wojdyło, Aneta; Carbonell-Barrachina, Ángel A; Legua, Pilar; Hernández, Francisca

    2016-06-15

    The interest in Ziziphus jujube is growing because it is an excellent source of nutrients and phytochemicals, and can contribute to a healthy diet. Nutritional compounds (phenolic compounds and L-ascorbic acid), and antioxidant capacity of 4 Spanish jujube cultivars were studied. Polyphenols were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. A total of 25 polyphenolic compounds were identified and classified as 10 flavan-3-ols, 13 flavonols, 1 flavanone, and 1 dihydrochalcone. The content of total polyphenols (TP) ranged from 1442 to 3432 mg/100 g dry matter (dm) in fruits of the cultivars 'DAT' and 'PSI', respectively. Flavan-3-ols, the major group of polyphenols in jujube represented ∼92% of the TP content, whereas flavonols only amounted for about ∼8% each. The content of L-ascorbic acid was very high and took values in the range of 387-555 mg/100 g fresh weight (fw). Some Spanish jujube cultivars, especially 'PSI' and 'MSI', may be selected to promote the growth of cultivars with valuable nutritional and phytochemical beneficial effects on human health. PMID:26868581

  11. Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems.

    PubMed

    Santamaría, Abel; Flores-Escartín, Abigail; Martínez, Juan Carlos; Osorio, Laura; Galván-Arzate, Sonia; Pedraza-Chaverrí, José; Chaverrí, José Pedraza; Maldonado, Perla D; Medina-Campos, Omar N; Jiménez-Capdeville, María E; Manjarrez, Joaquín; Ríos, Camilo

    2003-08-15

    Reactive oxygen species and oxidative stress are involved in quinolinic acid (QUIN)-induced neurotoxicity. QUIN, a N-methyl-D-aspartate receptor (NMDAr) agonist and prooxidant molecule, produces NMDAr overactivation, excitotoxic events, and direct reactive oxygen species formation. Copper is an essential metal exhibiting both modulatory effects on neuronal excitatory activity and antioxidant properties. To investigate whether this metal is able to counteract the neurotoxic and oxidative actions of QUIN, we administered copper (as CuSO(4)) intraperitoneally to rats (2.5, 5.0, 7.5, and 10.0 mg/kg) 30 min before the striatal infusion of 1 microliter of QUIN (240 nmol). A 5.0 mg/kg CuSO(4) dose significantly increased the copper content in the striatum, reduced the neurotoxicity measured both as circling behavior and striatal gamma-aminobutyric acid (GABA) depletion, and blocked the oxidative injury evaluated as striatal lipid peroxidation (LP). In addition, copper reduced the QUIN-induced decreased striatal activity of Cu,Zn-dependent superoxide dismutase, and increased the ferroxidase activity of ceruloplasmin in cerebrospinal fluid from QUIN-treated rats. However, copper also produced significant increases of plasma lactate dehydrogenase activity and mortality at the highest doses employed (7.5 and 10.0 mg/kg). These results show that at low doses, copper exerts a protective effect on in vivo QUIN neurotoxicity. PMID:12899943

  12. The relationship of physicochemical properties to the antioxidative activity of free amino acids in Fenton system.

    PubMed

    Milić, Sonja; Bogdanović Pristov, Jelena; Mutavdžić, Dragosav; Savić, Aleksandar; Spasić, Mihajlo; Spasojević, Ivan

    2015-04-01

    Herein we compared antioxidative activities (AA) of 25 free L-amino acids (FAA) against Fenton system-mediated hydroxyl radical (HO(•)) production in aqueous solution, and examined the relation between AA and a set of physicochemical properties. The rank order according to AA was: Trp > norleucine > Phe, Leu > Ile > His >3,4-dihydroxyphenylalanine, Arg > Val > Lys, Tyr, Pro > hydroxyproline > α-aminobutyric acid > Gln, Thr, Ser > Glu, Ala, Gly, Asn, Asp. Sulfur-containing FAA generated different secondary reactive products, which were discriminated by the means of electron paramagnetic resonance spin-trapping spectroscopy. AA showed a general positive correlation with hydrophobicity. However, when taken separately, uncharged FAA exhibited strong positive correlation of AA with hydrophobicity whereas charged FAA showed negative or no significant correlation depending on the scale applied. A general strong negative correlation was found between AA and polarity. Steric parameters and hydration numbers correlated positively with AA of nonpolar side-chain FAA. In addition, a decrease of temperature which promotes hydrophobic hydration resulted in increased AA. This implies that HO(•)-provoked oxidation of FAA is strongly affected by hydrophobic hydration. Our findings are important for the understanding of oxidation processes in natural and waste waters. PMID:25764263

  13. Salicylic acid induces differential antioxidant response in spring maize under high temperature stress.

    PubMed

    Khanna, Palak; Kaur, Kamaljit; Gupta, Anil K

    2016-06-01

    High temperature is one of the important stress factors that affect crops in tropical countries. Plants do evolve or adopt different mechanisms to overcome such stress for survival. It is an interesting subject and has attracted many researchers to work upon. Here, we studied the effect of salicylic acid (SA) on seedling growth and antioxidative defense system in two spring maize (Zea mays L.) genotypes viz., CML-32 (relatively heat tolerant) and LM-11 (relatively heat susceptible), under high temperature stress. High temperature induced greater reduction in dry biomass of LM-1 1 seedlings as compared to those of CML-32. There was a parallel increase in ascorbate peroxidase and glutathione reductase activities in the roots of CML-32 seedlings. However, the activities of catalase and superoxide dismutase decreased and the contents of H202, proline and malonaldialdehyde (MDA) increased in seedlings of both the genotypes. Application of SA (400 µM) led to increased dry biomass in heat stressed CML-32 seedlings. It improved the efficiency of Halliwell-Asada pathway in roots of CML-32 seedlings as was evidenced by the enhanced ascorbate peroxidase and glutathione reductase activities. The activities of catalase and superoxide dismutase increased in both the tissues of LM-11 seedlings, whereas in CML-32, it was only in shoots, after SA application. Peroxidase activity increased in SA treated seedlings of both the genotypes, though the increase was comparatively higher in CML-32. The contents of H₂O₂ and MDA decreased and that of proline increased in SA treated seedlings of both the genotypes, under stress conditions. It may be concluded that SA induced differential antioxidant response by upregulating Halliwell-Asada pathway in roots and attaining high POX activity in both the tissues of CML-32 seedlings, under high temperature stress. PMID:27468465

  14. Evolution of availability of curcumin inside poly-lactic-co-glycolic acid nanoparticles: impact on antioxidant and antinitrosant properties

    PubMed Central

    Betbeder, Didier; Lipka, Emmanuelle; Howsam, Mike; Carpentier, Rodolphe

    2015-01-01

    Purpose Curcumin exhibits antioxidant properties potentially beneficial for human health; however, its use in clinical applications is limited by its poor solubility and relative instability. Nanoparticles exhibit interesting features for the efficient distribution and delivery of curcumin into cells, and could also increase curcumin stability in biological systems. There is a paucity of information regarding the evolution of the antioxidant properties of nanoparticle-encapsulated curcumin. Method We described a simple method of curcumin encapsulation in poly-lactic-co-glycolic acid (PLGA) nanoparticles without the use of detergent. We assessed, in epithelial cells and in an acellular model, the evolution of direct antioxidant and antinitrosant properties of free versus PLGA-encapsulated curcumin after storage under different conditions (light vs darkness, 4°C vs 25°C vs 37°C). Results In epithelial cells, endocytosis and efflux pump inhibitors showed that the increased antioxidant activity of PLGA-encapsulated curcumin relied on bypassing the efflux pump system. Acellular assays showed that the antioxidant effect of curcumin was greater when loaded in PLGA nanoparticles. Furthermore, we observed that light decreased, though heat restored, antioxidant activity of PLGA-encapsulated curcumin, probably by modulating the accessibility of curcumin to reactive oxygen species, an observation supported by results from quenching experiments. Moreover, we demonstrated a direct antinitrosant activity of curcumin, enhanced by PLGA encapsulation, which was increased by light exposure. Conclusion These results suggest that the antioxidant and antinitrosant activities of encapsulated curcumin are light sensitive and that nanoparticle modifications over time and with temperature may facilitate curcumin contact with reactive oxygen species. These results highlight the importance of understanding effects of nanoparticle maturation on an encapsulated drug’s activity. PMID

  15. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte

    PubMed Central

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M. Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  16. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte.

    PubMed

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  17. Lichens as possible sources of antioxidants.

    PubMed

    Kosanić, Marijana; Ranković, Branislav

    2011-04-01

    Acetone, methanol and aqueous extracts of the lichen Cetraria islandica, Lecanora atra, Parmelia pertusa, Pseudoevernia furfuraceae and Umbilicaria cylindrica were investigated for antioxidant activity by five different methods: DPPH radical scavenging, superoxide anion radical scavenging, reducing power, determination of total phenolic compounds and determination of total flavonoid content. Different antioxidant activities of the tested extracts were studied in comparison to known antioxidants such as ascorbic acid, butylated hydroxyanisole (BHA) and α-tocopherol. The tested extracts had strong antioxidant activity. The DPPH radical scavenging activity ranging from 32.68-94.70%. For reducing power, measured values of absorbance varied from 0.016 to 0.109. The superoxide anion scavenging activity for different extracts was 7.31-84.51%. In addition, the high contents of total phenolic compounds (12-76.42 μg of pyrocatechol equivalent) and total flavonoids (1.37-54.77 μg of rutin equivalent) suggests that phenols and flavonoids might be the major antioxidant compounds in studied extracts. Tested lichen species were found to possess effective antioxidant activities and can be used as good natural sources of antioxidants. PMID:21454165

  18. Biomonitoring Data for 2,4-Dichlorophenoxyacetic Acid in the United States and Canada: Interpretation in a Public Health Risk Assessment Context Using Biomonitoring Equivalents

    EPA Science Inventory

    Several extensive studies of exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) using urinary concentrations in samples from the general population, farm applicators, and farm family members are now available. Reference doses (RfDs) exist for 2,4-D, and Biomonitoring Equivalents ...

  19. Antioxidant properties of an endogenous thiol: Alpha-lipoic acid, useful in the prevention of cardiovascular diseases.

    PubMed

    Ghibu, Stéliana; Richard, Carole; Vergely, Catherine; Zeller, Marianne; Cottin, Yves; Rochette, Luc

    2009-11-01

    In the past few years, a growing interest has been given to the possible antioxidant functions of a natural acid, synthesized in human tissues: alpha-lipoic acid (ALA). Both the oxidized (disulfide) and reduced (dithiol: dihydrolipoic acid, DHLA) forms of ALA show antioxidant properties. ALA administered in the diet accumulates in tissues, and a substantial part is converted to DHLA via a lipoamide dehydrogenase. Commercial ALA is usually a racemic mixture of the R and S forms. Chemical studies have indicated that ALA scavenges hydroxyl radicals, hypochlorous acid, and singlet oxygen. ALA exerts antioxidant effects in biological systems not only through direct ROS quenching but also via transition metal chelation. ALA has been shown to possess a number of beneficial effects both in the prevention and treatment of diabetes in experimental conditions. ALA presents beneficial effects in the management of symptomatic diabetic neuropathy and has been used in this context in Germany for more than 30 years. In cardiovascular disease, dietary supplementation with ALA has been successfully employed in a variety of in vivo models: ischemia-reperfusion, heart failure, and hypertension. More mechanistic and human in vivo studies are needed to determine whether optimizing the dietary intake of ALA can help to decrease cardiovascular diseases. A more complete understanding of cellular biochemical events that influence oxidative damage is required to guide future therapeutic advances. PMID:19998523

  20. Stability, cutaneous delivery and antioxidant potential of a lipoic acid and α-tocopherol co-drug incorporated in microemulsions

    PubMed Central

    Thomas, Siji; Vieira, Camila S.; Hass, Martha A.; Lopes, Luciana B.

    2014-01-01

    The aim of this study was to assess the skin penetration, stability and antioxidant effects of a α-tocopherol-lipoic acid co-drug. To enhance penetration, we evaluated three microemulsions varying in water content and composition of the oil phase (isopropyl myristate with either monocaprylin or oleic acid). The co-drug was incorporated at 1% (w/w). Co-drug hydrolysis in the microemulsion increased with increases in time (up to 48 h) and formulation water content (10–30%, w/w). Microemulsions increased the co-drug delivery into viable layers of porcine ear skin by 2.9–7.8–fold compared to a control formulation (20% monocaprylin in isopropyl myristate) after 24 h. Penetration enhancement was influenced by the oil phase, with the formulation containing monocaprylin displaying the most pronounced effect. Antioxidant activity, assessed in skin bioequivalents using the thiobarbituric acid-reactive substances (TBARS) assay, demonstrated that TBARS levels decreased by 39% after treatment with the co-drug-containing microemulsion compared to the unloaded formulation. In addition to the co-drug, tocopherol (8.2 ± 0.6 μg/cm2) was detected in the viable bioequivalent tissues, suggesting that the co-drug was partly hydrolyzed after 12 h. Taken together, these results support the potential of nanodispersed formulations containing a tocopherol-lipoic acid co-drug to improve skin antioxidant activity. PMID:24961388

  1. Determination of free phenolic acids and antioxidant activity of methanolic extracts obtained from fruits and leaves of Chenopodium album.

    PubMed

    Laghari, Abdul Hafeez; Memon, Shahabuddin; Nelofar, Aisha; Khan, Khalid Mohammed; Yasmin, Arfa

    2011-06-15

    In this study, determination of phenolic acids as well as investigation of antioxidant activity of methanolic extracts from the fruits and leaves of Chenopodium album is described. Extracts were subjected to acidic hydrolysis in order to obtain total free phenolic acids. However, some of phenolic acids were identified and quantified by HPLC-DAD. The results were confirmed by LC-MS equipped with MS-ESI. In addition, Folin-Ciocalteu method was applied to determine the total phenolic contents. The antioxidant activity of C. album extracts was examined by using DPPH and hydroxyl radical-scavenging activity assays. Results revealed that the leaves extract exhibits better performance in antioxidant assays and in the higher total phenolic contents (3066mg of GAE/100g) when compared to fruits extract (1385mg of GAE/100g). From these results it has been revealed that the methanolic extracts of C. album from fruits and leaves have great potential as a source for natural health products. PMID:25213967

  2. Spectroscopic study and antioxidant properties of the inclusion complexes of rosmarinic acid with natural and derivative cyclodextrins

    NASA Astrophysics Data System (ADS)

    Çelik, Saliha Esin; Özyürek, Mustafa; Tufan, Ayşe Nur; Güçlü, Kubilay; Apak, Reşat

    2011-05-01

    Measurement of total antioxidant activity/capacity of polyphenols in various solvent media necessitates the use of cyclodextrins to solubilize lipophilic antioxidants of poor aqueous solubility. The inclusion complexes of the slightly water soluble antioxidant, rosmarinic acid (RA), with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxyethyl-β-cyclodextrin (HE-β-CD), and methyl-β-cyclodextrin (M-β-CD) were investigated for the first time. The effect of cyclodextrins (CDs) on the spectral features of RA was measured in aqueous medium using UV-vis and steady-state fluorescence techniques by varying the concentrations of CDs. The molar stoichiometry of RA-CD inclusion complexes was verified as 1:1, and the formation constants of the complexes were determined from Benesi-Hildebrand equation using fluorescence spectroscopic data. Among the CDs, maximum inclusion ability was measured in the case of M-β-CD followed by HP-β-CD, HE-β-CD, β-CD and α-CD. Solid inclusion complexes were prepared by freeze drying, and their functional groups were analyzed by IR spectroscopy. Antioxidant capacity of CD-complexed rosmarinic acid was measured to be higher than that of the lone hydroxycinnamic acid by the CUPric Reducing Antioxidant Capacity (CUPRAC) method. The mechanism of the TAC increase was interpreted as the stabilization of the 1 - e oxidized o-catechol moiety of RA by enhanced intramolecular H-bonding in a hydrophobic environment provided by CDs, mostly by M-β-CD.

  3. Quality Control of Gamma Irradiated Dwarf Mallow (Malva neglecta Wallr.) Based on Color, Organic Acids, Total Phenolics and Antioxidant Parameters.

    PubMed

    Pinela, José; Barros, Lillian; Antonio, Amilcar L; Carvalho, Ana Maria; Oliveira, M Beatriz P P; Ferreira, Isabel C F R

    2016-01-01

    This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties. PMID:27070569

  4. Evaluation of Antioxidant Potential of Melanthera scandens.

    PubMed

    Adesegun, Sunday Adeleke; Alabi, Sukurat Olasumbo; Olabanji, Patricia Taiwo; Coker, Herbert Alexander Babatunde

    2010-12-01

    A methanol extract of dried leaves of Melanthera scandens was examined for antioxidant activities using a variety of assays, including 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, reducing power, ferrous chelating, and ferric thiocyanate methods with ascorbic acid and EDTA as positive controls. The extract showed noticeable activities in most of these in vitro tests. The amount of phenolic compounds in the extract expressed in gallic acid equivalent was found to be 52.8 mg/g. The extract demonstrated inhibition of linoleic acid lipid peroxidation, active reducing power, and DPPH radical scavenging activities which were less than that of the positive controls. The extract also showed weaker iron chelating effect when compared with the EDTA positive control. The present results showed that M. scandens leaf extract possessed antioxidant properties and this plant is a potential useful source of natural antioxidants. PMID:21185542

  5. Preparation, analysis and antioxidant evaluation of the controlled product of polysaccharide from Mactra veneriformis by mild acid hydrolysis.

    PubMed

    Wang, Ling Chong; Wu, Hao; Ji, Jing; Xue, Feng; Liu, Rui

    2016-02-10

    The polysaccharides from Mactra veneriformis (MVPS) were degraded by controlled mild acid hydrolysis to produce active oligosaccharides. MVPS can easily be hydrolyzed by H2SO4 or HCl. The hydrolyzing process was investigated in acid addition and reaction time by evaluating the producing content of reducing sugar. Hydrolysis with 1M HCl to MVPS can generate a time-depended behavior that is mild and controllable. HPLC analysis monitored the change of oligosaccharides composition in hydrolyzing. Total nine oligosaccharides are recognizable in the HPLC profile, and their content showed a regular transformation in hydrolysis. Those nine ingredients were identified as glucooligosaccharides with DP from 1 to 7 by MS analysis. Antioxidant activities of the typical hydrolyzates as well as MVPs were further tested in assays of DPPH and hydroxyl radicals scavenging, and reducing power. It was found that HCl hydrolyzate exhibited stronger antioxidant effects than MVPS and H2SO4 hydrolyzate due to its higher content of oligosaccharides. PMID:26686183

  6. Antioxidant compounds and antioxidant activity in "early potatoes".

    PubMed

    Leo, Lucia; Leone, Antonella; Longo, Cristiano; Lombardi, Domenico Antonio; Raimo, Francesco; Zacheo, Giuseppe

    2008-06-11

    The antioxidant content and the antioxidant capacity of both hydrophilic and lipophilic antioxidant extracts from four "early potato" cultivars, grown in two different locations (Racale and Monteroni), were examined. There was a considerable variation in carotenoid content and weak differences in the ascorbic acid concentration of the examined cultivars of "early potato" and between the harvested locations. An increase in both methanol/water (8:2 v/v) and phosphate buffer soluble (PBS) free phenols (70%) and bound phenols (28%) in the extracts from the cultivars grown at Racale site was found and discussed. Examination of individual phenols revealed that chlorogenic acid and catechin were the major phenols present in potato tuber extracts; a moderate amount of caffeic acid and ferulic acid was also detected. The total equivalent antioxidant capacity (TEAC) was higher in the Racale extracts and a highly positive linear relationship ( R (2) = 0.8193) between TEAC values and total phenolic content was observed. The oxyradical scavenging capacity (TOSC) of methanol/water and PBS extracts of peel and whole potatoes against the reactive oxygen species (ROS) peroxyl radicals, peroxynitrite, and hydroxyl radicals was also analyzed. A highly significant linear correlation ( R (2) = 0.9613) between total antioxidant capacity (as a sum of peroxyl radicals + peroxynitrite) and total phenol content of methanol/water extracts was established. Moreover, proliferation of human mammalian cancer (MCF-7) cells was significantly inhibited in a dose-dependent manner after exposure to potato extracts. These data can be useful for "early potato" tuber characterization and suggest that the "early potato" has a potential as a dietary source of antioxidants. PMID:18476702

  7. Noninnocently Behaving Bridging Anions of the Widely Distributed Antioxidant Ellagic Acid in Diruthenium Complexes.

    PubMed

    Mandal, Abhishek; Grupp, Anita; Schwederski, Brigitte; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2015-10-19

    Dinuclear compounds [L2Ru(μ-E)RuL2](n) where L is acetylacetonate (acac(-), 2,4-pentanedionate), 2,2'-bipyridine (bpy), or 2-phenylazopyridine (pap) and EH4 is ellagic acid, an antioxidative bis-catechol natural product, were studied by voltammetric and spectroelectrochemical techniques (UV-vis-NIR and electron paramagnetic resonance (EPR)). The electronic structures of the isolated forms (NBu4)2[(acac)2Ru(μ-E)Ru(acac)2] ((NBu4)2[1]), [(bpy)2Ru(μ-E)Ru(bpy)2]ClO4 ([2]ClO4), and [(pap)2Ru(μ-E)Ru(pap)2] ([3]) were characterized by density functional theory (DFT) in conjunction with EPR and UV-vis-NIR measurements. The crystal structure of (NBu4)2[1] revealed the meso form and a largely planar Ru(μ-E)Ru center. Several additional charge states of the compounds were electrochemically accessible and were identified mostly as complexes with noninnocently behaving pap(0/•-) or bridging ellagate (E(n-)) anions (n = 2, 3, 4) but not as mixed-valence intermediates. The free anions E(n-), n = 1-4, were calculated by time-dependent DFT to reveal NIR transitions for the radical forms with n = 1 and 3 and a triplet ground state for the bis(o-semiquinone) dianion E(2-). PMID:26441246

  8. Caffeic acid phenethyl ester improves burn healing in rats through anti-inflammatory and antioxidant effects.

    PubMed

    dos Santos, Jeanine Salles; Monte-Alto-Costa, Andréa

    2013-01-01

    Although caffeic acid phenethyl ester (CAPE) has beneficial properties, its anti-inflammatory and antioxidant effects on healing burn injury have not been investigated as yet. Female Wistar rats were divided in two groups: burn and burn + CAPE. A scald injury (burn) was performed. CAPE treatment (10 µmol kg) began immediately after the burn and lasted for 14 days. Euthanasia was performed 14 or 70 days after burning. Seven, 21, and 70 days after burning, burn + CAPE group presented smaller wound area. Increase in reepithelialization was observed in burn + CAPE group 28 and 63 days after burning. Fourteen days after wounding, burn + CAPE group presented diminished myeloperoxidase activity and nitrite levels, reduced CD68 and platelet endothelial cell adhesion molecule 1 protein expression, and less oxidative damage (decrease in malondialdehyde (MDA) and carbonyl levels in plasma and lesion extracts). Seventy days after burning, the amount of myofibroblasts and macrophages (CD68 positive) was decreased and the amount of hydroxyproline was increased in burn + CAPE group. Treatment with CAPE improved burn wound healing, showing decrease in inflammatory parameters and in oxidative damage. PMID:23511289

  9. Ursolic acid protects against ulcerative colitis via anti-inflammatory and antioxidant effects in mice.

    PubMed

    Liu, Baohai; Piao, Xuehua; Guo, Lianyi; Liu, Shanshan; Chai, Fang; Gao, Leming

    2016-06-01

    Ursolic acid (UA) has been reported to have a protective effect in colitis. However, the underlying mechanisms remain to be elucidated. In the present study, experimental ulcerative colitis was induced in male BALB/c mice by the administration of 5% dextran sulfate sodium (DSS) for 7 days, followed by treatment with UA for another 7 days. Hematoxylin & eosin staining was performed to evaluate colon tissue damage, and enzyme assays were used to measure malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in colon homogenate. In addition, serum levels of interleukin (IL)‑1β and tumor necrosis factor (TNF)‑α were measured using an ELISA, and the level of nuclear factor (NF)‑κB p65 in the colonic tissues was assessed by western blotting. The 7‑day DSS administration induced marked colon damage, increased the serum levels of IL‑1β and TNF‑α, increased MDA content and decreased SOD activity in the colon homogenate. These changes were significantly improved by treatment with UA. UA also reduced the DSS‑stimulated high nuclear level of NF‑κB p65 in the colon tissues. These results demonstrate a protective role of UA in ulcerative colitis, and suggest that anti-inflammatory and antioxidant activities are involved in the underlying mechanisms. PMID:27082984

  10. Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid.

    PubMed

    Deligiannakis, Yiannis; Sotiriou, Georgios A; Pratsinis, Sotiris E

    2012-12-01

    Gallic acid (GA) and its derivatives are natural polyphenolic substances widely used as antioxidants in nutrients, medicine and polymers. Here, nanoantioxidant materials are engineered by covalently grafting GA on SiO(2) nanoparticles (NPs). A proof-of-concept is provided herein, using four types of well-characterized SiO(2) NPs of specific surface area (SSA) 96-352 m(2)/g. All such hybrid SiO(2)-GA NPs had the same surface density of GA molecules (~1 GA per nm(2)). The radical-scavenging capacity (RSC) of the SiO(2)-GA NPs was quantified in comparison with pure GA based on the 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical method, using electron paramagnetic resonance (EPR) and UV-vis spectroscopy. The scavenging of DPPH radicals by these nanoantioxidant SiO(2)-GA NPs showed mixed-phase kinetics: An initial fast-phase (t(1/2) <1 min) corresponding to a H-Atom Transfer (HAT) mechanism, followed by a slow-phase attributed to secondary radical-radical reactions. The slow-reactions resulted in radical-induced NP agglomeration, that was more prominent for high-SSA NPs. After their interaction with DPPH radicals, the nanoantioxidant particles can be reused by simple washing with no impairment of their RSC. PMID:23121088

  11. Effects of Environmental pH on Antioxidant Interactions between Rosmarinic Acid and α-Tocopherol in Oil-in-Water (O/W) Emulsions.

    PubMed

    Kittipongpittaya, Ketinun; Panya, Atikorn; Phonsatta, Natthaporn; Decker, Eric A

    2016-08-31

    Antioxidant regeneration could be influenced by various factors such as antioxidant locations and pH conditions. The effects of environmental pH on the antioxidant interaction between rosmarinic acid and α-tocopherol in oil-in-water (O/W) emulsions were investigated. Results showed that the combined antioxidants at pH 7 exhibited the strongest synergistic antioxidant activity in comparison with the combinations at other pH conditions as indicated by the interaction index. A drop in pH from 7 to 3 resulted in a reduction in the synergistic effect. However, in the case of pH 3, an additive effect was obtained. Moreover, the effect of the pH on the regeneration of α-tocopherol by rosmarinic acid in heterogeneous Tween 20 solutions was studied using EPR spectrometer. The same was true for the regeneration efficiency, where the reaction at pH 7 exhibited the highest regeneration efficiency of 0.3 mol of α-tocopheroxyl radicals reduced/mol of phenolics. However, the study on depletions of rosmarinic acid and α-tocopherol revealed that the formation of caffeic acid, an oxidative degradation product of rosmarinic acid, could be involved in enhancing the antioxidant activity observed at pH 7 rather than the antioxidant regeneration. This study has highlighted that the importance of pH-dependent antioxidant interactions does not solely rely on antioxidant regeneration. In addition, the formation of other oxidative products from an antioxidant should be taken into account. PMID:27494424

  12. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  13. Dinuclear copper(II) octaazamacrocyclic complex in a PVC coated GCE and graphite as a voltammetric sensor for determination of gallic acid and antioxidant capacity of wine samples.

    PubMed

    Petković, B B; Stanković, D; Milčić, M; Sovilj, S P; Manojlović, D

    2015-01-01

    A novel efficient differential pulse voltammetric (DPV) method for determination gallic acid (GA) was developed by using an electrochemical sensor based on [Cu2tpmc](ClO4)4 immobilized in PVC matrix and coated on graphite (CGE) or classy carbon rod (CGCE). The proposed method is based on the gallic acid oxidation process at formed [Cu2tpmcGA](3+) complex at the electrode surface. The complexation was explored by molecular modeling and DFT calculations. Voltammograms for both sensors, recorded in a HNO3 as a supporting electrolyte at pH 2 and measured in 2.5×10(-7) to 1.0×10(-4) M of GA, resulted with two linear calibration curves (for higher and lower GA concentration range). The detection limit at CGE was 1.48×10(-7) M, while at CGCE was 4.6×10(-6) M. CGE was successfully applied for the determination of the antioxidant capacity based on GA equivalents for white, rosé and red wine samples. PMID:25476338

  14. Synthesis, characterization, solubility and stability studies of hydrate cocrystal of antitubercular Isoniazid with antioxidant and anti-bacterial Protocatechuic acid

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Ahmed, Imtiaz; Tahir, Muhammad Nawaz

    2016-08-01

    Isoniazid is an important component used in "triple therapy" to combat tuberculosis. It has reduced Tabletting formulations stability. Anti-oxidants are obligatory to counter oxidative stress, pulmonary inflammation, and free radical burst from macrophages caused in tuberculosis and other diseases. In the present study a hydrate cocrystal of Isoniazid with anti-oxidant and anti-inflammatory and anti-bacterial Protocatechuic acid (3,4-dihydroxybenzoic acid) in 1:1 is reported. This Cocrystal may have improved tabletting stability and anti-oxidant properties. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the Cocrystal. Other synthons of different graph sets involving Nsbnd H···O and Osbnd H···N bonds are formed between hydrazide group of isoniazid and coformer. Solubility studies revealed that cocrystal is less soluble as compared to isoniazid in buffer at pH 7.4 at 22 °C while stability studies at 80 °C for 24 h period disclosed the fact that cocrystal has higher stability than that of isoniazid.

  15. Role of cellular antioxidants (glutathione and ascorbic acid) in the growth and development of wild carrot suspension cultures

    SciTech Connect

    Earnshaw, B.A.

    1986-01-01

    Determinations of endogenous glutathione (GSH), glutathione disulfide (GSSG), ascorbic acid (AA) and dehydroascorbic acid (DHA) in proliferating and developing wild carrot cultures showed that lower levels of GSH and AA were associated with developing cultures. The GSSG and DHA levels did not account for the changes in the levels of antioxidants between proliferating and developing cultures. Studies were designed to test an observed auxin (2,4-Dichlorophenoxyacetic acid, 2,4-D)-antioxidant association. Two fractions (embryo and less developed) were obtained by screening developed cultures which were previously grown in the presence of /sup 14/C-2, 4-D. The embryo fraction had a lower concentration of /sup 14/C than the less developed fraction, supporting the association, since the two fractions showed this relationship with respect to GSH and AA concentrations. Determinations of GSH and AA levels of cells grown in various concentrations of 2,4-D showed the association, decreases in the 2,4-D concentration correlated with decreases in the GSH and AA concentrations. The existence of a respiratory pathway involving GSSG reductase, DHA reductase, and AA oxidase was investigated to test whether inhibition of AA oxidase by 2,4-D could explain the auxin-antioxidant association; however, AA oxidase activity was not detected.

  16. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film. PMID:25439957

  17. Aryl-acetic and cinnamic acids as lipoxygenase inhibitors with antioxidant, anti-inflammatory, and anticancer activity.

    PubMed

    Hadjipavlou-Litina, Dimitra; Pontiki, Eleni

    2015-01-01

    Cinnamic acids have been identified as interesting compounds with cytotoxic, anti-inflammatory, and antioxidant properties. Lipoxygenase pathway, catalyzing the first two steps of the transformation of arachidonic acid into leukotrienes is implicated in several processes such as cell differentiation, inflammation and carcinogenesis. Development of drugs that interfere with the formation or effects of these metabolites would be important for the treatment of various diseases like asthma, psoriasis, ulcerative colitis, rheumatoid arthritis, atherosclerosis, cancer, and blood vessel disorders. Till now, asthma consists of the only pathological case in which improvement has been shown by lipoxygenase LO inhibitors. Thus, the research has been directed towards the development of drugs that interfere with the formation of leukotrienes. In order to explore the anti-inflammatory and cytotoxic effects of antioxidant acrylic/cinnamic acids a series of derivatives bearing the appropriate moieties have been synthesized via the Knoevenagel condensation and evaluated for their biological activities. The compounds have shown important antioxidant activity, anti-inflammatory activity and very good inhibition of soybean lipoxygenase while some of them were tested for their anticancer activity. PMID:25323520

  18. Chemical compositions, free amino acid contents and antioxidant activities of Hanwoo (Bos taurus coreanae) beef by cut.

    PubMed

    Oh, Mirae; Kim, Eun-Kyung; Jeon, Byong-Tae; Tang, Yujiao; Kim, Moon S; Seong, Hye-Jin; Moon, Sang-Ho

    2016-09-01

    The objective of this study was to evaluate chemical compositions, free amino acid contents, and antioxidant activities of different cuts of Hanwoo (Bos taurus coreanae) beef. Beef preferences and prices in the Korean market depend on cut. Therefore, comparisons were made between high-preference cuts (group 1 [G1], including loin, tenderloin, and rib) and low-preference cuts (group 2 [G2], including brisket, topside, and shank). Meat samples were collected from 10 fattened cows. Crude fat content was significantly higher in G1 than in G2 (p<0.05). The amounts of crude protein and total free amino acid were negatively correlated with crude fat content (p<0.05). Overall G2 contained higher levels of free amino acids with antioxidant activity than G1. Antioxidant activities were also significantly higher in G2 compared with G1 (p<0.05). In conclusion, providing consumers with positive information about G2 as found in this study could help health-conscious consumers choosing among beef products and further promote increased consumption of low-preference beef cuts. PMID:27115864

  19. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats.

    PubMed

    Rincón-Cervera, Miguel Ángel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Barrera, Cynthia; Espinosa, Alejandra; Marambio, Macarena; Valenzuela, Alfonso

    2016-08-01

    Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA. PMID:26995676

  20. Characterization of antioxidants and change of antioxidant levels during storage of Manilkara zapota L.

    PubMed

    Shui, Guanghou; Wong, Shih Peng; Leong, Lai Peng

    2004-12-29

    Antioxidants found in fruits and vegetables play an important role via their protective effects against the onset of aging-related chronic diseases. Our previous research has indicated that unripe ciku fruits (Manilkara zapota L.) are an excellent source of antioxidants, with over 3000 mg of L-ascorbic acid equivalent antioxidant capacity (AEAC) per 100 g of fresh sample. In this study, 24 antioxidants in an extract of ciku king were characterized through a free radical spiking test. Their chemical structures were proposed using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and tandem MS (HPLC/MSn). The antioxidant capacity of ciku king fruits was mainly attributed to polyphenolics with basic blocks of gallocatechin or catechin or both. The changes of total antioxidant capacity (TAC) and total phenolics content (TPC) of ciku king fruits with storage time were also investigated. It was found that the TAC and TPC decreased significantly as the fruits gradually changed from the unripe to the overripe stage. The best time for one to consume ciku king fruits at a flavorful stage with high amounts of antioxidants with AEAC values ranging from 600 to 1200 mg per 100 g fresh sample is suggested. The change of the content of major antioxidant peaks was also consistent with changes of antioxidant levels during storage. PMID:15612764

  1. Effects of dietary n-6:n-3 fatty acid ratio and vitamin E on semen quality, fatty acid composition and antioxidant status in boars.

    PubMed

    Liu, Q; Zhou, Y F; Duan, R J; Wei, H K; Jiang, S W; Peng, J

    2015-11-01

    The aim of the present study was to evaluate the effects of dietary n-6:n-3 fatty acid (FA) ratio and vitamin E on the semen quality, FA composition and antioxidant status of boars. Forty-eight Landrace boars were randomly distributed in a 3×2 factorial design with three n-6:n-3 FA ratios (14.4, 6.6 and 2.2) by the inclusion of three oil sources (soybean, fish/soybean, fish) and two vitamin E levels (200 and 400mg/kg). During the 8 weeks of treatment, semen parameters were evaluated. Serum, sperm and seminal plasma samples were taken at 0 and 8 weeks to monitor the FA composition and antioxidant status. Results showed that the 6.6 and 2.2 dietary ratios very effectively increased docosahexaenoic acid (DHA) and n-3 polyunsaturated fatty acid (PUFA) and decreased docosapentaenoic acid (DPA) and n-6:n-3 ratio in spermatozoa. The 6.6 dietary ratio contributed to a greater progressive sperm motility (P<0.05) than the 14.4 and 2.2 dietary ratio, and this ratio also enhanced the superoxide dismutase (SOD) and total antioxidant capacity (TAC) (P<0.05) in seminal plasma more significantly than the other two ratios at week 8. Compared with 200mg/kg supplementation of vitamin E, 400mg/kg supplementation of vitamin E increased the progressive sperm motility, SOD of sperm, TAC and SOD of seminal plasma and serum, and decreased sperm malondialdehyde (MDA) (P<0.05). In conclusion, the 6.6 dietary ratio and 400mg/kg vitamin E supplementation improve progressive sperm motility by modifying the sperm FA composition and antioxidant status. PMID:26417649

  2. Influence of water biscuit processing and kernel puffing on the phenolic acid content and the antioxidant activity of einkorn and bread wheat.

    PubMed

    Hidalgo, Alyssa; Yilmaz, Volkan A; Brandolini, Andrea

    2016-01-01

    The whole meal flour of wheat is rich in phenolic acids, which provide a relevant antioxidant activity to food products. Aim of this research was to assess the influence of processing on phenolic acid content and antioxidant activity of whole meal flour water biscuits and puffed kernels of einkorn and bread wheat. To this end, the evolution of syringaldehyde, ferulic, vanillic, syringic, p-coumaric, p-hydroxybenzoic, and caffeic acids was studied during manufacturing. Overall, from flour to water biscuit, the total soluble conjugated phenolic acids increased slightly in einkorn, while the insoluble bound phenolic acids decreased in all the accessions as a consequence of losses during the mixing step. In the puffed kernels, instead, the total soluble conjugated phenolic acids increased markedly, while the bound phenolics did not show any clear change, evidencing their high thermal stability. The antioxidant activity, measured by FRAP and ABTS, increased during processing and was highest under the most drastic puffing conditions. PMID:26787973

  3. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    PubMed

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  4. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat!

    PubMed

    Daglia, Maria; Di Lorenzo, Arianna; Nabavi, Seyed F; Talas, Zeliha S; Nabavi, Seyed M

    2014-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid) is a phenolic acid widely distributed in many different families of higher plants, both in free state, and as a part of more complex molecules, such as ester derivatives or polymers. In nature, gallic acid and its derivatives are present in nearly every part of the plant, such as bark, wood, leaf, fruit, root and seed. They are present in different concentrations in common foodstuffs such as blueberry, blackberry, strawberry, plums, grapes, mango, cashew nut, hazelnut, walnut, tea, wine and so on. After consumption, about 70% of gallic acid is adsorbed and then excreted in the urine as 4-O-methylgallic acid. Differently, the ester derivatives of gallic acid, such as catechin gallate ester or gallotannins, are hydrolyzed to gallic acid before being metabolized to methylated derivatives. Gallic acid is a well known antioxidant compounds which has neuroprotective actions in different models of neurodegeneration, neurotoxicity and oxidative stress. In this review, we discuss about the neuroprotective actions of gallic acid and derivatives and their potential mechanisms of action. PMID:24938889

  5. Fatty Acid and Essential Oil Compositions of Trifolium angustifolium var. angustifolium with Antioxidant, Anticholinesterase and Antimicrobial Activities

    PubMed Central

    Ertaş, Abdulselam; Boğa, Mehmet; Haşimi, Nesrin; Yılmaz, Mustafa Abdullah

    2015-01-01

    This study represents the first report on the chemical composition and biological activity of Trifolium angustifolium var. angustifolium. The major components of the essential oil were identified as hexatriacontene (23.0%), arachidic acid (15.5%) and α-selinene (10.0%). The main constituents of the fatty acid obtained from the petroleum ether extract were identified as palmitic acid (29.8%), linoleic acid (18.6%) and oleic acid (10.5%). In particular, the water extract exhibited higher activity than α-tocopherol and BHT, which were used as standards in the ABTS cation radical scavenging assay and indicated higher inhibitory effect against acetylcholinesterase enzyme than the reference compound, galanthamine but exhibited weak activity in β-carotene bleaching, DPPH-free radical scavenging, and cupric-reducing antioxidant capacity assays. The petroleum ether extract exhibited higher activity than α-tocopherol which was used as standard in the β-carotene bleaching method at concentration 100 μg/mL. The acetone extract exhibited higher activity than α-tocopherol which was used as standard cupric reducing antioxidant capacity (CUPRAC) method at 100 μg/mL concentration. The acetone and methanol extracts were active on all microorganisms tested with a small zone diameter indicating weak activity. PMID:25561929

  6. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test

    PubMed Central

    2012-01-01

    Background Dietary creatine has been largely used as an ergogenic aid to improve strength and athletic performance, especially in short-term and high energy-demanding anaerobic exercise. Recent findings have also suggested a possible antioxidant role for creatine in muscle tissues during exercise. Here we evaluate the effects of a 1-week regimen of 20 g/day creatine supplementation on the plasma antioxidant capacity, free and heme iron content, and uric acid and lipid peroxidation levels of young subjects (23.1 ± 5.8 years old) immediately before and 5 and 60 min after the exhaustive Wingate test. Results Maximum anaerobic power was improved by acute creatine supplementation (10.5 %), but it was accompanied by a 2.4-fold increase in pro-oxidant free iron ions in the plasma. However, potential iron-driven oxidative insult was adequately counterbalanced by proportional increases in antioxidant ferric-reducing activity in plasma (FRAP), leading to unaltered lipid peroxidation levels. Interestingly, the FRAP index, found to be highly dependent on uric acid levels in the placebo group, also had an additional contribution from other circulating metabolites in creatine-fed subjects. Conclusions Our data suggest that acute creatine supplementation improved the anaerobic performance of athletes and limited short-term oxidative insults, since creatine-induced iron overload was efficiently circumvented by acquired FRAP capacity attributed to: overproduction of uric acid in energy-depleted muscles (as an end-product of purine metabolism and a powerful iron chelating agent) and inherent antioxidant activity of creatine. PMID:22691230

  7. Pulmonary antioxidants

    SciTech Connect

    Massaro, E.J.; Grose, E.C.; Hatch, G.E.; Slade, R.

    1987-05-01

    One of the most vital of the cellular defenses against pollution is an antioxidant armanentarium which consists of oxidant scavenging molecules such as vitamin E, glutathione, vitamin C, and uric acid as well as a number of enzymes (superoxide dismutase, semidehydroascorbate reductase, catalase, GSH synthetase, GSH peroxidase, GSH reductase, and GSH transferase) and appears to function in keeping oxidant forces under control. Pollutants can upset the oxidant/antioxidant balance of cells by inhibiting vital enzymes, by reacting with oxidant scavengers, or by forming free radical intermediates which initiate uncontrolled tissue reactions with molecular oxygen. The book chapter reviews possible interactions between pollutants and the oxidant/antioxidant balance.

  8. Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices.

    PubMed

    Hernández-Herrero, J A; Frutos, M J

    2015-04-15

    Model juices at pH 3.7 were prepared with different combinations of ascorbic acid, rutin (quercetin 3-rutinoside) and concentrated anthocyanin extract of plums (cv. Black Gold). The anthocyanins in the concentrated extract were cyanidin 3-glucoside and cyanidin 3-rutinoside, in a proportion of 76% and 24% respectively. The model juices were stored during 17 weeks in darkness at 20 °C. The colour stability was improved by the presence of rutin and strongly damaged by the ascorbic acid. The fortification of anthocyanin model juices with ascorbic acid originated the degradation of most of anthocyanins. However, anthocyanins improved ascorbic acid stability during storage. The copigmentation of anthocyanin and rutin showed a beneficial effect on colour stability from the 5 weeks of storage. In model juices prepared exclusively with purified plum extract a high correlation (R(2)=0.881) between anthocyanins and antioxidant capacity was found. PMID:25466051

  9. Fatty Acids Profile, Phenolic Compounds and Antioxidant Capacity in Elicited Callus ofThevetia peruviana (Pers.) K. Schum.

    PubMed

    Rincón-Pérez, Jack; Rodríguez-Hernández, Ludwi; Ruíz-Valdiviezo, Víctor Manuel; Abud-Archila, Miguel; Luján-Hidalgo, María Celina; Ruiz-Lau, Nancy; González-Mendoza, Daniel; Gutiérrez-Miceli, Federico Antonio

    2016-04-01

    The aim of this study was analyze the effect of jasmonic acid (JA) and abscisic acid (ABA) as elicitors on fatty acids profile (FAP), phenolic compounds (PC) and antioxidant capacity (AC) in callus of Thevetia peruviana. Schenk & Hildebrandt (SH) medium, supplemented with 2 mg/L 2, 4-dichlorophenoxyacetic (2, 4-D) and 0.5 mg/L kinetin (KIN) was used for callus induction. The effect of JA (50, 75 and 100 μM) and ABA (10, 55 and 100 μM) on FAP, PC and AC were analyzed using a response surface design. A maximum of 2.8 mg/g of TPC was obtained with 100 plus 10 µM JA and ABA, respectively, whereas AC maximum (2.17 μg/mL) was obtained with 75 plus 100 µM JA and ABA, respectively. The FAP was affected for JA but not for ABA. JA increased cis-9, cis-12-octadecadienoic acid and decreased dodecanoic acid. Eight fatty acids were identified by GC-MS analysis and cis-9-octadecenoic acid (18:1) was the principal fatty acid reaching 76 % in treatment with 50 μM JA plus 55 μM ABA. In conclusion, JA may be used in T. peruviana callus culture for obtain oil with different fatty acids profile. PMID:26972464

  10. Lipoic Acid Exerts Antioxidant and Anti-inflammatory Effects in Response to Heat Shock in C2C12 Myotubes.

    PubMed

    Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung

    2016-06-01

    This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock. PMID:27086282

  11. Physicochemical characteristics, antioxidant activity, organic acid and sugar contents of 12 sweet cherry (Prunus avium L.) cultivars grown in Turkey.

    PubMed

    Hayaloglu, Ali Adnan; Demir, Nurullah

    2015-03-01

    Physical characteristics, antioxidant activity and chemical constituents of 12 cultivars (Prunus avium L.) of sweet cherry (Belge, Bing, Dalbasti, Durona di Cesena, Lambert, Merton Late, Starks Gold, Summit, Sweetheart, Van, Vista, and 0-900 Ziraat) were investigated. Significant differences (P < 0.05) were observed among tested cultivars for pH, total soluble solid, hardness, color parameters, antioxidant activities and pomological measurements (P < 0.05). The color parameters were important tools for the determination of fruit maturity and anthocyanin contents. Belge cultivar showed the highest levels of total phenolic and anthocyanin, while Starks Gold contained the lowest level of anthocyanins. The darker cultivars, measured by ABTS(+•) , DPPH(•) and FRAP, exhibited higher antioxidant activities than the lighter ones. Bing (42.78 g/kg) and Sweetheart (40.53 g/kg) cultivars contained higher levels of malic acid, which was the most intense organic acid in sweet cherries. Four different sugars were observed in the samples and their concentrations ordered as glucose > fructose > sucrose > xylose. Sugar alcohol in the cherries was represented by sorbitol (more than 90%) and its concentration varied between 13.93 and 27.12 g/kg. As a result significant differences were observed among the physical properties and chemical constituents of the cherry cultivars. PMID:25631389

  12. Increasing bioavailability of (R)-alpha-lipoic acid to boost antioxidant activity in the treatment of neuropathic pain.

    PubMed

    Maglione, Emilia; Marrese, Cinzia; Migliaro, Elisa; Marcuccio, Fortuna; Panico, Claudia; Salvati, Carmine; Citro, Giuseppe; Quercio, Marco; Roncagliolo, Federico; Torello, Carlo; Brufani, Mario

    2015-01-01

    a-lipoic acid (a-LA) is a potent natural antioxidant because it has a broad spectrum of action towards a great many free radical species and boosts the endogenous antioxidant systems.Although it is a multi-functional molecule, its pharmacokinetic characteristics pose restrictions to its use in the treatment of oxidative stress-dependent illnesses. Formulations that increase the bioavailability of a-LA have a better potential efficacy as adjuvants for the treatment of these conditions.This objective was achieved with a liquid formulation for oral use containing only R-aLA, the natural enantiomeric and most active form of a-lipoic acid.For the first time, the effects of this formulation were evaluated on neuropathic pain, a symptom caused by an increase in oxidative stress, regardless of the underlying cause. Neuropathic patients who have used this dietary supplement noticed an improvement in their quality of life and a significant reduction was observed in a number of certain descriptive pain parameters (intensity, burning, unpleasantness, superficial pain).Undoubtedly further, more in-depth, studies need to be conducted; however, this first investigation confirms the role of R-aLA as an anti-oxidant for the aetiological treatment of peripheral neuropathy. Increasing its plasma bioavailability even after a non-invasive administration through the oral route is a good starting point for proposing a valid adjuvant for the treatment of pain symptoms. PMID:26694149

  13. Antioxidant and antiproliferative activities of Desmodium triflorum (L.) DC.

    PubMed

    Lai, Shang-Chih; Ho, Yu-Ling; Huang, Shun-Chieh; Huang, Tai-Hung; Lai, Zhen-Rung; Wu, Chi-Rei; Lian, Kuo-Yuan; Chang, Yuan-Shiun

    2010-01-01

    This study evaluated the antioxidant and antiproliferative activities of the crude extract and fractions of Desmodium triflorum (L.) DC. The total phenolic content, 1,1-diphenyl-2- picrylhydrazyl hydrate (DPPH) free radical scavenging activity, trolox equivalent antioxidant capacity (TEAC), reducing power, total flavonoid content of D. triflorum were evaluated for the exploration of its antioxidant activities. Furthermore, its antiproliferative activities were investigated through the MTT method. It was compared with the antioxidant capacities of known antioxidants, including catechin, alpha-tocopherol, trolox and ascorbic acid. Among all fractions, ethyl acetate fraction was the most active in scavenging DPPH and TEAC radicals, of which 0.4 mg was equivalent to 186.6 +/- 2.5 microg and 82.5 +/- 2.1 microg of alpha-tocopherol and trolox respectively. The total phenolic and flavonoid contents of the crude extract were equivalent to 36.60 +/- 0.1 mg catechin and 45.6 +/- 0.6 mg rutin per gram respectively. In the reducing power assay, 1.25 mg of crude extract was similar to 61.2 +/- 0.3 microg of ascorbic acid. For the assessment of the safety and toxicity of D. triflorum, LD(50) of the crude extract was greater than 10 g/kg when administered to mice through gastric intubation. The above experimental data indicated that D. triflorum was a potent antioxidant medicinal plant, and such efficacy may be mainly attributed to its polyphenolic compounds. PMID:20387229

  14. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P < 0.05), indicating the positive effects of n-3 HUFAs on the growth of sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity. PMID:27079426

  15. The effects of the antioxidant lipoic acid on beef longissimus bloom time.

    PubMed

    Rentfrow, G; Linville, M L; Stahl, C A; Olson, K C; Berg, E P

    2004-10-01

    The objective of this study was to evaluate the influence of lipoic acid (LA) on beef LM steak bloom time, as well-as to characterize bloom time in the CIE L*, a*, and b* color space over a 93-min period. Thirty-two Simmental steers were supplemented with LA for 21 d immediately before slaughter at levels of 0, 8, 16, or 24 mg of LA/kg BW (eight steers per treatment). Lipoic acid was mixed with liquid paraffin, allowed to solidify, prilled, and top-dressed over a standard finishing diet. Steers were slaughtered at the University of Missouri abattoir in four groups of eight (two steers per treatment) over a 2-wk period. After a 24-h chill at 4 degrees C, the right LM was removed from each carcass. One 2.54cm steak was removed from the anterior portion of the LM, and its color characteristics (CIE L*, a*, and b*) were measured immediately with a standardized spectrocolorimeter. Color measurements were taken every 3 min thereafter for a total of 93-min. Hue angle (true red) and chroma (color saturation) were calculated from the color measurements. Addition of LA to the diet had no effect on bloom time (P = 0.67). When treatment means were analyzed, the addition of 24 mg of LA/kg BW to the diet resulted in higher (lighter) L* values (P < 0.05) compared with other treatments, whereas the addition of 16 mg of LA/kg BW to the diet caused lower hue angles (more true red; P < 0.05) when compared with other treatments. Addition of LA to the diet did not affect a* (P = 0.13) and b* (P = 0.18) values or chroma (P = 0.62). In the absence of treatment effects, bloom times for all treatments were pooled, and L* values did not change (P > 0.05) during the 93-min bloom time; however, a* and chroma values increased for 9 min and plateaued after 12 min (P < 0.01). Similarly, b* values increased (P < 0.01) for the first 6 min, and after 9 min, no further increase in yellowness was detected. Bloom time had little effect on hue angle, which stabilized after 3 min. Supplementing steers

  16. On the antioxidant properties of kynurenic acid: free radical scavenging activity and inhibition of oxidative stress.

    PubMed

    Lugo-Huitrón, R; Blanco-Ayala, T; Ugalde-Muñiz, P; Carrillo-Mora, P; Pedraza-Chaverrí, J; Silva-Adaya, D; Maldonado, P D; Torres, I; Pinzón, E; Ortiz-Islas, E; López, T; García, E; Pineda, B; Torres-Ramos, M; Santamaría, A; La Cruz, V Pérez-De

    2011-01-01

    Kynurenic acid (KYNA) is an endogenous metabolite of the kynurenine pathway for tryptophan degradation and an antagonist of both N-methyl-D-aspartate (NMDA) and alpha-7 nicotinic acetylcholine (α7nACh) receptors. KYNA has also been shown to scavenge hydroxyl radicals (OH) under controlled conditions of free radical production. In this work we evaluated the ability of KYNA to scavenge superoxide anion (O(2)(-)) and peroxynitrite (ONOO(-)). The scavenging ability of KYNA (expressed as IC(50) values) was as follows: OH=O(2)(-)>ONOO(-). In parallel, the antiperoxidative and scavenging capacities of KYNA (0-150 μM) were tested in cerebellum and forebrain homogenates exposed to 5 μM FeSO(4) and 2.5 mM 3-nitropropionic acid (3-NPA). Both FeSO(4) and 3-NPA increased lipid peroxidation (LP) and ROS formation in a significant manner in these preparations, whereas KYNA significantly reduced these markers. Reactive oxygen species (ROS) formation were determined in the presence of FeSO(4) and/or KYNA (0-100 μM), both at intra and extracellular levels. An increase in ROS formation was induced by FeSO(4) in forebrain and cerebellum in a time-dependent manner, and KYNA reduced this effect in a concentration-dependent manner. To further know whether the effect of KYNA on oxidative stress is independent of NMDA and nicotinic receptors, we also tested KYNA (0-100 μM) in a biological preparation free of these receptors - defolliculated Xenopus laevis oocytes - incubated with FeSO(4) for 1 h. A 3-fold increase in LP and a 2-fold increase in ROS formation were seen after exposure to FeSO(4), whereas KYNA attenuated these effects in a concentration-dependent manner. In addition, the in vivo formation of OH evoked by an acute infusion of FeSO(4) (100 μM) in the rat striatum was estimated by microdialysis and challenged by a topic infusion of KYNA (1 μM). FeSO(4) increased the striatal OH production, while KYNA mitigated this effect. Altogether, these data strongly suggest that KYNA

  17. Nitrate, ascorbic acid, mineral and antioxidant activities of Cosmos caudatus in response to organic and mineral-based fertilizer rates.

    PubMed

    Hassan, Siti Aishah; Mijin, Salumiah; Yusoff, Umi Kalsom; Ding, Phebe; Wahab, Puteri Edaroyati Megat

    2012-01-01

    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer. PMID:22743588

  18. Enzymatic synthesis, structural characterization and antioxidant capacity assessment of a new lipophilic malvidin-3-glucoside-oleic acid conjugate.

    PubMed

    Cruz, Luis; Fernandes, Iva; Guimarães, Marta; de Freitas, Victor; Mateus, Nuno

    2016-06-15

    The chemical modification of anthocyanins (water-soluble pigments) into more lipophilic compounds is very important to expand their application in the food, medical and cosmetic industries. In this work, the synthesis of a pure malvidin-3-glucoside-oleic acid ester derivative was achieved by enzymatic catalysis. This approach allowed us to synthesize a novel compound, malvidin-3-O-(6''-oleoyl)glucoside (Mv3glc-OA), which was structurally characterized by mass spectrometry and for the first time by NMR spectroscopy. The enzymatic reaction revealed to be regioselective giving only one ester product. Antioxidant features of the malvidin-3-glucoside lipophilic derivative by means of DPPH, FRAP and lipid peroxidation assays were assessed, which confirmed that the structural modification of the genuine malvidin-3-glucoside into a more lipophilic compound did not compromise its antioxidant potential and protected more effectively a lipidic substrate from oxidation, which is an important insight for future technological applications. PMID:27220831

  19. The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element.

    PubMed Central

    Haynes, S R; Toomey, T P; Leinwand, L; Jelinek, W R

    1981-01-01

    A consensus sequence has been determined for a major interspersed deoxyribonucleic acid repeat in the genome of Chinese hamster ovary cells (CHO cells). This sequence is extensively homologous to (i) the human Alu sequence (P. L. Deininger et al., J. Mol. Biol., in press), (ii) the mouse B1 interspersed repetitious sequence (Krayev et al., Nucleic Acids Res. 8:1201-1215, 1980) (iii) an interspersed repetitious sequence from African green monkey deoxyribonucleic acid (Dhruva et al., Proc. Natl. Acad. Sci. U.S.A. 77:4514-4518, 1980) and (iv) the CHO and mouse 4.5S ribonucleic acid (this report; F. Harada and N. Kato, Nucleic Acids Res. 8:1273-1285, 1980). Because the CHO consensus sequence shows significant homology to the human Alu sequence it is termed the CHO Alu-equivalent sequence. A conserved structure surrounding CHO Alu-equivalent family members can be recognized. It is similar to that surrounding the human Alu and the mouse B1 sequences, and is represented as follows: direct repeat-CHO-Alu-A-rich sequence-direct repeat. A composite interspersed repetitious sequence has been identified. Its structure is represented as follows: direct repeat-residue 47 to 107 of CHO-Alu-non-Alu repetitious sequence-A-rich sequence-direct repeat. Because the Alu flanking sequences resemble those that flank known transposable elements, we think it likely that the Alu sequence dispersed throughout the mammalian genome by transposition. Images PMID:9279371

  20. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes.

    PubMed

    Tang, Yao; Li, Xihong; Chen, Peter X; Zhang, Bing; Hernandez, Marta; Zhang, Hua; Marcone, Massimo F; Liu, Ronghua; Tsao, Rong

    2015-05-01

    Composition of fatty acids, tocopherols, tocotrienols, and carotenoids, and their contribution to antioxidant activities were investigated in seeds of three coloured quinoa cultivars (white, red and black). The major components and individual compounds were significantly different, and their concentrations were higher in darker seeds (p < 0.05). The oil yield was 6.58-7.17% which contained predominantly unsaturated fatty acids (89.42%). The ratio of omega-6/omega-3 fatty acid was ca. 6/1. The total tocopherol content ranged from 37.49 to 59.82 μg/g and mainly consisted of γ-tocopherol. Trace amount of α- and β-tocotrienols was also found. Black quinoa had the highest vitamin E followed by red and white quinoas. Carotenoids, mainly trans-lutein (84.7-85.6%) and zeaxanthin were confirmed for the first time in quinoa seeds, and the concentration was also the highest in black seeds. The antioxidant activities of lipophilic extracts were positively correlated with polyunsaturated fatty acids, total carotenoids and total tocopherols. PMID:25529712

  1. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice.

    PubMed

    Roidoung, Sunisa; Dolan, Kirk D; Siddiq, Muhammad

    2016-11-01

    The objective of this study was to evaluate different antioxidants for anthocyanin (ACY) retention in vitamin C fortified cranberry juice and assess its quality. Cranberry juice was fortified with 40-80mg/100mL vitamin C and added hesperidin, catechin, and gallic acid at different concentrations. Juice was pasteurized at 85°C for 1min and stored at 23°C for 16days. ACYs, vitamin C, color intensity, and browning index (BI) were evaluated at 2-day intervals. Gallic acid was found to be the most effective antioxidant against ACYs degradation and significantly (p<0.05) increased red color intensity by 37% and ACY concentration by 41%, compared to the control. After 16-day storage, the BI of gallic acid-added juice was significantly lower (0.80 vs 1.00) than the control juice. The outcome of this research provided a potential solution of using gallic acid to preserve a health-beneficial component (ACYs), and endogenous red color in cranberry juice. PMID:27211666

  2. Chlorogenic acid, an antioxidant principle from the aerial parts ofArtemisia iwayomogi that acts on 1,1-diphenyl-2-picrylhydrazyl radical.

    PubMed

    Kim, S S; Lee, C K; Kang, S S; Jung, H A; Choi, J S

    1997-04-01

    The antioxidant activity ofArtemisia iwayomogi was determined by measuring the radical scavenging effect on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical The methanol extract ofA. iwayomogi showed strong antioxidant activity, and thus fractionated with several solvents. The antioxidant activity potential of the individual fraction was in the order of ethyl acetate>n-butanol>water>chloroform>n-hexane fraction. The ethyl acetate andn-butanol soluble fractions exhibiting strong antioxidant activity were further purified by repeated silica gel and Sephadex LH-20 column chromatography. Antioxidant chlorogenic acid was isolated as one of the active principles from then-butanol fraction, together with the inactive components, 1-octacosanol, scopoletin, scopolin, apigenin 7,4'-di-O-methylether luteolin 6,3'-di-O-methylether (jaceosidin), apigenin 7-methylether (genkwanin), 2,4-dihydroxy-6-methoxyacetophenone 4-O-beta-D-glucopyranoside and quebrachitol. The antioxidant activity of chlorogenic acid was comparable to that of L-ascorbic acid, which is a well known antioxidant. PMID:18975193

  3. Effects of dietary tannic acid on the growth, hepatic gene expression, and antioxidant enzyme activity in Brandt's voles (Microtus brandti).

    PubMed

    Ye, Man-Hong; Nan, Yan-Lei; Ding, Meng-Meng; Hu, Jun-Bang; Liu, Qian; Wei, Wan-Hong; Yang, Sheng-Mei

    2016-01-01

    This study was designed to investigate the physiological and biochemical responses of Brandt's voles to the persistent presence of dietary tannic acid. The diet for animals in the experimental group was supplemented with 3% dietary tannic acid for 5weeks. The control group received a commercial lab chow. No significant differences were detected in body weight, organ (heart, kidney, and liver) weights, and organ parameters between animals from two groups. However, voles in the experimental group had significantly higher daily food intake, increased contents of proline and histidine in saliva and feces after protein hydrolysis, and elevated hepatic expression of transferrin than the control. Our results suggested the existence of adaptive strategies developed in Brandt's voles to overcome the adverse effects of dietary tannic acid. (1) Food consumption was increased to satisfy their nutritional demands. (2) The secretion of tannic-acid-binding salivary proteins was promoted. (3) The absorption of iron was enhanced. These alterations contributed to neutralize the negative effects of tannic acid and maintain body mass in animals supplemented with tannic acid. As the result of the consumption of tannic acid, hepatic expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase was significantly decreased, while the overall potential of the antioxidant system, characterized by increased hepatic enzymatic activities of catalase and glutathione peroxidase, was enhanced. Our results also implied the involvement of tannic acid in the regulation of lipid metabolism and oxidative stress in voles. PMID:26850644

  4. Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities.

    PubMed

    Hung, Pham Van; Hatcher, David W; Barker, Wendy

    2011-06-15

    The phenolic acid profiles of flours from two Canadian wheat classes, Canadian Western Red Spring (CWRS) and Canadian Western Amber Durum (CWAD), were investigated using two different extraction mediums and analysed on an ultra-performance liquid chromatography (UPLC) system at different degrees of sprout damage. A sound (non-sprouted) control sample as well as two different sprouted sub-samples, derived from different germination protocols of the control, were prepared for both the CWAD and CWRS. Free phenolic acids were extracted from the ground whole wheat meal using three repetitive 80% ethanol extractions. Bound phenolic compounds were subsequently released from the residue by alkaline hydrolysis followed by triplicate extraction with diethyl ether:ethyl acetate (1:1, v/v). Twelve phenolic acid standards were clearly resolved and quantified using a short 5min elution gradient. Seven phenolic acids (4-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, ferulic and sinapic) were detected in the CWRS and CWAD alcoholic and alkaline extracts. Syringic acid was the main compound in the free phenolic alcoholic extracts of the wheat meal representing 77.0% and 75.3% of the total amount of detected free phenolic compounds for CWRS and CWAD, respectively. However, the major released phenolic compound detected in the alkaline hydrolysed extracts was ferulic acid accounting for 72.3% and 71.0% for CWRS and CWAD respectively total bound phenolics. During germination, syringic acid levels rose as the length of germination time increased, resulting in the increase in total phenolic compound and antioxidant activity of the sprouted wheat flours. There was an increase in total phenolic compounds and the antioxidant activity of the alcoholic extracts from the CWRS and CWAD wheat flours as the germination time was extended. As a result, the sprouted wheats exhibits better nutritional properties than un-germinated wheat and could be used to improve the nutrition value in

  5. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel.

    PubMed

    Lin, Jau-Tien; Liu, Shih-Chun; Hu, Chao-Chin; Shyu, Yung-Shin; Hsu, Chia-Ying; Yang, Deng-Jye

    2016-01-01

    Roasting treatment increased levels of unsaturated fatty acids (linoleic, oleic and elaidic acids) as well as saturated fatty acids (palmitic and stearic acids) in almond (Prunus dulcis) kernel oils with temperature (150 or 180 °C) and duration (5, 10 or 20 min). Nonetheless, higher temperature (200 °C) and longer duration (10 or 20 min) roasting might result in breakdown of fatty acids especially for unsaturated fatty acids. Phenolic components (total phenols, flavonoids, condensed tannins and phenolic acids) of almond kernels substantially lost in the initial phase; afterward these components gradually increased with roasting temperature and duration. Similar results also observed for their antioxidant activities (scavenging DPPH and ABTS(+) radicals and ferric reducing power). The changes of phenolic acid and flavonoid compositions were also determined by HPLC. Maillard reaction products (estimated with non-enzymatic browning index) also increased with roasting temperature and duration; they might also contribute to enhancing the antioxidant attributes. PMID:26213005

  6. Overcoming the equivalent-chain-length rule with pH-zone-refining countercurrent chromatography for the preparative separation of fatty acids.

    PubMed

    Englert, Michael; Vetter, Walter

    2015-07-01

    Purification of individual fatty acids from vegetable oils by preparative liquid chromatography techniques such as countercurrent chromatography (CCC) is a challenging task due to the equivalent-chain-length (ECL) rule. It implies that one double bond equals two carbon atoms in the alkyl chain of a fatty acid and therefore causes co-elutions of saturated and unsaturated fatty acids. Accordingly, existing methods for the purification of individual fatty acids are cumbersome and time-consuming as two or more steps with different conditions are required. To avoid additional purification steps, we report a method utilizing pH-zone-refining CCC which enabled the purification of all major fatty acids from sunflower oil (purities >95 %) in one step by circumventing co-elutions caused by the ECL rule. This method is based on the involvement of acid strength and hydrophobicity of fatty acids during the separation process. By exploiting the preparative character of the pH-zone-refining mode, a tenfold sample amount of free fatty acids from sunflower oil could be separated in comparison to regular CCC. PMID:25943261

  7. Isolation and biological evaluation of novel Tetracosahexaene hexamethyl, an acyclic triterpenoids derivatives and antioxidant from Justicia adhatoda.

    PubMed

    Dhankhar, Sandeep; Dhankhar, Seema; Ruhil, Sonam; Balhara, Meenakshi; Malik, Vinay; Chhillar, Anil K

    2014-01-01

    Forty five extracts fraction of nine selected Indian medicinal plants, based on their use in traditional systems of medicine were analyzed for their antioxidant potential. All the extracts were investigated for phenol content value calculated in Gallic acid equivalents (% of GAE) and antioxidant potential. Moreover, total phenolic content (% dw equivalents to gallic acid) of all plant extracts were found in the range of 3.04 to 24.03, which correlated with antioxidant activity. The findings indicated a promising antioxidant activity of crude extracts fractions of three plants (Justicia adhatoda, Capparis aphylla and Aegle marmelos) and required the further exploration for their effective utilization. Results indicated that petroleum ether fraction of J. adhatoda out of three plants also possesses the admirable antioxidant abilities with high total phenolic content. Following, in vitro antioxidant activity-guided phytochemical separation procedures, twelve fractions of petroleum ether extract of J. adhatoda were isolated by silica gel column chromatography. One fraction (Rf value: 0.725) showed the noticeable antioxidant activity with ascorbic acid standard in hydroxyl radical scavenging assays. The molecular structures elucidations of purified antioxidant compound were carried out using spectroscopic studies ((1)H NMR, (13)C NMR and MS). This compound was reported from this species for the first time. The results imply that the J. adhatoda might be a potential source of natural antioxidants and 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl is an antioxidant ingredient in J. adhatoda. PMID:25001112

  8. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment.

    PubMed

    Escriche, Isabel; Kadar, Melinda; Juan-Borrás, Marisol; Domenech, Eva

    2014-01-01

    Total antioxidant activity, physicochemical parameters, and the profile of flavonoids and phenolic acid compounds were evaluated for: their ability to distinguish between the botanical origins of four types of Spanish honey, the impact of industrial thermal treatment, and the effect of the year of collection. Citrus honey had the lowest levels of all the analysed variables, then rosemary and polyfloral, and honeydew the highest ones. Botanical origin affects the profile of flavonoids and phenolic compounds sufficiently to permit discrimination thanks to the predominance of particular compounds such as: hesperetin (in citrus honey); kaempferol, chrysin, pinocembrin, caffeic acid and naringenin (in rosemary honey) and myricetin, quercetin, galangin and particularly p-coumaric acid (in honeydew honey). The impact of industrial thermal treatments is lower than the expected variability as a consequence of the year of collection, though neither factor has enough influence to alter these constituent compounds to the point of affecting the discrimination of honey by botanical origin. PMID:24001823

  9. Correlation Between C-reactive Protein and Non-enzymatic Antioxidants (Albumin, Ferritin, Uric Acid and Bilirubin) in Hemodialysis Patients

    PubMed Central

    Beciragic, Amela; Resic, Halima; Prohic, Nejra; Karamehic, Jasenko; Smajlovic, Ajdin; Masnic, Fahrudin; Ajanovic, Selma; Coric, Aida

    2015-01-01

    Introduction: Increased levels of C-Reactive Protein are found in 30-60% on hemodialysis patients and it is closely associated with the progression of atherosclerosis, cardiovascular morbidity and mortality. Non enzymatic antioxidants are antioxidants which primarily retain potentially dangerous ions of iron and copper in their inactive form and thereby prevent its participation in the production of free radicals. Aim: The aim of the study was to examine the relationship of CRP and non enzymatic antioxidants (albumin, ferritin, uric acid and bilirubin) i.e. examine the importance of CRP as a serum biomarker in assessing the condition of inflammation and its relationship to antioxidant protection in patients on hemodialysis. Methods: The study was cross-sectional, clinical, comparative and descriptive. The study involved 100 patients (non diabetic) on chronic hemodialysis. The control group consisted of 50 subjects without subjective and objective indicators of chronic renal disease. In all patients, the concentration of CRP as well as concentrations of non enzymatic antioxidants were determined. Results: In the group of hemodialysis patients 60% were men and 40% women. The average age of hemodialysis patients was 54.13 ± 11.8 years and the average age of the control group 41.72 ± 9.8 years. The average duration of hemodialysis treatment was 91.42 ± 76.2 months. In the group of hemodialysis patients statistically significant, negative linear correlation was determined between the concentration of CRP in and albumin concentration (rho = -0.251, p = 0.012) as well as negative, statistics insignificant, linear correlation between serum CRP and the concentration of uric acid (r = -0.077, p = 0.448). Furthermore, the positive, linear correlation was determined between serum CRP and ferritin (r = 0.159, p = 0.114) and positive linear correlation between CRP and total serum bilirubin (r = 0.121, p = 0.230). In the control group was determined a statistically significant

  10. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    PubMed Central

    Sodhi, Komal; Hilgefort, Jordan; Banks, George; Gilliam, Chelsea; Stevens, Sarah; Ansinelli, Hayden A.; Getty, Morghan; Abraham, Nader G.; Shapiro, Joseph I.

    2016-01-01

    Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels. PMID:26681956

  11. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity.

    PubMed

    Sodhi, Komal; Hilgefort, Jordan; Banks, George; Gilliam, Chelsea; Stevens, Sarah; Ansinelli, Hayden A; Getty, Morghan; Abraham, Nader G; Shapiro, Joseph I; Khitan, Zeid

    2016-01-01

    Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels. PMID:26681956

  12. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannins and phenolic acids from Punica granatum L.

    PubMed

    Reddy, Muntha K; Gupta, Sashi K; Jacob, Melissa R; Khan, Shabana I; Ferreira, Daneel

    2007-05-01

    The Punica granatum L. (pomegranate) by-product POMx was partitioned between water, EtOAc and n-BuOH, and the EtOAc and n-BuOH extracts were purified by XAD-16 and Sephadex LH-20 column chromatography to afford ellagic acid (1), gallagic acid (2), punicalins (3), and punicalagins (4). Compounds 1 - 4 and the mixture of tannin fractions (XAD-16 eluates) were evaluated for antioxidant, antiplasmodial, and antimicrobial activities in cell-based assays. The mixture of tannins (TPT), XAD-EtOAc, XAD-H2O, XAD-PJ and XAD-BuOH, exhibited IC50 values against reactive oxygen species (ROS) generation at 0.8 - 19 microg/mL. Compounds 1 - 4 showed IC50 values of 1.1, 3.2, 2.3 and 1.4 microM, respectively, against ROS generation and no toxicity up to 31.25 microg/mL against HL-60 cells. Gallagic acid (2) and punicalagins (4) exhibited antiplasmodial activity against Plasmodium falciparum D6 and W2 clones with IC50 values of 10.9, 10.6, 7.5 and 8.8 microM, respectively. Fractions XAD-EtOAc, XAD-BuOH, XAD-H2O and XAD-PJ compounds 1 - 4 revealed antimicrobial activity when assayed against Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Cryptococcus neoformans, methicillin-resistant Staphylococcus aureus (MRSA), Aspergillus fumigatus and Mycobacterium intracellulare. Compounds 2 and 4 showed activity against P. aeruginosa, C. neoformans, and MRSA. This is the first report on the antioxidant, antiplasmodial and antimicrobial activities of POMx isolates, including structure-activity relationships (SAR) of the free radical inhibition activity of compounds 1 - 4. Our results suggest a beneficial effect from the daily intake of POMx and pomegranate juice (PJ) as dietary supplements to augment the human immune system's antioxidant, antimalarial and antimicrobial capacities. PMID:17566148

  13. The Influence of Manganese and Glutamine Intake on Antioxidants and Neurotransmitter Amino Acids Levels in Rats' Brain.

    PubMed

    Szpetnar, Maria; Luchowska-Kocot, Dorota; Boguszewska-Czubara, Anna; Kurzepa, Jacek

    2016-08-01

    Depending on the concentration, Mn can exert protective or toxic effect. Potential mechanism for manganese neurotoxicity is manganese-induced oxidative stress. Glutamine supplementation could reduce manganese-induced neurotoxicity and is able to influence the neurotransmission processes. The aim of this study was to investigate whether the long term administration of manganese (alone or in combination with glutamine) in dose and time dependent manner could affect the selected parameters of oxidative-antioxidative status (superoxide dismutase and glutathione peroxidase activities, concentrations of vitamin C and malonic dialdehyde) and concentrations of excitatory (Asp, Glu) and inhibitory amino acids (GABA, Gly) in the brain of rats. The experiments were carried out on 2-months-old albino male rats randomly divided into 6 group: Mn300 and Mn500-received solution of MnCl2 to drink (dose 300 and 500 mg/L, respectively), Gln group-solution of glutamine (4 g/L), Mn300-Gln and Mn500-Gln groups-solution of Mn at 300 and 500 mg/L and Gln at 4 g/L dose. The control group (C) received deionized water. Half of the animals were euthanized after three and the other half-after 6 weeks of experiment. The exposure of rats to Mn in drinking water contributes to diminishing of the antioxidant enzymes activity and the increase in level of lipid peroxidation. Glutamine in the diet admittedly increases SOD and GPx activity, but it is unable to restore the intracellular redox balance. The most significant differences in the examined amino acids levels in comparison to both control and Gln group were observed in the group of rats receiving Mn at 500 mg/L dose alone or with Gln. It seems that Gln is amino acid which could improve antioxidant status and affect the concentrations of the neurotransmitters. PMID:27161372

  14. Influence of technological processes on phenolic compounds, organic acids, furanic derivatives, and antioxidant activity of whole-lemon powder.

    PubMed

    García-Salas, Patricia; Gómez-Caravaca, Ana María; Arráez-Román, David; Segura-Carretero, Antonio; Guerra-Hernández, Eduardo; García-Villanova, Belén; Fernández-Gutiérrez, Alberto

    2013-11-15

    The healthy properties of citrus fruits have been attributed to ascorbic acid and phenolic compounds, mainly to flavonoids. Flavonoids are important phytonutrients because they have a wide range of biological effects that provide health-related properties. In this context, this study seeks to characterise the phenolic compounds in lemon and their stability in different drying processes (freeze-drying and vacuum-drying) and storage conditions (-18 and 50°C for 1 and 3months). A powerful high-performance liquid chromatography coupled to DAD and electrospray-ionization time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) method has been applied for the separation, identification, and quantification of 19 phenolic compounds and 4 organic acids. To our knowledge, two hydroxycinnamic acids have been identified for the first time in lemon. Folin-Ciocalteu was applied to determine total phenolic compounds and TEAC, FRAP, and ORAC were applied to determine the antioxidant capacity of lemon. Total phenolic content significantly differed in the samples analysed, vacuum-dried lemon showing the highest phenolic content, followed by freeze-dried lemon and, finally, vacuum-dried lemon stored at 50°C for 1 and 3months. The content in furanic compounds was determined to evaluate the heat damage in lemon and it was showed an increase with the thermal treatment because of the triggering of Maillard reaction. As exception of ORAC, antioxidant-capacity assays were not correlated to phenolic content by HPLC due to the formation of antioxidant compounds during Maillard reaction. PMID:23790861

  15. Preharvest application of oxalic acid increased fruit size, bioactive compounds, and antioxidant capacity in sweet cherry cultivars (Prunus avium L.).

    PubMed

    Martínez-Esplá, Alejandra; Zapata, Pedro Javier; Valero, Daniel; García-Viguera, Cristina; Castillo, Salvador; Serrano, María

    2014-04-16

    Trees of 'Sweet Heart' and 'Sweet Late' sweet cherry cultivars (Prunus avium L.) were treated with oxalic acid (OA) at 0.5, 1.0, and 2.0 mM at 98, 112, and 126 days after full blossom. Results showed that all treatments increased fruit size at harvest, manifested by higher fruit volume and weight in cherries from treated trees than from controls, the higher effect being found with 2.0 mM OA (18 and 30% higher weight for 'Sweet Heart' and 'Sweet Late', respectively). Other quality parameters, such as color and firmness, were also increased by OA treatments, although no significant differences were found in total soluble solids or total acidity, showing that OA treatments did not affect the on-tree ripening process of sweet cherry. However, the increases in total anthocyanins, total phenolics, and antioxidant activity associated with the ripening process were higher in treated than in control cherries, leading to fruit with high bioactive compounds and antioxidant potential at commercial harvest (≅45% more anthocyanins and ≅20% more total phenolics). In addition, individual anthocyanins, flavonols, and chlorogenic acid derivatives were also increased by OA treatment. Thus, OA preharvest treatments could be an efficient and natural way to increase the quality and functional properties of sweet cherries. PMID:24684635

  16. The effect of dietary Digestarom® herbal supplementation on rabbit meat fatty acid profile, lipid oxidation and antioxidant content.

    PubMed

    Mattioli, S; Dal Bosco, A; Szendrő, Zs; Cullere, M; Gerencsér, Zs; Matics, Zs; Castellini, C; Dalle Zotte, A

    2016-11-01

    The experiment tested the effect of Digestarom® herbal supplementation on the antioxidant content, lipid oxidation and fatty acid profile of rabbit meat. At kindling, rabbit does and litters were divided into two dietary groups (N=162 kits/dietary group) and fed either a control diet (C) or the C diet supplemented with Digestarom® (D: 300mg/kg). At weaning (35days) four experimental fattening groups (54 rabbits each) were considered: CC, CD, DC and DD. After slaughtering (12weeks of age), Longissimus thoracis et lumborum muscles were dissected from 20 rabbits/group and analyzed. Rabbit meat of DD group was enriched in essential C18:3 n-3 fatty acid and in other long-chain PUFA of n-3 series. Despite meat of DD group displayed the highest peroxidability index, TBARs value was the lowest. Meat antioxidant content followed the rank order: DD>CD>DC>CC. Digestarom® improved fatty acid composition and oxidative status of rabbit meat, particularly when administered from weaning throughout the growing period. PMID:27351068

  17. Evaluation of chemical constituents and antioxidant activity of coconut water (Cocus nucifera L.) and caffeic acid in cell culture.

    PubMed

    Santos, João L A; Bispo, Vanderson S; Filho, Adriano B C; Pinto, Isabella F D; Dantas, Lucas S; Vasconcelos, Daiane F; Abreu, Fabíula F; Melo, Danilo A; Matos, Isaac A; Freitas, Florêncio P; Gomes, Osmar F; Medeiros, Marisa H G; Matos, Humberto R

    2013-01-01

    Coconut water contains several uncharacterized substances and is widely used in the human consumption. In this paper we detected and quantified ascorbic acid and caffeic acid and total phenolics in several varieties of coconut using HPLS/MS/MS (25.8 ± 0.6 µg/mL and 1.078 ± 0.013 µg/mL and 99.7 µg/mL, respectively, in the green dwarf coconut water, or 10 mg and 539 µg and 39.8 mg for units of coconut consumed, 500 ± 50 mL). The antioxidant potential of four coconut varieties (green dwarf, yellow dwarf, red dwarf and yellow Malaysian) was compared with two industrialized coconut waters and the lyophilized water of the green dwarf variety. All varieties were effective in scavenging the DPPH radical (IC₅₀=73 µL) and oxide nitric (0.1 mL with an IP of 29.9%) as well as in inhibiting the in vitro production of thiobarbituric acid reactive substances (1 mL with an IP of 34.4%), highlighting the antioxidant properties of the green dwarf which it is the most common used. In cell culture, the green dwarf water was efficient in protecting against oxidative damages induced by hydrogen peroxide. PMID:24141413

  18. How the multiple antioxidant properties of ascorbic acid affect lipid oxidation in oil-in-water emulsions.

    PubMed

    Uluata, Sibel; McClements, D Julian; Decker, Eric A

    2015-02-18

    Lipid oxidation is a serious problem for oil-containing food products because it negatively affects shelf life and nutritional composition. An antioxidant strategy commonly employed to prevent or delay oxidation in foods is to remove oxygen from the closed food-packaging system. An alternative technique is use of an edible oxygen scavenger to remove oxygen within the food. Ascorbic acid (AA) is a particularly promising antioxidant because of its natural label and multiple antioxidative functions. In this study, AA was tested as an oxygen scavenger in buffer and an oil-in-water (O/W) emulsion. The effects of transition metals on the ability of AA to scavenge oxygen were determined. Headspace oxygen decrease less than 1% in the medium-chain triacylglycerol (MCT) O/W emulsion system (pH 3 and 7). AA was able to almost completely remove dissolved oxygen (DO) in a buffered solution. Transition metals (Fe(2+) and Cu(+)) significantly accelerated the degradation of AA; however, iron and copper only increased DO depletion rates, by 10.6-16.4% from day 1 to 7, compared to the control. AA (2.5-20 mM) decreased DO in a 1% O/W emulsion system 32.0-64.0% and delayed the formation of headspace hexanal in the emulsion from 7 to over 20 days. This research shows that, when AA is used in an O/W emulsion system, oxidation of the emulsion system can be delay by multiple mechanisms. PMID:25650525

  19. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid.

    PubMed

    Aytac, Zeynep; Kusku, Semran Ipek; Durgun, Engin; Uyar, Tamer

    2016-06-01

    Cyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and (1)H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers. PMID:27040215

  20. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart

    PubMed Central

    Ku, Hui-Chun; Lee, Shih-Yi; Yang, Kai-Chien; Kuo, Yueh-Hsiung; Su, Ming-Jai

    2016-01-01

    Overproduction of free radicals during ischemia/reperfusion (I/R) injury leads to an interest in using antioxidant therapy. Activating an endogenous antioxidant signaling pathway is more important due to the fact that the free radical scavenging behavior in vitro does not always correlate with a cytoprotection effect in vivo. Caffeic acid (CA), an antioxidant, is a major phenolic constituent in nature. Pyrrolidinyl caffeamide (PLCA), a derivative of CA, was compared with CA for their antioxidant and cytoprotective effects. Our results indicate that CA and PLCA exert the same ability to scavenge DPPH in vitro. In response to myocardial I/R stress, PLCA was shown to attenuate lipid peroxydation and troponin release more than CA. These responses were accompanied with a prominent elevation in AKT and HO-1 expression and a preservation of mnSOD expression and catalase activity. PLCA also improved cell viability and alleviated the intracellular ROS level more than CA in cardiomyocytes exposed to H2O2. When inhibiting the AKT or HO-1 pathways, PLCA lost its ability to recover mnSOD expression and catalase activity to counteract with oxidative stress, suggesting AKT/HO-1 pathway activation by PLCA plays an important role. In addition, inhibition of AKT signaling further abolished HO-1 activity, while inhibition of HO-1 signaling attenuated AKT expression, indicating cross-talk between the AKT and HO-1 pathways. These protective effects may contribute to the cardiac function improvement by PLCA. These findings provide new insight into therapeutic approaches using a modified natural compound against oxidative stress from myocardial injuries. PMID:26845693

  1. Stress relaxant and antioxidant activities of acid glycoside from Spondias mangifera fruit against physically and chemically challenged albino mice

    PubMed Central

    Arif, Muhammad; Fareed, Sheeba; Rahman, Md. Azizur

    2016-01-01

    Aim: Stress relaxant and antioxidant activities of ethanolic extract of fruit Spondias mangifera (EEFSM) and its isolated compound (Sm-01) were evaluated. The structure of Sm-01 was also elucidated. Materials and Methods: EEFSM at two different doses of 100 and 200 mg/kg (bw)/day and Sm-01 at dose of 10 mg/kg (bw)/day were screened for in vivo stress relaxant activity using anoxia stress tolerance, swimming endurance and cyclophosphamide-induced immune suppression model and in vitro antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) model. The levels of Hb, red blood cell (RBC) and white blood cell (WBC) along with organ and body weights suppressed by cyclophosphamide were estimated. The structure of Sm-01 was elucidated by spectroscopy (ultraviolet, infrared, 1H-nuclear magnetic resonance [NMR],13 C-NMR and mass spectrometry) and chemical analyses. Results: Sm-01 was structurally elucidated as propan-1,2-dioic acid-3-carboxyl-β-D-glucopyranosyl-(6’→1”)-β-D-glucofuranoside. It was found that EEFSM and Sm-01 significantly increased the anoxia stress tolerance, swimming endurance and duration of stay on rotarod and normalized the levels of Hb, RBC, and WBC along with altered organ and body weights suppressed by cyclophosphamide. EEFSM and Sm-01 also exhibited significant antioxidant activity against DPPH free radical at the concentrations of 0.05, 0.5, and 1.0 mg/mL with obtained IC50 of 0.32 and 0.15 mg/mL, respectively. Conclusions: These findings demonstrated that extract and Sm-01 both possess significant stress relaxant and antioxidant activities favoring its use as adaptogens. The activities of the extract may be due to the Sm-01. PMID:26957871

  2. Modification of Caffeic Acid with Pyrrolidine Enhances Antioxidant Ability by Activating AKT/HO-1 Pathway in Heart.

    PubMed

    Ku, Hui-Chun; Lee, Shih-Yi; Yang, Kai-Chien; Kuo, Yueh-Hsiung; Su, Ming-Jai

    2016-01-01

    Overproduction of free radicals during ischemia/reperfusion (I/R) injury leads to an interest in using antioxidant therapy. Activating an endogenous antioxidant signaling pathway is more important due to the fact that the free radical scavenging behavior in vitro does not always correlate with a cytoprotection effect in vivo. Caffeic acid (CA), an antioxidant, is a major phenolic constituent in nature. Pyrrolidinyl caffeamide (PLCA), a derivative of CA, was compared with CA for their antioxidant and cytoprotective effects. Our results indicate that CA and PLCA exert the same ability to scavenge DPPH in vitro. In response to myocardial I/R stress, PLCA was shown to attenuate lipid peroxydation and troponin release more than CA. These responses were accompanied with a prominent elevation in AKT and HO-1 expression and a preservation of mnSOD expression and catalase activity. PLCA also improved cell viability and alleviated the intracellular ROS level more than CA in cardiomyocytes exposed to H2O2. When inhibiting the AKT or HO-1 pathways, PLCA lost its ability to recover mnSOD expression and catalase activity to counteract with oxidative stress, suggesting AKT/HO-1 pathway activation by PLCA plays an important role. In addition, inhibition of AKT signaling further abolished HO-1 activity, while inhibition of HO-1 signaling attenuated AKT expression, indicating cross-talk between the AKT and HO-1 pathways. These protective effects may contribute to the cardiac function improvement by PLCA. These findings provide new insight into therapeutic approaches using a modified natural compound against oxidative stress from myocardial injuries. PMID:26845693

  3. Antioxidant Activity of Syringic Acid Prevents Oxidative Stress in l-arginine–Induced Acute Pancreatitis: An Experimental Study on Rats

    PubMed Central

    Cikman, Oztekin; Soylemez, Omer; Ozkan, Omer Faruk; Kiraz, Hasan Ali; Sayar, Ilyas; Ademoglu, Serkan; Taysi, Seyithan; Karaayvaz, Muammer

    2015-01-01

    The aim of this study was to investigate the possible protective role of antioxidant treatment with syringic acid (SA) on l-arginine–induced acute pancreatitis (AP) using biochemical and histopathologic approaches. A total of 30 rats were divided into 3 groups. The control group received normal saline intraperitoneally. The AP group was induced by 3.2 g/kg body weight l-arginine intraperitoneally, administered twice with an interval of 1 hour between administrations. The AP plus SA group, after having AP induced by 3.2 g/kg body weight l-arginine, was given SA (50 mg kg−1) in 2 parts within 24 hours. The rats were killed, and pancreatic tissue was removed and used in biochemical and histopathologic examinations. Compared with the control group, the mean pancreatic tissue total oxidant status level, oxidative stress index, and lipid hydroperoxide levels were significantly increased in the AP group, being 30.97 ± 7.13 (P < 0.05), 1.76 ± 0.34 (P < 0.0001), and 19.18 ± 4.91 (P < 0.01), respectively. However, mean total antioxidant status and sulfhydryl group levels were significantly decreased in the AP group compared with the control group, being 1.765 ± 0.21 (P < 0.0001) and 0.21 ± 0.04 (P < 0.0001), respectively. SA reduces oxidative stress markers and has antioxidant effects. It also augments antioxidant capacity in l-arginine–induced acute toxicity of pancreas in rats. PMID:26011211

  4. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2013-01-01

    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions. PMID:23322066

  5. [Combined effects of copper and simulated acid rain on copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa].

    PubMed

    He, Shan-Ying; Gao, Yong-Jie; Shentu, Jia-Li; Chen, Kun-Bai

    2011-02-01

    A pot experiment was conducted to study the combined effects of Cu (0-1500 mg x kg(-1)) and simulated acid rain (pH 2.5-5.6) on the copper accumulation, growth, and antioxidant enzyme activities of Rumex acetosa. With the increasing concentration of soil Cu, the Cu accumulation in R. acetosa increased, being higher in root than in stem and leaf. The exposure to low pH acid rain promoted the Cu uptake by R. acetosa. With the increase of soil Cu concentration and/or of acid rain acidity, the biomass of R. acetosa decreased, leaf and root MDA contents increased and had good correlation with soil Cu concentration, and the SOD and POD activities in leaf and root displayed a decreasing trend after an initial increase. This study showed that R. acetosa had a strong adaptive ability to Cu and acid rain stress, exhibiting a high application potential in the remediation of Cu-contaminated soil in acid rain areas. PMID:21608265

  6. Delivery of Polyunsaturated Fatty Acids from a Glycerol Polyester Matrix with Anti-oxidant Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Awareness of the health benefits associated with the polyunsaturated acids such as alpha linolenic (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), has generated interest in formulating foods and dietary supplements with these compounds. However, the highly unsaturated structure o...

  7. Antioxidant capacity and stability of liposomes containing a triglyceride derivative of lipoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multi-functional nutritional agent lipoic acid offers numerous beneficial effects to oxidatively stressed tissues. Lipoic acid was enzymatically incorporated into a triglyceride in conjunction with oleic acid, creating lipoyl dioleoylglycerol, and then chemically reduced to form dihydrolipoyl d...

  8. Curcuminoids and ω-3 fatty acids with anti-oxidants potentiate cytotoxicity of natural killer cells against pancreatic ductal adenocarcinoma cells and inhibit interferon γ production

    PubMed Central

    Halder, Ramesh C.; Almasi, Anasheh; Sagong, Bien; Leung, Jessica; Jewett, Anahid; Fiala, Milan

    2015-01-01

    Pancreatic cancer has a poor prognosis attributed in part to immune suppression and deactivation of natural killer (NK) cells. Curcuminoids have a potential for improving the therapy of pancreatic cancer given promising results in cancer models and a clinical trial, but their oral absorption is limited. Our objective in this study is to show curcuminoid anti-oncogenic effects alone and together with human NK cells. We tested curcuminoids in an emulsion of ω-3 fatty acids and anti-oxidants (“Smartfish”) regarding their direct cytocidal effect and enhancement of the cytocidal activity of NK cells in pancreatic ductal adenocarcinoma (PDAC) cells (Mia Paca 2 and L3.6). Curcuminoids (at ≥10 μM) with ω-3 fatty acids and anti-oxidants or with the lipidic mediator resolvin D1 (RvD1) (26 nM) induced high caspase-3 activity in PDAC cells. Importantly, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 significantly potentiated NK cell cytocidal function and protected them against degradation. In a co-culture of cancer cells with NK cells, interferon-γ (IFN-γ) production by NK cells was not altered by ω-3 fatty acids with anti-oxidants or by RvD1 but was inhibited by curcuminoids. The inhibition was not eliminated by ω-3 fatty acids or RvD1 but was relieved by removing curcuminoids after adding NK cells. In conclusion, curcuminoids with ω-3 fatty acids and anti-oxidants or with RvD1 have increased cytotoxic activity on PDAC cells alone and with NK cells. The effects of curcuminoids with ω-3 fatty acids and anti-oxidants on pancreatic cancer will be investigated in a mouse model with humanized immune system. PMID:26052286

  9. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect. PMID:23988864

  10. Folic acid supplemented goat milk has beneficial effects on hepatic physiology, haematological status and antioxidant defence during chronic Fe repletion.

    PubMed

    Alférez, María J M; Rivas, Emilio; Díaz-Castro, Javier; Hijano, Silvia; Nestares, Teresa; Moreno, Miguel; Campos, Margarita S; Serrano-Reina, Jose A; López-Aliaga, Inmaculada

    2015-02-01

    The aim of the current study was to asses the effect of goat or cow milk-based diets, either normal or Fe-overloaded and folic acid supplement on some aspects of hepatic physiology, enzymatic antioxidant defence and lipid peroxidation in liver, brain and erythrocyte of control and anaemic rats after chronic Fe repletion. 160 male Wistar rats were placed on 40 d in two groups, a control group receiving normal-Fe diet and the Fe-deficient group receiving low Fe diet. Lately, the rats were fed with goat and cow milk-based diets during 30 d, with normal-Fe content or Fe-overload and either with normal folic or folic acid supplemented. Fe-overload increased plasma alanine transaminase and aspartate transaminase levels when cow milk was supplied. Dietary folate supplementation reduced plasma transaminases levels in animals fed goat milk with chronic Fe overload. A remarkable increase in the superoxide dismutase activity was observed in the animals fed cow milk. Dietary folate supplement lead to a decrease on the activity of this enzyme in all the tissues studied with both milk-based diets. A concomitant increment in catalase was also observed. The increase in lipid peroxidation products levels in rats fed cow milk with Fe-overload, suggest an imbalance in the functioning of the enzymatic antioxidant defence. In conclusion, dietary folate-supplemented goat milk reduces both plasma transaminases levels, suggesting a hepatoprotective effect and has beneficial effects in situation of Fe-overload, improving the antioxidant enzymes activities and reducing lipid peroxidation. PMID:25394837

  11. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents.

    PubMed

    Fang, Lei; Chen, Mohao; Liu, Zhikun; Fang, Xubin; Gou, Shaohua; Chen, Li

    2016-02-15

    In order to search for novel multifunctional anti-Alzheimer agents, a series of ferulic acid-carbazole hybrid compounds were designed and synthesized. Ellman's assay revealed that the hybrid compounds showed moderate to potent inhibitory activity against the cholinesterases. Particularly, the AChE inhibition potency of compound 5k (IC50 1.9μM) was even 5-fold higher than that of galantamine. In addition, the target compounds showed pronounced antioxidant ability and neuroprotective property, especially against the ROS-induced toxicity. Notably, the neuroprotective effect of 5k was obviously superior to that of the mixture of ferulic acid and carbazole, indicating the therapeutic effect of the hybrid compound is better than the combination administration of the corresponding mixture. PMID:26795115

  12. Delivery of vanillin by poly(lactic-acid) nanoparticles: Development, characterization and in vitro evaluation of antioxidant activity.

    PubMed

    Dalmolin, Luciana Facco; Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2016-05-01

    Poly(lactic acid) (PLA) nanoparticles containing vanillin were prepared using an emulsion-solvent evaporation technique and were characterized and assessed for their in vitro antioxidant potential. Physicochemical properties of the nanoparticles were characterized by size, polydispersity index, zeta potential, encapsulation efficiency and stability. Solid state and thermal properties were assessed using X-ray diffraction and differential scanning calorimetry, while in vitro drug release profile was also evaluated. Results showed PLA nanoparticles having a characteristic amorphous structure, sizes in the range of 240 nm with high homogeneity in size distribution, zeta potential of -22 mV and vanillin encapsulation efficiency of 41%. In vitro release study showed a slow and sustained release of vanillin governed by diffusion. Nanoparticles were stable over a period of three months. Antioxidant ability of the vanillin-loaded PLA nanoparticles in scavenging the radical 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inferior to free vanillin and due to its prolonged release showed a profile that was both time and concentration dependent, while free vanillin showed concentration-dependent activity. The study concluded that PLA nanoparticles are potential carriers for vanillin delivery. PMID:26952391

  13. Identification, stress tolerance, and antioxidant activity of lactic acid bacteria isolated from tropically grown fruits and leaves.

    PubMed

    Fessard, Amandine; Bourdon, Emmanuel; Payet, Bertrand; Remize, Fabienne

    2016-07-01

    From 6 samples of tropically grown fruits and leaves, 10 lactic acid bacteria belonging Leuconostoc, Weissella, and Lactobacillus species were isolated and identified by 16S rRNA gene sequencing and (GTG)5 fingerprinting. Acidification kinetics determined from BHI broth cultures showed genus-related patterns. In particular, Weissella cibaria appeared to act as a potent acidifier. Tolerance of isolates to acid, oxidative, or salt stress was highly variable and strain dependent. Isolate S14 (Leuconostoc pseudomesenteroides) growth was not affected by the presence of 0.05% H2O2, while Lactobacillus spp. isolates (S17 and S29) were the most tolerant to pH 4.5. The growth of 4 isolates, S5 (Leuconostoc mesenteroides), S14 and S10 (Leuconostoc pseudomesenteroides), and S27 (W. cibaria), was not affected by 5% NaCl. Nutritional beneficial properties were examined through measurement of antioxidant activities of short-term fermented pineapple juice, such as LDL oxidation and polyphenol content, and through exopolysaccharide formation from sucrose. Two isolates, S14 and S27, increased the antioxidant capacity of pineapple juice. The robust capacity of W. cibaria and of Leuconostoc pseudomesenteroides for vegetable lactic fermentation aimed to ameliorate food nutritional and functional quality was highlighted. PMID:27197991

  14. Arsenic accumulation and tolerance in rootless macrophyte Najas indica are mediated through antioxidants, amino acids and phytochelatins.

    PubMed

    Tripathi, Rudra Deo; Singh, Ragini; Tripathi, Preeti; Dwivedi, Sanjay; Chauhan, Reshu; Adhikari, Bijan; Trivedi, Prabodh Kumar

    2014-12-01

    Arsenic (As) accumulation and tolerance response of a submerged rootless macrophyte Najas indica were evaluated during arsenate (As(V); 10-250 μM) and arsenite (As(III); 1-50 μM) exposure. Higher As accumulation at As(III) exposure and more tolerance upon As(V) exposure resulted in more toxicity during As(III) stress than As(V), which was evident through measurement of growth parameters and oxidative stress related parameters viz., lipid peroxidation (MDA content), electrical conductivity (EC) and hydrogen peroxide (H2O2) levels. Antioxidant enzymes and various amino acids were more prominent during moderate exposure of As(V), suggesting their possible role in As tolerance and detoxification. Various non-enzymatic antioxidant metabolites viz., ascorbic acid (ASC), glutathione (GSH), non-protein thiols (NPTs) and phytochelatins (PCs) biosynthesis involving phytochelatin synthase (PCS) activity increased more significantly during As(III) stress. However, PCs content seems inadequate in response to As accumulation leading to lower PC-SH:As molar ratio and higher As phytotoxicity during As(III) stress. N. indica may prove useful plant species for phytoremediation purpose in moderately As contaminated water bodies due to high As accumulation and tolerance potential. PMID:25456221

  15. A metabolomic approach to dry eye disorders. The role of oral supplements with antioxidants and omega 3 fatty acids

    PubMed Central

    Galbis-Estrada, Carmen; Martínez-Castillo, Sebastián; Morales, José M.; Monleón, Daniel; Zanon-Moreno, Vicente

    2015-01-01

    Purpose We used nuclear magnetic resonance spectroscopy of hydrogen-1 nuclei (1H NMR S) to analyze the metabolic profile of reflex tears from patients with dry eye disorders. Methods We performed a prospective case-control study involving 90 participants: 55 patients diagnosed with dry eye syndrome (DESG) and 35 healthy subjects (control group, CG). From the DESG, two subgroups were formed: mild DES (n=22) and moderate DES (n=33). Participants were prescribed an oral nutraceutic supplementation containing antioxidants and essential polyunsaturated fatty acids to be taken as three capsules per day for 3 months. Reflex tears (20–30 µl) were collected from the tear meniscus of both eyes of each subject with a microglass pipette. Nuclear magnetic resonance (NMR) spectra were acquired with a standard one-dimensional pulse sequence with water suppression; 256 free induction decays were collected into 64,000 data points with 14 ppm spectral width. Results Basal tears showed a differential metabolomic profile between groups. Almost 50 metabolites were identified by H cholesterol, N-acetylglucosamine, glutamate, amino-n-butyrate, choline, glucose, and formate were detected before supplementation and choline/acetylcholine after supplementation. The metabolic profile of the tears was statistically different between groups, as well as before and after supplementation. Conclusions Our data indicate that DES induces changes in the tear metabolic profile that can be modified with appropriate oral supplementation with antioxidants and essential polyunsaturated fatty acids. PMID:25999682

  16. Intracerebroventricular administration of N-acetylaspartic acid impairs antioxidant defenses and promotes protein oxidation in cerebral cortex of rats.

    PubMed

    Pederzolli, Carolina Didonet; Rockenbach, Francieli Juliana; Zanin, Fernanda Rech; Henn, Nicoli Taiana; Romagna, Eline Coan; Sgaravatti, Angela M; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; de Mattos Dutra, Angela; Dutra-Filho, Carlos S

    2009-06-01

    N-acetylaspartic acid (NAA) is the biochemical hallmark of Canavan Disease, an inherited metabolic disease caused by deficiency of aspartoacylase activity. NAA is an immediate precursor for the enzyme-mediated biosynthesis of N-acetylaspartylglutamic acid (NAAG), whose concentration is also increased in urine and cerebrospinal fluid of patients affected by CD. This neurodegenerative disorder is clinically characterized by severe mental retardation, hypotonia and macrocephaly, and generalized tonic and clonic type seizures. Considering that the mechanisms of brain damage in this disease remain not fully understood, in the present study we investigated whether intracerebroventricular administration of NAA or NAAG elicits oxidative stress in cerebral cortex of 30-day-old rats. NAA significantly reduced total radical-trapping antioxidant potential, catalase and glucose 6-phosphate dehydrogenase activities, whereas protein carbonyl content and superoxide dismutase activity were significantly enhanced. Lipid peroxidation indices and glutathione peroxidase activity were not affected by NAA. In contrast, NAAG did not alter any of the oxidative stress parameters tested. Our results indicate that intracerebroventricular administration of NAA impairs antioxidant defenses and induces oxidative damage to proteins, which could be involved in the neurotoxicity of NAA accumulation in CD patients. PMID:19294497

  17. Peppermint antioxidants revisited.

    PubMed

    Riachi, Liza G; De Maria, Carlos A B

    2015-06-01

    This review discusses the relationship between the chemical composition and antioxidant property of peppermint tisane and essential oil. Phenolic acids (e.g. rosmarinic and caffeic acids), flavones (e.g. luteolin derivatives) and flavanones (e.g. eriocitrin derivatives) are possibly the major infusion antioxidants. Vitamin antioxidants (e.g. ascorbic acid and carotenoids) are minor contributors to the overall antioxidant potential. Unsaturated terpenes having a cyclohexadiene structure (e.g. terpinene) and minor cyclic oxygenated terpenes (e.g. thymol), may contribute to antioxidant potential whilst acyclic unsaturated oxygenated monoterpenes (e.g. linalool) may act as pro-oxidants in essential oil. Findings on the antioxidant potential of major cyclic oxygenated terpenes (menthol and menthone) are conflicting. Antioxidant behaviour of aqueous/organic solvent extracts and essential oil as well as the effect of environmental stresses on essential oil and phenolic composition are briefly discussed. PMID:25624208

  18. PULMONARY ANTIOXIDANTS

    EPA Science Inventory

    One of the most vital of the cellular defenses against pollution is an 'antioxidant armanentarium' which consists of oxidant scavenging molecules such as vitamin E, glutathione, vitamin C, and uric acid as well as a number of enzymes (superoxide dismutase, semidehydroascorbate re...

  19. Alpha-Lipoic Acid and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes: A Pilot Trial

    PubMed Central

    Scaramuzza, Andrea; Giani, Elisa; Redaelli, Francesca; Ungheri, Saverio; Macedoni, Maddalena; Giudici, Valentina; Bosetti, Alessandra; Ferrari, Matteo; Zuccotti, Gian Vincenzo

    2015-01-01

    After evaluating the prevalence of early endothelial dysfunction, as measured by means of reactive hyperemia in adolescents with type 1 diabetes, we started a 6-month, double-blind, randomized trial to test the efficacy of an antioxidant diet (± alpha-lipoic acid supplementation) to improve endothelial dysfunction. Seventy-one children and adolescents, ages 17 ± 3.9 yrs, with type 1 diabetes since 9.5 ± 5.3 yrs, using intensified insulin therapy, were randomized into 3 arms: (a) antioxidant diet 10.000 ORAC + alpha-lipoic acid; (b) antioxidant diet 10.000 ORAC + placebo; (c) controls. BMI, blood pressure, fasting lipid profile, HbA1c, insulin requirement, dietary habits, and body composition were determined in each patient. An antioxidant diet significantly improved endothelial dysfunction when supplemented with alpha-lipoic acid, unlike diet with placebo or controls. A significant reduction in bolus insulin was also observed. We speculate that alpha-lipoic acid might have an antioxidant effect in pediatric diabetes patients by reducing insulin. PMID:26171398

  20. Antioxidant activity of whey protein hydrolysates in milk beverage system.

    PubMed

    Mann, Bimlesh; Kumari, Anuradha; Kumar, Rajesh; Sharma, Rajan; Prajapati, Kishore; Mahboob, Shaik; Athira, S

    2015-06-01

    The aim of the present study was to evaluate the antioxidant activity of flavoured milk enriched with antioxidative whey protein hydrolysates (WPHs) by radical scavenging method. Whey protein concentrate (WPC) was hydrolyzed by using three commercial proteases; flavouzyme, alcalase and corolase PP and these WPHs were analyzed for degree of hydrolysis and antioxidant activity. The antioxidant activities of these WPHs were evaluated using ABTS method. Trolox equivalent antioxidant activity of all the hydrolysates i.e. flavourzyme (0.81 ± 0.04), alcalase (1.16 ± 0.05) and corolase (1.42 ± 0.12) was higher than the WPC (0.19 ± 0.01). Among these, whey protein hydrolysates prepared using corolase showed maximum antioxidant activity. Total 15 β-lactoglobulin, 1 α-lactoalbumin, and 6 β-casein derived peptide fragments were identified in the WPHs by LC-MS/MS. Due to their size and characteristic amino acid composition, all the identified peptides may contribute for the antioxidant activity. The strawberry and chocolate flavoured milk was supplemented with WPC and WPHs and 2 % addition has shown increase in antioxidant activity upto 42 %. The result suggests that WPH could be used as natural biofunctional ingredients in enhancing antioxidant properties of food products. PMID:26028704

  1. Alpha lipoic acid possess dual antioxidant and lipid lowering properties in atherosclerotic-induced New Zealand White rabbit.

    PubMed

    Zulkhairi, A; Zaiton, Z; Jamaluddin, M; Sharida, F; Mohd, T H B; Hasnah, B; Nazmi, H M; Khairul, O; Zanariyah, A

    2008-12-01

    There is accumulating data demonstrated hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group K, AT and ALA (n=6). While group K was fed with normal chow and acted as a control, the rest fed with 100 g/head/day with 1% high cholesterol diet to induce hypercholesterolemia. 4.2 mg/body weight of alpha lipoic acid was supplemented daily to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning of the study, week 5 and week 10 and plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. Animals were sacrificed at the end of the study and the aortas were excised for intimal lesion analysis. The results showed a significant reduction of lipid peroxidation index indicated with low MDA level (p<0.05) in ALA group compared to that of the AT group. The blood total cholesterol (TCHOL) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the AT group (p<0.05). Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to that of AT group. These findings suggested that apart from its antioxidant activity, alpha lipoic acid may also posses a lipid lowering effect indicated with low plasma TCHOL and LDL levels and reduced the athero-lesion formation in rabbits fed a high cholesterol diet. PMID:18538528

  2. Comparison of natural antioxidants and their effects on omega-3 fatty acid oxidation in fish oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA), such as the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been found to offer a variety of health benefits including cardiovascular protection, anti-inflammatory effect and human development. It is known that fish and algae o...

  3. Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution

    NASA Astrophysics Data System (ADS)

    Kissi, M.; Bouklah, M.; Hammouti, B.; Benkaddour, M.

    2006-04-01

    This paper describes the use of the electrochemical impedance spectroscopy technique (EIS) in order to study the corrosion inhibition process of steel in 0.5 M H 2SO 4 solution at the open circuit potential (OCP). Diethyl pyrazine-2,3-dicarboxylate (Prz) as a non-ionic surfactant (NS) inhibitor has been examined. The Nyquist diagrams consisted of a capacitive semicircle at high frequencies followed by a well-defined inductive loop at low frequency values. The impedance measurements were interpreted according to suitable equivalent circuits. The results obtained showed that the Prz is a good inhibitor. The inhibition efficiency increases with an increase in the surfactant concentration to attain 80% at the 5 × 10 -3M. Prz is adsorbed on the steel surface according to a Langmuir isotherm adsorption model.

  4. Phenolic compounds and antioxidant capacities of 10 common edible flowers from China.

    PubMed

    Xiong, Lina; Yang, Jiajia; Jiang, Yirong; Lu, Baiyi; Hu, Yinzhou; Zhou, Fei; Mao, Shuqin; Shen, Canxi

    2014-04-01

    The free and bound phenolic compounds in 10 common Chinese edible flowers were investigated using reversed phase high-performance liquid chromatography. Their antioxidant capacities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical-scavenging activity, oxygen radical absorption capacity (ORAC), ferric reducing antioxidant power (FRAP), and cellular antioxidant activity (CAA). Free factions were more prominent in phenolic content and antioxidant capacity than bound fractions. Paeonia suffruticosa and Flos lonicerae showed the highest total phenolic content (TPC) 235.5 mg chlorogenic acid equivalents/g of dry weight and total flavonoid content 89.38 mg rutin equivalents/g of dry weight. The major phenolic compounds identified were gallic acid, chlorogenic acid, and rutin. P. suffruticosa had the highest antioxidant capacity in the DPPH, ABTS, and ORAC assays, which were 1028, 2065, 990 μmol Trolox equivalents/g of dry weight, respectively, whereas Rosa chinensis had the highest FRAP value (2645 μmol Fe(2+) equivalents /g of dry weight). The P. suffruticosa soluble phenolics had the highest CAA, with the median effective dose (EC50 ) 26.7 and 153 μmol quercetin equivalents/100 g of dry weight in the phosphate buffered saline (PBS) and no PBS wash protocol, respectively. TPC was strongly correlated with antioxidant capacity (R = 0.8443 to 0.9978, P < 0.01), which indicated that phenolics were the major contributors to the antioxidant activity of the selected edible flowers. PMID:24621197

  5. Amoxicillin/clavulanic acid is ineffective at preventing otitis media in children with presumed viral upper respiratory infection: a randomized, double-blind equivalence, placebo-controlled trial

    PubMed Central

    Autret-Leca, Elisabeth; Giraudeau, Bruno; Ployet, Marie Joseph; Jonville-Béra, Annie-Pierre

    2002-01-01

    Aims To assess the equivalence of amoxicillin/clavulanic acid and placebo in the prevention of acute otitis media in children at high risk of acute otitis media who develop upper respiratory tract infection. Methods This was a multicentre, equivalence, randomized, double-blind trial of two parallel groups comparing 5 days of amoxicillin/clavulanic acid 75 mg kg−1 day−1 (i.e. 25 mg kg−1 every 8 h) and placebo. The main outcome measure was acute otitis media occurring within 8–12 days of initiating treatment. Results Two hundred and three infants, aged 3 months−3 years with upper respiratory tract infection over 36 h and a history of recurrent acute otitis media were included over 8.5 months. Two children were lost to follow-up. Patient characteristics were similar in both groups. In the intention to treat analysis the frequency of acute otitis media was 16.2% (16/99) in the placebo group and 9.6% (10/104) in the amoxicillin/clavulanic acid group (P= 0.288). The difference between acute otitis media rates was 6.6% (one-sided 95% confidence interval of 14.3%). The occurrence of side-effects was similar in the amoxicillin/clavulanic acid and placebo groups. Conclusions The difference in effectiveness between antibiotic and placebo was not greater than 14.3%, and we calculated that 94 children would need to be exposed to antibiotics to avoid six cases of acute otitis media. In view of the risk of development of resistance due to frequent exposure to antibiotics, our study supports the need for reduction in the administration of antibiotics in upper respiratory tract infection even in children at high risk of acute otitis media. PMID:12492614

  6. Impairment of ascorbic acid's anti-oxidant properties in confined media: inter and intramolecular reactions with air and vanadate at acidic pH.

    PubMed

    Crans, Debbie C; Baruah, Bharat; Gaidamauskas, Ernestas; Lemons, Brant G; Lorenz, Bret B; Johnson, Michael D

    2008-01-01

    The anti-oxidant properties of L-ascorbic acid were investigated in the confined medium produced by a sodium bis(2-ethylhexyl)sulfosuccinate (aerosol-OT, AOT) self-assembled reverse micelle. Using 1H-1H NOESY (proton-proton 2D nuclear overhauser enhancement correlation spectroscopy) NMR spectroscopy, the location of ascorbic acid was investigated and found to be at the AOT-interface in contrast to earlier studies where the ascorbate was assumed to be in the water pool in these microemulsions. The reaction of ascorbic acid with oxygen was investigated using EPR spectroscopy. A delocalized monoanionic ascorbate radical was observed in microemulsions prepared from pH 5.6 stock solutions. This is in contrast to studies carried out in aqueous media where no radical formation was observed. The oxidation of ascorbic acid by aqueous V(V) was investigated in reverse micelles. Modest changes in the kinetic parameters were observed for this system compared to that in water. Details of these reactions were examined and can be summarized as the microemulsion solvating and stabilizing reactive intermediates via rate inhibition or enhancement. The inhibition of the oxidation is due to solvation stabilization of ascorbic acid in microemulsion media. Since ascorbate is a valuable marker of oxidative stress, our results suggest that compartmentization can modify the stabilization of the ascorbate radical and the changes in properties could be important in biological systems. PMID:18331759

  7. Comparative polyphenolic content and antioxidant activities of Genista tinctoria L. and Genistella sagittalis (L.) Gams (Fabaceae).

    PubMed

    Hanganu, Daniela; Olah, Neli Kinga; Benedec, Daniela; Mocan, Andrei; Crisan, Gianina; Vlase, Laurian; Popica, Iulia; Oniga, Ilioara

    2016-01-01

    The aim of this study was focused on the polyphenolic composition and antioxidant capacity of Genista tinctoria L. and Genistella sagittalis (L.) Gams. A qualitative and quantitative characterization of the main phenolic compounds from the extracts were carried out using a HPLC-MS method. The total polyphenolic and flavonoid content was spectrophotometrically determined. The antioxidant activity towards various radicals generated in different systems was evaluated usingDPPH bleaching method, Trolox equivalent antioxidant capacity assay (TEAC) and Oxygen radical absorbance capacity (ORAC), and all indicated that G. tinctoria extract was more antioxidant than G. sagittalis extract.That was in good agreement with the total polyphenolic and flavonoidic content.Chlorogenic acid, p-coumaric acid, isoquercitrin and apigenin were identified in bothspecies. Caffeic acid, ferulic acid, hyperoside, rutin, quercitrin and luteolin were found only in G. tinctoria, while quercetin was determined in G. sagittalis. PMID:27005507

  8. HPLC-Analysis of Polyphenolic Compounds in Gardenia jasminoides and Determination of Antioxidant Activity by Using Free Radical Scavenging Assays

    PubMed Central

    Uddin, Riaz; Saha, Moni Rani; Subhan, Nusrat; Hossain, Hemayet; Jahan, Ismet Ara; Akter, Raushanara; Alam, Ashraful

    2014-01-01

    Purpose: Gardenia jasminoides is a traditional medicinal plant rich in anti-inflammatory flavonoids and phenolic compounds and used for the treatment of inflammatory diseases and pain. In this present study, antioxidant potential of Gardenia jasminoides leaves extract was evaluated by using various antioxidant assays. Methods: Various antioxidant assays such as 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, reducing power and total antioxidant capacity expressed as equivalent to ascorbic acid were employed. Moreover, phenolic compounds were detected by high-performance liquid chromatography (HPLC) coupled with diode-array detection. Results: The methanol extract showed significant free radical scavenging activities in DPPH radical scavenging antioxidant assays compared to the reference antioxidant ascorbic acid. Total antioxidant activity was increased in a dose dependent manner. The extract also showed strong reducing power. The total phenolic content was determined as 190.97 mg/g of gallic acid equivalent. HPLC coupled with diode-array detection was used to identify and quantify the phenolic compounds in the extracts. Gallic acid, (+)-catechin, rutin hydrate and quercetin have been identified in the plant extracts. Among the phenolic compounds, catechin and rutin hydrate are present predominantly in the extract. The accuracy and precision of the presented method were corroborated by low intra- and inter-day variations in quantitative results in leaves extract. Conclusion: These results suggest that phenolic compounds and flavonoids might contribute to high antioxidant activities of Gardenia jasminoides leaves. PMID:24754012

  9. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef.

    PubMed

    Daley, Cynthia A; Abbott, Amber; Doyle, Patrick S; Nader, Glenn A; Larson, Stephanie

    2010-01-01

    Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the perceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA) composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA) (C18:2) isomers, trans vaccenic acid (TVA) (C18:1 t11), a precursor to CLA, and omega-3 (n-3) FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feeding regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0), and less cholesterol-elevating SFAs such as myristic (C14:0) and palmitic (C16:0) FAs. Several studies suggest that grass-based diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT) and superoxide dismutase (SOD) activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef. In addition, the fat from grass-finished beef may have a yellowish appearance from the elevated carotenoid content (precursor to Vitamin A). It is also noted that grain-fed beef consumers may achieve similar intakes of both n-3 and CLA through the consumption of higher fat grain-fed portions. PMID:20219103

  10. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef

    PubMed Central

    2010-01-01

    Growing consumer interest in grass-fed beef products has raised a number of questions with regard to the perceived differences in nutritional quality between grass-fed and grain-fed cattle. Research spanning three decades suggests that grass-based diets can significantly improve the fatty acid (FA) composition and antioxidant content of beef, albeit with variable impacts on overall palatability. Grass-based diets have been shown to enhance total conjugated linoleic acid (CLA) (C18:2) isomers, trans vaccenic acid (TVA) (C18:1 t11), a precursor to CLA, and omega-3 (n-3) FAs on a g/g fat basis. While the overall concentration of total SFAs is not different between feeding regimens, grass-finished beef tends toward a higher proportion of cholesterol neutral stearic FA (C18:0), and less cholesterol-elevating SFAs such as myristic (C14:0) and palmitic (C16:0) FAs. Several studies suggest that grass-based diets elevate precursors for Vitamin A and E, as well as cancer fighting antioxidants such as glutathione (GT) and superoxide dismutase (SOD) activity as compared to grain-fed contemporaries. Fat conscious consumers will also prefer the overall lower fat content of a grass-fed beef product. However, consumers should be aware that the differences in FA content will also give grass-fed beef a distinct grass flavor and unique cooking qualities that should be considered when making the transition from grain-fed beef. In addition, the fat from grass-finished beef may have a yellowish appearance from the elevated carotenoid content (precursor to Vitamin A). It is also noted that grain-fed beef consumers may achieve similar intakes of both n-3 and CLA through the consumption of higher fat grain-fed portions. PMID:20219103

  11. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing*

    PubMed Central

    Huang, Wu-yang; Zhang, Hong-cheng; Liu, Wen-xu; Li, Chun-yang

    2012-01-01

    Berries are a good source of natural antioxidants. In the present study, the total antioxidant capacity and phenolic composition of three berry fruits (blueberry, blackberry, and strawberry) cultivated in Nanjing were investigated. Blueberry, with a Trolox equivalent antioxidant capacity (TEAC) value of 14.98 mmol Trolox/100 g dry weight (DW), exhibited the strongest total antioxidant capacity using both the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Blueberry also had the highest total phenolic content (TPC, 9.44 mg gallic acid/g DW), total flavonoid content (TFC, 36.08 mg rutin/g DW), and total anthocyanidin content (TAC, 24.38 mg catechin/g DW). A preliminary analysis using high performance liquid chromatography (HPLC) showed that the blueberry, blackberry, and strawberry samples tested contained a range of phenolic acids (including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, ellagic acid, and cinnamic acid) and various types of flavonoids (flavone: luteolin; flavonols: rutin, myricetin, quercetrin, and quercetin; flavanols: gallocatechin, epigallocatechin, catechin, and catechin gallate; anthocyanidins: malvidin-3-galactoside, malvidin-3-glucoside, and cyanidin). In particular, the blueberries had high levels of proanthocyanidins and anthocyanidins, which might be responsible for their strong antioxidant activities. These results indicate a potential market role for berries (especially blueberries) as a functional food ingredient or nutraceutical. PMID:22302422

  12. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing.

    PubMed

    Huang, Wu-yang; Zhang, Hong-cheng; Liu, Wen-xu; Li, Chun-yang

    2012-02-01

    Berries are a good source of natural antioxidants. In the present study, the total antioxidant capacity and phenolic composition of three berry fruits (blueberry, blackberry, and strawberry) cultivated in Nanjing were investigated. Blueberry, with a Trolox equivalent antioxidant capacity (TEAC) value of 14.98 mmol Trolox/100 g dry weight (DW), exhibited the strongest total antioxidant capacity using both the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Blueberry also had the highest total phenolic content (TPC, 9.44 mg gallic acid/g DW), total flavonoid content (TFC, 36.08 mg rutin/g DW), and total anthocyanidin content (TAC, 24.38 mg catechin/g DW). A preliminary analysis using high performance liquid chromatography (HPLC) showed that the blueberry, blackberry, and strawberry samples tested contained a range of phenolic acids (including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, ellagic acid, and cinnamic acid) and various types of flavonoids (flavone: luteolin; flavonols: rutin, myricetin, quercetrin, and quercetin; flavanols: gallocatechin, epigallocatechin, catechin, and catechin gallate; anthocyanidins: malvidin-3-galactoside, malvidin-3-glucoside, and cyanidin). In particular, the blueberries had high levels of proanthocyanidins and anthocyanidins, which might be responsible for their strong antioxidant activities. These results indicate a potential market role for berries (especially blueberries) as a functional food ingredient or nutraceutical. PMID:22302422

  13. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac)

    PubMed Central

    Sharpe, Erica; Frasco, Thalia; Andreescu, Daniel; Andreescu, Silvana

    2012-01-01

    With increased awareness of nutrition and the advocacy for healthier food choices, there exists a great demand for a simple, easy-to-use test that can reliably measure the antioxidant capacity of dietary products. We report development and characterization of a portable nanoparticle based-assay, similar to a small sensor patch, for rapid and sensitive detection of food antioxidants. The assay is based on the use of immobilized ceria nanoparticles, which change color after interaction with antioxidants by means of redox and surface chemistry reactions. Monitoring corresponding optical changes enables sensitive detection of antioxidants in which the nanoceria provides an optical ‘signature’ of antioxidant power, while the antioxidants act as reducing agents. The sensor has been tested for the detection of common antioxidant compounds including ascorbic acid, gallic acid, vanilic acid, quercetin, caffeic acid, and epigallocatechin gallate and its function has been successfully applied for the assessment of antioxidant activity in real samples (teas and medicinal mushrooms). The colorimetric response was concentration dependent, with detection limits ranging from 20–400 μM depending on the antioxidant involved. Steady-state color intensity was achieved within seconds upon addition of antioxidants. The results are presented in terms of Gallic Acid Equivalents (GAE). The sensor performed favorably when compared with commonly used antioxidant detection methods. This assay is particularly appealing for remote sensing applications, where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Potential applications for antioxidant detection in remote locations are envisioned. PMID:23139929

  14. Protective effect of ellagic acid against TCDD-induced renal oxidative stress: modulation of CYP1A1 activity and antioxidant defense mechanisms.

    PubMed

    Vijaya Padma, Viswanadha; Kalai Selvi, Palaniswamy; Sravani, Samadi

    2014-07-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) belongs to toxicologically important class of poly halogenated aromatic hydrocarbons and produce wide variety of adverse effects in humans. The present study investigated the protective effect of ellagic acid, a natural polyphenolic compound against TCDD-induced nephrotoxicity in Wistar rats. TCDD-induced nephrotoxicity was reflected in marked changes in the histology of kidney, increase in levels of kidney markers (serum urea, serum creatinine) and lipid peroxides. A significant increase in activity of phase I enzyme CYP1A1 with concomitant decline in the activities of phase II enzymes [non-enzymic antioxidant and various enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase] was also observed. In addition, TCDD treated rats showed alterations in ATPase enzyme activities such as Na(+) K(+)-ATPase, Mg(2+) ATPase and Ca(2+) ATPase. Oral pre-treatment with ellagic acid prevented TCDD-induced alterations in levels of kidney markers. Ellagic acid pre-treatment significantly counteracted TCDD-induced oxidative stress by decreasing CYP1A1 activity and enhancing the antioxidant status. Furthermore, ellagic acid restored TCDD-induced histopathological changes and alterations in ATPase enzyme activities. The results of the present study show that significant protective effect rendered by ellagic acid against TCDD-induced nephrotoxicity might be attributed to its antioxidant potential. PMID:24566691

  15. Purslane Weed (Portulaca oleracea): A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Antioxidant Attributes

    PubMed Central

    Uddin, Md. Kamal; Juraimi, Abdul Shukor; Hossain, Md Sabir; Nahar, Most. Altaf Un; Ali, Md. Eaqub; Rahman, M. M.

    2014-01-01

    Purslane (Portulaca oleracea L.) is an important plant naturally found as a weed in field crops and lawns. Purslane is widely distributed around the globe and is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region. This plant possesses mucilaginous substances which are of medicinal importance. It is a rich source of potassium (494 mg/100 g) followed by magnesium (68 mg/100 g) and calcium (65 mg/100 g) and possesses the potential to be used as vegetable source of omega-3 fatty acid. It is very good source of alpha-linolenic acid (ALA) and gamma-linolenic acid (LNA, 18 : 3 w3) (4 mg/g fresh weight) of any green leafy vegetable. It contained the highest amount (22.2 mg and 130 mg per 100 g of fresh and dry weight, resp.) of alpha-tocopherol and ascorbic acid (26.6 mg and 506 mg per 100 g of fresh and dry weight, resp.). The oxalate content of purslane leaves was reported as 671–869 mg/100 g fresh weight. The antioxidant content and nutritional value of purslane are important for human consumption. It revealed tremendous nutritional potential and has indicated the potential use of this herb for the future. PMID:24683365

  16. Prospective Associations between Plasma Saturated, Monounsaturated and Polyunsaturated Fatty Acids and Overall and Breast Cancer Risk – Modulation by Antioxidants: A Nested Case-Control Study

    PubMed Central

    Pouchieu, Camille; Chajès, Véronique; Laporte, François; Kesse-Guyot, Emmanuelle; Galan, Pilar; Hercberg, Serge; Latino-Martel, Paule; Touvier, Mathilde

    2014-01-01

    Background Mechanistic data suggest that different types of fatty acids play a role in carcinogenesis and that antioxidants may modulate this relationship but epidemiologic evidence is lacking. Our aim was to investigate the association between plasma saturated, monounsaturated and polyunsaturated fatty acids (SFAs, MUFAs and PUFAs) and overall and breast cancer risk and to evaluate the potential modulatory effect of an antioxidant supplementation on these relationships. Methods A nested case-control study included all first incident cancer cases diagnosed in the SU.VI.MAX study between 1994 and 2002 (n = 250 cases, one matched control/case). Participants to the SU.VI.MAX randomized controlled trial received either vitamin/mineral antioxidants or placebo during this intervention period. Baseline fatty acid composition of plasma total lipids was measured by gas chromatography. Conditional logistic regression was performed overall and stratified by intervention group. Results Dihomo-γ-linolenic acid (Ptrend = 0.002), the dihomo-γ-linolenic/linoleic acids ratio (Ptrend = 0.001), mead acid (Ptrend = 0.0004), and palmitoleic acid (Ptrend = 0.02) were inversely associated with overall cancer risk. The arachidonic/dihomo-γ-linolenic acids ratio (Ptrend = 0.02) and linoleic acid (Ptrend = 0.02) were directly associated with overall cancer risk. Similar results were observed for breast cancer specifically. In stratified analyses, associations were only observed in the placebo group. Notably, total PUFAs were directly associated with overall (Ptrend = 0.02) and breast cancer risk in the placebo group only. Conclusion Specific SFAs, MUFAs and PUFAs were prospectively differentially associated with cancer risk. In addition, this study suggests that antioxidants may modulate these associations by counteracting the potential effects of these fatty acids on carcinogenesis. PMID:24587366

  17. Antioxidant property and [Formula: see text]-glucosidase, [Formula: see text]-amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes.

    PubMed

    Alakolanga, A G A W; Kumar, N Savitri; Jayasinghe, Lalith; Fujimoto, Yoshinori

    2015-12-01

    Flacourtia inermis Roxb. (Flacourtiaceae), is a moderate sized tree cultivated in Sri Lanka for its fruits known as Lovi. The current study was undertaken to study the biological activity of extracts of the fruits in an attempt to increase the value of the under exploited fruit crops. Fruits of F. inermis were found to be rich in phenolics and anthocyanins. Polyphenol content of the fruits was determined to be 1.28 g gallic acid equivalents per 100 g of fresh fruit and anthocyanin content was estimated as 108 mg cyanidin-3-glucoside equivalents per 100 g of fresh fruits. The EtOAc extract showed moderate antioxidant activity in the DPPH radical scavenging assay with IC50 value of 66.2 ppm. The EtOAc and MeOH extracts of the fruits also exhibited inhibitory activities toward α-glucosidase, α-amylase and lipase enzymes with IC50values ranging from 549 to 710 ppm, 1021 to 1949 ppm and 1290 to 2096 ppm, respectively. The active principle for the enzyme inhibition was isolated through activity-guided fractionation and was characterized as (S)-malic acid. The results of this study indicate that F. inermis fruits have the potential to be used in health foods and in nutritional supplements. PMID:26604419

  18. Total Phenolic Content and Antioxidant Capacity of Polish Apple Ciders

    PubMed Central

    Kowalczyk, A.; Ruszkiewicz, M.; Biskup, I.

    2015-01-01

    The total phenolic content and antioxidant capacity of three apple ciders produced in Poland were examined. The total phenolic content was determined by the Folin-Ciocalteau method and results were expressed in gallic acid equivalents with range from 0.21±0.003 to 0.30±0.004 mg/ml and Trolox equivalents ranging 0.88±0.012 to 1.24±0.015 mg/ml. The antioxidant activity was estimated by two methods: 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay with results expressed as EC50(ml/assay) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid method with results expressed as Trolox equivalent antioxidant capacity. The antioxidant properties of tested ciders were correlated with total phenolic content. Additionally, the correlation between 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid and 2,2-diphenyl-1-picrylhydrazyl radical scavenging methods was estimated. PMID:26798183

  19. Major phenolic acids and total antioxidant activity in mamaki leaves, Pipturus albidus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three phenolic acids, (+) catechins, chlorogenic acid, and rutin, were identified and quantified in mamaki leaves (Pipturus albidus) using a liquid chromatograph-mass spectrometer technique. Concentrations of (+) catechins, chlorogenic acid, and rutin varied from 1.1 mg to 5.0 mg per gram of mamaki...

  20. Supplementing antioxidants to pigs fed diets high in oxidants: II. Effects on carcass characteristics, meat quality, and fatty acid profile.

    PubMed

    Lu, T; Harper, A F; Dibner, J J; Scheffler, J M; Corl, B A; Estienne, M J; Zhao, J; Dalloul, R A

    2014-12-01

    The study was conducted to determine effects of dietary supplementation with a blend of antioxidants (ethoxyquin and propyl gallate) on carcass characteristics, meat quality, and fatty acid profile in finishing pigs fed a diet high in oxidants. A total of 100 crossbred barrows (10.9±1.4 kg BW, 36±2 d of age) were randomly allotted to 5 diet treatments (5 replicate pens per treatment, 4 pigs per pen). Treatments included: 1) HO: high oxidant diet containing 5% oxidized soy oil and 10% PUFA source which contributed 5.56% crude fat and 2.05% docosahexanoic acid (DHA) to the diet; 2) VE: the HO diet with 11 IU/kg of added vitamin E; 3) AOX: the HO diet with antioxidant blend (135 mg/kg); 4) VE+AOX: the HO diet with both vitamin E and antioxidant blend; and 5) SC: a standard corn-soy control diet with nonoxidized oil and no PUFA source. The trial lasted for 118 d; on d 83, the HO diet pigs were switched to the SC diet due to very poor health. From that point, the VE pigs displayed the poorest performance. On d 118, 2 pigs from each pen were harvested for sampling. Compared to pigs fed SC diet, the HO and VE pigs (P<0.05) showed lighter carcass weight, less back fat, less lean body mass, and smaller loin eye area. In addition, the VE pigs had decreased dressing percentage than the AOX and VE+AOX pigs (65.7 vs. 75.3 and 74.2%). Compared to the SC pigs, greater moisture percentage (74.7 vs. 77.4%) and less extractable lipid content (2.43 vs. 0.95%) were found in VE fed pigs (P<0.05). Drip loss of loin muscle in VE pigs was less than SC pigs (0.46 vs. 3.98%, P=0.02), which was associated with a trend for a greater 24-h muscle pH (5.74 vs. 5.54, P=0.07). The antioxidant blend addition in the high oxidant diet attenuated all of these effects to levels similar to SC (P>0.05), except a* value (redness) and belly firmness. Visible yellow coloration of backfat and lipofuscin in HO and VE pigs was observed at harvest at d 118. The high oxidant diet resulted in greater

  1. Protective effects of ascorbic acid and vitamin E on antioxidant enzyme activity of freeze-thawed semen of Qinchuan bulls.

    PubMed

    Zhao, X L; Li, Y K; Cao, S J; Hu, J H; Wang, W H; Hao, R J; Gui, L S; Zan, L S

    2015-01-01

    The aim of this study was to determine the protective effects of the combination of ascorbic acid (Vc) and vitamin E (VE) on antioxidant enzyme activity, sperm motility, viability, and acrosome integrity of Qinchuan bulls after freeze-thaw. In this study, we determined the effects of Vc and VE on the activity of the antioxidant enzyme defense system comprising glutathione peroxidase (GSH-Px), glutathione reductase (GR), catalase (CAT), and superoxide dismutase (SOD). The combination of Vc and VE had protective effects on sperm motility and viability. With respect to acrosome integrity and the activity of GR and SOD, differences were observed between the experimental groups with added Vc (7 mg/mL) and VE (0.12 IU/mL) and the control group. The activity of GSH-Px in the experimental group (1400 IU/mL Vc and 0.12 IU/mL VE) was not different (P > 0.05) compared with that in the control group, while the activity of CAT showed a significant difference between the 2 groups (P < 0.05). Therefore, we inferred that the combination of Vc (1400 IU/mL) and VE (0.12 IU/mL) protected the sperm quality in the freeze-thaw process. PMID:25867404

  2. Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging.

    PubMed

    Ramos, Marina; Jiménez, Alfonso; Peltzer, Mercedes; Garrigós, María C

    2014-11-01

    Novel nano-biocomposite films based on poly (lactic acid) (PLA) were prepared by incorporating thymol, as the active additive, and modified montmorillonite (D43B) at two different concentrations. A complete thermal, structural, mechanical and functional characterization of all nano-biocomposites was carried out. Thermal stability was not significantly affected by the addition of thymol, but the incorporation of D43B improved mechanical properties and reduced the oxygen transmission rate by the formation of intercalated structures, as suggested by wide angle X-ray scattering patterns and transmission electron microscopy images. The addition of thymol decreased the PLA glass transition temperature, as the result of the polymer plasticization, and led to modification of the elastic modulus and elongation at break. Finally, the amount of thymol remaining in these formulations was determined by liquid chromatography (HPLC-UV) and the antioxidant activity by the DPPH spectroscopic method, suggesting that the formulated nano-biocomposites could be considered a promising antioxidant active packaging material. PMID:24874370

  3. Modulatory efficacy of rosmarinic acid on premalignant lesions and antioxidant status in 1,2-dimethylhydrazine induced rat colon carcinogenesis.

    PubMed

    Karthikkumar, V; Sivagami, G; Vinothkumar, R; Rajkumar, D; Nalini, N

    2012-11-01

    Colorectal cancer is one of the leading causes of cancer related deaths in Western countries and is becoming increasingly common in Asia. Rosmarinic acid (RA), one of the major components of polyphenol possesses attractive remedial features. The purpose of this study is to investigate the possible chemopreventive mechanism of action of RA against 1,2-dimethylhydrazine (DMH) induced rat colon carcinogenesis by evaluating the circulatory antioxidant status and colonic bacterial enzymes activities. Additionally, we analyzed the aberrant crypt foci (ACF) formation and multiplicity in the colon of experimental groups. Wistar male rats were divided into six groups. Group 1 was control rats, group 2 rats received RA (10 mg/kg b.w., p.o. everyday), rats in groups 3-6 received DMH (20 mg/kg b.w., s.c.) for the first 4 weeks. In addition to DMH, groups 4-6 received 2.5, 5, and 10 mg/kg b.w. RA respectively. The results revealed that supplementation with RA significantly reduced the formation of ACF and ACF multiplicity in DMH treated rats. Moreover RA supplementation prevented the alterations in circulatory antioxidant enzymes and colonic bacterial enzymes activities. Overall, our results showed that all three doses of RA inhibited carcinogenesis, though the effect of the intermediary dose of 5 mg/kg b.w. was more pronounced. PMID:22960260

  4. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane.

    PubMed

    Suwalsky, M; Jemiola-Rzeminska, M; Astudillo, C; Gallardo, M J; Staforelli, J P; Villena, F; Strzalka, K

    2015-11-01

    Usnic acid (UA) has been associated with chronic diseases through its antioxidant action. Its main target is the cell membrane; however, its effect on that of human erythrocytes has been scarcely investigated. To gain insight into the molecular mechanisms of the interaction between UA and cell membranes human erythrocytes and molecular models of its membrane have been utilized. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were chosen as representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. Results by X-ray diffraction showed that UA produced structural perturbations on DMPC and DMPE bilayers. DSC studies have indicated that thermotropic behavior of DMPE was most strongly distorted by UA than DMPC, whereas the latter is mainly affected on the pretransition. Scanning electron (SEM) and defocusing microscopy (DM) showed that UA induced alterations to erythrocytes from the normal discoid shape to echinocytes. These results imply that UA molecules were located in the outer monolayer of the erythrocyte membrane. Results of its antioxidant properties showed that UA neutralized the oxidative capacity of HClO on DMPC and DMPE bilayers; SEM, DM and hemolysis assays demonstrated the protective effect of UA against the deleterious oxidant effects of HClO upon human erythrocytes. PMID:26299817

  5. Citrus Pulp as a Dietary Source of Antioxidants for Lactating Holstein Cows Fed Highly Polyunsaturated Fatty Acid Diets

    PubMed Central

    Santos, G. T.; Lima, L. S.; Schogor, A. L. B.; Romero, J. V.; De Marchi, F. E.; Grande, P. A.; Santos, N. W.; Santos, F. S.; Kazama, R.

    2014-01-01

    The effects of feeding pelleted citrus pulp (PCP) as a natural antioxidant source on the performance and milk quality of dairy cows fed highly polyunsaturated fatty acid (FA) diets were evaluated. Four lactating Holstein cows were assigned to a 4×4 Latin-square. Treatments, on a dry matter (DM) basis, were i) control diet; ii) 3% soybean oil; iii) 3% soybean oil and 9% PCP and; iv) 3% soybean oil and 18% PCP. When cows fed on citrus pulp, the DM intake tended to decrease. The total tract apparent digestibility of DM and ether extract decreased when cows fed on the control diet compared to other diets. Cows fed PCP had higher polyphenols and flavonoids content and higher total ferric reducing antioxidant power (FRAP) in milk compared to those fed no pelleted citrus pulp. Cows fed 18% PCP showed higher monounsaturated FA and lower saturated FA in milk fat compared with cows fed the other diets. The lowest n-6 FA proportion was in milk fat from cows fed control. The present study suggests that pelleted citrus pulp added to 9% to 18% DM increases total polyphenols and flavonoids concentration, and the FRAP in milk. PMID:25083104

  6. Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity.

    PubMed

    Petersen Shay, Kate; Moreau, Régis F; Smith, Eric J; Hagen, Tory M

    2008-06-01

    The chemical reduction and oxidation (redox) properties of alpha-lipoic acid (LA) suggest that it may have potent antioxidant potential. A significant number of studies now show that LA and its reduced form, dihydrolipoic acid (DHLA), directly scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) species and protect cells against a host of insults where oxidative stress is part of the underlying etiology. However, owing to its limited and transient accumulation in tissues following oral intake, the efficacy of nonprotein-bound LA to function as a physiological antioxidant has been questioned. Herein, we review the evidence that the micronutrient functions of LA may be more as an effector of important cellular stress response pathways that ultimately influence endogenous cellular antioxidant levels and reduce proinflammatory mechanisms. This would promote a sustained improvement in cellular resistance to pathologies where oxidative stress is involved, which would not be forthcoming if LA solely acted as a transient ROS scavenger. PMID:18409172

  7. Rapid screening and characterisation of antioxidants of Cosmos caudatus using liquid chromatography coupled with mass spectrometry.

    PubMed

    Shui, Guanghou; Leong, Lai Peng; Wong, Shih Peng

    2005-11-15

    Ulam raja (Cosmos caudatus) is used traditionally for improving blood circulation. In this study, it was found that ulam raja had extremely high antioxidant capacity of about 2,400 mg l-ascorbic acid equivalent antioxidant capacity (AEAC) per 100 g of fresh sample. Antioxidant peaks in extract of ulam raja were firstly characterized using free radical spiking test through high performance liquid chromatography coupled with mass spectrometry (MS). Upon reaction with 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, intensities of antioxidant peaks will be significantly reduced. HPLC/MS(n) was further applied to elucidate the chemical structures of antioxidant peaks characterized in the spiking test. More than twenty antioxidants were identified in ulam raja, and their chemical structures were proposed. The major antioxidants in ulam raja were attributed to a number of proanthocyanidins that existed as dimers through hexamers, quercetin glycosides, chlorogenic, neo-chlorogenic, crypto-chlorogenic acid and (+)-catching. High content of antioxidants antioxidants contained in ulam raja could be partly responsible for its ability to reduce oxidative stress. PMID:16087413

  8. Prospective Randomized Trial on Postoperative Administration of Diet Containing Eicosapentaenoic Acid, Docosahexaenoic Acid, Gamma-linolenic Acid, and Antioxidants in Head and Neck Cancer Surgery Patients with Free-flap Reconstruction

    PubMed Central

    Tsukahara, Kiyoaki; Motohashi, Ray; Sato, Hiroki; Endo, Minoru; Ueda, Yuri; Nakamura, Kazuhiro

    2014-01-01

    OBJECTIVES The purpose of this prospective, randomized study was to evaluate the effects of a diet containing eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), gamma-linolenic acid (GLA), and antioxidants in head and neck cancer surgery patients with free-flap reconstruction. METHODS In this randomized, prospective study, 62 patients with head and neck cancers were assigned to receive a general control diet (Ensure® H; Abbott Japan, Tokyo, Japan) or the study diet (Oxepa®; Abbott Japan) containing EPA, DHA, GLA, and antioxidants (eg vitamins A, E, and C). The primary assessment item was the degree of postoperative inflammation, as assessed by measuring maximum body temperature and levels of C-reactive protein (CRP) and procalcitonin from the day of surgery to postoperative day 8. Secondary assessment items were lengths of stays in the intensive care unit (ICU) and hospital. RESULTS The control diet group (n = 32) and study diet group (n = 30) showed no significant difference in energy administered through diet. No significant differences in the parameters of the primary assessment item were noted. Length of stay in the ICU was significantly shorter for the control diet group than for the study diet group (P = 0.011). No significant difference in duration of hospitalization was seen between groups. CONCLUSION No usefulness of a diet containing EPA, DHA, GLA, and antioxidants was demonstrated. PMID:25368541

  9. Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.).

    PubMed

    Qureshi, M Irfan; Abdin, Malik Zainul; Ahmad, Javed; Iqbal, Muhammad

    2013-11-01

    Impact of long-term salinity and subsequent oxidative stress was studied on cellular antioxidants, proline accumulation and lipid profile of Artemisia annua L. (Sweet Annie or Qinghao) which yields artemisinin (Qinghaosu), effective against cerebral malaria-causing strains of Plasmodium falciparum. Under salinity (0.0-160 mM NaCl), in A. annua, proline accumulation, contents of ascorbate and glutathione and activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR) and catalase (CAT) increased, but the contents of reduced forms of glutathione (GSH) and ascorbate declined. The fatty-acid profiling revealed a major salinity-induced shift towards long-chain and mono-saturated fatty acids. Myristic acid (14:0), palmitoleic acid (16:1), linoleic acid (18:2) and erucic acid (22:1) increased by 141%, 186%, 34% and 908%, respectively, in comparison with the control. Contents of oleic acid (18:1), linolenic acid (18:3), arachidonic acid (22:0) and lignoceric acid (24:0) decreased by 50%, 17%, 44% and 78%, respectively. Thus, in A. annua, salinity declines ascorbate and GSH contents. However, increased levels of proline and total glutathione (GSH+GSSG), and activities of antioxidant enzymes might provide a certain level of tolerance. Modification in fatty-acid composition might be a membrane adaptation to long-term salinity and oxidative stress. PMID:23871298

  10. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis) Dark Muscle.

    PubMed

    Chi, Chang-Feng; Hu, Fa-Yuan; Wang, Bin; Li, Zhong-Rui; Luo, Hong-Yu

    2015-05-01

    Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%), hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%), and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03%) and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively), small molecular sizes (3-6 peptides), low molecular weights (524.78 kDa), and amino acid sequences (antioxidant score 6.11). This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis) dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes. PMID:25923316

  11. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis) Dark Muscle

    PubMed Central

    Chi, Chang-Feng; Hu, Fa-Yuan; Wang, Bin; Li, Zhong-Rui; Luo, Hong-Yu

    2015-01-01

    Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%), hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%), and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03%) and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively), small molecular sizes (3–6 peptides), low molecular weights (524.78 kDa), and amino acid sequences (antioxidant score 6.11). This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis) dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes. PMID:25923316

  12. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs).

    PubMed

    Skulachev, Vladimir P; Antonenko, Yury N; Cherepanov, Dmitry A; Chernyak, Boris V; Izyumov, Denis S; Khailova, Ludmila S; Klishin, Sergey S; Korshunova, Galina A; Lyamzaev, Konstantin G; Pletjushkina, Olga Yu; Roginsky, Vitaly A; Rokitskaya, Tatiana I; Severin, Fedor F; Severina, Inna I; Simonyan, Ruben A; Skulachev, Maxim V; Sumbatyan, Natalia V; Sukhanova, Evgeniya I; Tashlitsky, Vadim N; Trendeleva, Tatyana A; Vyssokikh, Mikhail Yu; Zvyagilskaya, Renata A

    2010-01-01

    The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES

  13. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China.

    PubMed

    Fu, Li; Xu, Bo-Tao; Xu, Xiang-Rong; Qin, Xin-Sheng; Gan, Ren-You; Li, Hua-Bin

    2010-01-01

    In order to identify wild fruits possessing high nutraceutical potential, the antioxidant activities of 56 wild fruits from South China were systematically evaluated. The fat-soluble components were extracted with tetrahydrofuran, and the water-soluble ones were extracted with a 50:3.7:46.3 (v/v) methanol-acetic acid-water mixture. The antioxidant capacities of the extracts were evaluated using the ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays, and their total phenolic contents were measured by the Folin-Ciocalteu method. Most of these wild fruits were analyzed for the first time for their antioxidant activities. Generally, these fruits had high antioxidant capacities and total phenolic contents. A significant correlation between the FRAP value and the TEAC value suggested that antioxidant components in these wild fruits were capable of reducing oxidants and scavenging free radicals. A high correlation between antioxidant capacity and total phenolic content indicated that phenolic compounds could be the main contributors to the measured antioxidant activity. The results showed that fruits of Eucalyptus robusta, Eurya nitida, Melastoma sanguineum, Melaleuca leucadendron, Lagerstroemia indica, Caryota mitis, Lagerstroemia speciosa and Gordonia axillaris possessed the highest antioxidant capacities and total phenolic contents among those tested, and could be potential rich sources of natural antioxidants and functional foods. The results obtained are very helpful for the full utilization of these wild fruits. PMID:21116229

  14. Protective effect of ellagic acid on oxidative stress and antioxidant status in Cyprinus carpio during malathion exposure.

    PubMed

    Ural, M Ş; Yonar, M E; Mişe Yonar, S

    2015-01-01

    This study aims to determine protective efficiency of ellagic acid (EA) on malathion toxicity in carp. The fish were exposed to two sublethal concentrations of malathion (0.5 and 1 mg/L), and EA (100 mg per kg of fish weight) was simultaneously administered for 14 days. Malondialdehyde (MDA) level and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH—Px), and glutathione—S—transferase (GST) activities were evaluated in liver, kidney and gills, which were collected at the end of the experiment. In conclusion, the findings of this study demonstrated that malathion caused oxidative stress and negative alterations on the antioxidant enzyme activities of the fish. However, this toxic effect was neutralised by the administration of EA. Thus, the present results suggest that simultaneous treatment with EA (100 mg per kg of fish weight) may alleviate malathion—induced oxidative stress. PMID:26516111

  15. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans.

    PubMed

    Liang, Ningjian; Lu, Xiaonan; Hu, Yaxi; Kitts, David D

    2016-01-27

    The chlorogenic acid isomer profile and antioxidant activity of both green and roasted coffee beans are reported herein using ATR-FTIR spectroscopy combined with chemometric analyses. High-performance liquid chromatography (HPLC) quantified different chlorogenic acid isomer contents for reference, whereas ORAC, ABTS, and DPPH were used to determine the antioxidant activity of the same coffee bean extracts. FTIR spectral data and reference data of 42 coffee bean samples were processed to build optimized PLSR models, and 18 samples were used for external validation of constructed PLSR models. In total, six PLSR models were constructed for six chlorogenic acid isomers to predict content, with three PLSR models constructed to forecast the free radical scavenging activities, obtained using different chemical assays. In conclusion, FTIR spectroscopy, coupled with PLSR, serves as a reliable, nondestructive, and rapid analytical method to quantify chlorogenic acids and to assess different free radical-scavenging capacities in coffee beans. PMID:26725502

  16. Phenolic acids profiling and antioxidant potential of mulberry (Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mulberry trees are distributed throughout Pakistan. Besides the use of mulberry in forage and food for animals, it is also used as herbal medicine. The ojbective of this study was to determine phenolic acids profile, sugar content, and the antioxidant activity of the leaves and fruits of three mulb...

  17. Lactic acid bacterial fermentation on the production of functional antioxidant herbal Anoectochilus formosanus Hayata.

    PubMed

    Ng, Chang-Chai; Wang, Chung-Yi; Wang, Ya-Ping; Tzeng, Wen-Sheng; Shyu, Yuan-Tay

    2011-03-01

    This study evaluated a novel use of the traditional Asian herb Anoectochilus formosanus. This plant is a traditional food item, generally used for the treatment of liver disorder, hepatitis, hypertension, diabetes, cardiovascular disorder, etc. In this study, the root, stem, and leaf of A. formosanus were used as substrates for lactic fermentation. The fermentation products were analyzed for their total antioxidant activity, reducing power, and scavenging effect on superoxide anion radicals and hydrogen peroxide. The pH of the fermentation medium reached its lowest value, 3.5, at the 35th hour of fermentation. Antioxidant activity of A. formosanus was found to be 61-78%. Lactobacillus longum-led fermentation exhibited the greatest reducing power with an average of 0.3. The products of fermentations utilizing the three plant parts as substrates exhibited a similar scavenging activity (27-30%) on free radicals. This study may suggest a novel use of lactic-fermenting A. formosanus in the production of functional food. PMID:21172740

  18. Chlorogenic acid protects d-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice.

    PubMed

    Feng, Yan; Yu, Ying-Hua; Wang, Shu-Ting; Ren, Jing; Camer, Danielle; Hua, Yu-Zhou; Zhang, Qian; Huang, Jie; Xue, Dan-Lu; Zhang, Xiao-Fei; Huang, Xu-Feng; Liu, Yi

    2016-06-01

    Context Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro antioxidant properties. Objective The current study investigates the effects of protective effects of chlorogenic acid (CGA) on d-galactose-induced liver and kidney injury. Materials and methods Hepatic and renal injuries were induced in a mouse model by subcutaneously injection of d-galactose (d-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were measured. Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood urea nitrogen (BUN) levels in d-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver and kidney in d-gal mice (p <0.05). Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in d-gal mice (p <0.05). Discussion and conclusion These findings suggest that CGA attenuates d-gal-induced chronic liver and kidney injury and that this protection may be due to its antioxidative and anti-inflammatory activities. PMID:26810301

  19. Paraoxonase-1 (PON1) inhibition by tienilic acid produces hepatic injury: Antioxidant protection by fennel extract and whey protein concentrate.

    PubMed

    Abdel-Wahhab, Khaled G; Fawzi, Heba; Mannaa, Fathia A

    2016-03-01

    This study evaluated the effect of whey protein concentrate (WPC) or fennel seed extract (FSE) on paraoxonase-1 activity (PON1) and oxidative stress in liver of tienilic acid (TA) treated rats. Six groups of rats were treated for six weeks as follows: control; WPC (0.5g/kg/day); FSE (200mg/ kg/day); TA (1g/kg/twice a week); TA (1g/kg/twice a week) plus WPC (0.5g/kg/day); TA (1g/kg/twice a week) plus FSE (200mg/kg/day). TA administration significantly increased ALT and AST besides to total- and direct bilirubin levels. Also, serum tumor necrosis factor-α and nitric oxide levels were significantly increased. Furthermore, serum PON1, and hepatic reduced glutathione, glutathione-S-transferase and Na(+)/K(+)-ATPase values were diminished matched with a significant rise in the level of hepatic lipid peroxidation. Also, triglycerides, total- and LDL-cholesterol levels were significantly elevated while HDL-cholesterol was unchanged. The administration of either WPC or FSE to TA-treated animals significantly protected the liver against the injurious effects of tienilic acid. This appeared from the improvement of hepatic functions, atherogenic markers, Na(+)/K(+) ATPase activity, endogenous antioxidants and hepatic lipid peroxidation level; where WPC showed the strongest protection effect. In conclusion, the present study indicated that WPC and FSE improve PON1 activity and attenuate liver dysfunction induced by TA. This may be attributed to the high content of antioxidant compounds in WPC and fennel extract. PMID:26884099

  20. The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng

    PubMed Central

    Gui, Ying; Ryu, Gi Hyung

    2013-01-01

    This study was conducted to investigate the effect of extrusion conditions (moisture content 20% and 30%, screw speed 200 and 250 rpm, barrel temperature 115℃ and 130℃) on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng (KRG). Extruded KRGs showed relatively higher amounts of acidic polysaccharide (6.80% to 9.34%) than nonextruded KRG (4.34%). Increased barrel temperature and screw speed significantly increased the content of acidic polysaccharide. The major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg2s, Rg3s, Rh1, and Rg3r) of KRG increased through extrusion, while the ginsenoside (Rg1) decreased. The EX8 (moisture 30%, screw speed 250 rpm, and temperature 130℃) had more total phenolics and had a better scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals than those of extruded KRG samples. The extrusion cooking showed a significant increase (6.8% to 20.9%) in reducing power. Increased barrel temperature significantly increased the values of reducing power, the highest value was 1.152 obtained from EX4 (feed moisture 20%, screw speed 250 rpm, and temperature 130℃). These results suggest that extrusion conditions can be optimized to retain the health promoting compounds in KRG products. PMID:23717175

  1. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation.

    PubMed

    Chen, Yuzhen; Xiao, Huizhi; Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media. PMID:25803685

  2. Structure-Thermodynamics-Antioxidant Activity Relationships of Selected Natural Phenolic Acids and Derivatives: An Experimental and Theoretical Evaluation

    PubMed Central

    Zheng, Jie; Liang, Guizhao

    2015-01-01

    Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media. PMID:25803685

  3. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry.

    PubMed

    Gündüz, Kazim; Ozdemir, Emine

    2014-07-15

    In this study, the genotypic and environmental effects for bioactive compounds in strawberries were partitioned. 13 strawberry genotypes from diverse breeding programs were selected. The genotypes were grown in three growing conditions: greenhouse (GH), plastic tunnel (PT) and open-field (OF) for two growing seasons. The results indicated that the genotypes were significantly different for most of the characteristics tested except the ferric reducing ability assay (FRAP) and Trolox-equivalent antioxidant capacity assay (TEAC) in the second growing season, while the growing conditions were only significant for total phenolic content (TPC) and fructose and total sugar content in the first growing season. Genotype had 71% and 72% of the total variance for total monomeric anthocyanin contents (TMA), while it had only 12% and 13% of the variance for TPC in the first and second year of the experiment. Genotype effect was larger than that from the growing conditions for most of the bioactive component variables in the experiment indicated that breeding for bioactive components may be successful. PMID:24594188

  4. Antioxidant status of blood and liver of turkeys fed diets enriched with polyunsaturated fatty acids and fruit pomaces as a source of polyphenols.

    PubMed

    Jankowski, J; Juśkiewicz, J; Zduńczyk, P; Kosmala, M; Zieliński, H; Antoszkiewicz, Z; Zduńczyk, Z

    2016-01-01

    It was hypothesized that dietary polyphenol-rich fruit pomaces can improve the antioxidant status of both diets and the tissues of turkeys fed such diets. Turkeys were fed diets containing a cellulose preparation (C) or 5% dried apple pomace (AP), blackcurrant pomace (BCP), strawberry pomace (SP) and seedless strawberry pomace (SSP). Blood and liver biochemical parameters were determined in 7 birds from each experimental group slaughtered at 15 weeks of age, after 5 weeks of feeding diets containing soybean oil and linseed oil (approx. 1:1 ratio). Dietary linseed oil added to diets at 2.5% lowered the n-6/n-3 PUFA ratio from approx. 7:1 to below 2:1, thus reducing the antioxidant properties of diets measured using DPPH, ABTS and photo-chemiluminescence assays, compared with diets containing only soybean oil and administered to birds in the first phase of feeding. Fruit pomaces, in particular SSP with the highest polyphenol content (32.81 g/kg) and the highest antioxidant activity (256.4 μM Trolox/g), increased the antioxidant capacity of turkey diets. In comparison with the control group, the dietary treatments with fruit pomaces improved blood antioxidant parameters, including catalase activity (groups AP and BCP), the total antioxidant capacity of hydrophilic (group AP) and lipophilic (groups AP, SP, and SSP) compounds, peroxide levels (groups AP and SSP) and antioxidant capacity measured by the FRAP (ferric reducing antioxidant power of plasma) assay (groups AP, BCP and SSP). Significantly lower concentrations of both vitamin E and thiobarbituric acid reactive substances (TBARS) were noted in the livers of turkeys fed all diets with dried fruit pomaces. PMID:27096792

  5. Two new antioxidant malonated caffeoylquinic acid isomers in fruits of wild eggplant relatives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruits of both the cultivated eggplant species Solanum melongena and its wild relative Solanum incanum have a high content of hydroxycinnamic acid conjugates, which along with other phenylpropanoids are implicated in the human health benefits of various fruits and vegetables. Monocaffeoylquinic acid...

  6. Total polyphenolic contents and in vitro antioxidant properties of eight Sida species from Western Ghats, India

    PubMed Central

    Subramanya, M. D.; Pai, Sandeep R.; Upadhya, Vinayak; Ankad, Gireesh M.; Bhagwat, Shalini S.; Hegde, Harsha V.

    2015-01-01

    Background: Sida L., is a medicinally important genus, the species of which are widely used in traditional systems of medicine in India. Pharmacologically, roots are known for anti-tumor, anti-HIV, hepatoprotective, and many other properties. Phenolic antioxidants help in reducing oxidative stress occurring during treatment of such diseases. Objective: The study aimed to evaluate and compare polyphenol contents and antioxidant properties of eight selected species of Sida from Western Ghats, India. Materials and Methods: Methanolic root extracts (10% w/v) of Sida species, viz., S. acuta, S. cordata, S. cordifolia, S. indica, S. mysorensis, S. retusa, S. rhombifolia, and S. spinosa were analyzed. Results: Sida cordifolia possessed highest total phenolic content (TPC: 1.92 ± 0.10 mg Caffeic Acid Equivalent/g and 2.13 ± 0.11 mg Tannic Acid Equivalant/g), total flavonoid content (TF: 2.60 ± 0.13 mg Quercetin Equivalent/g) and also possessed highest antioxidant activities in 2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging (51.31 ± 2.57% Radical Scavenging Activity, (RSA); Trolox Equivalent Antioxidant Capacity: 566.25 ± 28.31μM; Ascorbic acid Equivalent Antioxidant Capacity: 477.80 ± 23.89 μM) and Ferric Reducing Antioxidant Power assays (TEAC: 590.67 ± 29.53 μM; AEAC: 600.67 ± 30.03 μM). Unlike DPPH and Ferric Reducing Antioxidant Power (FRAP) activity, 2, 2′-Azinobis (3-ethyl Benzo Thiazoline-6-Sulfonic acid) ABTS+ antioxidant activity was highest in S. indica (TEAC: 878.44 ± 43.92 μM; AEAC 968.44 ± 48.42 μM). It was significant to note that values of AEAC (μM) for all the antioxidant activities analyzed were higher than that of TEAC. Conclusion: The high contents of phenolic compounds in the root extracts of selected Sida species have direct correlation with their antioxidant properties. Conclusively, roots of S. cordifolia can be considered as the potential source of polyphenols and antioxidants. PMID:25878460

  7. Total antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochemical profiles of 24 Vitis vinifera grape cultivars, including total phenolics, total flavonoids, total antioxidant activity and antiproliferative activity, were determined. Total phenolic contents in the cultivars ranged from 95.3 to 686.5 mg of gallic acid equivalents/100 g FW, and to...

  8. Antioxidant and free radical scavenging activity of Spondias pinnata

    PubMed Central

    Hazra, Bibhabasu; Biswas, Santanu; Mandal, Nripendranath

    2008-01-01

    Background Many diseases are associated with oxidative stress caused by free radicals. Current research is directed towards finding naturally-occurring antioxidants of plant origin. The aim of the present study was to evaluate the in vitro antioxidant activities of Spondias pinnata stem bark extract. Methods A 70% methanol extract of Spondias pinnata stem bark was studied in vitro for total antioxidant activity, for scavenging of hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, singlet oxygen and hypochlorous acid, and for iron chelating capacity, reducing power, and phenolic and flavonoid contents. Results The extract showed total antioxidant activity with a trolox equivalent antioxidant concentration (TEAC) value of 0.78 ± 0.02. The IC50 values for scavenging of free radicals were 112.18 ± 3.27 μg/ml, 13.46 ± 0.66 μg/ml and 24.48 ± 2.31 μg/ml for hydroxyl, superoxide and nitric oxide, respectively. The IC50 for hydrogen peroxide scavenging was 44.74 ± 25.61 mg/ml. For the peroxynitrite, singlet oxygen and hypochlorous acid scavenging activities the IC50 values were 716.32 ± 32.25 μg/ml, 58.07 ± 5.36 μg/ml and 127.99 ± 6.26 μg/ml, respectively. The extract was found to be a potent iron chelator with IC50 = 66.54 ± 0.84 μg/ml. The reducing power was increased with increasing amounts of extract. The plant extract (100 mg) yielded 91.47 ± 0.004 mg/ml gallic acid-equivalent phenolic content and 350.5 ± 0.004 mg/ml quercetin-equivalent flavonoid content. Conclusion The present study provides evidence that a 70% methanol extract of Spondias pinnata stem bark is a potential source of natural antioxidants. PMID:19068130

  9. Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data.

    PubMed

    Castañeda-Arriaga, Romina; Alvarez-Idaboy, J Raul

    2014-06-23

    The free radical scavenging activity of lipoic acid (LA) and dihydrolipoic acid (DHLA) has been studied in nonpolar and aqueous solutions, using the density functional theory and several oxygen centered radicals. It was found that lipoic acid is capable of scavenging only very reactive radicals, while the dehydrogenated form is an excellent scavenger via a hydrogen transfer mechanism. The environment plays an important role in the free radical scavenging activity of DHLA because in water it is deprotonated, and this enhances its activity. In particular, the reaction rate constant of DHLA in water with an HOO(•) radical is close to the diffusion limit. This has been explained on the basis of the strong H-bonding interactions found in the transition state, which involve the carboxylate moiety, and it might have implications for other biological systems in which this group is present. PMID:24881907

  10. Antioxidative and Anticholinesterase Activity of Cyphomandra betacea Fruit

    PubMed Central

    Ali Hassan, Siti Hawa; Abu Bakar, Mohd Fadzelly

    2013-01-01

    Cyphomandra betacea is one of the underutilized fruits which can be found in tropical and subtropical countries. This study was conducted to determine the antioxidant activity and phytochemical contents in different parts (i.e., flesh and peel) of the fruits. Antioxidants were analyzed using DPPH and ABTS free radical scavenging assays as well as FRAP assay. Anticholinesterase activity was determined using enzymatic assay using acetyl cholinesterase enzyme. For 80% methanol extract, the peel of the fruit displayed higher antioxidant activity in both FRAP and ABTS free radical scavenging assays while the flesh displayed higher antioxidant activity in the DPPH assay. Total phenolic and total flavonoid content were higher in the peel with the values of 4.89 ± 0.04 mg gallic acid equivalent (GAE)/g and 3.36 ± 0.01 mg rutin equivalent (RU)/g, respectively. Total anthocyanin and carotenoid content were higher in the flesh of the fruit with the values of 4.15 ± 0.04 mg/100 g and 25.13 ± 0.35 mg/100 g. The anticholinesterase was also higher in the peel of C. betacea. The same trends of phytochemicals, antioxidant, and anticholinesterase were also observed in the distilled water extracts. These findings suggested that C. betacea has a potential as natural antioxidant-rich nutraceutical products. PMID:24298210

  11. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology.

    PubMed

    Hammi, Khaoula Mkadmini; Jdey, Ahmed; Abdelly, Chedly; Majdoub, Hatem; Ksouri, Riadh

    2015-10-01

    The optimization of antioxidant extraction conditions from a ripe edible fruits of Zizyphus lotus (L.) with an ultrasound-assisted system was achieved by response surface methodology. The central composite rotatable design was employed for optimization of extraction parameters in terms of total phenolic content and antioxidant activities using 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and phosphomolybdenum assay. The optimum operating conditions for extraction were as follows: ethanol concentration, 50%; extraction time, 25 min; extraction temperature, 63°C and ratio of solvent to solid, 67 mL/g. Under these conditions, the obtained extract exhibited a high content of phenolic compounds (40.782 mg gallic acid equivalents/g dry matter) with significant antioxidant properties (the total antioxidant activity was 75.981 mg gallic acid equivalents/g dry matter and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity was 0.289 mg/mL). PMID:25872429

  12. Measurement of Antioxidant Capacity by Electron Spin Resonance Spectroscopy Based on Copper(II) Reduction.

    PubMed

    Li, Dan; Jiang, Jia; Han, Dandan; Yu, Xinyu; Wang, Kun; Zang, Shuang; Lu, Dayong; Yu, Aimin; Zhang, Ziwei

    2016-04-01

    A new method is proposed for measuring the antioxidant capacity by electron spin resonance spectroscopy based on the loss of electron spin resonance signal after Cu(2+) is reduced to Cu(+) with antioxidant. Cu(+) was removed by precipitation in the presence of SCN(-). The remaining Cu(2+) was coordinated with diethyldithiocarbamate, extracted into n-butanol and determined by electron spin resonance spectrometry. Eight standards widely used in antioxidant capacity determination, including Trolox, ascorbic acid, ferulic acid, rutin, caffeic acid, quercetin, chlorogenic acid, and gallic acid were investigated. The standard curves for determining the eight standards were plotted, and results showed that the linear regression correlation coefficients were all high enough (r > 0.99). Trolox equivalent antioxidant capacity values for the antioxidant standards were calculated, and a good correlation (r > 0.94) between the values obtained by the present method and cupric reducing antioxidant capacity method was observed. The present method was applied to the analysis of real fruit samples and the evaluation of the antioxidant capacity of these fruits. PMID:26927869

  13. Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila Blume (Kacip Fatimah).

    PubMed

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E; Rahmat, Asmah; Rahman, Zaharah Abdul

    2012-01-01

    A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use. PMID:22312260

  14. Involvement of Nitrogen on Flavonoids, Glutathione, Anthocyanin, Ascorbic Acid and Antioxidant Activities of Malaysian Medicinal Plant Labisia pumila Blume (Kacip Fatimah)

    PubMed Central

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z. E.; Rahmat, Asmah; Rahman, Zaharah Abdul

    2012-01-01

    A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use. PMID:22312260

  15. Membranes as Structural Antioxidants: RECYCLING OF MALONDIALDEHYDE TO ITS SOURCE IN OXIDATION-SENSITIVE CHLOROPLAST FATTY ACIDS.

    PubMed

    Schmid-Siegert, Emanuel; Stepushenko, Olga; Glauser, Gaetan; Farmer, Edward E

    2016-06-17

    Genetic evidence suggests that membranes rich in polyunsaturated fatty acids (PUFAs) act as supramolecular antioxidants that capture reactive oxygen species, thereby limiting damage to proteins. This process generates lipid fragmentation products including malondialdehyde (MDA), an archetypal marker of PUFA oxidation. We observed transient increases in levels of endogenous MDA in wounded Arabidopsis thaliana leaves, raising the possibility that MDA is metabolized. We developed a rigorous ion exchange method to purify enzymatically generated (13)C- and (14)C-MDA. Delivered as a volatile to intact plants, MDA was efficiently incorporated into lipids. Mass spectral and genetic analyses identified the major chloroplast galactolipid: α-linolenic acid (18:3)-7Z,10Z,13Z-hexadecatrienoic acid (16:3)-monogalactosyldiacylglycerol (18:3-16:3-MGDG) as an end-product of MDA incorporation. Consistent with this, the fad3-2 fad7-2 fad8 mutant that lacks tri-unsaturated fatty acids incorporated (14)C-MDA into 18:2-16:2-MGDG. Saponification of (14)C-labeled 18:3-16:3-MGDG revealed 84% of (14)C-label in the acyl groups with the remaining 16% in the head group. 18:3-16:3-MGDG is enriched proximal to photosystem II and is likely a major in vivo source of MDA in photosynthetic tissues. We propose that nonenzymatically generated lipid fragments such as MDA are recycled back into plastidic galactolipids that, in their role as cell protectants, can again be fragmented into MDA. PMID:27143359

  16. Antioxidant activities of ficus glomerata (moraceae) leaf gall extracts.

    PubMed

    Eshwarappa, Ravi Shankara Birur; Iyer, Shanthi; Subaramaihha, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa

    2015-01-01

    An excess production or decreased scavenging of reactive oxygen species (ROS) has been implicated in the pathogenesis of diverse metabolic disorders such as diabetes, cancer, atherosclerosis and neurodegeneration. Hence the antioxidant therapy has gained an utmost importance in the treatment of such diseases linked to free radicals. The medicinal properties of plants have been investigated and explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Ficus glomerata (F. glomerata), which is extensively used in the preparation of traditional medications to treat various metabolic diseases. The presences of phenolics, flavonoids, phytosterols, terpenoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the methanol extract had the highest total phenolic and flavonoid content at 370 ± 3.2 mg of gallic acid equivalent per gram of dry weight (mg GAE/g dw) and 155 ± 3.2 mg of quercetin equivalent per gram of dry weight (mg QUE/g dw), respectively. The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), Nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. In all the methods, the methanolic extract showed higher antioxidant potential than the aqueous extract. A higher content of both total phenolics and flavonoids were found in the methanolic extract and the significantly high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. The results of this study confirm the folklore use of F. glomerata leaf gall extracts as a natural antioxidant and justify its ethnobotanical use. Further, the results of antioxidant properties encourage the use of F. glomerata leaf gall extracts for medicinal health, functional food and nutraceuticals

  17. Antioxidant activities of ficus glomerata (moraceae) leaf gall extracts

    PubMed Central

    Eshwarappa, Ravi Shankara Birur; Iyer, Shanthi; Subaramaihha, Sundara Rajan; Richard, S Austin; Dhananjaya, Bhadrapura Lakkappa

    2015-01-01

    An excess production or decreased scavenging of reactive oxygen species (ROS) has been implicated in the pathogenesis of diverse metabolic disorders such as diabetes, cancer, atherosclerosis and neurodegeneration. Hence the antioxidant therapy has gained an utmost importance in the treatment of such diseases linked to free radicals. The medicinal properties of plants have been investigated and explored for their potent antioxidant activities to counteract metabolic disorders. This research highlights the chemical composition and antioxidant potential of leaf gall extracts (aqueous and methanol) of Ficus glomerata (F. glomerata), which is extensively used in the preparation of traditional medications to treat various metabolic diseases. The presences of phenolics, flavonoids, phytosterols, terpenoids and reducing sugars were identified in both the extracts. In comparison to the aqueous extract, the methanol extract had the highest total phenolic and flavonoid content at 370 ± 3.2 mg of gallic acid equivalent per gram of dry weight (mg GAE/g dw) and 155 ± 3.2 mg of quercetin equivalent per gram of dry weight (mg QUE/g dw), respectively. The antioxidant activities of leaf gall extracts were examined using diphenylpicrylhydrazyl (DPPH), Nitric oxide scavenging, hydroxyl scavenging and ferric reducing power (FRAP) methods. In all the methods, the methanolic extract showed higher antioxidant potential than the aqueous extract. A higher content of both total phenolics and flavonoids were found in the methanolic extract and the significantly high antioxidant activity can be positively correlated to the high content of total polyphenols/flavonoids of the methanol extract. The results of this study confirm the folklore use of F. glomerata leaf gall extracts as a natural antioxidant and justify its ethnobotanical use. Further, the results of antioxidant properties encourage the use of F. glomerata leaf gall extracts for medicinal health, functional food and nutraceuticals

  18. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.

    PubMed

    Wang, Ying; Yang, Meng; Lee, Sang-Gil; Davis, Catherine G; Kenny, Anne; Koo, Sung I; Chun, Ock K

    2012-12-01

    Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, P<.01) and moderately correlated with ORAC (r=0.34, P<.05). Pearson correlation analyses showed that plasma TAC values by VCEAC and ORAC had positive correlation with plasma uric acid (r=0.56 for VCEAC; r=0.49 for ORAC) and total phenolics (r=0.63 for VCEAC; r=0.36 for ORAC). However, TAC measured by FRAP was correlated only with uric acid (r=0.69). After multivariate adjustment, plasma TAC determined by VCEAC was positively associated with dietary intakes of γ-tocopherol (P<.001), β-carotene (P<.05), anthocyanidins (P<.05), flavones (P<.05), proanthocyanidins (P<.01) and TAC (P<.05), as well as with plasma total phenolics (P<.05), α-tocopherol (P<.001), β-cryptoxanthin (P<.05) and uric acid (P<.05). The findings indicate that plasma TAC measured by VCEAC reflects both dietary and plasma antioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP. PMID:22617460

  19. Combined effect of starch/montmorillonite coating and passive MAP in antioxidant activity, total phenolics, organic acids and volatile of fresh-cut carrots.

    PubMed

    Guimarães, Isabela Costa; dos Reis, Kelen Cristina; Menezes, Evandro Galvão Tavares; Borges, Paulo Rogério Siriano; Rodrigues, Ariel Costa; Leal, Renato; Hernandes, Thais; de Carvalho, Elisângela Helena Nunes; Vilas Boas, Eduardo Valério de Barros

    2016-01-01

    This work evaluates fresh-cut carrots (FCC) coated with montmorillonite (MMT) subjected to passive modified atmosphere packaging. Carrots were sanitized, cooled, peeled and sliced. Half of the FCC were coated with MMT nanoparticle film and the other half were not. All FCCs were packed in a polypropylene rigid tray, covered with a polypropylene rigid lid or sealed with polyethylene + propylene film, in four treatments (RL, rigid lid; RLC, rigid lid + coating; ST, sealed tray; STC, sealed tray + coating). FCCs were stored at 4 °C and were analyzed weekly for 4 weeks (total antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl method and the β-carotene/linoleic acid, phenolic compounds, organic acids and volatile compounds). The use of coating film with starch nanoparticles and a modified atmosphere leads to the preservation of the total antioxidant activity, the volatile and organic acids of FCC. PMID:26857136

  20. Comparative analysis of caffeoylquinic acids and lignans in roots and seeds among various burdock (Arctium lappa) genotypes with high antioxidant activity.

    PubMed

    Liu, Jingyi; Cai, Yi-Zhong; Wong, Ricky Ngok Shun; Lee, Calvin Kai-Fai; Tang, Sydney Chi Wai; Sze, Stephen Cho Wing; Tong, Yao; Zhang, Yanbo

    2012-04-25

    Caffeoylquinic acids and lignans in the crude extracts of both roots and seeds from different burdock ( Arctium lappa L.) genotypes were simultaneously characterized and systematically compared by LC-MS and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF MS), and their antioxidant activities were also investigated. A total of 14 lignans were identified in burdock seeds and 12 caffeoylquinic acids in burdock roots. High levels of caffeoylquinic acids were also detected in burdock seeds, but only trace amounts of lignans were found in burdock roots. Burdock seeds contained higher concentrations of lignans and caffeoylquinic acids than burdock roots. Quantitative analysis of caffeoylquinic acids and lignans in roots and seeds of various burdock genotypes was reported for the first time. Great variations in contents of both individual and total phenolic compounds as well as antioxidant activities were found among different genotypes. Burdock as a root vegetable or medicinal plants possessed considerably stronger antioxidant activity than common vegetables and fruits. PMID:22497441

  1. Synthesis and Characterization of a Novel Phenolic Lipid for Use as Potential Lipophilic Antioxidant and as a Prodrug of Butyric Acid.

    PubMed

    Kaki, Shiva Shanker; Kunduru, Konda Reddy; Kanjilal, Sanjit; Narayana Prasad, Rachapudi Badari

    2015-01-01

    Ferulic acid was modified to produce a novel phenolipid containing butyl chains. Ferulic acid was esterified with butanol to produce butyl ferulate which was further dihydroxylated followed by esterification with butyric anhydride to produce the phenolipid containing butyric acid. IR, NMR and MS techniques confirmed the structure of the synthesized structured lipophilic phenolic compound. The synthesized compound was tested for in vitro antioxidant and antimicrobial activities. The produced phenolipid showed moderate antioxidant activity in DPPH (2, 2-diphenyl-1-picrylhydrazyl) radical scavenging assay but in linoleic acid oxidation method, it exhibited good activity compared with the parent compound and the reference compounds. The prepared derivative could find applications as antioxidant in lipophilic systems and also as a potential prodrug of butyric acid. It also showed antibacterial effect against the four bacterial strains studied. The drug-likeness properties of the prepared molecule calculated were in the acceptable ranges according to Lipinski's rule of 5 and suggest that it has potential to cross the blood-brain barrier. PMID:26179002

  2. Doxycycline protects against pilocarpine-induced convulsions in rats, through its antioxidant effect and modulation of brain amino acids.

    PubMed

    Nogueira, Carlos Renato Alves; Damasceno, Flávio Maia; de Aquino-Neto, Manuel Rufino; de Andrade, Geanne Matos; Fontenele, Juvênia Bezerra; de Medeiros, Thales Augusto; Viana, Glauce Socorro de Barros

    2011-06-01

    This work evaluated doxycycline (2nd generation tetracycline) protection against pilocarpine-induced convulsions in rats. The animals were treated with doxycycline (Dox: 10 to100 mg/kg, i.p., 7days), 30min before the pilocarpine injection (P: 300mg/kg, i.p.) and observed for cholinergic signs, latencies to the first convulsion and death. Amino acid concentrations, lipid peroxidation and nitrite levels in temporal cortices were determined as well as the radical scavenging activity. Doxycycline increased latencies to the first convulsion and death as compared to the untreated P300 group. It also decreased glutamate and aspartate, increased GABA, blocked nitrite formation, reduced TBARS contents and showed a radical scavenging activity. Finally, doxycycline decreased the number of degenerating neurons (evaluated by fluoro-jade staining) and increased the number of viable neurons (assessed by cresyl violet staining) as compared do the P300 group. The antioxidant effect associated with decreased levels of excitatory and increased levels of inhibitory amino acids could explain the neuroprotective effect of doxycycline. PMID:21382396

  3. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  4. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  5. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    PubMed

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis. PMID:26603028

  6. Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress

    PubMed Central

    Fu, Juanjuan; Chu, Xitong; Sun, Yongfang; Miao, Yanjun; Xu, Yuefei; Hu, Tianming

    2015-01-01

    Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans. PMID:26151364

  7. Salicylic acid mediates antioxidant defense system and ABA pathway related gene expression in Oryza sativa against quinclorac toxicity.

    PubMed

    Wang, Jian; Lv, Mengting; Islam, Faisal; Gill, Rafaqat A; Yang, Chong; Ali, Basharat; Yan, Guijun; Zhou, Weijun

    2016-11-01

    The auxin herbicide quinclorac is widely used for controlling weeds in transplanted and direct-seeded rice fields. However, its phytotoxic responses on rice are still unknown. Therefore, in the present investigation we studied the effects of different concentrations (0, 0.1 and 0.5g/L) of quinclorac herbicide on the physiological and biochemical changes of two rice cultivars (XS 134 and ZJ 88) and further analyzed the ameliorating role of salicylic acid (SA) on quinclorac toxicity in rice plants. The results revealed that exogenous application of SA significantly increased plant biomass and total chlorophyll contents in herbicide stressed plants. The lipid peroxidation and ROS (H2O2, O2(-.), (-)OH) production were significantly increased in roots and leaves of both rice cultivars under quinclorac stress, demonstrating an oxidative burst in rice plants. Whereas, application of SA significantly lowered ROS contents under quinclorac stress. Further, exogenous SA treatment significantly modulated antioxidant enzymes and enhanced GSH concentration in stress plants. Anatomical observations of leaf and root revealed that herbicide affected internal structures, while SA played a vital role in protection from toxic effects. Expression analysis of stress hormone ABA genes (OsABA8oxs, OsNCEDs) revealed that quinclorac application enhanced stress condition in cultivar ZJ 88, while SA treatment downregulated ABA genes more in cultivar XS 134, which correlated with the enhanced tolerance to quinclorac induced oxidative stress in this cultivar. The present study delineated that SA played a critical role under quinclorac stress in both rice cultivars by regulating antioxidant defense system, reducing ROS formation and preventing the degradation of internal cell organelles. PMID:27448955

  8. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  9. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages.

    PubMed

    Varì, Rosaria; D'Archivio, Massimo; Filesi, Carmelina; Carotenuto, Simona; Scazzocchio, Beatrice; Santangelo, Carmela; Giovannini, Claudio; Masella, Roberta

    2011-05-01

    Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH(2)-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences. PMID:20621462

  10. Chilean prosopis mesocarp flour: phenolic profiling and antioxidant activity.

    PubMed

    Schmeda-Hirschmann, Guillermo; Quispe, Cristina; Soriano, Maria Del Pilar C; Theoduloz, Cristina; Jiménez-Aspée, Felipe; Pérez, Maria Jorgelina; Cuello, Ana Soledad; Isla, Maria Inés

    2015-01-01

    In South America, the mesocarp flour of Prosopis species plays a prominent role as a food resource in arid areas. The aim of this work was the characterization of the phenolic antioxidants occurring in the pod mesocarp flour of Chilean Prosopis. Samples were collected in the Copiapo, Huasco and Elqui valleys from the north of Chile. The samples of P. chilensis flour exhibited a total phenolic content ranging between 0.82-2.57 g gallic acid equivalents/100 g fresh flour weight. The highest antioxidant activity, measured by the DPPH assay, was observed for samples from the Huasco valley. HPLC-MS/MS analysis allowed the tentative identification of eight anthocyanins and 13 phenolic compounds including flavonol glycosides, C-glycosyl flavones and ellagic acid derivatives. The antioxidant activity and the phenolic composition in the flour suggest that this ancient South American resource may have potential as a functional food. PMID:25898415

  11. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae.

    PubMed

    Schmidt, Cristiano G; Gonçalves, Letícia M; Prietto, Luciana; Hackbart, Helen S; Furlong, Eliana B

    2014-03-01

    The solid-state fermentation (SSF) has been employed as a form making available a higher content of functional compounds from agroindustrial wastes. In this work, the effect of SSF with the Rhizopus oryzae fungus on the phenolic acid content of rice bran was studied. Phenolic extracts derived from rice bran and fermented rice bran were evaluated for their ability to reduce free radical 1,1-diphenyl-2-picrihidrazil (DPPH) and for the ability to inhibit the enzymes peroxidase and polyphenol oxidase. The phenolic compound content increased by more than two times with fermentation. A change in the content of phenolic acids was observed, with ferulic acid presenting the greatest increase with the fermentation, starting from 33μg/g in rice bran and reaching 765μg/g in the fermented bran. [corrected]. The phenolic extracts showed an inhibition potential for DPPH and for the peroxidase enzyme, however did not inhibit the polyphenol oxidase enzyme. PMID:24176356

  12. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane. PMID:27451203

  13. Effect of fatty acid profile in vegetable oils and antioxidant supplementation on dairy cattle performance and milk fat depression.

    PubMed

    He, M; Armentano, L E

    2011-05-01

    This study was conducted to evaluate the effect of dietary supplementation of unprotected vegetable oils differing in fatty acid profiles with or without a commercial antioxidant (Agrado Plus, Novus International, St. Charles, MO) on dairy cattle performance, milk fatty acid profiles, and milk fat depression. Twenty-four multiparous Holstein cows were blocked by production (high and low) and assigned to Agrado Plus or no Agrado Plus diets as the main plot in this experiment. The 6 cows in each of the fixed effect groups (high with and without Agrado, low with and without Agrado) were then assigned to a 6 × 6 Latin square as a split plot with 21-d periods. The 6 dietary treatments in the split-plot Latin square were no added oil (control), or 5% DM as oil from palm (PO), high-oleic safflower (OSAF), high-linoleic safflower (LSAF), linseed (LNSD), or corn (CO). Added oil replaced corn starch in the total mixed ration. Diets were formulated to have similar crude protein and neutral detergent fiber, and consisted of 41.2% alfalfa silage, 18.3% corn silage, and 40.5% concentrate mix (dry matter basis). Feeding Agrado Plus did not affect milk, milk fat, or milk protein production or milk fatty acid composition in this study. No significant differences were found between oil feeding versus control for dry matter intake, milk yield, and milk protein yield, but oils other than PO significantly decreased milk fat concentration and proportion and yield of milk short- and medium-chain fatty acids (C(<16)). Feeding PO effectively maintained milk fat yield (1.18 kg/d) and concentration (3.44%), whereas the oils rich in linoleic acid (CO and LSAF) significantly decreased milk fat yield (0.98 and 0.86 vs. 1.14 kg/d) and concentration (3.05 and 2.83 vs. 3.41%) compared with control. Similar lactation performance between OSAF and LNSD suggests that oleic and linolenic acids are roughly equal in potency of milk fat depression. PMID:21524540

  14. Processed sweet corn has higher antioxidant activity.

    PubMed

    Dewanto, Veronica; Wu, Xianzhong; Liu, Rui Hai

    2002-08-14

    Processed fruits and vegetables have been long considered to have lower nutritional value than the fresh produce due to the loss of vitamin C during processing. Vitamin C in apples has been found to contribute <0.4% of total antioxidant activity, indicating most of the activity comes from the natural combination of phytochemicals. This suggests that processed fruits and vegetables may retain their antioxidant activity despite the loss of vitamin C. Here it is shown that thermal processing at 115 degrees C for 25 min significantly elevated the total antioxidant activity of sweet corn by 44% and increased phytochemical content such as ferulic acid by 550% and total phenolics by 54%, although 25% vitamin C loss was observed. Processed sweet corn has increased antioxidant activity equivalent to 210 mg of vitamin C/100 g of corn compared to the remaining 3.2 mg of vitamin C in the sample that contributed only 1.5% of its total antioxidant activity. These findings do not support the notion that processed fruits and vegetables have lower nutritional value than fresh produce. This information may have a significant impact on consumers' food selection by increasing their consumption of fruits and vegetables to reduce the risk of chronic diseases. PMID:12166989

  15. Antioxidant capacity of hydrolyzed porcine tissues

    PubMed Central

    Damgaard, Trine D; Otte, Jeanette A H; Meinert, Lene; Jensen, Kirsten; Lametsch, René

    2014-01-01

    The antioxidative capacity of seven different porcine tissue hydrolysates (colon, appendix, rectum, pancreas, heart, liver, and lung) were tested by four different assays, including iron chelation, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, 2,2-Diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) radical scavenging, and inhibition of lipid oxidation. All hydrolyzed tissues displayed antioxidant capacity in all four assays, with colon, liver, and appendix as the three most potent inhibitors of lipid oxidation (47, 29, and 27 mmol/L trolox equivalent antioxidant capacity [TEAC], respectively) and liver, colon, pancreas, and appendix as the four most potent iron chelators (92% ± 1.1, 79.3% ± 3.2, 77.1% ± 1.8, and 77% ± 2.3, respectively). Furthermore, colon and appendix showed good radical scavenging capacities with ABTS scavenging of 86.4% ± 2.1 and 84.4% ± 2.9 and DPPH scavenging of 17.6% ± 0.3 and 17.1% ± 0.2, respectively. Our results provide new knowledge about the antioxidant capacity of a variety of animal by-products, which can be transformed into antioxidant hydrolysates, thereby creating added value. PMID:24936298

  16. Lactobionic acid as antioxidant and moisturizing active in alkyl polyglucoside-based topical emulsions: the colloidal structure, stability and efficacy evaluation.

    PubMed

    Tasic-Kostov, M; Pavlovic, D; Lukic, M; Jaksic, I; Arsic, I; Savic, S

    2012-10-01

    Cosmeceutical antioxidants may protect the skin against oxidative injury, involved in the pathogenesis of many skin disorders. However, an unsuitable topical delivery system with compromising safety profile can affect the efficacy of an antioxidant active. This study investigated the antioxidant potential of lactobionic acid (LA), a newer cosmeceutical active, per se (in solution) and incorporated into natural alkyl polyglucoside (APG) emulsifier-based system using 1,1-diphenyl-2-picrylhydrazyl free radical scavenging and lipid peroxidation inhibition assays. The α-tocopherol was used as a reference compound. The physical stability (using rheology, polarization microscopy, pH and conductivity measurements) of an Alkyl glucoside-based emulsion was evaluated with and without the active (LA); colloidal structure was assessed using polarization and transmission electron microscopy, rheology, thermal and texture analysis. Additionally, the safety profile and moisturizing potential were investigated using the methods of skin bioengineering. Good physical stability and applicative characteristics were obtained although LA strongly influenced the colloidal structure of the vehicle. LA per se and in APG-based emulsion showed satisfying antioxidant activity that promotes it as mild multifunctional cosmeceutical efficient in the treatment and prevention of the photoaged skin. Employed assays were shown as suitable for the antioxidant activity evaluation of LA in APG-based emulsions, but not for α-tocopherol in the same vehicle. PMID:22691034

  17. Amaranth dye in the evaluation of bleaching of cerium (IV) by antioxidants: Application in food and medicinal plants

    NASA Astrophysics Data System (ADS)

    Nagaraja, Padmarajaiah; Aradhana, Narayanan; Suma, Anandamurthy; Chamaraja, Nelligere Arkeswaraiah; Shivakumar, Anantharaman; Ramya, Kolar Venkatachala

    A simple, low-cost, sensitive, and diversely applicable spectrophotometric method for the determination of total antioxidant capacity of several medicinal plants and food has been developed. The method is based on the bleaching of cerium (IV) by antioxidants and dye in slightly acid medium at room temperature. The unbleached dye, imparting pink color to the solution, is measured at λmax 530 nm which is directly proportional to the antioxidant concentration. The method is reproducible, and the trolox equivalent antioxidant capacities (TEAC coefficients) of the tested antioxidant compounds were correlated with those found by reference method such as ABTS. The recommended method was applied for the determination of total antioxidant capacity of medicinal and food samples. The performance of the recommended method was evaluated in terms of Student's t-test and variance ratio F-test, which indicated the significance of proposed method over the reference method.

  18. Antioxidant activity and sensory evaluation of a rosmarinic acid-enriched extract of Salvia officinalis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extract of S. officinalis (garden sage) was developed using supercritical fluid extraction, followed by hot water extraction. The resulting extract was enriched in polyphenols, including rosmarinic acid (RA), which has shown promising health benefits in animals. The extract contained RA at a conc...

  19. Antioxidant activity and sensory assessment of a rosmarinic acid-enriched extract of Salvia officinalis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extract of S. officinalis (garden sage) was prepared using supercritical carbon dioxide (SC-CO2) extraction, followed by a Soxhlet hot water extraction. The resulting extract was enriched in polyphenols, including rosmarinic acid (RA), which has shown promising health benefits in animals. The ext...

  20. NITROGEN DIOXIDE EXPOSURE AND LUNG ANTIOXIDANTS IN ASCORBIC ACID-DEFICIENT GUINEA PIGS

    EPA Science Inventory

    The authors have previously found that ascorbic acid (AA) deficiency in guinea pigs enhances the pulmonary toxicity of nitrogen dioxide (NO2). The present study showed that exposure to NO2 (4.8 ppm, 3 hr) significantly increased lung lavage fluid protein (a sensitive indicator of...

  1. Determination of total antioxidant capacity of humic acids using CUPRAC, Folin-Ciocalteu, noble metal nanoparticle- and solid-liquid extraction-based methods.

    PubMed

    Karadirek, Şeyda; Kanmaz, Nergis; Balta, Zeynep; Demirçivi, Pelin; Üzer, Ayşem; Hızal, Jülide; Apak, Reşat

    2016-06-01

    Total antioxidant capacity (TAC) of humic acid (HA) samples was determined using CUPRAC (CUPric Reducing Antioxidant Capacity), FC (Folin-Ciocalteu), QUENCHER-CUPRAC, QUENCHER-FC, Ag-NP (Silver nanoparticle)‒ and Au-NP (Gold nanoparticle)‒based methods. Conventional FC and modified FC (MFC) methods were applied to solid samples. Because of decreased solubility of Folin-Ciocalteu's phenol reagent in organic solvents, solvent effect on TAC measurement was investigated using QUENCHER-CUPRAC assay by using ethanol:distilled water and dimethyl sulfoxide:distilled water with varying ratios. To see the combined effect of solubilization (leaching) and TAC measurement of humic acids simultaneously, QUENCHER experiments were performed at 25°C and 50°C; QUENCHER-CUPRAC and QUENCHER-FC methods agreed well and had similar precision in F-statistics. Although the Gibbs free energy change (ΔG°) of the oxidation of HA dihydroxy phenols with the test reagents were negative, the ΔG° was positive only for the reaction of CUPRAC reagent with isolated monohydric phenols, showing CUPRAC selectivity toward polyphenolic antioxidants. This is the first work on the antioxidant capacity measurement of HA having a sparingly soluble matrix where enhanced solubilization of bound phenolics is achieved with coupled oxidation by TAC reagents. PMID:27130098

  2. Antioxidant defense of the brain: a role for astrocytes.

    PubMed

    Wilson, J X

    1997-01-01

    Partially reduced forms of oxygen are produced in the brain during cellular respiration and, at accelerated rates, during brain insults. The most reactive forms, such as the hydroxyl radical, are capable of oxidizing proteins, lipids, and nucleic acids. Oxidative injury has been implicated in degenerative diseases, epilepsy, trauma, and stroke. It is a threshold phenomenon that occurs after antioxidant mechanisms are overwhelmed. Oxidative stress is a disparity between the rates of free radical production and elimination. This imbalance is initiated by numerous factors: acidosis; transition metals; amyloid beta-peptide; the neurotransmitters dopamine, glutamate, and nitric oxide; and uncouplers of mitochondrial electron transport. Antioxidant defenses include the enzymes superoxide dismutase, glutathione peroxidase, and catalase, as well as the low molecular weight reductants alpha-tocopherol (vitamin E), glutathione, and ascorbate (reduced vitamin C). Astrocytes maintain high intracellular concentrations of certain antioxidants, making these cells resistant to oxidative stress relative to oligodendrocytes and neurons. Following reactive gliosis, the neuroprotective role of astrocytes may be accentuated because of increases in a number of activities: expression of antioxidant enzymes; transport and metabolism of glucose that yields reducing equivalents for antioxidant regeneration and lactate for neuronal metabolism; synthesis of glutathione; and recycling of vitamin C. In the latter process, astrocytes take up oxidized vitamin C (dehydroascorbic acid, DHAA) through plasma membrane transporters, reduce it to ascorbate, and then release ascorbate to the extracellular fluid, where it may contribute to antioxidant defense of neurons. PMID:9431439

  3. Bound Phenolics of Quinoa Seeds Released by Acid, Alkaline, and Enzymatic Treatments and Their Antioxidant and α-Glucosidase and Pancreatic Lipase Inhibitory Effects.

    PubMed

    Tang, Yao; Zhang, Bing; Li, Xihong; Chen, Peter X; Zhang, Hua; Liu, Ronghua; Tsao, Rong

    2016-03-01

    Unextractable phenolics from plant foods and their role in health benefits have become increasingly important. Meal residues of three quinoa seeds free of fat and extractable phenolics were subjected to acid, alkaline, and enzymatic hydrolyses. The total and individual phenolic compounds released were analyzed, and 19 phenolics, predominantly phenolic acids and several flavonoids, were identified. The concentration of bound phenolics was highest in black quinoa followed by red and white, regardless of the hydrolysis method. Higher phenolic contents also showed stronger antioxidant activities and inhibition of α-glucosidase and pancreatic lipase activities. Carbohydrases, that is, pectinase, xylanase and feruloyl esterase, which effectively liberated bound phenolics are known to be secreted by colonic bacteria, suggesting potential antioxidant and anti-inflammatory effects by these compounds in the large intestine during colonic fermentation. These results can also be applied to treat foods high in bound phenolics to enhance bioaccessibility. PMID:26853559

  4. Polyphenol contents and antioxidant activity of Brassica nigra (L.) Koch. leaf extract.

    PubMed

    Rajamurugan, R; Selvaganabathy, N; Kumaravel, S; Ramamurthy, Ch; Sujatha, V; Thirunavukkarasu, C

    2012-01-01

    Profound research has been done on the medicinal value of Brassica nigra (BN) seeds, and the leaves of the plant have been investigated in this study. The methanol extracts of the leaves were subjected to several in vitro studies. The antioxidant activity of methanol extract was demonstrated with a wide range of concentration, 10-500 µg mL(-1), and the antioxidant activity increased with the increase in concentration. Total phenol content was found to be 171.73 ± 5.043 gallic acid equivalents and the total flavonoid content 7.45 ± 0.0945 quercetin equivalents. Further quantification and identification of the compounds were done by HPTLC and GC-MS analyses. The predominant phenolic compounds determined by HPTLC were gallic acid, followed by quercetin, ferulic acid, caffeic acid and rutin. The free radical quenching property of BN leaf extract suggests the presence of bioactive natural compounds. PMID:22103437

  5. Protective effect of Bauhinia tomentosa on acetic acid induced ulcerative colitis by regulating antioxidant and inflammatory mediators.

    PubMed

    Kannan, Narayanan; Guruvayoorappan, Chandrasekharan

    2013-05-01

    Inflammatory bowel diseases (IBD), including Crohn's disease and Ulcerative colitis (UC), are life-long and recurrent disorders of the gastrointestinal tract with unknown etiology. The present study is designed to evaluate the ameliorative effect of Bauhinia tomentosa during ulcerative colitis (UC). Three groups of animals (n=6) were treated with B. tomentosa (5, 10, 20 mg/kg B.wt respectively) for 5 consecutive days before induction of UC. UC was induced by intracolonic injection of 3% acetic acid. The colonic mucosal injury was assessed by macroscopic scoring and histological examination. Furthermore, the mucosal content of lipid peroxidation (LPO), reduced glutathione (GSH), nitric oxide (NO), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity confirms that B. tomentosa could significantly inhibit colitis in a dose dependent manner. The myeloperoxidase (MPO), tumor necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS) expression studies and lactate dehydrogenase (LDH) assay also supported that B. tomentosa could significantly inhibit experimental colitis. The effect was comparable to the standard drug sulfasalazine. Colonic mucosal injury parallels with the result of histological and biochemical evaluations. The extracts obtained from B. tomentosa possess active substances, which exert marked protective effects in acute experimental colitis, possibly by regulating the antioxidant and inflammatory mediators. PMID:23538025

  6. Carnosic acid protects against acetaminophen-induced hepatotoxicity by potentiating Nrf2-mediated antioxidant capacity in mice

    PubMed Central

    Guo, Qi; Shen, Zhiyang; Yu, Hongxia; Lu, Gaofeng; Yu, Yong; Liu, Xia

    2016-01-01

    Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure. The study aimed to investigate the protective effect of carnosic acid (CA) on APAP-induced acute hepatotoxicity and its underlying mechanism in mice. To induce hepatotoxicity, APAP solution (400 mg/kg) was administered into mice by intraperitoneal injection. Histological analysis revealed that CA treatment significantly ameliorated APAP-induced hepatic necrosis. The levels of both alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were reduced by CA treatment. Moreover, CA treatment significantly inhibited APAP-induced hepatocytes necrosis and lactate dehydrogenase (LDH) releasing. Western blot analysis showed that CA abrogated APAP-induced cleaved caspase-3, Bax and phosphorylated JNK protein expression. Further results showed that CA treatment markedly inhibited APAP-induced pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and MCP-1 mRNA expression and the levels of phosphorylated IκBα and p65 protein in the liver. In addition, CA treatment reduced APAP- induced hepatic malondialdehyde (MDA) contents and reactive oxygen species (ROS) accumulation. Conversely, hepatic glutathione (GSH) level was increased by administration of CA in APAP-treated mice. Mechanistically, CA facilitated Nrf2 translocation into nuclear through blocking the interaction between Nrf2 and Keap1, which, in turn, upregulated anti-oxidant genes mRNA expression. Taken together, our results indicate that CA facilitates Nrf2 nuclear translocation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity. PMID:26807019

  7. Changes in lipid peroxidation and antioxidant enzyme activities by triiodothyronine (T3) and polyunsaturated fatty acids (PUFA) in rat liver.

    PubMed

    Varghese, S; Lakshmy, P S; Oommen, O V

    2001-11-01

    Thyroid hormones play an important role in the control of metabolism of vertebrates. This investigation was carried out to examine the effects of triiodothyronine (T3) and polyunsaturated fatty acids (PUFA) on lipid peroxidation in rat liver. Male Wistar strain of rats treated with 6-propylthiouracil (6-PTU) showed no significant change in lipid peroxidation as evident from the generation of malondialdehyde and conjugated dienes. However, in PUFA fed animals as well as 6-PTU + PUFA + T3 treated groups, increased peroxidation products were found. Superoxide dismutase (SOD) activity was low in 6-PTU, 6-PTU + PUFA, PUFA, 6-PTU + PUFA + T3 treated animals while glutathione peroxidase (GPx) activity was high in these groups. Catalase activity was low in all treated groups except PUFA alone fed animals. Glutathione reductase (GR) activity was decreased by 6-PTU treatment and increased in PTU + PUFA fed rats. Cellular glutathione level was high in PUFA and low in PTU-treated groups. From these results it can be concluded that both T3 and PUFA have profound influence on lipid peroxidation and antioxidant enzyme activities in rat liver. PMID:11794465

  8. Fatty acids, essential oil and phenolics composition of Silybum marianum seeds and their antioxidant activities.

    PubMed

    Mhamdi, Baya; Abbassi, Feten; Smaoui, Abderrazak; Abdelly, Chedly; Marzouk, Brahim

    2016-05-01

    The presentstudydescribes the biochemical evaluation of Silybum marianum seed. The analysis of essential oil composition of Silybum marianum seed by Gas Chromatography-Mass Spectrometry GC-MS showed the presence of14 volatile components with the predominance of γ-cadinene (49.8%) and α-pinene (24.5%). Whereas, the analysis of fatty acids composition, showed the predominance of linoleic (50.5%) and oleic (30.2%) acids. Silybum marainum presented also an important polyphenol contents with 29mgGAE/g DW, a good antiradical activity (CI(50)=39μg/ml) but a lower reducing power ability. Flavonoid and condensed tannin contents were about 3.39mg EC/g DW and 1.8mg EC/gDW, respectively. The main phenolic compounds identified by RP-HPLC, were silybin A (12.2%), silybin B (17.67%), isosilybin A (21.9%), isosilybin B (12.8%), silychristin (7.9%) andsilydianin (7.5%). PMID:27166539

  9. HPLC Evaluation of Phenolic Profile, Nutritive Content, and Antioxidant Capacity of Extracts Obtained from Punica granatum Fruit Peel

    PubMed Central

    Middha, Sushil Kumar; Usha, Talambedu; Pande, Veena

    2013-01-01

    This study revealed polyphenolic content, nutritive content, antioxidant activity, and phenolic profile of methanol and aqueous extracts of Punica granatum peel extract. For this, extracts were screened for possible antioxidant activities by free radical scavenging activity (DPPH), hydrogen peroxide scavenging activity and ferric-reducing antioxidant power (FRAP) assays. The total phenolics and flavonoid recovered by methanolic (MPE) and the water extract (AQPE) were ranged from 185 ± 12.45 to 298.00 ± 24.86 mg GAE (gallic acid equivalents)/gm and 23.05 ± 1.54 to 49.8 ± 2.14 quercetin (QE) mg/g, respectively. The EC50 of herbal extracts ranged from 100 µg/ml (0.38 quercetin equivalents), for AQPE, 168 µg/ml (0.80 quercetin equivalents), for MPE. The phenolic profile in the methanolic extracts was investigated by chromatographic (HPLC) method. About 5 different flavonoids, phenolic acids, and their derivatives including quercetin (1), rutin (2), gallic acid (3), ellagic acid (4), and punicalagin as a major ellagitannin (5) have been identified. Among both extracts, methanolic extract was the most effective. This report may be the first to show nutritive content and correlation analysis to suggest that phenols and flavonoids might contribute the high antioxidant activity of this fruit peel and establish it as a valuable natural antioxidant source applicable in the health food industry. PMID:23983682

  10. HPLC Evaluation of Phenolic Profile, Nutritive Content, and Antioxidant Capacity of Extracts Obtained from Punica granatum Fruit Peel.

    PubMed

    Middha, Sushil Kumar; Usha, Talambedu; Pande, Veena

    2013-01-01

    This study revealed polyphenolic content, nutritive content, antioxidant activity, and phenolic profile of methanol and aqueous extracts of Punica granatum peel extract. For this, extracts were screened for possible antioxidant activities by free radical scavenging activity (DPPH), hydrogen peroxide scavenging activity and ferric-reducing antioxidant power (FRAP) assays. The total phenolics and flavonoid recovered by methanolic (MPE) and the water extract (AQPE) were ranged from 185 ± 12.45 to 298.00 ± 24.86 mg GAE (gallic acid equivalents)/gm and 23.05 ± 1.54 to 49.8 ± 2.14 quercetin (QE) mg/g, respectively. The EC50 of herbal extracts ranged from 100 µg/ml (0.38 quercetin equivalents), for AQPE, 168 µg/ml (0.80 quercetin equivalents), for MPE. The phenolic profile in the methanolic extracts was investigated by chromatographic (HPLC) method. About 5 different flavonoids, phenolic acids, and their derivatives including quercetin (1), rutin (2), gallic acid (3), ellagic acid (4), and punicalagin as a major ellagitannin (5) have been identified. Among both extracts, methanolic extract was the most effective. This report may be the first to show nutritive content and correlation analysis to suggest that phenols and flavonoids might contribute the high antioxidant activity of this fruit peel and establish it as a valuable natural antioxidant source applicable in the health food industry. PMID:23983682

  11. Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans

    PubMed Central

    Wei, Chia-Cheng; Yen, Pei-Ling; Chang, Shang-Tzen; Cheng, Pei-Ling; Lo, Yi-Chen; Liao, Vivian Hsiu-Chuan

    2016-01-01

    Background Tea seed oil is a high quality edible oil, yet lacking sufficient scientific evidences to support the nutritional and medical purposes. We identified major and minor components in Camellia tenuifolia seed oil and investigated the antioxidative activity and its underlying mechanisms in Caenorhabditis elegans. Principal Findings The results showed that the major constitutes in C. tenuifolia seed oil were unsaturated fatty acids (~78.4%). Moreover, two minor compounds, β-amyrin and β-sitosterol, were identified and their antioxidative activity was examined. We found that oleic acid was the major constitute in C. tenuifolia seed oil and plays a key role in the antioxidative activity of C. tenuifolia seed oil in C. elegans. Conclusions This study found evidences that the transcription factor DAF-16/FOXO was involved in both oleic acid- and C. tenuifolia seed oil-mediated oxidative stress resistance in C. elegans. This study suggests the potential of C. tenuifolia seed oil as nutrient or functional foods. PMID:27275864

  12. Coenzyme Q10 and α-lipoic acid: antioxidant and pro-oxidant effects in plasma and peripheral blood lymphocytes of supplemented subjects

    PubMed Central

    Silvestri, Sonia; Orlando, Patrick; Armeni, Tatiana; Padella, Lucia; Brugè, Francesca; Seddaiu, Giovanna; Littarru, Gian Paolo; Tiano, Luca

    2015-01-01

    Reactive oxygen species not only cause damage but also have a physiological role in the protection against pathogens and in cell signalling. Mitochondrial nutrients, such as coenzyme Q10 and α-lipoic acid, beside their acknowledged antioxidant activities, show interesting features in relation to their redox state and consequent biological activity. In this study, we tested whether oral supplementation with 200 mg/day of coenzyme Q10 alone or in association with 200 mg/die of α-lipoic acid for 15 days on 16 healthy subjects was able to modulate the oxidative status into different compartments (plasma and cells), in basal condition and following an oxidative insult in peripheral blood lymphocytes exposed in vitro to H2O2. Data have shown that tested compounds produced antioxidant and bioenergetic effects improving oxidative status of the lipid compartment and mitochondrial functionality in peripheral blood lymphocytes. Simultaneously, an increased intracellular reactive oxygen species level was observed, although they did not lead to enhanced DNA oxidative damage. Coenzyme Q10 and α-lipoic acid produced beneficial effects also steering intracellular redox poise toward a pro-oxidant environment. In contrast with other antioxidant molecules, pro-oxidant activities of tested mitochondrial nutrients and consequent oxidant mediated signalling, could have important implications in promoting adaptive response to oxidative stress. PMID:26236096

  13. Protein glycation inhibitory activity and antioxidant capacity of clove extract.

    PubMed

    Suantawee, Tanyawan; Wesarachanon, Krittaporn; Anantsuphasak, Kanokphat; Daenphetploy, Tanuch; Thien-Ngern, Sroshin; Thilavech, Thavaree; Pasukamonset, Porntip; Ngamukote, Sathaporn; Adisakwattana, Sirichai

    2015-06-01

    Syzygium aromaticum (L.) (clove) is one of the most widely cultivated spices in many tropical countries. The aim of this study was to determine the phytochemical content, the antioxidant properties and the antiglycation properties of aqueous extract of clove against fructose-mediated protein glycation and oxidation. The result showed that the content of total phenolics and flavonoids in clove extract was 239.58 ± 0.70 mg gallic acid equivalents/g dried extract and 65.67 ± 0.01 mg catechin equivalents/g dried extract, respectively. In addition, clove exhibited antioxidant properties including DPPH radical scavenging activity (IC50 = 0.29 ± 0.01 mg/ml), Trolox equivalent antioxidant capacity (4.69 ± 0.03 μmol Trolox equivalents/mg dried extract), ferric reducing antioxidant power (20.55 ± 0.11 μmol ascorbic acid equivalents/mg dried extract), Oxygen radical absorbance capacity (31.12 ± 0.21 μmol Trolox equivalents/mg dried extract), hydroxyl radical scavenging activity (0.15 ± 0.04 mg Trolox equivalents/mg dried extract), and superoxide radical scavenging activity (18.82 ± 0.50 mg Trolox equivalents/mg dried extract). The aqueous extract of clove (0.25-1.00 mg/ml) significantly inhibited the formation of fluorescent advanced glycation end products (AGEs) and non-fluorescent AGEs (N(ɛ)-(carboxymethyl) lysine (CML)) in glycated BSA during 4 weeks of incubation. The extract also markedly prevented oxidation-induced protein damage by decreasing protein carbonyl formation and protecting against the loss of protein thiol group. These results clearly demonstrated that a polyphenol enriched clove extract, owing to its antioxidant, was capable to inhibit the formation of AGEs and protein glycation. The findings might lead to the possibility of using the clove extract for targeting diabetic complications. PMID:26028769

  14. Total antioxidant capacity of feces of mammalian herbivores and carnivores.

    PubMed

    Saletnik, Bogdan; Bartosz, Grzegorz; Markowski, Janusz; Sadowska-Bartosz, Izabela

    2014-01-01

    The total antioxidant capacities (TAC) of feces of mammalian herbivores and carnivores were compared. TAC were estimated using three different methods: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS*) reduction, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH*) reduction, and ferric reducing antioxidant power (FRAP). TAC of 18 herbivorous species were generally higher with respect to 16 carnivorous species [(14.21 +/- 6.72) vs. (9.45 +/- 7.32) mmol Trolox equivalents/kg feces; P < 0.05] in the FRAP assay. The ABTS* reduction assay indicated that the TAC originating from "fast" reacting antioxidants were higher in the herbivores than in carnivores [(17.92 +/- 7.18) vs. (12.22 +/- 8.5) mmol Trolox equivalents/kg feces; P < 0.05], while a reverse trend was observed for TAC originating from "slowly" reacting antioxidants [(20.68 +/- 4.85) vs. (24.68 +/- 6.87) mmol Trolox equivalents/kg feces]. PMID:24873038

  15. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation.

    PubMed

    Ho, Yuan-Soon; Lai, Ching-Shu; Liu, Hsin-I; Ho, Sheng-Yow; Tai, Chein; Pan, Min-Hsiung; Wang, Ying-Jan

    2007-06-01

    alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several diseases, including hepatic disorder and diabetic polyneuropathy. However, the effects of LA or its reduced form, dihydrolipoic acid (DHLA), on cancer chemoprevention has never been reported. In the present study, we examined the effects of DHLA/LA on the production of nitric oxide (NO) by inducible NO synthase (iNOS) and the formation of prostaglandin E2 (PGE(2)) by cyclooxygenase-2 (COX-2), two important mediators associated with inflammation. DHLA/LA significantly inhibited lipopolysaccharide (LPS)-induced NO and PGE(2) formation in RAW 264.7 cells. Meanwhile, treatment with DHLA/LA suppressed the expression of iNOS protein but, unexpectedly, did not affect or increase the expression of COX-2 protein. The in vivo anti-inflammatory and antitumor-promoting activities were evaluated by a topical 12-O-tetradecanoylphorbol 13-acetate (TPA) application to mouse skin with measurement of edema formation, epidermal thickness and hydrogen peroxide production. DHLA significantly inhibited the priming and activation stages of skin inflammation induced by a double TPA application, by decreasing the inflammatory parameters. Furthermore, DHLA inhibited DMBA (0.3 micromol)/TPA (2.0 nmol)-induced skin tumor formation by reducing the tumor incidence and tumor multiplicity. When applied topically onto the shaven backs of mice prior to TPA, DHLA markedly inhibited the expression of iNOS protein. DHLA also strongly and directly inhibited COX-2 activity. These results suggest that DHLA can be a possible chemopreventive agent in inflammation-associated tumorigenesis. PMID:17403519

  16. The effects of vitamin B6 on lens antioxidant system in valproic acid-administered rats.

    PubMed

    Tunali, S

    2014-06-01

    Valproic acid (VPA, 2-propyl pentanoic acid) is a broad-spectrum antiepileptic drug (AED) and is commonly used in the treatment of bipolar disorders and epilepsy. AEDs are known to result in vascular disturbances. Vitamin B6 (Vit B6) is water soluble vitamin essential for normal growth, development, and metabolism. In this study, we aimed to investigate the protective effects of Vit B6 against VPA-induced lens damage in experimental animals. In this study, male 4-month-old, Sprague-Dawley rats were used. The animals were divided into four groups. Group I was intact control animals. Group II rats were administered with Vit B6 (50 mg/kg/day) for 7 days. Group III rats were administered with only VPA (500 mg/kg/day) for 7 days. Group IV was given VPA + Vit B6 (in a same dose and time). Vit B6 was given to rats by gavage and VPA was given by intraperitoneally. On the 8th day of experiment, all of the animals were fasted overnight and then killed under ether anesthesia. Lens tissues were taken from animals, homogenized in 0.9% saline to make up a 10% homogenate. The homogenates was used for glutathione (GSH), lipid peroxidation (LPO), protein levels, and enzyme analysis. In VPA groups, levels of lens GSH and LPO and activities of glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and aldose reductase were increased, while superoxide dismutase activity was decreased. Treatment with Vit B6 reversed these effects. These results demonstrated that administration of Vit B6 is potentially beneficial agent to reduce the lens damage in VPA toxicity, probably by decreasing oxidative stress. PMID:24107455

  17. Phytochemical Composition and Antioxidant Capacity of Three Malian Medicinal Plant Parts

    PubMed Central

    Muanda, François; Koné, Donatien; Dicko, Amadou; Soulimani, Rachid; Younos, Chafique

    2011-01-01

    This study evaluates the levels of total polyphenolic compounds in three Malian medicinal plants and determines their antioxidant potential. Quantitative and qualitative analysis of polyphenolics contained in plants extracts were carried out by RP-C18 RP–HPLC using UV detector. The antioxidant activity was determined by three tests. They are phosphomolybdenum, DPPH (2,2-diphenyl-1 picrylhydrazyl) and ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic)] tests. The total phenolic and the total flavonoid contents varied from 200 to 7600 mg 100 g−1 dry weight (dw), expressed as gallic acid equivalents and from 680 to 12 300 mg 100 g−1 dw expressed as catechin equivalents, respectively. The total anthocyanin concentrations expressed as cyanin-3-glycoside equivalent varied from 1670 to 28 388 mg 100 g−1 dw. The antioxidant capacity was measured by determining concentration of a polyphenolic (in mg ml−1) required to quench the free radicals by 50% (IC50) and expressed as vitamin C equivalent antioxidant capacity. The IC50 values were ranked between 2.68 and 8.80 μg ml−1 of a solution of 50% (v/v) methanol in water. The uses of plants are rationalized on the basis of their antioxidant capacity. PMID:19736222

  18. Structure-antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid.

    PubMed

    Farhoosh, Reza; Johnny, Saeed; Asnaashari, Maryam; Molaahmadibahraseman, Najme; Sharif, Ali

    2016-03-01

    Anti-DPPH radical effect as well as anti-peroxide activity of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid in a bulk fish oil system and its O/W emulsion were investigated. Electronic phenomena, intra- and/or intermolecular hydrogen bonds, interfacial properties, and chemical reaction of the solvent molecules with phenolic compounds were considered to be mainly involved in the antiradical activities observed. Antioxidant activity of the phenolic acids derivatives as a function of these factors was variously affected by the environmental conditions which may occur in practice. PMID:26471535

  19. Synthesis, structures, electrochemical studies and antioxidant activity of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids

    NASA Astrophysics Data System (ADS)

    Quiroga, Jairo; Romo, Pablo E.; Ortiz, Alejandro; Isaza, José Hipólito; Insuasty, Braulio; Abonia, Rodrigo; Nogueras, Manuel; Cobo, Justo

    2016-09-01

    The synthesis of 5-aryl-4-oxo-3,4,5,8-tetrahydropyrido[2,3-d]pyrimidine-7-carboxylic acids 3 from the reaction of 6-aminopyrimidines 1 with arylidene derivatives of pyruvic acid 2 under microwave and ultrasound irradiation is described. The orientation of cyclization process was determined by NMR measurements. The methodology provides advantages such as high yields and friendly to the environment without the use of solvents. The antioxidant properties, DPPH free radical scavenging, ORAC, and anodic potential oxidation of the new pyridopyrimidines were studied.

  20. Efficacy of Ascorbic Acid (Vitamin C) and/N-Acetylcysteine (NAC) Supplementation on Nutritional and Antioxidant Status of Male Chronic Obstructive Pulmonary Disease (COPD) Patients.

    PubMed

    Pirabbasi, Elham; Shahar, Suzana; Manaf, Zahara Abdul; Rajab, Nor Fadilah; Manap, Roslina Abdul

    2016-01-01

    Antioxidant therapy has a potential to be introduced as therapeutic modality for chronic obstructive pulmonary disease (COPD) patients. This study aimed to determine the effect of antioxidant supplementation [ascorbic acid and N-Acetylcysteine (NAC)] on nutritional and antioxidant status in male COPD patients. A parallel and single blind randomised controlled clinical trial (RCT) was conducted at two medical centers in Kuala Lumpur, Malaysia. Seventy-nine subjects were recruited and randomly divided into four trial arms (i.e., NAC, vitamin C, NAC+vitamin C and control groups) for six mo. The primary outcome was changes in body mass index by estimating power of 90% and significance level of p<0.05. Repeated Measure ANOVA showed that there was a significant interaction effect on BMI (p=0.046) and carbohydrate intake (p=0.030), especially in the NAC group. Plasma glutathione (GSH) increased significantly in all intervention groups, especially in vitamin C (p=0.005). A single supplementation of NAC or vitamin C improved nutritional and antioxidant status of subjects. PMID:27117852

  1. Nrf2-Mediated HO-1 Induction Coupled with the ERK Signaling Pathway Contributes to Indirect Antioxidant Capacity of Caffeic Acid Phenethyl Ester in HepG2 Cells

    PubMed Central

    Kim, Jin-Kyoung; Jang, Hae-Dong

    2014-01-01

    The objective of this study is to investigate the contributing effect of the nuclear transcription factor-erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway on the indirect antioxidant capacity of caffeic acid phenethyl ester (CAPE) against oxidative stress in HepG2 cells. The result of an antioxidant response element (ARE)-luciferase assay showed that CAPE stimulated ARE promoter activity resulting in increased transcriptional and translational activities of heme oxygenase-1 (HO-1). In addition, CAPE treatment enhanced Nrf2 accumulation in the nucleus and the post-translational phosphorylation level of extracellular signal-regulated kinase (ERK) among several protein kinases tested. Treatment with ERK inhibitor U126 completely suppressed CAPE-induced ERK phosphorylation and HO-1 expression, but it only partly inhibited CAPE-induced Nrf2 accumulation and ARE promoter. Using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) method, the cellular antioxidant capacity of CAPE against 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)- or H2O2-induced oxidative stress also was shown to be partially suppressed by the ERK inhibitor. From the overall results it is proposed that the indirect antioxidant activity of CAPE against oxidative stress in HepG2 cells is partially attributed to induction of HO-1, which is regulated by Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-independent Nrf2 activation relying on post-translational phosphorylation of ERK. PMID:25007817

  2. Synergistic ameliorative effects of sesame oil and alpha-lipoic acid against subacute diazinon toxicity in rats: hematological, biochemical, and antioxidant studies.

    PubMed

    Abdel-Daim, Mohamed M; Taha, Ramadan; Ghazy, Emad W; El-Sayed, Yasser S

    2016-01-01

    Diazinon (DZN) is a common organophosphorus insecticide extensively used for agriculture and veterinary purposes. DZN toxicity is not limited to insects; it also induces harmful effects in mammals and birds. Our experiment evaluated the protective and antioxidant potential of sesame oil (SO) and (or) alpha-lipoic acid (ALA) against DZN toxicity in male Wistar albino rats. DZN-treated animals exhibited macrocytic hypochromic anemia and significant increases in serum biochemical parameters related to liver injury, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (γGT), cholesterol, and triglycerides. They also had elevated levels of markers related to cardiac injury, such as lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), and increased biomarkers of renal injury, urea and creatinine. DZN also increased hepatic, renal, and cardiac lipid peroxidation and decreased antioxidant biomarker levels. SO and (or) ALA supplementation ameliorated the deleterious effects of DZN intoxication. Treatment improved hematology and serum parameters, enhanced endogenous antioxidant status, and reduced lipid peroxidation. Importantly, they exerted synergistic hepatoprotective, nephroprotective, and cardioprotective effects. Our findings demonstrate that SO and (or) ALA supplementation can alleviate the toxic effects of DZN via their potent antioxidant and free radical-scavenging activities. PMID:26550680

  3. DELAYED URIC ACID ACCUMULATION IN PLASMA PROVIDES ADDITIONAL ANTI-OXIDANT PROTECTION AGAINST IRON-TRIGGERED OXIDATIVE STRESS AFTER A WINGATE TEST

    PubMed Central

    Souza-Junior, TP; Lorenço-Lima, L; Ganini, D; Vardaris, CV; Polotow, TG

    2014-01-01

    Reactive oxygen species are produced during anaerobic exercise mostly by Fe ions released into plasma and endothelial/muscle xanthine oxidase activation that generates uric acid (UA) as the endpoint metabolite. Paradoxically, UA is considered a major antioxidant by virtue of being able to chelate pro-oxidative iron ions. This work aimed to evaluate the relationship between UA and plasma markers of oxidative stress following the exhaustive Wingate test. Plasma samples of 17 male undergraduate students were collected before, 5 and 60 min after maximal anaerobic effort for the measurement of total iron, haem iron, UA, ferric-reducing antioxidant activity in plasma (FRAP), and malondialdehyde (MDA, biomarker of lipoperoxidation). Iron and FRAP showed similar kinetics in plasma, demonstrating an adequate pro-/antioxidant balance immediately after exercise and during the recovery period (5–60 min). Slight variations of haem iron concentrations did not support a relevant contribution of rhabdomyolysis or haemolysis for iron overload following exercise. UA concentration did not vary immediately after exercise but rather increased 29% during the recovery period. Unaltered MDA levels were concomitantly measured. We propose that delayed UA accumulation in plasma is an auxiliary antioxidant response to post-exercise (iron-mediated) oxidative stress, and the high correlation between total UA and FRAP in plasma (R-Square = 0.636; p = 0.00582) supports this hypothesis. PMID:25435669

  4. Photosynthetic and antioxidant responses of Liquidambar formosana and Schima superba seedlings to sulfuric-rich and nitric-rich simulated acid rain.

    PubMed

    Chen, Juan; Wang, Wen-Hua; Liu, Ting-Wu; Wu, Fei-Hua; Zheng, Hai-Lei

    2013-03-01

    To study whether differential responses occur in photosynthesis and antioxidant system for seedlings of Liquidambar formosana, an acid rain (AR)-sensitive tree species and Schima superba, an AR-tolerant tree species treated with three types of pH 3.0 simulated AR (SiAR) including sulfuric-rich (S-SiAR), nitric-rich (N-SiAR), sulfate and nitrate mixed (SN-SiAR), we investigated the changes of leaf necrosis, chlorophyll content, soluble protein and proline content, photosynthesis and chlorophyll fluorescence characteristics, reactive oxygen species production, membrane lipid peroxidation, small molecular antioxidant content, antioxidant enzyme activities and related protein expressions. Our results showed that SiAR significantly caused leaf necrosis, inhibited photosynthesis, induced superoxide radical and hydrogen peroxide generation, aggravated membrane lipid peroxidation, changed antioxidant enzyme activities, modified related protein expressions such as Cu/Zn superoxide dismutase (SOD), l-ascorbate peroxidase (APX, EC 1. 11. 1. 11), glutathione S transferase (GST, EC 2. 5. 1. 18) and Rubisco large subunit (RuBISCO LSU), altered non-protein thiols (NPT) and glutathione (GSH) content in leaves of L. formosana and S. superba. Taken together, we concluded that the damages caused by SiAR in L. formosana were more severe and suffered from more negative impacts than in S. superba. S-SiAR induced more serious damages for the plants than did SN-SiAR and N-SiAR. PMID:23353765

  5. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System

    PubMed Central

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  6. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System.

    PubMed

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  7. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    SciTech Connect

    Kusunoki, Chisato; Yang, Liu; Yoshizaki, Takeshi; Nakagawa, Fumiyuki; Ishikado, Atsushi; Kondo, Motoyuki; Morino, Katsutaro; Sekine, Osamu; Ugi, Satoshi; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treated with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.

  8. Free radical scavenging reactions of sulfasalazine, 5-aminosalicylic acid and sulfapyridine: mechanistic aspects and antioxidant activity.

    PubMed

    Joshi, Ravi; Kumar, Sudheer; Unnikrishnan, M; Mukherjee, T

    2005-11-01

    Reactions of sulfasalazine (SAZ) and its metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP), with various oxidizing and reducing free radicals (hydroxyl, haloperoxyl, one-electron oxidizing, lipid peroxyl, glutathiyl, superoxide, tryptophanyl, etc.) have been studied to understand the mechanistic aspects of its action against free radicals produced during inflammation. Nanosecond pulse radiolysis technique coupled with transient spectrophotometry has been used for in situ generation of free radicals and to follow their reaction pathways. The transients produced in these reactions have been assigned and radical scavenging rate constants have been measured. In addition to scavenging of various primary and secondary free radicals by SAZ, 5-ASA and SP, 5-ASA has also been observed to efficiently scavenge radicals of biomolecules. 5-ASA has been found to be the active moiety of SAZ involved in the scavenging of oxidizing free radicals whereas reduction of SAZ produced molecular radical anion. The study suggests that free radical scavenging activity of 5-ASA may be a major path of pharmacological action of SAZ against inflammatory bowel diseases (IBD). PMID:16298742

  9. Ascorbic acid, glutathione and synthetic antioxidants prevent the oxidation of vitamin E in platelets.

    PubMed

    Vatassery, G T; Smith, W E; Quach, H T

    1989-12-01

    An earlier report from this laboratory showed that tocopherol in human platelets is oxidized when the platelets are incubated in vitro in Tyrode medium with arachidonate (or other oxidants). Arachidonate is a more potent oxidizing agent in 50 mM potassium phosphate buffer at pH 7.4 with 0.1 mM ethylenediaminetetraacetic acid (EDTA) than in Tyrode medium. Forty to fifty percent of total platelet tocopherol was oxidized upon incubation with 40-50 microM arachidonate in the phosphate-buffered medium. The tocopherol oxidation took place within 15 min after the addition of arachidonate. Preincubation of platelets with ascorbate blocked the oxidation of tocopherol. This is one of the first direct in vitro demonstrations of the vitamin E-sparing action of vitamin C in media containing biological cellular material. Other compounds which blocked the oxidation of platelet tocopherol were ascorbyl palmitate, propyl gallate, butylated hydroxytoluene, hydroquinone and glutathione. If ascorbate or glutathione was added after the tocopherol was oxidized to the quinone there was no reversal of the oxidation. PMID:2515405

  10. Antioxidant activities of hot water extracts from various spices.

    PubMed

    Kim, Il-Suk; Yang, Mi-Ra; Lee, Ok-Hwan; Kang, Suk-Nam

    2011-01-01

    Recently, the natural spices and herbs such as rosemary, oregano, and caraway have been used for the processing of meat products. This study investigates the antioxidant activity of 13 spices commonly used in meat processing plants. The hot water extracts were then used for evaluation of total phenolic content, total flavonoids content and antioxidant activities. Our results show that the hot water extract of oregano gave the highest extraction yield (41.33%) whereas mace (7.64%) gave the lowest. The DPPH radical scavenging ability of the spice extracts can be ranked against ascorbic acid in the order ascorbic acid > clove > thyme > rosemary > savory > oregano. The values for superoxide anion radical scavenging activities were in the order of marjoram > rosemary > oregano > cumin > savory > basil > thyme > fennel > coriander > ascorbic acid. When compared to ascorbic acid (48.72%), the hydroxyl radical scavenging activities of turmeric and mace were found to be higher (p < 0.001). Clove had the highest total phenolic content (108.28 μg catechin equivalent (CE)/g). The total flavonoid content of the spices varied from 324.08 μg quercetin equivalent (QE)/g for thyme to 3.38 μg QE/g for coriander. Our results indicate that hot water extract of several spices had a high antioxidant activity which is partly due to the phenolic and flavonoid compounds. This provides basic data, having implications for further development of processed food products. PMID:21747728

  11. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings.

    PubMed

    Choudhary, Sikander Pal; Kanwar, Mukesh; Bhardwaj, Renu; Gupta, B D; Gupta, R K

    2011-07-01

    The present investigation determined the effects of epibrassinolide (EBL) on the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), and polyamine (PA) and antioxidant potential of 7-d old Raphanus sativus L. cv. 'Pusa chetki' seedlings grown under Cr (VI) metal stress. Reduced titers of free (0.767 μg g(-1) FW) and bound (0.545 μg g(-1) FW) IAA in Cr (VI) stressed seedlings were observed over untreated control. Supplementations of EBL to Cr (VI) stressed seedlings were able to enhance both free (2.14-5.68 μg g(-1) FW) and bound IAA (2.45-7.78 μg g(-1) FW) concentrations in comparison to Cr (VI) metal treatment alone. Significant rise in free (13.49 μg g(-1) FW) and bound (12.17 μg g(-1) FW) ABA contents were noticed for Cr (VI) stressed seedlings when compared to untreated control. No significant increase in ABA contents were recorded for Cr (VI) stressed seedlings upon supplementation with EBL over Cr (VI) treatment alone. A significant increase in Put (18.40 μg g(-1) FW) and Cad (9.08 μg g(-1) FW) contents were found for 10(-9)M EBL plus Cr (VI) metal treatments when compared to Cr (VI) treatment alone. Spermidine (Spd) contents were found to decline significantly for EBL treatment alone or when supplemented with Cr (VI) treatments over untreated controls and Cr (VI) treatment alone. Antioxidant levels were found to enhance, with glutathione (57.98 mg g(-1) FW), proline (4.97 mg g(-1) FW), glycinebetaine (39.01 μmol mL(-1)), ascorbic acid (3.17 mg g(-1) FW) and phytochelatins (65.69 μmol g(-1) FW) contents noted for EBL supplemented to Cr (VI) metal solution over Cr (VI) treatment alone. Reduced activities of guaiacol peroxidase (0.391 U mg(-1) protein) and catalase (0.221 U mg(-1) protein) and enhanced activities of glutathione reductase (7.14 U mg(-1) protein), superoxide dismutase (15.20 U mg(-1) protein) and ascorbate peroxidase (4.31 U mg(-1) protein) were observed in seedlings treated with EBL plus Cr (VI) over Cr metal treatment alone

  12. Isolation and Antimicrobial and Antioxidant Evaluation of Bio-Active Compounds from Eriobotrya Japonica Stems

    PubMed Central

    Rashed, Khaled Nabih; Butnariu, Monica

    2014-01-01

    Purpose: The present study was carried out to evaluate antimicrobial and antioxidant activities from Eriobotrya japonica stems as well investigation of its chemical composition. Methods: Methanol 80% extract of Eriobotrya japonica stems was tested for antimicrobial activity against bacterial and fungal strains and for antioxidant activity using oxygen radical absorbance capacity (ORAC) and the trolox equivalent antioxidant capacity (TEAC) assays and also total content of polyphenols with phytochemical analysis of the extract were determined. Results: The results showed that the extract has a significant antimicrobial activity, it inhibited significantly the growth of Candida albicans suggesting that it can be used in the treatment of fungal infections, and it showed no effect on the other bacterial and fungal strains, the extract has a good antioxidant activity, it has shown high values of oxygen radical absorbance capacity and trolox equivalent antioxidant capacity, while it showed a low value of polyphenol content. Phytochemical analysis of the extract showed the presence of carbohydrates, terpenes, tannins and flavonoids, further phytochemical analysis resulted in the isolation and identification of three triterpenic acids, oleanolic, ursolic and corosolic acids and four flavonoids, naringenin, quercetin, kaempferol 3-O-β-glucoside and quercetin 3-O-α-rhamnoside. Conclusion: These results may help to discover new chemical classes of natural antimicrobial antioxidant substances. PMID:24409413

  13. Phenolic Contents and Antioxidant Properties from Aerial Parts of Achyranthes coynei Sant

    PubMed Central

    Upadhya, V.; Pai, S. R.; Ankad, G.; Hurkadale, P. J.; Hegde, H. V.

    2013-01-01

    Aim of the study was to evaluate antioxidant activity and total phenolic content of Achyranthes coynei; an endemic plant used in treatment of several diseases in the same lines that of Achyranthes aspera by traditional practitioners of Belgaum region. Efficiency of extraction methods was studied for aerial parts (leaves, stem, and inflorescence) extracted in methanol using continuous shaking, microwave assisted and ultra sonic extraction technique, by exposing it for different time period. Total phenolic content was measured by Folin-Ciocalteu method and antioxidant activity using 2,2’-diphenyl-1-picryl hydrazyl radical scavenging assay and ferric reducing antioxidant power assay. Extracts of A. coynei revealed highest yield of total phenolic content in continuous shaking method compared to other methods. Significantly higher amount of phenolic content (467.07±23.35 tannic acid equivalent and 360.83±18.04 caffic acid equivalent mg/100 g FW) was estimated at 360 min of continuous shaking extraction. In 2,2’-diphenyl-1-picryl hydrazyl radical scavenging assay and ferric reducing antioxidant power assay, inflorescence and leaf showed highest potential activity, respectively. Stem extracts showed lower yield of total phenolic content and antioxidant activity. Results also showed 2,2’-diphenyl-1-picryl hydrazyl radical scavenging assay had significant correlation with total phenolic content. This is first report of total phenolic content and antioxidant studies in A. coynei. PMID:24302804

  14. Antioxidant activities of bark extract from mangroves, Bruguiera cylindrica (L.) Blume and Ceriops decandra Perr

    PubMed Central

    Krishnamoorthy, M.; Sasikumar, J. M.; Shamna, R.; Pandiarajan, C.; Sofia, P.; Nagarajan, B.

    2011-01-01

    Objectives: The antioxidant activities of two Indian mangrove plants, Bruguiera cylindrica and Ceriops decandra, were investigated. Materials and Methods: Total phenolics and total flavonoid contents of the mangroves were determined using folin-ciocalteu reagent method and aluminium chloride method, respectively. Antioxidant capacity was assessed by the following methods: 1,1-diphenyl-2-picryl hydroxyl (DPPH.) quenching assay; 2,2’- azinobis-3-ethylbenzothiozoline-6-sulfonic acid (ABTS.+) cation decolorization test; scavenging capacity towards hydroxyl ion radicals (.OH); reductive capacity; and antihemolytic activity. Results: The mangroves yielded 233.3 ± 0.062 and 283.31 ± 0.04 mg gallic acid equivalent/g phenolic contents and 11.6 ± 0.12 and 15.1 ± 0.02 mg quercetin equivalent/g flavonoid contents. The methanol extracts of both mangroves exhibited high antiradical activity against DPPH., ABTS.+, and .OH radicals. The reductive capacity of the extracts increased with increasing concentration of samples. The extracts also inhibited H2O2 induced hemolysis in cow blood erythrocytes. The antioxidant activities were found stronger than that of the reference standard, butylated hydroxy toluene (BHT). The antioxidant activity of mangrove plants was correlated with total phenolics and flavonoid contents. Conclusion: Both plants can be considered as good sources of natural antioxidants for medicinal uses. Further studies are necessary to isolate active principles responsible for the overall antioxidant activity of the extracts. PMID:22022000

  15. Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts.

    PubMed

    Wu, Li-chen; Ho, Ja-an Annie; Shieh, Ming-Chen; Lu, In-Wei

    2005-05-18

    Liver fibrosis is a chronic liver disease that will further develop to cirrhosis if severe damage continues to form. A potential treatment for liver fibrosis is to inhibit activated hepatic stellate cell (HSC) proliferation and, subsequently, to induce HSC apoptosis. It has been reported that antioxidants are able to inhibit the proliferation of HSCs. In this study, the aqueous extract of spirulina was chosen as the source of antioxidant to investigate the inhibitory effect on the proliferation of HSC. The growth inhibitory effects of aqueous spirulina and chlorella extract on human liver cancer cells, HepG2, were also studied and compared in pairs. Results indicated that the total phenol content of spirulina was almost five times greater than that of chlorella (6.86 +/- 0.58 vs 1.44 +/- 0.04 mg tannic acid equivalent/g of algae powder, respectively). The antioxidant activity of spirulina determined by the ABTS*+ method was higher than chlorella (EC50: 72.44 +/- 0.24 micromol of trolox equivalent/g of spirulina extract vs 56.09 +/- 1.99 micromol of trolox equivalent/g of chlorella extract). Results of DPPH* assay also showed a similar trend as the ABTS*+ assay (EC50: 19.39 +/- 0.65 micromol of ascorbic acid equivalent/g of spirulina extract vs 14.04 +/- 1.06 micromol of ascorbic acid equivalent/g of chlorella extract). The aqueous extracts of these two algae both showed antiproliferative effects on HSC and HepG2, but spirulina was a stronger inhibitor than chlorella. Annexin-V staining showed that aqueous extract of spirulina induced apoptosis of HSC after 12 h of treatment. In addition, the aqueous extract of spirulina triggered a cell cycle arrest of HSC at the G2/M phase. PMID:15884862

  16. Effect of stevia and citric acid on the stability of phenolic compounds and in vitro antioxidant and antidiabetic capacity of a roselle (Hibiscus sabdariffa L.) beverage.

    PubMed

    Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Ramírez-de León, José A; Rocha-Guzmán, Nuria E; Reynoso-Camacho, Rosalía

    2015-04-01

    Plant infusions are consumed due to their beneficial effects on health, which is attributed to their bioactive compounds content. However, these compounds are susceptible to degradation during processing and storage. The objective of this research was to evaluate the effect of stevia and citric acid on the stability of phenolic compounds, antioxidant capacity and carbohydrate-hydrolysing enzyme inhibitory activity of roselle beverages during storage. The optimum extraction conditions of roselle polyphenolic compounds was of 95 °C/60 min, which was obtained by a second order experimental design. The incorporation of stevia increased the stability of colour and some polyphenols, such as quercetin, gallic acid and rosmarinic acid, during storage. In addition, stevia decreased the loss of ABTS, DPPH scavenging activity and α-amylase inhibitory capacity, whereas the incorporation of citric acid showed no effect. These results may contribute to the improvement of technological processes for the elaboration of hypocaloric and functional beverages. PMID:25442634

  17. Antioxidant responses and renal crystal formation in rainbow trout treated with melamine administered individually or in combination with cyanuric acid.

    PubMed

    Pacini, Nicole; Prearo, Marino; Abete, Maria Cesarina; Brizio, Paola; Dörr, Ambrosius Josef Martin; Reimschuessel, Renate; Andersen, Wendy; Gasco, Laura; Righetti, Marzia; Elia, Antonia Concetta

    2013-01-01

    In 2007 and 2008, renal stone formation and kidney damage in human infants were linked to consumption of melamine (MEL)-contaminated infant formula, as well as renal failure and death in pets due to pet food containing both MEL and cyanuric acid (CYA). The aim of this study was to examine the effects of MEL and CYA administered individually or in combination on concentrations of certain metabolites and enzyme activities that serve as markers for oxidative stress in kidney and liver of rainbow trout. In addition, the levels of muscle MEL and renal crystal formation were determined. Trout were fed MEL and/or CYA for 8 wk at 250, 500, or 1000 mg of each compound/kg in feed. Fish muscle residues of MEL exhibited a dose-response relationship. Coexposure of trout to MEL and CYA at the highest dose led to lower MEL residue concentrations in muscle compared to exposure to MEL alone. Renal MEL-CYA complexes were found in kidneys of fish treated with combined MEL and CYA. A dose response was evident with respect to both (1) number of trout displaying renal crystals and (2) number of crystals per fish. Changes in concentration of antioxidant parameters, such as glutathione, superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase, were recorded in both tissues of MEL- and CYA-dosed trout. Lipid peroxidation was more pronounced in kidney than liver. Therefore, feed contaminated with both MEL and CYA could be problematic for fish, as MEL administered to trout, individually or in combination with CYA, may facilitate the onset of oxidative damage in trout. PMID:23721584

  18. Interactive effect of salicylic acid on some physiological features and antioxidant enzymes activity in ginger (Zingiber officinale Roscoe).

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E

    2013-01-01

    The effect of foliar salicylic acid (SA) applications (10⁻³ and 10⁻⁵ M) on activities of nitrate reductase, guaiacol peroxidase (POD), superoxide dismutases (SOD), catalase (CAT) and proline enzymes and physiological parameters was evaluated in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In both varieties, tested treatments generally enhanced photosynthetic rate and total dry weight. Photosynthetic rate increases were generally accompanied by increased or unchanged stomatal conductance levels, although intercellular CO₂ concentrations of treated plants were typically lower than in controls. Lower SA concentrations were generally more effective in enhancing photosynthetic rate and plant growth. Exogenous application of SA increased antioxidant enzyme activities and proline content; the greatest responses were obtained in plants sprayed with 10⁻⁵ M SA, with significant increases observed in CAT (20.1%), POD (45.2%), SOD (44.1%) and proline (43.1%) activities. Increased CAT activity in leaves is naturally expected to increase photosynthetic efficiency and thus net photosynthesis by maintaining a constant CO₂ supply. Our results support the idea that low SA concentrations (10⁻⁵ M) may induce nitrite reductase synthesis by mobilizing intracellular NO³⁻ and can provide protection to nitrite reductase degradation in vivo in the absence of NO³⁻. Observed positive correlations among proline, SOD, CAT and POD activities in the studied varieties suggest that increased SOD activity was accompanied by increases in CAT and POD activities because of the high demands of H₂O₂ quenching. PMID:23698049

  19. Histological changes and antioxidant enzyme activity in signal crayfish (Pacifastacus leniusculus) associated with sub-acute peracetic acid exposure.

    PubMed

    Chupani, Latifeh; Zuskova, Eliska; Stara, Alzbeta; Velisek, Josef; Kouba, Antonin

    2016-01-01

    Peracetic acid (PAA) is a powerful disinfectant recently adopted as a therapeutic agent in aquaculture. A concentration of 10 mg L(-1) PAA effectively suppresses zoospores of Aphanomyces astaci, the agent of crayfish plague. To aid in establishing safe therapeutic guideline, the effects of PAA on treated crayfish were investigated through assessment of histological changes and oxidative damage. Adult female signal crayfish Pacifastacus leniusculus (n = 135) were exposed to 2 mg L(-1) and 10 mg L(-1) of PAA for 7 days followed by a 7 day recovery period in clean water. Superoxide dismutase activity was significantly lower in gill and hepatopancreas after three days exposure to 10 mg L(1) PAA than in the group treated with 2 mg L(-1) PAA and a control in only clean water. Catalase activity in gill and hepatopancreas remained unaffected by both exposures. Glutathione reductase was significantly decreased in gill of 10 mg L(-1) PAA treated crayfish and increased in group exposed to 2 mg L(-1) compared to control after 7 days exposure. Antioxidant enzyme activity in exposed groups returned to control values after recovery period. Gill, hepatopancreas, and antennal gland showed slight damage in crayfish treated with 2 mg L(-1) of PAA compared to the control group. The extent and frequency of histological alterations were more pronounced in animals exposed to 10 mg L(-1). The gill was the most affected organ, infiltrated by granular hemocytes and displaying malformations of lamella tips and disorganization of epithelial cells. After a 7 day recovery period, the infiltrating cells in affected tissues of the exposed crayfish began to return to normal levels. Results suggested that the given concentrations could be applied to signal crayfish against crayfish plague agent in aquaculture; however, further studies are required for safe use. PMID:26611721

  20. Ultraviolet-visible study on acid-base equilibria of aporphine alkaloids with antiplasmodial and antioxidant activities from Alseodaphne corneri and Dehaasia longipedicellata

    PubMed Central

    Zahari, Azeana; Ablat, Abdulwali; Omer, Noridayu; Nafiah, Mohd Azlan; Sivasothy, Yasodha; Mohamad, Jamaludin; Khan, Mohammad Niyaz; Awang, Khalijah

    2016-01-01

    The UV-vis spectra of isocorydine 1, norisocorydine 2 and boldine 3 were studied in 2% v/v acetonitrile, at constant ionic strength (0.1 M NaCl, 35 degree Celsius). The pKa values of isocorydine 1 and norisocorydine 2 were 11.75 and 12.07, respectively. Boldine 3 gave a pKa value of 9.16 and 10.44. All of the alkaloids 1–3 were stable at physiological pH; thereby all of them will not ionize, thus permitting the basic nitrogen to be protonated and accumulated within the acidic food vacuole of Plasmodium via pH trapping. Subsequently, acidic food vacuoles that have been neutralized by alkaloids would result in enhancement of the antiplasmodial activity. The alkaloids showed antiplasmodial activity against Plasmodium falciparum and antioxidant activities; DPPH radical scavenging, metal chelating and ferric reducing power. The antioxidant properties of the alkaloids under investigation revealed that in addition to the antiplasmodial activity, the alkaloids can also prevent oxidative damage. It can be prevented by binding free heme and neutralizing the electrons produced during the Plasmodium falciparum mediated haemoglobin destruction in the host. Slightly basic properties of the aforementioned alkaloids, along with their antioxidant activities, are advantageous in improving the suppression of malaria infection that cause less damage to the host. PMID:26898753

  1. Ultraviolet-visible study on acid-base equilibria of aporphine alkaloids with antiplasmodial and antioxidant activities from Alseodaphne corneri and Dehaasia longipedicellata

    NASA Astrophysics Data System (ADS)

    Zahari, Azeana; Ablat, Abdulwali; Omer, Noridayu; Nafiah, Mohd Azlan; Sivasothy, Yasodha; Mohamad, Jamaludin; Khan, Mohammad Niyaz; Awang, Khalijah

    2016-02-01

    The UV-vis spectra of isocorydine 1, norisocorydine 2 and boldine 3 were studied in 2% v/v acetonitrile, at constant ionic strength (0.1 M NaCl, 35 degree Celsius). The pKa values of isocorydine 1 and norisocorydine 2 were 11.75 and 12.07, respectively. Boldine 3 gave a pKa value of 9.16 and 10.44. All of the alkaloids 1-3 were stable at physiological pH; thereby all of them will not ionize, thus permitting the basic nitrogen to be protonated and accumulated within the acidic food vacuole of Plasmodium via pH trapping. Subsequently, acidic food vacuoles that have been neutralized by alkaloids would result in enhancement of the antiplasmodial activity. The alkaloids showed antiplasmodial activity against Plasmodium falciparum and antioxidant activities; DPPH radical scavenging, metal chelating and ferric reducing power. The antioxidant properties of the alkaloids under investigation revealed that in addition to the antiplasmodial activity, the alkaloids can also prevent oxidative damage. It can be prevented by binding free heme and neutralizing the electrons produced during the Plasmodium falciparum mediated haemoglobin destruction in the host. Slightly basic properties of the aforementioned alkaloids, along with their antioxidant activities, are advantageous in improving the suppression of malaria infection that cause less damage to the host.

  2. Surface-Deacetylated Chitin Nano-Fiber/Hyaluronic Acid Composites as Potential Antioxidative Compounds for Use in Extended-Release Matrix Tablets

    PubMed Central

    Anraku, Makoto; Tabuchi, Ryo; Ifuku, Shinsuke; Ishiguro, Takako; Iohara, Daisuke; Hirayama, Fumitoshi

    2015-01-01

    In this study, we examined a possible use of a surface-deacetylated chitin nano-fiber (SDCH-NF) and hyaluronic acid (HA) interpolymer complex (IPC) tablet as a potential antioxidative compound in extended-release matrix tablets. The antioxidant properties of untreated chitin (UCH), SDCH-NF, and HA were examined using N-centered radicals derived from 1,1′-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). SDCH-NF and HA had acceptable scavenging abilities and were relatively efficient radical scavengers, but UCH was much less effective. The results suggest that SDCH-NF and HA could serve as scavengers of compounds related to the development of oxidative stress. An SDCH-NF/HA IPC tablet was prepared and evaluated as an extended-release tablet matrix using famotidine (FMT) as a model drug. The release of FMT from the IPC tablet (DCF-NF:HA = 1:1) was slower than that from a SDCH-NF only tablet. Turbidity measurements and X-ray diffraction (XRD) data also indicated that the optimum complexation ratio for IPC between SDCH-NF/HA is 1/1, resulting in a good relationship between turbidity or XRD of the complex and the release ratio of FMT. These results suggest that an SDCH-NF/HA tablet has the potential for use in an extended-release IPC tablet with a high antioxidant activity. PMID:26501272

  3. Promising antioxidant and anticancer (human breast cancer) oxidovanadium(IV) complex of chlorogenic acid. Synthesis, characterization and spectroscopic examination on the transport mechanism with bovine serum albumin.

    PubMed

    Naso, Luciana G; Valcarcel, María; Roura-Ferrer, Meritxell; Kortazar, Danel; Salado, Clarisa; Lezama, Luis; Rojo, Teofilo; González-Baró, Ana C; Williams, Patricia A M; Ferrer, Evelina G

    2014-06-01

    A new chlorogenate oxidovanadium complex (Na[VO(chlorog)(H2O)3].4H2O) was synthesized by using Schlenk methodology in the course of a reaction at inert atmosphere in which deprotonated chlorogenic acid ligand binds to oxidovanadium(IV) in a reaction experiment controlled via EPR technique and based in a species distribution diagram. The compound was characterized by FTIR, EPR, UV-visible and diffuse reflectance spectroscopies and thermogravimetric, differential thermal and elemental analyses. The ligand and the complex were tested for their antioxidant effects on DPPH (1,1-diphenyl-2-picrylhydrazyl radical), ABTS(+) (radical cation of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt), O2(-), OH and ROO radicals and their cytotoxic activity on different cancer cell lines (SKBR3, T47D and MDAMB231) and primary human mammary epithelial cells. The complex behaved as good antioxidant agent with strongest inhibitory effects on O2(-), OH and ROO radicals and exhibited selective cytotoxicity against SKBR3 cancer cell line. Albumin interaction experiments denoted high affinity toward the complex and its calculated binding constant was indicative of a strong binding to the protein. Based on this study, it is hypothesized that Na[VO(chlorog)(H2O)3].4H2O would be a promising candidate for further evaluation as an antioxidant and anticancer agent. PMID:24681549

  4. Effects of overnight captivity on antioxidant capacity and clinical chemistry of wild southern hairy-nosed wombats (Lasiorhinus latifrons).

    PubMed

    Debrincat, Steven; Taggart, David; Rich, Brian; Beveridge, Ian; Boardman, Wayne; Dibben, Ron

    2014-09-01

    An animal's antioxidant capacity is measured by its ability to quench reactive oxygen species (ROS). During everyday metabolism, antioxidants and ROS are in equilibrium with one another. In times of stress, an animal produces more ROS and therefore uses its antioxidant capacity more readily in order to maintain this equilibrium. When the production of ROS exceeds the antioxidant capacity, an animal will experience extensive oxidative stress, which can ultimately affect that animal's health. During experimental study of wild animals, it is often necessary to capture them for a short period of time. In order to obtain a measurement of the effects of short-term captivity on oxidative capacity in wild animals, a population of southern hairy-nosed wombats (Lasiorhinus latifrons) in Swan Reach, South Australia (34.57 degrees S, 139.60 degrees E), was studied. To assess the variation in antioxidant capacity, two assays, the ferric reducing ability of plasma and the trolox equivalent antioxidant capacity, were performed. A third assay, thiobarbituric acid reactive substances, was used to measure the effects of ROS. Measurements of the specific antioxidants uric acid, ascorbic acid, retinol, alpha-tocopherol, and superoxide dismutase were also performed. The biochemical parameters albumin, total protein, cholinesterase, creatinine, and urea were measured as indicators for health. Results showed a significant reduction in antioxidant capacity during the overnight period of captivity. PMID:25314812

  5. Study of antimutagenic and antioxidant activities of gallic acid and 1,2,3,4,6-pentagalloylglucose from Pistacia lentiscus. Confirmation by microarray expression profiling.

    PubMed

    Abdelwahed, Afef; Bouhlel, Ines; Skandrani, Ines; Valenti, Kita; Kadri, Malika; Guiraud, Pascal; Steiman, Régine; Mariotte, Anne-Marie; Ghedira, Kamel; Laporte, François; Dijoux-Franca, Marie-Geneviève; Chekir-Ghedira, Leila

    2007-01-01

    In vitro antioxidant and antimutagenic activities of two polyphenols isolated from the fruits of Pistacia lentiscus was assessed. Antioxidant activity was determined by the ability of each compound to scavenge the free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH*), to inhibit xanthine oxidase and to inhibit the lipid peroxidation induced by H(2)O(2) in K562 cell line. Antimutagenic activity was assayed with SOS chromotest using Escherichia coli PQ37 as tester strain and Comet assay using K562 cell line. 1,2,3,4,6-Pentagalloylglucose was found to be more effective to scavenge DPPH* radical and protect against lipid peroxidation. Moreover, these two compounds induced an inhibitory activity against nifuroxazide and aflatoxin B1 mutagenicity. The protective effect exhibited by these molecules was also determined by analysis of gene expression as response to an oxidative stress. For this purpose, we used a cDNA-microarray containing 82 genes related to cell defense, essentially represented by antioxidant and DNA repair proteins. We found that 1,2,3,4,6-pentagalloylglucose induced a decrease in the expression of 11 transcripts related to antioxidant enzymes family (GPX1, TXN, AOE372, SHC1 and SEPW1) and DNA repair (POLD1, APEX, POLD2, MPG, PARP and XRCC5). The use of Gallic acid, induced expression of TXN, TXNRD1, AOE372, GSS (antioxidant enzymes) and LIG4, POLD2, MPG, GADD45A, PCNA, RPA2, DDIT3, HMOX2, XPA, TDG, ERCC1 and GTF2H1 (DNA repair) as well as the repression of GPX1, SEPW1, POLD1 and SHC1 gene expression. PMID:17129579

  6. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize.

    PubMed

    Zhu, Yuan; Yan, Jingwei; Liu, Weijuan; Liu, Lei; Sheng, Yu; Sun, Yue; Li, Yanyun; Scheller, Henrik Vibe; Jiang, Mingyi; Hou, Xilin; Ni, Lan; Zhang, Aying

    2016-07-01

    Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize (Zea mays), which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 displays a partially overlapping expression pattern with ZmCCaMK after ABA treatment, and H2O2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates Ser-113 of ZmNAC84 in vitro, and Ser-113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco (Nicotiana tabacum) can improve drought tolerance and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H2O2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK. Subsequently, the activated ZmCCaMK phosphorylates ZmNAC84 at Ser-113, thereby inducing antioxidant defense by activating downstream genes. PMID:27208250

  7. Phosphorylation of a NAC Transcription Factor by a Calcium/Calmodulin-Dependent Protein Kinase Regulates Abscisic Acid-Induced Antioxidant Defense in Maize1[OPEN

    PubMed Central

    Zhu, Yuan; Yan, Jingwei; Liu, Weijuan; Liu, Lei; Sheng, Yu; Sun, Yue; Li, Yanyun; Hou, Xilin; Ni, Lan

    2016-01-01

    Calcium/calmodulin-dependent protein kinase (CCaMK) has been shown to play an important role in abscisic acid (ABA)-induced antioxidant defense and enhance the tolerance of plants to drought stress. However, its downstream molecular events are poorly understood. Here, we identify a NAC transcription factor, ZmNAC84, in maize (Zea mays), which physically interacts with ZmCCaMK in vitro and in vivo. ZmNAC84 displays a partially overlapping expression pattern with ZmCCaMK after ABA treatment, and H2O2 is required for ABA-induced ZmNAC84 expression. Functional analysis reveals that ZmNAC84 is essential for ABA-induced antioxidant defense in a ZmCCaMK-dependent manner. Furthermore, ZmCCaMK directly phosphorylates Ser-113 of ZmNAC84 in vitro, and Ser-113 is essential for the ABA-induced stimulation of antioxidant defense by ZmCCaMK. Moreover, overexpression of ZmNAC84 in tobacco (Nicotiana tabacum) can improve drought tolerance and alleviate drought-induced oxidative damage of transgenic plants. These results define a mechanism for ZmCCaMK function in ABA-induced antioxidant defense, where ABA-produced H2O2 first induces expression of ZmCCaMK and ZmNAC84 and activates ZmCCaMK. Subsequently, the activated ZmCCaMK phosphorylates ZmNAC84 at Ser-113, thereby inducing antioxidant defense by activating downstream genes. PMID:27208250

  8. Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system.

    PubMed

    Liu, Ru-Ming; Li, Ying-Bo; Liang, Xiang-Feng; Liu, Hui-Zhou; Xiao, Jian-Hui; Zhong, Jian-Jiang

    2015-10-01

    Ganoderic acids (GAs) produced by Ganoderma lucidum possess anticancer activities with the generation of reactive oxygen species (ROS). However, the role of oxidative stress in apoptotic process induced by GAs is still undefined. In this study, the effects of four structurally related GAs, i.e. GA-T, GA-Mk, and two deacetylated derivatives of GA-T (GA-T1 and GA-T2) on the antioxidant defense system and induced apoptosis in cervical cancer cells HeLa were investigated in vitro. Our results indicated that the tested GAs (5-40 μM) induced apoptotic cell death through mitochondrial membrane potential decrease and activation of caspase-9 and caspase-3. Furthermore, GAs increased the generation of intracellular ROS and attenuated antioxidant defense system by decreasing glutathione (GSH) level, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities. The above effects were remarkably blocked by the exogenous antioxidants, i.e. N-acetylcysteine, catalase and diphenyleneiodonium chloride. The potency of the four GAs toward induced apoptosis, generation of ROS and suppression of antioxidant defense system was in the order of: GA-T > GA-Mk ≈ GA-T1 > GA-T2 in HeLa cells. These findings suggest that GAs induced mitochondria-dependent cell apoptosis in HeLa cells are mediated via enhancing oxidative stress and depressing antioxidant defense. Additionally, the acetylation of hydroxyl groups in GAs may contribute to their pro-oxidant activities and cytotoxicity, which is helpful to the development of novel chemotherapy agents. PMID:26282491

  9. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    SciTech Connect

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  10. Antioxidant capacity and amino acid analysis of Caralluma adscendens (Roxb.) Haw var. fimbriata (wall.) Grav. & Mayur. aerial parts.

    PubMed

    Maheshu, Vellingiri; Priyadarsini, Deivamarudhachalam Teepica; Sasikumar, Jagathala Mahalingam

    2014-10-01

    Caralluma adscendens (Roxb.) Haw var. fimbriata (wall.) Grav. & Mayur. is a traditional food consumed as vegetable or pickle in arid regions of India and eaten during famines. In Indian traditional medicine, the plant is used to treat diabetes, inflammation and etc. The aim of this study was to evaluate the antioxidant properties (DPPH, TEAC, TAA, FRAP, OH˙ and NO˙ radical scavenging activities) of the different extracts from aerial parts. The levels of total phenolics and flavonoids of the extracts were also determined. The extracts were found to have different levels of antioxidant properties in the test models used. Methanol and water extracts had good total phenolic and flavonoid contents showed potent antioxidant and free radical scavenging activities. The antioxidant activity was correlated well with the amount of total phenolics present in the extracts. The extracts and its components may be used as an additive in food preparations and nutraceuticals. PMID:25328180

  11. Comparative assessment on in vitro antioxidant activities of ethanol extracts of Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens

    PubMed Central

    Rahman, Md. Mominur; Habib, Md. Razibul; Hasan, Md. Anayet; Al Amin, Mohammad; Saha, Ayan; Mannan, Adnan

    2014-01-01

    Background: Averrhoa bilimbi, Gymnema sylvestre and Capsicum frutescens are medicinal plants commonly used as traditional medicine for the treatment of various diseases. The present study was designed to investigate the antioxidant activities of Ethanolic extract of A. bilimbi, G. sylvestre and C. frutescens. Materials and Methods: The antioxidant activity of the extracts were evaluated using total phenolic and flavonoid contents, ferric reducing power and the free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH). Results: Total phenolic and flavonoid contents were higher in G. sylvestre (53.63636 ± 0.454545 mg/g gallic acid equivalent) and C. frutescens (26.66667 ± 2.081666 mg/g quercetin equivalent) respectively. Reducing power of the crude ethanol extracts increased with the concentrations of the extracts and all the extracts showed moderate free radical scavenging activity against DPPH. The plant extract displayed moderate phenolic and flavonoid contents compared to gallic acid and quercetin equivalent respectively, whereas also exhibited significant scavenging of DPPH radical and reducing power compared with ascorbic acid as standard. Conclusion: Our study suggests that G. sylvestre has significant antioxidant activity. The antioxidant compound of this plant might be a therapeutic candidate against oxidative stress related diseases. Different sub-fraction of A. bilimbi and C. frutescens should be studied further to assess the effect. Further study is necessary for isolation and characterization of the active antioxidant agents for better treatment. PMID:24497740

  12. Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): an Andean pseudocereal.

    PubMed

    Peñarrieta, J Mauricio; Alvarado, J Antonio; Akesson, Björn; Bergenståhl, Björn

    2008-06-01

    Total antioxidant capacity (TAC), total phenolic compounds (TPH), total flavonoids (TF) and individual phenolic compounds were determined in canihua collected at approx. 3850 m altitude. The TAC values varied among samples from 2.7 to 44.7 by the ferric reducing antioxidant power (FRAP) method and from 1.8 to 41 by the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method expressed as micromol of Trolox equivalents/g dw. The content of TPH was 12.4-71.2 micromol gallic acid equivalents/g dw and that of the TF ranged between 2.2 and 11.4 micromol of catechin equivalents/g dw. The data obtained by the four methods showed several significant correlations. Prior to analysis by HPLC, the samples were subjected to acid hydrolysis and in the water-soluble extracts this led to an up to 20-fold increase in the TAC values in comparison with the values of the nonhydrolysed samples. HPLC analysis showed the presence of eight major compounds identified as catechin gallate, catechin, vanillic acid, kaempferol, ferulic acid, quercetin, resorcinol and 4-methylresorcinol. Their estimated contribution to the TAC value (FRAP method) indicated that resorcinols contributed most of the antioxidant capacity of the water-soluble extract. The results show that canihua is a potential source of natural antioxidant compounds and other bioactive compounds which can be important for human health. PMID:18537130

  13. Bisphenol A Alters n-6 Fatty Acid Composition and Decreases Antioxidant Enzyme Levels in Rat Testes: A LC-QTOF-Based Metabolomics Study

    PubMed Central

    Qiao, Shanlei; Hu, Nan; Hu, Yanhui; Wu, Wei; Qiu, Lianglin; Zhang, Ruyang; Wang, Yubang; Wang, Shoulin; Zhou, Zuomin; Xia, Yankai; Wang, Xinru

    2012-01-01

    Background Male reproductive toxicity induced by exposure to bisphenol A (BPA) has been widely reported. The testes have proven to be a major target organ of BPA toxicity, so studying testicular metabolite variation holds promise for the discovery of mechanisms linked to the toxic effects of BPA on reproduction. Methodology/Principal Findings Male Sprague-Dawley rats were orally administered doses of BPA at the levels of 0, 50 mg/kg/d for 8 weeks. We used an unbiased liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomics approach to discover, identify, and analyze the variation of testicular metabolites. Two n-6 fatty acids, linoleic acid (LA) and arachidonic acid (AA) were identified as potential testicular biomarkers. Decreased levels of LA and increased levels of AA as well as AA/LA ratio were observed in the testes of the exposed group. According to these suggestions, testicular antioxidant enzyme levels were detected. Testicular superoxide dismutase (SOD) declined significantly in the exposed group compared with that in the non-exposed group, and the glutathione peroxidase (GSH-Px) as well as catalase (CAT) also showed a decreasing trend in BPA treated group. Conclusions/Significance BPA caused testicular n-6 fatty acid composition variation and decreased antioxidant enzyme levels. This study emphasizes that metabolomics brings the promise of biomarkers identification for the discovery of mechanisms underlying reproductive toxicity. PMID:23024759

  14. Effect of domestic cooking on carotenoids, tocopherols, fatty acids, phenolics, and antioxidant activities of lentils (Lens culinaris).

    PubMed

    Zhang, Bing; Deng, Zeyuan; Tang, Yao; Chen, Peter X; Liu, Ronghua; Ramdath, D Dan; Liu, Qiang; Hernandez, Marta; Tsao, Rong

    2014-12-31

    The phytochemicals and antioxidant activity in lipophilic and hydrophilic (extractable and bound) fractions of lentils before and after domestic cooking were investigated. The hydrophilic fractions in lentils contributed much more to the antioxidant activity than the lipophilic fraction. The phenolic content of lentils was mainly composed of extractable compounds. Significant changes (P < 0.05) in carotenoid, tocopherol, total phenolic, and condensed tannin contents of both extractable and bound phenolics fractions, as well as in antioxidant activities, were found in lentils before and after cooking. More specifically, cooking was found to favor the release of carotenoids and tocopherols and flavonols (kaempferol glycosides), but led to losses of flavanols (monomeric and condensed tannin). Whereas reduced flavanols and other phenolic compounds may have negatively affected the antioxidant activity, other components, especially the lipophilic antioxidants, were increased. The present study suggests that incorporation of cooked lentils into the diet will not cause significant loss to the phytochemical antioxidants and thus will retain the potential health benefits. PMID:25474757

  15. Evaluation of In Vitro Antioxidant Potential of Cordia retusa

    PubMed Central

    Amudha, Murugesan; Rani, Shanmugam

    2016-01-01

    The present study was carried out to investigate the antioxidant potential, total flavonoid and phenolic content in extracts of aerial parts of Cordia retua (Vahl.) Masam. The samples such as ethyl acetate and ethanol extracts were tested using six in vitro models such as 2,2-diphenyl-1-picrylhydrazyl, nitric oxide radical, iron chelating, hydroxyl radical, superoxide radical scavenging activity and total antioxidant activity to evaluate the in vitro antioxidant potential of C. retusa by spectrophotometrically. Total flavonoid and phenolic content in samples were estimated using aluminum chloride colorimetric and Folin-Ciocalteu method. The results were analyzed statistically by the regression method. Half maximal inhibitory concentration (IC50) of the ethanol extract was found to be 596 μg/ml for DPPH, 597 μg/ml for nitric oxide radical, 554 μg/ml for iron chelating, 580 μg/ml for hydroxyl radical, 562 μg/ml for superoxide radical and 566 μg/ml for total antioxidant capacity. Furthermore, the total flavonoid content and total phenolic content of the ethanol extract were found to be 2.71 mg gallic acid equivalent per gram of extract and 1.86 mg quercetin equivalent per gram of extract, respectively. In all the testing, a significant correlation existed between concentrations of the extract and percentage inhibition of free radicals. The results of the present comprehensive analysis demonstrated that C. retusa possess potent antioxidant activity, high flavonoid and phenolic content. The antioxidant property may be related to the polyphenols and flavonoids present in the extract. These results clearly indicated that C. retusa is effective against free radical mediated diseases as a natural antioxidant. PMID:27168685

  16. Preliminary phytochemical screening and In vitro antioxidant activities of the aqueous extract of Helichrysum longifolium DC

    PubMed Central

    2010-01-01

    Background Many oxidative stress related diseases are as a result of accumulation of free radicals in the body. A lot of researches are going on worldwide directed towards finding natural antioxidants of plants origins. The aims of this study were to evaluate in vitro antioxidant activities and to screen for phytochemical constituents of Helichrysum longifolium DC. [Family Asteraceae] aqueous crude extract. Methods We assessed the antioxidant potential and phytochemical constituents of crude aqueous extract of Helichrysum longifolium using tests involving inhibition of superoxide anions, DPPH, H2O2, NO and ABTS. The flavonoid, proanthocyanidin and phenolic contents of the extract were also determined using standard phytochemical reaction methods. Results Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and saponins. The total phenolic content of the aqueous leaf extract was 0.499 mg gallic acid equivalent/g of extract powder. The total flavonoid and proanthocyanidin contents of the plant were 0.705 and 0.005 mg gallic acid equivalent/g of extract powder respectively. The percentage inhibition of lipid peroxide at the initial stage of oxidation showed antioxidant activity of 87% compared to those of BHT (84.6%) and gallic acid (96%). Also, the percentage inhibition of malondialdehyde by the extract showed percentage inhibition of 78% comparable to those of BHT (72.24%) and Gallic (94.82%). Conclusions Our findings provide evidence that the crude aqueous extract of H. longifolium is a potential source of natural antioxidants, and this justified its uses in folkloric medicines. PMID:20470421

  17. Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from northeastern Turkey.

    PubMed

    Ercisli, Sezai; Tosun, Murat; Karlidag, Huseyin; Dzubur, Ahmed; Hadziabulic, Semina; Aliman, Yasmina

    2012-09-01

    Fruit skin color, total phenolics, total anthocyanins, soluble solids content, titratable acidity and total antioxidant capacity in fresh fruits of a number of local and well-known fig (Ficus carica L.) genotypes and cultivars grown in northeastern Turkey were determined. TEAC (Trolox equivalent antioxidant capacity) and FRAP (ferric reducing antioxidant power) assays were used to determine total antioxidant capacity. Fruit skin color of genotypes were found to be very diverse, i.e., light green, light purple, purple, dark purple and black. The content of total phenolics, soluble solids content (SSC) and titratable acidity greatly varied in the range from 24 to 237 mg of gallic acid equivalent per 100 g fresh weight, 18.60 to 26.30 % and 0.16 to 0.47 % in local genotypes and studied cultivars. In general, total antioxidant capacities determined by two methods expressed higher values in the local fig genotypes compared with the cultivars. The results suggested that genotype is the main factor that determines difference in the composition of bioactive compounds in figs and provide information on putative health benefits locally grown genotypes. PMID:22618081

  18. Antioxidant Properties of Artemisia annua Extracts in Model Food Emulsions

    PubMed Central

    Skowyra, Monika; Gallego, Maria Gabriela; Segovia, Francisco; Almajano, Maria Pilar

    2014-01-01

    Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Although artemisinin is a major bioactive component present in this Chinese herb, leaf flavonoids have shown a variety of biological activities. The polyphenolic profile of extract from leaves of A. annua was assessed as a source of natural antioxidants. Total phenolic content and total flavonoid content were established and three assays were used to measure the antioxidant capacity of the plant extract. The measurement of scavenging capacity against the 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation, the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP) were 314.99 µM Trolox equivalents (TE)/g DW, 736.26 µM TE/g DW and 212.18 µM TE/g DW, respectively. A. annua extracts also showed good antioxidant properties in 10% sunflower oil-in-water emulsions during prolonged storage (45 days) at 32 °C. Artemisia extract at 2 g/L was as effective as butylated hydroxyanisole (BHA) at 0.02 g/L in slowing down the formation of hydroperoxides as measured by peroxide value and thiobarbituric acid reactive substances. The results of this study indicate that extract of A. annua may be suitable for use in the food matrix as substitutes for synthetic antioxidants. PMID:26784667

  19. Interaction of phenolic antioxidants and hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Wang, W. F.; Luo, J.; Yao, S. D.; Lian, Z. R.; Zhang, J. S.; Lin, N. Y.; Fang, R. Y.; Hu, T. X.

    1993-10-01

    Based on pulse radiolysis of aqueous solutions of four phenolic antioxidants including green tea polyphenols, quercetin, caffeic acid and sinapic acid the rate constants for reactions of OH and the antioxidants were determined. And green tea polyphenols and quercetin are the strongest antioxidants.

  20. Relationship between the solubility, dosage and antioxidant capacity of carnosic acid in raw and cooked ground buffalo meat patties and chicken patties.

    PubMed

    Naveena, B M; Vaithiyanathan, S; Muthukumar, M; Sen, A R; Kumar, Y Praveen; Kiran, M; Shaju, V A; Chandran, K Ramesh

    2013-10-01

    Antioxidant capacity of oil soluble and water dispersible carnosic acid (CA) extracted from dried rosemary leaves using HPLC was evaluated at two different dosages (22.5 ppm vs 130 ppm) in raw and cooked ground buffalo meat patties and chicken patties. Irrespective of total phenolic content, CA extracts reduced (p<0.05) the thiobarbituric acid reactive substances (TBARS) by 39%-47% and 37%-40% in cooked buffalo meat and chicken patties at lower dosage (22.5 ppm) relative to control samples. However, at higher dosage (130 ppm) the TBARS values were reduced (p<0.05) by 86%-96% and 78%-87% in cooked buffalo meat and chicken patties compared to controls. The CA extracts were also effective in inhibiting (p<0.05) peroxide value and free fatty acids in cooked buffalo meat and chicken patties. The CA extracts when used at higher dosage, were also effective in stabilizing raw buffalo meat color. PMID:23743029

  1. Synergistic effect of antioxidant system and osmolyte in hydrogen sulfide and salicylic acid crosstalk-induced heat tolerance in maize (Zea mays L.) seedlings

    PubMed Central

    Li, Zhong-Guang

    2015-01-01

    Salicylic acid (SA), is a plant hormone with multifunction that is involved in plant growth, development and the acquisition of stress tolerance. Hydrogen sulfide (H2S) is emerging similar functions, but crosstalk between SA and H2S in the acquisition of heat tolerance is not clear. Our recent study firstly reported that SA treatment enhanced the activity of L-cysteine desulfhydrase (L-DES), a key enzyme in H2S biosynthesis, followed by induced endogenous H2S accumulation, which in turn improved the heat tolerance of maize seedlings.1 In addition, NaHS, a H2S donor, enhanced SA-induced heat tolerance, while its biosynthesis inhibitor DL-propargylglycine (PAG) and scavenger hydroxylamine (HT) weakened SA-induced heat tolerance. Also, NaHS had no significant effect on SA accumulation and its biosynthesis enzymes phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H) activities, as well as significant difference was not observed in NaHS-induced heat tolerance of maize seedlings by SA biosynthesis inhibitors paclobutrazol (PAC) and 2-aminoindan-2-phosph- onic acid (AIP) treatment.1 Further study displayed that SA induced osmolytes (proline, betaine and trehalose) accumulation and enhancement in activity of antioxidant system in maize seedlings. These results showed that antioxidant system and osmolyte play a synergistic role in SA and H2S crosstalk-induced heat tolerance of maize seedlings. PMID:26337076

  2. In vitro antioxidant activities, free radical scavenging capacity, and tyrosinase inhibitory of flavonoid compounds and ferulic acid from Spiranthes sinensis (Pers.) Ames.

    PubMed

    Liang, Chung Pin; Chang, Chia Hao; Liang, Chien Cheng; Hung, Kuei Yu; Hsieh, Chang Wei

    2014-01-01

    In this study, ultrasound-assisted extraction (UAE) and other methods of extracting flavonoid compounds and ferulic acid (FA) from S. sinensis were investigated. Five different extraction methods, including water extraction (W), water extraction using UAE (W+U), 75% ethanol extraction (E), 75% ethanol extraction using UAE (E+U), and supercritical CO2 extraction (SFE) were applied in the extraction of bioactive compounds (flavonoids and ferulic acid) in order to compare their efficiency. The highest yield of flavonoids (4.28 mg/g) and ferulic acid (4.13 mg/g) content was detected in the E+U extract. Furthermore, S. sinensis extracts obtained by E+U show high antioxidant activity, and IC50 values of 0.47 mg/mL for DPPH radicals and 0.205 mg/mL for metal chelating activity. The total antioxidant assay shows superoxide radical scavenging capacity and in vitro mushroom tyrosinase inhibition in a dose-dependent manner, suggesting that E+U can be used for extraction of bioactive compounds from S. sinensis. PMID:24739930

  3. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content.

    PubMed

    Maadane, Amal; Merghoub, Nawal; Ainane, Tarik; El Arroussi, Hicham; Benhima, Redouane; Amzazi, Saaid; Bakri, Youssef; Wahby, Imane

    2015-12-10

    In order to promote Moroccan natural resources, this study aims to evaluate the potential of microalgae isolated from Moroccan coastlines, as new source of natural antioxidants. Different extracts (ethanolic, ethanol/water and aqueous) obtained from 9 microalgae strains were screened for their in vitro antioxidant activity using DPPH free radical-scavenging assay. The highest antioxidant potentials were obtained in Dunalliela sp., Tetraselmis sp. and Nannochloropsis gaditana extracts. The obtained results indicate that ethanol extract of all microalgae strains exhibit higher antioxidant activity, when compared to water and ethanol/water extracts. Therefore, total phenolic and carotenoid content measurement were performed in active ethanol extracts. The PUFA profiles of ethanol extracts were also determined by GC/MS analysis. The studied microalgae strains displayed high PUFA content ranging from 12.9 to 76.9 %, total carotenoids content varied from 1.9 and 10.8mg/g of extract and total polyphenol content varied from 8.1 to 32.0mg Gallic acid Equivalent/g of extract weight. The correlation between the antioxidant capacities and the phenolic content and the carotenoids content were found to be insignificant, indicating that these compounds might not be major contributor to the antioxidant activity of these microalgae. The microalgae extracts exerting the high antioxidant activity are potential new source of natural antioxidants. PMID:26113214

  4. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties

    PubMed Central

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  5. Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties.

    PubMed

    Filannino, Pasquale; Cavoski, Ivana; Thlien, Nadia; Vincentini, Olimpia; De Angelis, Maria; Silano, Marco; Gobbetti, Marco; Di Cagno, Raffaella

    2016-01-01

    Cactus pear (Opuntia ficus-indica L.) is widely distributed in the arid and semi-arid regions throughout the world. In the last decades, the interest towards vegetative crop increased, and cladodes are exploited for nutraceutical and health-promoting properties. This study aimed at investigating the capacity of selected lactic acid bacteria to increase the antioxidant and anti-inflammatory properties of cactus cladodes pulp, with the perspective of producing a functional ingredient, dietary supplement or pharmaceutical preparation. Preliminarily, the antioxidant activity was determined through in vitro assays. Further, it was confirmed through ex vivo analysis on intestinal Caco-2/TC7 cells, and the profile of flavonoids was characterized. Cactus cladode pulp was fermented with lactic acid bacteria, which were previously selected from plant materials. Chemically acidified suspension, without bacterial inoculum and incubated under the same conditions, was used as the control. Lactobacillus plantarum CIL6, POM1 and 1MR20, Lactobacillus brevis POM2 and POM4, Lactobacillus rossiae 2LC8 and Pediococcus pentosaceus CILSWE5 were the best growing strains. Fermentation of cladode pulp with L. brevis POM2 and POM4 allowed the highest concentration of γ-amino butyric acid. Lactic acid fermentation had preservative effects (P<0.05) on the levels of vitamin C and carotenoids. Two flavonoid derivatives (kaemferol and isorhamnetin) were identified in the ethyl acetate extracts, which were considered to be the major compounds responsible for the increased radical scavenging activity. After inducing oxidative stress by IL-1β, the increased antioxidant activity (P<0.05) of fermented cladode pulp was confirmed using Caco-2/TC7 cells. Fermented cladode pulp had also immune-modulatory effects towards Caco-2 cells. Compared to the control, fermented cladode pulp exhibited a significantly (P<0.05) higher inhibition of IL-8, TNFα and prostaglandins PGE2 synthesis. The highest

  6. Maslinic Acid, a Triterpene from Olive, Affects the Antioxidant and Mitochondrial Status of B16F10 Melanoma Cells Grown under Stressful Conditions

    PubMed Central

    Mokhtari, Khalida; Rufino-Palomares, Eva E.; Pérez-Jiménez, Amalia; Reyes-Zurita, Fernando J.; Figuera, Celeny; García-Salguero, Leticia; Medina, Pedro P.; Peragón, Juan; Lupiáñez, José A.

    2015-01-01

    Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained. PMID:26236377

  7. Maslinic Acid, a Triterpene from Olive, Affects the Antioxidant and Mitochondrial Status of B16F10 Melanoma Cells Grown under Stressful Conditions.

    PubMed

    Mokhtari, Khalida; Rufino-Palomares, Eva E; Pérez-Jiménez, Amalia; Reyes-Zurita, Fernando J; Figuera, Celeny; García-Salguero, Leticia; Medina, Pedro P; Peragón, Juan; Lupiáñez, José A

    2015-01-01

    Maslinic acid (MA) is a natural compound whose structure corresponds to a pentacyclic triterpene. It is abundant in the cuticular lipid layer of olives. MA has many biological and therapeutic properties related to health, including antitumor, anti-inflammatory, antimicrobial, antiparasitic, antihypertensive, and antioxidant activities. However, no studies have been performed to understand the molecular mechanism induced by this compound in melanoma cancer. The objective of this study was to examine the effect of MA in melanoma (B16F10) cells grown in the presence or absence of fetal bovine serum (FBS). We performed cell proliferation measurements, and the reactive oxygen species (ROS) measurements using dihydrorhodamine 123 (DHR 123) and activities of catalase, glucose 6-phosphate dehydrogenase, glutathione S-transferase, and superoxide dismutase. These changes were corroborated by expression assays. FBS absence reduced cell viability decreasing IC50 values of MA. The DHR 123 data showed an increase in the ROS level in the absence of FBS. Furthermore, MA had an antioxidant effect at lower assayed levels measured as DHR and antioxidant defense. However, at higher dosages MA induced cellular damage by apoptosis as seen in the results obtained. PMID:26236377

  8. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    PubMed

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (P<0.05), whereas concentrations of interleukin (IL)-2, IL-4, IL-6 and tumor necrosis factor-α (TNF-α) decreased linearly (P<0.05). The activities of superoxide dismutase (SOD), glutathione-peroxidase (GSH-PX) and total antioxidant capacity (T-AOC) increased linearly (P<0.05), whereas malondialdehyde (MDA) content decreased linearly (P<0.05) with increasing GABA. These results indicate that rumen-protected GABA supplementation to heat-stressed dairy cows can improve their immune function and antioxidant activity. PMID:27503722

  9. Caffeic Acid Phenethyl Ester: A Review of Its Antioxidant Activity, Protective Effects against Ischemia-reperfusion Injury and Drug Adverse Reactions.

    PubMed

    Tolba, Mai F; Omar, Hany A; Azab, Samar S; Khalifa, Amani E; Abdel-Naim, Ashraf B; Abdel-Rahman, Sherif Z

    2016-10-01

    Propolis, a honey bee product, has been used in folk medicine for centuries for the treatment of abscesses, canker sores and for wound healing. Caffeic acid phenethyl ester (CAPE) is one of the most extensively investigated active components of propolis which possess many biological activities, including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-cancer effects. CAPE is a polyphenolic compound characterized by potent antioxidant and cytoprotective activities and protective effects against ischemia-reperfusion (I/R)-induced injury in multiple tissues such as brain, retina, heart, skeletal muscles, testis, ovaries, intestine, colon, and liver. Furthermore, several studies indicated the protective effects of CAPE against chemotherapy-induced adverse drug reactions (ADRs) including several antibiotics (streptomycin, vancomycin, isoniazid, ethambutol) and chemotherapeutic agents (mitomycin, doxorubicin, cisplatin, methotrexate). Due to the broad spectrum of pharmacological activities of CAPE, this review makes a special focus on the recently published data about CAPE antioxidant activity as well as its protective effects against I/R-induced injury and many adverse drug reactions. PMID:25365228

  10. Sun-drying diminishes the antioxidative potentials of leaves of Eugenia uniflora against formation of thiobarbituric acid reactive substances induced in homogenates of rat brain and liver.

    PubMed

    Kade, Ige Joseph; Ibukun, Emmanuel Oluwafemi; Nogueira, Cristina Wayne; da Rocha, Joao Batista Teixeira

    2008-08-01

    Extracts from leaves of Pitanga cherry (Eugenia uniflora) are considered to be effective against many diseases, and are therefore used in popular traditional medicines. In the present study, the antioxidative effect of sun-dried (PCS) and air-dried (PCA) ethanolic extracts of Pitanga cherry leaves were investigated. The antioxidant effects were tested by measuring the ability of both PCS and PCA to inhibit the formation of thiobarbituric acid reactive species (TBARS) induced by prooxidant agents such as iron (II) and sodium nitroprusside (SNP) in rat brain and liver tissues. The results showed that while PCA significantly (P<0.0001) inhibited the formation of TBARS in both liver and brain tissues homogenates, PCS did not. Further investigation reveals that the phenolic content of the PCS was significantly (P<0.0001) lower compared to PCA. Since phenolics in plants largely contributed to the antioxidative potency of plants, we conclude that air-drying should be employed in the preparation of extracts of Pitanga cherry leaves before it is administered empirically as a traditional medicament, and hence this study serves a public awareness to traditional medical practitioners. PMID:18539016

  11. The antioxidant activity of Clitoria ternatea flower petal extracts and eye gel.

    PubMed

    Kamkaen, N; Wilkinson, J M

    2009-11-01

    Extracts of Clitoria ternatea (butterfly pea) flowers are used in Thailand as a component of cosmetics and the chemical composition of the flowers suggest that they may have antioxidant activity. In this study the potential antioxidant activity of C. ternatea extracts and an extract containing eye gel formulation was investigated. Aqueous extracts were shown to have stronger antioxidant activity (as measured by DPPH scavenging activity) than ethanol extracts (IC(50) values were 1 mg/mL and 4 mg/mL, respectively). Aqueous extracts incorporated in to an eye gel formulation were also shown to retain this activity, however, it was significantly less than a commercial antiwrinkle cream included for comparison. The total phenolic content was 1.9 mg/g extract as gallic acid equivalents. The data from this study support the use of C. ternatea extracts as antioxidant inclusions in cosmetic products. PMID:19367668

  12. Antimicrobial and antioxidant screening of N¢-substituted sulphonyl and benzoyl derivatives of 4-Pyridine carboxylic acid hydrazide.

    PubMed

    Naeem, Sabahat; Akhtar, Shamim; Asghar, Nadia; Sherwani, Sikander Khan; Mushtaq, Nousheen; Kamil, Arfa; Zafar, Shaista; Arif, Mohammad; Saify, Zafar Saeed

    2015-11-01

    In this research program, the antibacterial, antifungal and antioxidant activities of six N'-substituted sulfonyl and benzoyl derivatives of lead molecule PCH were reported. Out of these compounds, sulphonyl derivatives 2,3 and benzoyl derivative 5 showed moderate to good activity against different strains of gram-positive and gram-negative bacteria including B. cereus, B. subtilis, B. thruingiensis and S. pyogenes, S. fecalis and E. coli ATCC 8739. Moreover, upon antifungal screening, the compound, N¢-[(2,4,6-trimethylbenzene) sulfonyl]pyridine-4-carbohydrazide possessed good antifungal activity against Candida species, a causative agent of systemic fungal infections. Antioxidant study demonstrated more than 50% inhibition in DPPH assay for sulphonyl derivative 2 indicating its potential as antioxidant while the other derivatives expressed low level of radical scavenging property. PMID:26639506

  13. Home-Processed Red Beetroot (Beta vulgaris L.) Products: Changes in Antioxidant Properties and Bioaccessibility

    PubMed Central

    Guldiken, Burcu; Toydemir, Gamze; Nur Memis, Kubra; Okur, Sena; Boyacioglu, Dilek; Capanoglu, Esra

    2016-01-01

    In this study, the effects of home-processing on the antioxidant properties and in vitro bioaccessibility of red beetroot bioactives were investigated. For this purpose, fresh red beetroot and six different home-processed red beetroot products—including boiled, oven-dried, pickled, pureed, juice-processed, and jam-processed—were analyzed and compared for their total phenolic (TP) and total flavonoid (TF) contents, total antioxidant capacities (TAC), and individual anthocyanin contents. In addition, bioaccessibility of red beetroot antioxidants was determined using an in vitro simulated gastrointestinal digestion method. Dried, pureed, and fresh red beetroot samples had the highest TP, TF, and TAC values, which were 347 ± 23 mg gallic acid equivalent (GAE)/100 g, 289 ± 53 mg rutin equivalent (RE)/100 g, 3889 ± 982 mg trolox equivalent antioxidant capacity (TEAC)/100 g, respectively. The in vitro digestion method revealed the highest recovery for TP (16%) and TAC (1.3%) in jam. This study provides comparative data to evaluate the effects of various home-processing techniques on antioxidant potential of red beetroot products. PMID:27258265

  14. Home-Processed Red Beetroot (Beta vulgaris L.) Products: Changes in Antioxidant Properties and Bioaccessibility.

    PubMed

    Guldiken, Burcu; Toydemir, Gamze; Nur Memis, Kubra; Okur, Sena; Boyacioglu, Dilek; Capanoglu, Esra

    2016-01-01

    In this study, the effects of home-processing on the antioxidant properties and in vitro bioaccessibility of red beetroot bioactives were investigated. For this purpose, fresh red beetroot and six different home-processed red beetroot products-including boiled, oven-dried, pickled, pureed, juice-processed, and jam-processed-were analyzed and compared for their total phenolic (TP) and total flavonoid (TF) contents, total antioxidant capacities (TAC), and individual anthocyanin contents. In addition, bioaccessibility of red beetroot antioxidants was determined using an in vitro simulated gastrointestinal digestion method. Dried, pureed, and fresh red beetroot samples had the highest TP, TF, and TAC values, which were 347 ± 23 mg gallic acid equivalent (GAE)/100 g, 289 ± 53 mg rutin equivalent (RE)/100 g, 3889 ± 982 mg trolox equivalent antioxidant capacity (TEAC)/100 g, respectively. The in vitro digestion method revealed the highest recovery for TP (16%) and TAC (1.3%) in jam. This study provides comparative data to evaluate the effects of various home-processing techniques on antioxidant potential of red beetroot products. PMID:27258265

  15. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    PubMed

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-01

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity. PMID:26521095

  16. Sugar cane stillage: a potential source of natural antioxidants.

    PubMed

    Caderby, Emma; Baumberger, Stéphanie; Hoareau, William; Fargues, Claire; Decloux, Martine; Maillard, Marie-Noëlle

    2013-11-27

    Biorefinery of sugar cane is the first economic activity of Reunion Island. Some sugar cane manufactured products (juice, syrup, molasses) have antioxidant activities and are sources of both phenolic compounds and Maillard Reaction Products (MRP). The study aimed to highlight the global antioxidant activity of sugar cane stillage and understand its identity. Chromatographic fractionation on Sephadex LH-20 resin allowed the recovery of a MRP-rich fraction, responsible for 58 to 66% of the global antioxidant activity according to the nature of the sugar cane stillage (DPPH test), and a phenolic compounds-rich fraction for 37 to 59% of the activity. A good correlation was recorded between the antioxidant activity of the sugar cane stillage and its content in total reducing compounds amount (Folin-Ciocalteu assay), among them 2.8 to 3.9 g/L of phenolic compounds (in 5-caffeoylquinic acid equivalent). Preliminary experiments by HPLC-DAD-MS allowed to identify several free phenolic acids and gave clues to identify esters of quinic acids. PMID:24228787

  17. Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite.

    PubMed

    Wang, Yun; Li, Zheng; Li, Jian; Duan, Ya-Fei; Niu, Jin; Wang, Jun; Huang, Zhong; Lin, Hei-Zhao

    2015-04-01

    An eight-week feeding trial followed by an acute combined stress test of low-salinity and nitrite were performed to evaluate effects of chlorogenic acid (CGA) on growth performance and antioxidant capacity of white shrimp Litopenaeus vannamei. Shrimp were randomly allocated in 12 tanks (30 shrimp per tank) and triplicate tanks were fed with a control diet or diets containing different levels of CGA (100, 200 and 400 mg kg(-1) feed) as treatment groups. Growth performance including weight gain (WG), biomass gain (BG), feed conversion ratio (FCR), and feed intake were determined after feeding for 56 days. Antioxidant capacity were evaluated by determining the activity of total antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) as well as the gene expression of GSH-Px and CAT in the hepatopancreas of shrimp at the end of feeding trial and again at the end of the combined stress test. The results indicated that supplemention of CGA had no significant effects on the growth performance and the activities of TAS, SOD, GSH-Px and CAT in hepatopancreas of shrimp cultured under normal conditions for 56 days. However, compared with the control group, CGA (200, 400 mg kg(-1) feed) significantly improved the resistance of L. vannamei against the combined stress of low-salinity and nitrite, as indicated by the significant (P < 0.05) higher survival, higher activities of TAS, GSH-Px and CAT, as well as higher transcript levels of GPx and CAT gene in shrimp treated with CGA in the combined tress test. Our findings suggested that CGA possessed dual-modulatory effects on antioxidant capacity of L. vannamei and could be a potential feed additive that can enhance shrimp resistance against environmental stresses. The recommended application dosage is 200 mg kg(-1) and further studies are needed to clarify the action model of CGA efficiency. PMID:25600509

  18. Anti-Apoptotic and Anti-Oxidant Effects of Caffeic Acid Phenethyl Ester on Cadmium-Induced Testicular Toxicity in Rats.

    PubMed

    Erboga, Mustafa; Kanter, Mehmet; Aktas, Cevat; Bozdemir Donmez, Yeliz; Fidanol Erboga, Zeynep; Aktas, Emel; Gurel, Ahmet

    2016-05-01

    Cadmium (Cd) is a serious environmental and occupational contaminant and may represent a serious health hazard to humans and other animals. Cd is reported to induce the generation of reactive oxygen species, and induces testicular damage in many species of animals. The goal of our study was to examine the anti-apoptotic and anti-oxidant effects of caffeic acid phenethyl ester (CAPE) on Cd-induced oxidative stress, apoptosis, and testicular injury in rats. A total of 40 male Wistar albino rats were divided into four groups: control, CAPE alone, Cd-treated, and Cd-treated with CAPE; each group consisted of 10 animals. To induce toxicity, Cd (1 mg/kg body weight) was dissolved in normal saline and subcutaneously injected into rats for 30 days. The rats in CAPE-treated group were given a daily dose of 10 μmol/kg body weight of CAPE by using intraperitoneal injection. This application was continued daily for a total of 30 days. To date, no examinations of the anti-apoptotic and anti-oxidant properties of CAPE on Cd-induced apoptosis, oxidative damage, and testicular injury in rat testes have been reported. CAPE-treated animals showed an improved histological appearance and serum testosterone levels in Cd-treated group. Our data indicate a significant reduction in the number of apoptotic cells in testis tissues of the Cd-treated group with CAPE treatment. Moreover, CAPE significantly suppressed lipid peroxidation, compensated deficits in the anti-oxidant defenses in testes tissue resulted from Cd administration. These findings suggest that the protective potential of CAPE in Cd toxicity might be due to its anti-oxidant and anti-apoptotic properties, which could be useful for achieving optimum effects in Cd-induced testicular injury. PMID:26424218

  19. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    PubMed

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems. PMID:24552049

  20. In vitro Antioxidant Activities of Trianthema portulacastrum L. Hydrolysates

    PubMed Central

    Yaqoob, Sadaf; Sultana, Bushra; Mushtaq, Muhammad

    2014-01-01

    Hydrolysates of Trianthema portulacastrum in acidified methanol were evaluated for their total phenolic (TP) constituents and respective antioxidant activities using in vitro assays (i.e., 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, percent inhibition of linoleic acid peroxidation, and ferric reducing power). The observed results indicate that root, shoot, and leaf fractions of T. portulacastrum contain 50.75~98.09 mg gallic acid equivalents/g dry weight of TP. In addition, these fractions have substantial reducing potentials (0.10~0.59), abilities to inhibit peroxidation (43.26~89.98%), and DPPH radical scavenging capabilities (6.98~311.61 μg/mL IC50). The experimental data not only reveal T. portulacastrum as potential source of valuable antioxidants, but also indicate that acidified methanol may be an ideal choice for the enhanced recovery of phenolic compounds with retained biological potential for the food and pharmaceutical industry. PMID:24772406

  1. Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran.

    PubMed

    Saeidi, Keramatollah; Alirezalu, Abolfazl; Akbari, Zahra

    2016-01-01

    In this investigation, the chemical compositions of berries from sea buckthorn were studied. The amount of ascorbic acid and β-carotene determined by HPLC was 170 mg/100 g FW and 0.20 mg/g FW, respectively. Total phenols, anthocyanins, acidity and total soluble solids (TSS) contents were 247 mg GAE/100 g FW, 3 mg/L (cyanidin-3-glucoside), 5.32% and 13.8%, respectively. Fruit antioxidant activity determined by the ferric reducing ability of plasma (FRAP) method was 24.85 mM Fe/100 g FW. Results confirmed the presence of six dominant fatty acids (determined by GC) in fruit including linoleic (34.2%), palmitoleic (21.37%), palmitic (17.2%), oleic (12.8%), linolenic (5.37%) and stearic acid (1.67%). Five dominant fatty acids of the seeds were linoleic (42.36%), linolenic (21.27%), oleic (21.34%), palmitic (6.54%) and stearic acid (2.54%). The nitrogen content was 3.96%. The P, K, Ca, Mg, Fe, Zn, Mn, Cu, Cd and Cl contents of fruit were 491, 1674, 1290, 990, 291, 29.77, 108.37, 17.87, 0.021 and 2.18 mg/kg DW, respectively. PMID:26214249

  2. Examining food additives and spices for their anti-oxidant ability to counteract oxidative damage due to chronic exposure to free radicals from environmental pollutants

    NASA Astrophysics Data System (ADS)

    Martinez, Raul A., III

    The main objective of this work was to examine food additives and spices (from the Apiaceae family) to determine their antioxidant properties to counteract oxidative stress (damage) caused by Environmental pollutants. Environmental pollutants generate Reactive Oxygen species and Reactive Nitrogen species. Star anise essential oil showed lower antioxidant activity than extracts using DPPH scavenging. Dill Seed -- Anethum Graveolens -the monoterpene components of dill showed to activate the enzyme glutathione-S-transferase , which helped attach the antioxidant molecule glutathione to oxidized molecules that would otherwise do damage in the body. The antioxidant activity of extracts of dill was comparable with ascorbic acid, alpha-tocopherol, and quercetin in in-vitro systems. Black Cumin -- Nigella Sativa: was evaluated the method 1,1-diphenyl2-picrylhhydrazyl (DPPH) radical scavenging activity. Positive correlations were found between the total phenolic content in the black cumin extracts and their antioxidant activities. Caraway -- Carum Carvi: The antioxidant activity was evaluated by the scavenging effects of 1,1'-diphenyl-2-picrylhydrazyl (DPPH). Caraway showed strong antioxidant activity. Cumin -- Cuminum Cyminum - the major polyphenolic were extracted and s