Science.gov

Sample records for acid esterase fae

  1. Regulation of the Feruloyl Esterase (faeA) Gene from Aspergillus niger

    PubMed Central

    de Vries, Ronald P.; Visser, Jaap

    1999-01-01

    Feruloyl esterases can remove aromatic residues (e.g., ferulic acid) from plant cell wall polysaccharides (xylan, pectin) and are essential for complete degradation of these polysaccharides. Expression of the feruloyl esterase-encoding gene (faeA) from Aspergillus niger depends on d-xylose (expression is mediated by XlnR, the xylanolytic transcriptional activator) and on a second system that responds to aromatic compounds with a defined ring structure, such as ferulic acid and vanillic acid. Several compounds were tested, and all of the inducing compounds contained a benzene ring which had a methoxy group at C-3 and a hydroxy group at C-4 but was not substituted at C-5. Various aliphatic groups occurred at C-1. faeA expression in the presence of xylose or ferulic acid was repressed by glucose. faeA expression in the presence of ferulic acid and xylose was greater than faeA expression in the presence of either compound alone. The various inducing systems allow A. niger to produce feruloyl esterase not only during growth on xylan but also during growth on other ferulic acid-containing cell wall polysaccharides, such as pectin. PMID:10584009

  2. Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger.

    PubMed

    Faulds, Craig B; Molina, Rafael; Gonzalez, Ramón; Husband, Fiona; Juge, Nathalie; Sanz-Aparicio, Julia; Hermoso, Juan A

    2005-09-01

    Feruloyl esterases hydrolyse phenolic groups involved in the cross-linking of arabinoxylan to other polymeric structures. This is important for opening the cell wall structure making material more accessible to glycoside hydrolases. Here we describe the crystal structure of inactive S133A mutant of type-A feruloyl esterase from Aspergillus niger (AnFaeA) in complex with a feruloylated trisaccharide substrate. Only the ferulic acid moiety of the substrate is visible in the electron density map, showing interactions through its OH and OCH(3) groups with the hydroxyl groups of Tyr80. The importance of aromatic and polar residues in the activity of AnFaeA was also evaluated using site-directed mutagenesis. Four mutant proteins were heterologously expressed in Pichia pastoris, and their kinetic properties determined against methyl esters of ferulic, sinapic, caffeic and p-coumaric acid. The k(cat) of Y80S, Y80V, W260S and W260V was drastically reduced compared to that of the wild-type enzyme. However, the replacement of Tyr80 and Trp260 with smaller residues broadened the substrate specificity of the enzyme, allowing the hydrolysis of methyl caffeate. The role of Tyr80 and Trp260 in AnFaeA are discussed in light of the three-dimensional structure. PMID:16128806

  3. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium funiculosum

    NASA Astrophysics Data System (ADS)

    Knoshaug, Eric P.; Selig, Michael J.; Baker, John O.; Decker, Stephen R.; Himmel, Michael E.; Adney, William S.

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  4. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium Funiculosum

    SciTech Connect

    Knoshaug, E. P.; Selig, M. J.; Baker, J. O.; Decker, S. R.; Himmel, M. E.; Adney, W. S.

    2008-01-01

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  5. Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis.

    PubMed

    Yin, Xin; Li, Jian-Fang; Wang, Chun-Juan; Hu, Die; Wu, Qin; Gu, Ying; Wu, Min-Chen

    2015-12-01

    Feruloyl or ferulic acid esterase (Fae, EC 3.1.1.73) catalyzes the hydrolysis of ester bonds between polysaccharides and phenolic acid compounds in xylan side chain. In this study, the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii was increased by iterative saturation mutagenesis (ISM). Two amino acids, Ser33 and Asn92, were selected for saturation mutagenesis according to the B-factors analyzed by B-FITTER software and ΔΔG values predicted by PoPMuSiC algorithm. After screening the saturation mutagenesis libraries constructed in Pichia pastoris, 15 promising variants were obtained. The best variant S33E/N92-4 (S33E/N92R) produced a T m value of 44.5 °C, the half-lives (t1/2) of 35 and 198 min at 55 and 50 °C, respectively, corresponding to a 4.7 °C, 2.33- and 3.96-fold improvement compared to the wild type. Additionally, the best S33 variant S33-6 (S33E) was thermostable at 50 °C with a t1/2 of 82 min, which was 32 min longer than that of the wild type. All the screened S33E/N92 variants were more thermostable than the best S33 variant S33-6 (S33E). This work would contribute to the further studies on higher thermostability modification of type A feruloyl esterases, especially those from fungi. The thermostable feruloyl esterase variants were expected to be potential candidates for industrial application in prompting the enzymic degradation of plant biomass materials at elevated temperatures. PMID:26266754

  6. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.

    PubMed

    Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda

    2014-06-01

    The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material. PMID:24664515

  7. Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aspergillus niger ferulic acid esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interactio...

  8. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator.

    PubMed Central

    James, D W; Lim, E; Keller, J; Plooy, I; Ralston, E; Dooner, H K

    1995-01-01

    The FATTY ACID ELONGATION1 (FAE1) gene of Arabidopsis is required for the synthesis of very long chain fatty acids in the seed. The product of the FAE1 gene is presumed to be a condensing enzyme that extends the chain length of fatty acids from C18 to C20 and C22. We report here the cloning of FAE1 by directed transposon tagging with the maize element Activator (Ac). An unstable fae1 mutant was isolated in a line carrying Ac linked to the FAE1 locus on chromosome 4. Cosegregation and reversion analyses established that the new mutant was tagged by Ac. A DNA fragment flanking Ac was cloned by inverse polymerase chain reaction and used to isolate FAE1 genomic clones and a cDNA clone from a library made from immature siliques. The predicted amino acid sequence of the FAE1 protein shares homology with those of other condensing enzymes (chalcone synthase, stilbene synthases, and beta-ketoacyl-acyl carrier protein synthase III), supporting the notion that FAE1 is the structural gene for a synthase or condensing enzyme. FAE1 is expressed in developing seed, but not in leaves, as expected from the effect of the fae1 mutation on the fatty acid compositions of those tissues. PMID:7734965

  9. A novel feruloyl esterase from rumen microbial metagenome: Gene cloning and enzyme characterization in the release of mono- and diferulic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates. The RuFae4 alone releas...

  10. Phenolic acid esterases, coding sequences and methods

    DOEpatents

    Blum, David L.; Kataeva, Irina; Li, Xin-Liang; Ljungdahl, Lars G.

    2002-01-01

    Described herein are four phenolic acid esterases, three of which correspond to domains of previously unknown function within bacterial xylanases, from XynY and XynZ of Clostridium thermocellum and from a xylanase of Ruminococcus. The fourth specifically exemplified xylanase is a protein encoded within the genome of Orpinomyces PC-2. The amino acids of these polypeptides and nucleotide sequences encoding them are provided. Recombinant host cells, expression vectors and methods for the recombinant production of phenolic acid esterases are also provided.

  11. Novel ferulate esterase from Gram-positive lactic acid bacteria and analyses of the recombinant enzyme produced in E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a plate containing ethyl ferulate as sole carbon source, various bacteria cultures were screened for ferulate esterase (FAE). Among a dozen of species showing positive FAE, one Lactobacillus fermentum strain NRRL 1932 demonstrated the strongest activity. Using a published sequence of ferulate ...

  12. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility

    PubMed Central

    2014-01-01

    Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274

  13. Lerisetron. FAES.

    PubMed

    Huckle, Richard

    2003-07-01

    Lerisetron is a 5-hydroxytryptamine3 receptor antagonist under development by FAES Farma for the potential treatment of emesis resulting from chemotherapy. Phase I trials of lerisetron were underway in Spain by 1994, and as of June 2000, the compound was in phase II trials in the UK. By the end of 2001, phase II trials had been completed and phase III trials had commenced. PMID:14619411

  14. A halotolerant type A feruloyl esterase from Pleurotus eryngii.

    PubMed

    Nieter, Annabel; Haase-Aschoff, Paul; Linke, Diana; Nimtz, Manfred; Berger, Ralf G

    2014-03-01

    An extracellular feruloyl esterase (PeFaeA) from the culture supernatant of Pleurotus eryngii was purified to homogeneity using cation exchange, hydrophobic interaction, and size exclusion chromatography. The length of the complete coding sequence of PeFaeA was determined to 1668 bp corresponding to a protein of 555 amino acids. The catalytic triad of Ser-Glu-His demonstrated the uniqueness of the enzyme compared to previously published FAEs. The purified PeFaeA was a monomer with an estimated molecular mass of 67 kDa. Maximum feruloyl esterase (FAE) activity was observed at pH 5.0 and 50 °C, respectively. Metal ions (5 mM), except Hg(2+), had no significant influence on the enzyme activity. Substrate specificity profiling characterized the enzyme as a type A FAE preferring bulky natural substrates, such as feruloylated saccharides, rather than small synthetic ones. Km and kcat of the purified enzyme for methyl ferulate were 0.15 mM and 0.85 s(-1). In the presence of 3 M NaCl activity of the enzyme increased by 28 %. PeFaeA alone released only little ferulic acid from destarched wheat bran (DSWB), whereas after addition of Trichoderma viride xylanase the concentration increased more than 20 fold. PMID:24607359

  15. Detection of feruloyl- and cinnamoyl esterases from basidiomycetes in the presence of interfering laccase.

    PubMed

    Haase-Aschoff, Paul; Linke, Diana; Berger, Ralf G

    2013-02-01

    Little is known on basidiomycete sources of feruloyl esterases (FAEs), although many wood-rotting representatives of these fungi typically grow on feruloyl-rich substrates. A major reason is that the almost ubiquitous presence of laccases interferes with the detection of FAE activity. Laccases polymerize the liberated ferulic acid (FA) in situ, thus detracting the product of enzymatic hydrolysis from its detection. A rapid HPLC-UV method was developed to detect the loss of FA, but also to quantify the hydrolysis of FA esters. The method allows at the same time to evaluate the substrate specificity of a FAE. Forty one basidiomycetes were tested for their FAE activities, and 25 out of the set were positive. The basidiomycetes hydrolyzing cinnamates with the highest conversion rates were Auricularia auricula-judae and Marasmius scorodonius. Moreover, a new FAE inducer, the nonionic detergent Tween 80, was found. This is the first comprehensive study on basidiomycete sources of FAEs. PMID:23306132

  16. Probiotic Ferulic Acid Esterase Active Lactobacillus fermentum NCIMB 5221 APA Microcapsules for Oral Delivery: Preparation and in Vitro Characterization.

    PubMed

    Tomaro-Duchesneau, Catherine; Saha, Shyamali; Malhotra, Meenakshi; Coussa-Charley, Michael; Kahouli, Imen; Jones, Mitchell L; Labbé, Alain; Prakash, Satya

    2012-01-01

    Probiotics possess potential therapeutic and preventative effects for various diseases and metabolic disorders. One important limitation for the oral delivery of probiotics is the harsh conditions of the upper gastrointestinal tract (GIT) which challenge bacterial viability and activity. One proposed method to surpass this obstacle is the use of microencapsulation to improve the delivery of bacterial cells to the lower GIT. The aim of this study is to use alginate-poly-L-lysine-alginate (APA) microcapsules to encapsulate Lactobacillus fermentum NCIMB 5221 and characterize its enzymatic activity and viability through a simulated GIT. This specific strain, in previous research, was characterized for its inherent ferulic acid esterase (FAE) activity which could prove beneficial in the development of a therapeutic for the treatment and prevention of cancers and metabolic disorders. Our findings demonstrate that the APA microcapsule does not slow the mass transfer of substrate into and that of the FA product out of the microcapsule, while also not impairing bacterial cell viability. The use of simulated gastrointestinal conditions led to a significant 2.5 log difference in viability between the free (1.10 × 104 ± 1.00 × 103 cfu/mL) and the microencapsulated (5.50 × 106 ± 1.00 × 105 cfu/mL) L. fermentum NCIMB 5221 following exposure. The work presented here suggests that APA microencapsulation can be used as an effective oral delivery method for L. fermentum NCIMB 5221, a FAE-active probiotic strain. PMID:24288090

  17. Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury.

    PubMed

    Esposito, Emanuela; Cordaro, Marika; Cuzzocrea, Salvatore

    2014-08-01

    Ethanolamides of long-chain fatty acids are a class of endogenous lipid mediators generally referred to as N-acylethanolamines (NAEs). NAEs include anti-inflammatory and analgesic palmitoylethanolamide, anorexic oleoylethanolamide, stearoylethanolamide, and the endocannabinoid anandamide. Traumatic brain injury (TBI), associated with a high morbidity and mortality and no specific therapeutic treatment, has become a pressing public health and medical problem. TBI is a complex process evoking systemic immune responses as well as direct local responses in the brain tissues. The direct (primary) damage disrupts the blood-brain barrier (BBB), injures the neurons and initiates a cascade of inflammatory reactions including chemokine production and activation of resident immune cells. The effect of TBI is not restricted to the brain; it can cause multi-organ damage and evoke systemic immune response with cytokine and chemokine production. This facilitates the recruitment of immune cells to the site of injury and progression of the inflammatory reaction. Depending on severity, TBI induces immediate neuropathologic effects that, for the mildest form, may be transient; however, with increasing severity, these injuries cause cumulative neural damage and degeneration. Moreover, TBI leads to increased catabolism of phospholipids, resulting in a series of phospholipid breakdown products, some of which have potent biological activity. Ischemia-reperfusion (I/R) injury resulting from stroke leads to metabolic distress, oxidative stress and neuroinflammation, making it likely that multiple therapeutic intervention strategies may be needed for successful treatment. Current therapeutic strategies for stroke need complimentary neuroprotective treatments to provide a better outcome. Prior studies on NAEs have demonstrated neurotrophic/neuroprotective activities across a broad spectrum of cellular and animal models of neurodegenerative and acute cerebrovascular disorders. The present

  18. Contribution of Disulfide Bridges to the Thermostability of a Type A Feruloyl Esterase from Aspergillus usamii

    PubMed Central

    Li, Jian-Fang; He, Yao; Zhu, Tian-Di; Wu, Min-Chen

    2015-01-01

    The contribution of disulfide bridges to the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii E001 was studied by introducing an extra disulfide bridge or eliminating a native one from the enzyme. MODIP and DbD, two computational tools that can predict the possible disulfide bridges in proteins for thermostability improvement, and molecular dynamics (MD) simulations were used to design the extra disulfide bridge. One residue pair A126-N152 was chosen, and the respective amino acid residues were mutated to cysteine. The wild-type AuFaeA and its variants were expressed in Pichia pastoris GS115. The temperature optimum of the recombinant (re-) AuFaeAA126C-N152C was increased by 6°C compared to that of re-AuFaeA. The thermal inactivation half-lives of re-AuFaeAA126C-N152C at 55 and 60°C were 188 and 40 min, which were 12.5- and 10-folds longer than those of re-AuFaeA. The catalytic efficiency (kcat/Km) of re-AuFaeAA126C-N152C was similar to that of re-AuFaeA. Additionally, after elimination of each native disulfide bridge in AuFaeA, a great decrease in expression level and at least 10°C decrease in thermal stability of recombinant AuEaeA variants were also observed. PMID:25969986

  19. Common and Distant Structural Characteristics of Feruloyl Esterase Families from Aspergillus oryzae

    PubMed Central

    Udatha, D. B. R. K. Gupta; Mapelli, Valeria; Panagiotou, Gianni; Olsson, Lisbeth

    2012-01-01

    Background Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzymes. FAEs have gained increased attention in the area of biocatalytic transformations for the synthesis of value added compounds with medicinal and nutritional applications. Following the increasing attention on these enzymes, a novel descriptor based classification system has been proposed for FAEs resulting into 12 distinct families and pharmacophore models for three FAE sub-families have been developed. Methodology/Principal Findings The feruloylome of Aspergillus oryzae contains 13 predicted FAEs belonging to six sub-families based on our recently developed descriptor-based classification system. The three-dimensional structures of the 13 FAEs were modeled for structural analysis of the feruloylome. The three genes coding for three enzymes, viz., A.O.2, A.O.8 and A.O.10 from the feruloylome of A. oryzae, representing sub-families with unknown functional features, were heterologously expressed in Pichia pastoris, characterized for substrate specificity and structural characterization through CD spectroscopy. Common feature-based pharamacophore models were developed according to substrate specificity characteristics of the three enzymes. The active site residues were identified for the three expressed FAEs by determining the titration curves of amino acid residues as a function of the pH by applying molecular simulations. Conclusions/Significance Our findings on the structure-function relationships and substrate specificity of the FAEs of A. oryzae will be instrumental for further understanding of the FAE families in the novel classification system. The developed pharmacophore models could be applied for virtual screening of compound databases for short listing the

  20. Feruloyl esterase from the edible mushroom Panus giganteus: a potential dietary supplement.

    PubMed

    Wang, Li; Ma, Zengqiang; Du, Fang; Wang, Hexiang; Ng, Tzi Bun

    2014-08-01

    A novel 61 kDa feruloyl esterase (FAE) was purified to homogeneity from freshly collected fruiting bodies of Panus giganteus. The isolation procedure involved chromatography on the ion exchangers DEAE-cellulose and Q-Sepharose, followed by size exclusion chromatography on Superdex 75, which produced a purified enzyme with a high specific activity (170.0 U/mg) which was 130-fold higher than that of crude extract. The purified FAE exhibited activity toward synthetic methyl esters and short-chain fatty acid nitrophenyl esters. The Km and Vmax for this enzyme on methyl ferulate were 0.36 mM and 18.97 U/mg proteins, respectively. FAE activity was attained at a maximum at pH 4 and 40 °C, respectively. The FAE activity was inhibited by metal ions to various degrees. The purified FAE could bring about the release of ferulic acid from wheat bran and corn bran under the action of the single purified FAE, and the amount released from wheat bran rose to 51.9% (of the total amount) by the synergistic action of xylanase. PMID:25065258

  1. Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation.

    PubMed

    Zhang, Shuai-Bing; Wang, Le; Liu, Yan; Zhai, Huan-Chen; Cai, Jing-Ping; Hu, Yuan-Sen

    2015-11-01

    Feruloyl esterases (FAEs) are key enzymes involved in the complete biodegradation of lignocelluloses, which could hydrolyze the ester bonds between hemicellulose and lignin. The coding sequence of a feruloyl esterase A (AtFaeA) was cloned from Aspergillus terreus and the recombinant AtFaeA was constitutively expressed in Pichia pastoris. The SDS-PAGE analysis of purified AtFaeA showed two protein bands owing to the different extent of glycosylation, and the recombinant AtFaeA had an optimum temperature of 50°C and an optimum pH of 5.0. The substrate utilization and primary sequence identity of AtFaeA demonstrated that it is a type-A feruloyl esterase. The hydrolysis of corn stalk and corncob by xylanase from Aspergillus niger could be significantly improved in concert with recombinant AfFaeA. PMID:26282562

  2. Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli.

    PubMed

    Donaghy, J; Kelly, P F; McKay, A M

    1998-08-01

    The production of feruloyl esterase activity by Bacillus spp. and lactobacilli can be detected in an agarplate assay. The assay involves the substitution of the main carbon source in specific agar with ethyl ferulate. A number of Bacillus spp., predominantly B. subtilis strains, were found to exhibit feruloyl esterase activity by this method. Of the examined lactobacilli, Lb. fermentum (NCFB 1751) showed the highest level of ferulic acid esterase activity. The enzyme was released from harvested cells by sonication and showed pH and temperature optima of 6.5 and 30 degrees C respectively. PMID:9763694

  3. Feruloyl esterase production by Aspergillus terreus CECT 2808 and subsequent application to enzymatic hydrolysis.

    PubMed

    Pérez-Rodríguez, N; Moreira, C D; Torrado Agrasar, A; Domínguez, J M

    2016-09-01

    Ferulic acid esterases (FAE) were produced by Aspergillus terreus CECT 2808 from vine trimming shoots (VTS) and corn cob. Later, the fungal extracts thus obtained were used to enzymatically release ferulic acid (FA) from both substrates. Our findings showed a higher FAE activity in the enzymatic extracts produced on corn cob (0.070±0.004U/mL). Nevertheless, the enzymatic extracts produced on VTS demonstrated a better performance for FA release from both corn cob (2.05±0.01mg/g) and VTS (0.19±0.003mg/g). This result was probably because of the higher xylanase/FAE ratio determined in VTS extract. Therefore, an additional assay was carried out by supplementing corn cob extract with a commercial xylanase to test the influence of FAE/xylanase ratio in FA release. The results revealed the relevance of the FAE/xylanase ratio for an optimal FA release. PMID:27444329

  4. Cloning of a novel feruloyl esterase gene from rumen microbial metagenome and enzyme characterization in synergism with endoxylanases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae2) was identified as a Type C feruloyl esterase, which acted on methyl ferulate, methyl p-coumarate, methyl sinapinate, methyl caffeate, but not diferul...

  5. Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus.

    PubMed

    Damásio, André R L; Braga, Cleiton Márcio Pinto; Brenelli, Lívia B; Citadini, Ana Paula; Mandelli, Fernanda; Cota, Junio; de Almeida, Rodrigo Ferreira; Salvador, Victor Hugo; Paixao, Douglas Antonio Alvaredo; Segato, Fernando; Mercadante, Adriana Zerlotti; de Oliveira Neto, Mario; do Santos, Wanderley Dantas; Squina, Fabio M

    2013-08-01

    The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. PMID:23229566

  6. A Chlorogenic Acid Esterase with a Unique Substrate Specificity from Ustilago maydis

    PubMed Central

    Haase-Aschoff, Paul; Kelle, Sebastian; Linke, Diana; Krings, Ulrich; Popper, Lutz; Berger, Ralf G.

    2014-01-01

    An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme. PMID:25548041

  7. Baby Fae: a beastly business.

    PubMed Central

    Kushner, T; Belliotti, R

    1985-01-01

    The Baby Fae experiment has highlighted the growing trend in medicine of using animal parts in the treatment of humans. This paper raises the question of the logical and moral justification for these current practices and their proposed expansion. We argue that the Cognitive Capacity Principle establishes morally justified necessary and sufficient conditions for the use of non-human animals in medical treatments and research. Some alternative sources for medical uses are explored as well as some possible programmes for their implementation. PMID:4078855

  8. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    SciTech Connect

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

    2009-12-08

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  9. Esterase activity of lactic acid bacteria isolated from malolactic fermentation of red wines.

    PubMed

    Pérez-Martín, Fátima; Seseña, Susana; Izquierdo, Pedro Miguel; Palop, María Llanos

    2013-05-15

    The goal of this study was to examine the esterase activity of 243 lactic acid bacteria (LAB) strains from wines of different red grape varieties, belonging to the genera Oenococcus, Lactobacillus, Pediococcus and Enterococcus. p-Nitrophenyl octanoate was used as substrate. All strains presented esterase activity in the first screening, but only those showing higher activity were used in subsequent studies to determine the cellular location of this activity, the influence of pH, temperature and the presence of ethanol and the substrate specificity. For the thirteen selected strains, the highest activity was observed in the intracellular fraction. Responses to pH, temperature and ethanol were strain-dependent, but for all the strains, a marked decrease in activity in presence of ethanol was observed. When the influence of pH and ethanol acting together was studied at 25 °C and 37 °C, temperature-dependent differences were not observed for any of the strains except for Oen6. In the substrate specificity assay, the majority of strains of all genera displayed a trend to more readily hydrolyse ester substrates from C8 and longer. PMID:23558198

  10. Acetyl xylan esterase of Aspergillus ficcum catalyzed the synthesis of peracetic acid from ethyl acetate and hydrogen peroxide.

    PubMed

    Park, Seung-Moon

    2011-11-01

    Recombinant acetyl xylan esterase (rAXE) of Aspergillus ficcum catalyzed the synthesis of peracetic acid (PAA) from ethyl acetate and hydrogen peroxide. Ten micrograms of rAXE catalyzed the synthesis of 1.34 mM of PAA, which can be used for the pretreatment of cellulosic biomass in situ. PMID:21824816

  11. Cloning and Characterization of an Intracellular Esterase from the Wine-Associated Lactic Acid Bacterium Oenococcus oeni▿ †

    PubMed Central

    Sumby, Krista M.; Matthews, Angela H.; Grbin, Paul R.; Jiranek, Vladimir

    2009-01-01

    We report the cloning and characterization of EstB28, the first esterase to be so characterized from the wine-associated lactic acid bacterium, Oenococcus oeni. The published sequence for O. oeni strain PSU-1 was used to identify putative esterase genes and design PCR primers in order to amplify the corresponding region from strain Ooeni28, an isolate intended for inoculation of wines. In this way a 912-bp open reading frame (ORF) encoding a putative esterase of 34.5 kDa was obtained. The amino acid sequence indicated that EstB28 is a member of family IV of lipolytic enzymes and contains the GDSAG motif common to other lactic acid bacteria. This ORF was cloned into Escherichia coli using an appropriate expression system, and the recombinant esterase was purified. Characterization of EstB28 revealed that the optimum temperature, pH, and ethanol concentration were 40°C, pH 5.0, and 28% (vol/vol), respectively. EstB28 also retained marked activity under conditions relevant to winemaking (10 to 20°C, pH 3.5, 14% [vol/vol] ethanol). Kinetic constants were determined for EstB28 with p-nitrophenyl (pNP)-linked substrates ranging in chain length from C2 to C18. EstB28 exhibited greatest specificity for C2 to C4 pNP-linked substrates. PMID:19734337

  12. Biocatalytic Resolution of Rac-α-Ethyl-2-Oxo-Pyrrolidineacetic Acid Methyl Ester by Immobilized Recombinant Bacillus cereus Esterase.

    PubMed

    Zheng, Jian-Yong; Liu, Yin-Yan; Luo, Wei-Feng; Zheng, Ren-Chao; Ying, Xiang-Xian; Wang, Zhao

    2016-04-01

    A new esterase-producing strain (Bacillus cereus WZZ001) which exhibiting high hydrolytic activity and excellent enantioselectivity on rac-α-ethyl-2-oxo-pyrrolidineacetic acid methyl ester (R, S-1) has been isolated from soil sample by our laboratory. In this study, the stereoselective hydrolysis of (R, S-1) was performed using the recombinant Bacillus cereus esterase which expressed in Escherichia coli BL21 (DE3). Under the optimized conditions of pH 8.0, 35 °C, and concentration of substrate 400 mM, a successful enzymatic resolution was achieved with an e.e. s of 99.5 % and conversion of 49 %. Immobilization considerably increased the reusability of the recombinant esterase; the immobilized enzyme showed excellent reusability during 6 cycles of repeated 2 h reactions at 35 °C. Thereby, it makes the recombinant B. cereus esterase a usable biocatalyst for industrial application. PMID:26695776

  13. Heterologous production and characterization of a chlorogenic acid esterase from Ustilago maydis with a potential use in baking.

    PubMed

    Nieter, Annabel; Kelle, Sebastian; Takenberg, Meike; Linke, Diana; Bunzel, Mirko; Popper, Lutz; Berger, Ralf G

    2016-10-15

    Ustilago maydis, an edible mushroom growing on maize (Zea mays), is consumed as the food delicacy huitlacoche in Mexico. A chlorogenic acid esterase from this basidiomycete was expressed in good yields cultivating the heterologous host Pichia pastoris on the 5L bioreactor scale (reUmChlE; 45.9UL(-1)). In contrast to previously described chlorogenic acid esterases, the reUmChlE was also active towards feruloylated saccharides. The enzyme preferred substrates with the ferulic acid esterified to the O-5 position of arabinose residues, typical of graminaceous monocots, over the O-2 position of arabinose or the O-6 position of galactose residues. Determination of kcat/Km showed that the reUmChlE hydrolyzed chlorogenic acid 18-fold more efficiently than methyl ferulate, p-coumarate or caffeate. Phenolic acids were released by reUmChlE from natural substrates, such as destarched wheat bran, sugar beet pectin and coffee pulp. Treatment of wheat dough using reUmChlE resulted in a noticeable softening indicating a potential application of the enzyme in bakery and confectionery. PMID:27173527

  14. Crystallization and preliminary X-ray diffraction studies of the pneumococcal teichoic acid phosphorylcholine esterase Pce

    SciTech Connect

    Lagartera, Laura; González, Ana; Stelter, Meike; García, Pedro; Kahn, Richard; Menéndez, Margarita; Hermoso, Juan A.

    2005-02-01

    The modular choline-binding protein Pce, the phosphorylcholine esterase from S. pneumoniae, has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a derivative with a gadolinium complex has been collected to 2.7 Å resolution.

  15. Biotransformation of rice bran to ferulic acid by pediococcal isolates.

    PubMed

    Kaur, Baljinder; Chakraborty, Debkumar; Kaur, Gundeep; Kaur, Gaganjot

    2013-06-01

    Ferulic acid (FA) is widely used in foods, in beverages, and in various pharmaceutical industries as a precursor of vanillin. FA biotransformation can occur during the growth of lactic acid bacteria (LAB), and its conversion to other phenolic derivatives is observed by many scientists, where ferulic acid esterase (FAE) and ferulic acid decarboxylase (FDC) play significant roles. The present study aimed at screening a panel of LAB for their ability to release FA from rice bran, an agro waste material. FAE and FDC activities were analyzed for the preliminary screening of various dairy isolates. Two Pediococcus acidilactici isolates were selected for studying further the hydrolysis of FA from rice bran and its bioconversion into phenolic derivatives like 4-ethylphenol, vanillin, vanillic acid, and vanillyl alcohol. P. acidilactici M16, a probiotic isolate, has great potential for the production of FA from rice bran and could be exploited as starter culture in the food industry for the production of biovanillin. PMID:23615732

  16. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation.

    PubMed

    Hunt, Cameron J; Tanksale, Akshat; Haritos, Victoria S

    2016-02-01

    Ferulic acid esterases (FAE, EC. 3.1.1.73) hydrolyse the linkage between hemicellulose and lignin and thus have potential for use in mild enzymatic pretreatment of biomass as an alternative to thermochemical approaches. Here, we report the characterization of a novel FAE (ActOFaeI) obtained from the bacterium, Actinomyces sp. oral which was recombinantly expressed in Escherichia coli BL21 in two forms: with and without its putative signal peptide. The truncated form was found to have <10 % relative activity compared to the full length and was more prone to aggregation after purification. The enzyme with retained peptide demonstrated 2 to 4-fold higher activity against methyl caffeate and methyl p-coumarate, with specific activities of 477.6 and 174.4 U mg(-1) respectively, than the equivalent activities of the benchmark FAE from Aspergillus niger A and B. ActOFaeI retained activity over a broad pH range with a maximum at 9 but >90 % relative activity at pH 6.5 and an optimum reaction temperature of 30 °C. ActOFaeI increased activity by 15% in high salt conditions (1000 mMNaCl) and its thermal unfolding temperature improved from 41.5 °C in standard buffer to 74 °C in the presence of 2500 mM sodium malonate. ActOFaeI also released ferulic acid from destarched wheat bran when combined with a xylanase preparation. After treatment above the thermal denaturation temperature followed by cooling to room temperature, ActOFaeI demonstrated spontaneous refolding into an active state. ActOFaeI displays many useful characteristics for enzymatic pretreatment of lignocellulose and contributes to our understanding of this important family. PMID:26497017

  17. The Staphylococcus aureus Methicillin Resistance Factor FmtA Is a d-Amino Esterase That Acts on Teichoic Acids

    PubMed Central

    Rahman, Muhammad M.; Hunter, Howard N.; Prova, Shamina; Verma, Vidhu; Qamar, Aneela

    2016-01-01

    ABSTRACT The methicillin resistance factor encoded by fmtA is a core member of the Staphylococcus aureus cell wall stimulon, but its function has remained elusive for the past two decades. First identified as a factor that affects methicillin resistance in S. aureus strains, FmtA was later shown to interact with teichoic acids and to localize to the cell division septum. We have made a breakthrough in understanding FmtA function. We show that FmtA hydrolyzes the ester bond between d-Ala and the backbone of teichoic acids, which are polyglycerol-phosphate or polyribitol-phosphate polymers found in the S. aureus cell envelope. FmtA contains two conserved motifs found in serine active-site penicillin-binding proteins (PBPs) and β-lactamases. The conserved SXXK motif was found to be important for the d-amino esterase activity of FmtA. Moreover, we show that deletion of fmtA (ΔfmtA) led to higher levels of d-Ala in teichoic acids, and this effect was reversed by complementation of ΔfmtA with fmtA. The positive charge on d-Ala partially masks the negative charge of the polyol-phosphate backbone of teichoic acids; hence, a change in the d-Ala content will result in modulation of their charge. Cell division, biofilm formation, autolysis, and colonization are among the many processes in S. aureus affected by the d-Ala content and overall charge of the cell surface teichoic acids. The esterase activity of FmtA and the regulation of fmtA suggest that FmtA functions as a modulator of teichoic acid charge, thus FmtA may be involved in S. aureus cell division, biofilm formation, autolysis, and colonization. PMID:26861022

  18. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.

    PubMed

    Coghe, Stefan; Benoot, Koen; Delvaux, Filip; Vanderhaegen, Bart; Delvaux, Freddy R

    2004-02-11

    The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast. PMID:14759156

  19. Porcine liver esterase-catalyzed enantioselective hydrolysis of a prochiral diester into its optically pure (S)-ester acid, a precursor to a growth hormone secretagogue.

    PubMed

    Chartrain, M; Maligres, P; Cohen, D; Upadhyay, V; Pecore, V; Askin, D; Greasham, R

    1999-01-01

    A limited screen of several commercially-available and internally-produced lipases and esterases identified porcine liver esterase as a suitable biocatalyst for the enantioselective hydrolysis of a diester into its (S)-ester acid with high optical purity (99%). This (S)-ester acid is a precursor to an experimental growth hormone secretagogue. After identifying xanthan gum as the best emulsifier and optimizing the reaction conditions, hydrolysis rates of 1 g/l.h and final (S)-ester acid (ee > 99%) titers of about 8.5 g/l were routinely achieved. This process supported the production of preparative amounts of optically pure (S)-ester (ee > 99%) with a high reaction yield of 82%. Upon purification, the (S)-ester was successfully used in the subsequent synthetic steps to yield the growth hormone secretagogue. PMID:16232487

  20. A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes.

    PubMed

    López, Gina; Chow, Jennifer; Bongen, Patrick; Lauinger, Benjamin; Pietruszka, Jörg; Streit, Wolfgang R; Baena, Sandra

    2014-10-01

    Several thermo- and mesoacidophilic bacterial strains that revealed high lipolytic activity were isolated from water samples derived from acidic hot springs in Los Nevados National Natural Park (Colombia). A novel lipolytic enzyme named 499EST was obtained from the thermoacidophilic alpha-Proteobacterium Acidicaldus USBA-GBX-499. The gene estA encoded a 313-amino-acid protein named 499EST. The deduced amino acid sequence showed the highest identity (58 %) with a putative α/β hydrolase from Acidiphilium sp. (ZP_08632277.1). Sequence alignments and phylogenetic analysis indicated that 499EST is a new member of the bacterial esterase/lipase family IV. The esterase reveals its optimum catalytic activity at 55 °C and pH 9.0. Kinetic studies showed that 499EST preferentially hydrolyzed middle-length acyl chains (C6-C8), especially p-nitrophenyl (p-NP) caproate (C6). Its thermostability and activity were strongly enhanced by adding 6 mM FeCl3. High stability in the presence of water-miscible solvents such as dimethyl sulfoxide and glycerol was observed. This enzyme also exhibits stability under harsh environmental conditions and enantioselectivity towards naproxen and ibuprofen esters, yielding the medically relevant (S)-enantiomers. In conclusion, according to our knowledge, 499EST is the first thermoalkalostable esterase derived from a Gram-negative thermoacidophilic bacterium. PMID:24818691

  1. Production of Feruloyl Esterase from Aspergillus niger by Solid-State Fermentation on Different Carbon Sources

    PubMed Central

    Ou, Shiyi; Zhang, Jing; Wang, Yong; Zhang, Ning

    2011-01-01

    A mixture of wheat bran with maize bran as a carbon source and addition of (NH4)SO4 as nitrogen source was found to significantly increase production of feruloyl esterase (FAE) enzyme compared with wheat bran as a sole carbon and nitrogen source. The optimal conditions in conical flasks were carbon source (30 g) to water 1 : 1, maize bran to wheat bran 1 : 2, (NH4)SO4 1.2 g and MgSO4 70 mg. Under these conditions, FAE activity was 7.68 mU/g. The FAE activity on the mixed carbon sources showed, high activity against the plant cell walls contained in the cultures. PMID:21603274

  2. Enantioselective kinetic resolution of phenylalkyl carboxylic acids using metagenome‐derived esterases

    PubMed Central

    Fernández‐Álvaro, Elena; Kourist, Robert; Winter, Julia; Böttcher, Dominique; Liebeton, Klaus; Naumer, Christian; Eck, Jürgen; Leggewie, Christian; Jaeger, Karl‐Erich; Streit, Wolfgang; Bornscheuer, Uwe T.

    2010-01-01

    Summary Enantiomerically pure β‐arylalkyl carboxylic acids are important synthetic intermediates for the preparation of a wide range of compounds with biological and pharmacological activities. A library of 83 enzymes isolated from the metagenome was searched for activity in the hydrolysis of ethyl esters of three racemic phenylalkyl carboxylic acids by a microtiter plate‐based screening using a pH‐indicator assay. Out of these, 20 enzymes were found to be active and were subjected to analytical scale biocatalysis in order to determine their enantioselectivity. The most enantioselective and also enantiocomplementary biocatalysts were then used for preparative scale reactions. Thus, both enantiomers of each of the three phenylalkyl carboxylic acids studied could be obtained in excellent optical purity and high yields. PMID:21255306

  3. Investigation of the nature of semisynthetic esterases. Annual progress report, September 15, 1982-September 14, 1983

    SciTech Connect

    Keyes, M.H.

    1983-12-01

    Two semisynthetic esterases, an acid-esterase with a pH optimum of 6.0 and a neutral-esterase with a pH optimum of 7.5, were generated from bovine pancreatic ribonuclease. The method involved perturbation of ribonuclease at pH 3.0, subsequent conformational modification with indole propionic acid, and crosslinking the modified protein with glutaraldehyde. The two esterases generated by this procedure were separated and partially purified by ammonium sulfate fractionation. The neutral-esterase activity was predominantly precipitated at 40% ammonium sulfate saturation, and the acid-esterase at 70 to 90% ammonium sulfate saturation. Nearly 4 fold purification of the esterases was achieved by this step. The two esterases were further purified by gel filtration of the above ammonium sulfate fractions on Biogel P0-30. Nearly 100 fold purification of the esterases over the starting modified RNase has been achieved by the above two purification steps. Kinetic studies with the purified acid-esterase indicated that this semisynthetic esterase hydrolyzed several aminoacid ethyl esters, but preferred ester containing an aromatic residue. The acid-esterase was competitively inhibited by L-tryptophan and also had low amidase activity towards benzoylarginine p-nitroanilide. Neutral-esterase showed a high degree of specificity toward L-TrEE and acetyl tryptophan ethyl ester. Moreover, this esterase had significant amidase activity toward N-acetyltryptophanamide (NATA). Neutral esterase was not inhibited by tryptophan.

  4. Novel feruloyl esterase from gram-positive lactic acid bacteria and analysis of the recombinant enzyme produced in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using agar plates containing ethyl ferulate as the sole carbon source, 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity. Among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate, Lactobacillus fermentum NRRL B-1932 demonstrated the stronge...

  5. Clinical significance of esterases in man.

    PubMed

    Williams, F M

    1985-01-01

    Esterases, hydrolases which split ester bonds, hydrolyse a number of compounds used as drugs in humans. The enzymes involved are classified broadly as cholinesterases (including acetylcholinesterase), carboxylesterases, and arylesterases, but apart from acetylcholinesterase, their biological function is unknown. The acetylcholinesterase present in nerve endings involved in neurotransmission is inhibited by anticholinesterase drugs, e.g. neostigmine, and by organophosphorous compounds (mainly insecticides). Cholinesterases are primarily involved in drug hydrolysis in the plasma, arylesterases in the plasma and red blood cells, and carboxylesterases in the liver, gut and other tissues. The esterases exhibit specificities for certain substrates and inhibitors but a drug is often hydrolysed by more than one esterase at different sites. Aspirin (acetylsalicylic acid), for example, is hydrolysed to salicylate by carboxylesterases in the liver during the first-pass. Only 60% of an oral dose reaches the systemic circulation where it is hydrolysed by plasma cholinesterases and albumin and red blood cell arylesterases. Thus, the concentration of aspirin relative to salicylate in the circulation may be affected by individual variation in esterase levels and the relative roles of the different esterases, and this may influence the overall pharmacological effect. Other drugs have been less extensively investigated than aspirin and these include heroin (diacetylmorphine), suxamethonium (succinylcholine), clofibrate, carbimazole, procaine and other local anaesthetics. Ester prodrugs are widely used to improve absorption of drugs and in depot preparations. The active drug is released by hydrolysis by tissue carboxylesterases. Individual differences in esterase activity may be genetically determined, as is the case with atypical cholinesterases and the polymorphic distribution of serum paraoxonase and red blood cell esterase D. Disease states may also alter esterase activity. PMID

  6. Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis.

    PubMed

    Braga, Cleiton Márcio Pinto; Delabona, Priscila da Silva; Lima, Deise Juliana da Silva; Paixão, Douglas Antônio Alvaredo; Pradella, José Geraldo da Cruz; Farinas, Cristiane Sanchez

    2014-10-01

    Accessory enzymes that assist biomass degradation could be used to improve the recovery of fermentable sugar for use in biorefineries. In this study, different fungal strains isolated from the Amazon rainforest were evaluated in terms of their ability to produce feruloyl esterase (FAE) and xylanase enzymes, and an assessment was made of the contributions of the enzymes in the hydrolysis of pretreated sugarcane bagasse. In the selection step, screening using plate assays was followed by shake flask submerged cultivations. After carbon source selection and cultivation in a stirred-tank bioreactor, Aspergillusoryzae P21C3 proved to be a promising strain for production of the enzymes. Supplementation of a commercial enzyme preparation with 30% (v/v) crude enzymatic complex from A. oryzae P21C3 increased the conversion of cellulose derived from pretreated sugarcane bagasse by 36%. Supplementation with FAE and xylanase enzymes produced on-site can therefore be used to improve the hydrolysis of sugarcane bagasse. PMID:25151076

  7. Phenol esterase activity of porcine skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The alkyl esters of plant-derived phenols may serve as slow-release sources for cutaneous delivery of antioxidants. The ability of skin esterases to hydrolyze phenolic esters was examined. Esters of tyrosol and hydroxytyrosol were prepared from decanoic and lipoic acids. Ferulic acid was esterified ...

  8. Inter-conversion of catalytic abilities in a bifunctional carboxyl/feruloyl-esterase from earthworm gut metagenome.

    PubMed

    Vieites, José María; Ghazi, Azam; Beloqui, Ana; Polaina, Julio; Andreu, José M; Golyshina, Olga V; Nechitaylo, Taras Y; Waliczek, Agnes; Yakimov, Michail M; Golyshin, Peter N; Ferrer, Manuel

    2010-01-01

    Carboxyl esterases (CE) exhibit various reaction specificities despite of their overall structural similarity. In present study we have exploited functional metagenomics, saturation mutagenesis and experimental protein evolution to explore residues that have a significant role in substrate discrimination. We used an enzyme, designated 3A6, derived from the earthworm gut metagenome that exhibits CE and feruloyl esterase (FAE) activities with p-nitrophenyl and cinnamate esters, respectively, with a [(k(cat)/K(m))](CE)/[(k(cat)/K(m))](FAE) factor of 17. Modelling-guided saturation mutagenesis at specific hotspots (Lys(281), Asp(282), Asn(316) and Lys(317)) situated close to the catalytic core (Ser(143)/Asp(273)/His(305)) and a deletion of a 34-AA-long peptide fragment yielded mutants with the highest CE activity, while cinnamate ester bond hydrolysis was effectively abolished. Although, single to triple mutants with both improved activities (up to 180-fold in k(cat)/K(m) values) and enzymes with inverted specificity ((k(cat)/K(m))(CE)/(k(cat)/K(m))(FAE) ratio of ∼0.4) were identified, no CE inactive variant was found. Screening of a large error-prone PCR-generated library yielded by far less mutants for substrate discrimination. We also found that no significant changes in CE activation energy occurs after any mutation (7.3 to -5.6 J mol(-1)), whereas a direct correlation between loss/gain of FAE function and activation energies (from 33.05 to -13.7 J mol(-1)) was found. Results suggest that the FAE activity in 3A6 may have evolved via introduction of a limited number of 'hot spot' mutations in a common CE ancestor, which may retain the original hydrolytic activity due to lower restrictive energy barriers but conveys a dynamic energetically favourable switch of a second hydrolytic reaction. PMID:21255305

  9. Inter‐conversion of catalytic abilities in a bifunctional carboxyl/feruloyl‐esterase from earthworm gut metagenome

    PubMed Central

    Vieites, José María; Ghazi, Azam; Beloqui, Ana; Polaina, Julio; Andreu, José M.; Golyshina, Olga V.; Nechitaylo, Taras Y.; Waliczek, Agnes; Yakimov, Michail M.; Golyshin, Peter N.; Ferrer, Manuel

    2010-01-01

    Summary Carboxyl esterases (CE) exhibit various reaction specificities despite of their overall structural similarity. In present study we have exploited functional metagenomics, saturation mutagenesis and experimental protein evolution to explore residues that have a significant role in substrate discrimination. We used an enzyme, designated 3A6, derived from the earthworm gut metagenome that exhibits CE and feruloyl esterase (FAE) activities with p‐nitrophenyl and cinnamate esters, respectively, with a [(kcat/Km)]CE/[(kcat/Km)]FAE factor of 17. Modelling‐guided saturation mutagenesis at specific hotspots (Lys281, Asp282, Asn316 and Lys317) situated close to the catalytic core (Ser143/Asp273/His305) and a deletion of a 34‐AA–long peptide fragment yielded mutants with the highest CE activity, while cinnamate ester bond hydrolysis was effectively abolished. Although, single to triple mutants with both improved activities (up to 180‐fold in kcat/Km values) and enzymes with inverted specificity ((kcat/Km)CE/(kcat/Km)FAE ratio of ∼0.4) were identified, no CE inactive variant was found. Screening of a large error‐prone PCR‐generated library yielded by far less mutants for substrate discrimination. We also found that no significant changes in CE activation energy occurs after any mutation (7.3 to −5.6 J mol−1), whereas a direct correlation between loss/gain of FAE function and activation energies (from 33.05 to −13.7 J mol−1) was found. Results suggest that the FAE activity in 3A6 may have evolved via introduction of a limited number of ‘hot spot’ mutations in a common CE ancestor, which may retain the original hydrolytic activity due to lower restrictive energy barriers but conveys a dynamic energetically favourable switch of a second hydrolytic reaction. PMID:21255305

  10. Leukocyte esterase urine test

    MedlinePlus

    ... the urine. This may mean you have a urinary tract infection . If this test is positive, the urine should ... Results Mean An abnormal result indicates a possible urinary tract infection. Alternative Names WBC esterase Images Male urinary system ...

  11. Production of a chimeric enzyme tool associating the Trichoderma reesei swollenin with the Aspergillus niger feruloyl esterase A for release of ferulic acid.

    PubMed

    Levasseur, Anthony; Saloheimo, Markku; Navarro, David; Andberg, Martina; Monot, Frédéric; Nakari-Setälä, Tiina; Asther, Marcel; Record, Eric

    2006-12-01

    The main goals of this work were to produce the fusion protein of the Trichoderma reesei swollenin I (SWOI) and Aspergillus niger feruloyl esterase A (FAEA) and to study the effect of the physical association of the fusion partners on the efficiency of the enzyme. The fusion protein was produced up to 25 mg l(-1) in the T. reesei strains Rut-C30 and CL847. In parallel, FAEA alone was produced for use as a control protein in application tests. Recombinant FAEA and SWOI-FAEA were purified to homogeneity and characterized. The biochemical and kinetic characteristics of the two recombinant proteins were found to be similar to those of native FAEA, except for the temperature stability and specific activity of the SWOI-FAEA. Finally, the SWOI-FAEA protein was tested for release of ferulic acid from wheat bran. A period of 24 h of enzymatic hydrolysis with the SWOI-FAEA improved the efficiency of ferulic acid release by 50% compared with the results obtained using the free FAEA and SWOI. Ferulic acid is used as an antioxidant and flavor precursor in the food and pharmaceutical industries. This is the first report of a potential application of the SWOI protein fused with an enzyme of industrial interest. PMID:16957894

  12. Structural and Enzymatic Characterization of NanS (YjhS) a 9-O-Acetyl N-acetylneuraminic Acid Esterase from Escherichia coli O157:H7

    SciTech Connect

    E Rangarajan; K Ruane; A Proteau; J Schrag; R Valladares; C Gonzalez; M Gilbert; A Yakunin; M Cygler

    2011-12-31

    There is a high prevalence of sialic acid in a number of different organisms, resulting in there being a myriad of different enzymes that can exploit it as a fermentable carbon source. One such enzyme is NanS, a carbohydrate esterase that we show here deacetylates the 9 position of 9-O-sialic acid so that it can be readily transported into the cell for catabolism. Through structural studies, we show that NanS adopts a SGNH hydrolase fold. Although the backbone of the structure is similar to previously characterized family members, sequence comparisons indicate that this family can be further subdivided into two subfamilies with somewhat different fingerprints. NanS is the founding member of group II. Its catalytic center contains Ser19 and His301 but no Asp/Glu is present to form the classical catalytic triad. The contribution of Ser19 and His301 to catalysis was confirmed by mutagenesis. In addition to structural characterization, we have mapped the specificity of NanS using a battery of substrates.

  13. Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1

    PubMed Central

    Gottschalk, Leda Maria Fortes; de Sousa Paredes, Raquel; Teixeira, Ricardo Sposina Sobral; da Silva, Ayla Sant’Ana; da Silva Bon, Elba Pinto

    2013-01-01

    The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 °C and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture. PMID:24294256

  14. Identification of Genes Encoding Microbial Glucuronoyl Esterases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One type of covalent linkages connecting lignin and hemicellulose in plant cell walls is the ester linkage between 4-0-methyl-D-glucuronic acid of glucuronoxylan and lignin alcohols. An enzyme that could hydrolyze such linkages, named glucuronoyl esterase, occurs in the cellulolytic system of the w...

  15. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae

    SciTech Connect

    Van Molle, Inge Buts, Lieven; Coppens, Fanny; Qiang, Liu; Wyns, Lode; Loris, Remy; Bouckaert, Julie; De Greve, Henri

    2005-04-01

    The periplasmic chaperone FaeE of E. coli F4 fimbriae crystallizes in three crystal forms. F4 (formerly K88) fimbriae from enterotoxigenic Escherichia coli are assembled via the FaeE/FaeD chaperone/usher pathway. The chaperone FaeE crystallizes in three crystal forms, all belonging to space group C2. Crystals of form 1 diffract to 2.3 Å and have unit-cell parameters a = 195.7, b = 78.5, c = 184.6 Å, β = 102.2°. X-ray data for crystal form 2 were collected to 2.7 Å using an SeMet variant of FaeE. The crystals have unit-cell parameters a = 136.4, b = 75.7, c = 69.4 Å, β = 92.8°. Crystals of form 3 were formed in a solution containing the FaeE–FaeG complex and diffract to 2.8 Å. Unit-cell parameters are a = 109.7, b = 78.6, c = 87.8 Å, β = 96.4°.

  16. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability. PMID:22676388

  17. The Wood Rot Ascomycete Xylaria polymorpha Produces a Novel GH78 Glycoside Hydrolase That Exhibits α-l-Rhamnosidase and Feruloyl Esterase Activities and Releases Hydroxycinnamic Acids from Lignocelluloses

    PubMed Central

    Nghi, Do Huu; Bittner, Britta; Kellner, Harald; Jehmlich, Nico; Ullrich, René; Pecyna, Marek J.; Nousiainen, Paula; Sipilä, Jussi; Huong, Le Mai; Hofrichter, Martin

    2012-01-01

    Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g−1) or beech wood (up to 80 mU g−1). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg−1). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative α-l-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., α-l-rhamnopyranoside and α-l-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses. PMID:22544251

  18. Esterase activity able to hydrolyze dietary antioxidant hydroxycinnamates is distributed along the intestine of mammals.

    PubMed

    Andreasen, M F; Kroon, P A; Williamson, G; Garcia-Conesa, M T

    2001-11-01

    Hydroxycinnamic acids are effective antioxidants and are abundant components of plant cell walls, especially in cereal bran. For example, wheat and rye brans are rich sources of the hydroxycinnamates ferulic acid, sinapic acid, and p-coumaric acid. These phenolics are part of human and animal diets and may contribute to the beneficial effects derived from consumption of cereal bran. However, these compounds are ester linked to the main polymers in the plant cell wall and cannot be absorbed in this complex form. The present work shows that esterases with activity toward esters of the major dietary hydroxycinnamates are distributed throughout the intestinal tract of mammals. In rats, the cinnamoyl esterase activity in the small intestine is derived mainly from the mucosa, whereas in the large intestine the esterase activity was found predominantly in the luminal microflora. Mucosa cell-free extracts obtained from human duodenum, jejunum, and ileum efficiently hydrolyzed various hydroxycinnamoyl esters, providing the first evidence of human cinnamoyl esterase(s). This study first demonstrates the release by human colonic esterase(s) (mostly of microbial origin) of sinapic acid and p-coumaric acid from rye and wheat brans. Hydrolysis by intestinal esterase(s) is very likely the major route for release of antioxidant hydroxycinnamic acids in vivo. PMID:11714377

  19. Conservation, fiber digestibility, and nutritive value of corn harvested at 2 cutting heights and ensiled with fibrolytic enzymes, either alone or with a ferulic acid esterase-producing inoculant.

    PubMed

    Lynch, J P; Baah, J; Beauchemin, K A

    2015-02-01

    The aim of this study was to determine the effects of the use of a fibrolytic enzyme product, applied at ensiling either alone or in combination with a ferulic acid esterase-producing bacterial additive, on the chemical composition, conservation characteristics, and in vitro degradability of corn silage harvested at either conventional or high cutting height. Triplicate samples of corn were harvested to leave stubble of either a conventional (15cm; NC) or high (45cm; HC) height above ground. Sub-samples of chopped herbage were ensiled untreated or with a fibrolytic enzyme product containing xylanases and cellulases applied either alone (ENZ) or in combination with a ferulic acid esterase-producing silage inoculant (ENZ+FAEI). The fibrolytic enzyme treatment was applied at 2mL of enzyme product/kg of herbage dry matter (DM), and the inoculant was applied at 1.3×10(5) cfu/g of fresh herbage. Samples were packed into laboratory-scale silos, stored for 7, 28, or 70 d, and analyzed for fermentation characteristics, and samples ensiled for 70 d were also analyzed for DM losses, chemical composition, and in vitro ruminal degradability. After 70 d of ensiling, the fermentation characteristics of corn silages were generally unaffected by cutting height, whereas the neutral detergent fiber, acid detergent fiber, and ash concentrations were lower and the starch concentration greater for silages made with crops harvested at HC compared with NC. After 70 d of ensiling, the acetic acid, ethanol concentrations, and the number of yeasts were greater, and the pH and neutral detergent fiber concentrations were lower, in silages produced using ENZ or ENZ+FAEI than the untreated silages, whereas ENZ+FAEI silages also incurred higher DM losses. No effect of additive treatment was observed on in vitro degradability indices after 48h ruminal incubation. The use of a fibrolytic enzyme product, either alone or in combination with a ferulic acid esterase-producing inoculant, at ensiling

  20. F4+ enterotoxigenic Escherichia coli (ETEC) adhesion mediated by the major fimbrial subunit FaeG.

    PubMed

    Xia, Pengpeng; Song, Yujie; Zou, Yajie; Yang, Ying; Zhu, Guoqiang

    2015-09-01

    The FaeG subunit is the major constituent of F4(+) fimbriae, associated with glycoprotein and/or glycolipid receptor recognition and majorly contributes to the pathogen attachment to the host cells. To investigate the key factor involved in the fimbrial binding of F4(+) Escherichia coli, both the recombinant E. coli SE5000 strains carrying the fae operon gene clusters that express the different types of fimbriae in vitro, named as rF4ab, rF4ac, and rF4ad, respectively, corresponding to the fimbrial types F4ab, F4ac, and F4ad, and the three isogenic in-frame faeG gene deletion mutants were constructed. The adhesion assays and adhesion inhibition assays showed that ΔfaeG mutants had a significant reduction in the binding to porcine brush border as well as the intestinal epithelial cell lines, while the complemented strain ΔfaeG/pfaeG restored the adhesion function. The recombinant bacterial strains rF4ab, rF4ac, and rF4ad have the same binding property as wild-type F4(+) E. coli strains do and improvement in terms of binding to porcine brush border and the intestinal epithelial cells, and the adherence was blocked by the monoclonal antibody anti-F4 fimbriae. These data demonstrate that the fimbrial binding of F4(+) E. coli is directly mediated by the major FaeG subunit. PMID:25847483

  1. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast.

    PubMed

    Shen, Huifeng; Qian, Bingjun; Chen, Weiwei; Liu, Zhenhua; Yang, Litao; Zhang, Dabing; Liang, Wanqi

    2010-08-01

    To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system. PMID:20705597

  2. [Role of Human Orphan Esterases in Drug-induced Toxicity].

    PubMed

    Fukami, Tatsuki

    2015-01-01

    Esterases hydrolyze compounds containing ester, amide, and thioester bonds, causing prodrug activation or detoxification. Among esterases, carboxylesterases have been studied in depth due to their ability to hydrolyze a variety of drugs. However, there are several drugs for which the involved esterase(s) is unknown. We found that flutamide, phenacetin, rifamycins (rifampicin, rifabutin, and rifapentine), and indiplon are hydrolyzed by arylacetamide deacetylase (AADAC), which is highly expressed in human liver and gastrointestinal tissues. Flutamide hydrolysis is considered associated with hepatotoxicity. Phenacetin, a prodrug of acetaminophen, was withdrawn due to side effects such as methemoglobinemia and renal failure. It was demonstrated in vitro and in vivo using mice that AADAC is responsible for phenacetin hydrolysis, which leads to methemoglobinemia. In addition, it was shown that AADAC-mediated hydrolysis attenuates the cytotoxicity of rifamycins. Thus AADAC plays critical roles in drug-induced toxicity. Another orphan esterase, α/β hydrolase domain containing 10 (ABHD10), was found responsible for deglucuronidation of acyl-glucuronides including mycophenolic acid acyl-glucuronide and probenecid acyl-glucuronide. Because acyl-glucuronides appear associated with toxicity, ABHD10 would function as a detoxification enzyme. The roles of orphan esterases are becoming increasingly understood. Further studies will facilitate our knowledge of the pharmacologic and toxicological significance of orphan esterases in drug therapy. PMID:26521872

  3. Removal of the free cysteine residue reduces irreversible thermal inactivation of feruloyl esterase: evidence from circular dichroism and fluorescence spectra.

    PubMed

    Li, Jingjing; Zhang, Shuaibing; Yi, Zhuolin; Pei, Xiaoqiong; Wu, Zhongliu

    2015-08-01

    Feruloyl esterase A from Aspergillus niger (AnFaeA) contains three intramolecular disulfide bonds and one free cysteine at position 235. Saturated mutagenesis at Cys235 was carried out to produce five active mutants, all of which displayed unusual thermal inactivation patterns with the most residual activity achieved at 75°C, much higher than the parental AnFaeA. But their optimal reaction temperatures were lower than the parental AnFaeA. Extensive investigation into their free thiol and disulfide bond, circular dichroism spectra and fluorescence spectra revealed that the unfolding of the parental enzyme was irreversible on all the tested conditions, while that of the Cys235 mutants was reversible, and their ability to refold was highly dependent on the denaturing temperature. Mutants denatured at 75°C were able to efficiently reverse the unfolding to regain native structure during the cooling process. This study provided valid evidence that free cysteine substitutions can reduce irreversible thermal inactivation of proteins. PMID:26079173

  4. Immune responses elicited in mice with recombinant Lactococcus lactis expressing F4 fimbrial adhesin FaeG by oral immunization.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2010-08-01

    Enterotoxigenic Escherichia coli (ETEC) is a major pathogenic agent causing piglet diarrhea. The major subunit and adhesin FaeG of F4(+) ETEC is an important virulence factor with strong immunogenicity. To determine whether Lactococcus lactis (L. lactis) could effectively deliver FaeG to the mucosal immune system, recombinant L. lactis expressing FaeG was constructed, and immune responses in mice following oral route delivery of recombinant L. lactis were explored. The production of FaeG expressed in L. lactis was up to approximately 10% of soluble whole-cell proteins, and recombinant FaeG (rFaeG) possessed good immunoreactivity by Western blot analysis. Oral immunization with recombinant L. lactis expressing FaeG induced F4-specific mucosal and systemic immune responses in the mice. In addition, high dose recombinant L. lactis or co-administration of high dose recombinant L. lactis with CTB enhanced the immune responses. These results suggested that L. lactis expressing FaeG was a promising candidate vaccine against ETEC. PMID:20532816

  5. Probing role of key residues in the divergent evolution of Yarrowia lipolytica lipase 2 and Aspergillus niger eruloyl esterase A.

    PubMed

    Wang, Guilong; Liu, Zimin; Xu, Li; Zhang, Houjin; Yan, Yunjun

    2015-09-01

    Yarrowia lipolytica lipase 2 (YLLip2) and Aspergillus niger feruloyl esterase A (AnFaeA) are enzymes of similar structures but with different functions. They are both classified into the same homologous family in Lipase Engineering Database (LED). The major difference between the two enzymes is that YLLip2 exhibits interfacial activity while AnFaeA does not. In order to better understand the interfacial activation mechanisms of YLLip2, structure guided site-directed mutagenesis were performed, mutants were constructed, kinetics parameters and lipase properties were detected. Mutant enzymes showed enhanced catalytic efficiency towards p-nitrophenyl butyrin (pNPB) but their catalytic efficiency decreased towards p-nitrophenyl palmitate (pNPP), their catalysis behavior was more close to feruloyl esterase. Moreover, the mutant enzymes exhibited enhanced thermostability compared with their wild type. These results indicate that I100 and F129 are probably cut-off point of divergent functions between the two enzymes during evolution. PMID:26302844

  6. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, F.H.; Moore, J.C.

    1999-05-25

    A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.

  7. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, Frances H.; Moore, Jeffrey C.

    1999-01-01

    A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.

  8. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, Frances H.; Moore, Jeffrey C.

    1998-01-01

    A method for isolating and identifying modified para-nitrobenzyl esterases which exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase.

  9. Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media

    DOEpatents

    Arnold, F.H.; Moore, J.C.

    1998-04-21

    A method is disclosed for isolating and identifying modified para-nitrobenzyl esterases. These enzymes exhibit improved stability and/or esterase hydrolysis activity toward selected substrates and under selected reaction conditions relative to the unmodified para-nitrobenzyl esterase. The method involves preparing a library of modified para-nitrobenzyl esterase nucleic acid segments (genes) which have nucleotide sequences that differ from the nucleic acid segment which encodes for unmodified para-nitrobenzyl esterase. The library of modified para-nitrobenzyl nucleic acid segments is expressed to provide a plurality of modified enzymes. The clones expressing modified enzymes are then screened to identify which enzymes have improved esterase activity by measuring the ability of the enzymes to hydrolyze the selected substrate under the selected reaction conditions. Specific modified para-nitrobenzyl esterases are disclosed which have improved stability and/or ester hydrolysis activity in aqueous or aqueous-organic media relative to the stability and/or ester hydrolysis activity of unmodified naturally occurring para-nitrobenzyl esterase. 43 figs.

  10. An esterase from the basidiomycete Pleurotus sapidus hydrolyzes feruloylated saccharides.

    PubMed

    Linke, Diana; Matthes, Rene; Nimtz, Manfred; Zorn, Holger; Bunzel, Mirko; Berger, Ralf G

    2013-08-01

    Investigating the secretion of esterases by the basidiomycetous fungus Pleurotus sapidus in a Tween 80-rich nutrient medium, an enzyme was discovered that hydrolyzed the ester bond of feruloylated saccharides. The enzyme was purified by ion exchange and size exclusion chromatography. Polyacrylamide gel electrophoresis analysis showed a monomeric protein of about 55 kDa. The complete coding sequence with an open reading frame of 1,665 bp encoded a protein (Est1) consisting of 554 amino acids. The enzyme showed no significant homology to any published feruloyl esterase sequences, but possessed putative conserved domains of the lipase/esterase superfamily. Substrate specificity studies classified the new enzyme as type-A feruloyl esterase, hydrolyzing methyl ferulate, methyl sinapate, and methyl p-coumarate but no methyl caffeate. The enzyme had a pH optimum of 6 and a temperature optimum at 50 °C. Ferulic acid was efficiently released from ferulated saccharides, and the feruloyl esterase exhibited moderate stability in biphasic systems (50 % toluene or tert-butylmethyl ether). PMID:23203636

  11. In situ localization of the genetic locus encoding the lysosomal acid lipase/cholesteryl esterase (LIPA) deficient in wolman disease to chromosome 10q23. 2-q23. 3

    SciTech Connect

    Anderson, R.A.; Rao, N.; Byrum, R.S.; Rothschild, C.B.; Bowden, D.W.; Hayworth, R.; Pettenati, M. )

    1993-01-01

    Human acid lipase/cholesteryl esterase (EC 3.1.1.13) is a 46-kDa glycoprotein required for the lysosomal hydrolysis of cholesteryl esters and triglycerides that cells acquire through the receptor-mediated endocytosis of low-density lipoproteins. This activity is essential in the provision of free cholesterol for cell metabolism as well as for the feedback signal that modulates endogenous cellular cholesterol production. The extremely low level of lysosomal acid lipase in patients afflicted with the hereditary, allelic lysosomal storage disorders Woman disease (WD) and cholesteryl ester storage disease (CESD) (MIM Number 278000 (6)) is associated with the massive intralysosomal lipid storage and derangements in the regulation of cellular cholesterol production (10). Both WD and CESD cells lack a specific acid lipase isoenzyme and it is thought that the different mutations associated with WD and CESD are in the structural gene for this isoenzyme, LIPA. Analysis of the activity of the acid lipase isoenzyme in cell extracts from human-Chinese hamster somatic cell hybrids (4, 11) demonstrated the concordant segregation of the gene locus for lysosomal acid lipase with the glutamate oxaloacetate transaminase-1 (GOT1) enzyme marker for human chromosome 10 which was subsequently localized to 10q24.1 q25.1 (8). 11 refs., 1 figs.

  12. Pregastric esterase in milk sham fed to adult jersey steers.

    PubMed

    Leidy, R B; Russell, R W; Wise, G H

    1975-04-01

    Pregastric esterase activity was detected in reconstituted nonfat milk sham fed from a nipple pail to two 4-yr-old rumen-fistualted steers. Lipolytic activity, determined in a medium containing 5% tri-n-butyrin, averaged 8.6 plus or minus .4 lipase units. Further assays, in which activitiy was measured by free fatty acids released from a condensed milk substrate, averaged 166.9 plus or minus 9.2 mumol. These values are higher than those noted for young calves, indicating that secretion of pregastric esterase may persist in cattle beyond calfhood. Esterase activity in one of the steers fed whole milk until he was 2 yr of age showed no marked residual effect of earlier intake of milk fat. PMID:1127162

  13. Esterase phenotyping in human liver in vitro: specificity of carboxylesterase inhibitors.

    PubMed

    Umehara, Ken-Ichi; Zollinger, Markus; Kigondu, Elizabeth; Witschi, Marc; Juif, Claire; Huth, Felix; Schiller, Hilmar; Chibale, Kelly; Camenisch, Gian

    2016-10-01

    1. Esterases may play a major role in the clearance of drugs with functional groups amenable to hydrolysis, particularly in the case of ester prodrugs. To understand the processes involved in the elimination of such drugs, it is necessary to determine the esterases involved. However, the tools currently available for this enzyme phenotyping are relatively scarce. 2. The work was aimed at summarizing the selectivity of esterase inhibitors for carboxylesterases 1 and 2 (CES1 and CES2) in the human liver to clarify their suitability for esterase phenotyping. Eserine, at around 10 μM, was found to be a highly specific CES2 inhibitor, whereas other esterase inhibitors turned out less selective. When used together with tacrine, which inhibits cholinesterases but not CES, and ethylenediaminetetraacetic acid (inhibitor of paraoxonases), the involvement of the hydrolyzing esterases in the hepatic clearance of a drug can be elucidated. 3. The second approach to esterase phenotyping is based on data from recombinant or isolated esterases, together with relative activity factors, which relate their activities to those of the same enzymes in subcellular fractions. 4. These two approaches will help to characterize the hydrolytic metabolism of drug candidates in a similar manner as practiced routinely for the oxidative metabolism by cytochrome P450 enzymes. PMID:26887925

  14. Regiospecific Ester Hydrolysis by Orange Peel Esterase - An Undergraduate Experiment.

    NASA Astrophysics Data System (ADS)

    Bugg, Timothy D. H.; Lewin, Andrew M.; Catlin, Eric R.

    1997-01-01

    A simple but effective experiment has been developed to demonstrate the regiospecificity of enzyme catalysis using an esterase activity easily isolated from orange peel. The experiment involves the preparation of diester derivatives of para-, meta- and ortho-hydroxybenzoic acid (e.g. methyl 4-acetoxy-benzoic acid). The derivatives are incubated with orange peel esterase, as a crude extract, and with commercially available pig liver esterase and porcine pancreatic lipase. The enzymatic hydrolysis reactions are monitored by thin layer chromatography, revealing which of the two ester groups is hydrolysed, and the rate of the enzyme-catalysed reaction. The results of a group experiment revealed that in all cases hydrolysis was observed with at least one enzyme, and in most cases the enzymatic hydrolysis was specific for production of either the hydroxy-ester or acyl-acid product. Specificity towards the ortho-substituted series was markedly different to that of the para-substituted series, which could be rationalised in the case of pig liver esterase by a published active site model.

  15. Fumaric acid esters in dermatology

    PubMed Central

    Wollina, Uwe

    2011-01-01

    Fumaric acid esters (FAE) are substances of interest in dermatology. FAE exert various activities on cutaneous cells and cytokine networks. So far only a mixture of dimethylfumarate (DMF) and three salts of monoethylfumarate (MEF) have gained approval for the oral treatment of moderate-to-severe plaque-type psoriasis in Germany. DMF seems to be the major active component. There is evidence that FAE are not only effective and safe in psoriasis but granulomatous non-infectious diseases like granuloma annulare, necrobiosis lipoidica and sarcoidosis. In vitro and animal studies suggest some activity in malignant melanoma as well. PMID:23130241

  16. Chloroplasts assemble the major subunit FaeG of Escherichia coli F4 (K88) fimbriae to strand-swapped dimers.

    PubMed

    Van Molle, Inge; Joensuu, Jussi J; Buts, Lieven; Panjikar, Santosh; Kotiaho, Mirkka; Bouckaert, Julie; Wyns, Lode; Niklander-Teeri, Viola; De Greve, Henri

    2007-05-01

    F4 fimbriae encoded by the fae operon are the major colonization factors associated with porcine neonatal and postweaning diarrhoea caused by enterotoxigenic Escherichia coli (ETEC). Via the chaperone/usher pathway, the F4 fimbriae are assembled as long polymers of the major subunit FaeG, which also possesses the adhesive properties of the fimbriae. Intrinsically, the incomplete fold of fimbrial subunits renders them unstable and susceptible to aggregation and/or proteolytic degradation in the absence of a specific periplasmic chaperone. In order to test the possibility of producing FaeG in plants, FaeG expression was studied in transgenic tobacco plants. FaeG was directed to different subcellular compartments by specific targeting signals. Targeting of FaeG to the chloroplast results in much higher yields than FaeG targeting to the endoplasmic reticulum or the apoplast. Two chloroplast-targeted FaeG variants were purified from tobacco plants and crystallized. The crystal structures show that chloroplasts circumvent the absence of the fimbrial assembly machinery by assembling FaeG into strand-swapped dimers. Furthermore, the structures reveal how FaeG combines the structural requirements of a major fimbrial subunit with its adhesive role by grafting an additional domain on its Ig-like core. PMID:17368480

  17. Subcutaneous or oral immunization of mice with Lactococcus lactis expressing F4 fimbrial adhesin FaeG.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea in neonatal and postweaning piglets. Fimbrial adhesion of ETEC has been considered an important colonization factor with antigenicity. To safely and effectively deliver the F4 (K88) fimbrial adhesin FaeG to the immune system, we have previously constructed the secretory expression vector pNZ8112-faeG, and FaeG was produced in cytoplasmic form in Lactococcus lactis. In this work, BALB/c mice were immunized with recombinant L. lactis to further determine the immunogenicity of recombinant FaeG (rFaeG) via the subcutaneous or oral route. Subcutaneous immunization in mice with recombinant L. lactis induced a significant increase in the F4-specific serum IgG titer and the number of antibody-secreting cells (ASCs) in the spleen. Oral immunization of mice with recombinant L. lactis induced mucosal and systemic F4-specific immune responses and increased the number of ASCs in the spleen, mesenteric lymph nodes and Peyer's patches. High-dose (2.8 × 10(11) CFU) recombinant strains and adjuvant cholera toxin B subunit enhanced specific mucosal immune responses. The results suggest the feasibility of delivering rFaeG expressed in L. lactis to the immune system in order to induce an F4-specific immune response. PMID:23386358

  18. Esterase zymograms of Proteus and Providencia.

    PubMed

    Goullet, P

    1975-03-01

    The intracellular esterases of 80 strains of Proteus and Providencia were analysed by the acrylamide-agarose zymogram technique using several synthetic substrates. The esterase bands were classified in five main groups. The alphaA-esterase bands hydrolysed alpha-naphthyl acetate and were resistant or relatively insensitive to di-isofluoropropyl phosphate (DFP). The alphaB-esterase band hydrolysed both alpha-naphthyl acetate and alpha-naphthyl butyrate and were very sensitive to DFP. Both groups of esterase bands were inactivated by heat. The betaA- and betaB-esterase bands hydrolysed beta-naphthyl acetate and were sensitive to DFP; these were distinguishable by the difference in their relative activity towards beta-naphthyl butyrate and in their relative stability to heat. The alpha-beta-esterase bands hydrolysed alpha- and beta-naphthyl acetates and alpha- and beta-naphthyl butyrates; they were inactivated by heat and were sensitive to DFP. The distribution of these esterase bands among the strains of Proteus and Providencia and their electrophoretic patterns established esterase profile types which correlate with the classification based on traditional bacteriological tests. The degree of inter-strain similarity in esterase pattern varied highly among species. The homogeneity of Proteus mirabilis and especially of Providencia stuartii contrasted with the heterogeneity of other species. This disparity suggests that the bacteria of the tribe Proteae have not the same degree of intra-specific differentiation in physico-chemical properties of esterases. PMID:48538

  19. Characterization of a feruloyl esterase B from Talaromyces cellulolyticus.

    PubMed

    Watanabe, Masahiro; Yoshida, Erika; Fukada, Hiroaki; Inoue, Hiroyuki; Tokura, Mitsunori; Ishikawa, Kazuhiko

    2015-01-01

    A feruloyl esterase catalyzes the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from esterified sugars in plant cell walls. Talaromyces cellulolyticus is a high cellulolytic-enzyme producing fungus. However, there is no report for feruloyl esterase activity of T. cellulolyticus. Analysis of the genome database of T. cellulolyticus identified a gene encoding a putative feruloyl esterase B. The recombinant enzyme was prepared using a T. cellulolyticus homologous expression system and characterized. The purified enzyme exhibited hydrolytic activity toward p-nitrophenyl acetate, p-nitrophenyl trans-ferulate, methyl ferulate, rice husk, and bagasse. HPLC assays showed that the enzyme released ferulic acid and p-coumaric acid from hydrothermal-treated rice husk and bagasse. Trichoderma sp. is well-known high cellulolytic-enzyme producing fungus useful for the lignocellulosic biomass saccharification. Interestingly, no feruloyl esterase has been reported from Trichoderma sp. The results show that this enzyme is expected to be industrially useful for biomass saccharification. PMID:26110915

  20. Improved stability and enhanced efficiency to degrade chlorimuron-ethyl by the entrapment of esterase SulE in cross-linked poly (γ-glutamic acid)/gelatin hydrogel.

    PubMed

    Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Xu, MingKai; Zhang, Huiwen

    2015-04-28

    Free enzymes often undergo some problems such as easy deactivation, low stability, and less recycling in biodegradation processes, especially in soil condition. A novel esterase SulE, which is responsible for primary degradation of a wide range of sulfonylurea herbicides by methyl or ethyl ester de-esterification, was expressed by strain Hansschlegelia sp. CHL1 and entrapped for the first time in an environment-friendly, biocompatible and biodegradable cross-linked poly (γ-glutamic acid)/gelatin hydrogel (CPE). The activity and stability of CPE-SulE were compared with free SulE under varying pH and temperature condition by measuring chlorimuron-ethyl residue. Meanwhile, the three-dimensional network of CPE-SulE was verified by scanning electron microscopy (SEM). The results showed that CPE-SulE obviously improved thermostability, pH stability and reusability compared with free SulE. Furthermore, CPE-SulE enhanced degrading efficiency of chlorimuron-ethyl in both soil and water system, especially in acid environment. The characteristics of CPE-SulE suggested the great potential to remediate chlorimuron-ethyl contaminated soils in situ. PMID:25661176

  1. Structural features determining thermal adaptation of esterases.

    PubMed

    Kovacic, Filip; Mandrysch, Agathe; Poojari, Chetan; Strodel, Birgit; Jaeger, Karl-Erich

    2016-02-01

    The adaptation of microorganisms to extreme living temperatures requires the evolution of enzymes with a high catalytic efficiency under these conditions. Such extremophilic enzymes represent valuable tools to study the relationship between protein stability, dynamics and function. Nevertheless, the multiple effects of temperature on the structure and function of enzymes are still poorly understood at the molecular level. Our analysis of four homologous esterases isolated from bacteria living at temperatures ranging from 10°C to 70°C suggested an adaptation route for the modulation of protein thermal properties through the optimization of local flexibility at the protein surface. While the biochemical properties of the recombinant esterases are conserved, their thermal properties have evolved to resemble those of the respective bacterial habitats. Molecular dynamics simulations at temperatures around the optimal temperatures for enzyme catalysis revealed temperature-dependent flexibility of four surface-exposed loops. While the flexibility of some loops increased with raising the temperature and decreased with lowering the temperature, as expected for those loops contributing to the protein stability, other loops showed an increment of flexibility upon lowering and raising the temperature. Preserved flexibility in these regions seems to be important for proper enzyme function. The structural differences of these four loops, distant from the active site, are substantially larger than for the overall protein structure, indicating that amino acid exchanges within these loops occurred more frequently thereby allowing the bacteria to tune atomic interactions for different temperature requirements without interfering with the overall enzyme function. PMID:26647400

  2. A food-grade fimbrial adhesin FaeG expression system in Lactococcus lactis and Lactobacillus casei.

    PubMed

    Lu, W W; Wang, T; Wang, Y; Xin, M; Kong, J

    2016-03-01

    Enterotoxigenic Escherichia coli (ETEC) infection is the major cause of diarrhea in neonatal piglets. The fimbriae as colonizing factor in the pathogenesis of ETEC constitute a primary target for vaccination against ETEC. Lactic acid bacteria (LAB) are attractive tools to deliver antigens at the mucosal level. With the safety of genetically modified LAB in mind, a food-grade secretion vector (pALRc or pALRb) was constructed with DNA entirely from LAB, including the replicon, promoter, signal peptide, and selection marker alanine racemase gene (alr). To evaluate the feasibility of the system, the nuclease gene (nuc) from Staphylococcus aureus was used as a reporter to be expressed in both Lactococcus lactis and Lactobacillus casei. Subsequently, the extracellular secretion of the fimbrial adhesin FaeG of ETEC was confirmed by Western blot analysis. These results showed that this food-grade expression system has potential as the delivery vehicle for the safe use of genetically modified LAB for the development of vaccines against ETEC infection. PMID:26825016

  3. Requirement of catalytic-triad and related amino acids for the acyltransferase activity of Tanacetum cinerariifolium GDSL lipase/esterase TcGLIP for ester-bond formation in pyrethrin biosynthesis.

    PubMed

    Kikuta, Yukio; Yamada, Gen; Mitsumori, Tomonori; Takeuchi, Takayuki; Nakayama, Koji; Katsuda, Yoshio; Hatanaka, Akikazu; Matsuda, Kazuhiko

    2013-01-01

    We have recently discovered that a GDSL lipase/esterase (TcGLIP) in Tanacetum cinerariifolium catalyzed acyltransferase activity to form an ester bond in the natural insecticide, pyrethrin. TcGLIP contained Ser40 in Block I, Gly64 in Block II, Asn168 in Block III and Asp318 and His321 in Block V, suggesting underlying hydrolase activity, although little is known about their role in acyltransferase activity. We expressed TcGLIP here in Esherichia coli as a fusion with maltose-binding protein (MBP), part of the fusion being cleaved with a protease to obtain MBP-free TcGLIP. A kinetic analysis revealed that the MBP moiety scarcely influenced the kinetic parameters. The effects on acyltransferase activity of mutations of Gly64, Asn168, Asp318 and His321 were investigated by using MBP-fused TcGLIP. Mutations of these amino acids markedly reduced the acyltransferase activity, suggesting their critical role in the production of pyrethrins. PMID:24018659

  4. Characterization of four esterase genes and esterase activity from the gut of the termite Reticulitermes flavipes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four esterase genes and general esterase activity were investigated in the gut of the termite Reticulitermes flavipes. Two genes (RfEst1 and RfEst2) share significant translated identity with a number of insect JH esterases. The two remaining genes (RfEst3 and RfEst4) apparently code for much shorte...

  5. Structural and thermodynamic characterization of pre- and postpolymerization states in the F4 fimbrial subunit FaeG.

    PubMed

    Van Molle, Inge; Moonens, Kristof; Garcia-Pino, Abel; Buts, Lieven; De Kerpel, Maia; Wyns, Lode; Bouckaert, Julie; De Greve, Henri

    2009-12-18

    Enterotoxigenic Escherichia coli expressing F4 fimbriae are the major cause of porcine colibacillosis and are responsible for significant death and morbidity in neonatal and postweaned piglets. Via the chaperone-usher pathway, F4 fimbriae are assembled into thin, flexible polymers mainly composed of the single-domain adhesin FaeG. The F4 fimbrial system has been labeled eccentric because the F4 pilins show some features distinct from the features of pilins of other chaperone-usher-assembled structures. In particular, FaeG is much larger than other pilins (27 versus approximately 17 kDa), grafting an additional carbohydrate binding domain on the common immunoglobulin-like core. Structural data of FaeG during different stages of the F4 fimbrial biogenesis process, combined with differential scanning calorimetry measurements, confirm the general principles of the donor strand complementation/exchange mechanisms taking place during pilus biogenesis via the chaperone-usher pathway. PMID:19799915

  6. Esterase inhibition by grapefruit juice flavonoids leading to a new drug interaction.

    PubMed

    Li, Ping; Callery, Patrick S; Gan, Liang-Shang; Balani, Suresh K

    2007-07-01

    Our previous studies described a newly identified potential of grapefruit juice (GFJ) in mediating pharmacokinetic drug interactions due to its capability of esterase inhibition. The current study identifies the active components in GFJ responsible for its esterase-inhibitory effect. The esterase-inhibitory potential of 10 constitutive flavonoids and furanocoumarins toward p-nitrophenylacetate (PNPA) hydrolysis was investigated. The furanocoumarins bergamottin, 6',7'-dihydroxybergamottin, and bergapten, and the glycoside flavonoids naringin and hesperidin, at concentrations found in GFJ or higher, did not inhibit the hydrolysis of PNPA by purified porcine esterase and human liver microsomes. However, the flavonoid aglycones morin, galangin, kaempferol, quercetin, and naringenin showed appreciable inhibition of PNPA hydrolysis in purified porcine esterase, and human and rat liver systems. In Caco-2 cells, demonstrated to contain minimal CYP3A activity, the permeability coefficient of the prodrugs lovastatin and enalapril was increased in the presence of the active flavonoids kaempferol and naringenin, consistent with inhibition of esterase activity. In rats, oral coadministration of kaempferol and naringenin with these prodrugs led to significant increases in plasma exposure to the active acids. In addition, in portal vein-cannulated rats, coadministration of lovastatin with kaempferol (10 mg/kg) led to a 154% and a 113% increase in the portal plasma exposure to the prodrug and active acid, respectively, compared with coadministration with water. The contribution of CYP3A inhibition was demonstrated to be minimal. Overall, a series of flavonoids present in GFJ are identified as esterase inhibitors, of which kaempferol and naringenin are shown to mediate pharmacokinetic drug interaction with the prodrugs lovastatin and enalapril due to their capability of esterase inhibition. PMID:17452418

  7. Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics.

    PubMed

    Das, Ratul Kumar; Brar, Satinder Kaur; Verma, Mausam

    2016-04-01

    Several lines of evidence have demonstrated the potential biomedical applications of fumaric acid (FA) and its ester derivatives against many human disease conditions. Fumaric acid esters (FAEs) have been licensed for the systemic treatment of the immune-mediated disease psoriasis. Biogen Idec Inc. announced about the safety and efficacy of the formulation FAE (BG-12) for treating RRMS (relapsing-remitting multiple sclerosis). Another FAE formulation DMF (dimethyl fumarate) was found to be capable of reduction in inflammatory cardiac conditions, such as autoimmune myocarditis and ischemia and reperfusion. DMF has also been reported to be effective as a potential neuroprotectant against the HIV-associated neurocognitive disorders (HAND). Many in vivo studies carried out on rat and mice models indicated inhibitory effects of fumaric acid on carcinogenesis of different origins. Moreover, FAEs has emerged as an important matrix ingredient in the fabrication of biodegradable scaffolds for tissue engineering applications. Drug delivery vehicles composed of FAEs have shown promising results in delivering some leading drug molecules. Apart from these specific applications and findings, many more studies on FAEs have revealed new therapeutic potentials with the scope of clinical applications. However, until now, this scattered vital information has not been written into a collective account and analyzed for minute details. The aim of this paper is to review the advancement made in the biomedical application of FA and FAEs and to focus on the clinical investigation and molecular interpretation of the beneficial effects of FA and FAEs. PMID:26922546

  8. [Variability in esterases of Metarhizium anisopliae].

    PubMed

    Estrada-Martínez, M E; Piñón, D R; Capote, M C

    1997-03-01

    The variability in esterases of the entomogenous fungus Metarhizium anisopliae was determined electrophoretically on 8.5% polyacrylamide gel. Ten isolates from diverse taxonomic groups of insects were analyzed. The electrophoretic analysis showed differences and similarities between these isolates and it was possible to distinguish six different patterns. The results obtained show a great polymorphism for the esterase system of M. anisopliae. PMID:15482022

  9. Cutinolytic esterase activity of bacteria isolated from mixed-plant compost and characterization of a cutinase gene from Pseudomonas pseudoalcaligenes.

    PubMed

    Inglis, G D; Yanke, L J; Selinger, L B

    2011-11-01

    The objective of the current study was to examine cutinolytic esterase (i.e., cutinase) activity by pseudomonads and bacteria isolated from mixed-plant compost. Approximately 400 isolates representing 52 taxa recovered from mixed-plant compost using cuticle baits, along with 117 pseudomonad isolates obtained from a culture collection (i.e., non-compost habitats), were evaluated. The ability of isolates to degrade the synthetic cutin polycaprolactone (PCL) was initially measured. Isolates from 23 taxa recovered from the compost degraded PCL. As well, isolates from 13 taxa of pseudomonads cleared PCL. Secondary screening measured esterase activity induced by the presence of apple cuticle using the chromogenic substrate p-nitrophenyl butyrate. Eighteen isolates representing four taxa (Alcaligenes faecalis , Bacillus licheniformis , Bacillus pumilus , and Pseudomonas pseudoalcaligenes) recovered from compost exhibited substantial esterase activity when grown with cuticle. In contrast, none of the pseudomonad isolates from the culture collection produced appreciable esterase activity. Although degradation of PCL was not correlated with esterase activity, isolates that were unable to degrade PCL failed to produce measureable esterase activities. Zymogram analysis indicated that the esterases produced by bacteria from compost ranged in size from 29 to 47 kDa. A gene from P. pseudoalcaligenes (cutA) was found to code for a cutin-induced esterase consisting of 302 amino acids and a theoretical protein size of 32 kDa. The enzyme was unique and was most closely related to other bacterial lipases (≤48% similarity). PMID:22029433

  10. A standardised challenge model with an enterotoxigenic F4+ Escherichia coli strain in piglets assessing clinical traits and faecal shedding of fae and est-II toxin genes.

    PubMed

    Spitzer, Franz; Vahjen, Wilfried; Pieper, Robert; Martinez-Vallespin, Beatriz; Zentek, Jürgen

    2014-12-01

    This study evaluated the effect of five feed additives on post weaning diarrhoea (PWD) in piglets challenged 3 d after weaning with an enterotoxigenic Escherichia coli strain (ETEC). In three experimental runs, a total of 84 piglets was weaned at 21 days of age and randomly assigned to seven treatments. As dietary treatment, piglets were fed a basal diet or diets with addition of bovine colostrum (0.2%), pineapple stem extract containing bromelain (0.2%), an autolysed yeast preparation (Saccharomyces cerevisiae) (0.1%), a combination of organic acids (0.7%) and a phytogenic product with thyme essential oil (0.015%). A porcine ETEC, serotype O149:K91:K88ac was given twice via oral infection on day 3 after weaning at 10(10) colony forming units/animal. One group of piglets was fed the basal diet without ETEC challenge. Traits included clinical sores, body temperature, faecal scoring and determination of faecal dry matter and the shedding of fae and est-II ETEC toxin genes. After weaning, non-challenged control piglets did not show signs of diarrhoea or impaired health, while the majority of infected piglets had a drop in body temperature, signs of diarrhoea and impaired general health. Mortality, the decrease of faecal dry matter and shedding of the toxin genes fae and est-II were not affected by the different additives. In conclusion, the ETEC challenge model induced distinct clinical signs of PWD in piglets, but the tested feed additives had no preventive effect under these conditions. PMID:25313936

  11. Differences in Esterase Activity to Aspirin and p-Nitrophenyl Acetate among Human Serum Albumin Preparations.

    PubMed

    Tatsumi, Akitoshi; Okada, Masaya; Inagaki, Yoshihiro; Inoue, Sachiyo; Hamaguchi, Tsuneo; Iwakawa, Seigo

    2016-01-01

    Human serum albumin (HSA) has two major ligand-binding sites, sites I and II, and also hydrolyzes some compounds at both sites. In the present study, we investigated differences in esterase activity among HSA preparations, and also the effects of warfarin, indomethacin, and naproxen on the hydrolytic activities of HSA to aspirin and p-nitrophenyl acetate. The esterase activities of HSA to aspirin or p-nitrophenyl acetate were measured from the pseudo-first-order formation rate constant (kobs) of salicylic acid or p-nitrophenol by HSA. Inter-lot variations were observed in the esterase activities of HSA to aspirin and p-nitrophenyl acetate; however, the esterase activity of HSA to aspirin did not correlate with that to p-nitrophenyl acetate. The inhibitory effects of warfarin and indomethacin on the esterase activity of HSA to aspirin were stronger than that of naproxen. In contrast, the inhibitory effect of naproxen on the esterase activity of HSA to p-nitrophenyl acetate was stronger than those of warfarin and indomethacin. These results suggest that the administration of different commercial HSA preparations and the co-administration with site I or II high-affinity binding drugs may change the pharmacokinetic profiles of drugs that are hydrolyzed by HSA. PMID:27476944

  12. Identification of a cocaine esterase in a strain of Pseudomonas maltophilia.

    PubMed Central

    Britt, A J; Bruce, N C; Lowe, C R

    1992-01-01

    A strain of Pseudomonas maltophilia (termed MB11L) which was capable of using cocaine as its sole carbon and energy source was isolated by selective enrichment. An inducible esterase catalyzing the hydrolysis of cocaine to ecgonine methyl ester and benzoic acid was identified and purified 22-fold. In the presence of the solubilizing agent cholate, cocaine esterase had a native Mr of 110,000 and was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be a monomer. In the absence of cholate, cocaine esterase had a native Mr of 410,000 and probably existed as a tetramer. The pH optimum of the enzyme was 8.0, and the Km values for cocaine, ethyl benzoate, and ethyl 2-hydroxybenzoate were 0.36, 1.89, and 1.75 mM, respectively. Inhibition studies indicated that the enzyme was a serine esterase, possibly possessing a cation-binding site similar to those of mammalian acetylcholinesterase and the atropine esterase of Pseudomonas putida PMBL-1. The cocaine esterase of P. maltophilia MB11L showed no activity with atropine, despite the structural similarity of cocaine and atropine. PMID:1551831

  13. Induction of specific immune responses in piglets by intramuscular immunization with fimbrial adhesin FaeG expressed in Lactococcus lactis.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei

    2013-08-01

    Fimbrial adhesin plays a critical role in the pathogenesis of enterotoxigenic Escherichia coli (ETEC)-induced piglet diarrhoea. Lactococcus lactis is an attractive food-grade host for the production of heterologous antigens. We previously demonstrated that fimbrial adhesin FaeG was expressed in L. lactis and that oral immunization in mice with recombinant L. lactis expressing FaeG induced F4-specific mucosal and systemic immune responses. In the present study, we explored the immune responses of piglets induced by intramuscular vaccination with recombinant L. lactis expressing rFaeG. Intramuscular vaccination resulted in significantly elevated serum IgG level and modest increases in serum IgA and IgM levels. In addition, IgG, IgA, and IgM antibody secreting cells were induced in the spleen, mesenteric lymph nodes, and jejunum. The growth performance of piglets was not influenced by intramuscular vaccination. The results suggest that L. lactis expressing FaeG is a promising candidate vaccine against ETEC. PMID:23540979

  14. Literacy-Based Supports for Young Adults with FAS/FAE [Fetal Alcohol Syndrome/Fetal Alcohol Effects].

    ERIC Educational Resources Information Center

    Raymond, Margaret; Belanger, Joe

    During a 1-year period, a study investigated the contributions made by 3 literacy-based supports (support circles, cognitive compensatory tools, and cognitive enhancement tools) to the lives of 5 young adults, aged 16-34, with FAS/FAE (Fetal Alcohol Syndrome/Fetal Alcohol Effects). Four of the five subjects had IQs (intelligence quotients) above…

  15. BLT-esterase in infectious mononucleosis.

    PubMed Central

    Wagner, L; Wiesholzer, M; Worman, C P; Lang, G; Base, W

    1995-01-01

    Peripheral blood lymphocytes of three patients suffering from infectious mononucleosis due to Epstein-Barr virus (EBV) infection were analysed for BLT-esterase expression in peripheral blood lymphocytes by a well established cytochemical staining method. During the acute phase of disease with presence of clinical symptoms a very high level of up to 90% BLT-esterase-expressing lymphocytes were detected. The increased percentage of lymphocytes expressing BLT-esterase coincided with the time of greatest symptoms and the peak elevation of hepatocellular enzymes. The still moderately elevated level only gradually decreased to normal during the further recovery period of 2 months during which the patients described episodes of weakness. Peripheral blood lymphocyte phenotype analysis revealed a marked CD8 lymphocytosis, a CD4/CD8 ratio of about 0.2, low number of CD19+ B cells, and a high level of DR+ CD3+ lymphocytes. Reduction of BLT esterase expression during the recovery period coincided with reduction of CD8+ DR+ lymphocytes. By a combination of BLT-esterase staining with immunocytochemical phenotype analysis, 95% of CD8+ lymphocytes were found to be BLT-esterase-positive. BLT-esterase might be involved in the immunodefence against EBV in infectious mononucleosis by inducing apoptosis in EBV-transformed B cells. Images Fig. 2 PMID:7743659

  16. Esterase profile of human masseter muscle.

    PubMed Central

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and iiC. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating isoenzymes. In isoelectric focused gels the major esterases showed isoelectric points around pH 5. Images Fig. 1 Fig. 2 Figs. 3-5 Figs. 6-8 Figs. 9-11 Figs. 12-14 Figs. 15-16 Fig. 17 PMID:3198486

  17. Comparative analysis for the production of fatty acid alkyl esterase using whole cell biocatalyst and purified enzyme from Rhizopus oryzae on waste cooking oil (sunflower oil).

    PubMed

    Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar

    2012-08-01

    The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. PMID:22537973

  18. Preparation and Properties of Novel Dentin Adhesives with Esterase Resistance

    PubMed Central

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M.; Kostoryz, Elisabet L.; Wang, Yong; Kieweg, Sarah L.; Spencer, Paulette

    2012-01-01

    A new methacrylate monomer, trimethylolpropane mono allyl ether dimethacrylate (TMPEDMA), was synthesized and evaluated. This branched methacrylate was designed to increase esterase-resistance when incorporated into conventional HEMA (2-hydroxyethyl methacrylate)/BisGMA (2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane) dental adhesives. The new adhesives, HEMA/BisGMA/TMPEDMA in a 45/30/25 (w/w) ratio were formulated with H2O at 0 (A0T) and 8 wt % water (A8T) and compared with control adhesives (HEMA/BisGMA, 45/55 (w/w), at 0 (A0) and 8 wt % (A8) water). Camphoroquinone (CQ), 2-(dimethylamino) ethyl methacrylate and diphenyliodonium hexafluorophosphate were used as photoinitiators. The new adhesives showed a degree of conversion comparable with the control and improved modulus and glass transition temperature (Tg). Exposure of photopolymerized discs to porcine liver esterase for up to eight days showed that the net cumulative methacrylic acid (MAA) release in adhesives formulated with the new monomer and 8% water (A8T: 182 μg/mL) was dramatically (P < 0.05) decreased in comparison to the control (A8: 361.6 μg/mL). The results demonstrate that adhesives made with the new monomer and cured in water to simulate wet bonding are more resistant to esterase than conventional HEMA/BisGMA adhesive. PMID:22919119

  19. Esterase inhibition attribute of grapefruit juice leading to a new drug interaction.

    PubMed

    Li, Ping; Callery, Patrick S; Gan, Liang-Shang; Balani, Suresh K

    2007-07-01

    This report describes a newly identified potential of grapefruit juice (GFJ) in mediating pharmacokinetic drug interactions due to its capability to inhibit esterase. The study demonstrates that GFJ inhibits purified porcine esterase activity toward p-nitrophenyl acetate and the prodrugs lovastatin and enalapril. In rat and human hepatic or gut S9 fractions and rat gut lumen, GFJ inhibited the hydrolysis of enalapril and lovastatin, which are known to be metabolized principally by esterases, lovastatin being metabolized also by CYP3A. In Caco-2 cells, with minimal CYP3A activity, permeability of these prodrugs was increased in the presence of GFJ. In rats, oral coadministration of GFJ or an esterase inhibitor, bis-(p-nitrophenylphosphate), with the prodrugs led to respective increases in plasma area under the curve by 70% or 57% for enalaprilat and 279% or 141% for lovastatin acid. In addition, portal vein-cannulated rats pretreated with GFJ at -15 and -2 h before lovastatin administration (10 mg/kg p.o.) as a solution, 1) in water and 2) in GFJ, showed, respectively, a 49% increase (CYP3A-inhibited) and a 116% increase (both CYP3A and gut esterase-inhibited) in the portal plasma exposure to the active acid, compared with a non-GFJ pretreatment group. Overall, along with the CYP3A inactivation by GFJ, the decreased esterase activity also played a significant role in increasing the metabolic stability and permeability of esters leading to enhancement of exposure to the active drugs in rats. These new esterase inhibition findings indicate that the potential of drug interaction between ester prodrugs and GFJ should also be considered in the clinic. PMID:17392396

  20. The Secreted Esterase of Propionibacterium freudenreichii Has a Major Role in Cheese Lipolysis

    PubMed Central

    Abeijón Mukdsi, María Claudia; Falentin, Hélène; Maillard, Marie-Bernadette; Chuat, Victoria; Medina, Roxana Beatriz; Parayre, Sandrine

    2014-01-01

    Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1T for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis. PMID:24242250

  1. Human osteoclast and giant cell differentiation: the apparent switch from nonspecific esterase to tartrate resistant acid phosphatase activity coincides with the in situ expression of osteopontin mRNA.

    PubMed

    Connor, J R; Dodds, R A; James, I E; Gowen, M

    1995-12-01

    Animal model and in vitro cultures suggest that osteoclasts and cells of the mononuclear phagocyte system share a common precursor. However, the human osteoclast precursor has not been positively identified. We attempted to identify the precursor in situ by using a number of osteoclast- and macrophage-selective markers, together with the expression of osteopontin mRNA, previously shown to be abundant in human osteoclasts. Sections of osteophytic bone and a panel of inflammatory connective tissues were processed for in situ hybridization; serial sections were analyzed for tartrate-resistant acid phosphatase (TRAP) and nonspecific esterase (NSE) activity, selective cytochemical markers for the osteoclast and cells of the macrophage/monocyte lineage, respectively. The murine anti-human osteoclast monoclonal antibodies 23C6 (vitronectin receptor) and C35 (osteoclast-selective) were used to further identify the osteoclast phenotype. We compared osteoclasts, giant cells, and their respective putative mononuclear precursors. At resorption sites within osteophytic bone, osteopontin mRNA was expressed in osteoclasts and a distinct population of TRAP+, NSE- mononuclear cells. Adjacent clusters of mononuclear cells were TRAP- and NSE+ or were active for both enzymes; these cells demonstrated variable expression of osteopontin mRNA. In the inflammatory connective tissues, abundant macrophage-like cells (NSE+/TRAP-) did not express osteopontin mRNA. However, TRAP+ mononuclear cells observed among clusters of NSE+ cells did express osteopontin mRNA. At these sites, clusters of putative macrophage polykaryons removing fragments of bone debris were observed. These giant cells and associated mononuclear cells were NSE- and distinctly TRAP+, and expressed osteopontin mRNA, C35, and 23C6 (human osteoclast) reactivity. Therefore, cells involved in the remodeling (resorption) of bone or the removal of bone debris, together with their immediate precursors, switch from being NSE

  2. Hydrolysis of wheat arabinoxylan by two acetyl xylan esterases from Chaetomium thermophilum.

    PubMed

    Tong, Xiaoxue; Lange, Lene; Grell, Morten Nedergaard; Busk, Peter Kamp

    2015-01-01

    The thermophilic filamentous ascomycete Chaetomium thermophilum produces functionally diverse hemicellulases when grown on hemicellulose as carbon source. Acetyl xylan esterase (EC 3.1.1.72) is an important accessory enzyme in hemicellulose biodegradation. Although the genome of C. thermophilum has been sequenced, its carbohydrate esterases are not annotated yet. We applied peptide pattern recognition (PPR) tool for sequence analysis of the C. thermophilum genome, and 11 carbohydrate esterase genes were discovered. Furthermore, we cloned and heterologously expressed two putative acetyl xylan esterase genes, CtAxeA and CtAxeB, in Pichia pastoris. The recombinant proteins, rCtAxeA and rCtAxeB, released acetic acids from p-nitrophenyl acetate and water-insoluble wheat arabinoxylan. These results indicate that CtAxeA and CtAxeB are true acetyl xylan esterases. For both recombinant esterases, over 93 % of the initial activity was retained after 24 h of incubation at temperatures up to 60 °C, and over 90 % of the initial activity was retained after 24 h of incubation in different buffers from pH 4.0 to 9.0 at 4 and 50 °C. The overall xylose yield from wheat arabinoxylan hydrolysis was 8 % with xylanase treatment and increased to 34 % when xylanase was combined with rCtAxeA and rCtAxeB. In sum, the present study first report the biochemical characterization of two acetyl xylan esterases from C. thermophilum, which are efficient in hydrolyzing hemicellulose with potential application in biomass bioconversion to high value chemicals or biofuels. PMID:25369895

  3. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant.

    PubMed

    Fang, Zheng-wu; Qi, Rui; Li, Xiao-fang; Liu, Zhi-xiong

    2014-10-25

    Arabidopsis thaliana APETALA3 (AP3) and Antirrhinum majus DEFICIENS (DEF) MADS box genes are required to specify petal and stamen identity. AP3 and DEF are members of the euAP3 lineage, which arose by gene duplication coincident with radiation of the core eudicots. In order to investigate the molecular mechanisms underlying organ development in early diverging clades of core eudicots, we isolated and identified an AP3 homolog, FaesAP3, from Fagopyrum esculentum (buckwheat, Polygonaceae), a multi-food-use pseudocereal with healing benefits. Protein sequence alignment and phylogenetic analyses revealed that FaesAP3 grouped into the euAP3 lineage. Expression analysis showed that FaesAP3 was transcribed only in developing stamens, and differed from AP3 and DEF, which expressed in developing petals and stamens. Moreover, ectopic expression of FaesAP3 rescued stamen development without complementation of petal development in an Arabidopsis ap3 mutant. Our results suggest that FaesAP3 is involved in the development of stamens in buckwheat. These results also suggest that FaesAP3 holds some potential for biotechnical engineering to create a male sterile line of F. esculentum. PMID:25149019

  4. Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome.

    PubMed

    Privé, Florence; Newbold, C Jamie; Kaderbhai, Naheed N; Girdwood, Susan G; Golyshina, Olga V; Golyshin, Peter N; Scollan, Nigel D; Huws, Sharon A

    2015-07-01

    Improving the health beneficial fatty acid content of meat and milk is a major challenge requiring an increased understanding of rumen lipid metabolism. In this study, we isolated and characterized rumen bacterial lipases/esterases using functional metagenomics. Metagenomic libraries were constructed from DNA extracted from strained rumen fluid (SRF), solid-attached bacteria (SAB) and liquid-associated rumen bacteria (LAB), ligated into a fosmid vector and subsequently transformed into an Escherichia coli host. Fosmid libraries consisted of 7,744; 8,448; and 7,680 clones with an average insert size of 30 to 35 kbp for SRF, SAB and LAB, respectively. Transformants were screened on spirit blue agar plates containing tributyrin for lipase/esterase activity. Five SAB and four LAB clones exhibited lipolytic activity, and no positive clones were found in the SRF library. Fosmids from positive clones were pyrosequenced and twelve putative lipase/esterase genes and two phospholipase genes retrieved. Although the derived proteins clustered into diverse esterase and lipase families, a degree of novelty was seen, with homology ranging from 40 to 78% following BlastP searches. Isolated lipases/esterases exhibited activity against mostly short- to medium-chain substrates across a range of temperatures and pH. The function of these novel enzymes recovered in ruminal metabolism needs further investigation, alongside their potential industrial uses. PMID:25575887

  5. Improved thermostability of a Bacillus subtilis esterase by domain exchange.

    PubMed

    Gall, Markus G; Nobili, Alberto; Pavlidis, Ioannis V; Bornscheuer, Uwe T

    2014-02-01

    A moderately thermostable esterase from Geobacillus stearothermophilus (BsteE) and its homolog from Bacillus subtilis (BsubE) show a high structural similarity with more than 95% homology and 74% amino acid identity. Interestingly, their thermal stability differs significantly by 30 °C in their melting temperature. In order to identify the positions that are responsible for this difference, most of the flexible amino acids assumed to confer instability were found to be in the cap region. For this reason, a 30 amino acid long cap domain fragment containing ten differing positions derived from BsteE was incorporated into the homologous gene encoding for the more labile BsubE by spliced overlap-extension PCR. The melting temperature of the two wild-type esterases and the mutant was evaluated by circular dichroism spectroscopy, while the kinetic parameters and the stability were determined with a photometric assay. The cap domain mutant maintained its activity, with a catalytic efficiency more similar to BsteE, while it exhibited an increase of the melting temperature by 4 °C compared to BsubE. Additional point mutations based on the differences of the parent enzymes gave a further increase of the thermostability up to 11 °C compared to BsubE; however, a significant reduction in activity was observed. PMID:23812333

  6. Gene Cloning and Nucleotide Sequencing and Properties of a Cocaine Esterase from Rhodococcus sp. Strain MB1

    PubMed Central

    Bresler, Matthew M.; Rosser, Susan J.; Basran, Amrik; Bruce, Neil C.

    2000-01-01

    A strain of Rhodococcus designated MB1, which was capable of utilizing cocaine as a sole source of carbon and nitrogen for growth, was isolated from rhizosphere soil of the tropane alkaloid-producing plant Erythroxylum coca. A cocaine esterase was found to initiate degradation of cocaine, which was hydrolyzed to ecgonine methyl ester and benzoate; both of these esterolytic products were further metabolized by Rhodococcus sp. strain MB1. The structural gene encoding a cocaine esterase, designated cocE, was cloned from Rhodococcus sp. strain MB1 genomic libraries by screening recombinant strains of Rhodococcus erythropolis CW25 for growth on cocaine. The nucleotide sequence of cocE corresponded to an open reading frame of 1,724 bp that codes for a protein of 574 amino acids. The amino acid sequence of cocaine esterase has a region of similarity with the active serine consensus of X-prolyl dipeptidyl aminopeptidases, suggesting that the cocaine esterase is a serine esterase. The cocE coding sequence was subcloned into the pCFX1 expression plasmid and expressed in Escherichia coli. The recombinant cocaine esterase was purified to apparent homogeneity and was found to be monomeric, with an Mr of approximately 65,000. The apparent Km of the enzyme (mean ± standard deviation) for cocaine was measured as 1.33 ± 0.085 mM. These findings are of potential use in the development of a linked assay for the detection of illicit cocaine. PMID:10698749

  7. Esterase isozyme polymorphism, specific and nonspecific esterase, syngenic lines development and natural occurrence of a thermostable esterase in the tropical silkworm Bombyx mori L.

    PubMed

    Chattopadhyay, G K; Sengupta, A K; Verma, A K; Sen, S K; Saratchandra, B

    2001-11-01

    Esterase isozyme polymorphism was documented for digestive juice and haemolymph of the tropical multivoltine silkworm, Bombyx mori L., breed CB5 (GP) and its syngenic lines (CB5Lm(e)-1, CB5Lm-2 and CB5Lm-5) using alpha- and beta-naphthylacetate separately as nonspecific substrates (Ogita, Z., Kasai, T., 1965. Genetico-biochemical analysis of specific esterases in Musca domestica. Jpn. J. Genet. 40, 173-184). Polymorphism existed in the isozyme pattern of alpha-esterase with two or three bands in digestive juice and three to five bands in haemolymph. No polymorphism was observed in beta-esterase isozyme pattern having four bands in digestive juice and two bands in haemolymph. During the course of esterase isozyme studies, the presence of some specific alpha-esterase bands (Est-1, 4 and 5) in haemolymph and beta-esterase bands (Est-1, 2 and 3) in digestive juice were observed. But both alpha- and beta-esterase bands Est-3 and 4 in digestive juice and Est-2 and 3 in haemolymph were found to be nonspecific. Nonspecific beta-esterase band (Est-3) in haemolymph of CB5 (GP) and its syngenic lines withstood a temperature up to 80+/-1 degrees C for 10 min. No thermostable band was observed in the isozyme zymogram of alpha-esterase in digestive juice and haemolymph or beta-esterase in digestive juice. Overall, this study discusses the presence of esterase heterogeneity in the CB5 (GP) genepool, syngenic lines development, occurrence of specific alpha- and beta-esterase bands in digestive juice and haemolymph and thermostable beta-esterase band Est-3 in haemolymph in tropical silkworm Bombyx mori L. PMID:11583932

  8. Comparison of fungal carbohydrate esterases of family CE16 on artificial and natural substrates.

    PubMed

    Puchart, Vladimír; Agger, Jane W; Berrin, Jean-Guy; Várnai, Anikó; Westereng, Bjørge; Biely, Peter

    2016-09-10

    The enzymatic conversion of acetylated hardwood glucuronoxylan to functional food oligomers, biochemicals or fermentable monomers requires besides glycoside hydrolases enzymes liberating acetic acid esterifying position 2 and/or 3 in xylopyranosyl (Xylp) residues. The 3-O-acetyl group at internal Xylp residues substituted by MeGlcA is the only acetyl group of hardwood acetylglucuronoxylan and its fragments not attacked by acetylxylan esterases of carbohydrate esterase (CE) families 1, 4, 5 and 6 and by hemicellulolytic acetyl esterases classified in CE family 16. Monoacetylated aldotetraouronic acid 3″-Ac(3)MeGlcA(3)Xyl3, generated from the polysaccharide by GH10 endoxylanases, appears to be one of the most resistant fragments. The presence of the two substituents on the non-reducing-end Xylp residue prevents liberation of MeGlcA by α-glucuronidase of family GH67 and blocks the action of acetylxylan esterases. The Ac(3)MeGlcA(3)Xyl3 was isolated from an enzymatic hydrolysate of birchwood acetylglucuronoxylan and characterized by (1)H NMR spectroscopy as a mixture of two positional isomers, 3″-Ac(3)MeGlcA(3)Xyl3 and 4″-Ac(3)MeGlcA(3)Xyl3, the latter being the result of acetyl group migration. The mixture was used as a substrate for three members of CE16 family of fungal origin. Trichoderma reesei CE16 esterase, inactive on polymeric substrate, deacetylated both isomers. Podospora anserina and Aspergillus niger esterases, active on acetylglucuronoxylan, deesterified effectively only the 4″-isomer. The results indicate catalytic diversity among CE16 enzymes, but also their common and unifying catalytic ability to exo-deacetylate positions 3 and 4 on non-reducing-end Xylp residues, which is an important step in plant hemicellulose saccharification. PMID:27439201

  9. Gene cloning and characterization of a novel esterase from activated sludge metagenome

    PubMed Central

    2009-01-01

    A metagenomic library was prepared using pCC2FOS vector containing about 3.0 Gbp of community DNA from the microbial assemblage of activated sludge. Screening of a part of the un-amplified library resulted in the finding of 1 unique lipolytic clone capable of hydrolyzing tributyrin, in which an esterase gene was identified. This esterase/lipase gene consists of 834 bp and encodes a polypeptide (designated EstAS) of 277 amino acid residuals with a molecular mass of 31 kDa. Sequence analysis indicated that it showed 33% and 31% amino acid identity to esterase/lipase from Gemmata obscuriglobus UQM 2246 (ZP_02733109) and Yarrowia lipolytica CLIB122 (XP_504639), respectively; and several conserved regions were identified, including the putative active site, HSMGG, a catalytic triad (Ser92, His125 and Asp216) and a LHYFRG conserved motif. The EstAS was overexpressed, purified and shown to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤ C8). This EstAS had optimal temperature and pH at 35°C and 9.0, respectively, by hydrolysis of p-NP hexanoate. It also exhibited the same level of stability over wide temperature and pH ranges and in the presence of metal ions or detergents. The high level of stability of esterase EstAS with its unique substrate specificities make itself highly useful for biotechnological applications. PMID:20028524

  10. The role of calcium in the hydrolysis of the organophosphate paraoxon by human serum A-esterase.

    PubMed

    Vitarius, J A; Sultatos, L G

    1995-01-01

    Human serum A-esterase is a calcium-dependent enzyme that hydrolyzes the organophosphate paraoxon by an Ordered Uni Bi kinetic mechanism. Incubation of various concentrations of calcium chloride with human serum A-esterase resulted in corresponding changes in appk3 and appE for the reaction, while appk2 was unaffected. Carboxyglutamic acid (CAG) prevented calcium chloride from altering appk3, but not appE. Similarly CAG reduced the calcium-stimulated nonenzymatic hydrolysis of paraoxon, as well as the calcium-stimulated de-phosphorylation of chymotrypsin phosphorylated by paraoxon. These results suggest that calcium plays two roles in the hydrolysis of paraoxon by A-esterase. Firstly, calcium is required in order to maintain an active site. In this capacity calcium might participate directly in the catalytic reaction, or it might be required in order to maintain the appropriate confirmation of the active site. And secondly, free calcium (or calcium weakly associated with A-esterase) facilitates the removal of diethyl phosphate from A-esterase, probably by polarizing the P = O bond of the diethyl phosphate-A-esterase intermediate, thereby rendering phosphorus more susceptible to nucleophilic attack by hydroxide ions. PMID:7823759

  11. Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda.

    PubMed

    Rahman, Mohammad Asadur; Culsum, Umma; Tang, Wenhao; Zhang, Shao Wei; Wu, Gaobing; Liu, Ziduo

    2016-04-01

    A novel cold active esterase, EstLiu was cloned from the marine bacterium Zunongwangia profunda, overexpressed in E. coli BL21 (DE3) and purified by glutathione-S transferase (GST) affinity chromatography. The mature esterase EstLiu sequence encodes a protein of 273 amino acids residues, with a predicted molecular weight of 30KDa and containing the classical pentapeptidase motif from position 156 to 160 with the catalytic triad Ser158-Asp211-His243. Although, EstLiu showed 64% similarity with the hypothetical esterase from Chryseobacterium sp. StRB126 (WP_045498424), phylogenetic analysis showed it had no similarity with any of the established family of lipases/esterases, suggesting that it could be considered as a new family. The purified enzyme showed broad substrate specificity with the highest hydrolytic activity against p-nitrophenyl butyrate (C4). EstLiu showed remarkable activity (75%) at 0°Cand the optimal activity at pH 8.0 and 30°C with good thermostability and quickened inactivation above 60°C. EstLiu retained 81, 103, 67 and 78% of its original activity at 50% (v/v) in ethanol, isopropanol, DMSO and ethylene glycol, respectively. In the presence of Tween 20, Tween 80 and Triton X-100, EstLiu showed 88, 100 and 117% of relative activity. It is also co-factor independent. The high activity at low temperature and desirable stability in organic solvents and salts of this novel family esterase represents a good evidence of novel biocatalyst. Overall, this novel enzyme showed better activity than previously reported esterases in extreme reaction conditions and could promote the reaction in both aqueous and non-aqueous conditions, indicating its great potential for industrial applications. PMID:26920474

  12. Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass.

    PubMed

    Gopalan, Nishant; Rodríguez-Duran, L V; Saucedo-Castaneda, G; Nampoothiri, K Madhavan

    2015-10-01

    With increasing focus on sustainable energy, bio-refining from lignocellulosic biomass has become a thrust area of research. With most of the works being focused on biofuels, significant efforts are also being directed towards other value added products. Feruloyl esterases (EC. 3.1.1.73) can be used as a tool for bio-refining of lignocellulosic material for the recovery and purification of ferulic acid and related hydroxycinnamic acids ubiquitously found in the plant cell wall. More and more genes coding for feruloyl esterases have been mined out from various sources to allow efficient enzymatic release of ferulic acid and allied hydroxycinnamic acids (HCAs) from plant-based biomass. A sum up on enzymatic extraction of HCAs and its recovery from less explored agro residual by-products is still a missing link and this review brushes up the achieved landmarks so far in this direction and also covers a detailed patent search on this biomass refining enzyme. PMID:26159377

  13. Cloning and sequence analysis of the ces10 gene encoding a Sphingomonas paucimobilis esterase.

    PubMed

    Videira, P A; Fialho, A M; Marques, A R; Coutinho, P M; Sá-Correia, I

    2003-06-01

    The ces10 gene of the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461 was cloned and sequenced. Multi-sequence alignment of the deduced protein indicated that Ces10 belongs to the serine hydrolase family with a potential catalytic triad comprising Ser(153) (within the G-X-S-X-G consensus sequence), His(75) and Asp(125). The mixed block results obtained following pattern search and the low identities detected in a BLAST analysis indicate that Ces10 is significantly different from other characterised bacterial esterases/lipases. Nevertheless, the Ces10 amino acid sequence showed 45% similarity with Rhodococcus sp. heroin esterase and 48% with Bacillus subtilis p-nitrobenzyl esterase. Ces10, with a predicted molecular mass of 30,641 Da, was overproduced in Escherichia coli and purified to homogeneity in a histidine-tagged form. Enzyme assays using p-nitrophenyl-esters (p-NP-esters) with different acyl chain-lengths as the substrate confirmed the anticipated esterase activity. Ces10 exhibited a marked preference for short-chain fatty acids, yielding the highest activity with p-NP-propionate (optimal pH 7.4, optimal temperature 37 degrees C). PMID:12764567

  14. New Extremophilic Lipases and Esterases from Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, Maria E; González Siso, Maria I

    2014-01-01

    Lipolytic enzymes catalyze the hydrolysis of ester bonds in the presence of water. In media with low water content or in organic solvents, they can catalyze synthetic reactions such as esterification and transesterification. Lipases and esterases, in particular those from extremophilic origin, are robust enzymes, functional under the harsh conditions of industrial processes owing to their inherent thermostability and resistance towards organic solvents, which combined with their high chemo-, regio- and enantioselectivity make them very attractive biocatalysts for a variety of industrial applications. Likewise, enzymes from extremophile sources can provide additional features such as activity at extreme temperatures, extreme pH values or high salinity levels, which could be interesting for certain purposes. New lipases and esterases have traditionally been discovered by the isolation of microbial strains producing lipolytic activity. The Genome Projects Era allowed genome mining, exploiting homology with known lipases and esterases, to be used in the search for new enzymes. The Metagenomic Era meant a step forward in this field with the study of the metagenome, the pool of genomes in an environmental microbial community. Current molecular biology techniques make it possible to construct total environmental DNA libraries, including the genomes of unculturable organisms, opening a new window to a vast field of unknown enzymes with new and unique properties. Here, we review the latest advances and findings from research into new extremophilic lipases and esterases, using metagenomic approaches, and their potential industrial and biotechnological applications. PMID:24588890

  15. Production of cutinolytic esterase by filamentous bacteria.

    PubMed

    Fett, W F; Wijey, C; Moreau, R A; Osman, S F

    2000-07-01

    Thirty-eight strains of filamentous bacteria, many of which are thermophilic or thermotolerant and commonly found in composts and mouldy fodders, were examined for their ability to produce cutinolytic esterase (cutinase) in culture media supplemented with cutin, suberin or cutin-containing agricultural by-products. Initially, the ability of culture supernatants to hydrolyse the artificial substrate p-nitrophenyl butyrate was determined by spectrophotometric assays. Only one bacterium, Thermoactinomyces vulgaris NRRL B-16117, exhibited cutinolytic esterase production. The enzyme was highly inducible, was repressed by the presence of glucose in the medium and hydrolysed both apple and tomato cutins. Inducers included apple cutin, apple pomace, tomato peel, potato suberin and commercial cork. Unlike similar fungal enzymes, the T. vulgaris cutinolytic esterase was not inducible by cutin hydrolysate. The cutinolytic esterase exhibited a half-life of over 60 min at 70 degrees C and a pH optimum of >/= 11.0. This study indicates that thermophylic filamentous bacteria may be excellent commercial sources of heat-stable cutin-degrading enzymes that can be produced by fermentation of low cost feedstocks. PMID:10886609

  16. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2

    SciTech Connect

    Blum, D.L.; Li, X.L.; Chen, H.; Ljungdahl, L.G.

    1999-09-01

    A 1,067-bp cDNA, designated axeA, coding for an acetyl xylan esterase (AxeA) was cloned from the anaerobic rumen fungus Orpinomyces sp. strain PC-2. The gene had an open reading frame of 939 bp encoding a polypeptide of 313 amino acid residues with a calculated mass of 34,845 Da. An active esterase using the original start codon of the cDNA was synthesized in Escherichia coli. Two active forms of the esterase were purified from recombinant E. coli cultures. The size difference of 8 amino acids was a result of cleavages at two different sites within the signal peptide. The enzyme released acetate from several acetylated substrates, including acetylated xylan. The activity toward acetylated xylan was tripled in the presence of recombinant xylanase A from the same fungus. Using p-nitrophenyl acetate as a substrate, the enzyme had a K{sub m} of 0.9 mM and a V{sub max} of 785 {micro}mol min{sup {minus}} mg{sup {minus}1}. It had temperature and pH optima of 30 C and 9.0, respectively. AxeA had 56% amino acid identity with BnaA, an acetyl xylan esterase of Neocallimastix patriciarum, but the Orpinomyces AxeA was devoid of a noncatalytic repeated peptide domain (NCRPD) found at the carboxy terminus of the Neocallimastix BnaA. The NCRPD found in many glycosyl hydrolases and esterases of anaerobic fungi has been postulated to function as a docking domain for cellulase-hemicellulase complexes, similar to the dockerin of the cellulosome of Clostridium thermocellum.

  17. The psychrophilic bacterium Pseudoalteromonas halosplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from gamma-proteobacteria and yeast.

    PubMed

    Aurilia, Vincenzo; Parracino, Antonietta; Saviano, Michele; Rossi, Mose'; D'Auria, Sabato

    2007-08-01

    The complete genome of the psychrophilic bacteria Pseudoalteromonas haloplanktis TAC 125, recently published, owns a gene coding for a putative esterase activity corresponding to the ORF PSHAa1385, also classified in the Carbohydrate Active Enzymes database (CAZY) belonging to family 1 of carbohydrate esterase proteins. This ORF is 843 bp in length and codes for a protein of 280 amino acid residues. In this study we characterized and cloned the PSHAa1385 gene in Escherichia coli. We also characterized the recombinant protein by biochemical and biophysical methodologies. The PSHAa1385 gene sequence showed a significant homology with several carboxyl-esterase and acetyl-esterase genes from gamma-proteobacteria genera and yeast. The recombinant protein exhibited a significant activity towards pNP-acetate, alpha-and beta-naphthyl acetate as generic substrates, and 4-methylumbelliferyl p-trimethylammonio cinnamate chloride (MUTMAC) as a specific substrate, indicating that the protein exhibits a feruloyl esterase activity that it is displayed by similar enzymes present in other organisms. Finally, a three-dimensional model of the protein was built and the amino acid residues involved in the catalytic function of the protein were identified. PMID:17543477

  18. Uncovering divergent evolution of α/β-hydrolases: a surprising residue substitution needed to convert Hevea brasiliensis hydroxynitrile lyase into an esterase.

    PubMed

    Nedrud, David M; Lin, Hui; Lopez, Gilsinia; Padhi, Santosh K; Legatt, Graig A; Kaz-Lauskas, Romas J

    2014-11-01

    Hevea brasiliensis hydroxynitrile lyase (HbHNL) and salicylic acid binding protein 2 (SABP2, an esterase) share 45% amino acid sequence identity, the same protein fold, and even the same catalytic triad of Ser-His-Asp. However, they catalyze different reactions: cleavage of hydroxynitriles and hydrolysis of esters, respectively. To understand how other active site differences in the two enzymes enable the same catalytic triad to catalyze different reactions, we substituted amino acid residues in HbHNL with the corresponding residues from SABP2, expecting hydroxynitrile lyase activity to decrease and esterase activity to increase. Previous mechanistic studies and x-ray crystallography suggested that esterase activity requires removal of an active site lysine and threonine from the hydroxynitrile lyase. The Thr11Gly Lys236Gly substitutions in HbHNL reduced hydroxynitrile lyase activity for cleavage of mandelonitrile 100-fold, but increased esterase activity only threefold to kcat ~ 0.1 min(-1) for hydrolysis of p-nitrophenyl acetate. Adding a third substitution - Glu79His - increased esterase activity more than tenfold to kcat ~ 1.6 min(-1). The specificity constant (kcat/KM) for this triple substitution variant versus wild type HbHNL shifted more than one million-fold from hydroxynitrile lyase activity (acetone cyanohydrin substrate) to esterase activity (p-nitrophenyl acetate substrate). The contribution of Glu79His to esterase activity was surprising since esterases and lipases contain many different amino acids at this position, including glutamate. Saturation mutagenesis at position 79 showed that 13 of 19 possible amino acid substitutions increased esterase activity, suggesting that removal of glutamate, not addition of histidine, increased esterase activity. Molecular modeling indicates that Glu79 disrupts esterase activity in HbHNL when its negatively charged side chain distorts the orientation of the catalytic histidine. Naturally occurring glutamate at the

  19. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    PubMed

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-01

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. PMID:25684099

  20. Butyrivibrio spp. and other xylanolytic microorganisms from the rumen have cinnamoyl esterase activity.

    PubMed

    McSweeney, C S; Dulieu, A; Bunch, R

    1998-02-01

    High concentrations of hydroxycinnamic acids in the hemicellulosic fraction of dry season tropical grasses may influence the rate of microbial degradation of arabinoxylans by ruminant animals. The ability of 22 strains of Butyrivibrio fibrisolvens, other ruminal bacteria (Ruminococcus albus SY3, Ruminococcus flavefaciens RF1,Prevotella ruminicola AR20) and the ruminal phycomycete Neocallimastix patriciarum CX to digest the tropical grass Heteropogon contortus(spear grass) and hydrolyse esterified ferulic and p-coumaric acid was examined. Significant digestion (8-36%) of spear grass occurred with the B. fibrisolvens strains H17c, A38, LP92-1-1, 49,R. albus SY3 and N. patriciarum. Hydrolysis of ester-linked ferulic and p-coumaric acid occurred with all organisms except B. fibrisolvens strains GS113, OB156 and LP1028 and P. ruminicola AR20. The ratio of ferulic to p-coumaric acid hydrolysed by different strains of Butyrivibrio spp. varied markedly from 0.96 for AR 51 to 0.16 for A38. Butyrivibrios which were fibrolytic (H17c and A38) had higher extracellular cinnamoyl esterase activity than bacteria that did not digest spear grass fibre (LP 91-4-1 and AR 20) which had low activities or only produced cell associated enzyme. Cell associated and extracellular esterase activity were induced when Butyrivibrio spp. strains H17c, A38 and E14 and the Ruminococcus spp. were grown on birchwood xylan but induction did not occur to the same extent with N. patriciarum. This is the first reported observation of cinnamoyl esterase activity in the genus Ruminococcus. The fungus N. patriciarum had significantly higher digestibility of spear grass and solubilisation of phenolic acids than the bacteria. The study shows that high levels of extracellular cinnamoyl esterases are characteristic of a selection of fibre-degrading ruminal bacteria and fungi which probably indicates that these enzymes are common amongst xylanolytic ruminal microorganisms. PMID:16887624

  1. β-Glucuronidase-coupled assays of glucuronoyl esterases.

    PubMed

    Fraňová, Lucia; Puchart, Vladimír; Biely, Peter

    2016-10-01

    Glucuronoyl esterases (GEs) are microbial enzymes with potential to cleave the ester bonds between lignin alcohols and xylan-bound 4-O-methyl-d-glucuronic acid in plant cell walls. This activity renders GEs attractive research targets for biotechnological applications. One of the factors impeding the progress in GE research is the lack of suitable substrates. In this work, we report a facile preparation of methyl esters of chromogenic 4-nitrophenyl and 5-bromo-4-chloro-3-indolyl β-D-glucuronides for qualitative and quantitative GE assay coupled with β-glucuronidase as the auxiliary enzyme. The indolyl derivative affording a blue indigo-type product is suitable for rapid and sensitive assay of GE in commercial preparations as well as for high throughput screening of microorganisms and genomic and metagenomic libraries. PMID:27452816

  2. Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis.

    PubMed

    Esteban-Torres, M; Mancheño, J M; de las Rivas, B; Muñoz, R

    2014-11-01

    Lactobacillus plantarum is a lactic acid bacterium that can be found during cheese ripening. Lipolysis of milk triacylglycerols to free fatty acids during cheese ripening has fundamental consequences on cheese flavor. In the present study, the gene lp_1760, encoding a putative esterase or lipase, was cloned and expressed in Escherichia coli BL21 (DE3) and the overproduced Lp_1760 protein was biochemically characterized. Lp_1760 hydrolyzed p-nitrophenyl esters of fatty acids from C2 to C16, with a preference for p-nitrophenyl butyrate. On triglycerides, Lp_1760 showed higher activity on tributyrin than on triacetin. Although optimal conditions for activity were 45°C and pH 7, Lp_1760 retains activity under conditions commonly found during cheese making and ripening. The Lp_1760 showed more than 50% activity at 5°C and exhibited thermal stability at high temperatures. Enzymatic activity was strongly inhibited by sodium dodecyl sulfate and phenylmethylsulfonyl fluoride. The Lp_1760 tributyrin esterase showed high activity in the presence of NaCl, lactic acid, and calcium chloride. The results suggest that Lp_1760 might be a useful tributyrin esterase to be used in cheese manufacturing. PMID:25173466

  3. Novel choline esterase based sensor for monitoring of organophosphorus pollutants

    SciTech Connect

    Wilkins, E.S.; Ghindilis, A.L.; Atanasov, P.

    1996-12-31

    Organophosphorus compounds are significant major environmental pollutants due to their intensive use as pesticides. The modern techniques based on inhibition of choline esterase enzyme activity are discussed. Potentiometric electrodes based on detection of choline esterase inhibition by analytes has been developed. The detection of choline esterase activity is based on the novel principle of molecular transduction. Immobilized peroxidase acting as the molecular transducer, catalyzes the electroreduction of hydrogen peroxide by direct (mediatorless) electron transfer. The sensing element consists of a carbon based electrode containing an assembly of co-immobilized enzymes: choline esterase, choline oxidase and peroxidase.

  4. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate.

    PubMed

    d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard

    2016-02-10

    Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production. PMID:26712478

  5. Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastix strain MC-2.

    PubMed Central

    Borneman, W S; Ljungdahl, L G; Hartley, R D; Akin, D E

    1991-01-01

    An extracellular p-coumaroyl esterase produced by the anaerobic fungus Neocallimastix strain MC-2 released p-coumaroyl groups from 0-[5-0-((E)-p-coumaroyl)-alpha-L-arabinofuranosyl]-(1----3)-0-beta -D-xylopyranosyl-(1----4)-D-xylopyranose (PAXX). The esterase was purified 121-fold from culture medium in successive steps involving ultrafiltration column chromatography on S-sepharose and hydroxylapatite, isoelectric focusing, and gel filtration. The native enzyme had an apparent mass of 11 kDa under nondenaturing conditions and a mass of 5.8 kDa under denaturing conditions, suggesting that the enzyme may exist as a dimer. The isoelectric point was 4.7, and the pH optimum was 7.2. The purified esterase had 100 times more activity towards PAXX than towards the analogous feruloyl ester (FAXX). The apparent Km and Vmax of the purified p-coumaroyl esterase for PAXX at pH 7.2 and 40 degrees C were 19.4 microM and 5.1 microM min(-1), respectively. p-Coumaroyl tetrasaccharides isolated from plant cell walls were hydrolyzed at rates similar to that for PAXX, whereas a dimer of PAXX was hydrolyzed at a rate 20-fold lower, yielding 4,4'-dihydroxy-alpha-truxillic acid as an end product. Ethyl and methyl p-coumarates were hydrolyzed at very slow rates, if at all. The purified esterase released p-coumaroyl groups from finely, but not coarsely, ground plant cell walls, and this activity was enhanced by the addition of xylanase and other cell wall-degrading enzymes. Images PMID:1768103

  6. Switching catalysis from hydrolysis to perhydrolysis in Pseudomonas fluorescens esterase.

    PubMed

    Yin, De Lu Tyler; Bernhardt, Peter; Morley, Krista L; Jiang, Yun; Cheeseman, Jeremy D; Purpero, Vincent; Schrag, Joseph D; Kazlauskas, Romas J

    2010-03-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of epsilon-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k(cat), but K(m) also increased so the specificity constant, k(cat)/K(m), remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of epsilon-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access

  7. Switching Catalysis from Hydrolysis to Perhydrolysis in Pseudomonas fluorescens Esterase

    SciTech Connect

    Yin, D.; Bernhardt, P; Morley, K; Jiang, Y; Cheeseman, J; Purpero, V; Schrag, J; Kazlauskas, R

    2010-01-01

    Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of {var_epsilon}-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k{sub cat}, but K{sub m} also increased so the specificity constant, k{sub cat}/K{sub m}, remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of {var_epsilon}-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the

  8. A multisubstrate assay for lipases/esterases: assessing acyl chain length selectivity by reverse-phase high-performance liquid chromatography.

    PubMed

    Divakar, K; Gautam, Pennathur

    2014-03-01

    Lipases and esterases are hydrolytic enzymes and are known to hydrolyze esters with unique substrate specificity and acyl chain length selectivity. We have developed a simple competitive multiple substrate assay for determination of acyl chain length selectivity of lipases/esterases using RP-HPLC with UV detection. A method for separation and quantification of 4-nitrophenyl fatty acid esters (C4-C18) was developed and validated. The chain length selectivity of five lipases and two esterases was determined in a multisubstrate reaction system containing equimolar concentrations of 4-nitrophenyl esters (C4-C18). This assay is simple, reproducible, and a useful tool for determining chain length selectivity of lipases/esterases. PMID:24316114

  9. Fumaric Acid Esters Stimulate Astrocytic VEGF Expression through HIF-1α and Nrf2

    PubMed Central

    Wiesner, Diana; Merdian, Irma; Lewerenz, Jan; Ludolph, Albert C.; Dupuis, Luc; Witting, Anke

    2013-01-01

    Fumaric acid esters (FAE) are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS), prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS). Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD), and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A), an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response. PMID:24098549

  10. Fumaric acid esters stimulate astrocytic VEGF expression through HIF-1α and Nrf2.

    PubMed

    Wiesner, Diana; Merdian, Irma; Lewerenz, Jan; Ludolph, Albert C; Dupuis, Luc; Witting, Anke

    2013-01-01

    Fumaric acid esters (FAE) are oral analogs of fumarate that have recently been shown to decrease relapse rate and disease progression in multiple sclerosis (MS), prompting to investigate their protective potential in other neurological diseases such as amyotrophic lateral sclerosis (ALS). Despite efficacy in MS, mechanisms of action of FAEs are still largely unknown. FAEs are known to activate the transcription factor Nrf2 and downstream anti-oxidant responses through the succination of Nrf2 inhibitor KEAP1. However, fumarate is also a known inhibitor of prolyl-hydroxylases domain enzymes (PhD), and PhD inhibition might lead to stabilization of the HIF-1α transcription factor under normoxic conditions and subsequent activation of a pseudo hypoxic response. Whether Nrf2 activation is associated with HIF-1α stabilization in response to FAEs in cell types relevant to MS or ALS remains unknown. Here, we show that FAEs elicit HIF-1α accumulation, and VEGF release as its expected consequence, in astrocytes but not in other cell types of the central nervous system. Reporter assays demonstrated that increased astrocytic VEGF release in response to FAEs was dependent upon both HIF-1α and Nrf2 activation. Last, astrocytes of transgenic mice expressing SOD1(G93A), an animal model of ALS, displayed reduced VEGF release in response to FAEs. These studies show that FAEs elicit different signaling pathways in cell types from the central nervous system, in particular a pseudo-hypoxic response in astrocytes. Disease relevant mutations might affect this response. PMID:24098549

  11. Esterase- and pH-responsive poly(β-amino ester)-capped mesoporous silica nanoparticles for drug delivery.

    PubMed

    Fernando, Isurika R; Ferris, Daniel P; Frasconi, Marco; Malin, Dmitry; Strekalova, Elena; Yilmaz, M Deniz; Ambrogio, Michael W; Algaradah, Mohammed M; Hong, Michael P; Chen, Xinqi; Nassar, Majed S; Botros, Youssry Y; Cryns, Vincent L; Stoddart, J Fraser

    2015-04-28

    Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells. PMID:25820516

  12. Crystal structure of Thermotoga maritima acetyl esterase complex with a substrate analog: Insights into the distinctive substrate specificity in the CE7 carbohydrate esterase family.

    PubMed

    Singh, Mrityunjay K; Manoj, Narayanan

    2016-07-22

    The carbohydrate esterase family 7 (CE7) members are acetyl esterases that possess unusual substrate specificity for cephalosporin C and 7-amino-cephalosporanic acid. This family containing the α/β hydrolase fold has a distinctive substrate profile that allows it to carry out hydrolysis of esters containing diverse alcohol moieties while maintaining narrow specificity for an acetate ester. Here we investigate the structural basis of this preference for small acyl groups using the crystal structure of the thermostable Thermotoga maritima CE7 acetyl esterase (TmAcE) complexed with a non-cognate substrate analog. The structure determined at 1.86 Å resolution provides direct evidence for the location of the largely hydrophobic and rigid substrate binding pocket in this family. Furthermore, a three-helix insertion domain near the catalytic machinery shapes the substrate binding site. The structure reveals two residues (Pro228 and Ile276) which constitute a hydrophobic rigid binding surface for the acyl group of the ester and thus restricts the size of the acyl group that be accommodated. In combination with previous literature on kinetic properties of the enzyme, our studies suggest that these residues determine the unique specificity of the TmAcE for short straight chain esters. The structure provides a template for focused attempts to engineer the CE7 enzymes for enhanced stability, selectivity or activity for biocatalytic applications. PMID:27181355

  13. VvMJE1 of the grapevine (Vitis vinifera) VvMES Methylesterase family encodes for Methyl Jasmonate Esterase and has a role in stress response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  14. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The known members of the plant methyl esterase (MES) family catalyze hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid, and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated V...

  15. Novel Family of Carbohydrate Esterases, Based on Identification of the Hypocrea jecorina Acetyl Esterase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant cell walls have been shown to contain acetyl groups in hemicelluloses and pectin. The gene, ae1, encoding the acetyl esterase (Ae1) of Hypocrea jecorina was identified by amino terminal sequencing, peptide mass spectrometry, and genomic sequence analyses. The coded polypeptide had 348 amino ...

  16. IN VITRO COMPARISON OF RAT AND CHICKEN BRAIN NEUROTOXIC ESTERASE

    EPA Science Inventory

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterased showed that rat esterases we...

  17. Molecular cloning, and characterization of a modular acetyl xylan esterase from the edible straw mushroom Volvariella volvacea.

    PubMed

    Ding, Shaojun; Cao, Jie; Zhou, Rui; Zheng, Fei

    2007-09-01

    A new Volvariella volvacea gene encoding an acetyl xylan esterase (designated as Vvaxe1) was cloned and expressed in Pichia pastoris. The cDNA contained an ORF of 1047 bp encoding 349 amino acids with a calculated mass of 39 990 Da. VvAXE1 is a modular enzyme consisting of an N-terminal signal peptide, a catalytic domain, and a cellulose-binding domain. The amino acid sequence of the enzyme exhibited a high degree of similarity to cinnamoyl esterase B from Penicillium funiculosum, and acetyl xylan esterases from Aspergillus oryzae, Penicillium purpurogenum, and Aspergillus ficuum. Recombinant acetyl xylan esterase released acetate from several acetylated substrates including beta-d-xylose tetraacetate and acetylated xylan. No activity was detectable on p-nitrophenyl acetate. Enzyme-catalyzed hydrolysis of 4-methylumbelliferyl acetate was maximal at pH 8.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 307.7 microM and a V(max) value of 24 733 IU micromol(-1) protein. ReAXE1 also exhibited a capacity to bind to Avicel and H(3)PO(4) acid-swollen cellulose. PMID:17623028

  18. Cloning, expression and characterization of a novel esterase from a South China Sea sediment metagenome

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Fuchao; Chen, Huaxin; Zhao, Jin; Yan, Jinfei; Jiang, Peng; Li, Ronggui; Zhu, Baoli

    2015-07-01

    Lipolytic enzymes, including esterases and lipases, represent a group of hydrolases that catalyze the cleavage and formation of ester bonds. A novel esterase gene, scsEst01, was cloned from a South China Sea sediment metagenome. The scsEst01 gene consisted of 921 bp encoding 307 amino acid residues. The predicted amino acid sequence shared less than 90% identity with other lipolytic enzymes in the NCBI nonredundant protein database. ScsEst01 was successfully co-expressed in Escherichia coli BL21 (DE3) with chaperones (dnaK-dnaJ-grpE) to prevent the formation of inclusion bodies. The recombinant protein was purified on an immobilized metal ion affinity column containing chelating Sepharose charged with Ni2+. The enzyme was characterized using p -nitrophenol butyrate as a substrate. ScsEst01 had the highest lipolytic activity at 35°C and pH 8.0, indicative of a meso-thermophilic alkaline esterase. ScsEst01 was thermostable at 20°C. The lipolytic activity of scsEst01 was strongly increased by Fe2+, Mn2+ and 1% Tween 80 or Tween 20.

  19. Identification of petrogenic produced water components as acetylcholine esterase inhibitors.

    PubMed

    Froment, Jean; Langford, Katherine; Tollefsen, Knut Erik; Bråte, Inger Lise N; Brooks, Steven J; Thomas, Kevin V

    2016-08-01

    Effect-directed analysis (EDA) was applied to identify acetylcholine esterase (AChE) inhibitors in produced water. Common produced water components from oil production activities, such as polycyclic aromatic hydrocarbons (PAHs), alkylphenols, and naphthenic acids were tested for AChE inhibition using a simple mixture of PAHs and naphthenic acids. Produced water samples collected from two offshore platforms in the Norwegian sector of the North Sea were extracted by solid phase extraction and fractionated by open-column liquid solid chromatography and high-performance liquid chromatography (HPLC) before being tested using a high-throughput and automated AChE assay. The HPLC fractions causing the strongest AChE inhibition were analysed by gas chromatography coupled to a high-resolution time-of-flight mass spectrometry (GC-HR-ToF-MS). Butylated hydroxytoluene and 4-phenyl-1,2-dihydronaphthalene were identified as two produced water components capable of inhibiting AChE at low concentrations. In order to assess the potential presence of such compounds discharged into aquatic ecosystems, AChE activity in fish tissues was measured. Saithe (Pollachius virens) caught near two offshore platforms showed lower enzymatic activity than those collected from a reference location. Target analysis of saithe did not detected the presence of these two putative AChE inhibitors and suggest that additional compounds such as PAHs, naphthenic acids and yet un-identified compounds may also contribute to the purported AChE inhibition observed in saithe. PMID:27176761

  20. Gene cloning and characterization of a cold-adapted esterase from Acinetobacter venetianus V28.

    PubMed

    Kim, Young-Ok; Heo, Yu Li; Kim, Hyung-Kwoun; Nam, Bo-Hye; Kong, Hee Jeong; Kim, Dong-Gyun; Kim, Woo-Jin; Kim, Bong-Seok; Jee, Young-Ju; Lee, Sang-Jun

    2012-09-01

    Acinetobacter venetians V28 was isolated from the intestine of righteye flounder, Poecilopsetta plinthus caught in Vietnam seawater, and the esterase gene was cloned using a shotgun method. The amino acid sequence deduced from the nucleotide sequence (1,017 bp) corresponded to a protein of 338 amino acid residues with a molecular weight of 37,186. The esterase had 87% and 72% identities with the lipases of A. junii SH205 and A. calcoaceticus RUH2202, respectively. The esterase contained a putative leader sequence, as well as the conserved catalytic triad (Ser, His, Asp), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein from the strain V28 was produced in both a soluble and an insoluble form when the Escherichia coli cells harboring the gene were cultured at 18 degrees C. The maximal activity of the purified enzyme was observed at a temperature of 40 degrees C and pH 9.0 using p-NP-caprylate as substrate; however, relative activity still reached to 70% even at 5 degrees C with an activation energy of 3.36 kcal/mol, which indicated that it was a cold-adapted enzyme. The enzyme was a nonmetalloprotein and was active against p-nitrophenyl esters of C4, C8, and C14. Remarkably, this enzyme retained much of its activity in the presence of commercial detergents and organic solvents. This cold-adapted esterase will be applicable as catalysts for reaction in the presence of organic solvents and detergents. PMID:22814499

  1. Cloning, expression and characterization of a novel cold-active and organic solvent-tolerant esterase from Monascus ruber M7.

    PubMed

    Guo, Hailun; Zhang, Yan; Shao, Yanchun; Chen, Wanping; Chen, Fusheng; Li, Mu

    2016-07-01

    Cold active esterases are a class of important biocatalysts that exhibit high activity at low temperatures. In this study, a search for putative cold-active esterase encoding genes from Monascus ruber M7 was performed. A cold-active esterase, named Lip10, was isolated, cloned, purified, and characterized. Amino acid sequence analysis reveals that Lip10 contained a conserved sequence motif Gly(173)-Xaa-Ser(175)-Xaa-Gly(177) that is also present in the majority of esterases and lipases. Phylogenetic analysis indicated that Lip10 was a novel microbial esterase. The lip10 gene was cloned and heterologously expressed in Escherichia coli BL21(DE3), resulting in the expression of an active and soluble protein that constituted 40 % of the total cell protein content. Lip10 maintained almost 50 % of its maximal activity at 4-10 °C, with optimal activity at 40 °C. Furthermore, Lip10 retained 184-216 % of its original activity, after incubation in 50 % (v/v) hydrophobic organic solvents for 24 h. The enzyme also exhibited high activity under alkaline conditions and good tolerance to metal ions in the reaction mixture. These results indicate that Lip10 may have potential uses in chemical synthesis and food processing industrial applications as an esterase. PMID:27209523

  2. Est10: A Novel Alkaline Esterase Isolated from Bovine Rumen Belonging to the New Family XV of Lipolytic Enzymes.

    PubMed

    Rodríguez, María Cecilia; Loaces, Inés; Amarelle, Vanesa; Senatore, Daniella; Iriarte, Andrés; Fabiano, Elena; Noya, Francisco

    2015-01-01

    A metagenomic fosmid library from bovine rumen was used to identify clones with lipolytic activity. One positive clone was isolated. The gene responsible for the observed phenotype was identified by in vitro transposon mutagenesis and sequencing and was named est10. The 367 amino acids sequence harbors a signal peptide, the conserved secondary structure arrangement of alpha/beta hydrolases, and a GHSQG pentapeptide which is characteristic of esterases and lipases. Homology based 3D-modelling confirmed the conserved spatial orientation of the serine in a nucleophilic elbow. By sequence comparison, Est10 is related to hydrolases that are grouped into the non-specific Pfam family DUF3089 and to other characterized esterases that were recently classified into the new family XV of lipolytic enzymes. Est10 was heterologously expressed in Escherichia coli as a His-tagged fusion protein, purified and biochemically characterized. Est10 showed maximum activity towards C4 aliphatic chains and undetectable activity towards C10 and longer chains which prompted its classification as an esterase. However, it was able to efficiently catalyze the hydrolysis of aryl esters such as methyl phenylacetate and phenyl acetate. The optimum pH of this enzyme is 9.0, which is uncommon for esterases, and it exhibits an optimal temperature at 40 °C. The activity of Est10 was inhibited by metal ions, detergents, chelating agents and additives. We have characterized an alkaline esterase produced by a still unidentified bacterium belonging to a recently proposed new family of esterases. PMID:25973851

  3. Purification and characterization of an extracellular esterase with organic solvent tolerance from a halotolerant isolate, Salimicrobium sp. LY19

    PubMed Central

    2013-01-01

    Background Halotolerant bacteria are excellent sources for selecting novel enzymes. Being intrinsically stable and active under high salinities, enzymes from these prokaryotes have evolved to function optimally under extreme conditions, making them robust biocatalysts with potential applications in harsh industrial processes. Results A halotolerant strain LY19 showing lipolytic activity was isolated from saline soil of Yuncheng Salt Lake, China. It was identified as belonging to the genus of Salimicrobium by 16S rRNA gene sequence analysis. The extracellular enzyme was purified to homogeneity with molecular mass of 57 kDa by SDS-PAGE. Substrate specificity test revealed that the enzyme preferred short-chain p-nitrophenyl esters and exhibited maximum activity towards p-nitrophenyl butyrate (p-NPB), indicating an esterase activity. The esterase was highly active and stable over broad temperature (20°C-70°C), pH (7.0-10.0) and NaCl concentration (2.5%-25%) ranges, with an optimum at 50°C, pH 7.0 and 5% NaCl. Significant inhibition of the esterase was shown by ethylenediaminetetraacetic acid (EDTA), phenylmethylsulfonyl fluoride (PMSF) and phenylarsine oxide (PAO), which indicated that it was a metalloenzyme with serine and cysteine residues essential for enzyme activity. Moreover, the esterase displayed high activity and stability in the presence of hydrophobic organic solvents with log Pow ≥ 0.88 than in the absence of an organic solvent or in the presence of hydrophilic solvents. Conclusions Results from the present study indicated the novel extracellular esterase from Salimicrobium sp. LY19 exhibited thermostable, alkali-stable, halotolerant and organic solvent-tolerant properties. These features led us to conclude that the esterase may have considerable potential for industrial applications in organic synthesis reactions. PMID:24325447

  4. Identification and characterization of a novel salt-tolerant esterase from a Tibetan glacier metagenomic library.

    PubMed

    De Santi, Concetta; Ambrosino, Luca; Tedesco, Pietro; Zhai, Lei; Zhou, Cheng; Xue, Yanfen; Ma, Yanhe; de Pascale, Donatella

    2015-01-01

    A salt-tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p-nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three-dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat-resistant features. PMID:25920073

  5. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase.

    PubMed

    Tao, Weixin; Lee, Myung Hwan; Yoon, Mi-Young; Kim, Jin-Cheol; Malhotra, Shweta; Wu, Jing; Hwang, Eul Chul; Lee, Seon-Woo

    2011-12-01

    Function-driven metagenomic analysis is a powerful approach to screening for novel biocatalysts. In this study, we investigated lipolytic enzymes selected from an alluvial soil metagenomic library, and identified two novel esterases, EstDL26 and EstDL136. EstDL26 and EstDL136 reactivated chloramphenicol from its acetyl derivates by counteracting the chloramphenicol acetyltransferase (CAT) activity in Escherichia coli. These two enzymes showed only 27% identity in amino acid sequence to each other; however both preferentially hydrolyzed short-chain p-nitrophenyl esters (< or =C5) and showed mesophilic properties. In vitro, EstDL136 catalyzed the deacetylation of 1- and 3- acetyl and 1,3-diacetyl derivates; in contrast, EstDL26 was not capable of the deacetylation at C1, indicating a potential regioselectivity. EstDL26 and EstDL136 were similar to microbial hormone-sensitive lipase (HSL), and since chloramphenicol acetate esterase (CAE) activity was detected from two other soil esterases in the HSL family, this suggests a distribution of CAE among the soil microorganisms. The isolation and characterization of EstDL26 and EstDL136 in this study may be helpful in understanding the diversity of CAE enzymes and their potential role in releasing active chloramphenicol in the producing bacteria. PMID:22210605

  6. Mechanism of action of Neisseria gonorrhoeae O-acetylpeptidoglycan esterase, an SGNH serine esterase.

    PubMed

    Pfeffer, John M; Weadge, Joel T; Clarke, Anthony J

    2013-01-25

    O-Acetylpeptidoglycan esterase from Neisseria gonorrhoeae functions to release O-acetyl groups from the C-6 position of muramoyl residues in O-acetylated peptidoglycan, thereby permitting the continued metabolism of this essential cell wall heteropolymer. It has been demonstrated to be a serine esterase with sequence similarity to the family CE-3 carbohydrate esterases of the CAZy classification system. In the absence of a three-dimensional structure for any Ape, further knowledge of its structure and function relationship is dependent on modeling and kinetic studies. In this study, we predicted Neisseria gonorrhoeae Ape1a to be an SGNH hydrolase with an adopted α/β-hydrolase fold containing a central twisted four-stranded parallel β-sheet flanked by six α-helices with the putative catalytic triad, Asp-366, His-369, and Ser-80 appropriately aligned within a pocket. The role of eight invariant and highly conserved residues localized to the active site was investigated by site-directed replacements coupled with kinetic characterization and binding studies of the resultant engineered enzymes. Based on these data and theoretical considerations, Gly-236 and Asn-268 were identified as participating at the oxyanion hole to stabilize the tetrahedral species in the reaction mechanism, whereas Gly-78, Asp-79, His-81, Asn-235, Thr-267, and Val-368 are proposed to position appropriately the catalytic residues and participate in substrate binding. PMID:23209280

  7. Mechanism of Action of Neisseria gonorrhoeae O-Acetylpeptidoglycan Esterase, an SGNH Serine Esterase*

    PubMed Central

    Pfeffer, John M.; Weadge, Joel T.; Clarke, Anthony J.

    2013-01-01

    O-Acetylpeptidoglycan esterase from Neisseria gonorrhoeae functions to release O-acetyl groups from the C-6 position of muramoyl residues in O-acetylated peptidoglycan, thereby permitting the continued metabolism of this essential cell wall heteropolymer. It has been demonstrated to be a serine esterase with sequence similarity to the family CE-3 carbohydrate esterases of the CAZy classification system. In the absence of a three-dimensional structure for any Ape, further knowledge of its structure and function relationship is dependent on modeling and kinetic studies. In this study, we predicted Neisseria gonorrhoeae Ape1a to be an SGNH hydrolase with an adopted α/β-hydrolase fold containing a central twisted four-stranded parallel β-sheet flanked by six α-helices with the putative catalytic triad, Asp-366, His-369, and Ser-80 appropriately aligned within a pocket. The role of eight invariant and highly conserved residues localized to the active site was investigated by site-directed replacements coupled with kinetic characterization and binding studies of the resultant engineered enzymes. Based on these data and theoretical considerations, Gly-236 and Asn-268 were identified as participating at the oxyanion hole to stabilize the tetrahedral species in the reaction mechanism, whereas Gly-78, Asp-79, His-81, Asn-235, Thr-267, and Val-368 are proposed to position appropriately the catalytic residues and participate in substrate binding. PMID:23209280

  8. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst)

    PubMed Central

    Martins, Julia M.; DeMarco, Ricardo; Jameson, David M.; Castro, Aline M.; Bossolan, Nelma R. S.; Wallace, B. A.; Araujo, Ana P. U.

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  9. Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst).

    PubMed

    Lopes, Jose L S; Yoneda, Juliana S; Martins, Julia M; DeMarco, Ricardo; Jameson, David M; Castro, Aline M; Bossolan, Nelma R S; Wallace, B A; Araujo, Ana P U

    2016-01-01

    Enzymes isolated from thermophilic organisms found in oil reservoirs can find applications in many fields, including the oleochemical, pharmaceutical, bioenergy, and food/dairy industries. In this study, in silico identification and recombinant production of an esterase from the extremophile bacteria Petrotoga mobilis (designated PmEst) were performed. Then biochemical, bioinformatics and structural characterizations were undertaken using a combination of synchrotron radiation circular dichroism (SRCD) and fluorescence spectroscopies to correlate PmEst stability and hydrolytic activity on different substrates. The enzyme presented a high Michaelis-Menten constant (KM 0.16 mM) and optimum activity at ~55°C for p-nitrophenyl butyrate. The secondary structure of PmEst was preserved at acid pH, but not under alkaline conditions. PmEst was unfolded at high concentrations of urea or guanidine through apparently different mechanisms. The esterase activity of PmEst was preserved in the presence of ethanol or propanol and its melting temperature increased ~8°C in the presence of these organic solvents. PmEst is a mesophilic esterase with substrate preference towards short-to medium-length acyl chains. The SRCD data of PmEst is in agreement with the prediction of an α/β protein, which leads us to assume that it displays a typical fold of esterases from this family. The increased enzyme stability in organic solvents may enable novel applications for its use in synthetic biology. Taken together, our results demonstrate features of the PmEst enzyme that indicate it may be suitable for applications in industrial processes, particularly, when the use of polar organic solvents is required. PMID:27351338

  10. Biochemical Characterization of a Family 15 Carbohydrate Esterase from a Bacterial Marine Arctic Metagenome

    PubMed Central

    De Santi, Concetta; Willassen, Nils Peder

    2016-01-01

    Background The glucuronoyl esterase enzymes of wood-degrading fungi (Carbohydrate Esterase family 15; CE15) form part of the hemicellulolytic and cellulolytic enzyme systems that break down plant biomass, and have possible applications in biotechnology. Homologous enzymes are predicted in the genomes of several bacteria, however these have been much less studied than their fungal counterparts. Here we describe the recombinant production and biochemical characterization of a bacterial CE15 enzyme denoted MZ0003, which was identified by in silico screening of a prokaryotic metagenome library derived from marine Arctic sediment. MZ0003 has high similarity to several uncharacterized gene products of polysaccharide-degrading bacterial species, and phylogenetic analysis indicates a deep evolutionary split between these CE15s and fungal homologs. Results MZ0003 appears to differ from previously-studied CE15s in some aspects. Some glucuronoyl esterase activity could be measured by qualitative thin-layer chromatography which confirms its assignment as a CE15, however MZ0003 can also hydrolyze a range of other esters, including p-nitrophenyl acetate, which is not acted upon by some fungal homologs. The structure of MZ0003 also appears to differ as it is predicted to have several large loop regions that are absent in previously studied CE15s, and a combination of homology-based modelling and site-directed mutagenesis indicate its catalytic residues deviate from the conserved Ser-His-Glu triad of many fungal CE15s. Taken together, these results indicate that potentially unexplored diversity exists among bacterial CE15s, and this may be accessed by investigation of the microbial metagenome. The combination of low activity on typical glucuronoyl esterase substrates, and the lack of glucuronic acid esters in the marine environment suggest that the physiological substrate of MZ0003 and its homologs is likely to be different from that of related fungal enzymes. PMID:27433797

  11. Expression and biochemical characterization of two novel feruloyl esterases derived from fecal samples of Rusa unicolor and Equus burchelli.

    PubMed

    Chandrasekharaiah, Matam; Thulasi, Appoothy; Vijayarani, Kumanan; Kumar, Duvvuri Prasanna; Santosh, Sunil Singh; Palanivel, Chenniappan; Jose, Vazhakkala Lyju; Sampath, K T

    2012-05-25

    Two novel genes (tvms10a, tvmz2a) were identified in the metagenomic DNA of Rusa unicolor and Equus burchelli fecal samples. The amplified PCR product of tvms10a is composed of 917bp and the gene was found to encode a protein containing 165 amino acids, while the tvmz2a PCR product was 1053bp long encoding 298 amino acid proteins. The gene has 72% primary sequence identity with Clostridiales sp. These amplified PCR products which can encode FAE were cloned into pGEMT Easy TA cloning vector and then sub-cloned into the EcoRI site of pET32a expression vector to generate pET32-tvms10a and pET32-tvmz2a, which was then transformed into Escherichia coli BL21. The recombinants were grown in LB medium and gene expression was induced with IPTG for 6h. Purified recombinant Tvms10a and Tvmz2a proteins showed molecular masses of 18.6 and 31.2kDa respectively, and displayed hydrolytic activity towards substrate ethyl ferulate. The activities of Tvms10a and Tvmz2a produced in E. coli were 15 and 9U/min respectively, and their specific activities 16.6 and 10.4U/mg protein respectively. The optimal pH is between 5.0 and 8.0 and the optimal temperature is 37°C for enzyme reaction. Unusually, these proteins were found to be capable of releasing ferulic acid (FA) and diferulic acid (diFA) from untreated crude plant cell wall materials. The substrate utilization preferences and sequence similarity of these clones place it in the type-D sub-class of FAE. PMID:22441123

  12. Genetics of esterase isoenzymes in Malus.

    PubMed

    Manganaris, A G; Alston, F H

    1992-02-01

    Three main zones of esterase activity (EST-I, EST-III, EST-IV) identified in leaf extracts of cultivated apple and Malus species were determined by the genes EST-1, EST-3 and EST-4, respectively. In addition to earlier reported alleles of EST-1 (a, b) three further bands c, d and f were identified in the EST-I zone of which c was found to be determined by an allele, c. Two alleles, a, b, and a null allele were found for both the genes EST-3 and EST-4. Differences in allelic frequency were observed between cultivars, rootstocks and Malus species. Allele EST-1a was rare amongst the rootstocks. The examination of Malus species and derivatives showed a geographical relationship. Allele EST-1c was confined to species of Asian origin, and EST-1d was confined to American species. PMID:24202593

  13. The F4 fimbrial chaperone FaeE is stable as a monomer that does not require self-capping of its pilin-interactive surfaces.

    PubMed

    Van Molle, Inge; Moonens, Kristof; Buts, Lieven; Garcia-Pino, Abel; Panjikar, Santosh; Wyns, Lode; De Greve, Henri; Bouckaert, Julie

    2009-05-01

    Many Gram-negative bacteria use the chaperone-usher pathway to express adhesive surface structures, such as fimbriae, in order to mediate attachment to host cells. Periplasmic chaperones are required to shuttle fimbrial subunits or pilins through the periplasmic space in an assembly-competent form. The chaperones cap the hydrophobic surface of the pilins through a donor-strand complementation mechanism. FaeE is the periplasmic chaperone required for the assembly of the F4 fimbriae of enterotoxigenic Escherichia coli. The FaeE crystal structure shows a dimer formed by interaction between the pilin-binding interfaces of the two monomers. Dimerization and tetramerization have been observed previously in crystal structures of fimbrial chaperones and have been suggested to serve as a self-capping mechanism that protects the pilin-interactive surfaces in solution in the absence of the pilins. However, thermodynamic and biochemical data show that FaeE occurs as a stable monomer in solution. Other lines of evidence indicate that self-capping of the pilin-interactive interfaces is not a mechanism that is conservedly applied by all periplasmic chaperones, but is rather a case-specific solution to cap aggregation-prone surfaces. PMID:19390146

  14. Characterization of a Feruloyl Esterase from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Mancheño, José Miguel; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant. L. plantarum WCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methyl p-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methyl p-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present among L. plantarum strains. The present study constitutes the description of feruloyl esterase activity in L. plantarum and provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species. PMID:23793626

  15. A DIRECT METHOD TO ASSAY NEUROTOXIC ESTERASE ACTIVITY

    EPA Science Inventory

    A direct photometric method for assaying neurotoxic esterase (NTE) activity of chicken brain microsomal preparation has been developed using 4-nitrophenyl esters as substrates. Paired samples of the microsomal preparation were preincubated for 20 min. with paraoxon plus either (a...

  16. Juvenile Hormone (JH) Esterase of the Mosquito Culex quinquefasciatus Is Not a Target of the JH Analog Insecticide Methoprene

    PubMed Central

    Kamita, Shizuo G.; Samra, Aman I.; Liu, Jun-Yan; Cornel, Anthony J.; Hammock, Bruce D.

    2011-01-01

    Juvenile hormones (JHs) are essential sesquiterpenes that control insect development and reproduction. JH analog (JHA) insecticides such as methoprene are compounds that mimic the structure and/or biological activity of JH. In this study we obtained a full-length cDNA, cqjhe, from the southern house mosquito Culex quinquefasciatus that encodes CqJHE, an esterase that selectively metabolizes JH. Unlike other recombinant esterases that have been identified from dipteran insects, CqJHE hydrolyzed JH with specificity constant (kcat/KM ratio) and Vmax values that are common among JH esterases (JHEs). CqJHE showed picomolar sensitivity to OTFP, a JHE-selective inhibitor, but more than 1000-fold lower sensitivity to DFP, a general esterase inhibitor. To our surprise, CqJHE did not metabolize the isopropyl ester of methoprene even when 25 pmol of methoprene was incubated with an amount of CqJHE that was sufficient to hydrolyze 7,200 pmol of JH to JH acid under the same assay conditions. In competition assays in which both JH and methoprene were available to CqJHE, methoprene did not show any inhibitory effects on the JH hydrolysis rate even when methoprene was present in the assay at a 10-fold higher concentration relative to JH. Our findings indicated that JHE is not a molecular target of methoprene. Our findings also do not support the hypothesis that methoprene functions in part by inhibiting the action of JHE. PMID:22174797

  17. Hydrolysis of synthetic polyesters by Clostridium botulinum esterases.

    PubMed

    Perz, Veronika; Baumschlager, Armin; Bleymaier, Klaus; Zitzenbacher, Sabine; Hromic, Altijana; Steinkellner, Georg; Pairitsch, Andris; Łyskowski, Andrzej; Gruber, Karl; Sinkel, Carsten; Küper, Ulf; Ribitsch, Doris; Guebitz, Georg M

    2016-05-01

    Two novel esterases from the anaerobe Clostridium botulinum ATCC 3502 (Cbotu_EstA and Cbotu_EstB) were expressed in Escherichia coli BL21-Gold(DE3) and were found to hydrolyze the polyester poly(butylene adipate-co-butylene terephthalate) (PBAT). The active site residues (triad Ser, Asp, His) are present in both enzymes at the same location only with some amino acid variations near the active site at the surrounding of aspartate. Yet, Cbotu_EstA showed higher kcat values on para-nitrophenyl butyrate and para-nitrophenyl acetate and was considerably more active (sixfold) on PBAT. The entrance to the active site of the modeled Cbotu_EstB appears more narrowed compared to the crystal structure of Cbotu_EstA and the N-terminus is shorter which could explain its lower activity on PBAT. The Cbotu_EstA crystal structure consists of two regions that may act as movable cap domains and a zinc metal binding site. Biotechnol. Bioeng. 2016;113: 1024-1034. © 2015 Wiley Periodicals, Inc. PMID:26524601

  18. A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds.

    PubMed

    Arnling Bååth, Jenny; Giummarella, Nicola; Klaubauf, Sylvia; Lawoko, Martin; Olsson, Lisbeth

    2016-08-01

    The Glucuronoyl esterases (GE) have been proposed to target lignin-carbohydrate (LC) ester bonds between lignin moieties and glucuronic acid side groups of xylan, but to date, no direct observations of enzymatic cleavage on native LC ester bonds have been demonstrated. In the present investigation, LCC fractions from spruce and birch were treated with a recombinantly produced GE originating from Acremonium alcalophilum (AaGE1). A combination of size exclusion chromatography and (31) P NMR analyses of phosphitylated LCC samples, before and after AaGE1 treatment provided the first evidence for cleavage of the LC ester linkages existing in wood. PMID:27397104

  19. A genomic search approach to identify esterases in Propionibacterium freudenreichii involved in the formation of flavour in Emmental cheese

    PubMed Central

    Dherbécourt, Julien; Falentin, Hélène; Canaan, Stéphane; Thierry, Anne

    2008-01-01

    Background Lipolysis is an important process of cheese ripening that contributes to the formation of flavour. Propionibacterium freudenreichii is the main agent of lipolysis in Emmental cheese; however, the enzymes involved produced by this species have not yet been identified. Lipolysis is performed by esterases (carboxylic ester hydrolases, EC 3.1.1.-) which are able to hydrolyse acylglycerols bearing short, medium and long chain fatty acids. The genome sequence of P. freudenreichii type strain CIP103027T was recently obtained in our laboratory. The aim of this study was to identify as exhaustively as possible the potential esterases in P. freudenreichii that could be involved in the hydrolysis of acylglycerols in Emmental cheese. The proteins identified were produced in a soluble and active form by heterologous expression in Escherichia coli for further study of their activity and specificity of hydrolysed substrates. Results The approach chosen was a genomic search approach that combined and compared four methods based on automatic and manual searches of homology and motifs among P. freudenreichii CIP103027T predicted proteins. Twenty-three putative esterases were identified in this step. Then a selection step permitted to focus the study on the 12 most probable esterases, according to the presence of the GXSXG motif of the α/β hydrolase fold family. The 12 corresponding coding sequences were cloned in expression vectors, containing soluble N-terminal fusion proteins. The best conditions to express each protein in a soluble form were found thanks to an expression screening, using an incomplete factorial experimental design. Eleven out of the 12 proteins were expressed in a soluble form in E. coli and six showed esterase activity on 1-naphthyl acetate and/or propionate, as demonstrated by a zymographic method. Conclusion We were able to demonstrate that our genomic search approach was efficient to identify esterases from the genome of a P. freudenreichii

  20. Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications.

    PubMed

    Maester, Thaís Carvalho; Pereira, Mariana Rangel; Machado Sierra, E G; Balan, Andrea; de Macedo Lemos, Eliana Gertrudes

    2016-07-01

    Metagenomic libraries from diverse environments have been extensive sources of many lipases and esterases; nevertheless, most of these enzymes remain biochemically uncharacterized. We previously built a metagenomic fosmid library from a microbial consortium specialized for diesel oil degradation and tested it for lipolytic activity. In the present study, we identified the PL14.H10 clone that was subcloned and sequenced, which enabled the identification of the EST3 protein. This enzyme exhibited 74 % amino acid identity with the uncharacterized alpha/beta hydrolase from Parvibaculum lavamentivorans [GenBank: WP012110575.1] and was classified into lipolytic enzyme family IV. Biochemical characterization revealed that EST3 presents high activity in a wide range of temperature with highest activity from 41 to 45 °C. Also, this thermostable esterase acts from mild acidic to alkaline conditions with an optimum pH of 6.0. The enzyme exhibited activity against p-nitrophenyl esters of different chain lengths and highest catalytic efficiency against p-nitrophenyl caprylate. The activity of the protein was increased in the presence of 0.5 mM of Mn(+2), Li(+), EDTA, and 1 % of CTAB and exhibited half of the activity in the presence of 10 % methanol and ethanol. Moreover, the homology model of EST3 was built and compared to other esterases, revealing a substrate channel that should fit a wide range of substrates. Taken together, the data presented in this work reveal the unique and interesting characteristics of EST3 that might be explored for further use in biotechnological applications. PMID:26915995

  1. NEUROPATHY TARGET ESTERASE INHIBITION BY ORGANOPHOSPHORUS ESTERS IN HUMAN NEUROBLASTOMA CELLS

    EPA Science Inventory

    Certain organophosphorus compounds (OPs) produce a delayed neuropathy (OPIDN) in man and some animal species. apability to cause OPIDN is generally predicted in animal models by early and irreversible inhibition of neuropathy target esterase (NTE, neurotoxic esterase) . In this s...

  2. Fatty acid ethanolamide levels are altered in borderline personality and complex posttraumatic stress disorders.

    PubMed

    Schaefer, Carola; Enning, Frank; Mueller, Juliane K; Bumb, J Malte; Rohleder, Cathrin; Odorfer, Thorsten M; Klosterkötter, Joachim; Hellmich, Martin; Koethe, Dagmar; Schmahl, Christian; Bohus, Martin; Leweke, F Markus

    2014-08-01

    Borderline personality (BPD) and complex posttraumatic stress disorders (PTSD) are both powerfully associated with the experience of interpersonal violence during childhood and adolescence. The disorders frequently co-occur and often result in pervasive problems in, e.g., emotion regulation and altered pain perception, where the endocannabinoid system is deeply involved. We hypothesize an endocannabinoid role in both disorders. We investigated serum levels of the endocannabinoids anandamide and 2-arachidonoylglycerol and related fatty acid ethanolamides (FAEs) in BPD, PTSD, and controls. Significant alterations were found for both endocannabinoids in BPD and for the FAE oleoylethanolamide in PTSD suggesting a respective link to both disorders. PMID:24253425

  3. Identification of a novel carbohydrate esterase from Bjerkandera adusta: structural and function predictions through bioinformatics analysis and molecular modeling.

    PubMed

    Cuervo-Soto, Laura I; Valdés-García, Gilberto; Batista-García, Ramón; del Rayo Sánchez-Carbente, María; Balcázar-López, Edgar; Lira-Ruan, Verónica; Pastor, Nina; Folch-Mallol, Jorge Luis

    2015-03-01

    A new gene from Bjerkandera adusta strain UAMH 8258 encoding a carbohydrate esterase (designated as BacesI) was isolated and expressed in Pichia pastoris. The gene had an open reading frame of 1410 bp encoding a polypeptide of 470 amino acid residues, the first 18 serving as a secretion signal peptide. Homology and phylogenetic analyses showed that BaCesI belongs to carbohydrate esterases family 4. Three-dimensional modeling of the protein and normal mode analysis revealed a breathing mode of the active site that could be relevant for esterase activity. Furthermore, the overall negative electrostatic potential of this enzyme suggests that it degrades neutral substrates and will not act on negative substrates such as peptidoglycan or p-nitrophenol derivatives. The enzyme shows a specific activity of 1.118 U mg(-1) protein on 2-naphthyl acetate. No activity was detected on p-nitrophenol derivatives as proposed from the electrostatic potential data. The deacetylation activity of the recombinant BaCesI was confirmed by measuring the release of acetic acid from several substrates, including oat xylan, shrimp shell chitin, N-acetylglucosamine, and natural substrates such as sugar cane bagasse and grass. This makes the protein very interesting for the biofuels production industry from lignocellulosic materials and for the production of chitosan from chitin. PMID:25586442

  4. Endophytic fungi producing of esterases: Evaluation in vitro of the enzymatic activity using pH indicator

    PubMed Central

    Lisboa, Helen Cristina Fávero; Biasetto, Carolina Rabal; de Medeiros, João Batista; Araújo, Ângela Regina; Silva, Dulce Helena Siqueira; Teles, Helder Lopes; Trevisan, Henrique Celso

    2013-01-01

    A sensitive and efficient colorimetric method was optimized for detection of esterase enzymes produced by endophytic fungi for development of High-Throughput Screening (HTS). The fungi were isolated and obtained previously from plant species of Cerrado and Atlantic Forest located in areas of environmental preservation in the State of Sao Paulo / Brazil, as part of the project “Chemical and biological prospecting endophytic fungi associated to plant species of Cerrado and Atlantic Forest”. The compounds ethyl butyrate, ethyl acetate and methyl propionate were used as standards esters which were hydrolyzed by extracellular enzyme from endophytic fungi (EC. 3.1.1.1 - carboxyl-esterases) for production of carboxylic acids. Thus, the reduction of the pH increases the protonated indicator concentration (bromothymol blue), changing the color of the reaction medium (from blue to yellow), that can be observed and measured by spectrophotometry at 616 nm. The methodology with acid-base indicator was performed on 13 microorganisms, aiming Periconia atropurpurea as a potential source of esterase for biotransformation of short chain esters. The results also evidenced that this methodology showed to be efficient, fast, cheap, having low consumption of reagents and easy development, and can be applied to screen carboxylic-ester hydrolases in a large number of microorganisms. PMID:24516461

  5. Interactions between dietary oil treatments and genetic variants modulate fatty acid ethanolamides in plasma and body weight composition.

    PubMed

    Pu, Shuaihua; Eck, Peter; Jenkins, David J A; Connelly, Philip W; Lamarche, Benoît; Kris-Etherton, Penny M; West, Sheila G; Liu, Xiaoran; Jones, Peter J H

    2016-03-28

    Fatty acid ethanolamides (FAE), a group of lipid mediators derived from long-chain fatty acids (FA), mediate biological activities including activation of cannabinoid receptors, stimulation of fat oxidation and regulation of satiety. However, how circulating FAE levels are influenced by FA intake in humans remains unclear. The objective of the present study was to investigate the response of six major circulating FAE to various dietary oil treatments in a five-period, cross-over, randomised, double-blind, clinical study in volunteers with abdominal obesity. The treatment oils (60 g/12 552 kJ per d (60 g/3000 kcal per d)) provided for 30 d were as follows: conventional canola oil, high oleic canola oil, high oleic canola oil enriched with DHA, flax/safflower oil blend and corn/safflower oil blend. Two SNP associated with FAE degradation and synthesis were studied. Post-treatment results showed overall that plasma FAE levels were modulated by dietary FA and were positively correlated with corresponding plasma FA levels; minor allele (A) carriers of SNP rs324420 in gene fatty acid amide hydrolase produced higher circulating oleoylethanolamide (OEA) (P=0·0209) and docosahexaenoylethanolamide (DHEA) levels (P=0·0002). In addition, elevated plasma DHEA levels in response to DHA intake tended to be associated with lower plasma OEA levels and an increased gynoid fat mass. In summary, data suggest that the metabolic and physiological responses to dietary FA may be influenced via circulating FAE. Genetic analysis of rs324420 might help identify a sub-population that appears to benefit from increased consumption of DHA and oleic acid. PMID:26806592

  6. Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases

    PubMed Central

    Langereis, Martijn A.; Zeng, Qinghong; Gerwig, Gerrit J.; Frey, Barbara; von Itzstein, Mark; Kamerling, Johannis P.; de Groot, Raoul J.; Huizinga, Eric G.

    2009-01-01

    Hemagglutinin esterases (HEs), closely related envelope glycoproteins in influenza C and corona- and toroviruses, mediate reversible attachment to O-acetylated sialic acids (Sias). They do so by acting both as lectins and as receptor-destroying enzymes, functions exerted by separate protein domains. HE divergence was accompanied by changes in quaternary structure and in receptor and substrate specificity. The selective forces underlying HE diversity and the molecular basis for Sia specificity are poorly understood. Here we present crystal structures of porcine and bovine torovirus HEs in complex with receptor analogs. Torovirus HEs form homodimers with sialate-O-acetylesterase domains almost identical to corresponding domains in orthomyxo- and coronavirus HEs, but with unique lectin sites. Structure-guided biochemical analysis of the esterase domains revealed that a functionally, but not structurally conserved arginine–Sia carboxylate interaction is critical for the binding and positioning of glycosidically bound Sias in the catalytic pocket. Although essential for efficient de-O-acetylation of Sias, this interaction is not required for catalysis nor does it affect substrate specificity. In fact, the distinct preference of the porcine torovirus enzyme for 9-mono- over 7,9-di-O-acetylated Sias can be explained from a single-residue difference with HEs of more promiscuous specificity. Apparently, esterase and lectin pockets coevolved; also the porcine torovirus HE receptor-binding site seems to have been designed to use 9-mono- and exclude di-O-acetylated Sias, possibly as an adaptation to replication in swine. Our findings shed light on HE evolution and provide fundamental insight into mechanisms of substrate binding, substrate recognition, and receptor selection in this important class of virion proteins. PMID:19721004

  7. Structural insights into the substrate specificity of two esterases from the thermophilic Rhizomucor miehei

    PubMed Central

    Yang, Shaoqing; Qin, Zhen; Duan, Xiaojie; Yan, Qiaojuan; Jiang, Zhengqiang

    2015-01-01

    Two hormone-sensitive lipase (HSL) family esterases (RmEstA and RmEstB) from the thermophilic fungus Rhizomucor miehei, exhibiting distinct substrate specificity, have been recently reported to show great potential in industrial applications. In this study, the crystal structures of RmEstA and RmEstB were determined at 2.15 Å and 2.43 Å resolutions, respectively. The structures of RmEstA and RmEstB showed two distinctive domains, a catalytic domain and a cap domain, with the classical α/β-hydrolase fold. Catalytic triads consisting of residues Ser161, Asp262, and His292 in RmEstA, and Ser164, Asp261, and His291 in RmEstB were found in the respective canonical positions. Structural comparison of RmEstA and RmEstB revealed that their distinct substrate specificity might be attributed to their different substrate-binding pockets. The aromatic amino acids Phe222 and Trp92, located in the center of the substrate-binding pocket of RmEstB, blocked this pocket, thus narrowing its catalytic range for substrates (C2–C8). Two mutants (F222A and W92F in RmEstB) showing higher catalytic activity toward long-chain substrates further confirmed the hypothesized interference. This is the first report of HSL family esterase structures from filamentous fungi.jlr The information on structure-function relationships could open important avenues of exploration for further industrial applications of esterases. PMID:26108223

  8. Active and Passive Immunizations with the Streptococcal Esterase Sse Protect Mice against Subcutaneous Infection with Group A Streptococci▿

    PubMed Central

    Liu, Mengyao; Zhu, Hui; Zhang, Jinlian; Lei, Benfang

    2007-01-01

    The human pathogen group A Streptococcus (GAS) produces many secreted proteins that play important roles in GAS pathogenesis, including hydrolases that degrade proteins and nucleic acids. This study targets another kind of hydrolase, carboxylic esterase, with the objectives of identifying GAS esterase and determining whether it is a protective antigen. The putative esterase gene SPy1718 was cloned, and the recombinant protein (Sse) was prepared. Sse was detected in GAS culture supernatant, and patients with streptococcal pharyngitis seroconverted to Sse, indicating that Sse was produced in vivo and in vitro. Sse hydrolyzes p-nitrophenyl butyrate, and the residue 178Ser is critical for this esterase activity. There are two Sse variant complexes according to the available genome databases, consistent with the previous finding of two antigenic Sse variants. Complex I includes serotypes M1, M2, M3, M5, M6, M12, and M18, whereas M4, M28, and M49 belong to complex II. Sse variants share >98% identity in amino acid sequence within each complex but have about 37% variation between the two groups. Active immunization with M1 Sse significantly protects mice against lethal subcutaneous infection with virulent M1 and M3 strains and inhibits GAS invasion of mouse skin tissue. Passive immunization with anti-Sse antiserum also significantly protects mice against subcutaneous GAS infection, indicating that the protection is mediated by Sse-specific antibodies. The results suggest that Sse plays an important role in tissue invasion and is an antigen protective in subcutaneous infection against GAS strains of more than one serotype. PMID:17502395

  9. Active and passive immunizations with the streptococcal esterase Sse protect mice against subcutaneous infection with group A streptococci.

    PubMed

    Liu, Mengyao; Zhu, Hui; Zhang, Jinlian; Lei, Benfang

    2007-07-01

    The human pathogen group A Streptococcus (GAS) produces many secreted proteins that play important roles in GAS pathogenesis, including hydrolases that degrade proteins and nucleic acids. This study targets another kind of hydrolase, carboxylic esterase, with the objectives of identifying GAS esterase and determining whether it is a protective antigen. The putative esterase gene SPy1718 was cloned, and the recombinant protein (Sse) was prepared. Sse was detected in GAS culture supernatant, and patients with streptococcal pharyngitis seroconverted to Sse, indicating that Sse was produced in vivo and in vitro. Sse hydrolyzes p-nitrophenyl butyrate, and the residue (178)Ser is critical for this esterase activity. There are two Sse variant complexes according to the available genome databases, consistent with the previous finding of two antigenic Sse variants. Complex I includes serotypes M1, M2, M3, M5, M6, M12, and M18, whereas M4, M28, and M49 belong to complex II. Sse variants share >98% identity in amino acid sequence within each complex but have about 37% variation between the two groups. Active immunization with M1 Sse significantly protects mice against lethal subcutaneous infection with virulent M1 and M3 strains and inhibits GAS invasion of mouse skin tissue. Passive immunization with anti-Sse antiserum also significantly protects mice against subcutaneous GAS infection, indicating that the protection is mediated by Sse-specific antibodies. The results suggest that Sse plays an important role in tissue invasion and is an antigen protective in subcutaneous infection against GAS strains of more than one serotype. PMID:17502395

  10. Extracellular esterases of phylloplane yeast Pseudozyma antarctica induce defect on cuticle layer structure and water-holding ability of plant leaves.

    PubMed

    Ueda, Hirokazu; Mitsuhara, Ichiro; Tabata, Jun; Kugimiya, Soichi; Watanabe, Takashi; Suzuki, Ken; Yoshida, Shigenobu; Kitamoto, Hiroko

    2015-08-01

    Aerial plant surface (phylloplane) is a primary key habitat for many microorganisms but is generally recognized as limited in nutrient resources. Pseudozyma antarctica, a nonpathogenic yeast, is commonly isolated from plant surfaces and characterized as an esterase producer with fatty acid assimilation ability. In order to elucidate the biological functions of these esterases, culture filtrate with high esterase activity (crude enzyme) of P. antarctica was applied onto leaves of tomato and Arabidopsis. These leaves showed a wilty phenotype, which is typically associated with water deficiency. Furthermore, we confirmed that crude enzyme-treated detached leaves clearly lost their water-holding ability. In treated leaves of both plants, genes associated to abscisic acid (ABA; a plant stress hormone responding osmotic stress) were activated and accumulation of ABA was confirmed in tomato plants. Microscopic observation of treated leaf surfaces revealed that cuticle layer covering the aerial epidermis of leaves became thinner. A gas chromatography-mass spectrometry (GC-MS) analysis exhibited that fatty acids with 16 and 18 carbon chains were released in larger amounts from treated leaf surfaces, indicating that the crude enzyme has ability to degrade lipid components of cuticle layer. Among the three esterases detected in the crude enzyme, lipase A, lipase B, and P. antarctica esterase (PaE), an in vitro enzyme assay using para-nitrophenyl palmitate as substrate demonstrated that PaE was the most responsible for the degradation. These results suggest that PaE has a potential role in the extraction of fatty acids from plant surfaces, making them available for the growth of phylloplane yeasts. PMID:25783629

  11. Glycoconjugate expression in follicle-associated epithelium (FAE) covering the nasal-associated lymphoid tissue (NALT) in specific pathogen-free and conventional rats.

    PubMed

    Jeong, K I; Uetsuka, K; Nakayama, H; Doi, K

    1999-01-01

    We examined lectin-histochemically the glycoconjugate expression in the follicle-associated epithelium (FAE) covering the nasal-associated lymphoid tissue (NALT) in the rat under specific pathogen-free (SPF) and conventional (CV) conditions and compared the results for SPF and CV rats as well as for membranous (M) cells and adjacent ciliated respiratory epithelial (CRE) cells in FAE. N-acetylgalactosamine-specific lectins, Dolichos biflorus (DBA), Helix pomatia (HPA), Glycine max (SBA) and Vicia villosa (VVA), and alpha-L-fucose-specific lectin, Ulex europaeus (UEA-I), preferentially bound to M cells mainly in the luminal surface compared with CRE cells in SPF rats, whereas DBA and UEA-I showed signs of preferential binding to the apical and basolateral cytoplasm as well as to the luminal surface of M cells in CV rats. In addition, HPA, SBA and VVA more frequently and extensively labeled M cells than CRE cells in CV rats with the same subcellular staining pattern as DBA and UEA-I. On the whole, the changes in lectin binding frequency and strength were more prominent in M cells than in CRE cells in both SPF and CV rats. The present results indicate that DBA and UEA-I are useful as markers of M cells in NALT. Furthermore, the pattern of expression of carbohydrate residues recognized by such lectins in SPF and CV rats suggests that M cells are highly sensitive to environmental changes. PMID:10067202

  12. Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus

    PubMed Central

    Leis, Benedikt; Angelov, Angel; Mientus, Markus; Li, Haijuan; Pham, Vu T. T.; Lauinger, Benjamin; Bongen, Patrick; Pietruszka, Jörg; Gonçalves, Luís G.; Santos, Helena; Liebl, Wolfgang

    2015-01-01

    Functional metagenomic screening strategies, which are independent of known sequence information, can lead to the identification of truly novel genes and enzymes. Since E. coli has been used exhaustively for this purpose as a host, it is important to establish alternative expression hosts and to use them for functional metagenomic screening for new enzymes. In this study we show that Thermus thermophilus HB27 is an excellent screening host and can be used as an alternative provider of truly novel biocatalysts. In a previous study we constructed mutant strain BL03 with multiple markerless deletions in genes for major extra- and intracellular lipolytic activities. This esterase-diminished strain was no longer able to grow on defined minimal medium supplemented with tributyrin as the sole carbon source and could be used as a host to screen for metagenomic DNA fragments that could complement growth on tributyrin. Several thousand single fosmid clones from thermophilic metagenomic libraries from heated compost and hot spring water samples were subjected to a comparative screening for esterase activity in both T. thermophilus strain BL03 and E. coli EPI300. We scored a greater number of active esterase clones in the thermophilic bacterium than in the mesophilic E. coli. From several thousand functionally screened clones only two thermostable α/β-fold hydrolase enzymes with high amino acid sequence similarity to already characterized enzymes were identifiable in E. coli. In contrast, five further fosmids were found that conferred lipolytic activities in T. thermophilus only. Four open reading frames (ORFs) were found which did not share significant similarity to known esterase enzymes but contained the conserved GXSXG motif regularly found in lipolytic enzymes. Two of the genes were expressed in both hosts and the novel thermophilic esterases, which based on their primary structures could not be assigned to known esterase or lipase families, were purified and

  13. Amino acid alignment of cholinesterases, esterases, lipases, and related proteins

    SciTech Connect

    Gentry, M.K.; Doctor, B.P.

    1995-12-31

    The alignments previously published (Gentry Doctor, 1991; Cygler et al., 1993), nine and 32 sequences respectively, have been further expanded by the addition of 22 newly-found sequences. References and protein sequences were found by searching on the term acetylcholinesterase using the software package Entrez, an integrated citation and sequence retrieval system (National Center for Biotechnology Information, NLM, Bethesda, MD).

  14. Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release.

    PubMed

    Gutiérrez-Fernández, Javier; Vaquero, María Eugenia; Prieto, Alicia; Barriuso, Jorge; Martínez, María Jesús; Hermoso, Juan A

    2014-09-01

    Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop α16-α17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Å far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications. PMID:25108239

  15. An Esterase from Anaerobic Clostridium hathewayi Can Hydrolyze Aliphatic-Aromatic Polyesters.

    PubMed

    Perz, Veronika; Hromic, Altijana; Baumschlager, Armin; Steinkellner, Georg; Pavkov-Keller, Tea; Gruber, Karl; Bleymaier, Klaus; Zitzenbacher, Sabine; Zankel, Armin; Mayrhofer, Claudia; Sinkel, Carsten; Kueper, Ulf; Schlegel, Katharina; Ribitsch, Doris; Guebitz, Georg M

    2016-03-15

    Recently, a variety of biodegradable polymers have been developed as alternatives to recalcitrant materials. Although many studies on polyester biodegradability have focused on aerobic environments, there is much less known on biodegradation of polyesters in natural and artificial anaerobic habitats. Consequently, the potential of anaerobic biogas sludge to hydrolyze the synthetic compostable polyester PBAT (poly(butylene adipate-co-butylene terephthalate) was evaluated in this study. On the basis of reverse-phase high-performance liquid chromatography (RP-HPLC) analysis, accumulation of terephthalic acid (Ta) was observed in all anaerobic batches within the first 14 days. Thereafter, a decline of Ta was observed, which occurred presumably due to consumption by the microbial population. The esterase Chath_Est1 from the anaerobic risk 1 strain Clostridium hathewayi DSM-13479 was found to hydrolyze PBAT. Detailed characterization of this esterase including elucidation of the crystal structure was performed. The crystal structure indicates that Chath_Est1 belongs to the α/β-hydrolases family. This study gives a clear hint that also micro-organisms in anaerobic habitats can degrade manmade PBAT. PMID:26878094

  16. Aliphatic esters as targets of esterase activity in the parsnip webworm (Depressaria pastinacella).

    PubMed

    Zangerl, Arthur R; Liao, Ling-Hsiu; Jogesh, Tania; Berenbaum, May R

    2012-02-01

    As a specialist on the reproductive structures of Pastinaca sativa and species in the related genus Heracleum, the parsnip webworm (Depressaria pastinacella) routinely encounters a distinctive suite of phytochemicals in hostplant tissues. Little is known, however, about the detoxification mechanisms upon which this species relies to metabolize these compounds. In this study, larval guts containing hostplant tissues were homogenized, and metabolism was determined by incubating reactions with and without NADPH and analyzing for substrate disappearance and product appearance by gas chromatography-mass spectrometry. Using this approach, we found indications of carboxylesterase activity, in the form of appropriate alcohol metabolites for three aliphatic esters in hostplant tissues-octyl acetate, octyl butyrate, and hexyl butyrate. Involvement of webworm esterases in hostplant detoxification subsequently was confirmed with metabolism assays with pure compounds. This study is the first to implicate esterases in lepidopteran larval midgut metabolism of aliphatic esters, ubiquitous constituents of flowers and fruits. In addition, this method confirmed that webworms detoxify furanocoumarins and myristicin in their hostplants via cytochrome P450-mediated metabolism, and demonstrated that these enzymes also metabolize the coumarin osthol and the fatty acid derivative palmitolactone. PMID:22350520

  17. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil.

    PubMed

    Li, Xueyuan; Mei, Desheng; Liu, Qing; Fan, Jing; Singh, Surinder; Green, Allan; Zhou, Xue-Rong; Zhu, Li-Hua

    2016-01-01

    High oleic oil is an important industrial feedstock that has been one of the main targets for oil improvement in a number of oil crops. Crambe (Crambe abyssinica) is a dedicated oilseed crop, suitable for industrial oil production. In this study, we down-regulated the crambe fatty acid desaturase (FAD) and fatty acid elongase (FAE) genes for creating high oleic seed oil. We first cloned the crambe CaFAD2, CaFAD3 and CaFAE1 genes. Multiple copies of each of these genes were isolated, and the highly homologous sequences were used to make RNAi constructs. These constructs were first tested in Arabidopsis, which led to the elevated oleic or linoleic levels depending on the genes targeted, indicating that the RNAi constructs were effective in regulating the expression of the target genes in nonidentical but closely related species. Furthermore, down-regulation of CaFAD2 and CaFAE1 in crambe with the FAD2-FAE1 RNAi vector resulted in even more significant increase in oleic acid level in the seed oil with up to 80% compared to 13% for wild type. The high oleic trait has been stable in subsequent five generations and the GM line grew normally in greenhouse. This work has demonstrated the great potential of producing high oleic oil in crambe, thus contributing to its development into an oil crop platform for industrial oil production. PMID:25998013

  18. In vitro comparison of rat and chicken brain neurotoxic esterase

    SciTech Connect

    Novak, R.; Padilla, S.

    1986-04-01

    A systematic comparison was undertaken to characterize neurotoxic esterase (NTE) from rat and chicken brain in terms of inhibitor sensitivities, pH optima, and molecular weights. Paraoxon titration of phenyl valerate (PV)-hydrolyzing carboxylesterases showed that rat esterases were more sensitive than chicken to paraoxon inhibition at concentrations less than or equal to microM and superimposable with chicken esterases at concentrations of 2.5-1000 microM. Mipafox titration of the paraoxon-resistant esterases at a fixed paraoxon concentration of 100 microM (mipafox concentration: 0-1000 microM) resulted in a mipafox I50 of 7.3 microM for chicken brain NTE and 11.6 microM for rat brain NTE. NTE (i.e., paraoxon-resistant, mipafox-sensitive esterase activity) comprised 80% of chicken and 60% of rat brain paraoxon-resistant activity with the specific activity of chicken brain NTE approximately twice that of rat brain NTE. The pH maxima for NTE from both species was similar showing broad, slightly alkaline optima from pH 7.9 to 8.6. (/sup 3/H)Diisopropyl phosphorofluoridate (DFP)-labeled NTE from the brains of both species had an apparent mol wt of 160,000 measured by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In conclusion, NTE from both species was very similar, with the mipafox I50 for rat NTE within the range of reported values for chicken and human NTE, and the inhibitor parameters of the chicken NTE assay were applicable for the rat NTE assay.

  19. Est16, a New Esterase Isolated from a Metagenomic Library of a Microbial Consortium Specializing in Diesel Oil Degradation

    PubMed Central

    Pereira, Mariana Rangel; Mercaldi, Gustavo Fernando; Maester, Thaís Carvalho; Balan, Andrea; de Macedo Lemos, Eliana Gertrudes

    2015-01-01

    Lipolytic enzymes have attracted attention from a global market because they show enormous biotechnological potential for applications such as detergent production, leather processing, cosmetics production, and use in perfumes and biodiesel. Due to the intense demand for biocatalysts, a metagenomic approach provides methods of identifying new enzymes. In this study, an esterase designated as Est16 was selected from 4224 clones of a fosmid metagenomic library, revealing an 87% amino acid identity with an esterase/lipase (accession number ADM63076.1) from an uncultured bacterium. Phylogenetic studies showed that the enzyme belongs to family V of bacterial lipolytic enzymes and has sequence and structural similarities with an aryl-esterase from Pseudomonas fluorescens and a patented Anti-Kazlauskas lipase (patent number US20050153404). The protein was expressed and purified as a highly soluble, thermally stable enzyme that showed a preference for basic pH. Est16 exhibited activity toward a wide range of substrates and the highest catalytic efficiency against p-nitrophenyl butyrate and p-nitrophenyl valerate. Est16 also showed tolerance to the presence of organic solvents, detergents and metals. Based on molecular modeling, we showed that the large alpha-beta domain is conserved in the patented enzymes but not the substrate pocket. Here, it was demonstrated that a metagenomic approach is suitable for discovering the lipolytic enzyme diversity and that Est16 has the biotechnological potential for use in industrial processes. PMID:26214846

  20. Est16, a New Esterase Isolated from a Metagenomic Library of a Microbial Consortium Specializing in Diesel Oil Degradation.

    PubMed

    Pereira, Mariana Rangel; Mercaldi, Gustavo Fernando; Maester, Thaís Carvalho; Balan, Andrea; Lemos, Eliana Gertrudes de Macedo

    2015-01-01

    Lipolytic enzymes have attracted attention from a global market because they show enormous biotechnological potential for applications such as detergent production, leather processing, cosmetics production, and use in perfumes and biodiesel. Due to the intense demand for biocatalysts, a metagenomic approach provides methods of identifying new enzymes. In this study, an esterase designated as Est16 was selected from 4224 clones of a fosmid metagenomic library, revealing an 87% amino acid identity with an esterase/lipase (accession number ADM63076.1) from an uncultured bacterium. Phylogenetic studies showed that the enzyme belongs to family V of bacterial lipolytic enzymes and has sequence and structural similarities with an aryl-esterase from Pseudomonas fluorescens and a patented Anti-Kazlauskas lipase (patent number US20050153404). The protein was expressed and purified as a highly soluble, thermally stable enzyme that showed a preference for basic pH. Est16 exhibited activity toward a wide range of substrates and the highest catalytic efficiency against p-nitrophenyl butyrate and p-nitrophenyl valerate. Est16 also showed tolerance to the presence of organic solvents, detergents and metals. Based on molecular modeling, we showed that the large alpha-beta domain is conserved in the patented enzymes but not the substrate pocket. Here, it was demonstrated that a metagenomic approach is suitable for discovering the lipolytic enzyme diversity and that Est16 has the biotechnological potential for use in industrial processes. PMID:26214846

  1. Characterization of a novel highly thermostable esterase from the Gram-positive soil bacterium Streptomyces lividans TK64.

    PubMed

    Wang, Baojuan; Wang, Ao; Cao, Zhengyu; Zhu, Guoping

    2016-05-01

    A novel esterase gene (estW) from soil bacterium Streptomyces lividans TK64 was successfully cloned using a pair of homologous primers. The estW gene encoded a protein (EstW) of 289 amino acid residues with a predicted molecular weight of 31.43 kDa. Sequence alignment revealed that EstW show relatively high levels of homology to other lipolytic enzymes characterized from Streptomyces and phylogenetic analysis suggested EstW belongs to the bacterial lipase/esterase family I. The estW gene was expressed at a high level in Escherichia coli and the recombinant enzyme was purified to homogeneity. The purified EstW was characterized via hydrolysis of various p-nitrophenyl esters and the best substrate was found to be p-nitrophenyl acetate (pNPA). Maximal activity of the recombinant protein was observed at pH 8.0 and 50 °C with pNPA as the substrate. The calculated activation energy (Ea ) of the esterase reaction was 9.12 kcal/mol. Half-life of EstW at 95 °C was approximately 12.5 H, making it the most thermostable esterase among all of the known lipolytic enzymes from Streptomyces, and the thermostability of EstW was similar to those of some enzymes characterized from the thermophilic bacteria. EstW exhibited relatively high tolerance to several detergents and required no cations for its maximal activity. The unique properties of EstW, namely its high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications. PMID:26621184

  2. A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus.

    PubMed

    Alalouf, Onit; Balazs, Yael; Volkinshtein, Margarita; Grimpel, Yael; Shoham, Gil; Shoham, Yuval

    2011-12-01

    Acetylxylan esterases hydrolyze the ester linkages of acetyl groups at positions 2 and/or 3 of the xylose moieties in xylan and play an important role in enhancing the accessibility of xylanases to the xylan backbone. The hemicellulolytic system of the thermophilic bacterium Geobacillus stearothermophilus T-6 comprises a putative acetylxylan esterase gene, axe2. The gene product belongs to the GDSL hydrolase family and does not share sequence homology with any of the carbohydrate esterases in the CAZy Database. The axe2 gene is induced by xylose, and the purified gene product completely deacetylates xylobiose peracetate (fully acetylated) and hydrolyzes the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. The pH profiles for k(cat) and k(cat)/K(m) suggest the existence of two ionizable groups affecting the binding of the substrate to the enzyme. Using NMR spectroscopy, the regioselectivity of Axe2 was directly determined with the aid of one-dimensional selective total correlation spectroscopy. Methyl 2,3,4-tri-O-acetyl-β-d-xylopyranoside was rapidly deacetylated at position 2 or at positions 3 and 4 to give either diacetyl or monoacetyl intermediates, respectively; methyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside was initially deacetylated at position 6. In both cases, the complete hydrolysis of the intermediates occurred at a much slower rate, suggesting that the preferred substrate is the peracetate sugar form. Site-directed mutagenesis of Ser-15, His-194, and Asp-191 resulted in complete inactivation of the enzyme, consistent with their role as the catalytic triad. Overall, our results show that Axe2 is a serine acetylxylan esterase representing a new carbohydrate esterase family. PMID:21994937

  3. Electrophoretic and densitometric analysis of esterase activity as an indicator of mercury toxicity

    SciTech Connect

    Benton, M.J.; Guttman, S.I.

    1995-12-31

    In an earlier experiment, esterase activity as determined by starch gel electrophoresis was absent in larval caddisflies (Nectopsyche albida) that succumbed to mercury exposure, but was present in control larvae. To test the effects of mercury exposure duration on esterase activity, additional larval N. albida were exposed under conditions identical to those in the earlier experiment, and esterase activity was determined by electrophoresis of several live individuals every 12 hours. To test the effects of mercury concentration on esterase activity, homogenates of unexposed N. albida were electrophoresed, and esterase activity was determined using esterase-specific stains spiked with various concentrations of mercury. Following both experiments, esterase activity was quantified by laser densitometry of stained electrophoresis gels, Results indicate that: (1) inorganic mercury inhibited esterase activity, (2) inhibition increased with exposure time, and (3) inhibition increased with mercury concentration. Esterase inhibition may be a causal factor in mortality related to mercury exposure. Quantification of esterase activity by densitometry of electrophoretic gels may be an alternative method of rapid toxicity assessment.

  4. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum

    PubMed Central

    Esteban-Torres, María; Reverón, Inés; Santamaría, Laura; Mancheño, José M.; de las Rivas, Blanca; Muñoz, Rosario

    2016-01-01

    Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions. PMID:27486450

  5. The Lp_3561 and Lp_3562 Enzymes Support a Functional Divergence Process in the Lipase/Esterase Toolkit from Lactobacillus plantarum.

    PubMed

    Esteban-Torres, María; Reverón, Inés; Santamaría, Laura; Mancheño, José M; de Las Rivas, Blanca; Muñoz, Rosario

    2016-01-01

    Lactobacillus plantarum species is a good source of esterases since both lipolytic and esterase activities have been described for strains of this species. No fundamental biochemical difference exists among esterases and lipases since both share a common catalytic mechanism. L. plantarum WCFS1 possesses a protein, Lp_3561, which is 44% identical to a previously described lipase, Lp_3562. In contrast to Lp_3562, Lp_3561 was unable to degrade esters possessing a chain length higher than C4 and the triglyceride tributyrin. As in other L. plantarum esterases, the electrostatic potential surface around the active site in Lp_3561 is predicted to be basic, whereas it is essentially neutral in the Lp_3562 lipase. The fact that the genes encoding both proteins were located contiguously in the L. plantarum WCFS1 genome, suggests that they originated by tandem duplication, and therefore are paralogs as new functions have arisen during evolution. The presence of the contiguous lp_3561 and lp_3562 genes was studied among L. plantarum strains. They are located in a 8,903 bp DNA fragment that encodes proteins involved in the catabolism of sialic acid and are predicted to increase bacterial adaptability under certain growth conditions. PMID:27486450

  6. The catalytic triad of the influenza C virus glycoprotein HEF esterase: characterization by site-directed mutagenesis and functional analysis.

    PubMed

    Pleschka, S; Klenk, H D; Herrler, G

    1995-10-01

    Influenza C virus is able to inactivate its own cellular receptors by virtue of a sialate 9-O-acetylesterase that releases the acetyl residue at position C-9 of N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2). The receptor-destroying enzyme activity is a function of the surface glycoprotein HEF and this esterase belongs to the class of serine hydrolases. In their active site, these enzymes contain a catalytic triad made up of a serine, a histidine and an aspartic acid residue. Sequence comparison with other serine esterases has indicated that, in addition to serine-71 (S71), the amino acids histidine-368 or -369 (H368/369) and aspartic acid 261 (D261) are the most likely candidates to form the catalytic triad of the influenza C virus glycoprotein. By site-directed mutagenesis, mutants were generated in which alanine substituted for either of these amino acids. Using a phagemid expression vector, pSP1D-HEF the HEF gene was expressed in both COS 7 and MDCK I cells. The glycoprotein was obtained in a functional form only in the latter cells, as indicated by its transport to the cell surface and measurable enzyme activity. The low level of expression could be increased by stimulating the NF-KB-binding activity of the cytomegalovirus immediate-early promoter/enhancer element of the vector. The esterase activity of the mutant proteins was compared with that of the wild-type glycoprotein. With Neu5,9Ac2 as the substrate, the esterase specific activities of the S71/A mutant and the H368,369/A mutant were reduced by more than 90%. In the case of the D261/A mutant the specific activity was reduced by 64%. From this data we conclude that S71, H368/369 and D261 are likely to represent the catalytic triad of the influenza C virus glycoprotein HEF. In addition, N280 is proposed to stabilize the oxyanion of the presumptive transition state intermediate formed by the enzyme-substrate complex. PMID:7595356

  7. Overexpression of esterase D in kidney from trisomy 13 fetuses

    SciTech Connect

    Loughna, S.; Moore, G. ); Gau, G.; Blunt, S. ); Nicolaides, K. )

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  8. Toxicological implications of esterases-From molecular structures to functions

    SciTech Connect

    Satoh, Tetsuo . E-mail: satohbri@peach.ifnet.or.jp

    2005-09-01

    This article reports on a keynote lecture at the 10th International Congress of Toxicology sponsored by the International Union of Toxicology and held on July 2004. Current developments in molecular-based studies into the structure and function of cholinesterases, carboxylesterases, and paraoxonases are described. This article covers mechanisms of regulation of gene expression of the various esterases by developmental factors and xenobiotics, as well as the interplay between physiological and chemical regulation of the enzyme activity.

  9. 3 Benzyl-6-chloropyrone: a suicide inhibitor of cholesterol esterase

    SciTech Connect

    Saint, C.; Gallo, I.; Kantorow, M.; Bailey, J.M.

    1986-05-01

    Cholesterol, absorbed from the intestine, appears in lymph as the ester. Cholesterol esterase is essential for this process, since depletion of the enzyme blocks and repletion restores, absorption. Selective inhibitors of cholesterol esterase may thus prove useful in reducing cholesterol uptake. A series of potential suicide substrates were synthesized which, following cleavage by the enzyme, would attack the putative nucleophile in the active site. One of these, 3-benzyl-6-chloropyrone (3BCP), inhibited both synthesis and hydrolysis of /sup 14/C-cholesteryl oleate with an I/sub 50/ of approximately 150 ..mu..M. The inactivation was time-dependent and characteristic of a suicide mechanism. The ..cap alpha.. pyrone structure (lactone analog) is cleaved by a serine-hydroxyl in the active site. This generates an enoyl chloride which inactivates the imidazole believed to play a part in the catalytic function of the enzyme. Inhibition by 3BCP is selective for cholesterol esterase. The activity of pancreatic lipase as not affected by concentrations up to 1 mM.

  10. The effect of age and frailty upon blood esterase activities and their response to dietary supplementation.

    PubMed Central

    Summerbell, J; Wynne, H; Hankey, C R; Williams, F M

    1993-01-01

    1. The aims of this study were two-fold. First, to define ranges of blood esterase activities in three groups, namely young subjects, fit community dwelling elderly and frail, chronically hospitalised elderly subjects, and second, to determine whether low blood esterase activities in the frail patients could be altered by increasing their nutritional intake. 2. Plasma cholinesterase, aspirin esterase, paraoxonase and phenylacetate esterase activities were all significantly lower in the frail elderly compared with the young and fit elderly volunteers. The activity of red blood cell esterase was not different in the frail elderly. 3. Fourteen frail elderly patients were randomly assigned to receive either hospital meal provision plus supplemental feeding with Build-up (Nestle) and Maxijul (SHS Ltd) or hospital provision alone for 8 weeks. Dietary intake was measured for all patients at the start of the study and at week 8. Measurements of blood esterase (cholinesterase, phenylacetate esterase, paraoxonase, aspirin esterase and red blood cell esterase), albumin and anthropometric indices (weight, triceps skinfold thickness and mid arm circumference) were made before the study and repeated at week 4 and 8. 4. There was a significant increase in plasma cholinesterase at week 4 (P < 0.05) but this was not statistically significant at week 8. There were no significant changes in any of the other esterase activities or anthropometric measurements. 5. We conclude that the lower esterase activities of the frail chronically hospitalised elderly do not respond to dietary supplementation for a period of 8 weeks with routinely available products. The hypothesis that lower esterase activities are the direct result of undernutrition which would be corrected by dietary supplementation has not been supported by this study. PMID:12959286

  11. The effect of liver esterases and temperature on remifentanil degradation in vitro.

    PubMed

    Piazza, Ornella; Cascone, Sara; Sessa, Linda; De Robertis, Edoardo; Lamberti, Gaetano

    2016-08-20

    Remifentanil is a potent opioid metabolized by serum and tissue esterases; it is routinely administered to patients with liver failure as anaesthetic and analgo-sedative without variation in doses, even if prolonged clinical effects and respiratory depression have been observed in these patients. The aim of this study was to determine remifentanil enzymatic degradation kinetics bearing in mind the effect of liver esterases in order to trace a more accurate pharmacokinetic profile of the drug. Solution samples were taken over time and analysed to measure remifentanil concentration by HPLC. We reproduced the physiological settings, varying temperature and pH in vitro and evaluated the kinetics of degradation of remifentanil in the presence of Rhizopus Oryzae esterases, equine liver esterases and porcine liver esterases. Remifentanil kinetics of degradation was accelerated by porcine liver esterases. Remifentanil in vitro half-life decreases with increasing temperatures in the presence of porcine liver esterases. A drug model simulation considering the effect of temperature in the presence of liver esterases was developed. Remifentanil in vitro half-life decreases with increasing temperatures when porcine liver esterases are present. In this paper we propose a model for describing remifentanil degradation kinetics at various temperatures. PMID:27370912

  12. Isozymic variations in specific and nonspecific esterase and its thermostability in silkworm, Bombyx mori L.

    PubMed

    Patnaik, Bharat Bhusan; Biswas, Tapati Datta; Nayak, Sandeepta Kumar; Saha, A K; Majumdar, M K

    2012-09-01

    Esterase isozymic variations were documented in the haemolymph of developed multivoltine and bivoltine silkworm breeds during unfavorable seed crop seasons of May - September using á- and â- napthylacetate separately to identify specific and nonspecific esterase having thermotolerant potentiality. Variations existed in the isozyme pattern with three bands (Est-2, 3 and 4) in pure Nistari race and other developed multivoltine and bivoltine breeds. Est-2 and Est-3 were non-specific esterases as they were observed when both á- and â-napthylacetate was used as substrates separately. Est-4 band was observed only with á-napthylacetate as substrate and was therefore confirmed to be specific á-esterase band in the haemolymph of silkworm, Bombyx mori L. Zymograms showed that the non-specific esterase band (Est-3) with R1 of 0.43 and specific á-esterase band (Est-4) with R(f) of 0.32 predominately withstood a temperature of 70 +/- 2 degrees C for a duration of 10 min and were confirmed as thermostable esterases in haemolymph of silkworm, Bombyx mori L. This also categorized the presence of thermostable esterases in developed multivoltine and bivoltine breeds of silkworm, even though the qualitative activity was more in the former than the latter. The qualitative presence of thermostable esterases and their activity could be adopted as an indicative biochemical marker in relation to thermotolerance in silkworm. PMID:23734447

  13. Biochemical and Domain Analyses of FSUAxe6B, a Modular Acetyl Xylan Esterase, Identify a Unique Carbohydrate Binding Module in Fibrobacter succinogenes S85▿ †

    PubMed Central

    Yoshida, Shosuke; Mackie, Roderick I.; Cann, Isaac K. O.

    2010-01-01

    Acetyl xylan esterase (EC 3.1.1.72) is a member of a set of enzymes required to depolymerize hemicellulose, especially xylan that is composed of a main chain of β-1,4-linked xylopyranoside residues decorated with acetyl side groups. Fibrobacter succinogenes S85 Axe6B (FSUAxe6B) is an acetyl xylan esterase encoded in the genome of this rumen bacterium. The enzyme is a modular protein comprised of an esterase domain, a carbohydrate-binding module, and a region of unknown function. Sequences that are homologous to the region of unknown function are paralogously distributed, thus far, only in F. succinogenes. Therefore, the sequences were designated Fibrobacter succinogenes-specific paralogous module 1 (FPm-1). The FPm-1s are associated with at least 24 polypeptides in the genome of F. succinogenes S85. A bioinformatics search showed that most of the FPm-1-appended polypeptides are putative carbohydrate-active enzymes, suggesting a potential role in carbohydrate metabolism. Truncational analysis of FSUAxe6B, together with catalytic and substrate binding studies, has allowed us to delineate the functional modules in the polypeptide. The N-terminal half of FSUAxe6B harbors the activity that cleaves side chain acetyl groups from xylan-like substrates, and the binding of insoluble xylan was determined to originate from FPm-1. Site-directed mutagenesis studies of highly conserved active-site residues in the esterase domain suggested that the esterase activity is derived from a tetrad composed of Ser44, His273, Glu194, and Asp270, with both Glu194 and Asp270 functioning as helper acids, instead of a single carboxylate residue proposed to initiate catalysis. PMID:19897648

  14. Biosensor analysis of blood esterases for organophosphorus compounds exposure assessment: approaches to simultaneous determination of several esterases.

    PubMed

    Sigolaeva, Larisa; Makhaeva, Galina; Rudakova, Elena; Boltneva, Natalia; Porus, Marya; Dubacheva, Galina; Eremenko, Arkadi; Kurochkin, Ilya; Richardson, Rudy J

    2010-09-01

    This paper reviews our previously published data and presents new results on biosensor assay of blood esterases. Tyrosinase and choline oxidase biosensors based on nanostructured polyelectrolyte films were developed for these purposes. Experiments were performed on the quantitative determination of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CaE), and neuropathy target esterase (NTE) in samples of whole blood of rats, mice, and humans. Good agreement was found between biosensor and spectrophotometric assays for AChE, BChE, and CaE. No direct comparison could be made for NTE because its activity cannot be measured spectrophotometrically in whole blood. A new method of simultaneous quantitative determination of AChE and BChE in test mixtures is also described. This method represents a bifunctional biosensor for the simultaneous analysis of choline and phenol based on integration of individual sensors. Algorithms for calculation of separate concentrations of AChE and BChE in the mixture were developed. The mean error of calculated component concentrations was approximately 6% for binary test mixtures. The present work provides a foundation for building multiplexed systems for the simultaneous determination of multiple esterases with applications to biomonitoring for exposures to organophosphorus compounds. PMID:20097186

  15. Molecular cloning and characterization of a thermostable esterase/lipase produced by a novel Anoxybacillus flavithermus strain.

    PubMed

    Chiş, Laura; Hriscu, Monica; Bica, Adriana; Toşa, Monica; Nagy, Gergely; Róna, Gergely; G Vértessy, Beata; Dan Irimie, Florin

    2013-01-01

    A thermophilic strain producing an extracellular esterase/lipase was isolated from a hot spring in Tăşnad, Romania, and was identified phenotypically and by 16S rDNA sequencing as Anoxybacillus flavithermus (GenBank ID: JQ267733). The gene encoding the putative carboxyl esterase (GenBank ID: JX494348) was cloned by direct PCR amplification from genomic DNA. The protein, consisting of 246 amino acids and having a predicted molecular weight of 28.03 kDa, is encoded by an ORF of 741 bps. Expression was achieved in Escherichia coli and a recombinant protein with esterolytic activity and estimated molecular weight of 25 kDa was recovered and purified from the periplasmic fraction by IMAC. The purified enzyme, most active at 60-65°C and in the near-neutral range (pH 6.5-8), displayed a half-life at 60°C of about 5 h. Est/Lip displayed a relative tolerance to methanol, DMSO, acetonitrile, and low detergent concentrations (SDS, Triton) increased its thermostability. Highest activity was attained with p-nitrophenyl butyrate, but the enzyme was also able to hydrolyze long chain fatty acid esters, as well as triolein. The primary sequence and predicted tridimensional structure of the enzyme are very similar to those of other Anoxybacillus and Geobacillus carboxyl esterases in a distinct, recently described lipase family. Est/Lip was highly enantioselective, with preference for the (S)-enantiomer of substrates. PMID:23759865

  16. A new esterase EstD2 isolated from plant rhizosphere soil metagenome.

    PubMed

    Lee, Myung Hwan; Hong, Kyung Sik; Malhotra, Shweta; Park, Ji-Hye; Hwang, Eul Chul; Choi, Hong Kyu; Kim, Young Sup; Tao, Weixin; Lee, Seon-Woo

    2010-11-01

    Soil metagenome constitutes a reservoir for discovering novel enzymes from the unculturable microbial diversity. From three plant rhizosphere metagenomic libraries comprising a total of 142,900 members of recombinant plasmids, we obtained 14 recombinant fosmids that exhibited lipolytic activity. A selected recombinant plasmid, pFLP-2, which showed maximum lipolytic activity, was further analyzed. DNA sequence analysis of the subclone in pUC119, pELP-2, revealed an open reading frame of 1,191 bp encoding a 397-amino-acid protein. Purified EstD2 exhibited maximum enzymatic activity towards p-nitrophenyl butyrate, indicating that it is an esterase. Purified EstD2 showed optimal activity at 35 °C and at pH 8.0. The K(m) and K(cat) values were determined to be 79.4 μM and 120.5/s, respectively. The esterase exhibited an increase in enzymatic activity in the presence of 15% butanol and 15% methanol. Phylogenetic analysis revealed that the lipolytic protein EstD2 may be a member of a novel family of lipolytic enzymes. Several hypothetical protein homologs of EstD2 were found in the database. A hypothetical protein from Phenylobacterium zucineum HLK1, a close homolog of EstD2, displayed lipolytic activity when the corresponding gene was expressed in Escherichia coli. Our results suggest that the other hypothetical protein homologs of EstD2 might also be members of this novel family. PMID:20683720

  17. Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose.

    PubMed

    Pawar, Prashant Mohan-Anupama; Derba-Maceluch, Marta; Chong, Sun-Li; Gómez, Leonardo D; Miedes, Eva; Banasiak, Alicja; Ratke, Christine; Gaertner, Cyril; Mouille, Grégory; McQueen-Mason, Simon J; Molina, Antonio; Sellstedt, Anita; Tenkanen, Maija; Mellerowicz, Ewa J

    2016-01-01

    Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a β-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production. PMID:25960248

  18. Cloning, Overexpression in Escherichia coli, and Characterization of a Thermostable Fungal Acetylxylan Esterase from Talaromyces emersonii

    PubMed Central

    Murray, Patrick G.; Miki, Yuta; Martínez, Angel T.; Tuohy, Maria G.; Faulds, Craig B.

    2012-01-01

    The gene encoding an acetylxylan esterase (AXE1) from the thermophilic ascomycete Talaromyces emersonii was cloned, expressed in Escherichia coli, and characterized. This form of AXE1, rTeAXE1, exhibits increased thermostability and activity at a higher temperature than other known fungal acetyl esterases, thus having huge potential application in biomass bioconversion to high value chemicals or biofuels. PMID:22407679

  19. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  20. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  1. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme... animals. (c) The enzyme is produced by a process which completely removes the organism Mucor miehei...

  2. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  3. 21 CFR 173.140 - Esterase-lipase derived from Mucor miehei.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.140 Esterase-lipase derived from Mucor miehei. Esterase-lipase enzyme, consisting of enzyme derived from Mucor miehei var. Cooney et Emerson by... Emerson is nonpathogenic and nontoxic in man or other animals. (c) The enzyme is produced by a...

  4. ASSAY OF CHICKEN BRAIN NEUROTOXIC ESTERASE ACTIVITY USING LEPTOPHOSOXON AS THE SELECTIVE NEUROTOXIC INHIBITOR

    EPA Science Inventory

    Hen brain microsomal preparation has phenyl valeratehydrolyzing activity associated with neurotoxic esterase activity. Part of that activity is due to paraoxon-insensitive esterases and a sub-part of this is sensitive to neurotoxic organophosphates, i.e., mipafox and leptophosoxo...

  5. Cloning, overexpression in Escherichia coli, and characterization of a thermostable fungal acetylxylan esterase from Talaromyces emersonii.

    PubMed

    Waters, Deborah M; Murray, Patrick G; Miki, Yuta; Martínez, Angel T; Tuohy, Maria G; Faulds, Craig B

    2012-05-01

    The gene encoding an acetylxylan esterase (AXE1) from the thermophilic ascomycete Talaromyces emersonii was cloned, expressed in Escherichia coli, and characterized. This form of AXE1, rTeAXE1, exhibits increased thermostability and activity at a higher temperature than other known fungal acetyl esterases, thus having huge potential application in biomass bioconversion to high value chemicals or biofuels. PMID:22407679

  6. Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structure of the catalytic domain of glucuronoyl esterase Cip2 from the fungus Hypocrea jecorina was determined at a resolution of 1.9 Angstroms. This is the first structure of the newly established carbohydrate esterase family 15. The structure has revealed the residues Ser278–His411–Glu301 pre...

  7. Esterase activity of BSA-ZnO nanoparticle complex

    NASA Astrophysics Data System (ADS)

    Bhogale, A.; Nair, A.; Patel, N.; Miotello, A.; Kothari, D. C.

    2014-04-01

    The effect of Zinc Oxide Nanoparticles (ZnO NPs) on functional properties of Bovine Serum Albumin (BSA) protein was studied. ZnO NPs were synthesized with average size of ˜7.5 nm as obtained from TEM analysis. The catalytic conversion of p-nitrophenylacetate (PNPA) to p-nitrophenol in the presence of BSA attached with ZnO NPs was examined by UV-Vis spectroscopy at room temperature. The result suggests that esterase activity of BSA is significantly enhanced (6 times) due to the ground state BSA-ZnO complex formation.

  8. Assays for the classification of two types of esterases: carboxylic ester hydrolases and phosphoric triester hydrolases.

    PubMed

    Anspaugh, Douglas D; Roe, R Michael

    2002-11-01

    Assays for the Classification of Two Types of Esterases: Carboxylic Ester Hydrolase and Phosphoric Triester Hydrolase (Douglas D. Anspaugh and Michael Roe, North Carolina State University, Raleigh, North Carolina). This unit describes assays that quantitate two types of esterase the carboxylic ester hydrolases and the phosphoric triester hydrolases. Carboxylic ester hydrolases include the B-esterases, which are inhibited by organophosphorus compounds. Among the phosphoric triester hydrolases is aryldialkylphosphatase, which has been called A-esterase or paraoxonase due to its ability to oxidize paraoxon and other organophosphates. These assays are colorimetric and miniaturized for rapid simultaneous testing of multiple, small-volume samples in a microtiter plate format. There is also a discussion of the history of esterase nomenclature and the reasons why this large group of enzymes is so difficult to classify. PMID:20945297

  9. Esterase Activity and Intracellular Localization in Reconstructed Human Epidermal Cultured Skin Models

    PubMed Central

    Katayanagi, Mishina; Hashimoto, Fumie

    2015-01-01

    Background Reconstructed human epidermal culture skin models have been developed for cosmetic and pharmaceutical research. Objective This study evaluated the total and carboxyl esterase activities (i.e., Km and Vmax, respectively) and localization in two reconstructed human epidermal culture skin models (LabCyte EPI-MODEL [Japan Tissue Engineering] and EpiDerm [MatTek/Kurabo]). The usefulness of the reconstruction cultured epidermis was also verified by comparison with human and rat epidermis. Methods Homogenized epidermal samples were fractioned by centrifugation. p-nitrophenyl acetate and 4-methylumbelliferyl acetate were used as substrates of total esterase and carboxyl esterase, respectively. Results Total and carboxyl esterase activities were present in the reconstructed human epidermal culture skin models and were localized in the cytosol. Moreover, the activities and localization were the same as those in human and rat epidermis. Conclusion LabCyte EPI-MODEL and EpiDerm are potentially useful for esterase activity prediction in human epidermis. PMID:26082583

  10. A comparison of multiple esterases as biomarkers of organophosphate exposure and effect in two earthworm species.

    PubMed

    Henson-Ramsey, Heather; Schneider, Ashley; Stoskopf, Michael K

    2011-04-01

    Two different earthworm species, Eisenia fetida and Lumbricus terrestris, were exposed to 5 μg/cm(2) of malathion to evaluate their usefulness as sentinels of organophosphate exposure and to assess three different esterases, as biomarkers of malathion exposure and effect. Tissue xenobiotic burdens and esterase activity were determined for each species and each esterase in order to assess variability. E. fetida exhibited 4-fold less variability in tissue burdens than did L. terrestris and had less variable basal esterase activities. An attempt was made to correlate malathion and malaoxon tissue burdens with esterase activity post-exposure. There was no malaoxon present in the earthworm tissues. No significant correlations were determined by comparing acetylcholinesterase, butyrylcholinesterase, nor carboxylesterase activities with malathion burdens. PMID:21404045

  11. Heterologous expression of a fungal sterol esterase/lipase in different hosts: Effect on solubility, glycosylation and production.

    PubMed

    Vaquero, María Eugenia; Barriuso, Jorge; Medrano, Francisco Javier; Prieto, Alicia; Martínez, María Jesús

    2015-12-01

    Ophiostoma piceae secretes a versatile sterol-esterase (OPE) that shows high efficiency in both hydrolysis and synthesis of triglycerides and sterol esters. This enzyme produces aggregates in aqueous solutions, but the recombinant protein, expressed in Komagataella (synonym Pichia) pastoris, showed higher catalytic efficiency because of its higher solubility. This fact owes to a modification in the N-terminal sequence of the protein expressed in Pichia pastoris, which incorporated 4-8 additional amino acids, affecting its aggregation behavior. In this study we present a newly engineered P. pastoris strain with improved protein production. We also produced the recombinant protein in the yeast Saccharomyces cerevisiae and in the prokaryotic host Escherichia coli, corroborating that the presence of these N-terminal extra amino acids affected the protein's solubility. The OPE produced in the new P. pastoris strain presented the same physicochemical properties than the old one. An inactive form of the enzyme was produced by the bacterium, but the recombinant esterase from both yeasts was active even after its enzymatic deglycosylation, suggesting that the presence of N-linked carbohydrates in the mature protein is not essential for enzyme activity. Although the yield in S. cerevisiae was lower than that obtained in P. pastoris, this work demonstrates the importance of the choice of the heterologous host for successful production of soluble and active recombinant protein. In addition, S. cerevisiae constitutes a good engineering platform for improving the properties of this biocatalyst. PMID:25939548

  12. Three-dimensional structure of homodimeric cholesterol esterase-ligand complex at 1.4 Å resolution

    SciTech Connect

    Pletnev, V.; Addlagatta, A.; Wawrzak, Z.; Duax, W.

    2010-03-08

    The three-dimensional structure of a Candida cylindracea cholesterol esterase (ChE) homodimer (534 x 2 amino acids) in complex with a ligand of proposed formula C{sub 23}H{sub 48}O{sub 2} has been determined at 1.4 {angstrom} resolution in space group P1 using synchrotron low-temperature data. The structure refined to R = 0.136 and R{sub free} = 0.169 and has revealed new stereochemical details in addition to those detected for the apo- and holo-forms at 1.9 and 2.0 {angstrom} resolution, respectively [Ghosh et al. (1995), Structure, 3, 279-288]. The cholesterol esterase structure is a dimer with four spatially separated interfacial contact areas and two symmetry-related pairs of openings to an internal intradimer cavity. Hydrophobic active-site gorges in each subunit face each other across a central interfacial cavity. The ChE subunits have carbohydrate chains attached to their Asn314 and Asn351 residues, with two ordered N-acetyl-D-glucosoamine moieties visible at each site. The side chains of 14 residues have two alternative conformations with occupancy values of 0.5 {+-} 0.2. For each subunit the electron density in the enzyme active-site gorge is well modeled by a C{sub 23}-chain fatty acid.

  13. Esterase- and pH-responsive poly(β-amino ester)-capped mesoporous silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Fernando, Isurika R.; Ferris, Daniel P.; Frasconi, Marco; Malin, Dmitry; Strekalova, Elena; Yilmaz, M. Deniz; Ambrogio, Michael W.; Algaradah, Mohammed M.; Hong, Michael P.; Chen, Xinqi; Nassar, Majed S.; Botros, Youssry Y.; Cryns, Vincent L.; Stoddart, J. Fraser

    2015-04-01

    Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells.Gating of mesoporous silica nanoparticles (MSNs) with the stimuli-responsive poly(β-amino ester) has been achieved. This hybrid nanocarrier releases doxorubicin (DOX) under acidic conditions or in the presence of porcine liver esterase. The DOX loaded poly(β-amino ester)-capped MSNs reduce cell viability when tested on MDA-MB-231 human breast cancer cells. Electronic supplementary information (ESI) available: Experimental details relating to (i) the synthesis and characterisation of the surface-functionalised MSN and POL (ii) cargo-loading and release studies in solution, (iii) cellular internalisation of nanomaterials, and (iv) cell viability tests. See DOI: 10.1039/c4nr07443b

  14. Enzymatic degradation of lignin-carbohydrate complexes (LCCs): model studies using a fungal glucuronoyl esterase from Cerrena unicolor.

    PubMed

    d'Errico, Clotilde; Jørgensen, Jonas O; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard

    2015-05-01

    Lignin-carbohydrate complexes (LCCs) are believed to influence the recalcitrance of lignocellulosic plant material preventing optimal utilization of biomass in e.g. forestry, feed and biofuel applications. The recently emerged carbohydrate esterase (CE) 15 family of glucuronoyl esterases (GEs) has been proposed to degrade ester LCC bonds between glucuronic acids in xylans and lignin alcohols thereby potentially improving delignification of lignocellulosic biomass when applied in conjunction with other cellulases, hemicellulases and oxidoreductases. Herein, we report the synthesis of four new GE model substrates comprising α- and ɣ-arylalkyl esters representative of the lignin part of naturally occurring ester LCCs as well as the cloning and purification of a novel GE from Cerrena unicolor (CuGE). Together with a known GE from Schizophyllum commune (ScGE), CuGE was biochemically characterized by means of Michaelis-Menten kinetics with respect to substrate specificity using the synthesized compounds. For both enzymes, a strong preference for 4-O-methyl glucuronoyl esters rather than unsubstituted glucuronoyl esters was observed. Moreover, we found that α-arylalkyl esters of methyl α-D-glucuronic acid are more easily cleaved by GEs than their corresponding ɣ-arylalkyl esters. Furthermore, our results suggest a preference of CuGE for glucuronoyl esters of bulky alcohols supporting the suggested biological action of GEs on LCCs. The synthesis of relevant GE model substrates presented here may provide a valuable tool for the screening, selection and development of industrially relevant GEs for delignification of biomass. PMID:25425346

  15. Misexpression of FATTY ACID ELONGATION1 in the Arabidopsis Epidermis Induces Cell Death and Suggests a Critical Role for Phospholipase A2 in This Process[W

    PubMed Central

    Reina-Pinto, José J.; Voisin, Derry; Kurdyukov, Sergey; Faust, Andrea; Haslam, Richard P.; Michaelson, Louise V.; Efremova, Nadia; Franke, Benni; Schreiber, Lukas; Napier, Johnathan A.; Yephremov, Alexander

    2009-01-01

    Very-long-chain fatty acids (VLCFAs) are important functional components of various lipid classes, including cuticular lipids in the higher plant epidermis and lipid-derived second messengers. Here, we report the characterization of transgenic Arabidopsis thaliana plants that epidermally express FATTY ACID ELONGATION1 (FAE1), the seed-specific β-ketoacyl-CoA synthase (KCS) catalyzing the first rate-limiting step in VLCFA biosynthesis. Misexpression of FAE1 changes the VLCFAs in different classes of lipids but surprisingly does not complement the KCS fiddlehead mutant. FAE1 misexpression plants are similar to the wild type but display an essentially glabrous phenotype, owing to the selective death of trichome cells. This cell death is accompanied by membrane damage, generation of reactive oxygen species, and callose deposition. We found that nuclei of arrested trichome cells in FAE1 misexpression plants cell-autonomously accumulate high levels of DNA damage, including double-strand breaks characteristic of lipoapoptosis. A chemical genetic screen revealed that inhibitors of KCS and phospholipase A2 (PLA2), but not inhibitors of de novo ceramide biosynthesis, rescue trichome cells from death. These results support the functional role of acyl chain length of fatty acids and PLA2 as determinants for programmed cell death, likely involving the exchange of VLCFAs between phospholipids and the acyl-CoA pool. PMID:19376931

  16. Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937.

    PubMed

    Shevchik, V E; Hugouvieux-Cotte-Pattat, N

    1997-06-01

    Erwinia chrysanthemi causes soft-rot diseases of various plants by enzymatic degradation of the pectin in plant cell walls. The structural complexity of pectin requires the combined action of several pectinases for its efficient breakdown. Three types of pectinases have so far been identified in E. chrysanthemi: two pectin methyl esterases (PemA, PemB), a polygalacturonase (PehX), and eight pectate lyases (PelA, PelB, PelC, PelD, PelE, PelL, PelZ, PelX). We report in this paper the analysis of a novel enzyme, the pectin acetyl esterase encoded by the paeY gene. No bacterial form of pectin acetyl esterases has been described previously, while plant tissues and some pectinolytic fungi were found to produce similar enzymes. The paeY gene is present in a cluster of five pectinase-encoding genes, pelA-pelE-pelD-paeY-pemA. The paeY open reading frame is 1650 bases long and encodes a 551-residue precursor protein of 60704Da, including a 25-amino-acid signal peptide. PaeY shares one region of homology with a rhamnogalacturonan acetyl esterase of Aspergillus aculeatus. To characterize the enzyme, the paeY gene was overexpressed and its protein product was purified. PaeY releases acetate from sugar-beet pectin and from various synthetic substrates. Moreover, the enzyme was shown to act in synergy with other pectinases. The de-esterification rate by PaeY increased after previous demethylation of the pectins by PemA and after depolymerization of the pectin by pectate lyases. In addition, the degradation of sugar-beet pectin by pectate lyases is favoured after the removal of methyl and acetyl groups by PemA and PaeY, respectively. The paeY gene was first identified on the basis of its regulation, which shares several characteristics with that of other pectinases. Analysis of the paeY transcription, using gene fusions, revealed that it is induced by pectic catabolic products and is affected by growth phase, oxygen limitation and catabolite repression. Regulation of pae

  17. Profiling and functional classification of esterases in olive (Olea europaea) pollen during germination

    PubMed Central

    Rejón, Juan D.; Zienkiewicz, Agnieszka; Rodríguez-García, María Isabel; Castro, Antonio J.

    2012-01-01

    Background and Aims A pollen grain contains a number of esterases, many of which are released upon contact with the stigma surface. However, the identity and function of most of these esterases remain unknown. In this work, esterases from olive pollen during its germination were identifided and functionally characterized. Methods The esterolytic capacity of olive (Olea europaea) pollen was examined using in vitro and in-gel enzymatic assays with different enzyme substrates. The functional analysis of pollen esterases was achieved by inhibition assays by using specific inhibitors. The cellular localization of esterase activities was performed using histochemical methods. Key Results Olive pollen showed high levels of non-specific esterase activity, which remained steady after hydration and germination. Up to 20 esterolytic bands were identified on polyacrylamide gels. All the inhibitors decreased pollen germinability, but only diisopropyl fluorophosphate (DIFP) hampered pollen tube growth. Non-specific esterase activity is localized on the surface of oil bodies (OBs) and small vesicles, in the pollen intine and in the callose layer of the pollen tube wall. Acetylcholinesterase (AChE) activity was mostly observed in the apertures, exine and pollen coat, and attached to the pollen tube wall surface and to small cytoplasmic vesicles. Conclusions In this work, for the first time a systematic functional characterization of esterase enzymes in pollen from a plant species with wet stigma has been carried out. Olive pollen esterases belong to four different functional groups: carboxylesterases, acetylesterases, AChEs and lipases. The cellular localization of esterase activity indicates that the intine is a putative storage site for esterolytic enzymes in olive pollen. Based on inhibition assays and cellular localization of enzymatic activities, it can be concluded that these enzymes are likely to be involved in pollen germination, and pollen tube growth and penetration of

  18. Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications

    NASA Astrophysics Data System (ADS)

    Risveden, Klas; Dick, Kimberly A.; Bhand, Sunil; Rydberg, Patrik; Samuelson, Lars; Danielsson, Bengt

    2010-02-01

    A novel lab-on-a-chip nanotree enzyme reactor is demonstrated for the detection of acetylcholine. The reactors are intended for use in the RISFET (regional ion sensitive field effect transistor) nanosensor, and are constructed from gold-tipped branched nanorod structures grown on SiNx-covered wafers. Two different reactors are shown: one with simple, one-dimensional nanorods and one with branched nanorod structures (nanotrees). Significantly higher enzymatic activity is found for the nanotree reactors than for the nanorod reactors, most likely due to the increased gold surface area and thereby higher enzyme binding capacity. A theoretical calculation is included to show how the enzyme kinetics and hence the sensitivity can be influenced and increased by the control of electrical fields in relation to the active sites of enzymes in an electronic biosensor. The possible effects of electrical fields employed in the RISFET on the function of acetylcholine esterase is investigated using quantum chemical methods, which show that the small electric field strengths used are unlikely to affect enzyme kinetics. Acetylcholine esterase activity is determined using choline oxidase and peroxidase by measuring the amount of choline formed using the chemiluminescent luminol reaction.

  19. An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86.

    PubMed

    Torres, Sebastián; Martínez, M Alejandra; Pandey, Ashok; Castro, Guillermo R

    2009-01-01

    A thermophile, halotolerant and organic-solvent-tolerant esterase producer Bacillus sp. S-86 strain previously isolated was found to belong to Bacillus licheniformis species through morphological, biochemical, 16S rRNA gene sequence analyses and rDNA intergenic spacers amplification (ITS-PCR). The strain can grow at 55 degrees C in presence of C2-C7 alkanols (log P=-0.86 to 2.39), and NaCl concentrations up to 15% (w/v). This bacterium showed optimal growth and esterase production at 50 degrees C. Two different molecular weight esterase activities were detected in zymographic assays. PMSF inhibited type I esterase activity, showing no inhibitory effect on type II esterase activity. B. licheniformis S-86 was able to grow in presence of hydroxylic organic-solvents like propan-2-ol, butan-1-ol and 3-methylbutan-1-ol. At a sub-lethal concentration of these solvents (392 mmoll(-1) propan-2-ol; 99 mmol l(-1) butan-1-ol, 37 mmol l(-1) 3-methylbutan-1-ol), adequate to produce 50% cell growth inhibition at 50 degrees C, an increment between 1.9 and 2.3 times was observed in type I esterase production, and between 2.2 and 3.1 times in type II esterase production. PMID:18723341

  20. Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library.

    PubMed

    Petrovskaya, Lada E; Novototskaya-Vlasova, Ksenia A; Spirina, Elena V; Durdenko, Ekaterina V; Lomakina, Galina Yu; Zavialova, Maria G; Nikolaev, Evgeny N; Rivkina, Elizaveta M

    2016-05-01

    As a result of construction and screening of a metagenomic library prepared from a permafrost-derived microcosm, we have isolated a novel gene coding for a putative lipolytic enzyme that belongs to the hormone-sensitive lipase family. It encodes a polypeptide of 343 amino acid residues whose amino acid sequence displays maximum likelihood with uncharacterized proteins from Sphingomonas species. A putative catalytic serine residue of PMGL2 resides in a new variant of a recently discovered GTSAG sequence in which a Thr residue is replaced by a Cys residue (GCSAG). The recombinant PMGL2 was produced in Escherichia coli cells and purified by Ni-affinity chromatography. The resulting protein preferably utilizes short-chain p-nitrophenyl esters (C4 and C8) and therefore is an esterase. It possesses maximum activity at 45°C in slightly alkaline conditions and has limited thermostability at higher temperatures. Activity of PMGL2 is stimulated in the presence of 0.25-1.5 M NaCl indicating the good salt tolerance of the new enzyme. Mass spectrometric analysis demonstrated that N-terminal methionine in PMGL2 is processed and cysteine residues do not form a disulfide bond. The results of the study demonstrate the significance of the permafrost environment as a unique genetic reservoir and its potential for metagenomic exploration. PMID:26929439

  1. Angiooedema due to acquired deficiency of C1-esterase inhibitor associated with leucocytoclastic vasculitis.

    PubMed

    Farkas, H; Szongoth, M; Bély, M; Varga, L; Fekete, B; Karádi, I; Füst, G

    2001-01-01

    A hereditary and an acquired type of C1-esterase inhibitor deficiency have been described. Manifestations characteristic of both forms include recurrent subcutaneous and submucosal angiooedema. Acquired C1-esterase inhibitor deficiency has been observed in association with lymphoproliferative disorders, malignancy, autoimmune diseases and infections. We report on a case with the acquired form of the disease accompanied by leucocytoclastic vasculitis. Treatment with antimalarial agents resulted in complete resolution of symptoms and signs. Furthermore, C1-esterase inhibitor concentration and activity, as well as C1 levels, all returned to normal. PMID:11720182

  2. Molecular Cloning and Characterization of a Newly Isolated Pyrethroid-Degrading Esterase Gene from a Genomic Library of Ochrobactrum anthropi YZ-1

    PubMed Central

    Song, Jinlong; Shi, Yanhua; Li, Kang; Zhao, Bin; Yan, Yanchun

    2013-01-01

    A novel pyrethroid-degrading esterase gene pytY was isolated from the genomic library of Ochrobactrum anthropi YZ-1. It possesses an open reading frame (ORF) of 897 bp. Blast search showed that its deduced amino acid sequence shares moderate identities (30% to 46%) with most homologous esterases. Phylogenetic analysis revealed that PytY is a member of the esterase VI family. pytY showed very low sequence similarity compared with reported pyrethroid-degrading genes. PytY was expressed, purified, and characterized. Enzyme assay revealed that PytY is a broad-spectrum degrading enzyme that can degrade various pyrethroids. It is a new pyrethroid-degrading gene and enriches genetic resource. Kinetic constants of Km and Vmax were 2.34 mmol·L−1 and 56.33 nmol min−1, respectively, with lambda-cyhalothrin as substrate. PytY displayed good degrading ability and stability over a broad range of temperature and pH. The optimal temperature and pH were of 35°C and 7.5. No cofactors were required for enzyme activity. The results highlighted the potential use of PytY in the elimination of pyrethroid residuals from contaminated environments. PMID:24155944

  3. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

    PubMed Central

    2010-01-01

    Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should

  4. A new approach for determination of neuropathy target esterase activity.

    PubMed

    Sigolaeva, L V; Eremenko, A V; Makower, A; Makhaeva, G F; Malygin, V V; Kurochkin, I N

    1999-05-14

    Neuropathy target esterase (NTE) was shown to be an excellent biochemical marker for screening of organophosphates (OPs) with respect to their ability to result in organophosphate induced delayed neurotoxicity (OPIDN). This paper describes a new biosensor approach to the analysis of NTE and its inhibitors. The method is based on the combination of NTE enzymatic hydrolysis of phenyl valerate (PV) with phenol detection by the Clark-type oxygen electrode modified by immobilized tyrosinase. The validity of this biosensor method is confirmed by the facts that the calibration curves for NTE obtained by colorimetric and flow-through electrochemical methods were nearly identical and the titration of NTE by test inhibitor mipafox was shown to yield the same pI50 values. The developed electrochemical methods can be considered as a promising approach both for serial express NTE analysis and for kinetic characteristics of NTE. PMID:10421495

  5. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola.

    PubMed

    Roelants, Sophie L K W; Ciesielska, Katarzyna; De Maeseneire, Sofie L; Moens, Helena; Everaert, Bernd; Verweire, Stijn; Denon, Quenten; Vanlerberghe, Brecht; Van Bogaert, Inge N A; Van der Meeren, Paul; Devreese, Bart; Soetaert, Wim

    2016-03-01

    Although sophorolipids (SLs) produced by S. bombicola are a real showcase for the industrialization of microbial biosurfactants, some important drawbacks are associated with this efficient biological process, e.g., the simultaneous production of acidic and lactonic SLs. Depending on the application, there is a requirement for the naturally produced mixture to be manipulated to give defined ratios of the components. Recently, the enzyme responsible for the lactonization of SLs was discovered. The discovery of the gene encoding this lactone esterase (sble) enabled the development of promising S. bombicola strains producing either solely lactonic (using a sble overexpression strain described in this paper: oe sble) or solely acidic SLs (using a sble deletion strain, which was recently described, but not characterized yet: Δsble). The new S. bombicola strains were used to investigate the production processes (fermentation and purification) of either lactonic or acidic SLs. The strains maintain the high inherent productivities of the wild-type or even perform slightly better and thus represent a realistic industrial opportunity. 100% acidic SLs with a mixed acetylation pattern were obtained for the Δsble strain, while the inherent capacity to selectively produce lactonic SLs was significantly increased (+42%) for the oe sble strain (99% lactonic SLs). Moreover, the regulatory effect of citrate on lactone SL formation for the wild-type was absent in this new strain, which indicates that it is more robust and better suited for the industrial production of lactonic SLs. Basic parameters were determined for the purified SLs, which confirm that the two new strains produce molecules with distinctive properties of which the application potential can now easily be investigated independently. PMID:26301720

  6. Diagnostic assays based on esterase-mediated resistance mechanisms in western corn rootworms (Coleoptera: Chrysomelidae).

    PubMed

    Zhou, Xuguo; Scharf, Michael E; Parimi, Srinivas; Meinke, Lance J; Wright, Robert J; Chandler, Laurence D; Siegfried, Blair D

    2002-12-01

    Resistance to methyl-parathion among Nebraska western corn rootworm, Diabrotica virgifera virgifera LeConte, populations is associated with increased hydrolytic metabolism of an organophosphate insecticide substrate. An electrophoretic method to identify resistant individuals based on the staining intensity of esterase isozymes on nondenaturing polyacrylamide gels was developed. Three groups of esterases (I, II, and III) were visible on the gels, but only group II esterase isozymes were intensified in resistant populations. A total of 26 and 31 field populations of western corn rootworms from Nebraska (in 1998 and 1999, respectively) were assessed with nondenaturing polyacrylamide gel electrophoresis (PAGE) assays and diagnostic concentration bioassays. Significant correlations were observed between the two diagnostic assays. Group II esterase isozymes provide a reliable biochemical marker for detection of methyl-parathion resistance in individual western corn rootworms and a tool for monitoring the frequency of resistant individuals in field populations. PMID:12539840

  7. Fungal genomes mining to discover novel sterol esterases and lipases as catalysts

    PubMed Central

    2013-01-01

    Background Sterol esterases and lipases are enzymes able to efficiently catalyze synthesis and hydrolysis reactions of both sterol esters and triglycerides and due to their versatility could be widely used in different industrial applications. Lipases with this ability have been reported in the yeast Candida rugosa that secretes several extracellular enzymes with a high level of sequence identity, although different substrate specificity. This versatility has also been found in the sterol esterases from the ascomycetes Ophiostoma piceae and Melanocarpus albomyces. Results In this work we present an in silico search of new sterol esterase and lipase sequences from the genomes of environmental fungi. The strategy followed included identification and search of conserved domains from these versatile enzymes, phylogenetic studies, sequence analysis and 3D modeling of the selected candidates. Conclusions Six potential putative enzymes were selected and their kinetic properties and substrate selectivity are discussed on the basis of their similarity with previously characterized sterol esterases/lipases with known structures. PMID:24138290

  8. TRIPHENYL PHOSPHITE: IN VIVO AND IN VITRO INHIBITION OF RAT NEUROTOXIC ESTERASE (JOURNAL VERSION)

    EPA Science Inventory

    Organophosphorus compounds which, after acute administration, inhibit neurotoxic esterase (NTE) by > or = 65% and undergo a subsequent 'aging' reaction, produce a delayed neuropathy characterized by degeneration of large and long nerve fibers. The present studies examine in detai...

  9. CORRELATION BETWEEN NEUROTOXIC ESTERASE INHIBITION AND MIPAFOX-INDUCED NEUROPATHIC DAMAGE IN RATS

    EPA Science Inventory

    The correlation between neuropathic damage and inhibition of neurotoxic esterase or neuropathy target enzyme (NTE) was examined in rats acutely exposed to Mipafox (N, N'-diisopropylphosphorodiamidofluoridate), a neurotoxic organophospate. Brain and spinal cord NTE activities were...

  10. RELATIONSHIP OF NEUROPATHY TARGET ESTERASE INHIBITION TO NEUROPATHOLOGY AND ATAXIA IN HENS GIVEN ORGANOPHOSPHORUS ESTERS

    EPA Science Inventory

    Adult WhiteLeghorn hens were acutely exposed to 3 dosages of the following organophosphorus esters: mipafox, tri-ortho-tolyl phosphate (TOTP), penyl saligenin phosphate, diisppropylophosphoro-fluoridate (DFP), malathion and dichlorvos. europathy target esterase (NTE) activity was...

  11. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake.

    PubMed

    Wang, Guozeng; Wang, Qiaohuang; Lin, Xianju; Ng, Tzi Bun; Yan, Renxiang; Lin, Juan; Ye, Xiuyun

    2016-01-01

    A novel esterase gene (estSL3) was cloned from the Alkalibacterium sp. SL3, which was isolated from the sediment of soda lake Dabusu. The 636-bp full-length gene encodes a polypeptide of 211 amino acid residues that is closely related with putative GDSL family lipases from Alkalibacterium and Enterococcus. The gene was successfully expressed in E. coli, and the recombinant protein (rEstSL3) was purified to electrophoretic homogeneity and characterized. rEstSL3 exhibited the highest activity towards pNP-acetate and had no activity towards pNP-esters with acyl chains longer than C8. The enzyme was highly cold-adapted, showing an apparent temperature optimum of 30 °C and remaining approximately 70% of the activity at 0 °C. It was active and stable over the pH range from 7 to 10, and highly salt-tolerant up to 5 M NaCl. Moreover, rEstSL3 was strongly resistant to most tested metal ions, chemical reagents, detergents and organic solvents. Amino acid composition analysis indicated that EstSL3 had fewer proline residues, hydrogen bonds and salt bridges than mesophilic and thermophilic counterparts, but more acidic amino acids and less hydrophobic amino acids when compared with other salt-tolerant esterases. The cold active, salt-tolerant and chemical-resistant properties make it a promising enzyme for basic research and industrial applications. PMID:26915906

  12. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake

    PubMed Central

    Wang, Guozeng; Wang, Qiaohuang; Lin, Xianju; Bun Ng, Tzi; Yan, Renxiang; Lin, Juan; Ye, Xiuyun

    2016-01-01

    A novel esterase gene (estSL3) was cloned from the Alkalibacterium sp. SL3, which was isolated from the sediment of soda lake Dabusu. The 636-bp full-length gene encodes a polypeptide of 211 amino acid residues that is closely related with putative GDSL family lipases from Alkalibacterium and Enterococcus. The gene was successfully expressed in E. coli, and the recombinant protein (rEstSL3) was purified to electrophoretic homogeneity and characterized. rEstSL3 exhibited the highest activity towards pNP-acetate and had no activity towards pNP-esters with acyl chains longer than C8. The enzyme was highly cold-adapted, showing an apparent temperature optimum of 30 °C and remaining approximately 70% of the activity at 0 °C. It was active and stable over the pH range from 7 to 10, and highly salt-tolerant up to 5 M NaCl. Moreover, rEstSL3 was strongly resistant to most tested metal ions, chemical reagents, detergents and organic solvents. Amino acid composition analysis indicated that EstSL3 had fewer proline residues, hydrogen bonds and salt bridges than mesophilic and thermophilic counterparts, but more acidic amino acids and less hydrophobic amino acids when compared with other salt-tolerant esterases. The cold active, salt-tolerant and chemical-resistant properties make it a promising enzyme for basic research and industrial applications. PMID:26915906

  13. The PE16 (Rv1430) of Mycobacterium tuberculosis Is an Esterase Belonging to Serine Hydrolase Superfamily of Proteins

    PubMed Central

    Sultana, Rafiya; Vemula, Mani Harika; Banerjee, Sharmishta; Guruprasad, Lalitha

    2013-01-01

    The PE and PPE multigene families, first discovered during the sequencing of M. tuberculosis H37Rv genome are responsible for antigenic variation and have been shown to induce increased humoral and cell mediated immune response in the host. Using the bioinformatics tools, we had earlier reported that the 225 amino acid residue PE-PPE domain (Pfam: PF08237) common to some PE and PPE proteins has a “serine α/β hydrolase” fold and conserved Ser, Asp and His catalytic triad characteristic of lipase, esterase and cutinase activities. In order to prove experimentally that PE-PPE domain is indeed a serine hydrolase, we have cloned the full-length Rv1430 and its PE-PPE domain into pET-28a vector, expressed the proteins in E. coli and purified to homogeneity. The activity assays of both purified proteins were carried out using p-nitrophenyl esters of aliphatic carboxylic acids with varying chain length (C2–C16) to study the substrate specificity. To characterize the active site of the PE-PPE domain, we mutated the Ser199 to Ala. The activity of the protein in the presence of serine protease inhibitor- PMSF and the mutant protein were measured. Our results reveal that Rv1430 and its PE-PPE domain possess esterase activity and hydrolyse short to medium chain fatty acid esters with the highest specific activity for pNPC6 at 37°C, 38°C and pH 7.0, 8.0. The details of this work and the observed results are reported in this manuscript. PMID:23383323

  14. The search of the target of promotion: Phenylbenzoate esterase activities in hen peripheral nerve

    SciTech Connect

    Moretto, A. . E-mail: angelo.moretto@icps.it; Nicolli, A.; Lotti, M.

    2007-03-15

    Certain esterase inhibitors, such as carbamates, phosphinates and sulfonyl halides, do not cause neuropathy as some organophosphates, but they may exacerbate chemical or traumatic insults to axons. This phenomenon is called promotion of axonopathies. Given the biochemical and toxicological characteristics of these compounds, the hypothesis was made that the target of promotion is a phenyl valerate (PV) esterase similar to neuropathy target esterase (NTE), the target of organophosphate induced delayed polyneuropathy. However, attempts to identify a PV esterase in hen peripheral nerve have been, so far, unsuccessful. We tested several esters, other than PV, as substrates of esterases from crude homogenate of the hen peripheral nerve. The ideal substrate should be poorly hydrolysed by NTE but extensively by enzyme(s) that are insensitive to non-promoters, such as mipafox, and sensitive to promoters, such as phenyl methane sulfonyl fluoride (PMSF). When phenyl benzoate (PB) was used as substrate, about 65% of total activity was resistant to the non-promoter mipafox (up to 0.5 mM, 20 min, pH 8.0), that inhibits NTE and other esterases. More than 90% of this resistant activity was sensitive to the classical promoter PMSF (1 mM, 20 min, pH 8.0) with an IC{sub 50} of about 0.08 mM (20 min, pH 8.0). On the contrary, the non-promoter p-toluene sulfonyl fluoride caused only about 10% inhibition at 0.5 mM. Several esterase inhibitors including, paraoxon, phenyl benzyl carbamate, di-n-butyl dichlorovinyl phosphate and di-isopropyl fluorophosphate, were tested both in vitro and in vivo for inhibition of this PB activity. Mipafox-resistant PMSF-sensitive PB esterase activity(ies) was inhibited by promoters but not by non promoters and neuropathic compounds.

  15. Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima.

    PubMed

    Levisson, Mark; van der Oost, John; Kengen, Servé W M

    2007-06-01

    A bioinformatic screening of the genome of the hyperthermophilic bacterium Thermotoga maritima for ester-hydrolyzing enzymes revealed a protein with typical esterase motifs, though annotated as a hypothetical protein. To confirm its putative esterase function the gene (estD) was cloned, functionally expressed in Escherichia coli and purified to homogeneity. Recombinant EstD was found to exhibit significant esterase activity with a preference for short acyl chain esters (C4-C8). The monomeric enzyme has a molecular mass of 44.5 kDa and optimal activity around 95 degrees C and at pH 7. Its thermostability is relatively high with a half-life of 1 h at 100 degrees C, but less stable compared to some other hyperthermophilic esterases. A structural model was constructed with the carboxylesterase Est30 from Geobacillus stearothermophilus as a template. The model covered most of the C-terminal part of EstD. The structure showed an alpha/beta-hydrolase fold and indicated the presence of a typical catalytic triad consisting of a serine, aspartate and histidine, which was verified by site-directed mutagenesis and inhibition studies. Phylogenetic analysis showed that EstD is only distantly related to other esterases. A comparison of the active site pentapeptide motifs revealed that EstD should be grouped into a new family of esterases (Family 10). EstD is the first characterized member of this family. PMID:17466017

  16. Esterase in imported fire ants, Solenopsis invicta and S. richteri (Hymenoptera: Formicidae): activity, kinetics and variation.

    PubMed

    Chen, J; Rashid, T; Feng, G

    2014-01-01

    Solenopsis invicta and Solenopsis richteri are two closely related invasive ants native to South America. Despite their similarity in biology and behavior, S. invicta is a more successful invasive species. Toxic tolerance has been found to be important to the success of some invasive species. Esterases play a crucial role in toxic tolerance of insects. Hence, we hypothesized that the more invasive S. invicta would have a higher esterase activity than S. richteri. Esterase activities were measured for workers and male and female alates of both ant species using α-naphthyl acetate and β-naphthyl acetate as substrates. Esterase activities in S. invicta were always significantly higher than those in S. richteri supporting our hypothesis. In S. invicta, male alates had the highest esterase activities followed by workers then female alates for both substrates. In S. richetri, for α-naphthyl acetate, male alates had the highest activity followed by female alates then workers, while for β-naphthyl acetate, female alates had the highest activity followed by male alates then workers. For workers, S. richteri showed significantly higher levels of variation about the mean esterase activity than S. invicta. However, S. invicta showed significantly higher levels of variation in both female and male alates. PMID:25408118

  17. Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86.

    PubMed

    Torres, Sebastián; Baigorí, Mario D; Pandey, Ashok; Castro, Guillermo R

    2008-12-01

    New thermophilic and organic-solvent-tolerant Bacillus licheniformis S-86 strain is able to produce two active and solvent-stable esterases. Production of type I and II esterases was substantially enhanced when oils and surfactants were supplied as carbon sources. Grape oil (0.1% v/v) and Tween 20 to 60 (0.1% v/v) had enhanced enzyme production between 1.6- and 2.2-folds. Type II esterase was purified to homogeneity in a five-step procedure. This esterase was purified 76.7-fold with a specific activity of 135 U mg(-1). Molecular mass of the enzyme was estimated to be 38.4 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Type II esterase was active mostly on esters with short acyl chains, which allowed to classify the enzyme as a carboxylesterase with a K (m) of 80.2 mmol l(-1) and a V (max) of 256.4 micromol min(-1) mg(-1) for p-nitrophenyl acetate. Also, B. licheniformis S-86 type II esterase displayed activity in presence of water-miscible organic solvents at 50% concentration and stability after 1-h incubation. PMID:18543118

  18. A Lactobacillus plantarum Esterase Active on a Broad Range of Phenolic Esters

    PubMed Central

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca

    2015-01-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  19. Enzymatic synthesis of model substrates recognized by glucuronoyl esterases from Podospora anserina and Myceliophthora thermophila.

    PubMed

    Katsimpouras, Constantinos; Bénarouche, Anaïs; Navarro, David; Karpusas, Michael; Dimarogona, Maria; Berrin, Jean-Guy; Christakopoulos, Paul; Topakas, Evangelos

    2014-06-01

    Glucuronoyl esterases (GEs) are recently discovered enzymes that are suggested to cleave the ester bond between lignin alcohols and xylan-bound 4-O-methyl-D-glucuronic acid. Although their potential use for enhanced enzymatic biomass degradation and synthesis of valuable chemicals renders them attractive research targets for biotechnological applications, the difficulty to purify natural fractions of lignin-carbohydrate complexes hampers the characterization of fungal GEs. In this work, we report the synthesis of three aryl alkyl or alkenyl D-glucuronate esters using lipase B from Candida antarctica (CALB) and their use to determine the kinetic parameters of two GEs, StGE2 from the thermophilic fungus Myceliophthora thermophila (syn. Sporotrichum thermophile) and PaGE1 from the coprophilous fungus Podospora anserina. PaGE1 was functionally expressed in the methylotrophic yeast Pichia pastoris under the transcriptional control of the alcohol oxidase (AOX1) promoter and purified to its homogeneity (63 kDa). The three D-glucuronate esters contain an aromatic UV-absorbing phenol group that facilitates the quantification of their enzymatic hydrolysis by HPLC. Both enzymes were able to hydrolyze the synthetic esters with a pronounced preference towards the cinnamyl-D-glucuronate ester. The experimental results were corroborated by computational docking of the synthesized substrate analogues. We show that the nature of the alcohol portion of the hydrolyzed ester influences the catalytic efficiency of the two GEs. PMID:24531271

  20. A Lactobacillus plantarum esterase active on a broad range of phenolic esters.

    PubMed

    Esteban-Torres, María; Landete, José María; Reverón, Inés; Santamaría, Laura; de las Rivas, Blanca; Muñoz, Rosario

    2015-05-01

    Lactobacillus plantarum is the lactic acid bacterial species most frequently found in the fermentation of food products of plant origin on which phenolic compounds are abundant. L. plantarum strains showed great flexibility in their ability to adapt to different environments and growth substrates. Of 28 L. plantarum strains analyzed, only cultures from 7 strains were able to hydrolyze hydroxycinnamic esters, such as methyl ferulate or methyl caffeate. As revealed by PCR, only these seven strains possessed the est_1092 gene. When the est_1092 gene was introduced into L. plantarum WCFS1 or L. lactis MG1363, their cultures acquired the ability to degrade hydroxycinnamic esters. These results support the suggestion that Est_1092 is the enzyme responsible for the degradation of hydroxycinnamic esters on the L. plantarum strains analyzed. The Est_1092 protein was recombinantly produced and biochemically characterized. Surprisingly, Est_1092 was able to hydrolyze not only hydroxycinnamic esters, since all the phenolic esters assayed were hydrolyzed. Quantitative PCR experiments revealed that the expression of est_1092 was induced in the presence of methyl ferulate, an hydroxycinnamic ester, but was inhibited on methyl gallate, an hydroxybenzoic ester. As Est_1092 is an enzyme active on a broad range of phenolic esters, simultaneously possessing feruloyl esterase and tannase activities, its presence on some L. plantarum strains provides them with additional advantages to survive and grow on plant environments. PMID:25746986

  1. Oral immunization of a live attenuated Escherichia coli strain expressing a holotoxin-structured adhesin-toxoid fusion (1FaeG-FedF-LTA₂:5LTB) protected young pigs against enterotoxigenic E. coli (ETEC) infection.

    PubMed

    Ruan, Xiaosai; Zhang, Weiping

    2013-03-01

    ETEC strains expressing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of porcine post-weaning diarrhea (PWD). PWD continues causing significant economic losses to swine producers worldwide. Vaccines effectively protecting against PWD are needed. Our recent study revealed that a tripartite adhesin-toxin monomer (FaeG-FedF-LT(A2-B)) elicited protective antibodies. In this study, we constructed a new adhesin-toxoid fusion, expressed it as a 1A:5B holotoxin-structured antigen (1FaeG-FedF-LT(192A2):5LT(B)) in an avirulent Escherichia coli strain, and evaluated its vaccine potential in pig challenge studies. Piglets orally inoculated with this live strain showed no adverse effects but developed systemic and mucosal antibodies that neutralized cholera toxin and inhibited adherence of K88 and F18 fimbriae in vitro. Moreover, the immunized piglets, when were challenged with ETEC strain 3030-2 (K88ac/LT/STb), had significant fewer bacteria colonized at small intestines and did not develop diarrhea; whereas the control piglets developed severe diarrhea and died. These results indicated the 1FaeG-FedF-LT(192A2):5LT(B) fusion antigen induced protective antiadhesin and antitoxin immunity in pigs, and suggested a live attenuated vaccine can be potentially developed against porcine ETEC diarrhea. Additionally, presenting antigens in a holotoxin structure to target host local mucosal immunity can be used in vaccine development against other enteric diseases. PMID:23375979

  2. Characterization of Novel Family IV Esterase and Family I.3 Lipase from an Oil-Polluted Mud Flat Metagenome.

    PubMed

    Kim, Hee Jung; Jeong, Yu Seok; Jung, Won Kyeong; Kim, Sung Kyum; Lee, Hyun Woo; Kahng, Hyung-Yeel; Kim, Jungho; Kim, Hoon

    2015-09-01

    Two genes encoding lipolytic enzymes were isolated from a metagenomic library constructed from oil-polluted mud flats. An esterase gene, est3K, encoded a protein of 299 amino acids (ca. 32,364 Da). Est3K was a family IV esterase with typical motifs, HGGG, and HGF. Although est3K showed high identity to many genes with no information on their enzymatic properties, Est3K showed the highest identity (36 %) to SBLip5.1 from forest soil metagenome when compared to the enzymes with reported properties. A lipase gene, lip3K, encoded a protein of 616 amino acids (ca. 64,408 Da). Lip3K belonged to family I.3 lipase with a C-terminal secretion signal and showed the highest identity (93 %) to the lipase of Pseudomonas sp. MIS38. The presence of several newly identified conserved motifs in Est3K and Lip3K are suggested. Both Est3K and Lip3K exerted their maximal activity at pH 9.0 and 50 °C. The activity of Lip3K was significantly increased by the presence of 30 % methanol. The ability of the enzymes to retain activities in the presence of methanol and the substrates may offer a merit to the biotechnological applications of the enzymes such as transesterification. The activity and the thermostability of Lip3K were increased by Ca(2+). Est3K and Lip3K preferred p-nitrophenyl butyrate (C4) and octanoate (C8), respectively, as the substrate and acted independently on the substrates with no synergistic effect. PMID:25943044

  3. Effects of Fumaric Acids on Cuprizone Induced Central Nervous System De- and Remyelination in the Mouse

    PubMed Central

    Moharregh-Khiabani, Darius; Blank, Alexander; Skripuletz, Thomas; Miller, Elvira; Kotsiari, Alexandra; Gudi, Viktoria; Stangel, Martin

    2010-01-01

    Background Fumaric acid esters (FAE) are a group of compounds which are currently under investigation as an oral treatment for relapsing-remitting multiple sclerosis. One of the suggested modes of action is the potential of FAE to exert a neuroprotective effect. Methodology/Principal Findings We have investigated the impact of monomethylfumarate (MMF) and dimethylfumaric acid (DMF) on de- and remyelination using the toxic cuprizone model where the blood-brain-barrier remains intact and only scattered T-cells and peripheral macrophages are found in the central nervous system (CNS), thus excluding the influence of immunomodulatory effects on peripheral immune cells. FAE showed marginally accelerated remyelination in the corpus callosum compared to controls. However, we found no differences for demyelination and glial reactions in vivo and no cytoprotective effect on oligodendroglial cells in vitro. In contrast, DMF had a significant inhibitory effect on lipopolysaccharide (LPS) induced nitric oxide burst in microglia and induced apoptosis in peripheral blood mononuclear cells (PBMC). Conclusions These results contribute to the understanding of the mechanism of action of fumaric acids. Our data suggest that fumarates have no or only little direct protective effects on oligodendrocytes in this toxic model and may act rather indirectly via the modulation of immune cells. PMID:20668697

  4. Structural analysis of thermostabilizing mutations of cocaine esterase

    SciTech Connect

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan; Ko, Mei-Chuan; Macdonald, Joanne; Tamburi, Patricia; Yoon, Dan; Landry, Donald M.; Woods, James H.; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K.

    2010-09-03

    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstable at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.

  5. Genetic variability for esterase enzyme in Onobrychis species.

    PubMed

    Kidambi, S P; Mahan, J R; Matches, A G; Burke, J J; Nunna, R R

    1990-10-01

    Understanding polymorphism at the enzyme level is basic to its use in population and genetic studies. However, no such information is available on the variability among different sainfoin (Onobrychis) species. Therefore, our objective was to study the existence of genetic polymorphism for esterase in 17 Onobrychis species and three cultivars of O. viciifolia Scop. Three regions of banding were observed in all the materials tested, with the number of bands varying from 0 to 3, 3 to 14, and 1 to 2 bands in each of these zones, which have been designated EST1, EST2, and EST3 respectively. All the materials studied had unique banding patterns, the only common feature being that all of them, except one species, had isozyme 1. Identification was possible only for four species (O. iberica, O. kachetica, O. transcaucasica, and O. bieberstenii) and one cultivar ('Nova') based on the banding patterns. Large diversity was evident from the wide range of percent similarity values (0%-79%). Subsequent studies should be directed in using these isozyme banding patterns as markers to the desirable agronomic and quality traits of different germplasm lines. PMID:24220999

  6. Inhibition of monocyte esterase activity by organophosphate insecticides.

    PubMed

    Lee, M J; Waters, H C

    1977-11-01

    Organophosphate insecticides, such as Vapona, Naled, and Rabon, are highly potent inhibitors of an enzyme found in human monocytes. The enzyme, a specific monocyte esterase, could be inhibited by Vapona in blood samples via airborne contamination at levels easily achieved from commercial slow-release insecticide strips. Fifty percent inhibition (I50)--as measured on the Hemalog D (Technicon Corp.)--occurred at solution concentrations of 0.22, 1.5, and 2.6 X 10(-6) g/liter for Vapona, Rabon, and Naled, respectively. Parathion (a thiophosphate) and Baygon (a carbamate) were less potent, with I50 values of 3.7 X 10(-5) and 1.5 X 10(-4) g/liter, respectively. Dursban (another thiophosphate) and Carbaryl (a carbamate) showed only marginal inhibition. Eserine, malathion, nicotine and pyrethrum had no inhibitory effect up to 0.5 g/liter. The occurrence of this effect in vivo has not yet been shown, nor is it clear what the implications of such an effect would be. The inhibition of this enzyme by airborne contaminants, however, may interfere with the proper functioning of the Hemalog D. PMID:907842

  7. Cloning, expression, and biochemical characterization of a cold-active GDSL-esterase of a Pseudomonas sp. S9 isolated from Spitsbergen island soil.

    PubMed

    Wicka, Monika; Wanarska, Marta; Krajewska, Ewelina; Pawlak-Szukalska, Anna; Kur, Józef; Cieśliński, Hubert

    2016-01-01

    An estS9 gene, encoding an esterase of the psychrotolerant bacterium Pseudomonas sp. S9 was cloned and sequenced. The deduced sequence revealed a protein of 636 amino acid residues with a molecular mass of 69 kDa. Further amino acid sequence analysis revealed that the EstS9 enzyme contained a G-D-S-L motif centered at a catalytic serine, an N-terminal catalytic domain and a C-terminal autotransporter domain. Two recombinant E. coli strains for production of EstS9N (a two domain enzyme) and EstS9Δ (a one domain enzyme) proteins were constructed, respectively. Both recombinant proteins were successfully produced as inclusion bodies and then purified under denaturing conditions. However, because of the low enzymatic activity of the refolded EstS9Δ protein, only the EstS9N protein was further characterized. The purified and refolded EstS9N protein was active towards short-chain p-nitrophenyl esters (C2-C8), with optimal activity for the butyrate (C4) ester. With p-nitrophenyl butyrate as the substrate, the enzyme displayed optimal activity at 35°C and pH 9.0. Additionally, the EstS9N esterase retained ~90% of its activity from 25-40°C and ~40% of its activity at 10°C. Moreover, analysis of its kinetic parameters (Km, kcat, kcat/Km) toward p-nitrophenyl butyrate determined at 15°C and 25°C confirmed that the EstS9 enzyme is cold-adapted. To the best of our knowledge, EstS9 is the third characterized cold-active GDSL-esterase and the first one confirmed to contain an autotransporter domain characteristic for enzymes secreted by the type V secretion system. PMID:26824293

  8. Structural Characterization and Reversal of the Natural Organophosphate Resistance of a D-Type Esterase, Saccharomyces cerevisiae S-Formylglutathione Hydrolase

    SciTech Connect

    Legler,P.; Kumaran, D.; Swaminathan, S.; Studier, F.; Millard, C.

    2008-01-01

    Saccharomyces cerevisiae expresses a 67.8 kDa homodimeric serine thioesterase, S-formylglutathione hydrolase (SFGH), that is 39.9% identical with human esterase D. Both enzymes possess significant carboxylesterase and S-formylglutathione thioesterase activity but are unusually resistant to organophosphate (OP) inhibitors. We determined the X-ray crystal structure of yeast (y) SFGH to 2.3 Angstroms resolution by multiwavelength anomalous dispersion and used the structure to guide site-specific mutagenesis experiments addressing substrate and inhibitor reactivity. Our results demonstrate a steric mechanism of OP resistance mediated by a single indole ring (W197) located in an enzyme 'acyl pocket'. The W197I substitution enhances ySFGH reactivity with paraoxon by >1000-fold (kiW197I = 16 {+-} 2 mM-1 h-1), thereby overcoming natural OP resistance. W197I increases the rate of OP inhibition under pseudo-first-order conditions but does not accelerate OP hydrolysis. The structure of the paraoxon-inhibited W197I variant was determined by molecular replacement (2.2 Angstroms); it revealed a stabilized sulfenic acid at Cys60. Wild-type (WT) ySFGH is inhibited by thiol reactive compounds and is sensitive to oxidation; thus, the cysteine sulfenic acid may play a role in the regulation of a 'D-type' esterase. The structure of the W197I variant is the first reported cysteine sulfenic acid in a serine esterase. We constructed five Cys60/W197I variants and show that introducing a positive charge near the oxyanion hole, W197I/C60R or W197I/C60K, results in a further enhancement of the rates of phosphorylation with paraoxon (ki = 42 or 80 mM-1 h-1, respectively) but does not affect the dephosphorylation of the enzyme. We also characterized three histidine substitutions near the oxyanion hole, G57H, L58H, and M162H, which significantly decrease esterase activity.

  9. VvMJE1 of the grapevine (Vitis vinifera) VvMES methylesterase family encodes for methyl jasmonate esterase and has a role in stress response.

    PubMed

    Zhao, Nan; Lin, Hong; Lan, Suque; Jia, Qidong; Chen, Xinlu; Guo, Hong; Chen, Feng

    2016-05-01

    The known members of plant methyl esterase (MES) family catalyze the hydrolysis of a C-O ester linkage of methyl esters of several phytohormones including indole-3-acetic acid, salicylic acid and jasmonic acid. The genome of grapevine (Vitis vinifera) was found to contain 15 MES genes, designated VvMES1-15. In this report, VvMES5 was selected for molecular, biochemical and structural studies. VvMES5 is most similar to tomato methyl jasmonate esterase. E. coli-expressed recombinant VvMES5 displayed methyl jasmonate (MeJA) esterase activity, it was renamed VvMJE1. Under steady-state conditions, VvMJE1 exhibited an apparent Km value of 92.9 μM with MeJA. VvMJE1 was also shown to have lower activity with methyl salicylate (MeSA), another known substrate of the MES family, and only at high concentrations of the substrate. To understand the structural basis of VvMJE1 in discriminating MeJA and MeSA, a homolog model of VvMJE1 was made using the X-ray structure of tobacco SABP2, which encodes for methyl salicylate esterase, as a template. Interestingly, two bulky residues at the binding site and near the surface of tobacco SABP2 are replaced by relatively small residues in VvMJE1. Such a change enables the accommodation of a larger substrate MeJA in VvMJE1. The expression of VvMJE1 was compared in control grape plants and grape plants treated with one of the three stresses: heat, cold and UV-B. While the expression of VvMJE1 was not affected by heat treatment, its expression was significantly up-regulated by cold treatment and UV-B treatment. This result suggests that VvMJE1 has a role in response of grape plants to these two abiotic stresses. PMID:26934101

  10. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165

    PubMed Central

    Shainu, Anju; Pandey, Ashok; Sukumaran, Rajeev K.

    2014-01-01

    Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a Km and Vmax of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol. PMID:24800063

  11. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165.

    PubMed

    Alex, Deepthy; Shainu, Anju; Pandey, Ashok; Sukumaran, Rajeev K

    2014-01-01

    Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a K m and V max of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol. PMID:24800063

  12. Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea.

    PubMed

    Martin del Campo, Martha; Camacho, Rosa M; Mateos-Díaz, Juan C; Müller-Santos, Marcelo; Córdova, Jesus; Rodríguez, Jorge A

    2015-11-01

    Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production. PMID:26369647

  13. Profiling Esterases in Mycobacterium tuberculosis Using Far-Red Fluorogenic Substrates.

    PubMed

    Tallman, Katie R; Levine, Samantha R; Beatty, Kimberly E

    2016-07-15

    Enzyme-activated, fluorogenic probes are powerful tools for studying bacterial pathogens, including Mycobacterium tuberculosis (Mtb). In prior work, we reported two 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one) (DDAO)-derived acetoxymethyl ether probes for esterase and lipase detection. Here, we report four-carbon (C4) and eight-carbon (C8) acyloxymethyl ether derivatives, which are longer-chain fluorogenic substrates. These new probes demonstrate greater stability and lipase reactivity than the two-carbon (C2) acetoxymethyl ether-masked substrates. We used these new C4 and C8 probes to profile esterases and lipases from Mtb. The C8-masked probes revealed a new esterase band in gel-resolved Mtb lysates that was not present in lysates from nonpathogenic M. bovis (bacillus Calmette-Guérin), a close genetic relative. We identified this Mtb-specific enzyme as the secreted esterase Culp1 (Rv1984c). Our C4- and C8-masked probes also produced distinct Mtb banding patterns in lysates from Mtb-infected macrophages, demonstrating the potential of these probes for detecting Mtb esterases that are active during infections. PMID:27177211

  14. Pharmacokinetics of anti-psoriatic fumaric acid esters in psoriasis patients.

    PubMed

    Rostami-Yazdi, Martin; Clement, Bernd; Mrowietz, Ulrich

    2010-09-01

    The aim of this study was to evaluate pharmacokinetic parameters of fumaric acid esters (FAE) in psoriasis patients for the first time. For this prupose new HPLC assays were developed. Additionally, physicochemical parameters of FAE were determined, allowing a better interpretation of the in vivo data. In vivo, monomethylfumarate (MMF) and monoethylfumarate (MEF) were detected after t (lag) = 120 min. T (max) and c (max) of MMF were 210 min and 11.2 microM, respectively, 210 min and 5.2 microM for MEF. The half-life of MMF was 38.7 min, and 25.4 min of MEF. The AUC(0-infinity) of MMF was 172 min microg ml(-1) and 63.6 min microg ml(-1) of MEF. Data display median of three subjects. No plasma levels of dimethylfumarate (DMF) or fumaric acid (FA) were detected. The evaluation of physicochemical parameters of FAE showed that only DMF fulfils the criteria of Lipinski's rule of five. The pKa of MMF was determined as 3.63. The data of this study provide evidence that DMF is most likely absorbed out of the duodenum into the presystemic circulation and is not completely hydrolysed to MMF before uptake as assumed by others. PMID:20574745

  15. Plant Esterase-Chitosan/Gold Nanoparticles-Graphene Nanosheet Composite-Based Biosensor for the Ultrasensitive Detection of Organophosphate Pesticides.

    PubMed

    Bao, Jing; Hou, Changjun; Chen, Mei; Li, Junjie; Huo, Danqun; Yang, Mei; Luo, Xiaogang; Lei, Yu

    2015-12-01

    As broad-spectrum pesticides, organophosphates (OPs) are widely used in agriculture all over the world. However, due to their neurotoxicity in humans and their increasing occurrence in the environment, there is growing interest in their sensitive and selective detection. This paper reports a new cost-effective plant esterase-chitosan/gold nanoparticles-graphene nanosheet (PLaE-CS/AuNPs-GNs) biosensor for the sensitive detection of methyl parathion and malathion. Highly pure plant esterase is produced from plants at low cost and shares the same inhibition mechanism with OPs as acetylcholinesterase, and then it was used to prepare PLaE-CS/AuNPs-GNs nanocomposites, which were systematically characterized using SEM, TEM, and UV-vis. The PLaE-CS/AuNPs-GNs composite-based biosensor measured as low as 50 ppt (0.19 nM) of methyl parathion and 0.5 ppb (1.51 nM) of malathion (S/N = 3) with a calibration curve up to 200 ppb (760 nM) and 500 ppb (1513.5 nM) for methyl parathion and malathion, respectively. There is also no interference observed from most of common species such as metal ions, inorganic ions, glucose, and citric acid. In addition, its applicability to OPs-contaminated real samples (carrot and apple) was also demonstrated with excellent response recovery. The developed simple, sensitive, and reliable PLaE-CS/AuNPs-GNs composite-based biosensor holds great potential in OPs detection for food and environmental safety. PMID:26554573

  16. Antinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models.

    PubMed

    Sasso, Oscar; Moreno-Sanz, Guillermo; Martucci, Cataldo; Realini, Natalia; Dionisi, Mauro; Mengatto, Luisa; Duranti, Andrea; Tarozzo, Glauco; Tarzia, Giorgio; Mor, Marco; Bertorelli, Rosalia; Reggiani, Angelo; Piomelli, Daniele

    2013-03-01

    Fatty acid ethanolamides (FAEs), which include palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), are endogenous agonists of peroxisome proliferator-activated receptor-α (PPAR-α) and important regulators of the inflammatory response. They are degraded in macrophages by the lysosomal cysteine amidase, N-acylethanolamine acid amidase (NAAA). Previous studies have shown that pharmacological inhibition of NAAA activity suppresses macrophage activation in vitro and causes marked anti-inflammatory effects in vivo, which is suggestive of a role for NAAA in the control of inflammation. It is still unknown, however, whether NAAA-mediated FAE deactivation might regulate pain signaling. The present study examined the effects of ARN077, a potent and selective NAAA inhibitor recently disclosed by our group, in rodent models of hyperalgesia and allodynia caused by inflammation or nerve damage. Topical administration of ARN077 attenuated, in a dose-dependent manner, heat hyperalgesia and mechanical allodynia elicited in mice by carrageenan injection or sciatic nerve ligation. The antinociceptive effects of ARN077 were prevented by the selective PPAR-α antagonist GW6471 and did not occur in PPAR-α-deficient mice. Furthermore, topical ARN077 reversed the allodynia caused by ultraviolet B radiation in rats, and this effect was blocked by pretreatment with GW6471. Sciatic nerve ligation or application of the proinflammatory phorbol ester 12-O-tetradecanoylphorbol 13-acetate decreased FAE levels in sciatic nerve and skin tissue, respectively. ARN077 reversed these biochemical effects. The results identify ARN077 as a potent inhibitor of intracellular NAAA activity, which is active in vivo by topical administration. The findings further suggest that NAAA regulates peripheral pain initiation by interrupting endogenous FAE signaling at PPAR-α. PMID:23218523

  17. ANTINOCICEPTIVE EFFECTS OF THE N-ACYLETHANOLAMINE ACID AMIDASE INHIBITOR ARN077 IN RODENT PAIN MODELS

    PubMed Central

    Sasso, Oscar; Moreno-Sanz, Guillermo; Martucci, Cataldo; Realini, Natalia; Dionisi, Mauro; Mengatto, Luisa; Duranti, Andrea; Tarozzo, Glauco; Tarzia, Giorgio; Mor, Marco; Bertorelli, Rosalia; Reggiani, Angelo; Piomelli, Daniele

    2013-01-01

    Fatty acid ethanolamides (FAEs), which include palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), are endogenous agonists of peroxisome proliferator-activated receptor-α (PPAR-α) and important regulators of the inflammatory response. They are degraded in macrophages by the lysosomal cysteine amidase, N-acylethanolamine acid amidase (NAAA). Previous studies have shown that pharmacological inhibition of NAAA activity suppresses macrophage activation in vitro and causes marked anti-inflammatory effects in vivo, which is suggestive of a role for NAAA in the control of inflammation. It is still unknown, however, whether NAAA-mediated FAE deactivation might regulate pain signaling. In the present study, we examined the effects of ARN077, a potent and selective NAAA inhibitor recently disclosed by our group, in rodent models of hyperalgesia and allodynia caused by inflammation or nerve damage. Topical administration of ARN077 attenuated, in a dose-dependent manner, heat hyperalgesia and mechanical allodynia elicited in mice by carrageenan injection or sciatic nerve ligation. The anti-nociceptive effects of ARN077 were prevented by the selective PPAR-α antagonist GW6471 and did not occur in PPAR-α-deficient mice. Furthermore, topical ARN077 reversed the allodynia caused by ultraviolet B-radiation in rats, and this effect was blocked by pretreatment with GW6471. Sciatic nerve ligation or application of the pro-inflammatory phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) decreased FAE levels in sciatic nerve and skin tissue, respectively. ARN077 reversed these biochemical effects. The results identify ARN077 as a potent inhibitor of intracellular NAAA activity, which is active in vivo by topical administration. The findings further suggest that NAAA regulates peripheral pain initiation by interrupting endogenous FAE signaling at PPAR-α. PMID:23218523

  18. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    SciTech Connect

    Vose, Sarah C.; Fujioka, Kazutoshi; Gulevich, Alex G.; Lin, Amy Y.; Holland, Nina T.; Casida, John E.

    2008-11-01

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action.

  19. Extraction and purification of wheat-esterase using aqueous two-phase systems of ionic liquid and salt.

    PubMed

    Jiang, Bin; Feng, Zhibiao; Liu, Chunhong; Xu, Yingcao; Li, Dongmei; Ji, Guo

    2015-05-01

    To explore a new and simple rapid extraction and purification technique for wheat-esterase, an ionic liquids (ILs)-based aqueous two-phase system (ATPS) was developed for the purification of wheat-esterase from wheat extracts. Effects of various process parameters such as the concentrations of [Bmim]BF4, the types and concentrations of phase-forming salt, the system pH and the temperature on partitioning of wheat-esterase were evaluated. The obtained data indicated that wheat-esterase was preferentially partitioned into the ILs-rich phase and the ATPS composed of 20 % [Bmim]BF4 (w/w) and 25 % (w/w) NaH2PO4(pH = 4.8) showed good selectivity on wheat-esterase. Under the optimum conditions, wheat-esterase was purified with an acceptable yield (88.93 %), but produced wheat-esterase was 4.23 times as pure. It was obvious that temperature shows little influence on the purification between 10 and 50 °C. Sephadex G-150FF revealed that the band intensity of contaminating proteins in ATPS fraction almost disappeared. Therefore, ILs-based ATPS was an effective method for partitioning and recovery of wheat-esterase from wheat crude extracts. PMID:25892786

  20. COMPARISON OF THE RELATIVE INHIBITION OF ACETYLCHOLINESTERASE AND NEUROPATHY TARGET ESTERASE IN RATS AND HENS GIVEN CHOLINESTERASE INHIBITORS

    EPA Science Inventory

    Inhibition of neuropathy target esterase (NTE, neurotoxic esterase) and acetylcholinesterase (AME) activities was compared in brain and spinal cords of adult. hile Leghorn hens and adult male Long Evans rats 4-48 hr after administration of tri-ortho-tolyl phosphate (TOTP po, 50-5...

  1. ROLE OF NEUROTOXIC ESTERASE (NTE) IN THE PREVENTION AND POTENTIATION OF ORGANOPHOSPHORUS-INDUCED DELAYED NEUROTOXICITY (OPIDN)

    EPA Science Inventory

    The first step in the initiation of organophosphorus-induced delayed neuropathy (OPIDN) is proposed to be the phosphorylation of an enzyme found in the nervous system called neurotoxic esterase (neuropathy target esterase, NTE). t has been known for over twenty years that non-neu...

  2. Eco-friendly surface modification on polyester fabrics by esterase treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping

    2014-03-01

    Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  3. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    PubMed

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils. PMID:25852987

  4. Purified human C1-esterase inhibitor is safe in acute relapses of neuromyelitis optica

    PubMed Central

    Levy, Michael

    2014-01-01

    Objective: To minimize complement-mediated damage in acute relapses of neuromyelitis optica (NMO) by adding treatment with a complement inhibitor, purified C1-esterase inhibitor, to the current standard of care (high-dose glucocorticoids). Method: We conducted an open-label phase 1b safety and proof-of-concept trial in 10 patients with NMO–immunoglobulin G seropositive NMO or NMO spectrum disease (NMOSD) who presented with acute transverse myelitis and/or optic neuritis. In addition to treating with 1 g of daily IV methylprednisolone, we infused 2,000 units of C1-esterase inhibitor daily for 3 days, beginning on day 1 of hospitalization. The primary outcome measure was safety, and the secondary efficacy measure was change in Expanded Disability Status Scale (EDSS) scores. Results: Ten patients with NMO/NMOSD were enrolled, 7 of whom presented with acute transverse myelitis and 3 with acute optic neuritis. C1-esterase inhibitor proved to be safe in all 10 patients, with no serious adverse events recorded. There were no thromboembolic events or related lab abnormalities in any of the subjects. EDSS scores dropped from a median of 4.5 on admission to 4.0 on discharge and then down to 2.5 on 30-day follow-up. All but 1 patient returned to preattack EDSS or better and only 2 patients required escalation to plasmapheresis. Conclusions: C1-esterase inhibitor is a safe add-on therapy for patients with NMO/NMOSD presenting with acute transverse myelitis and optic neuritis. Preliminary evidence suggests a promising benefit with C1-esterase inhibitor in reducing neurologic damage and improving outcomes. A placebo-controlled trial is necessary to confirm these findings. Classification of evidence: This study provides Class IV evidence that for patients with NMO with acute transverse myelitis or optic neuritis, C1-esterase inhibitor is safe and improves disability. PMID:25340061

  5. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution

    PubMed Central

    Zeng, Qinghong; Langereis, Martijn A.; van Vliet, Arno L. W.; Huizinga, Eric G.; de Groot, Raoul J.

    2008-01-01

    The hemagglutinin-esterases (HEs) are a family of viral envelope glycoproteins that mediate reversible attachment to O-acetylated sialic acids by acting both as lectins and as receptor-destroying enzymes (RDEs). Related HEs occur in influenza C, toro-, and coronaviruses, apparently as a result of relatively recent lateral gene transfer events. Here, we report the crystal structure of a coronavirus (CoV) HE in complex with its receptor. We show that CoV HE arose from an influenza C-like HE fusion protein (HEF). In the process, HE was transformed from a trimer into a dimer, whereas remnants of the fusion domain were adapted to establish novel monomer–monomer contacts. Whereas the structural design of the RDE-acetylesterase domain remained unaltered, the HE receptor-binding domain underwent remodeling to such extent that the ligand is now bound in opposite orientation. This is surprising, because the architecture of the HEF site was preserved in influenza A HA over a much larger evolutionary distance, a switch in receptor specificity and extensive antigenic variation notwithstanding. Apparently, HA and HEF are under more stringent selective constraints than HE, limiting their exploration of alternative binding-site topologies. We attribute the plasticity of the CoV HE receptor-binding site to evolutionary flexibility conferred by functional redundancy between HE and its companion spike protein S. Our findings offer unique insights into the structural and functional consequences of independent protein evolution after interviral gene exchange and open potential avenues to broad-spectrum antiviral drug design. PMID:18550812

  6. Inhibition of polyisoprenylated methylated protein methyl esterase by synthetic musks induces cell degeneration.

    PubMed

    Ayuk-Takem, Lambert; Amissah, Felix; Aguilar, Byron J; Lamango, Nazarius S

    2014-04-01

    Synthetic fragrances are persistent environmental pollutants that tend to bioaccumulate in animal tissues. They are widely used in personal care products and cleaning agents. Worldwide production of Galaxolide and Tonalide are in excess of 4500 tons annually. Because of their widespread production and use, they have been detected in surface waters and fish in the US and Europe. Consumption of contaminated water and fish from such sources leads to bioaccumulation and eventual toxicity. Since fragrances and flavors bear structural similarities to polyisoprenes, it was of interest to determine whether toxicity by Galaxolide and Tonalide may be linked with polyisoprenylated methylated protein methyl esterase (PMPMEase) inhibition. A concentration-dependent study of PMPMEase inhibition by Galaxolide and Tonalide as well as their effects on the degeneration of cultured cells were conducted. Galaxolide and Tonalide inhibited purified porcine liver PMPMEase with Ki values of 11 and 14 μM, respectively. Galaxolide and Tonalide also induced human cancer cell degeneration with EC50 values of 26 and 98 μM (neuroblastoma SH-SY5Y cells) and 58 and 14 μM (lung cancer A549 cells), respectively. The effects on cell viability correlate well with the inhibition of PMPMEase activity in the cultured cells. Molecular docking analysis revealed that the binding interactions are most likely between the fragrance molecules and hydrophobic amino acids in the active site of the enzyme. These results appear to suggest that the reported neurotoxicity of these compounds may be associated with their inhibition of PMPMEase. Exposure to fragrances may pose a significant risk to individuals predisposed to developing degenerative disorders. PMID:22489002

  7. Esterase-activatable β-lapachone prodrug micelles for NQO1-targeted lung cancer therapy

    PubMed Central

    Ma, Xinpeng; Huang, Xiumei; Moore, Zachary; Huang, Gang; Kilgore, Jessica A.; Wang, Yiguang; Hammer, Suntrea; Williams, Noelle S.; Boothman, David A.; Gao, Jinming

    2016-01-01

    Lung cancer is one of the most lethal forms of cancer and current chemotherapeutic strategies lack broad specificity and efficacy. Recently, β-lapachone (β-lap) was shown to be highly efficacious in killing non-small cell lung cancer (NSCLC) cells regardless of their p53, cell cycle and caspase status. Pre-clinical and clinical use of β-lap (clinical form, ARQ501 or 761) is hampered by poor pharmacokinetics and toxicity due to hemolytic anemia. Here, we report the development and preclinical evaluation of β-lap prodrug nanotherapeutics consisting of diester derivatives of β-lap encapsulated in biocompatible and biodegradable poly(ethylene glycol)-b-poly(d,l-lactic acid) (PEG-b-PLA) micelles. Compared to the parent drug, diester derivatives of β-lap showed higher drug loading densities inside PEG-b-PLA micelles. After esterase treatment, micelle-delivered β-lap-dC3 and -dC6 prodrugs were converted to β-lap. Cytotoxicity assays using A549 and H596 lung cancer cells showed that both micelle formulations maintained NAD(P)H:quinone oxidoreductase 1 (NQO1)-dependent cytotoxicity. However, antitumor efficacy study of β-lap-dC3 micelles against orthotopic A549 NSCLC xenograft-bearing mice showed significantly greater long-term survival over β-lap-dC6 micelles or β-lap-HPβCD complexes. Improved therapeutic efficacy of β-lap-dC3 micelles correlated with higher area under the concentration-time curves of β-lap in tumors, and enhanced pharmacodynamic endpoints (e.g., PARP1 hyperactivation, γH2AX, and ATP depletion). β-Lap-dC3 prodrug micelles provide a promising strategy for NQO1-targeted therapy of lung cancer with improved safety and antitumor efficacy. PMID:25542645

  8. Esterases immobilized on aminosilane modified magnetic nanoparticles as a catalyst for biotransformation reactions.

    PubMed

    Alex, Deepthy; Mathew, Abraham; Sukumaran, Rajeev K

    2014-09-01

    Magnetite nanoparticles were prepared by reacting ferrous and ferric salts in presence of aqueous ammonia. The magnetic nanoparticles (MNPs) were amino functionalized by treating with 3-aminopropyl triethoxy silane (APTES) and was coupled with glutaraldehyde. A novel solvent tolerant esterase from Pseudozyma sp. NII 08165 was immobilized on the MNPs through covalent bonding to the glutaraldehyde. The magnetite nanoparticles had a size range of 10-100 nm, confirmed by DLS. Lipases immobilized on MNPs were evaluated for biotransformation reactions including synthesis of ethyl acetate and transesterification of vegetable oil for producing biodiesel. The MNP immobilized esterase had prolonged shelf life and there was no loss in enzyme activity. PMID:24968816

  9. estA, a gene coding for a cell-bound esterase from Paenibacillus sp. BP-23, is a new member of the bacterial subclass of type B carboxylesterases.

    PubMed

    Prim, N; Blanco, A; Martínez, J; Pastor FIJ; Diaz, P

    2000-05-01

    Screening of a gene library from Paenibacillus sp. BP-23 generated in Escherichia coli led to identification of a clone that directed the production of lipolytic activity. From the sequencing data, we found an open reading frame encoding a protein of 485 amino acids with an estimated molecular mass of 53 kDa and a pI of 5.1. Absence of a signal peptide indicated that it was a cell-bound protein. Sequence analysis showed that the protein contained the signature G-XI-S-X2-G included in most serine-esterases and lipases. The cloned protein showed high homology with enzymes belonging to the bacterial subclass of type B carboxylesterases. The enzyme had a significant preference for esters of short-chain fatty acids and showed the kinetics behaviour of a true esterase. Maximum activity was found at pH 7.5 and 37 degrees C, although the enzyme was active in the pH range 6.0- 9.0 and at temperatures up to 45 degrees C. As expected for a serine-esterase, activity was inhibited by phenylmethylsulphonyl fluoride. PMID:10875287

  10. Submesoscale characteristics and transcription of a fatty acid elongase gene from a freshwater green microalgae, Myrmecia incisa Reisigl

    NASA Astrophysics Data System (ADS)

    Yu, Shuiyan; Liu, Shicheng; Li, Chunyang; Zhou, Zhigang

    2011-01-01

    Myrmecia incisa is a green coccoid freshwater microalgae, which is rich in arachidonic acid (ArA, C20: 4ω-6, δ5, 8, 11, 14), a long chain polyunsaturated fatty acid (PUFA), especially under nitrogen starvation stress. A cDNA library of M. incisa was constructed with λ phage vectors and a 545 nt expressed sequence tag (EST) was screened from this library as a putative elongase gene due to its 56% and 49% identity to Marchantia polymorpha L. and Ostreococcus tauri Courties et Chrétiennot-Dinet, respectively. Based upon this EST sequence, an elongase gene designated MiFAE was isolated from M. incisa via 5'/3' rapid amplification of cDNA ends (RACE). The cDNA sequence was 1 331 bp long and included a 33 bp 5'-untranslated region (UTR) and a 431 bp 3'-UTR with a typical poly-A tail. The 867 bp ORF encoded a predicted protein of 288 amino acids. This protein was characterized by a conserved histidine-rich box and a MYxYY motif that was present in other members of the elongase family. The genomic DNA sequence of MiFAE was found to be interrupted by three introns with splicing sites of Introns I (81 bp), II (81 bp), and III (67 bp) that conformed to the GT-AG rule. Quantitative real-time PCR showed that the transcription level of MiFAE in this microalga under nitrogen starvation was higher than that under normal condition. Prior to the ArA content accumulation, the transcription of MiFAE was enhanced, suggesting that it was possibly responsible for the ArA accumulation in this microalga cultured under nitrogen starvation conditions.

  11. Regulation of JH epoxide hydrolase versus JH esterase activity in the cabbage looper, Trichoplusia ni, by juvenile hormone and xenobiotics.

    PubMed

    Anspaugh, Douglas D; Roe, R Michael

    2005-05-01

    JH III esterase and JH III epoxide hydrolase (EH) in vitro activity was compared in whole body Trichoplusia ni homogenates at each stage of development (egg, larva, pupa and adult). While activity of both enzymes was detected at all ages tested, JH esterase was significantly higher than EH activity except for day three of the fifth (last) stadium (L5D3). For both enzymes, activity was highest in eggs. Adult virgin females had 4.6- and 4.0-fold higher JH esterase and EH activities, respectively, than adult virgin males. JH III metabolic activity also was measured in whole body homogenates of fifth stadium T. ni that were fed a nutritive diet (control) or starved on a non-nutritive diet of alphacel, agar and water. With larvae that were starved for 6, 28 and 52 h, EH activity per insect equivalent was 48%, 5% and 1%, respectively, of the control insects. At the same time points, JH esterase activity levels in starved T. ni were 29%, 4% and 3% of that of insects fed the nutritive diet. Selected insect hormones and xenobiotics were administered topically or orally to fifth stadium larvae for up to 52 h, and the effects on whole body EH and JH esterase activity analyzed. JH III increased the JH III esterase activity as high as 2.2-fold, but not the JH III EH activity. The JH analog, methoprene, increased both JH esterase and EH activity as high as 2.5-fold. The JH esterase inhibitor, 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP), had no impact on EH activity. The epoxides trans- and cis-stilbene oxide (TSO and CSO) in separate experiments increased the EH activity approximately 2.0-fold. TSO did not alter JH esterase levels when topically applied, but oral administration reduced activity to 70% of the control at 28 h, and then increased the activity 1.8-fold at 52 h after the beginning of treatment. CSO had no effect on JH esterase activity. Phenobarbital increased EH activity by 1.9-fold, but did not change JH esterase levels. Clofibrate and cholesterol 5alpha,6alpha

  12. Cholesterol esterase inhibitory activity of bioactives from leaves of Mangifera indica L

    PubMed Central

    Gururaja, G. M.; Mundkinajeddu, Deepak; Dethe, Shekhar M.; Sangli, Gopala K.; Abhilash, K.; Agarwal, Amit

    2015-01-01

    Background: In the earlier studies, methanolic extract of Mangifera indica L leaf was exhibited hypocholesterol activity. However, the bioactive compounds responsible for the same are not reported so far. Objective: To isolate the bioactive compounds with hypocholesterol activity from the leaf extract using cholesterol esterase inhibition assay which can be used for the standardization of extract. Materials and Methods: The leaf methanolic extract of M. indica (Sindoora variety) was partitioned with ethyl acetate and chromatographed on silica gel to yield twelve fractions and the activity was monitored by using cholesterol esterase inhibition assay. Active fractions were re-chromatographed to yield individual compounds. Results and Discussion: A major compound mangiferin present in the extract was screened along with other varieties of mango leaves for cholesterol esterase inhibition assay. However, the result indicates that compounds other than mangiferin may be active in the extract. Invitro pancreatic cholesterol esterase inhibition assay was used for bioactivity guided fractionation (BAGF) to yield bioactive compound for standardization of extract. Bioactivity guided fractionation afford the active fraction containing 3b-taraxerol with an IC50 value of 0.86μg/ml. Conclusion: This study demonstrates that M. indica methanol extract of leaf have significant hypocholesterol activity which is standardized with 3b-taraxerol, a standardized extract for hypocholesterol activity resulted in development of dietary supplement from leaves of Mangifera indica. PMID:26692750

  13. Usefulness of Leukocyte Esterase Test Versus Rapid Strep Test for Diagnosis of Acute Strep Pharyngitis

    PubMed Central

    2015-01-01

    Objective: A study to compare the usage of throat swab testing for leukocyte esterase on a test strip(urine dip stick-multi stick) to rapid strep test for rapid diagnosis of Group A Beta hemolytic streptococci in cases of acute pharyngitis in children. Hypothesis: The testing of throat swab for leukocyte esterase on test strip currently used for urine testing may be used to detect throat infection and might be as useful as rapid strep. Methods: All patients who come with a complaint of sore throat and fever were examined clinically for erythema of pharynx, tonsils and also for any exudates. Informed consent was obtained from the parents and assent from the subjects. 3 swabs were taken from pharyngo-tonsillar region, testing for culture, rapid strep & Leukocyte Esterase. Results: Total number is 100. Cultures 9(+); for rapid strep== 84(-) and16 (+); For LE== 80(-) and 20(+) Statistics: From data configuration Rapid Strep versus LE test don’t seem to be a random (independent) assignment but extremely aligned. The Statistical results show rapid and LE show very agreeable results. Calculated Value of Chi Squared Exceeds Tabulated under 1 Degree Of Freedom (P<.0.0001) reject Null Hypothesis and Conclude Alternative Conclusions: Leukocyte esterase on throat swab is as useful as rapid strep test for rapid diagnosis of strep pharyngitis on test strip currently used for urine dip stick causing acute pharyngitis in children. PMID:27335975

  14. Evolution and homologous recombination of the hemagglutinin-esterase gene sequences from porcine torovirus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of the present study was to gain new insights into the evolution, homologous recombination and selection pressures imposed on the porcine torovirus (PToV), by examining changes in the hemagglutinin-esterase (HE) gene. The most recent common ancestor of PToV was estimated to have emerge...

  15. Phylogenetic classification of Aureobasidium pullulans strains for production of feruloyl esterase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to phylogenetically classify diverse strains of A. pullulans and determine their production of feruloyl esterase. Seventeen strains from the A. pullulans literature were phylogenetically classified. Phenotypic traits of color variation and endo-ß-1,4-xylanase overproduction were as...

  16. Esterase detoxification of acetylcholinesterase inhibitors using human liver samples in vitro

    EPA Science Inventory

    Organophosphate (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxification can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON1) are consider...

  17. Tissue-specific inhibition and recovery of esterase activities in Lumbricus terrestris experimentally exposed to chlorpyrifos.

    PubMed

    Vejares, Sandra González; Sabat, Pablo; Sanchez-Hernandez, Juan C

    2010-04-01

    Exposure and effect assessment of organophosphate (OP) pesticides generally involves the use of cholinesterase (ChE) inhibition. In earthworm, this enzyme activity is often measured in homogenates from the whole organism. Here we examine the tissue-specific response of ChE and carboxylesterase (CE) activities in Lumbricus terrestris experimentally exposed to chlorpyrifos-spiked field soils. Esterases were measured in different gut segments and in the seminal vesicles of earthworms following acute exposure (2 d) to the OP and during 35d of a recovery period. We found that inhibition of both esterase activities was dependent on the tissue. Cholinesterase activity decreased in the pharynx, crop, foregut and seminal vesicles in a concentration-dependent way, whereas CE activity (4-nitrophenyl valerate) was strongly inhibited in these tissues. Gizzard CE activity was not inhibited by the OP, even an increase of enzyme activity was evident during the recovery period. These results suggest that both esterases should be determined jointly in selected tissues of earthworms. Moreover, the high levels of gut CE activity and its inhibition and recovery dynamic following OP exposure suggest that this esterase could play an important role as an enzymatic barrier against OP uptake from the ingested contaminated soil. PMID:20045489

  18. Total esterase activity in human saliva: Validation of an automated assay, characterization and behaviour after physical stress.

    PubMed

    Tecles, Fernando; Tvarijonaviciute, Asta; De Torre, Carlos; Carrillo, José M; Rubio, Mónica; García, Montserrat; Cugat, Ramón; Cerón, José J

    2016-07-01

    Although saliva has esterase activity, this activity has not been characterized or studied in individuals subjected to physical stress. The aim of this report was to develop and validate an automated spectrophotometric assay for total esterase activity measurement in human saliva, as well as to study the contribution of different enzymes on this activity and its behaviour under physical stress in healthy subjects. The assay used 4-nitrophenyl acetate as substrate and was precise, accurate and provided low limits of detection and quantification. Inhibition with diisopropylfluorophosphate showed that cholinesterase, carboxylesterase and cholesterol esterase contributions not represented more than 20% of total esterase. Addition of standards of lipase and albumin to saliva samples showed that both proteins significantly contributed to esterase activity only when equal or higher than 11.6 IU/L and 250 μg/mL, respectively. Western blot analyses showed absence of paraoxonase-1 and high amount of carbonic anhydrase-VI. The high affinity of purified carbonic anhydrase-VI for the substrate supported a major contribution of this enzyme. Total esterase activity and alpha-amylase was measured in saliva samples from 12 healthy male students before and after participation in an indoor football match. The activity significantly increased after match and positively correlated with salivary alpha-amylase. This method could be used as a biomarker of physical stress in humans, with carbonic anhydrase-VI being the esterase that contributed more to the activity of the assay. PMID:27045801

  19. Increasing the reaction rate of hydroxynitrile lyase from Hevea brasiliensis toward mandelonitrile by copying active site residues from an esterase that accepts aromatic esters.

    PubMed

    von Langermann, Jan; Nedrud, David M; Kazlauskas, Romas J

    2014-09-01

    The natural substrate of hydroxynitrile lyase from rubber tree (HbHNL, Hevea brasiliensis) is acetone cyanohydrin, but synthetic applications usually involve aromatic cyanohydrins such as mandelonitrile. To increase the activity of HbHNL toward this unnatural substrate, we replaced active site residues in HbHNL with the corresponding ones from esterase SABP2 (salicylic acid binding protein 2). Although this enzyme catalyzes a different reaction (hydrolysis of esters), its natural substrate (methyl salicylate) contains an aromatic ring. Three of the eleven single-amino-acid-substitution variants of HbHNL reacted more rapidly with mandelonitrile. The best was HbHNL-L121Y, with a kcat 4.2 times higher and high enantioselectivity. Site-saturation mutagenesis at position 121 identified three other improved variants. We hypothesize that the smaller active site orients the aromatic substrate more productively. PMID:25044660

  20. Enhancing the Thermostability of Feruloyl Esterase EstF27 by Directed Evolution and the Underlying Structural Basis.

    PubMed

    Cao, Li-chuang; Chen, Ran; Xie, Wei; Liu, Yu-huan

    2015-09-23

    To improve the thermostability of EstF27, two rounds of random mutagenesis were performed. A thermostable mutant, M6, with six amino acid substitutions was obtained. The half-life of M6 at 55 °C is 1680 h, while that of EstF27 is 0.5 h. The Kcat/Km value of M6 is 1.9-fold higher than that of EstF27. The concentrations of ferulic acid released from destarched wheat bran by EstF27 and M6 at their respective optimal temperatures were 223.2 ± 6.8 and 464.8 ± 11.9 μM, respectively. To further understand the structural basis of the enhanced thermostability, the crystal structure of M6 is determined at 2.0 Å. Structural analysis shows that a new disulfide bond and hydrophobic interactions formed by the mutations may play an important role in stabilizing the protein. This study not only provides us with a robust catalyst, but also enriches our knowledge about the structure-function relationship of feruloyl esterase. PMID:26329893

  1. Esterase SeE of Streptococcus equi ssp. equi is a Novel Non-specific Carboxylic Ester Hydrolase

    PubMed Central

    Xie, Gang; Liu, Mengyao; Zhu, Hui; Lei, Benfang

    2009-01-01

    Extracellular carboxylic ester hydrolases are produced by many bacterial pathogens and have been shown recently to be important for virulence of some pathogens. However, these hydrolases are poorly characterized in enzymatic activity. This study prepared and characterized the secreted ester hydrolase of Streptococcus equi ssp. equi (designated SeE for S. equi esterase). SeE hydrolyzes ethyl acetate, acetylsalicylic acid, and tributyrin but not ethyl butyrate. This substrate specificity pattern does not match those of the three conventional types of non-specific carboxylic ester hydrolases (carboxylesterases, arylesterases, and acetylesterases). To determine whether SeE has lipase activity, a number of triglycerides and vinyl esters were tested in SeE-catalyzed hydrolysis. SeE does not hydrolyze triglycerides and vinyl esters of long chain carboxylic acids nor display interfacial activation, indicating that SeE is not a lipase. Like the conventional carboxylesterases, SeE is inhibited by diisopropylfluorophosphate. These findings indicate that SeE is a novel non-specific carboxylic ester hydrolase that has broader substrate specificity than the conventional carboxylesterases. PMID:19054107

  2. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus.

    PubMed

    Ewis, Hosam E; Abdelal, Ahmed T; Lu, Chung-Dar

    2004-03-31

    Screening of the genomic libraries of Geobacillus stearothermophilus ATCC12980 and ATCC7954 for esterase/lipase activity led to the isolation of two positive clones. The results of subclonings and sequence analyses identified two genes, est30 and est55, encoding two different carboxylesterases, and genetic rearrangement in the est55 locus was revealed from genomic comparison. The est30 gene encodes a polypeptide of 248 amino acids with a calculated molecular mass of 28338 Da, and the est55 gene encodes a polypeptide of 499 amino acids with a calculated molecular mass of 54867 Da. Both enzymes were purified to near homogeneity from recombinant strains of Escherichia coli. The results of enzyme characterization showed that while both enzymes possess optimal activities with short chain acyl derivatives, Est55 has a broader pH tolerance (pH 8-9) and optimal temperature range (30-60 degrees C) than Est30. The activation energy of Est55 (35.7 kJ/mol) was found to be significantly lower than that of Est30 (101.9 kJ/mol). Both enzymes were stable at 60 degrees C for more than 2 h; at 70 degrees C, the half-life for thermal inactivation was 40 and 180 min for Est55 and Est30, respectively. With p-nitrophenyl caproate as the substrate and assayed at 60 degrees C, Est55 had K(m) and k(cat) values of 0.5 microM and 39758 s(-1) while Est30 exhibited values of 2.16 microM and 38 s(-1). Inhibition studies indicated that both Est30 and Est55 were strongly inhibited by phenylmethanesulfonyl fluoride, p-hydroxymercuribenzoate, and tosyl-l-phenylalanine, consistent with the proposed presence of Ser-His-Glu catalytic triad of the alpha/beta hydrolase family. The enzymatic properties of Est30 and Est55 reported here warrant the potential applications of these enzymes in biotechnological industries. PMID:15033540

  3. Use of 'small but smart' libraries to enhance the enantioselectivity of an esterase from Bacillus stearothermophilus towards tetrahydrofuran-3-yl acetate.

    PubMed

    Nobili, Alberto; Gall, Markus G; Pavlidis, Ioannis V; Thompson, Mark L; Schmidt, Marlen; Bornscheuer, Uwe T

    2013-07-01

    Two libraries of simultaneous double mutations in the active site region of an esterase from Bacillus stearothermophilus were constructed to improve the enantioselectivity in the hydrolysis of tetrahydrofuran-3-yl acetate. As screening of large mutant libraries is hampered by the necessity for GC/MS analysis, mutant libraries were designed according to a 'small but smart' concept. The design of focused libraries was based on data derived from a structural alignment of 3317 amino acid sequences of α/β-hydrolase fold enzymes with the bioinformatic tool 3DM. In this way, the number of mutants to be screened was substantially reduced as compared with a standard site-saturation mutagenesis approach. Whereas the wild-type esterase showed only poor enantioselectivity (E = 4.3) in the hydrolysis of (S)-tetrahydrofuran-3-yl acetate, the best variants obtained with this approach showed increased E-values of up to 10.4. Furthermore, some variants with inverted enantiopreference were found. PMID:23331978

  4. Molecular characterization of a new acetyl xylan esterase (AXEII) from edible straw mushroom Volvariella volvacea with both de-O-acetylation and de-N-acetylation activity.

    PubMed

    Liu, Xiufeng; Ding, Shaojun

    2009-06-01

    A new Volvariella volvacea gene encoding a carbohydrate esterase (CE) family 4 acetyl xylan esterase (AXE) (designated as VvaxeII) was cloned and characterized. The coded polypeptide had 253 amino acid residues, with the first 19 serving as a secretion signal peptide. The VvaxeII transcript levels were high when the fungus was grown on oat spelt xylan, cellobiose, microcrystalline cellulose, carboxymethyl-cellulose, lactose, galactose, and chitin from crab as carbon sources. The recombinant VvAXEII produced by expression of VvaxeII in Pichia pastoris exhibited activity toward acetylated oat spelt xylan and various chitinous substrates, but was totally inactive against artificial aromatic acetates such as beta-nitrophenyl, 4-methylumbelliferyl, and alpha-naphthyl acetates. Enzyme-catalyzed hydrolysis was maximal at pH 7.0 and 60 degrees C, and reciprocal plots revealed an apparent K(m) value of 1.42 mg mL(-1) and a V(max) value of 833 IU micromol(-1) protein using glycol chitin as a substrate. The recombinant VvAXEII requires activation by bivalent cations such as Co2+ and Mg2+. Interestingly, the recombinant VvAXEII showed no deacetylation activity to fully acetylated monosaccharides such as xylose tetraacetate. PMID:19473250

  5. Identification of distant co-evolving residues in antigen 85C from Mycobacterium tuberculosis using statistical coupling analysis of the esterase family proteins.

    PubMed

    Baths, Veeky; Roy, Utpal

    2011-05-01

    A fundamental goal in cellular signaling is to understand allosteric communication, the process by which signals originating at one site in a protein propagate reliably to affect distant functional sites. The general principles of protein structure that underlie this process remain unknown. Statistical coupling analysis (SCA) is a statistical technique that uses evolutionary data of a protein family to measure correlation between distant functional sites and suggests allosteric communication. In proteins, very distant and small interactions between collections of amino acids provide the communication which can be important for signaling process. In this paper, we present the SCA of protein alignment of the esterase family (pfam ID: PF00756) containing the sequence of antigen 85C secreted by Mycobacterium tuberculosis to identify a subset of interacting residues. Clustering analysis of the pairwise correlation highlighted seven important residue positions in the esterase family alignments. These residues were then mapped on the crystal structure of antigen 85C (PDB ID: 1DQZ). The mapping revealed correlation between 3 distant residues (Asp38, Leu123 and Met125) and suggests allosteric communication between them. This information can be used for a new drug against this fatal disease. PMID:23554685

  6. Design of green magneto-fluorescent γ-Fe2O3-methyldopa conjugate nanocrystal as a targeted probe for monitoring of esterase activity.

    PubMed

    Shahabadi, Nahid; Maghsudi, Maryam; Nemati, Leila

    2015-08-01

    One of the most important aspects of the biological systems is the retention of HSA activity. It is known that serum albumin, in addition to ligand binding capabilities, possesses some enzymatic properties such as esterase activity with p-nitrophenyl acetate substrate. The aim of this study was to synthesize and characterize the mono-dispersed magneto-fluorescent methyldopa coated (MNPs-MDP) which provides a unique opportunity to control and monitor the biological interactions by using magnetic force. An Organic fluorophore methyldopa (2-amino-3-(3,4-dihydroxyphenyl)-2-methyl acid, propanoic) (MDP) was introduced into γ-Fe2O3 particles and made the fluorescent and stable colloidal nanocrystals. As a biological host, human serum albumin (HSA) was chosen which is a major constituent of soluble human blood plasma proteins and is therefore considered as a suitable target for nanoparticle-protein interaction studies. MDP-γ-Fe2O3 nanocrystals showed inherent properties including excellent water solubility, and longtime stability against aggregation, biocompatibility and multifunctional surface rich in carboxyl groups. In addition, we tried to assess the influence of PMDP-γ-Fe2O3 binding on the activity of HSA. Such MDP-γ-Fe2O3 showed an increase in esterase activity in comparison with the free HSA. This method therefore provides a unique platform for preserving the protein structure and conformation. PMID:26093233

  7. Förster resonance energy transfer studies of luminescent gold nanoparticles functionalized with ruthenium(II) and rhenium(I) complexes: modulation via esterase hydrolysis.

    PubMed

    Leung, Frankie Chi-Ming; Tam, Anthony Yiu-Yan; Au, Vonika Ka-Man; Li, Mei-Jin; Yam, Vivian Wing-Wah

    2014-05-14

    A number of ruthenium(II) and rhenium(I) bipyridine complexes functionalized with lipoic acid moieties have been synthesized and characterized. Functionalization of gold nanoparticles with these chromophoric ruthenium(II) and rhenium(I) complexes has resulted in interesting supramolecular assemblies with Förster resonance energy transfer (FRET) properties that could be modulated via esterase hydrolysis. The luminescence of the metal complex chromophores was turned on upon cleavage of the ester bond linkage by esterase to reduce the efficiency of FRET quenching. The prepared nanoassembly conjugates have been characterized by transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy, and emission spectroscopy. The quenching mechanism has also been studied by transient absorption and time-resolved emission decay measurements. The FRET efficiencies were found to vary with the nature of the chromophores and the length of the spacer between the donor (transition metal complexes) and the acceptor (gold nanoparticles). PMID:24754668

  8. Gel-electrophoretic identification of hen brain neurotoxic esterase, labelled with tritiated di-isopropyl phosphorofluoridate.

    PubMed Central

    Williams, D G; Johnson, M K

    1981-01-01

    The particulate fraction from hen brain was labelled with [3H]di-isopropyl phosphorofluoridate (DiPF) and separated by polyacrylamide-gel electrophoresis. Four radioactive protein bands (1--4) of molecular weights 155000, 92000, 60000, and 30000 were resolved. Most of the labelling of bands 2, 3 and 4 was inhibited by preincubation with Paraoxon. The residue in band 4 was sensitive to pH 5.2. Successive treatments with Paraoxon and pH 5.2 resulted in the abolition of bands 3 and 4. Bands 1 and 2 contained one and two polypeptides respectively, whose labelling was sensitive to Mipafox, but one, in band 2, was sensitive to higher concentrations of Paraoxon. The concentrations of the other two polypeptides were 6.7 and 1.95 pmol of DiPF bound/g of brain in bands 1 and 2 respectively. Both were as sensitive to Mipafox as neurotoxic esterase and were also sensitive to phenyl benzylcarbamate. 4-Nitrophenyl di-n-pentylphosphinate given in vivo inhibited neurotoxic esterase and the labelling of the band-1 polypeptide by 82% and 84% respectively, but inhibited the labelling of the band 2 polypeptide by 51%. The phosphinate in vitro produced 98% inhibition of the labelling of the band-1 polypeptide, with only 26% inhibition of the band-2 polypeptide, under conditions sufficient to inhibit neurotoxic esterase totally. Both neurotoxic esterase and the band-1 polypeptide were found in the forebrain at 1.74-fold their concentration in the rest of the brain, whereas the band-2 polypeptide was uniformly distributed. The evidence indicates that the Mipafox-sensitive polypeptide in band 1 is the [3H]DiPF-labelled active-site subunit of neurotoxic esterase. The catalytic-centre activity of the enzyme for phenyl valerate hydrolysis was found to be 2.6 x 10(5) min-1. PMID:7340807

  9. Association of esterases with insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Gordon, Jennifer R; Ottea, James

    2012-06-01

    The southern house mosquito, Culex quinquefasciatus Say, is a competent vector of human disease and an important target of mosquito abatement programs. However, these management programs have been compromised by development of insecticide resistance. In the current study, susceptibilities to naled and resmethrin, two adulticides used in mosquito abatement, were monitored using a topical and contact bioassay, respectively, in five field- collected populations of C. quinquefasciatus (MARC, HOOD1, HOOD2, MINLOVE, and THIB). Frequencies of resistance, measured as survival after treatment with discriminating concentrations (i.e., sufficient to kill > 90% of a reference susceptible strain) were high (88.0-96.8%) in all field collections treated with naled, but were variable (3.3-94.2%) with resmethrin. In addition, esterase activities in mosquitoes from these collections were quantified using alpha-naphthyl acetate and ranged from 1.08 to 3.39 micromol alpha-naphthol produced min(-1) mg prot(-1). Heightened activities were associated with decreased insecticide susceptibility in HOOD1, THIB, and MINLOVE but not HOOD2. Esterases were visualized using native polyacrylamide gel electrophoresis, and intra- and interstrain differences in banding patterns were detected. In addition, esterases from MINLOVE mosquitoes were more numerous and intensely staining when compared with those from a laboratory-susceptible strain. Finally, naled synergized the toxicity of resmethrin in populations with decreased insecticide susceptibility and increased esterase activity by 2.5-(MINLOVE) to three-fold (THIB). Results from this study will allow management strategies for populations of C. quinquefasciatus to be optimized, and provide a foundation for further studies exploring use of esterase inhibitors as synergists of pyrethroid toxicity. PMID:22812138

  10. Structure of human NAPE-PLD: regulation of fatty-acid ethanolamide biosynthesis by bile acids

    PubMed Central

    Magotti, Paola; Bauer, Inga; Igarashi, Miki; Babagoli, Masih; Marotta, Roberto; Piomelli, Daniele; Garau, Gianpiero

    2015-01-01

    SUMMARY The fatty-acid ethanolamides (FAEs) are lipid mediators present in all organisms and involved in highly conserved biological functions such as innate immunity, energy balance and stress control. They are produced from membrane N-acylphosphatidylethanolamines (NAPEs) and include agonists for G protein-coupled receptors (e.g. cannabinoid receptors) and nuclear receptors (e.g. PPAR-α). Here we report the crystal structure of human NAPE-hydrolyzing phospholipase D (NAPE-PLD) at 2.65 Å resolution, a membrane enzyme that catalyzes FAE formation in mammals. NAPE-PLD forms homodimers partly separated by an internal ~9 Å-wide channel and uniquely adapted to associate with phospholipids. A hydrophobic cavity provides an entryway for NAPE into the active site, where a binuclear Zn2+ center orchestrates its hydrolysis. Bile acids bind with high affinity to selective pockets in this cavity, enhancing dimer assembly and enabling catalysis. These elements offer multiple targets for the design of small-molecule NAPE-PLD modulators with potential applications in inflammation and metabolic disorders. PMID:25684574

  11. Comparative study of human intestinal and hepatic esterases as related to enzymatic properties and hydrolizing activity for ester-type drugs.

    PubMed

    Inoue, M; Morikawa, M; Tsuboi, M; Ito, Y; Sugiura, M

    1980-08-01

    In attempts to determine the exact role of intestinal esterase in the body, we purified esterases from human intestinal mucosa and liver, and compared the enzymatic properties and substrate specificities with those of purified esterases. Esterase from human liver was purified 58-fold, by treatment with butanol, DE-52 and DEAE Sephadex A-50 column chromatographies, Sephadex G-200 gel filtration, and isoelectric focusing. The purified preparation showed a single band by polyacylamide gel electrophoresis. The molecular weights of intestinal and hepatic esterases were determined to be 53,000-55,000 and 180,000, respectively, by gel filtration on Sephadex G-200. The activity of the purified intestinal and hepatic esterases was strongly inhibited by diethyl-p-nitrophenyl phosphate and diisopropyl fluorophosphate, and was not inhibited by eserine sulfate and p-chloromercuribenzoate. Moreover, the purified esterases hydrolyzed ester-type drugs such as aspirin, clofibrate, indanyl carbenicillin and procaine. Hepatic esterase had properties similar to those of intestinal esterase with respect to the sensitivity to organophosphate and the substrate specificity. However, the two purified esterases differed in properties such as molecular weight, isoelectric point, thermostability and optimal pH. PMID:7206363

  12. Polypeptide having acetyl xylan esterase activity and uses thereof

    SciTech Connect

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  13. Fumaric acid esters prevent the NLRP3 inflammasome-mediated and ATP-triggered pyroptosis of differentiated THP-1 cells.

    PubMed

    Miglio, Gianluca; Veglia, Eleonora; Fantozzi, Roberto

    2015-09-01

    Fumaric acid esters (FAEs) exert therapeutic effects in patients with psoriasis and multiple sclerosis, however their mode of action remains elusive. Pyroptosis is a caspase-1-dependent pro-inflammatory form of programmed cell death, mediated by the activation of inflammasomes. To understand the pharmacological basis of the therapeutic effects of FAEs, the anti-pyroptotic activity of dimethyl fumarate (DMF) and its hydrolysis metabolite monomethyl fumarate (MMF) was studied in a model of NLRP3 inflammasome-mediated pyroptosis of human macrophages. Phorbol myristate acetate-differentiated THP-1 cells were exposed to lipopolysaccharide (5 μg/ml; 4h), then pulsed with ATP (5mM; 1h). MMF, DMF, or parthenolide (positive control) were added 1h before the ATP pulse. The pyroptotic cell death was evaluated by morphological examination and quantified by measuring the lactate dehydrogenase leakage. The ATP-triggered death of THP-1 cells (60.4 ± 4.0%) was significantly (P<0.01) prevented by DMF, in a time- and concentration-dependent manner (pIC50 and maximal effect were 6.6 and 67.6 ± 1.2%, respectively). MMF was less efficacious than DMF. These effects were accompanied by a decreased intracellular activation of caspase-1 and interleukin-1β release from ATP-treated cells, thus suggesting that FAEs antagonise the effects of ATP by preventing the activation of the pyroptotic molecular cascade leading to cell death. These results indicate that FAEs are endowed with anti-pyroptotic activity, which may contribute to their therapeutic effects. PMID:26096886

  14. Evolution of the Alpha-Esterase Duplication within the Montana Subphylad of the Virilis Species Group of Drosophila

    PubMed Central

    Baker, William K.

    1980-01-01

    Previous studies on linkage disequilibrium involving four tightly linked genes that code for the alpha-esterases of Drosophila montana suggest that these loci arose from a primitive esterase gene by gene duplication, followed by tandem duplication (Roberts and Baker 1973). We have examined the esterase variants in the closely related species, lacicola, flavomontana and borealis. These studies reveal that borealis has only a single esterase locus, and flavomontana may have only two loci. Cytological studies, using aceto-orcein staining and Hoechst fluorescence of squashes of ganglion chromosomes, reveal acrocentric Y chromosomes for all six species of the montana phylad, with the exception of borealis, which has the primitive rod-shaped Y chromosome. These studies provide evidence against the hypothesis (Stone, Guest and Wilson 1960) that borealis and flavomontana are derived from montana, but support Throckmorton's (1978) conclusion of the early divergence of the former two species. This phylogenetic relationship supports our contention that the difference in the number of esterase genes with active alleles between borealis and montana is based on an increase in the number of genes coding for the alpha-esterases, rather than the retention in borealis of three genes with null alleles. PMID:17249016

  15. Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance

    PubMed Central

    Jackson, Colin J.; Liu, Jian-Wei; Carr, Paul D.; Younus, Faisal; Coppin, Chris; Meirelles, Tamara; Lethier, Mathilde; Pandey, Gunjan; Ollis, David L.; Russell, Robyn J.; Weik, Martin; Oakeshott, John G.

    2013-01-01

    Insect carboxylesterases from the αEsterase gene cluster, such as αE7 (also known as E3) from the Australian sheep blowfly Lucilia cuprina (LcαE7), play an important physiological role in lipid metabolism and are implicated in the detoxification of organophosphate (OP) insecticides. Despite the importance of OPs to agriculture and the spread of insect-borne diseases, the molecular basis for the ability of α-carboxylesterases to confer OP resistance to insects is poorly understood. In this work, we used laboratory evolution to increase the thermal stability of LcαE7, allowing its overexpression in Escherichia coli and structure determination. The crystal structure reveals a canonical α/β-hydrolase fold that is very similar to the primary target of OPs (acetylcholinesterase) and a unique N-terminal α-helix that serves as a membrane anchor. Soaking of LcαE7 crystals in OPs led to the capture of a crystallographic snapshot of LcαE7 in its phosphorylated state, which allowed comparison with acetylcholinesterase and rationalization of its ability to protect insects against the effects of OPs. Finally, inspection of the active site of LcαE7 reveals an asymmetric and hydrophobic substrate binding cavity that is well-suited to fatty acid methyl esters, which are hydrolyzed by the enzyme with specificity constants (∼106 M−1 s−1) indicative of a natural substrate. PMID:23733941

  16. Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication.

    PubMed

    Li, Weiwei; Zhu, Zixiang; Cao, Weijun; Yang, Fan; Zhang, Xiangle; Li, Dan; Zhang, Keshan; Li, Pengfei; Mao, Ruoqing; Liu, Xiangtao; Zheng, Haixue

    2016-07-01

    The enzymatic activities of esterase D (ESD) are involved in many human diseases. However, no antiviral property of ESD has been described to date. Foot-and-mouth disease virus (FMDV) is the etiological agent of foot-and-mouth disease. In this study, we showed that FMDV infection triggered ESD expression. Overexpression of ESD significantly suppressed FMDV replication and knockdown of ESD expression enhanced virus replication, showing an essential antiviral role of ESD. Furthermore, we found that Sendai-virus-induced interferon (IFN) signaling was enhanced by upregulation of ESD, and ESD promoted activation of the IFN-β promoter simulated by IFN regulatory factor (IRF)3 or its upstream molecules (retinoic acid-inducible gene-I, melanoma differentiation-associated protein 5, virus-induced signaling adaptor and TANK binding kinase 1). Detailed analysis revealed that ESD protein enhanced IRF3 phosphorylation during FMDV infection. Overexpression of ESD also promoted the expression of various antiviral interferon-stimulated genes (ISGs) and knockdown of ESD impaired the expression of these antiviral genes during FMDV infection. Our findings demonstrate a new mechanism evolved by ESD to enhance type I IFN signal transduction and suppress viral replication during FMDV infection. PMID:27267271

  17. Factor IX Amagasaki: A new mutation in the catalytic domain resulting in the loss of both coagulant and esterase activities

    SciTech Connect

    Miyata, Toshiyuki; Iwanaga, Sadaaki ); Sakai, Toshiyuki; Sugimoto, Mitsuhiko; Naka, Hiroyuki; Yamamoto, Kazukuni; Yoshioka, Akira; Fukui, Hiromu ); Mitsui, Kotoko; Kamiya, Kensyu; Umeyama, Hideaki )

    1991-11-26

    Factor IX Amagasaki (AMG) is a naturally occurring mutant of factor IX having essentially no coagulant activity, even though normal levels of antigen are detected in plasma. Factor IX AMG was purified from the patient's plasma by immunoaffinity chromatography with an anti-factor IX monoclonal antibody column. Factor IX AMG was cleaved normally by factor VIIa-tissue factor complex, yielding a two-chain factor IXa. Amino acid composition and sequence analysis of one of the tryptic peptides isolated from factor IX AMG revealed that Gly-311 had been replaced by Glu. The authors identified a one-base substitution of guanine to adenine in exon VIII by amplifying exon VIII using the polymerase chain reaction method and sequencing the product. This base mutation also supported the replacement of Gly-311 by Glu. In the purified system, factor IXa AMG did not activate for factor X in the presence of factor VIII, phospholipids, and Ca{sup 2+}, and no esterase activity toward Z-Arg-p-nitrobenzyl ester was observed. The model building of the serine protease domain of factor IXa suggests that the Gly-311 {yields} Glu exchange would disrupt the specific conformational state in the active site environment, resulting in the substrate binding site not forming properly. This is the first report to show the experimental evidence for importance of a highly conserved Gly-142 (chymotrypsinogen numbering) located in the catalytic site of mammalian serine proteases so far known.

  18. Cloning and Characterization of a Novel Esterase from Rhodococcus sp. for Highly Enantioselective Synthesis of a Chiral Cilastatin Precursor

    PubMed Central

    Zhang, Yan; Pan, Jiang; Luan, Zheng-Jiao; Park, Sunghoon

    2014-01-01

    A novel nonheme chloroperoxidase (RhEst1), with promiscuous esterase activity for enantioselective hydrolysis of ethyl (S)-2,2-dimethylcyclopropanecarboxylate, was identified from a shotgun library of Rhodococcus sp. strain ECU1013. RhEst1 was overexpressed in Escherichia coli BL21(DE3), purified to homogeneity, and functionally characterized. Fingerprinting analysis revealed that RhEst1 prefers para-nitrophenyl (pNP) esters of short-chain acyl groups. pNP esters with a cyclic acyl moiety, especially that with a cyclobutanyl group, were also substrates for RhEst1. The Km values for methyl 2,2-dimethylcyclopropanecarboxylate (DmCpCm) and ethyl 2,2-dimethylcyclopropane carboxylate (DmCpCe) were 0.25 and 0.43 mM, respectively. RhEst1 could serve as an efficient hydrolase for the bioproduction of optically pure (S)-2,2-dimethyl cyclopropane carboxylic acid (DmCpCa), which is an important chiral building block for cilastatin. As much as 0.5 M DmCpCe was enantioselectively hydrolyzed into (S)-DmCpCa, with a molar yield of 47.8% and an enantiomeric excess (ee) of 97.5%, indicating an extremely high enantioselectivity (E = 240) of this novel and unique biocatalyst for green manufacturing of highly valuable chiral chemicals. PMID:25239898

  19. A New Strategy for Fluorogenic Esterase Probes Displaying Low Levels of Non-specific Hydrolysis.

    PubMed

    Kim, Sungwoo; Kim, Hyunjin; Choi, Yongdoo; Kim, Youngmi

    2015-06-26

    A new design for fluorescence probes of esterase activity that features a carboxylate-side pro-fluorophore is demonstrated with boron dipyrromethene (BODIPY)-based probes 1 a and 1 b. Because the design relies on the enzyme-catalyzed hydrolysis of an ester group that is not electronically activated, these probes exhibit a stability to background hydrolysis that is far superior to classical alcohol-side profluorophore-based probes, large signal-to-noise ratios, reduced sensitivity to pH variations, and high enzymatic reactivity. The utility of probe 1 a was established with a real-time fluorescence imaging experiment of endogenous esterase activity that does not require washing of the extracellular medium. PMID:26033618

  20. Crystal structure of an acetyl esterase complexed with acetate ion provides insights into the catalytic mechanism.

    PubMed

    Uechi, Keiko; Kamachi, Saori; Akita, Hironaga; Mine, Shouhei; Watanabe, Masahiro

    2016-08-26

    We previously reported the crystal structure of an acetyl esterase (TcAE206) belonging to carbohydrate esterase family 3 from Talaromyces cellulolyticus. In this study, we solved the crystal structure of an S10A mutant of TcAE206 complexed with an acetate ion. The acetate ion was stabilized by three hydrogen bonds in the oxyanion hole instead of a water molecule as in the structure of wild-type TcAE206. Furthermore, the catalytic triad residue His182 moved 0.8 Å toward the acetate ion upon substrate entering the active site, suggesting that this movement is necessary for completion of the catalytic reaction. PMID:27329813

  1. Esterase mediated resistance in deltamethrin resistant reference tick colony of Rhipicephalus (Boophilus) microplus.

    PubMed

    Gupta, Snehil; Ajith Kumar, K G; Sharma, Anil Kumar; Nagar, Gaurav; Kumar, Sachin; Saravanan, B C; Ravikumar, Gandham; Ghosh, Srikant

    2016-06-01

    Monitoring of acaricide resistance is considered as one of the important facets of integrated tick management. In an attempt of development of resistance monitoring indicators, in the present study two reference tick lines of Rhipicephalus (Boophilus) microplus maintained in the Entomology laboratory, Indian Veterinary Research Institute (IVRI), Izatnagar, India, were studied to determine the possible contributing factors involved in development of resistance to deltamethrin. Electrophoretic profiling of esterase enzymes detected high activities of EST-1 in reference resistant tick colony designated as IVRI-IV whereas it was not detectable in reference susceptible IVRI-I line of R. (B.) microplus. Esterases were further characterized as carboxylesterase or acetylcholinesterase based on inhibitor study using PMSF, eserine sulphate, malathion, TPP and copper sulphate. It was concluded that an acetylcholinesterase, EST-1, possibly plays an important role for development of deltamethrin resistance in IVRI-IV colony of R. (B.) microplus. PMID:26979585

  2. Is Esterase-P Encoded by a Cryptic Pseudogene in Drosophila Melanogaster?

    PubMed Central

    Balakirev, E. S.; Ayala, F. J.

    1996-01-01

    We have amplified and sequenced the gene encoding Esterase-P (Est-P) in 10 strains of Drosophila melanogaster. Three premature termination codons occur in the coding region of the gene in two strains. This observation, together with other indirect evidence, leads us to propose that Est-P may be a pseudogene in D. melanogaster. Est-P would be a ``cryptic'' pseudogene, in the sense that it retains intact the coding sequence (without stop codons and other alterations usually observed in pseudogenes) in most D. melanogaster strains. We conjecture that the β-esterase cluster may consist in other Drosophila species of functional and nonfunctional genes. We also conjecture that the rarity of detected pseudogenes in Drosophila may be due to the difficulty of discovering them, because most of them are cryptic. PMID:8978040

  3. Biocatalytic synthesis of poly(δ-valerolactone) using a thermophilic esterase from archaeoglobus fulgidus as catalyst.

    PubMed

    Cao, Hong; Han, Haobo; Li, Guangquan; Yang, Jiebing; Zhang, Lingfei; Yang, Yan; Fang, Xuedong; Li, Quanshun

    2012-01-01

    The ring-opening polymerization of δ-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(δ-valerolactone) was produced in 97% monomer conversion, with a number-average molecular weight of 2225 g/mol, in toluene at 70 °C for 72 h. This paper has produced a new biocatalyst for the synthesis of poly(δ-valerolactone), and also deeper insight has been gained into the mechanism of thermophilic esterase-catalyzed ring-opening polymerization. PMID:23202895

  4. Isolation and Characterization of a Novel Cold-Adapted Esterase, MtEst45, from Microbulbifer thermotolerans DAU221

    PubMed Central

    Lee, Yong-Suk

    2016-01-01

    A novel esterase, MtEst45, was isolated from a fosmid genomic library of Microbulbifer thermotolerans DAU221. The encoding gene is predicted to have a mass of 45,564 Da and encodes 495 amino acids, excluding a 21 amino acid signal peptide. MtEst45 showed a low amino acid identity (approximately 23–24%) compared with other lipolytic enzymes belonging to Family III, a closely related bacterial lipolytic enzyme family. MtEst45 also showed a conserved GXSXG motif, G131IS133YG135, which was reported as active site of known lipolytic enzymes, and the putative catalytic triad composed of D237 and H265. Because these mutants of MtEst45, which was S133A, D237N, and H265L, had no activity, these catalytic triad is deemed essential for the enzyme catalysis. MtEst45 was overexpressed in Escherichia coli BL21 (DE3) and purified via His-tag affinity chromatography. The optimal pH and temperature of MtEst45 were estimated to be 8.17 and 46.27°C by response surface methodology, respectively. Additionally, MtEst45 was also active between 1 and 15°C. The optimal hydrolysis substrate for MtEst45 among p-nitrophenyl esters (C2–C18) was p-nitrophenyl butyrate, and the Km and Vmax values were 0.0998 mM and 550 μmol/min/mg of protein, respectively. MtEst45 was strongly inhibited by Hg2+, Zn2+, and Cu2+ ions; by phenylmethanesulfonyl fluoride; and by β-mercaptoethanol. Ca2+ did not affect the enzyme's activity. These biochemical properties, sequence identity, and phylogenetic analysis suggest that MtEst45 represents a novel and valuable bacterial lipolytic enzyme family and is useful for biotechnological applications. PMID:26973604

  5. Polymorphism of salivary esterase and alpha-amylase in the Greek population.

    PubMed

    Petalopoulos, A; Fousteri, M; Kouvatsi, A; Triantaphyllidis, C

    1993-01-01

    The genetic polymorphism of two salivary enzymes (esterase and alpha-amylase) was studied in individuals from eight districts of Greece. The pooled gene frequencies were: SetS = 0.63, SetF = 0.37, AMY1 = 0.87, AMY2 = 0.10, AMY3 = 0.02, and AMY4 = 0.01. There was no intrapopulation heterogeneity, while there was a significant difference between the Greeks and the few other European populations studied. PMID:7507080

  6. Genetic diversity analysis of Capsicum spp germplasm bank accessions based on α/β-esterase polymorphism.

    PubMed

    Monteiro, E R; Bronzato, A R; Orasmo, G R; Lopes, A C A; Gomes, R L F; Mangolin, C A; Machado, M F P S

    2013-01-01

    Genetic diversity and structure were analyzed in 10 accessions belonging to Banco Ativo de Germoplasma de Capsicum located at Federal University of Piauí in northwestern Brazil that receives pepper samples grown in community gardens in various regions and Brazilian states. Selections were made from seeds of C. chinense (4 accessions), C. annuum (5 accessions), and C. baccatum (1 accession). Samples consisting of leaves were collected from 4-10 plants of each accession (a total of 85 plants). Native polyacrylamide gel electrophoresis was used to identify α- and β-esterase polymorphisms. Polymorphism was clearly detected in 5 loci. Sixteen alleles were found at 5 α/β-esterase loci of the three Capsicum species. In the C. chinense samples, the highest HO and HE values were 0.3625 and 0.4395, respectively, whereas in C. annuum samples, HO and HE values were 0.2980 and 0.3310, respectively; the estimated HO and HE values in C. chinense samples were higher than those detected in C. annuum samples. A deficit of homozygous individuals was found in C. chinense (FIS = -0.6978) and C. annuum (FIS = 0.7750). Genetic differentiation between C. chinense and C. annuum at these loci was high (FST = 0.1867) indicating that C. chinense and C. annuum are genetically structured species for α/β- esterase isozymes. The esterase analysis showed high genetic diversity among the C. chinense and C. annuum samples and very high genetic differentiation (FST = 0.6321) among the C. chinense and C. annuum samples and the C. baccatum accession. PMID:23661440

  7. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism

    PubMed Central

    Song, Hao; Qi, Jianxun; Khedri, Zahra; Diaz, Sandra; Yu, Hai; Chen, Xi; Varki, Ajit; Shi, Yi; Gao, George F.

    2016-01-01

    Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV) was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF) of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV) HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health. PMID:26816272

  8. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism.

    PubMed

    Song, Hao; Qi, Jianxun; Khedri, Zahra; Diaz, Sandra; Yu, Hai; Chen, Xi; Varki, Ajit; Shi, Yi; Gao, George F

    2016-01-01

    Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV) was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF) of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV) HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health. PMID:26816272

  9. Quorum-Sensing Mechanisms Mediated by Farnesol in Ophiostoma piceae: Effect on Secretion of Sterol Esterase

    PubMed Central

    de Salas, Felipe

    2015-01-01

    Ophiostoma piceae CECT 20416 is a dimorphic wood-staining fungus able to produce an extracellular sterol-esterase/lipase (OPE) that is of great biotechnological interest. In this work, we have studied the morphological change of this fungus from yeast to hyphae, which is associated with the cell density-related mechanism known as quorum sensing (QS), and how this affects the secretion of OPE. The data presented here confirm that the molecule E,E-farnesol accumulates as the cell number is growing within the population. The exogenous addition of this molecule or spent medium to the cultures increased the extracellular activity of OPE 2.5 times. This fact was related not to an increase in microbial biomass or in the expression of the gene coding for OPE but to a marked morphological transition in the cultures. Moreover, the morphological transition also occurred when a high cell density was inoculated into the medium. The results suggest that E,E-farnesol regulates through QS mechanisms the morphological transition in the dimorphic fungus O. piceae and that it is associated with a higher extracellular esterase activity. Furthermore, identification and transcriptional analysis of genes tup1 and cyr1, which are involved in the response, was carried out. Here we report enhanced production of a sterol-esterase/lipase of biotechnological interest by means of QS mechanisms. These results may be useful in increasing the production of secreted enzymes of other dimorphic fungi of biotechnological interest. PMID:25888179

  10. Novel Cold-Adapted Esterase MHlip from an Antarctic Soil Metagenome.

    PubMed

    Berlemont, Renaud; Jacquin, Olivier; Delsaute, Maud; La Salla, Marcello; Georis, Jacques; Verté, Fabienne; Galleni, Moreno; Power, Pablo

    2013-01-01

    An Antarctic soil metagenomic library was screened for lipolytic enzymes and allowed for the isolation of a new cytosolic esterase from the a/b hydrolase family 6, named MHlip. This enzyme is related to hypothetical genes coding esterases, aryl-esterases and peroxydases, among others. MHlip was produced, purified and its activity was determined. The substrate profile of MHlip reveals a high specificity for short p-nitrophenyl-esters. The apparent optimal activity of MHlip was measured for p-nitrophenyl-acetate, at 33 °C, in the pH range of 6-9. The MHlip thermal unfolding was investigated by spectrophotometric methods, highlighting a transition (Tm) at 50 °C. The biochemical characterization of this enzyme showed its adaptation to cold temperatures, even when it did not present evident signatures associated with cold-adapted proteins. Thus, MHlip adaptation to cold probably results from many discrete structural modifications, allowing the protein to remain active at low temperatures. Functional metagenomics is a powerful approach to isolate new enzymes with tailored biophysical properties (e.g., cold adaptation). In addition, beside the ever growing amount of sequenced DNA, the functional characterization of new catalysts derived from environment is still required, especially for poorly characterized protein families like α/b hydrolases. PMID:24832657

  11. Novel Cold-Adapted Esterase MHlip from an Antarctic Soil Metagenome

    PubMed Central

    Berlemont, Renaud; Jacquin, Olivier; Delsaute, Maud; Salla, Marcello La; Georis, Jacques; Verté, Fabienne; Galleni, Moreno; Power, Pablo

    2013-01-01

    An Antarctic soil metagenomic library was screened for lipolytic enzymes and allowed for the isolation of a new cytosolic esterase from the α/β hydrolase family 6, named MHlip. This enzyme is related to hypothetical genes coding esterases, aryl-esterases and peroxydases, among others. MHlip was produced, purified and its activity was determined. The substrate profile of MHlip reveals a high specificity for short p-nitrophenyl-esters. The apparent optimal activity of MHlip was measured for p-nitrophenyl-acetate, at 33 °C, in the pH range of 6–9. The MHlip thermal unfolding was investigated by spectrophotometric methods, highlighting a transition (Tm) at 50 °C. The biochemical characterization of this enzyme showed its adaptation to cold temperatures, even when it did not present evident signatures associated with cold-adapted proteins. Thus, MHlip adaptation to cold probably results from many discrete structural modifications, allowing the protein to remain active at low temperatures. Functional metagenomics is a powerful approach to isolate new enzymes with tailored biophysical properties (e.g., cold adaptation). In addition, beside the ever growing amount of sequenced DNA, the functional characterization of new catalysts derived from environment is still required, especially for poorly characterized protein families like α/β hydrolases. PMID:24832657

  12. Continuous monitoring of cholesterol oleate hydrolysis by hormone-sensitive lipase and other cholesterol esterases.

    PubMed

    Ali, Yassine Ben; Carrière, Frédéric; Verger, Robert; Petry, Stefan; Muller, Günter; Abousalham, Abdelkarim

    2005-05-01

    Hormone-sensitive lipase (HSL) contributes importantly to the hydrolysis of cholesteryl ester in steroidogenic tissues, releasing the cholesterol required for adrenal steroidogenesis. HSL has broad substrate specificity, because it hydrolyzes triacylglycerols (TAGs), diacylglycerols, monoacylglycerols, and cholesteryl esters. In this study, we developed a specific cholesterol esterase assay using cholesterol oleate (CO) dispersed in phosphatidylcholine and gum arabic by sonication. To continuously monitor the hydrolysis of CO by HSL, we used the pH-stat technique. For the sake of comparison, the hydrolysis of CO dispersion was also tested using other cholesteryl ester-hydrolyzing enzymes. The specific activities measured on CO were found to be 18, 100, 27, and 3 micromol/min/mg for HSL, cholesterol esterase from Pseudomonas species, Candida rugosa lipase-3, and cholesterol esterase from bovine pancreas, respectively. The activity of HSL on CO is approximately 4- to 5-fold higher than on long-chain TAGs. In contrast, with all other enzymes tested, the rates of TAG hydrolysis were higher than those of CO hydrolysis. The relatively higher turnover of HSL on CO observed in vitro adds further molecular insight on the physiological importance of HSL in cholesteryl ester catabolism in vivo. Thus, HSL could be considered more as a cholesteryl ester hydrolase than as a TAG lipase. PMID:15716583

  13. Genetics of a tissue esterase polymorphism (Est-6) in the rabbit (Oryctolagus cuniculus).

    PubMed

    van Zutphen, L F; den Bieman, M G; von Deimling, O; Fox, R R

    1987-06-01

    Genetic analysis of a polymorphic tissue esterase revealed a new locus (Est-6) with two alleles (Est-6a and Est-6b) on linkage group VI of the rabbit. Est-6 is closely linked to the Est-1,2,4 cluster. Esterase of Est-6 is found in many organs, particularly in liver and small intestine, but not in erythrocytes and serum. Est-6 esterase hydrolyzes alpha-naphthyl acetate and butyrate, naphthol AS-D acetate, indoxyl acetate, and butyrate as well as 5-bromoindoxyl acetate, N-acetyl-L-alanine-alpha-naphthyl ester but not 4-methylumbelliferyl acetate and fluorescein diacetate. The enzyme is inhibited by bis-p-nitrophenyl phosphate and eserine but not by p-chloromercuribenzoate. It was classified as a carboxylesterase (EC 3.1.1.1). Based on chromosomal localization, tissue distribution, substrate specificity, inhibitor sensitivity, and range of pI's, rabbit Est-6 is assumed to be homologous with mouse Es-7. PMID:3619880

  14. Hormone-sensitive lipase is a cholesterol esterase of the intestinal mucosa.

    PubMed

    Grober, Jacques; Lucas, Stéphanie; Sörhede-Winzell, Maria; Zaghini, Isabelle; Mairal, Aline; Contreras, Juan-Antonio; Besnard, Philippe; Holm, Cecilia; Langin, Dominique

    2003-02-21

    The identity of the enzymes responsible for lipase and cholesterol esterase activities in the small intestinal mucosa is not known. Because hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters, we sought to determine whether HSL could be involved. HSL mRNA and protein were detected in all segments of the small intestine by Northern and Western blot analyses, respectively. Immunocytochemistry experiments revealed that HSL was expressed in the differentiated enterocytes of the villi and was absent in the undifferentiated cells of the crypt. Diacylglycerol lipase and cholesterol esterase activities were found in the different segments. Analysis of gut from HSL-null mice showed that diacylglycerol lipase activity was unchanged in the duodenum and reduced in jejunum. Neutral cholesterol esterase activity was totally abolished in duodenum, jejunum, and ileum of HSL-null mice. Analysis of HSL mRNA structure showed two types of transcripts expressed in equal amounts with alternative 5'-ends transcribed from two exons. This work demonstrates that HSL is expressed in the mucosa of the small intestine. The results also reveal that the enzyme participates in acylglycerol hydrolysis in jejunal enterocytes and cholesteryl ester hydrolysis throughout the small intestine. PMID:12482847

  15. Morphological and physiological changes in esterase and lipid peroxidation of two bean cultivars pre-soaked with potassium nitrate under salt stress.

    PubMed

    Shaddad, Mohamed A K; Abd El-Baki, Gaber K; Doaa, Mostafa; Al-Shimaa, Rafat

    2015-12-01

    Two broad bean cultivars (Vicia faba CV Nobaria3 and Vicia faba CV Sakha3) were obtained from Mallwi Agriculture Research Center, El Minia Governorate, Egypt. The seeds were divided into two groups, the first group soaked with distilled water, while the second group were soaked with 3 mM KNO₃, respectively, for 4 hours. Seeds were sown and left to grow for 3 weeks then treated with different concentrations of NaCl (0.0, 40, 80, 120 and 160 mM) by top irrigation, then they left to grow further for 65 days from sowing. Plant samples were collected for some measurements: leaf area, plant height, root length, fresh and dry weight, photosynthetic pigments, carotenoids, soluble sugars, soluble proteins, total free amino acids, esterase enzyme, as well as MDA (malondialdehyde) content. Salinity reduced both fresh and dry weight in two broad bean cultivars, this reduction were more pronounced in Sakha3 than Nobaria3. Seed pre-soaking with KNO₃resulted in enhancement of fresh and dry weight production in both cultivars especially at 40 mM NaCl. Photosynthetic pigments were substantially affected by salt treatment while the carotenoids were increased, seed pre-soaking with KNO₃improved these components. The soluble sugars, amino acids as well as soluble proteins showed various responses with increasing salinity in the cultivars, seed pre-soaking with KNO₃has improved these parameters to some extent. The shoots of two cultivars exhibited significant accumulation of MDA, compared to roots exposed to the highest salinity levels. Pre-soaking seeds with KNO₃did not improve MDA in shoots but enhanced it in roots, however, in most cases still lower than the absolute control. The assessment of the esterase isozyme profiles on 7.5% native polyacrylamide gel revealed the presence of 13 isoforms in two faba bean plants in response to KNO₃pre-soaking and treatments with different concentrations of NaCl. PMID:26616374

  16. Hereditary angioedema and pregnancy: successful management of recurrent and frequent attacks of angioedema with C1-inhibitor concentrate, danazol and tranexamic acid – a case report

    PubMed Central

    Milingos, D S; Madhuvrata, P; Dean, J; Shetty, A; Campbell, D M

    2009-01-01

    Hereditary angioedema (HAE) is a rare but potentially life-threatening condition caused by deficiency of C1 esterase inhibitor. It is characterized by subcutaneous swelling in any part of the skin, gastrointestinal and respiratory tracts. We present the case of a pregnant woman with known HAE that deteriorated during pregnancy with frequent attacks that were managed successfully with danazol, tranexamic acid and regular intravenous administration of C1 esterase inhibitor.

  17. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson's Disease.

    PubMed

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G; Dagda, Ruben K; Domínguez-Solís, Carlos A; Dagda, Raul Y; Coronado-Ramírez, Cynthia K; Martínez-Martínez, Alejandro

    2016-01-01

    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson's disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  18. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway.

    PubMed

    Lin-Holderer, Jiemeng; Li, Lexiao; Gruneberg, Daniel; Marti, Hugo H; Kunze, Reiner

    2016-06-01

    Oxidative stress is a hallmark of ischemic stroke pathogenesis causing neuronal malfunction and cell death. Up-regulation of anti-oxidative genes through activation of the NF-E2-related transcription factor 2 (Nrf2) is one of the key mechanisms in cellular defense against oxidative stress. Fumaric acid esters (FAEs) represent a class of anti-oxidative and anti-inflammatory molecules that are already in clinical use for multiple sclerosis therapy. Purpose of this study was to investigate whether FAEs promote neuronal survival upon ischemia, and analyze putative underlying molecular mechanisms in neurons. Murine organotypic hippocampal slice cultures, and two neuronal cell lines were treated with dimethyl fumarate (DMF) and monomethyl fumarate (MMF). Ischemic conditions were generated by exposing cells and slice cultures to oxygen-glucose deprivation (OGD), and cell death was determined through propidium iodide staining. Treatment with both DMF and MMF immediately after OGD during reoxygenation strongly reduced cell death in hippocampal cultures ex vivo. Both DMF and MMF promoted neuronal survival in HT-22 and SH-SY5Y cell lines exposed to ischemic stress. DMF but not MMF activated the anti-oxidative Nrf2 pathway in neurons. Accordingly, Nrf2 knockdown in murine neurons abrogated the protective effect of DMF but not MMF. Moreover, FAEs did not activate the hypoxia-inducible factor (HIF) pathway suggesting that this pathway may not significantly contribute to FAE mediated neuroprotection. Our results may provide the basis for a new therapeutic approach to treat ischemic pathologies such as stroke with a drug that already has a broad safety record in humans. PMID:26801077

  19. Structural studies of a potent insect maturation inhibitor bound to the juvenile hormone esterase of Manduca sexta†‡

    PubMed Central

    Wogulis, Mark; Wheelock, Craig E.; Kamita, Shizuo G.; Hinton, Andrew C.; Whetstone, Paul A.; Hammock, Bruce D.; Wilson, David K.

    2008-01-01

    Juvenile hormone (JH) is an insect hormone containing an α,β unsaturated ester consisting of a small alcohol and long, hydrophobic acid. JH degradation is required for proper insect development. One pathway of this degradation is through juvenile hormone esterase (JHE), which cleaves the JH ester bond to produce methanol and JH acid. JHE is a member of the functionally divergent α/β-hydrolase family of enzymes, and is a highly efficient enzyme that cleaves JH at very low in vivo concentrations. We present here a 2.7 Å crystal structure of JHE from the tobacco hornworm Manduca sexta (MsJHE) in complex with the transition state analog inhibitor 3-octylthio-1,1,1-trifluoropropan-2-one (OTFP) covalently bound to the active site. This crystal structure, the first JHE structure reported, contains a long, hydrophobic binding pocket with the solvent inaccessible catalytic triad located at the end. The structure explains many of the interactions observed between JHE and its substrates and inhibitors, such as the preference for small alcohol groups and long hydrophobic backbones. The most potent JHE inhibitors identified to date contain a trifluoromethyl ketone (TFK) moiety and have a sulfur atom beta to the ketone. In this study, sulfur-aromatic interactions were observed between the sulfur atom of OTFP and a conserved aromatic residue in the crystal structure. Mutational analysis supported the hypothesis that these interactions contribute to the potency of sulfur-containing TFK inhibitors. Together these results clarify the binding mechanism of JHE inhibitors and provide useful observations for the development of additional enzyme inhibitors for a variety of enzymes. PMID:16566578

  20. Cloning, Expression and Characterization of a Thermostable Esterase HydS14 from Actinomadura sp. Strain S14 in Pichia pastoris

    PubMed Central

    Sriyapai, Pichapak; Kawai, Fusako; Siripoke, Somjai; Chansiri, Kosum; Sriyapai, Thayat

    2015-01-01

    A thermostable esterase gene (hydS14) was cloned from an Actinomadura sp. S14 gene library. The gene is 777 bp in length and encodes a polypeptide of 258 amino acid residues with no signal peptide, no N-glycosylation site and a predicted molecular mass of 26,604 Da. The encoded protein contains the pentapeptide motif (GYSLG) and catalytic triad (Ser88-Asp208-His235) of the esterase/lipase superfamily. The HydS14 sequence shows 46%–64% identity to 23 sequences from actinomycetes (23 α/β-hydrolases), has three conserved regions, and contains the novel motif (GY(F)SLG), which distinguishes it from other clusters in the α/β-hydrolase structural superfamily. A plasmid containing the coding region (pPICZαA-hydS14) was used to express HydS14 in Pichia pastoris under the control of the AOXI promoter. The recombinant HydS14 collected from the supernatant had a molecular mass of ~30 kDa, which agrees with its predicted molecular mass without N-glycosylation. HydS14 had an optimum temperature of approximately 70 °C and an optimum pH of 8.0. HydS14 was stable at 50 and 60 °C for 120 min, with residual activities of above 80% and above 90%, respectively, as well as 50% activity at pH 6.0–8.0 and pH 9.0, respectively. The enzyme showed higher activity with p-nitrophenyl-C2 and C4. The Km and Vmax values for p-nitrophenyl-C4 were 0.21 ± 0.02 mM and 37.07 ± 1.04 μmol/min/mg, respectively. The enzyme was active toward short-chain p-nitrophenyl ester (C2–C6), displaying optimal activity with p-nitrophenyl-C4 (Kcat/Km = 11.74 mM−1·S−1). In summary, HydS14 is a thermostable esterase from Actinomadura sp. S14 that has been cloned and expressed for the first time in Pichia pastoris. PMID:26075873

  1. Cloning, Expression and Characterization of a Thermostable Esterase HydS14 from Actinomadura sp. Strain S14 in Pichia pastoris.

    PubMed

    Sriyapai, Pichapak; Kawai, Fusako; Siripoke, Somjai; Chansiri, Kosum; Sriyapai, Thayat

    2015-01-01

    A thermostable esterase gene (hydS14) was cloned from an Actinomadura sp. S14 gene library. The gene is 777 bp in length and encodes a polypeptide of 258 amino acid residues with no signal peptide, no N-glycosylation site and a predicted molecular mass of 26,604 Da. The encoded protein contains the pentapeptide motif (GYSLG) and catalytic triad (Ser88-Asp208-His235) of the esterase/lipase superfamily. The HydS14 sequence shows 46%-64% identity to 23 sequences from actinomycetes (23 α/β-hydrolases), has three conserved regions, and contains the novel motif (GY(F)SLG), which distinguishes it from other clusters in the α/β-hydrolase structural superfamily. A plasmid containing the coding region (pPICZαA-hydS14) was used to express HydS14 in Pichia pastoris under the control of the AOXI promoter. The recombinant HydS14 collected from the supernatant had a molecular mass of ~30 kDa, which agrees with its predicted molecular mass without N-glycosylation. HydS14 had an optimum temperature of approximately 70 °C and an optimum pH of 8.0. HydS14 was stable at 50 and 60 °C for 120 min, with residual activities of above 80% and above 90%, respectively, as well as 50% activity at pH 6.0-8.0 and pH 9.0, respectively. The enzyme showed higher activity with p-nitrophenyl-C2 and C4. The Km and Vmax values for p-nitrophenyl-C4 were 0.21 ± 0.02 mM and 37.07 ± 1.04 μmol/min/mg, respectively. The enzyme was active toward short-chain p-nitrophenyl ester (C2-C6), displaying optimal activity with p-nitrophenyl-C4 (Kcat/Km = 11.74 mM(-1) · S(-1)). In summary, HydS14 is a thermostable esterase from Actinomadura sp. S14 that has been cloned and expressed for the first time in Pichia pastoris. PMID:26075873

  2. Glycerol Ester Hydrolase Activity of Lactic Acid Bacteria

    PubMed Central

    Oterholm, Anders; Ordal, Z. John; Witter, Lloyd D.

    1968-01-01

    Seventeen strains of lactic acid bacteria were assayed for their glycerol ester hydrolase activity by using an improved agar-well technique, and eight strains by determining the activity in cell-free extracts using a pH-stat procedure. All cultures tested showed activity and hydrolyzed tributyrin more actively than they did tricaproin. The cell extract studies demonstrated that the cells contained intracellular esterases and lipases. The culture supernatant fluid was without activity. The lipase and the esterase differed in their relative activity to each other in the different extracts and in the ease by which they could be freed from the cellular debris. It is suggested that the lipase of these organisms is an endoenzyme and the esterase an ectoenzyme. PMID:5649866

  3. Characterization of general esterases from methyl parathion-resistant and -susceptible populations of western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Zhou, Xuguo; Scharf, Michael E; Meinke, Lance J; Chandler, Laurence D; Siegfried, Blair D

    2003-12-01

    A consistent correlation between elevated esterase activity and methyl parathion resistance among Nebraska western corn rootworm, Diabrotica virgifera virgifera LeConte, populations has previously been documented. Characterization of general esterase activity using naphtholic esters as model substrates indicated that differences between resistant and susceptible strains could be maximized by optimizing assay conditions. The optimal conditions identified here were similar to those reported for other insect species. The majority of general esterase activity was found in the cytosolic fractions of resistant populations, whereas the activity was more evenly distributed between cytosolic and mitochondrial/nuclear fractions in the susceptible population. General esterase activity was predominately located in the adult thorax and abdomen. Although there were significant differences in general esterase activities between resistant and susceptible populations, the differences exhibited in single beetle activity assays did not provide sufficient discrimination to identify resistant individuals. In contrast, single larva activity assays provided greater discrimination and could be considered as an alternative to traditional bioassay techniques. PMID:14977127

  4. A cold-adapted carbohydrate esterase from the oil-degrading marine Bacterium Microbulbifer thermotolerans DAU221: gene cloning, purification, and characterization.

    PubMed

    Lee, Yong-Suk; Heo, Jae Bok; Lee, Je-Hoon; Choi, Yong-Lark

    2014-07-01

    A cold-adapted carbohydrate esterase, CEST, belonging to the carbohydrate esterase family 6, was cloned from Microbulbifer thermotolerans DAU221. CEST was composed of 307 amino acids with the first 22 serving as a secretion signal peptide. The calculated molecular mass and isoelectric point of the mature enzyme were 31,244 Da and pH 5.89, respectively. The catalytic triad consisted of residues Ser37, Glu192, and His281 in the conserved regions: GQSNMXG, QGEX(D/N), and DXXH. The three-dimensional structure of CEST revealed that CEST belongs to the α/β-class of protein consisted of a central six-stranded β-sheet flanked by eight α-helices. The recombinant CEST was purified by His-tag affinity chromatography and the characterization showed its optimal temperature and pH were 15°C and 8.0, respectively. Specifically, CEST maintained up to 70% of its enzyme activity when preincubated at 50°C or 60°C for 6 h, and 89% of its enzyme activity when preincubated at 70°C for 1h . The results suggest CEST belongs to group 3 of the cold-adapted enzymes. The enzyme activity was increased by Na(+) and Mg(2+) ions but was strongly inhibited by Cu(+) and Hg(2+) ions, at all ion concentrations. Using p-nitrophenyl acetate as a substrate, the enzyme had a Km of 0.278 mM and a kcat of 1.9 s(-1). Site-directed mutagenesis indicated that the catalytic triad (Ser37, Glu192, and His281) and Asp278 were essential for the enzyme activity. PMID:24690636

  5. Kinetic and structural relationships of transition monomeric and oligomeric carboxyl- and choline-esterases.

    PubMed

    Main, A R

    1983-01-01

    The kinetic and structural relationships of eight electrophoretically pure mammalian serum and liver serine carboxylesterases (CE) and cholinesterases (ChE) have been studied. Eight CE's and ChE's, which were fully resolved but only partially purified, provided additional information. Five of the electrophoretically pure esterases were monomeric, and of these, four belonged to a new and widely distributed class. These four monomeric esterases hydrolyzed choline esters, but at widely differing rates. Thus two were termed monomeric butyrylcholinesterases, mBuChE I and II, and two were monomeric CE's (mCE). The rabbit liver mCE was not a subunit of the oligomeric CE (oCE), although the oCE also hydrolyzed choline esters at a very low rate. The complex kinetics of the mCE's, mBuChE's, oCE's, and of the oligomeric BuChE's of horse and human serum could be interpreted according to a single reaction scheme involving an allosteric site and the equation derived from it. Thus activation and inhibition at high substrate concentrations, together with sigmoidal activity versus substrate concentration plots, all of which characterize the reactions of these esterases, could be interpreted by a single scheme and equation. Structural and kinetic comparisons showed a progressive transition of properties from the oCE's through the mCE's to the oBuChE's. One of the purified mCE's was from horse serum, and it exhibited physical and kinetic properties unlike those of the liver mCE's or oCE's. PMID:6339600

  6. B-esterase determination and organophosphate insecticide inhibitory effects in JEG-3 trophoblasts.

    PubMed

    Espinoza, Marlon; Rivero Osimani, Valeria; Sánchez, Victoria; Rosenbaum, Enrique; Guiñazú, Natalia

    2016-04-01

    The placenta and trophoblasts express several B-esterases. This family includes acethylcholinesterase (AChE), carboxylesterase (CES) and butyrylcholinesterase (BChE), which are important targets of organophosphate insecticide (OP) toxicity. To better understand OP effects on trophoblasts, B-esterase basal activity and kinetic behavior were studied in JEG-3 choriocarcinoma cell cultures. Effects of the OP azinphos-methyl (Am) and chlorpyrifos (Cp) on cellular enzyme activity were also evaluated. JEG-3 cells showed measurable activity levels of AChE and CES, while BChE was undetected. Recorded Km for AChE and CES were 0.33 and 0.26mM respectively. Native gel electrophoresis and RT-PCR analysis demonstrated CES1 and CES2 isoform expression. Cells exposed for 4 and 24h to the OP Am or Cp, showed a differential CES and AChE inhibition profiles. Am inhibited CES and AChE at 4h treatment while Cp showed the highest inhibition profile at 24h. Interestingly, both insecticides differentially affected CES1 and CES2 activities. Results demonstrated that JEG-3 trophoblasts express AChE, CES1 and CES2. B-esterase enzymes were inhibited by in vitro OP exposure, indicating that JEG-3 cells metabolization capabilities include phase I enzymes, able to bioactivate OP. In addition, since CES enzymes are important for medicinal drug activation/deactivation, OP exposure may interfere with trophoblast CES metabolization, probably being relevant in a co-exposure scenario during pregnancy. PMID:26790371

  7. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters.

    PubMed

    Martínez-Martínez, Mónica; Lores, Iván; Peña-García, Carlina; Bargiela, Rafael; Reyes-Duarte, Dolores; Guazzaroni, María-Eugenia; Peláez, Ana Isabel; Sánchez, Jesús; Ferrer, Manuel

    2014-03-01

    Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25-30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200-21 000 units g(-1) protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0-55 000 units g(-1) protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available. PMID:24418210

  8. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters

    PubMed Central

    Martínez-Martínez, Mónica; Lores, Iván; Peña-García, Carlina; Bargiela, Rafael; Reyes-Duarte, Dolores; Guazzaroni, María-Eugenia; Peláez, Ana Isabel; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25–30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200–21 000 units g−1 protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0–55 000 units g−1 protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available. PMID:24418210

  9. Benzoyl-L-arginine methyl ester (BAME)-esterase activity in human plasma during the gravidic-puerperal cycle.

    PubMed

    Salles Meirelles, R

    1977-01-01

    Benzoyl-L-arginine methyl ester (BAME)-esterase activity of plasma was measured in women going through the gravidic-puerperal cycle and compared with plasma of non-pregnant women. Plasma from women in the 36th to 40th week of pregnancy hydrolyzes BAME two times more rapidly than that from non-pregnant women. During pregnancy, BAME-esterase activity in plasma increases progressively up to the 40th week, decreases during labor, and after delivery reaches the same level as in non-pregnant women. The BAME-esterase activity of plasma was affected by the storage temperature, with differences demonstrable between -20 and -4 C and between pregnant and non-pregnant women. PMID:754510

  10. Crystallization and preliminary X-ray diffraction analysis of the glucuronoyl esterase catalytic domain from Hypocrea jecorina

    SciTech Connect

    Wood, S. J.; Li, X.-L.; Cotta, M. A.; Biely, P.; Duke, N. E. C.; Schiffer, M.; Pokkuluri, P. R.

    2008-04-01

    The catalytic domain of the glucuronoyl esterase from H. jecorina was overexpresssed, purified and crystallized in space group P2{sub 1}2{sub 1}2{sub 1}. X-ray diffraction data were collected to 1.9 Å resolution. The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was overexpresssed, purified and crystallized by the sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1} and X-ray diffraction data were collected to 1.9 Å resolution. This is the first enzyme with glucoronoyl esterase activity to be crystallized; its structure will be valuable in lignocellulose-degradation research.

  11. p-Nitrophenylacetate hydrolysis by honey bee esterases: kinetics and inhibition.

    PubMed

    Spoonamore, J E; Frohlich, D R; Wells, M A

    1993-03-01

    1. The kinetics and inhibition of p-nitrophenylacetate hydrolysis by cytosolic esterases of 1-day old female honey bees, Apis mellifera L., were studied. 2. The calculated values obtained were Km = 2.27 x 10(-5)M and Vmax = 2.48 x 10(-8) mol/s per mg protein. 3. The inhibition mechanisms examined for four organophosphorus insecticides were highly competitive in nature and based on competitive inhibition coefficients the order of toxicity was naled > dichlorvos > cis-mevinphos = trans-mevinphos. 4. Comparisons are made with the alfalfa leafcutting bee, Megachile rotundata (Fab). PMID:8498090

  12. Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake.

    PubMed

    Nagaraja, T N; Desiraju, T

    1994-05-01

    1. Very young and adult Wistar rats were given As5+, 5 mg arsenic kg-1 body weight day-1 (sodium arsenate). 2. Operant learning was tested in a Skinner box at the end of exposure and, in the case of developing animals, also after a recovery period. 3. Acetylcholine esterase (AChE) activity was estimated in discrete brain regions of these animals. 4. The animals exposed to arsenic took longer to acquire the learned behaviour and to extinguish the operant. AChE activity was inhibited in some regions of the brain. PMID:8043317

  13. Role of bifidobacteria in the hydrolysis of chlorogenic acid

    PubMed Central

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-01-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  14. Role of bifidobacteria in the hydrolysis of chlorogenic acid.

    PubMed

    Raimondi, Stefano; Anighoro, Andrew; Quartieri, Andrea; Amaretti, Alberto; Tomás-Barberán, Francisco A; Rastelli, Giulio; Rossi, Maddalena

    2015-02-01

    This study aimed to explore the capability of potentially probiotic bifidobacteria to hydrolyze chlorogenic acid into caffeic acid (CA), and to recognize the enzymes involved in this reaction. Bifidobacterium strains belonging to eight species occurring in the human gut were screened. The hydrolysis seemed peculiar of Bifidobacterium animalis, whereas the other species failed to release CA. Intracellular feruloyl esterase activity capable of hydrolyzing chlorogenic acid was detected only in B. animalis. In silico research among bifidobacteria esterases identified Balat_0669 as the cytosolic enzyme likely responsible of CA release in B. animalis. Comparative modeling of Balat_0669 and molecular docking studies support its role in chlorogenic acid hydrolysis. Expression, purification, and functional characterization of Balat_0669 in Escherichia coli were obtained as further validation. A possible role of B. animalis in the activation of hydroxycinnamic acids was demonstrated and new perspectives were opened in the development of new probiotics, specifically selected for the enhanced bioconversion of phytochemicals into bioactive compounds. PMID:25515139

  15. Functional characterization of a novel microbial esterase identified from the Indian Ocean and its use in the stereoselective preparation of (R)-methyl mandelate

    NASA Astrophysics Data System (ADS)

    Liang, Jiayuan; Sun, Aijun; Zhang, Yun; Deng, Dun; Wang, Yongfei; Ma, Sanmei; Hu, Yunfeng

    2016-03-01

    Genomic mining has identified a novel microbial alkaline esterase from the Indian Ocean. This esterase was overexpressed in E. coli BL21 (DE3) and further functionally characterized. Under optimal conditions (10 mmol/L substrate, pH 6.0, 2 h at 40 °C), this esterase can hydrolyze racemic methyl mandelate to (R)-methyl mandelate with very high optical purity (e.e. >99%) and yield (nearly 90%). Interestingly, the stereoselectivity of this esterase is opposite to that of two previously reported lipases that can generate (S)-methyl mandelate through the hydrolysis of racemic methyl mandelate. No organic solvents or other additives were required to optimize the optical purity and production of the final chiral product (R)-methyl mandelate, which can potentially simplify the production procedure of (R)-methyl mandelate catalyzed by esterase.

  16. Design and production of peptides mimicking the active site of serine esterases with covalent binding to the organophosphorous poison soman. Annual report, 1 July 1984-30 June 1985

    SciTech Connect

    Seltzman, H.H.

    1985-12-09

    The objective of this research program is to design, synthesize, and test peptides and peptide mimics that will scavange soman in vivo and thereby provide protection against this CW agent. The test compounds were designed to mimic the active site of serine esterases (AChE), which are the natural targets of soman, enabling them to react with soman and thus protect endogenous AChE. Cyclodextrins derivatized with peptide functional groups and their equivalents such as imidazole, histamine, ethylene diamine, diethylene triamine, catechol, and ethane dithiol were synthesized for testing. The synthesis of precursors to cyclohexapeptides containing histidine, serine, and aspartic acid, which are amino acids that have been implicated in the active site of numerous esterases, were pursued. Testing of the ability of alpha-, beta, and gamma-cyclodextrins to protect AChE frominactivation by soman was carried out in vitro. From this group of compounds, beta-cyclodextrin was observed to preserve the activity of AChE in a dose response manner achieving a 72.1% preservation of activity when present in 200,000 fold excess versus soman after only ten minutes incubation time (beta-cyclodextrin + soman). Neither alpha, nor gamma-cyclodextrin showed any protective effect at the same doses. The test results suggest that beta cyclodextrin is uniquely suited to scavange soman. Improved scavanging might be achieved with the modified cyclodextrins prepared above for testing.

  17. Insertion of an Esterase Gene into a Specific Locust Pathogen (Metarhizium acridum) Enables It to Infect Caterpillars

    PubMed Central

    Wang, Sibao; Fang, Weiguo; Wang, Chengshu; St. Leger, Raymond J.

    2011-01-01

    An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae) as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta) cuticle, M. robertsii up-regulates a gene (Mest1) that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta), while virulence to grasshoppers (Melanoplus femurrubrum) was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene. PMID:21731492

  18. Use of esterase activities for the detection of chemical neurotoxic agents.

    PubMed

    Manco, Giuseppe; Nucci, Roberto; Febbraio, Ferdinando

    2009-01-01

    The quest for a quick and easy detection of the neurotoxin levels in the environment has fostered the search for systems alternative to currently employed analytical methods such as spectrophotometer, gas-liquid chromatography, thin-layer chromatography, and more recently mass spectrometry. These drawbacks lead to intense research efforts to develop biosensor devices for the determination of these compounds. In this review, we present an overview of the actual development of research in neurotoxin detection by using enzymatic biosensors based on esterase activity, in particular cholinesterases, and carboxylesterases. Detection by enzymatic activity could be carried out measuring the hydrolysis products or the residual enzymatic activity after inhibition, using a transducer system that makes possible the correlation between the determined activity and the analyte concentration. Several transducer systems were adopted for the neurotoxins identification using esterases, including electrochemical, optical, conductimetric and piezoelectric procedures. The differences in the used transducer determine the final sensitivity and specificity of the biosensor. Moreover, a brief description of immobilization procedure, that is an important step in the biosensor development and could affect the final characteristic of biosensor (sensibility, stability, response time and reproducibility), was accomplished. Final considerations on advantages and problems, related to actual development of these technologies, and its prospective were discussed. PMID:19508179

  19. Purification and characterization of a pregastric esterase from a hygienized kid rennet paste.

    PubMed

    Calvo, M V; Fontecha, J

    2004-05-01

    Rennet pastes obtained by maceration of gastric tissues from suckling kids are used traditionally to produce some artisanal cheeses in Spain. Besides milk-clotting function, rennet pastes provide proteolytic activity and lipolytic system, essentially pregastric, necessary in the development of piquant flavor typical of these cheeses. A simple and reproducible procedure allows us to obtain a standardized rennet paste that posses the desired activity and is of good microbiological quality. Concomitantly, a kid pregastric esterase (KPGE) was purified to homogeneity. The purification procedure was based on an aqueous extract of hygienized rennet paste (HRP), which was chromatographed on DEAE-Sepharose Fast Flow then adsorbed on phenyl superose followed by a re-chromatography on the same column. The final enzymatic preparation, where the overall activity recovery was 3%, showed a molecular mass of 53 kDa. The highest activity was determined on p-nitrophenyl butyrate, but marked hydrolysis was also detected on beta-naphthyl caprylate. In contrast, low activity on tributyrin (substrate under emulsion form) was detected, thus confirming the esterase character of purified enzyme. PMID:15290959

  20. Crystallization and preliminary crystallographic studies of the metalloglycoprotein esterase A4 using a baculovirus expression system

    SciTech Connect

    Hiraki, Toshiki; Shibayama, Naoya; Yoon, Young-Ho; Yun, Kyung-Mook; Hamamoto, Toshiro; Tame, Jeremy R. H.; Park, Sam-Yong

    2007-09-01

    Esterase A4 (EA4) is a timer protein found in diapause eggs of the silkworm Bombyx mori. The gene for this metalloglycoprotein was cloned from B. mori eggs and expressed using a baculovirus expression system in silkworm pupae. Crystals of the purified protein have been grown that diffract to beyond 2.1 Å resolution at 100 K using synchrotron radiation. Esterase A4 (EA4) is a timer protein found in diapause eggs of the silkworm Bombyx mori. The gene for this metalloglycoprotein was cloned from B. mori eggs and expressed using a baculovirus expression system in silkworm pupae. Crystals of the purified protein have been grown that diffract to beyond 2.1 Å resolution at 100 K using synchrotron radiation. The protein crystals belong to space group P2{sub 1}, with unit-cell parameters a = 47.1, b = 73.9, c = 47.4 Å, β = 104.1°. With one dimer per asymmetric unit, the crystal volume per unit protein weight (V{sub M}) is 2.3 Å{sup 3} Da{sup −1} and the solvent content is 47%.

  1. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    PubMed Central

    Juhl, P Benjamin; Trodler, Peter; Tyagi, Sadhna; Pleiss, Jürgen

    2009-01-01

    Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i) enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii) enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii) substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand), although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria. PMID:19493341

  2. Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny.

    PubMed

    Jaaska, V

    1980-11-01

    Evolutionary and ontogenetic variation of six seedling esterases of independent genetic control is studied in polyploid wheats and their diploid relatives by means of polyacrylamide gel electrophoresis. Four of them are shown to be controlled by homoeoallelic genes in chromosomes of third, sixth and seventh homoeologous groups.The isoesterase electrophoretic data are considered supporting a monophyletic origin of both the primitive tetraploid and the primitive hexaploid wheat from which contemporary taxa of polyploid wheats have emerged polyphyletically and polytopically through recurrent introgressive hybridization and accumulation of mutations. Ancestral diploids belonging or closely related to Triticum boeoticum, T. urartu, Aegilops speltoides and Ae. tauschii ssp. strangulata are genetically the most suitable genome donors of polyploid wheats. Diploids of the Emarginata subsection of the section Sitopsis, Aegilops longissima s.str., Ae. sharonensis, Ae. searsii and Ae. bicornis, are unsuitable for the role of the wheat B genome donors, being all fixed for the esterase B and D electromorphs different from those of tetraploid wheats. PMID:24305916

  3. Dynamic mechanical analysis and esterase degradation of dentin adhesives containing a branched methacrylate

    PubMed Central

    Park, Jong-Gu; Ye, Qiang; Topp, Elizabeth M.; Lee, Chi H.; Kostoryz, Elisabet L.; Misra, Anil; Spencer, Paulette

    2010-01-01

    A study of the dynamic mechanical properties and the enzymatic degradation of new dentin adhesives containing a multifunctional methacrylate are described. Adhesives contained 2-hydroxyethyl methacrylate (HEMA), 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane (BisGMA), and a new multifunctional methacrylate with a branched side chain-trimethylolpropane mono allyl ether dimethacrylate (TMPEDMA). Adhesives were photopolymerized in the presence of 0, 8 and 16 wt% water to simulate wet bonding conditions in the mouth and compared to control adhesives. The degree of conversion as a function of irradiation time was comparable for experimental and control adhesives. In dynamic mechanical analysis (DMA), broad tan δ peaks were obtained for all samples, indicating that the polymerized networks are heterogeneous; comparison of the full-width-at-half-maximum values obtained from the tan δ curves indicated increased heterogeneity for samples cured in the presence of water and/or containing TMPEDMA. The experimental adhesive showed higher Tg and higher rubbery modulus indicating increased crosslink density as compared to the control. The improvement in esterase resistance afforded by adhesives containing the TMPEDMA is greater when this material is photopolymerized in the presence of water, suggesting better performance in the moist environment of the mouth. The improved esterase resistance of the new adhesive could be explained in terms of the densely crosslinked network structure and/or the steric hindrance of branched alkyl side chains. PMID:19358261

  4. Functional Analysis of Esterase TCE2 Gene from Tetranychus cinnabarinus (Boisduval) involved in Acaricide Resistance

    PubMed Central

    Shi, Li; Wei, Peng; Wang, Xiangzun; Shen, Guangmao; Zhang, Jiao; Xiao, Wei; Xu, Zhifeng; Xu, Qiang; He, Lin

    2016-01-01

    The carmine spider mite, Tetranychus cinnabarinus is an important pest of crops and vegetables worldwide, and it has the ability to develop resistance against acaricides rapidly. Our previous study identified an esterase gene (designated TCE2) over-expressed in resistant mites. To investigate this gene’s function in resistance, the expression levels of TCE2 in susceptible, abamectin-, fenpropathrin-, and cyflumetofen-resistant strains were knocked down (65.02%, 63.14%, 57.82%, and 63.99%, respectively) via RNA interference. The bioassay data showed that the resistant levels to three acaricides were significantly decreased after the down-regulation of TCE2, indicating a correlation between the expression of TCE2 and the acaricide-resistance in T. cinnabarinus. TCE2 gene was then re-engineered for heterologous expression in Escherichia coli. The recombinant TCE2 exhibited α-naphthyl acetate activity (483.3 ± 71.8 nmol/mg pro. min−1), and the activity of this enzyme could be inhibited by abamectin, fenpropathrin, and cyflumetofen, respectively. HPLC and GC results showed that 10 μg of the recombinant TCE2 could effectively decompose 21.23% fenpropathrin and 49.70% cyflumetofen within 2 hours. This is the first report of a successful heterologous expression of an esterase gene from mites. This study provides direct evidence that TCE2 is a functional gene involved in acaricide resistance in T. cinnabarinus. PMID:26725309

  5. An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula.

    PubMed

    Ha, Chan Man; Escamilla-Trevino, Luis; Yarce, Juan Carlos Serrani; Kim, Hoon; Ralph, John; Chen, Fang; Dixon, Richard A

    2016-06-01

    Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species. PMID:27037613

  6. A self-calibrating PARACEST MRI contrast agent that detects esterase enzyme activity

    PubMed Central

    Li, Yuguo; Sheth, Vipul R.; Liu, Guanshu; Pagel, Mark D.

    2016-01-01

    The CEST effect of many PARACEST MRI contrast agents changes in response to a molecular biomarker. However, other molecular biomarkers or environmental factors can influence CEST, so that a change in CEST is not conclusive proof for detecting the biomarker. To overcome this problem, a second control CEST effect may be included in the same PARACEST agent, which is responsive to all factors that alter the first CEST effect except for the biomarker to be measured. To investigate this approach, a PARACEST MRI contrast agent was developed with one CEST effect that is responsive to esterase enzyme activity and a second control CEST effect. The ratio of the two CEST effects was independent of concentration and T1 relaxation, so that this agent was self-calibrating with respect to these factors. This ratiometric method was dependent on temperature and was influenced by MR coalescence as the chemical exchange rates approached the chemical shifts of the exchangable protons as temperature was increased. The two CEST effects also showed evidence of having different pH dependencies, so that this agent was not self-calibrating with respect to pH. Therefore, a self-calibrating PARACEST MRI contrast agent can more accurately detect a molecular biomarker such as esterase enzyme activity, as long as temperature and pH are within an acceptable physiological range and remain constant. PMID:21861282

  7. Crystallization and Preliminary X-ray Diffraction Analysis of the Glucuronoyl Esterase Catalytic Domain from Hypocrea jecorina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The catalytic domain of the glucuronoyl esterase from Hypocrea jecorina (anamorph Trichoderma reesei) was over-expressed, purified, and crystallized by sitting-drop vapor-diffusion method using 1.4 M sodium/potassium phosphate pH 6.9. Crystals had space group P212121 and X-ray diffraction data were...

  8. Overexpression of Drosophila juvenile hormone esterase binding protein results in anti-JH effects and reduced pheromone abundance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The titer of juvenile hormone (JH), which has wide ranging physiological effects in insects, is regulated in part by JH esterase (JHE). We show that overexpression in Drosophila melanogaster of the JHE binding protein, DmP29 results in a series of apparent anti-JH effects. We hypothesize that DmP29 ...

  9. Novel feruloyl esterase from Lactobacillus fermentum NRRL B-1932 and analysis of the recombinant enzyme produced in Escherichia coli.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using agar plates containing ethyl ferulate as the sole carbon source, 33 Lactobacillus strains were screened for feruloyl esterase (FE) activity. Among a dozen species showing a clearing zone on the opaque plate containing ethyl ferulate, Lactobacillus fermentum NRRL B-1932 demonstrated the stronge...

  10. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    PubMed Central

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J.

    2015-01-01

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600

  11. Statistical optimization of medium components and physicochemical parameters to simultaneously enhance bacterial growth and esterase production by Bacillus thuringiensis.

    PubMed

    Mazzucotelli, Cintia Anabela; Moreira, María del Rosario; Ansorena, María Roberta

    2016-01-01

    Bacillus thuringiensis is a genus extensively studied because of its high potential for biotechnological application, principally in biocontrol techniques. However, the optimization of esterase production by this strain has been scarcely studied. The aim of this work was to select and optimize the physicochemical and nutritional parameters that significantly influence the growth and esterase production of B. thuringiensis. To this purpose, 6 nutritional factors and 2 physicochemical parameters were evaluated using a Plackett-Burman design. Significant variables were optimized using a Box-Behnken design and through the desirability function to select the levels of the variables that simultaneously maximize microbial growth and esterase production. The optimum conditions resulting from simultaneous optimization of the responses under study were found to be 1 g/L glucose, 15 g/L peptone, and 3.25 g/L NaCl. Under these optimal conditions, it was possible to achieve a 2.5 log CFU/mL increase in bacterial growth and a 113-fold increase in esterase productivity, compared with minimal medium without agitation. PMID:26529589

  12. ISOLATION OF JUVENILE HORMONES ESTERASE AND ITS PARTIAL CDNA CLONE FROM THE BEETLE, TENEBRIO MOLITOR. (R825433)

    EPA Science Inventory

    Juvenile hormone esterase (JHE) plays an essential role in insect development. It is partially responsible for the clearance of juvenile hormone (JH) which regulates various aspects of insect development and reproduction. Because of its role in regulating JH titer, this enzyme...

  13. A tripartite fusion, FaeG-FedF-LT(192)A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection.

    PubMed

    Ruan, Xiaosai; Liu, Mei; Casey, Thomas A; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT(192)) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT(192)A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT(192)A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT(192)A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrial E. coli strains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea. PMID:21813665

  14. Combined effects of carbonation with heating and fatty acid esters on inactivation and growth inhibition of various bacillus spores.

    PubMed

    Klangpetch, Wannaporn; Nakai, Tomoe; Noma, Seiji; Igura, Noriyuki; Shimoda, Mitsuya

    2013-09-01

    The effects of carbonation treatment (1 to 5 MPa, 30 min) plus heat treatment (30 to 80°C, 30 min) in the presence of various fatty acid esters (FAEs; 0.05 and 0.1%, wt/vol) on counts of viable Bacillus subtilis spores were investigated. FAEs or carbonation alone had no inactivation or growth inhibition effects on B. subtilis spores. However, carbonation plus heat (CH; 80°C, 5 MPa, 30 min) in the presence of mono- and diglycerol fatty acid esters markedly decreased counts of viable spores, and the spore counts did not change during storage for 30 days. The greatest decrease in viable spore counts occurred in the presence of monoglycerol fatty acid esters. Under CH conditions, inactivation and/or growth inhibition occurred at only 80°C and increased with increasing pressure. The greatest decrease in spore counts (more than 4 log units) occurred with CH (80°C, 5 MPa, 30 min) in the presence of monoglycerol fatty acid esters. However, this treatment was less effective against Bacillus coagulans and Geobacillus stearothermophilus spores. PMID:23992501

  15. Analysing deltamethrin susceptibility and pyrethroid esterase activity variations in sylvatic and domestic Triatoma infestans at the embryonic stage

    PubMed Central

    Santo-Orihuela, Pablo Luis; Carvajal, Guillermo; Picollo, María Inés; Vassena, Claudia Viviana

    2013-01-01

    The aim of the present work was to study the deltamethrin susceptibility of eggs from Triatoma infestans populations and the contribution of pyrethroid esterases to deltamethrin degradation. Insects were collected from sylvatic areas, including Veinte de Octubre and Kirus-Mayu (Bolivia) and from domiciliary areas, including El Palmar (Bolivia) and La Pista (Argentina). Deltamethrin susceptibility was determined by dose-response bioassays. Serial dilutions of deltamethrin (0.0005-1 mg/mL) were topically applied to 12-day-old eggs. Samples from El Palmar had the highest lethal dose ratio (LDR) value (44.90) compared to the susceptible reference strain (NFS), whereas the Veinte de Octubre samples had the lowest value (0.50). Pyrethroid esterases were evaluated using 7-coumaryl permethrate (7-CP) on individually homogenised eggs from each population and from NFS. The El Palmar and La Pista samples contained 40.11 and 36.64 pmol/min/mg protein, respectively, and these values were statistically similar to NFS (34.92 pmol/min/mg protein) and different from Kirus-Mayu and Veinte de Octubre (27.49 and 22.69 pmol/min/mg protein, respectively). The toxicological data indicate that the domestic populations were resistant to deltamethrin, but no statistical contribution of 7-CP esterases was observed. The sylvatic populations had similar LDR values to NFS, but lower 7-CP esterase activities. Moreover, this is the first study of the pyrethroid esterases on T. infestans eggs employing a specific substrate (7-CP). PMID:24402155

  16. Leucocyte esterase, glucose and C-reactive protein in the diagnosis of prosthetic joint infections: a prospective study.

    PubMed

    De Vecchi, E; Villa, F; Bortolin, M; Toscano, M; Tacchini, L; Romanò, C L; Drago, L

    2016-06-01

    Analysis of joint fluid is of paramount importance for the diagnosis of prosthetic joint infections. Different markers of inflammation and/or infection in joint fluid have been proposed for diagnosis of these infections. In this study we evaluated the performance of leucocyte esterase, C-reactive protein (CRP) and glucose assays in synovial fluids from 129 patients with septic (n = 27) or aseptic (n = 102) prosthetic joint failure. Samples were collected in serum tubes and centrifuged to limit the presence of corpuscle interfering with the assays. Determinations of leucocyte esterase and glucose were carried out by means of enzymatic colorimetric reactions performed on strips for urine analysis. Tests were considered positive when graded + or ++ whereas traces or absence of colour were considered negative. CRP was measured using an automated turbidimetric method and considered suggestive for infections when >10 mg/L. Leucocyte esterase was positive in 25/27 infected patients and negative in 99/102 not infected patients (sensitivity 92.6%, specificity 97.0%). CRP was higher than the threshold in 22/27 infected patients and in 6/102 not infected patients (sensitivity: 81.5%; specificity: 94.1%) whereas glucose showed the lowest sensitivity (77.8%) and specificity (81.4%), being negative in 21/27 and 19/102 infected and not infected patients, respectively. CRP led to a correct diagnosis in 19 of 22 patients with discordant esterase and glucose results. In conclusion, evaluation of leucocyte esterase, glucose and CRP may represent a useful tool for rapid diagnosis of prosthetic joint infections. PMID:27040804

  17. Esterase detoxication of acetylcholinesterase inhibitors using human liver samples in vitro.

    PubMed

    Moser, Virginia C; Padilla, Stephanie

    2016-04-15

    Organophosphorus (OP) and N-methylcarbamate pesticides inhibit acetylcholinesterase (AChE), but differences in metabolism and detoxication can influence potency of these pesticides across and within species. Carboxylesterase (CaE) and A-esterase (paraoxonase, PON1) are considered factors underlying age-related sensitivity differences. We used an in vitro system to measure detoxication of AChE-inhibiting pesticides mediated via these esterases. Recombinant human AChE was used as a bioassay of inhibitor concentration following incubation with detoxifying tissue: liver plus Ca(+2) (to stimulate PON1s, measuring activity of both esterases) or EGTA (to inhibit PON1s, thereby measuring CaE activity). AChE inhibitory concentrations of aldicarb, chlorpyrifos oxon, malaoxon, methamidophos, oxamyl, paraoxon, and methylparaoxon were incubated with liver homogenates from adult male rat or one of 20 commercially provided human (11-83 years of age) liver samples. Detoxication was defined as the difference in inhibition produced by the pesticide alone and inhibition measured in combination with liver plus Ca(+2) or liver plus EGTA. Generally, rat liver produced more detoxication than did the human samples. There were large detoxication differences across human samples for some pesticides (especially malaoxon, chlorpyrifos oxon) but not for others (e.g., aldicarb, methamidophos); for the most part these differences did not correlate with age or sex. Chlorpyrifos oxon was fully detoxified only in the presence of Ca(+2) in both rat and human livers. Detoxication of paraoxon and methylparaoxon in rat liver was greater with Ca(+2), but humans showed less differentiation than rats between Ca(+2) and EGTA conditions. This suggests the importance of PON1 detoxication for these three OPs in the rat, but mostly only for chlorpyrifos oxon in human samples. Malaoxon was detoxified similarly with Ca(+2) or EGTA, and the differences across humans correlated with metabolism of p

  18. KINETICS AND MECHANISM OF INHIBITION OF SERINE ESTERASES BY FLUORINATED AMINOPHOSPHONATES

    PubMed Central

    Makhaeva, G.F.; Aksinenko, A.Y.; Sokolov, V.B.; Baskin, I.I.; Palyulin, V.A.; Zefirov, N.S.; Hein, N.D.; Kampf, J.W.; Wijeyesakere, S.J.; Richardson, R.J.

    2016-01-01

    This paper reviews previously published data and presents new results to address the hypothesis that fluorinated aminophosphonates (FAPs), (RO)2P(O)C(CF3)2NHS(O)2C6H5, R = alkyl, inhibit serine esterases by scission of the P-C bond. Kinetics studies demonstrated that FAPs are progressive irreversible inhibitors of acetylcholinesterase (AChE, EC 3.1.1.7.), butyrylcholinesterase (BChE, EC 3.1.1.8.), carboxylesterase (CaE, EC 3.1.1.1.), and neuropathy target esterase (NTE, EC 3.1.1.5.), consistent with P-C bond breakage. Chemical reactivity experiments showed that diMe-FAP and diEt-FAP react with water to yield the corresponding dialkylphosphates and (CF3)2CHNHS(O)2C6H5, indicating lability of the P-C bond. X-ray crystallography of diEt-FAP revealed an elongated (and therefore weaker) P-C bond (1.8797 (13) Å) compared to P-C bonds in dialkylphosphonates lacking α-CF3 groups (1.805–1.822 Å). Semi-empirical and non-empirical molecular modeling of diEt-FAP and (EtO)2P(O)C(CH3)2NHS(O)2C6H5 (diEt-AP), which lacks CF3 groups, indicated lengthening and destabilization of the P-C bond in diEt-FAP compared to diEt-AP. Active site peptide adducts formed by reacting diEt-FAP with BChE and diBu-FAP with NTE catalytic domain (NEST) were identified using peptide mass mapping with mass spectrometry (MS). Mass shifts (mean ± SE, average mass) for peaks corresponding to active site peptides with diethylphosphoryl and monoethylphosphoryl adducts on BChE were 136.1 ± 0.1 and 108.0 ± 0.1 Da, respectively. Corresponding mass shifts for dibutylphosphoryl and monobutylphosphoryl adducts on NEST were 191.8 ± 0.2 and 135.5 ± 0.1 Da, respectively. Each of these values was statistically identical to the theoretical mass shift for each dialkylphosphoryl and monoalkylphosphoryl species. The MS results demonstrate that inhibition of BChE and NEST by FAPs yields dialkylphosphoryl and monoalkylphosphoryl adducts, consistent with phosphorylation via P-C bond cleavage and aging by net

  19. Reactivity of Acetylcholine Esterase in inner Ear Maculae of Fish after Development at Hypergravity

    NASA Astrophysics Data System (ADS)

    Feucht, I.; Hilbig, R.; Anken, R.

    It has been shown earlier that the growth of inner ear otoliths of larval fish is (among other environmental factors) guided by the gravity vector. This guidance most probably is effected by the efferent vestibular system in the brainstem, because a transection of the nervus vestibularis has been shown to effect a cessation of the supply of calcium to the otoliths. The efferent innervation of fish inner ear maculae uses the synaptic transmitter acetylcholine (ACh). Therefore, we were - in order to further assess the role of the efferent system for otolith growth - prompted to determine ACh esterase-reactivity in the sensory epithelium of the utricle and the saccule (as well as in a non-gravity relevant brain region for control) in larval cichlid fish (Oreochromis mossambicus), which had been maintained at hypergravity during their development. The respective data will be communicated at the meeting. Acknowledgement: This work was financially supported by the German Aerospace Center (DLR) (FKZ: 50 WB 9997).

  20. Bioassay technique using nonspecific esterase activities of Tetrahymena pyriformis for screening and assessing cytotoxicity of xenobiotics

    SciTech Connect

    Bogaerts, P.; Senaud, J.; Bohatier, J. |

    1998-08-01

    A simple and rapid test for screening and assessing the cytotoxicity of xenobiotics was developed with Tetrahymena pyriformis. The method estimates the activities of nonspecific esterases of a cell by concentrating within it a specific amount of fluorescence associated with fluorescein dye. The 2-h median effective concentration (EC50) values of 10 inorganic and eight organic substances are presented and compared to those of three other bioassays: the conventional T. pyriformis proliferation rate 9-h median inhibitory concentrations, the Microtox 30-min EC50s, and the Daphnia magna 4-methylumbelliferyl {beta}-D galactoside 1-h EC50s. A highly significant correlation was found between the results obtained with the fluorescein diacetate test and those obtained with the growth inhibition and Microtox tests. This in vivo enzymatic test showed high sensitivity to all compounds tested except Cr{sup 6+} and sodium dodecyl sulfate.

  1. Functional-based screening methods for lipases, esterases, and phospholipases in metagenomic libraries.

    PubMed

    Reyes-Duarte, Dolores; Ferrer, Manuel; García-Arellano, Humberto

    2012-01-01

    The use of metagenomic techniques for enzyme discovery constitutes a powerful approach. Functional screens, in contrast to sequence homology search, enable us to select enzymes based on their activity. It is noteworthy that they additionally guarantee the identification of genes coding for enzymes that exhibited no sequence similarity to known counterparts from public databases and that even do not match any putative catalytic residues, involved in the selected catalytic function. Therefore, this strategy not only provides new enzymes for new biotechnological applications, but also allows functional assignment of many proteins, found in abundance in the databases, currently designated as "hypothetical" or "conserved hypothetical" proteins. In the past decade, there has been an exponential increase in the design of functional screening programmes, the majority of them established for hydrolases and oxidoreductases. Here, functional screening methods that guarantee the greatest enzyme diversity, for mining esterases and lipases, are described. PMID:22426714

  2. How well do the substrates KISS the enzyme? Molecular docking program selection for feruloyl esterases

    PubMed Central

    Udatha, D. B. R. K. Gupta; Sugaya, Nobuyoshi; Olsson, Lisbeth; Panagiotou, Gianni

    2012-01-01

    Molecular docking is the most commonly used technique in the modern drug discovery process where computational approaches involving docking algorithms are used to dock small molecules into macromolecular target structures. Over the recent years several evaluation studies have been reported by independent scientists comparing the performance of the docking programs by using default ‘black box’ protocols supplied by the software companies. Such studies have to be considered carefully as the docking programs can be tweaked towards optimum performance by selecting the parameters suitable for the target of interest. In this study we address the problem of selecting an appropriate docking and scoring function combination (88 docking algorithm-scoring functions) for substrate specificity predictions for feruloyl esterases, an industrially relevant enzyme family. We also propose the ‘Key Interaction Score System’ (KISS), a more biochemically meaningful measure for evaluation of docking programs based on pose prediction accuracy. PMID:22435086

  3. Potential of Ophiostoma piceae sterol esterase for biotechnologically relevant hydrolysis reactions

    PubMed Central

    Barba Cedillo, Víctor; Prieto, Alicia; Martínez, María Jesús

    2013-01-01

    The ascomycete Ophiostoma piceae produces a sterol esterase (OPE) with high affinity toward p-nitrophenol, glycerol, and sterol esters. Recently, this enzyme has been heterologously expressed in the methylotrophic yeast Pichia pastoris under the AOX1 methanol-inducible promoter (PAOX1) using sorbitol as co-susbtrate, and the hydrolytic activity of the recombinant protein (OPE*) turned out to be improved from a kinetic point of view. In this study, we analyze the effects of sorbitol during the expression of OPE*, at first added as an additional carbon source, and methanol as inducer. The O. piceae enzyme was successfully used for PVAc hydrolysis, suggesting its potential applicability in recycled paper production to decrease stickies problems. PMID:23138020

  4. Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp. 643A covalently inhibited by monoethylphosphonate

    SciTech Connect

    Brzuszkiewicz, Anna; Nowak, Elzbieta; Dauter, Zbigniew; Dauter, Miroslawa; Cieslinski, Hubert; Dlugolecka, Anna; Kur, Józef

    2010-10-28

    The crystal structure of the esterase EstA from the cold-adapted bacterium Pseudoalteromonas sp. 643A was determined in a covalently inhibited form at a resolution of 1.35 {angstrom}. The enzyme has a typical SGNH hydrolase structure consisting of a single domain containing a five-stranded {beta}-sheet, with three helices at the convex side and two helices at the concave side of the sheet, and is ornamented with a couple of very short helices at the domain edges. The active site is located in a groove and contains the classic catalytic triad of Ser, His and Asp. In the structure of the crystal soaked in diethyl p-nitrophenyl phosphate (DNP), the catalytic serine is covalently connected to a phosphonate moiety that clearly has only one ethyl group. This is the only example in the Protein Data Bank of a DNP-inhibited enzyme with covalently bound monoethylphosphate.

  5. Disruption of lysosomal targeting is associated with insecticidal potency of juvenile hormone esterase

    PubMed Central

    Bonning, Bryony C.; Ward, Vernon K.; van Meer, Marnix M. M.; Booth, Tim F.; Hammock, Bruce D.

    1997-01-01

    Juvenile hormone esterase (JHE; EC 3.1.1.1), which is intrinsically involved in regulation of development of some insect larvae, is rapidly removed from the hemolymph by the pericardial cells. Lys-29 and Lys-524, which are implicated in the degradation of JHE, were mutated to Arg. Neither the half-life of the modified JHE in the hemolymph nor the catalytic parameters were changed significantly, but when combined, these mutations resulted in apparent failure of lysosomal targeting in the pericardial cell complex. A hypothesis for the mechanism of reduced efficiency of lysosomal targeting is presented. Infection of larvae with a recombinant baculovirus expressing the modified JHE resulted in a 50% reduction in feeding damage compared with larvae infected with the wild-type virus, thus demonstrating improved properties as a biological insecticide. These data demonstrate that alteration of specific residues of JHE that disrupted lysosomal targeting, dramatically increased the insecticidal activity of this protein. PMID:9177159

  6. Non-specific esterases and esterproteases in masticatory muscles from the muscular dystrophic mouse.

    PubMed

    Kirkeby, S; Moe, D; Vilmann, H

    1989-03-01

    With the aid of histochemical and electrophoretic techniques activities for esterase and esterprotease were investigated in the digastric and masseter muscles from normal and dystrophic mice. The substrates used were alpha-naphthyl acetate and N-acetyl-L-alanine alpha-naphthyl ester. According to the microscopic observations of the dystrophic muscles the histopathological changes in the masseter muscle were much more pronounced than in the digastric muscle. The connective tissue surrounding the myofibers of the dystrophic masseter contained a large number of cells with pronounced enzyme activity. Among them were mast cells that were strongly stained for esterprotease. The connective tissue of the dystrophic digastricus was much less infiltrated with cellular elements reacting for esterprotease. In zymograms the normal digastricus, the dystrophic masseter and the dystrophic digastricus showed a strong activity for certain isoenzymes that were absent or weakly expressed in the normal masseter. PMID:2657470

  7. Substrate specificity of xenobiotic metabolizing esterases in the liver of two catfish species

    SciTech Connect

    Jaiswal, R.G.; Huang, T.L.; Obih, P.O.

    1994-12-31

    The preliminary studies were conducted on the characterization of substrate specificity in the liver microsomes and cytosol of two catfish species, Ictalurus punctatus and Ictalurus natalie. A series of five esters of p-nitrophenol were used as calorimetric substrates to assay the carboxylesterases. The substrate specificity of liver microsomal and cytosolic carboxylesterases were remarkably different from each other. The valerate ester of p-nitrophenol was most rapidly hydrolyzed by the microsomal carboxylesterases, whereas the prioponate ester was the best substrate for cytosolic carboxylesterases. The Ictalurus natalie catfish species were obtained from the Devil Swamp site of the Mississippi River Basin which is known to be heavily contaminated with toxic and hazardous industrial wastes. These results will be discussed in relation to the responses of xenobiotic metabolizing esterases to environmental pollutants and their possible use as biomarkers.

  8. Fundamental Reaction Mechanism and Free Energy Profile for (−)-Cocaine Hydrolysis Catalyzed by Cocaine Esterase

    PubMed Central

    Liu, Junjun; Hamza, Adel; Zhan, Chang-Guo

    2009-01-01

    Fundamental reaction mechanism of cocaine esterase (CocE)-catalyzed hydrolysis of (−)-cocaine and the corresponding free energy profile have been studied by performing pseudobond first-principle quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Based on the QM/MM-FE results, the entire hydrolysis reaction consists of four reaction steps, including the nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester by hydroxyl group of Ser117, dissociation of (−)-cocaine benzoyl ester, nucleophilic attack on carbonyl carbon of (−)-cocaine benzoyl ester by water, and finally the dissociation between (−)-cocaine benzoyl group and Ser117 of CocE. The third reaction step involving the nucleophilic attack of a water molecule was found to be rate-determining, which is remarkably different from (−)-cocaine hydrolysis catalyzed by wild-type butyrylcholinesterase (where the formation of prereactive BChE-(−)-cocaine complex is rate-determining) or its mutants containing Tyr332Gly or Tyr332Gly mutation (where the first chemical reaction step is rate-determining). Besides, the role of Asp259 in the catalytic triad of CocE does not follow the general concept of the “charge-relay system” for all serine esterases. The free energy barrier calculated for the rate-determining step of CocE-catalyzed hydrolysis of (−)-cocaine is 17.9 kcal/mol, which is in good agreement with the experimentally derived activation free energy of 16.2 kcal/mol. In present study, where many sodium ions are present, the effects of counter ions are found to be significant in determining the free energy barrier. The finding of the significant effects of counter ions on the free energy barrier may also be valuable in guiding future mechanistic studies on other charged enzymes. PMID:19642701

  9. Initial clinical experience with remifentanil, a new opioid metabolized by esterases.

    PubMed

    Dershwitz, M; Randel, G I; Rosow, C E; Fragen, R J; Connors, P M; Librojo, E S; Shaw, D L; Peng, A W; Jamerson, B D

    1995-09-01

    Remifentanil is a new, esterase-metabolized opioid for anesthesia. Nonspecific esterases terminate the drug effect, with a context-sensitive half-time which plateaus at 3-4 min. This dose-ranging pilot study was designed to estimate the dose requirement of remifentanil for abolition of the responses to skin incision and intraoperative stimuli, and to determine the speed of recovery. Fifty-one unpremedicated patients took part at two centers. Anesthesia was induced with propofol, 67% nitrous oxide, and vecuronium. Remifentanil was then given (1 microgram/kg, plus an infusion of 0.0125-1.0 micrograms.kg-1.min-1). Responses were defined as: > 15% increase in systolic blood pressure or > 20% increase in heart rate, tearing, sweating, movement, or coughing. Responses to incision or surgery were treated with 0.5 micrograms/kg remifentanil boluses and a 50% increase in infusion rate, which could be done twice. Subsequent responses were treated with propofol or isoflurane. Remifentanil and nitrous oxide administration were terminated after the incision was closed. ED50 for response to skin incision varied between the two study sites (0.020 and 0.087 microgram.kg-1.min-1). ED50 for response to all surgical stimuli was 0.52 microgram.kg-1.min-1. At 0.3 microgram.kg-1.min-1 or more, only 3 of 21 patients required isoflurane. Recovery was not longer in patients receiving larger doses to spontaneous ventilation (2.5-4.6 min), tracheal extubation (4.2-7.0 min), and response to verbal command (3.0-4.6 min). Postoperative pain was reported in most patients (92%) at a median time of 21 min. We conclude that remifentanil was effective and well tolerated as a component of nitrous oxide-opioid-relaxant anesthesia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7653833

  10. GDSL esterase/lipase genes in Brassica rapa L.: genome-wide identification and expression analysis.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Han, Ching-Tack; Nou, Ill-Sup; Hur, Yoonkang

    2016-04-01

    GDSL esterase/lipase proteins (GELPs), a very large subfamily of lipolytic enzymes, have been identified in microbes and many plants, but only a few have been characterized with respect to their roles in growth, development, and stress responses. In Brassica crops, as in many other species, genome-wide systematic analysis and functional studies of these genes are still lacking. As a first step to study their function in B. rapa ssp. pekinensis (Chinese cabbage), we comprehensively identified all GELP genes in the genome. We found a total of 121 Brassica rapa GDSL esterase/lipase protein genes (BrGELPs), forming three clades in the phylogenetic analysis (two major and one minor), with an asymmetrical chromosomal distribution. Most BrGELPs possess four strictly conserved residues (Ser-Gly-Asn-His) in four separate conserved regions, along with short conserved and clade-specific blocks, suggesting functional diversification of these proteins. Detailed expression profiling revealed that BrGELPs were expressed in various tissues, including floral organs, implying that BrGELPs play diverse roles in various tissues and during development. Ten percent of BrGELPs were specifically expressed in fertile buds, rather than male-sterile buds, implying their involvement in pollen development. Analyses of EXL6 (extracellular lipase 6) expression and its co-expressed genes in both B. rapa and Arabidopsis, as well as knockdown of this gene in Arabidopsis, revealed that this gene plays an important role in pollen development in both species. The data described in this study will facilitate future investigations of other BrGELP functions. PMID:26423069

  11. Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel).

    PubMed

    Wang, Luo-Luo; Lu, Xue-Ping; Meng, Li-Wei; Huang, Yong; Wei, Dong; Jiang, Hong-Bo; Smagghe, Guy; Wang, Jin-Jun

    2016-06-01

    Extensive use of insecticides in many orchards has prompted resistance development in the oriental fruit fly, Bactrocera dorsalis (Hendel). In this study, a laboratory selected strain of B. dorsalis (MR) with a 21-fold higher resistance to malathion was used to examine the resistance mechanisms to this organophosphate insecticide. Carboxylesterase (CarE) was found to be involved in malathion resistance in B. dorsalis from the synergism bioassay by CarE-specific inhibitor triphenylphosphate (TPP). Molecular studies further identified a previously uncharacterized α-esterase gene, BdCarE2, that may function in the development of malathion resistance in B. dorsalis via gene upregulation. This gene is predominantly expressed in the Malpighian tubules, a key insect tissue for detoxification. The transcript levels of BdCarE2 were also compared between the MR and a malathion-susceptible (MS) strain of B. dorsalis, and it was significantly more abundant in the MR strain. No sequence mutation or gene copy changes were detected between the two strains. Functional studies using RNA interference (RNAi)-mediated knockdown of BdCarE2 significantly increased the malathion susceptibility in the adult files. Furthermore, heterologous expression of BdCarE2 combined with cytotoxicity assay in Sf9 cells demonstrated that BdCarE2 could probably detoxify malathion. Taken together, the current study bring new molecular evidence supporting the involvement of CarE-mediated metabolism in resistance development against malathion in B. dorsalis and also provide bases on functional analysis of insect α-esterase associated with insecticide resistance. PMID:27155483

  12. Role of juvenile hormone esterase and epoxide hydrolase in reproduction of the cotton bollworm, Helicoverpa zea.

    PubMed

    Khalil, Sayed M S; Anspaugh, Douglas D; Michael Roe, R

    2006-07-01

    The role of juvenile hormone (JH) esterase (JHE) and epoxide hydrolase (EH) in reproduction of the cotton bollworm, Helicoverpa zea, was investigated. Peak emergence of male and female bollworm adults occurred early in the scotophase. Female adults were added to males in a 1:2 ratio, respectively, at the beginning of the first photophase after emergence (d0). The highest oviposition rates for mated females were noted on d 2-4. The in vitro JH III esterase and JH III EH activity was measured in whole body homogenates of virgin and mated females from d0 to d8 post-emergence. Maximal JHE activity for virgin females occurred on d2 (1.09+/-0.14(+/-1 SEM) nmol of JH III degraded/min/mg protein), which was approximately twice that of mated females on the same day. The same results were observed for EH where the activity peaked on d2 at 0.053+/-0.003 as compared to 0.033+/-0.003 nmol of JH III degraded/min/mg protein, respectively. By d4, both JHE and JH EH activities declined significantly in virgin and mated females and were the same through d7. The developmental changes and effects of mating on JH degradation were similar when measured per insect. The highest levels of JHE and JH EH activity/min/mg protein in d2 virgin and mated females was found in ovaries followed by the carcass and then haemolymph; no EH activity was found in haemolymph as expected. For ovary, the JHE and JH EH activity was highest in virgin compared to mated females. The role of both enzymes in the regulation of reproduction is discussed. PMID:16678198

  13. Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)

    PubMed Central

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-01-01

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703

  14. Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: attenuation by Withania somnifera.

    PubMed

    Yadav, C S; Kumar, V; Suke, S G; Ahmed, R S; Mediratta, P K; Banerjee, B D

    2010-04-01

    Propoxur (2-isopropoxyphenyl N-methylcarbamate) is widely used as an acaricide in agriculture and public health programs. Studies have shown that sub-chronic exposure to propoxur can cause oxidative stress and immuno-suppression in rats. Carbamates are also known to exhibit inhibitory effect on cholinesterase activity, which is directly related to their cholinergic effects. In the present study, the effect of Withania somnifera (Ashwagandha), a widely used herbal drug possessing anti-stress and immunomodulatory properties was studied on propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function in rats. Male Wistar rats were divided into four groups. Group I was treated with olive oil and served as control. Group II was administered orally with propoxur (10 mg/kg b.wt.) in olive oil, group III received a combination of propoxur (10 mg/kg b.wt.) and W. somnifera (100 mg/kg b.wt.) suspension and group IV W. somnifera (100 mg/kg b.wt.) only. All animals were treated for 30 days. Cognitive behaviour was assessed by transfer latency using elevated plus maze. Blood and brain acetylcholine esterase (AChE) activity was also assessed. Oral administration of propoxur (10 mg/kg b.wt.) resulted in a significant reduction of brain and blood AChE activity. A significant prolongation of the acquisition as well as retention transfer latency was observed in propoxur-treated rats. Oral treatment of W. somnifera exerts protective effect and attenuates AChE inhibition and cognitive impairment caused by sub-chronic exposure to propoxur. PMID:20521626

  15. Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).

    PubMed

    Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert

    2013-01-01

    Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703

  16. Characterization of Esterases Produced by a Ruminal Bacterium Identified as Butyrivibrio fibrisolvens1

    PubMed Central

    Lanz, Wayne W.; Williams, Phletus P.

    1973-01-01

    An obligately anaerobic ruminal bacterial isolate was selected from 18 tributyrin-degrading isolates and identified as Butyrivibrio fibrisolvens strain 53. The culture in late exponential phase contained enzymes which could be released by sonic disruption. These enzymes degraded substrates at a rate in the order 1-naphthyl acetate (NA) > 1-naphthyl butyrate > 1-naphthyl propionate but did not degrade 1-naphthyl palmitate or 1-naphthyl phosphate. The enzymes on NA were neither stimulated nor inhibited by CoCl2, MgCl2, and MnCl (each varied from 10−6 to 10−4 M). CaCl at 10−3 M stimulated esterase activity by 16%. Aliphatic substrates were hydrolyzed at a rate in the order triacetin > tributyrin > tripropionin, and ethyl acetate > ethyl formate. Similarly, aromatic fluorescein diesters were degraded at a rate in the order acetyl > propionyl > caproyl > butyryl > capryl > lauryl. Polyacrylamide gel electrophoretic zymograms indicated that the enzyme composite contained cathodally migrating bands. By column chromatography, these enzymes were separated into six NA-degrading fractions. Fraction V contained an esterase which had an optimal temperature of 39 C, a Km of 7.6 × 10−4 on NA, and a molecular weight of about 66,000. This enzyme was inhibited by paraoxon (41%, 10−4 M), eserine (17%, 10−2 M), NaF (17%, 10−2 M), and diisopropyl fluorophosphate (62%, 10−4 M) but not by 1-naphthyl N-methyl carbamate at 8.4 × 10−4 M. PMID:4734862

  17. Histochemical studies on genetical control of hormonal enzyme inducibility in the mouse. I. Non-specific esterase activity and regional histology of the epididymis.

    PubMed Central

    Blecher, S R; Kirkeby, S

    1978-01-01

    As a base line for future cell genetical studies the authors record the distribution of non-specific esterase reaction in the various histologically distinguishable cell types of the mouse epididymis. The findings are correlated with previous descriptions of the lobar structure of the organ. Assuming the sequence of lobes of the head to be as implied in these classical descriptions, the esterase activity of the epithelial cells gradates between strong to weak several times along the length of the epididymal duct. The relationship of the lobes to each other, as seen in transverse sections, is described. Methodological studies using different fixatives indicate that apparent similarity of esterase reaction at different sites may camouflage an underlying difference in the nature of the esterases at these sites. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:564339

  18. Activity of increased specific and non-specific esterases and glutathione transferases associated with resistance to permethrin in pediculus humanus capitis (phthiraptera: pediculidae) from Argentina.

    PubMed

    Barrios, Silvia; Zerba, Eduardo; Picollo, Maria I; Audino, Paola Gonzalez

    2010-01-01

    Enhanced metabolism by oxidative enzymes is a major cause of pyrethroid resistance in insects. In this work, we evaluated the role of specific and non-specific esterases in head louse populations from Buenos Aires with different levels of resistance to permethrin. As esterase activity is substrate-dependent, four different esters were used as unspecific substrates in order to obtain a better characterization of the possible role of these enzymes in the resistance phenomenon. The unspecific substrates were phenylthioacetate, 1- and 2-naphtyl-acetate, and p-nitrophenyl acetate. A 7-coumaryl permethrate was synthesized and used as a specific substrate to measure pyrethroid esterases by a very sensitive microfluorometric method. The results on pyrethroid esterase activity obtained with this substrate showed that these enzymes contribute to the detoxifying activity in resistant populations, although no correlation was found between pyrethroid esterase activity and resistance ratios. In this study, we established that the activity of esterase against specific and non-specific substrates is increased in pyrethroid-resistant populations of head lice from Buenos Aires. Also, dichlorodiphenyltrichloroethane (DDT) resistance values demonstrated that there is a DDT cross-resistance phenomenon in pyrethroid-resistant head louse populations and suggested that an alteration in the receptor of the nervous system (kdr gen) is a key factor of the resistance phenomena in these head louse populations. PMID:19921258

  19. A combined approach for improving alkaline acetyl xylan esterase production in Pichia pastoris, and effects of glycosylation on enzyme secretion, activity and stability.

    PubMed

    Tian, Bin; Chen, Yan; Ding, Shaojun

    2012-09-01

    High level expression of axe1, a gene previously cloned from Volvariella volvacea that encodes an acetyl xylan esterase with two potential N-linked glycosylation sites, has been achieved in Pichia pastoris using a codon-optimized axe1 synthesized by the primer extension PCR procedure. The GC content of the codon-optimized axe1 was 48.62% compared with 55.49% in the native gene. Using the codon-optimized construct, AXE1 expression in P. pastoris was increased from an undetectable level to 136.45 U/ml six days after induction of yeast cultures grown in BMMY medium. A further increase (to 463 U/ml) was achieved when conditions for yeast culture were optimized as follows: 2.8% methanol, 0.63% casamino acids, and pH 8.0. This latter value represented a 3.4-fold and 246-fold increase in the enzyme levels recorded in non-optimized P. pastoris cultures and in rice straw-grown cultures of V. volvacea, respectively. N-linked glycosylation played an essential role in AXE1 secretion but had only a slight effect on the catalytic activity and stability of the recombinant enzyme. PMID:22750674

  20. Esterase LpEst1 from Lactobacillus plantarum: A Novel and Atypical Member of the αβ Hydrolase Superfamily of Enzymes

    PubMed Central

    Cortés-Cabrera, Álvaro; Gago, Federico; Acebrón, Iván; Benavente, Rocío; Mardo, Karin; de las Rivas, Blanca; Muñoz, Rosario; Mancheño, José M.

    2014-01-01

    The genome of the lactic acid bacterium Lactobacillus plantarum WCFS1 reveals the presence of a rich repertoire of esterases and lipases highlighting their important role in cellular metabolism. Among them is the carboxylesterase LpEst1 a bacterial enzyme related to the mammalian hormone-sensitive lipase, which is known to play a central role in energy homeostasis. In this study, the crystal structure of LpEst1 has been determined at 2.05 Å resolution; it exhibits an αβ-hydrolase fold, consisting of a central β-sheet surrounded by α-helices, endowed with novel topological features. The structure reveals a dimeric assembly not comparable with any other enzyme from the bacterial hormone-sensitive lipase family, probably echoing the specific structural features of the participating subunits. Biophysical studies including analytical gel filtration and ultracentrifugation support the dimeric nature of LpEst1. Structural and mutational analyses of the substrate-binding pocket and active site together with biochemical studies provided insights for understanding the substrate profile of LpEst1 and suggested for the first time the conserved Asp173, which is adjacent to the nucleophile, as a key element in the stabilization of the loop where the oxyanion hole resides. PMID:24663330

  1. Lactobacillus fermentum CRL1446 Ameliorates Oxidative and Metabolic Parameters by Increasing Intestinal Feruloyl Esterase Activity and Modulating Microbiota in Caloric-Restricted Mice

    PubMed Central

    Russo, Matias; Fabersani, Emanuel; Abeijón-Mukdsi, María C.; Ross, Romina; Fontana, Cecilia; Benítez-Páez, Alfonso; Gauffin-Cano, Paola; Medina, Roxana B.

    2016-01-01

    The purpose of this study was to determine whether the administration of the feruloyl esterase (FE)-producing strain Lactobacillus fermentum CRL1446 enhances metabolic and oxidative parameters in caloric-restricted (CR) mice. Balb/c male mice were divided into ad libitum fed Group (ALF Group), CR diet Group (CR Group) and CR diet plus L. fermentum Group (CR-Lf Group). CR diet was administered during 45 days and CRL1446 strain was given in the dose of 108 cells/mL/day/mouse. FE activity was determined in intestinal mucosa and content at Day 1, 20 and 45. Triglyceride, total cholesterol, glucose, thiobarbituric acid reactive substances (TBARS) levels and glutathione reductase activity were determined in plasma. Gut microbiota was evaluated by high-throughput sequencing of 16S rRNA gene amplicons. At Day 45, total intestinal FE activity in CR-Lf Group was higher (p = 0.020) than in CR and ALF groups and an improvement in both metabolic (reductions in triglyceride (p = 0.0025), total cholesterol (p = 0.005) and glucose (p < 0.0001) levels) and oxidative (decrease of TBARS levels and increase of plasmatic glutathione reductase activity (p = 0.006)) parameters was observed, compared to ALF Group. CR diet increased abundance of Bacteroidetes and CRL1446 administration increased abundance of Bifidobacterium and Lactobacillus genus. L. fermentun CRL1446 exerted a bifidogenic effect under CR conditions. PMID:27399766

  2. The Structure of a Novel Thermophilic Esterase from the Planctomycetes Species, Thermogutta terrifontis Reveals an Open Active Site Due to a Minimal ‘Cap’ Domain

    PubMed Central

    Sayer, Christopher; Szabo, Zalan; Isupov, Michail N.; Ingham, Colin; Littlechild, Jennifer A.

    2015-01-01

    A carboxyl esterase (TtEst2) has been identified in a novel thermophilic bacterium, Thermogutta terrifontis from the phylum Planctomycetes and has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity toward small p-nitrophenyl (pNP) carboxylic esters with optimal activity for pNP-acetate. The enzyme shows moderate thermostability retaining 75% activity after incubation for 30 min at 70°C. The crystal structures have been determined for the native TtEst2 and its complexes with the carboxylic acid products propionate, butyrate, and valerate. TtEst2 differs from most enzymes of the α/β-hydrolase family 3 as it lacks the majority of the ‘cap’ domain and its active site cavity is exposed to the solvent. The bound ligands have allowed the identification of the carboxyl pocket in the enzyme active site. Comparison of TtEst2 with structurally related enzymes has given insight into how differences in their substrate preference can be rationalized based upon the properties of their active site pockets. PMID:26635762

  3. Lactobacillus fermentum CRL1446 Ameliorates Oxidative and Metabolic Parameters by Increasing Intestinal Feruloyl Esterase Activity and Modulating Microbiota in Caloric-Restricted Mice.

    PubMed

    Russo, Matias; Fabersani, Emanuel; Abeijón-Mukdsi, María C; Ross, Romina; Fontana, Cecilia; Benítez-Páez, Alfonso; Gauffin-Cano, Paola; Medina, Roxana B

    2016-01-01

    The purpose of this study was to determine whether the administration of the feruloyl esterase (FE)-producing strain Lactobacillus fermentum CRL1446 enhances metabolic and oxidative parameters in caloric-restricted (CR) mice. Balb/c male mice were divided into ad libitum fed Group (ALF Group), CR diet Group (CR Group) and CR diet plus L. fermentum Group (CR-Lf Group). CR diet was administered during 45 days and CRL1446 strain was given in the dose of 10⁸ cells/mL/day/mouse. FE activity was determined in intestinal mucosa and content at Day 1, 20 and 45. Triglyceride, total cholesterol, glucose, thiobarbituric acid reactive substances (TBARS) levels and glutathione reductase activity were determined in plasma. Gut microbiota was evaluated by high-throughput sequencing of 16S rRNA gene amplicons. At Day 45, total intestinal FE activity in CR-Lf Group was higher (p = 0.020) than in CR and ALF groups and an improvement in both metabolic (reductions in triglyceride (p = 0.0025), total cholesterol (p = 0.005) and glucose (p < 0.0001) levels) and oxidative (decrease of TBARS levels and increase of plasmatic glutathione reductase activity (p = 0.006)) parameters was observed, compared to ALF Group. CR diet increased abundance of Bacteroidetes and CRL1446 administration increased abundance of Bifidobacterium and Lactobacillus genus. L. fermentun CRL1446 exerted a bifidogenic effect under CR conditions. PMID:27399766

  4. Glutaraldehyde cross-linking of immobilized thermophilic esterase on hydrophobic macroporous resin for application in poly(ε-caprolactone) synthesis.

    PubMed

    Wang, Min; Shi, Hui; Wu, Di; Han, Haobo; Zhang, Jianxu; Xing, Zhen; Wang, Shuang; Li, Quanshun

    2014-01-01

    The immobilized thermophilic esterase from Archaeoglobus fulgidus was successfully constructed through the glutaraldehyde-mediated covalent coupling after its physical adsorption on a hydrophobic macroporous resin, Sepabeads EC-OD. Through 0.05% glutaraldehyde treatment, the prevention of enzyme leaching and the maintenance of catalytic activity could be simultaneously realized. Using the enzymatic ring-opening polymerization of ε-caprolactone as a model, effects of organic solvents and reaction temperature on the monomer conversion and product molecular weight were systematically investigated. After the optimization of reaction conditions, products were obtained with 100% monomer conversion and Mn values lower than 1010 g/mol. Furthermore, the cross‑linked immobilized thermophilic esterase exhibited an excellent operational stability, with monomer conversion values exceeding 90% over the course of 12 batch reactions, still more than 80% after 16 batch reactions. PMID:25006789

  5. A thraustochytrid diacylglycerol acyltransferase 2 with broad substrate specificity strongly increases oleic acid content in engineered Arabidopsis thaliana seeds

    PubMed Central

    Zhang, Chunyu; Iskandarov, Umidjon; Cahoon, Edgar B.

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45–50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions. PMID:23814277

  6. Identification and characterization of an esterase involved in malathion resistance in the head louse Pediculus humanus capitis.

    PubMed

    Kwon, Deok Ho; Kim, Ju Hyeon; Kim, Young Ho; Yoon, Kyong Sup; Clark, J Marshall; Lee, Si Hyeock

    2014-06-01

    Enhanced malathion carboxylesterase (MCE) activity was previously reported to be involved in malathion resistance in the head louse Pediculus humanus capitis (Gao et al., 2006 [8]). To identify MCE, the transcriptional profiles of all five esterases that had been annotated to be catalytically active were determined and compared between the malathion-resistant (BR-HL) and malathion-susceptible (KR-HL) strains of head lice. An esterase gene, designated HLCbE3, exhibited approximately 5.4-fold higher transcription levels, whereas remaining four esterases did not exhibit a significant increase in their transcription in BR-HL, indicating that HLCbE3 may be the putative MCE. Comparison of the entire cDNA sequences of HLCbE3 revealed no sequence differences between the BR-HL and KR-HL strains and suggested that no single nucleotide polymorphism is associated with enhanced MCE activity. Two copies of the HLCbE3 gene were observed in BR-HL, implying that the over-transcription of HLCbE3 is due to the combination of a gene duplication and up-regulated transcription. Knockdown of HLCbE3 expression by RNA interference in the BR-HL strain led to increases in malathion susceptibility, confirming the identity of HLCbE3 as a MCE responsible for malathion resistance in the head louse. Phylogenetic analysis suggested that HLCbE3 is a typical dietary esterase and belongs to a clade containing various MCEs involved in malathion resistance. PMID:24974112

  7. Determination of rat serum esterase activities by an HPLC method using S-acetylthiocholine iodide and p-nitrophenyl acetate.

    PubMed

    Koitka, Matthias; Höchel, Joachim; Obst, Detlev; Rottmann, Antje; Gieschen, Hille; Borchert, Hans-Hubert

    2008-10-01

    Establishing esterase assays allows the determination and comparison of esteratic activities of tissues of one organism and between organisms. We have developed a high-performance liquid chromatography (HPLC) assay for the determination of S-acetylthiocholine (ATC) and p-nitrophenyl acetate (NPA) hydrolyzing activities of rat serum esterases based on ion pair chromatography with on-line radiochemical and ultraviolet (UV) detection. ATC is a substrate for cholinesterases, whereas NPA is cleaved by a variety of esterases and other proteins (e.g., cholinesterases, paraoxonase, carboxylesterase, albumin). Both substrates were incubated, simultaneously or separately, with rat serum to explore potential interferences between the enzymatic hydrolyses of the compounds. The ratio of the peak area of the (14)C-labeled substrates to the total peak area of the substrates and their corresponding cleavage products was compared with the UV quantitation of ATC and p-nitrophenolate (NP), the cleavage product of NPA, measured at 230 and 350 nm, respectively. The peak identity of ATC and NP was confirmed by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). The reaction rates of the assays using one substrate or both, as well as using radiochemical or UV detection, were equal. Moreover, the correlation between rat serum volumes and reaction rates was shown for both substrates. In conclusion, one can (i) choose between the two detection methods reliably, (ii) take advantage of monitoring both substrate and product by using radiochemical detection, and (iii) combine both substrates to determine esterase activities in rat serum and probably other biological matrices. PMID:18602882

  8. Cloning, expression and characterization of a novel cold‑adapted GDSL family esterase from Photobacterium sp. strain J15.

    PubMed

    Shakiba, Mehrnoush Hadaddzadeh; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Leow, Thean Chor

    2016-01-01

    The gene encoding for a novel cold-adapted enzyme from family II of bacterial classification (GDSL family) was cloned from the genomic DNA of Photobacterium sp. strain J15 in an Escherichia coli system, yielding a recombinant 36 kDa J15 GDSL esterase which was purified in two steps with a final yield and purification of 38.6 and 15.3 respectively. Characterization of the biochemical properties showed the J15 GDSL esterase had maximum activity at 20 °C and pH 8.0, was stable at 10 °C for 3 h and retained 50 % of its activity after a 6 h incubation at 10 °C. The enzyme was activated by Tween-20, -60 and Triton-X100 and inhibited by 1 mM Sodium dodecyl sulphate (SDS), while β-mercaptoethanol and Dithiothreitol (DTT) enhanced activity by 4.3 and 5.4 fold respectively. These results showed the J15 GDSL esterase was a novel cold-adapted enzyme from family II of lipolytic enzymes. A structural model constructed using autotransporter EstA from Pseudomonas aeruginosa as a template revealed the presence of a typical catalytic triad consisting of a serine, aspartate, and histidine which was verified with site directed mutagenesis on active serine. PMID:26475626

  9. Immobilization of thermoalkalophilic recombinant esterase enzyme by entrapment in silicate coated Ca-alginate beads and its hydrolytic properties.

    PubMed

    Gülay, Seçkin; Şanlı-Mohamed, Gülşah

    2012-04-01

    Thermoalkalophilic esterase enzyme from Balçova (Agamemnon) geothermal site were aimed to be immobilized effectively via a simple and cost-effective protocol in silicate coated Calcium alginate (Ca-alginate) beads by entrapment. The optimal immobilization conditions of enzyme in Ca-alginate beads were investigated and obtained with 2% alginate using 0.5mg/ml enzyme and 0.7 M CaCl(2) solution. In order to prevent enzyme from leaking out of the gel beads, Ca-alginate beads were then coated with silicate. Enzyme loading efficiency and immobilization yield for silicate coated beads was determined as 98.1% and 71.27%, respectively and compared with non-coated ones which were 68.5% and 45.80%, respectively. Surface morphologies, structure and elemental analysis of both silicate coated and non-coated alginate beads were also compared using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM) equipped with Energy-dispersive X-ray spectroscopy (EDX). Moreover, silicate coated alginate beads enhanced reusability of esterase in continuous processes compared to non-coated beads. The hydrolytic properties of free and immobilized enzyme in terms of storage and thermal stability as well as the effects of the temperature and pH were determined. It was observed that operational, thermal and storage stabilities of the esterase were increased with immobilization. PMID:22309712

  10. Effects of high hydrostatic pressure and temperature increase on Escherichia coli spp. and pectin methyl esterase inactivation in orange juice.

    PubMed

    Torres, E F; González-M, G; Klotz, B; Rodrigo, D

    2016-03-01

    The aim of this study was to evaluate the effect of high hydrostatic pressure treatment combined with moderate processing temperatures (25 ℃-50 ℃) on the inactivation of Escherichia coli O157: H7 (ATCC 700728), E. coli K12 (ATCC 23716), and pectin methyl esterase in orange juice, using pressures of 250 to 500 MPa with times ranging between 1 and 30 min. Loss of viability of E. coli O157:H7 increased significantly as pressure and treatment time increased, achieving a 6.5 log cycle reduction at 400 MPa for 3 min at 25 ℃ of treatment. With regard to the inactivation of pectin methyl esterase, the greatest reduction obtained was 90.05 ± 0.01% at 50 ℃ and 500 MPa of pressure for 15 min; therefore, the pectin methyl esterase enzyme was highly resistant to the treatments by high hydrostatic pressure. The results obtained in this study showed a synergistic effect between the high pressure and moderate temperatures in inactivating E. coli cells. PMID:25888680

  11. Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: therapeutic perspectives.

    PubMed

    Melis, Miriam; Pistis, Marco

    2014-08-01

    Nicotine is one of the drugs of abuse that frequently causes addiction and relapse during abstinence. Nicotine's strong addicting properties reside in its ability to enhance dopamine transmission, and to induce specific changes in synaptic plasticity. Currently, approved therapies for smoking cessation increase the chances of remaining abstinent, but lack high levels of efficacy and are associated with significant adverse side effects. As a result, there is an urgent need for more effective antismoking medications. Studies have revealed that drugs targeting the peroxisome proliferator-activated-receptor-α (PPARα) show promise for the treatment of nicotine addiction. These drugs include synthetic PPARα ligands, such as the clinically available hypolipidemic fibrates, and drugs that increase levels of endogenous endocannabinoid-like fatty acid ethanolamides (FAEs) that act as PPARα agonists. In this review, we will discuss the specific interaction between PPARα and nicotine, and the molecular mechanisms whereby these intracellular receptors regulate nicotinic acetylcholine receptor functions in neurons. Modulation of neurophysiological, neurochemical and behavioral effects of nicotine by PPARα will be also reviewed. Indeed, a picture is emerging where FAEs are endogenous regulators of acetylcholine transmission. Notably, the implications of this specific cross talk extend beyond nicotine addiction, and might bear relevance for psychiatric disorders and epilepsy. PMID:24704146

  12. Activity-Based Probe for N-Acylethanolamine Acid Amidase.

    PubMed

    Romeo, Elisa; Ponzano, Stefano; Armirotti, Andrea; Summa, Maria; Bertozzi, Fabio; Garau, Gianpiero; Bandiera, Tiziano; Piomelli, Daniele

    2015-09-18

    N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone (3-aminooxetan-2-one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo and to investigate the physiological and pathological roles of this enzyme. PMID:26102511

  13. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson’s Disease

    PubMed Central

    Vázquez-Mayorga, Emmanuel; Díaz-Sánchez, Ángel G.; Dagda, Ruben K.; Domínguez-Solís, Carlos A.; Dagda, Raul Y.; Coronado-Ramírez, Cynthia K.; Martínez-Martínez, Alejandro

    2016-01-01

    Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson’s disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein. PMID:27556455

  14. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    SciTech Connect

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K.

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  15. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence TimeS⃞

    PubMed Central

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J. G.

    2011-01-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  16. A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis.

    PubMed

    Wu, Gaobing; Zhang, Xiangnan; Wei, Lu; Wu, Guojie; Kumar, Ashok; Mao, Tao; Liu, Ziduo

    2015-11-01

    Lipolytic enzymes with unique physico-chemical characteristics are gaining more attention for their immense industrial importance. In this study, a novel lipolytic enzyme (Est11) was cloned from the genomic library of a marine bacterium Psychrobacter pacificensis. The enzyme was expressed in Escherichia coli and purified to homogeneity with molecular mass of 32.9kDa. The recombinant Est11 was able to hydrolyze short chain esters (C2-C8) and displayed an optimum activity against butyrate ester (C4). The optimal temperature and pH were 25°C and 7.5, respectively. Est11 retained more than 70% of its original activity at 10°C, suggesting that it was a cold-active esterase. The enzyme was highly active and stable at high concentration of NaCl (5M). Further, incubation with ethanol, isopropanol, propanediol, DMSO, acetonitrile, and glycerol rendered remarkable positive effects on Est11 activity. Typically, even at the concentration of 30% (v/v), ethanol, DMSO, and propanediol increased Est11 activity by 1.3, 2.0, and 2.4-folds, respectively. This new robust enzyme with remarkable properties like cold-adaptability, exceptional tolerance to salt and organic solvents provides us a promising candidate to meet the needs of some harsh industrial processes. PMID:26231332

  17. Characteristics of pancreatic cholesterol esterase binding to and uptake by rat intestinal cells

    SciTech Connect

    Wright Wiesenfeld, P.L.

    1988-01-01

    In the intestinal lumen cholesterol esterase derived from pancreatic juice catalyzes the hydrolysis of cholesteryl esters (CE). The characteristics of Ce'ase binding to and uptake by rat intestinal cells were determined. CE'ase purified from rat pancreas with a specific activity 2 fold higher and a yield 5 fold greater than that previously attainable was judged as homogeneous on the basis of SDS-PAGE and sedimentation equilibrium centrifugation. Intestinal cell types and membranes were isolated and judged as pure on the basis of marker enzyme analyses. The enzyme was radiolabeled with ({sup 125}-I) to a specific radioactivity of 55 Ci/mmole with retention of biological activity, gross molecular size, secondary structure, and immunological properties. ({sup 125}-I) CE'ase bound preferentially to mature absorptive cells from proximal intestine and their brush border membranes. A specific, low affinity binding phenomenon was demonstrated with the following characteristics: linearity with increasing ligand concentration (non-saturability) or cell concentration, time and temperature dependency, and irreversibility. Native CE'ase, at a 500 fold molar excess did not displace bound ({sup 125}-I) CE'ase.

  18. PEGylation of Bacterial Cocaine Esterase for Protection against Protease Digestion and Immunogenicity

    PubMed Central

    Park, Jun-Beom; Kwon, Young Min; Lee, Tien-Yi; Brim, Remy; Ko, Mei-Chuan; Sunahara, Roger K.; Woods, James H.; Yang, Victor C.

    2009-01-01

    Enhancing cocaine metabolism by administration of cocaine esterase (CocE) has been considered as a promising treatment strategy for cocaine overdose and addiction, as CocE is the most efficient native enzyme yet identified for metabolizing the naturally occurring cocaine. A major obstacle to the clinical application of CocE, however, lies in its thermo-instability, rapid degradation by circulating proteases, and potential immunogenicity. PEGylation, namely by modifying a protein or peptide compound via attachment of polyethylene glycol (PEG) chains, has been proven to overcome such problems and was therefore exploited in this CocE investigation. The PEG-CocE conjugates prepared in this study showed a purity of greater than 93.5 %. Attachment of PEG to CocE apparently inhibited the binding of anti-CocE antibodies to the conjugate, as demonstrated by the enzyme-linked immunosorbent assay (ELISA) assay. In addition, PEGylation yielded protection to CocE against thermal degradation and protease digestion. Furthermore, preliminary in vivo results suggested that, similarly to native CocE, the PEG-CocE conjugates were able to protect animals from cocaine-induced toxic effects. Overall, this study provides evidence that the PEGylation may serve as a tool to prolong CocE functionality in the circulation and reduce its potential immunogenicity. PMID:19857534

  19. HIGHLY METHYL ESTERIFIED SEEDS Is a Pectin Methyl Esterase Involved in Embryo Development1[OPEN

    PubMed Central

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D.; Haughn, George W.

    2015-01-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. PMID:25572606

  20. Immobilization and Biochemical Properties of the Enantioselective Recombinant NStcI Esterase of Aspergillus nidulans

    PubMed Central

    Peña-Montes, Carolina; Mondragón-Tintor, María Elena; Castro-Rodríguez, José Augusto; Bustos-Jaimes, Ismael; Navarro-Ocaña, Arturo; Farrés, Amelia

    2013-01-01

    The recombinant NStcI A. nidulans esterase was adsorbed on Accurel MP1000, where protein yield and immobilization efficiency were 42.48% and 81.94%, respectively. Storage stability test at 4°C and RT showed 100% of residual activity after 40 days at both temperatures. The biocatalyst retains more than 70% of its initial activity after 3 cycles of repeated use. Biochemical properties of this new biocatalyst were obtained. Maximum activity was achieved at pH 11 and 30°C, while the best stability was observed with the pH between 9 and 11 at 40°C. NStcI thermostability was increased after immobilization, as it retained 47.5% of its initial activity after 1 h at 60°C, while the free enzyme under the same conditions displayed no activity. NStcI preserved 70% of its initial activity in 100% hexane after 72 h. Enzymatic kinetic resolution of (R,S)-1-phenylethanol was chosen as model reaction, using vinyl acetate as acyl donor. After optimization of reaction parameters, the highest possible conversion (42%) was reached at 37°C, aw of 0.07, and 120 h of bioconversion in hexane with an enantiomeric excess of 71.7%. NStcI has selectivity for (R)-enantiomer. The obtained E value (31.3) is in the range considered useful to resolve enantiomeric mixtures. PMID:23781330

  1. Construction of an Immobilized Thermophilic Esterase on Epoxy Support for Poly(ε-caprolactone) Synthesis.

    PubMed

    Ren, Hui; Xing, Zhen; Yang, Jiebing; Jiang, Wei; Zhang, Gang; Tang, Jun; Li, Quanshun

    2016-01-01

    Developing an efficient immobilized enzyme is of great significance for improving the operational stability of enzymes in poly(ε-caprolactone) synthesis. In this paper, a thermophilic esterase AFEST from the archaeon Archaeoglobus fulgidus was successfully immobilized on the epoxy support Sepabeads EC-EP via covalent attachment, and the immobilized enzyme was then employed as a biocatalyst for poly(ε-caprolactone) synthesis. The enzyme loading and recovered activity of immobilized enzyme was measured to be 72 mg/g and 10.4 U/mg using p-nitrophenyl caprylate as the substrate at 80 °C, respectively. Through the optimization of reaction conditions (enzyme concentration, temperature, reaction time and medium), poly(ε-caprolactone) was obtained with 100% monomer conversion and low number-average molecular weight (Mn < 1300 g/mol). Further, the immobilized enzyme exhibited excellent reusability, with monomer conversion values exceeding 75% during 15 batch reactions. Finally, poly(ε-caprolactone) was enzymatically synthesized with an isolated yield of 75% and Mn value of 3005 g/mol in a gram-scale reaction. PMID:27322233

  2. Subunit stabilization and polyethylene glycolation of cocaine esterase improves in vivo residence time.

    PubMed

    Narasimhan, Diwahar; Collins, Gregory T; Nance, Mark R; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H; Tesmer, John J G; Sunahara, Roger K

    2011-12-01

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37°C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37°C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo. PMID:21890748

  3. A thermostable bacterial cocaine esterase rapidly eliminates cocaine from brain in nonhuman primates.

    PubMed

    Howell, L L; Nye, J A; Stehouwer, J S; Voll, R J; Mun, J; Narasimhan, D; Nichols, J; Sunahara, R; Goodman, M M; Carroll, F I; Woods, J H

    2014-01-01

    A long-acting, thermostable bacterial cocaine esterase (CocE) has been identified that rapidly degrades cocaine with a K(M) of 1.33+0.085 μM. In vivo evaluation of CocE has shown protection against convulsant and lethal effects of cocaine in rodents, confirming the therapeutic potential of CocE against cocaine overdose. However, the current study is the first to evaluate the effects of CocE on cocaine brain levels. Positron emission tomogrpahy neuroimaging of [(11)C]cocaine was used to evaluate the time course of cocaine elimination from brain in the presence and absence of CocE in nonhuman primates. Systemic administration of CocE eliminated cocaine from the rhesus-monkey brain approximately three times faster than control conditions via peripheral actions through attenuating the input function from blood plasma. The efficiency of this process is sufficient to alleviate or prevent adverse central nervous system effects induced by cocaine. Although the present study used tracer doses of cocaine to access brain clearance, these findings further support the development of CocE for the treatment of acute cocaine toxicity. PMID:24984194

  4. Acquired C1 esterase inhibitor deficiency in lymphomas: prevalence, symptoms, and response to treatment.

    PubMed

    Bekos, Christine; Perkmann, Thomas; Krauth, Maria; Raderer, Markus; Lechner, Klaus; Jaeger, Ulrich

    2016-09-01

    We retrospectively studied the prevalence of C1 esterase inhibitor (C1 INH) deficiency in 131 patients with various lymphomas. We determined C1 INH activity, C1 INH antigen, and C4 concentration at diagnosis and after chemotherapy. In follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL) consecutive patients were studied. In these entities, the prevalence of C1 INH deficiency was 10.2% in DLBCL, 4.1% in CLL, and 0% in FL and Hodgkin lymphoma. In indolent lymphomas, we identified only single cases of C1 INH deficiency, predominantly in splenic marginal zone lymphomas (SMZL) (four cases). Only three patients were symptomatic while the majority (11 cases) was asymptomatic. In DLBCL patients who were successfully treated with chemotherapy, complete normalization of C1 INH activity and C4 was observed. In contrast, C1 INH deficiency remained in SMZL patients after splenectomy. We conclude that C1 INH deficiency in lymphomas is frequently asymptomatic and responsive to immunochemotherapy. PMID:26795750

  5. Bacterial cocaine esterase: a protein-based therapy for cocaine overdose and addiction

    PubMed Central

    Narasimhan, Diwahar; Woods, James H; Sunahara, Roger K

    2012-01-01

    Cocaine is highly addictive and there are no pharmacotherapeutic drugs available to treat acute cocaine toxicity or chronic abuse. Antagonizing an inhibitor such as cocaine using a small molecule has proven difficult. The alternative approach is to modify cocaine’s pharmacokinetic properties by sequestering or hydrolyzing it in serum and limiting access to its sites of action. We took advantage of a bacterial esterase (CocE) that has evolved to hydrolyze cocaine and have developed it as a therapeutic that rapidly and specifically clears cocaine from the subject. Native enzyme was unstable at 37°C, thus limiting CocE’s potential. Innovative computational methods based on the protein’s structure helped elucidate its mechanism of destabilization. Novel protein engineering methodologies were applied to substantially improve its stability in vitro and in vivo. These improvements rendered CocE as a powerful and efficacious therapeutic to treat cocaine intoxication and lead the way towards developing a therapy for addiction. PMID:22300094

  6. Complement Blockade with a C1 Esterase Inhibitor in Paroxysmal Nocturnal Hemoglobinuria

    PubMed Central

    DeZern, Amy E.; Uknis, Marc; Yuan, Xuan; Mukhina, Galina L; Varela, Juan; Saye, JoAnne; Pu, Jeffrey; Brodsky, Robert A.

    2014-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, clonal, hematopoietic stem cell disorder that manifests with a complement-mediated hemolytic anemia, bone marrow failure and a propensity for thrombosis. These patients experience both intra- and extravascular hemolysis in the context of underlying complement activation. Currently eculizumab effectively blocks the intravascular hemolysis PNH. There remains an unmet clinical need for a complement inhibitor with activity early in the complement cascade to block complement at the classical and alternative pathways. C1 esterase inhibitor (C1INH) is an endogenous human plasma protein that has broad inhibitory activity in the complement pathway through inhibition of the classical pathway by binding C1r and C1s and inhibits the mannose-binding lectin-associated serine proteases in the lectin pathway. In this study, we show that commercially available plasma derived C1INH prevents lysis induced by the alternative complement pathway, of PNH erythrocytes in human serum. Importantly, C1INH was able to block the accumulation of C3 degradation products on CD55 deficient erythrocytes from PNH patient on eculizumab therapy. This could suggest a role for inhibition of earlier phases of the complement cascade than that currently inhibited by eculizumab for incomplete or non-responders to that therapy. PMID:25034232

  7. Synthesis of trifluoromethyl ketones as inhibitors of antennal esterases of insects.

    PubMed

    Parrilla, A; Villuendas, I; Guerrero, A

    1994-04-01

    A variety of long chain aliphatic and aromatic trifluoromethyl ketones I-XIV has been conveniently prepared, many of them for the first time, from the corresponding Grignard or organolithium derivatives. Two of them, (Z)-1,1,1-trifluoro-15-octadecen-13-yn-2-one (XV) and (Z)-1,1,1-trifluoro-16-nonadecen-14-yn-2-one (XVI), structurally-closed analogues of (Z)-13-hexadecen-11-ynyl acetate, the sex pheromone of the processionary moth Thaumetopoea pityocampa, have been stereospecifically synthesized in excellent yield by a convenient new method. The procedure involves lithiation of the corresponding iododerivative XXIX and XXX with one equivalent of tert-BuLi to obviate addition of the reagent to the enyne system. Some of the compounds have already been tested and found to be good inhibitors of antennal esterases in the Egyptian armyworm Spodoptera littoralis and the pheromone action in the processionary moth Thaumetopoea pityocampa. beta-Thiotrifluoromethyl ketones XVII-XX, which are expected to enhance the inhibition activity of the parent ketones due to their higher hydration constants, have also been prepared in good yields. PMID:7922135

  8. Identification and characterization of barley mutants lacking glycine decarboxylase and carboxyl esterase activities

    SciTech Connect

    Blackwell, R.; Lewis, K.; Lea, P. )

    1990-05-01

    A barley mutant has been isolated, from a selection of fifty air-sensitive seed-lines, using a standard gel stain technique which lacks carboxyl esterase activity, but has normal levels of carbonic anhydrase. In addition, two barley mutants lacking the ability to convert glycine to serine in the mitochondria, have been characterized. Both plants accumulate glycine in air and are unable to metabolize ({sup 14}C)glycine in the short-term. When ({sup 14}C)glycine was supplied over 2h LaPr 85/55 metabolized 90%, whereas the second mutant (LaPr 87/30) metabolized 10%. Results indicate that the mutation in LaPr 85/55 is almost certainly in the glycine transporter into the mitochondrion. The mutation in LaPr 87/30 has been shown, using western blotting, to be in both the P and H proteins, two of four proteins which comprise glycine decarboxylase (P, H, T and L).

  9. Are PECTIN ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in Barley?

    PubMed Central

    Marzin, Stephan; Hanemann, Anja; Sharma, Shailendra; Hensel, Götz; Kumlehn, Jochen; Schweizer, Günther; Röder, Marion S.

    2016-01-01

    A family of putative PECTIN ESTERASE INHIBITOR (PEI) genes, which were detected in the genomic region co-segregating with the resistance gene Rrs2 against scald caused by Rhynchosporium commune in barley, were characterized and tested for their possible involvement in mediating resistance to the pathogen by complementation and overexpression analysis. The sequences of the respective genes were derived from two BAC contigs originating from the susceptible cultivar ‘Morex’. For the genes HvPEI2, HvPEI3, HvPEI4 and HvPEI6, specific haplotypes for 18 resistant and 23 susceptible cultivars were detected after PCR-amplification and haplotype-specific CAPS-markers were developed. None of the tested candidate genes HvPEI2, HvPEI3 and HvPEI4 alone conferred a high resistance level in transgenic over-expression plants, though an improvement of the resistance level was observed especially with OE-lines for gene HvPEI4. These results do not confirm but also do not exclude an involvement of the PEI gene family in the response to the pathogen. A candidate for the resistance gene Rrs2 could not be identified yet. It is possible that Rrs2 is a PEI gene or another type of gene which has not been detected in the susceptible cultivar ‘Morex’ or the full resistance reaction requires the presence of several PEI genes. PMID:26937960

  10. Activity and dynamics of an enzyme, pig liver esterase, in near-anhydrous conditions

    SciTech Connect

    Lopez, Murielle; Kurkal-Siebert, V; Dunn, Rachel V.; Tehei, M; Finney, J.L.; Smith, Jeremy C; Daniel, R. M.

    2010-10-01

    Water is widely assumed to be essential for life, although the exact molecular basis of this requirement is unclear. Water facilitates protein motions, and although enzyme activity has been demonstrated at low hydrations in organic solvents, such nonaqueous solvents may allow the necessary motions for catalysis. To examine enzyme function in the absence of solvation and bypass diffusional constraints we have tested the ability of an enzyme, pig liver esterase, to catalyze alcoholysis as an anhydrous powder, in a reaction system of defined water content and where the substrates and products are gaseous. At hydrations of 3 ( 2) molecules of water per molecule of enzyme, activity is several orders-of-magnitude greater than nonenzymatic catalysis. Neutron spectroscopy indicates that the fast ( nanosecond) global anharmonic dynamics of the anhydrous functional enzyme are suppressed. This indicates that neither hydration water nor fast anharmonic dynamics are required for catalysis by this enzyme, implying that one of the biological requirements of water may lie with its role as a diffusion medium rather than any of its more specific properties.

  11. Synthesis and Structure–Activity Relationships of N-(2-Oxo-3-oxetanyl)amides as N-Acylethanolamine-hydrolyzing Acid Amidase Inhibitors

    PubMed Central

    Solorzano, Carlos; Antonietti, Francesca; Duranti, Andrea; Tontini, Andrea; Rivara, Silvia; Lodola, Alessio; Vacondio, Federica; Tarzia, Giorgio; Piomelli, Daniele; Mor, Marco

    2010-01-01

    The fatty acid ethanolamides (FAEs) are a family of bioactive lipid mediators that include the endogenous agonist of peroxisome proliferator-activated receptor-α, palmitoylethanolamide (PEA). FAEs are hydrolyzed intracellularly by either fatty acid amide hydrolase or N-acylethanolamine-hydrolyzing acid amidase (NAAA). Selective inhibition of NAAA by (S)-N-(2-oxo-3-oxetanyl)-3-phenylpropionamide [(S)-OOPP, 7a] prevents PEA degradation in mouse leukocytes and attenuates responses to proinflammatory stimuli. Starting from the structure of 7a a series of β-lactones was prepared and tested on recombinant rat NAAA to explore structure-activity relationships (SARs) for this class of inhibitors and improve their in vitro potency. Following the hypothesis that these compounds inhibit NAAA by acylation of the catalytic cysteine, we identified several requirements for recognition at the active site and obtained new potent inhibitors. In particular, (S)-N-(2-oxo-3-oxetanyl)biphenyl-4-carboxamide (7h) was more potent than 7a at inhibiting recombinant rat NAAA activity (7a, IC50 = 420 nM; 7h, IC50 = 115 nM) in vitro and at reducing carrageenan-induced leukocyte infiltration in vivo. PMID:20604568

  12. Genetically engineered Oenococcus oeni strains to highlight the impact of estA2 and estA7 esterase genes on wine ester profile.

    PubMed

    Darsonval, M; Alexandre, H; Grandvalet, C

    2016-12-01

    Besides deacidifying wine, Oenococcus oeni bring significant changes in the chemical composition of wine by releasing esters by the action of their own esterases. The impact of O. oeni esterases remains relatively unexplored. Four esterase genes were identified from O. oeni genome (estA2, estA7, estC, and estB). The dual objective of this study was, first to use a genetic tool enabling the expression of esterase genes in enological conditions and, second, to investigate the impact of O. oeni esterase gene expression during winemaking on wine aromatic profile. Both estA2 and estA7 genes were successfully cloned and expressed in O. oeni and recombinant strains were inoculated in Aligoté wine to initiate malolactic fermentation (MLF). Ester profile of experimental wine was established by SPME-GC-MS. EstA2 caused significant decreases in the concentrations of isoamyl acetate, ethyl hexanoate, isobutyl acetate, and hexyl acetate, by 42.7%, 23.4%, 51.5%, and 28.9%, respectively. EstA2 has preferential hydrolytic activity toward acetate esters from higher alcohols. EstA7 has synthetic activity toward hexyl acetate with a significant 22.7% increase. This study reports the first efficient expression system enabling the production of a functional protein in O. oeni in enological conditions. PMID:27554142

  13. Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase.

    PubMed

    Aggarwal, V; Malik, J; Prashant, A; Jaiwal, P K; Pundir, C S

    2016-05-01

    We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40 °C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10-700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4 °C. PMID:26853742

  14. Modulation of Juvenile Hormone Esterase Gene Expression Against Development of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    2016-04-01

    The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a widespread and destructive pest of cruciferous crops. Owing to its increasing resistance to conventional pesticides, new strategies need to be developed for diamondback moth control. Here, we investigated factors that modulate juvenile hormone esterase (JHE) activity and jhe (Px004817) transcription, and determined the effects of these factors on subsequent growth and development in diamondback moth. Starvation inhibited JHE activity and jhe transcription, increased mortality, and decreased the rate of molting from the third- to the fourth-instar stages. Larvae kept at 32°C molted earlier and showed increased JHE activity and jhe transcription after 24-h treatment. Exposure to 1,325 mg/liter OTFP (3-octylthio-1,1,1-trifluoro-2-propanone) delayed molting and pupation, increased pupal weight, and decreased JHE activity and jhe transcription at both 24 and 48 h. Treatment with 500 mg/liter pyriproxyfen delayed molting, completely suppressed pupation, and significantly increased JHE activity at 48 h and jhe transcription at 24 and 48 h. A combination of OTFP (1,325 mg/liter) and pyriproxyfen (500 mg/liter) induced the highest mortality, delayed molting, completely suppressed pupation, and significantly increased JHE activity at 48 h and jhe transcription at 24 and 48 h. These effects on JHE activity and jhe transcription were similar to those in insects treated only with pyriproxyfen. The results demonstrated that JHE and jhe (Px004817) were involved in the responses of diamondback moth to external modulators and caused changes in growth and development. The combination of OTFP and pyriproxyfen increased the effectiveness of action against diamondback moth. PMID:26880398

  15. Enlarging the substrate portfolio of the thermophilic esterase EST2 from Alicyclobacillus acidocaldarius.

    PubMed

    Pennacchio, Angela; Mandrich, Luigi; Manco, Giuseppe; Trincone, Antonio

    2015-09-01

    The enzymatic regioselective hydrolysis of (a) acetylated mono- to tetrasaccharides of different nature, (b) of acetylated aryl glycosides and (c) of different acetylated nucleosides was studied enlarging the portfolio of substrates that can be employed by the thermophilic esterase EST2 from Alicyclobacillus acidocaldarius. The reactions were optimised to the extent that the amount of enzyme needed was lowered of two orders of magnitude with respect to the previously reported reactions, namely from 4000 to 40 U of enzyme per reaction. New additional solvents were screened and dramatic changes in regioselectivity were observed depending on the amount and type of solvent used. For example, in the presence of 10 % DMF, only two α-D-glucose products 6-OH and 4,6-OH (in a 76:24 ratio) were detected, whereas with 25 % DMF, at least four products of similar amount were observed. This versatility adds specific value to the biocatalyst making possible the design of biocatalytic reactions with different hydrophobic ester substrates. As an additional remarkable example, EST2 catalysed with a good yield and high regioselectivity the hydrolysis of p-nitrophenyl β-D-xylopyranoside triacetate producing only the monoacetylated derivative with acetyl group in 3-O-position, in 2 min. The results with nucleosides as substrates are particularly interesting. The peracetates of 3',5'-di-O-acetylthymidine are converted almost quantitatively (95 %) to the monoacetylated derivative possessing free secondary OH; this regioselectivity is complementary to hydrolysis/alcoholysis reactions catalysed by CAL-B lipase or to other microbial hydrolytic biocatalysts, generally giving products with free primary OH groups. A docking analysis was undertaken with all analysed substrates suggesting a structural interpretation of the results. In most of cases, the best pose of the selected substrate was in line with the observed regioselectivity. PMID:26216109

  16. Polyisoprenylated methylated protein methyl esterase as a putative drug target for androgen-insensitive prostate cancer

    PubMed Central

    Poku, Rosemary A; Amissah, Felix; Duverna, Randolph; Aguilar, Byron J; Kiros, Gebre-Egziabher; Lamango, Nazarius S

    2014-01-01

    Prostate cancer (CaP) is the most frequently diagnosed cancer in US men, with an estimated 236,590 new cases and 29,720 deaths in 2013. There exists the need to identify biomarkers/therapeutic targets for the early/companion diagnosis and development of novel therapies against the recalcitrant disease. Mutation and overexpression-induced abnormal activities of polyisoprenylated proteins have been implicated in CaP. Polyisoprenylated methylated protein methyl esterase (PMPMEase) catalyses the only reversible and terminal reaction of the polyisoprenylation pathway and may promote the effects of G proteins on cell viability. In this review, the potential role of PMPMEase to serve as a new drug target for androgen-insensitive CaP was determined. Specific PMPMEase activities were found to be 3.5- and 4.5-fold higher in androgen-sensitive 22Rv1 and androgen-dependent LNCaP and 1.5- and 9.8-fold higher in castration-resistant DU 145 and PC-3 CaP cells compared to normal WPE1-NA22 prostate cells. The PMPMEase inhibitor, L-28, induced apoptosis with EC50 values ranging from 1.8 to 4.6 μM. The PMPMEase activity in the cells following treatment with L-28 followed a similar profile, with IC50 ranging from 2.3 to 130 μM. L-28 disrupted F-actin filament organisation at 5 μM and inhibited cell migration 4-fold at 2 μM. Analysis of a CaP tissue microarray for PMPMEase expression revealed intermediate, strong, and very strong staining in 94.5% of the 92 adenocarcinoma cases compared to trace and weak staining in the normal and normal-adjacent tissue controls. The data are an indication that effective targeting of PMPMEase through the development of more potent agents may lead to the successful treatment of metastatic CaP. PMID:25228915

  17. Organophosphates induce distal axonal damage, but not brain oedema, by inactivating neuropathy target esterase

    SciTech Connect

    Read, David J.; Li Yong; Chao, Moses V.; Cavanagh, John B.; Glynn, Paul

    2010-05-15

    Single doses of organophosphorus compounds (OP) which covalently inhibit neuropathy target esterase (NTE) can induce lower-limb paralysis and distal damage in long nerve axons. Clinical signs of neuropathy are evident 3 weeks post-OP dose in humans, cats and chickens. By contrast, clinical neuropathy in mice following acute dosing with OPs or any other toxic compound has never been reported. Moreover, dosing mice with ethyloctylphosphonofluoridate (EOPF) - an extremely potent NTE inhibitor - causes a different (subacute) neurotoxicity with brain oedema. These observations have raised the possibility that mice are intrinsically resistant to neuropathies induced by acute toxic insult, but may incur brain oedema, rather than distal axonal damage, when NTE is inactivated. Here we provide the first report that hind-limb dysfunction and extensive axonal damage can occur in mice 3 weeks after acute dosing with a toxic compound, bromophenylacetylurea. Three weeks after acutely dosing mice with neuropathic OPs no clinical signs were observed, but distal lesions were present in the longest spinal sensory axons. Similar lesions were evident in undosed nestin-cre:NTEfl/fl mice in which NTE had been genetically-deleted from neural tissue. The extent of OP-induced axonal damage in mice was related to the duration of NTE inactivation and, as reported in chickens, was promoted by post-dosing with phenylmethanesulfonylfluoride. However, phenyldipentylphosphinate, another promoting compound in chickens, itself induced in mice lesions different from the neuropathic OP type. Finally, EOPF induced subacute neurotoxicity with brain oedema in both wild-type and nestin-cre:NTEfl/fl mice indicating that the molecular target for this effect is not neural NTE.

  18. Variations in elastaselike esterase activities in human leucocytes during cell maturation.

    PubMed

    Feinstein, G; Janoff, A

    1976-05-01

    Granules of human peripheral blood leucocytes contain four well-characterized elastase isozymes and one or two slow-moving elastaselike esterases (SE) which have not been as well characterized. SE are capable of hydrolyzing typical elastase synthetic sybstrates such as N-acetyl-dl-alanine-alpha-naphthyl ester (Ac-DL-Ala-1-ONap) and N-t-butyloxycarbonyl-L-alanine-p-nitrophenyl ester (Boc-Ala-ONp), but unlike the highly basic elastase isozymes, SE barely migrate into 13% acrylamide gels during cationic electrophoresis at pH 4.3. Hydrolysis of Ac-DL-Ala-1-ONap by SE requires the presence of Triton in the gel, and hydrolysis of Boc-Ala-ONp by the same enzyme(s) is also enhanced in the presence of the detergent. Triton is not required for these activities, in the case of the elastase isozymes. Diisopropylfluorophosphate (Dip-F) inactivates both SE and the elastase isozymes, whereas Ac-(Ala)2-Pro-AlaCH2Cl (a powerful inactivator of the leucocyte elastase isozymes at 10-4 M concentration) does not inactivate SE at the same concentration. Immunochemical studies revealed antigenic cross-reaction between the rapidly migrating leucocyte elastase isozymes and SE. Two preparations of leucocyte granules from nonleukemic bone marrow cells showed no activity of the rapidly migrating elastase isozymes, but did contain SE activity. SE may be a precursor or zymogen form of the elastase isozymes, present in immature cells and partly retained through later stages of development. PMID:1265076

  19. Treatment response after repeated administration of C1 esterase inhibitor for successive acute hereditary angioedema attacks.

    PubMed

    Craig, Timothy J; Bewtra, Againdra K; Hurewitz, David; Levy, Robyn; Janss, Gerti; Jacobson, Kraig W; Packer, Flint; Bernstein, Jonathan A; Rojavin, Mikhail A; Machnig, Thomas; Keinecke, Heinz-Otto; Wasserman, Richard L

    2012-01-01

    Placebo-controlled studies established the efficacy of replacement therapy with C1 esterase inhibitor (C1-INH) concentrate for treating single acute hereditary angioedema (HAE) attacks, but only limited data from prospective studies are available on repeated treatment of successive HAE attacks. This study evaluates the association between repeated treatments with 20 U/kg of C1-INH concentrate (Berinert; CSL Behring, Marburg, Germany) for HAE attacks at any body location and treatment response. In a post hoc analysis of an open-label extension study (International Multicenter Prospective Angioedema C1-INH Trial [I.M.P.A.C.T.2]), the association between repeated treatment with C1-INH and times to onset of symptom relief and complete resolution of HAE symptoms was assessed in patients who were treated for at least 15 attacks by linear regression on the ordinal attack number. Eighteen patients received C1-INH concentrate for at least 15 HAE attacks over a mean duration of 34 months. Demographic and baseline characteristics of these patients were similar to those of all patients in the study. The distribution of body locations and the intensity of HAE attacks were similar for each of the first 15 attacks and subsequent attacks. The extent of previous use of C1-INH concentrate had no effect on the time to onset of symptom relief, the time to complete resolution of HAE symptoms, or the time between attacks treated with C1-INH concentrate; the median of individual linear regression coefficients was not statistically significantly different from 0. Treatment with 20 U/kg of C1-INH concentrate provided consistent treatment response in patients treated for multiple successive HAE attacks at any body location. (Clinicaltrials.gov identifier: NCT00292981). PMID:22856636

  20. Species differences in the reactivation of organophosphate-inhibited plasma esterases by diacetylmonoxime.

    PubMed

    Ecobichon, D J

    1976-04-01

    A study was conducted to assess whether the protection afforded to organophosphatepoisoned animals by diacetylmonoxime (DAM) was correlated with the reactivation of non-essential aliesterases (AliE). In vitro, the DAM-catalyzed reactivation of plasma AliE and cholinesterases (psi ChE) of rat, rabbit and guinea pig inhibited by 10-5 M diisopropylphosphorofluoridate (DFP) and O,O-dimethyl-2,2-dichlorovinyl phosphate (DDVP) was investigated. Marked reactivation of the rat plasma enzymes was achieved with 10mM DAM. Higher concentrations (30 mM) were necessary for the slow reactivation of rabbit and guinea pig plasma AliE. Reactivation of the psiChE of these species was comparatively slow. Reactivation of DDVP-inhibited esterases proceeded in all species at a more rapid rate than those inhibited by DFP. The dependence of psiChE reactivation upon concomitant more rapid reactivation of AliE by DAM was demonstrated using Sephadex fractionated AliE and psiChE but only a marked effect was observed with the rat, suggesting that the plasma AliE of this species is functionally different. The in vitro observations were confirmed by in vivo studies in rats and rabbits. DAM (50 or 150 mg/kg), administered to atropinized rats 15 min before a lethal dose of DFP, protected the animals. Few severe toxic signs were observed and reactivation of both plasma AliE and psiChE occurred. In contrast, DAM protected the rabbit against a lethal dose of DFP but only reactivation of the erythrocyte acetylcholinesterase was observed. PMID:1276991

  1. Strategies for increasing heterologous expression of a thermostable esterase from Archaeoglobus fulgidus in Escherichia coli.

    PubMed

    Kim, Jinyeong; Kim, Seul I; Hong, Eunsoo; Ryu, Yeonwoo

    2016-11-01

    Heterologous proteins expressed in bacteria are used for numerous biotechnological applications. Escherichia coli is the most commonly used host for heterologous protein expression because of its many advantages. Researchers have been studying proteins from extremophiles heterologously expressed in E. coli because the proteins of extremophiles are strongly resistant to extreme conditions. In a previous study, a thermostable esterase Est-AF was isolated from Archaeoglobus fulgidus and expressed in E. coli. However, further studies of Est-AF were difficult owing to its low expression levels in E. coli. In this study, we used various strategies, such as changing the expression vector and host strain, codon optimization, and optimization of induction conditions, to increase the expression of Est-AF. Through codon optimization and by changing the vector and host strain, Est-AF expression was increased from 31.50 ± 0.35 mg/L to 61.75 ± 0.28 mg/L. The optimized expression system consisted of a codon-optimized Est-AF gene in a pET28a(+)-based expression plasmid in E. coli Rosetta cells. The expression level was further increased by optimizing the induction conditions. The optimized conditions were induction with 0.4 mM isopropyl-b-d-1-thiogalactoside (IPTG) at 37 °C for 5 h. Under these conditions, the expression level of Est-AF was increased from 31.5 ± 0.35 mg/L to 119.52 ± 0.34 mg/L. PMID:27449918

  2. Avoidance behaviour response and esterase inhibition in the earthworm, Lumbricus terrestris, after exposure to chlorpyrifos.

    PubMed

    Martínez Morcillo, S; Yela, J L; Capowiez, Y; Mazzia, C; Rault, M; Sanchez-Hernandez, Juan C

    2013-05-01

    The avoidance response of earthworms to polluted soils has been standardised using a simple and low-cost test, which facilitates soil toxicity screening. In this study, the avoidance response of Lumbricus terrestris was quantified in chlorpyrifos-spiked soils, depending on the pesticide concentration and exposure duration. The inhibition of acetylcholinesterase (AChE) and carboxylesterase (CbE) activities was also determined as indirect measures of pesticide bioavailability. The effects of different chlorpyrifos concentrations were examined in a standardised test (two-chamber system) with 0.6, 3 and 15 mg/kg chlorpyrifos. A modification of the test involved a pre-exposure step (24, 48 or 72 h) in soils spiked with 15 mg/kg. In both protocols, earthworms were unable to avoid the contaminated soils. However, the esterase activities showed that all earthworms were exposed to chlorpyrifos. Acetylcholinesterase activity did not change in earthworms in the standardised behavioural test (0.58 ± 0.20 U/mg protein, mean ± SD; n = 72), whereas the CbE activity was significantly inhibited (62-87 % inhibition) in earthworms exposed to 3 and 15 mg/kg. In the modified test, earthworms had greatly inhibited AChE activity (0.088 ± 0.034 U/mg protein, n = 72), which was supported by reactivation of the inhibited enzyme activity in the presence of pralidoxime (2-PAM). Similarly, the CbE activity was significantly inhibited in earthworms with all treatments. This study suggests that the avoidance behaviour test for organophosphorus-contaminated soils could be supported by specific biomarkers to facilitate a better understanding of pesticide exposure and toxicity during this test. PMID:23435687

  3. Characterization of type "B" esterases and hepatic CYP450 isoenzimes in Senegalese sole for their further application in monitoring studies.

    PubMed

    Solé, Montserrat; Vega, Sofia; Varó, Inmaculada

    2012-04-01

    In fish, the role that cholinesterases (ChEs) play in tissues other than those implicated in neural activity, as well as the involvement of carboxylesterases (CbEs) and cytochrome P450 isoenzymes (CYPs) in drug metabolism needs investigation. For that, Senegalese sole (Solea senegalensis) specimens were selected for characterization of several type B esterases and hepatic CYPs in order to further use this fish as sentinel. ChEs (acetylcholinesterase (AChE) and pseudocholinesterases (butyrylcholinesterase-BuChE and propionilcholinesterase-PrChE)) and CbEs were measured in brain, plasma, kidney, liver, gonad, muscle and gills. Moreover, seven fluorimetric substrates were selected to study CYP related activities in fish liver. The results showed that AChE was the dominant ChE form in brain whereas pseudocholinesterases were absent in most tissues, as demonstrated by low enzymatic activities using specific substrates and the lack of inhibition by iso-OMPA. Plasma exhibited trace activities of all the esterases assayed and no BuChE activity. CbEs were dominant in liver, but they were also present in kidney and brain. For CbE determination, α-naphtyl acetate (αNA) was seen as the most adequate substrate as it displayed higher enzymatic activities and showed more in vitro sensitivity to the carbamate eserine and the organophosphate pesticide dichlorvos. Alkoxyresorufin-O-dealkylase (EROD and BFCOD) activities, indicative in mammals of CYP1A and CYP3A subfamilies, respectively, were the highest microsomal CYP-related activities in liver. The results of this preliminary work allow us to select the most adequate esterase substrate, tissue and hepatic CYP substrate for further monitoring studies. PMID:22138146

  4. Cloning, recombinant expression and biochemical characterisation of novel esterases from Bacillus sp. associated with the marine sponge Aplysina aerophoba.

    PubMed

    Karpushova, A; Brümmer, F; Barth, S; Lange, S; Schmid, R D

    2005-04-01

    Two novel esterases (EstB1 and EstB2) were isolated from a genomic library of Bacillus sp. associated with the marine sponge Aplysina aerophoba. EstB1 shows low identity (26-44%) with the published hydrolases of the genus Bacillus, whereas EstB2 shows high identity (73-74%) with the carboxylesterases from B. cereus and B. anthracis. Both esterases were efficiently expressed in Escherichia coli under the control of T7 promoter using the vector pET-22b(+). Recombinant EstB1 was purified in a single step to electrophoretic homogeneity by IMAC. A method for the refolding of inclusion bodies formed by the recombinant EstB2 was established to obtain active enzyme. Substrate specificity of the two enzymes towards p-nitrophenyl and methyl esters and the respective kinetic parameters K(m) and V(max) were determined. The temperature optima of EstB1 and EstB2 were determined to be in the range of 30-50 degrees C and 20-35 degrees C, respectively. The pH optima were found to be in the range of 6.5-7.5 and 6.5-8.0, respectively. Both enzymes showed the highest stability in up to 50% (v/v) DMSO followed by methanol, ethanol and 2-propanol. The influence of high NaCl and KCl concentrations was tested. The inhibition effect of 10-50 mM Zn(2+) and 50 mM Mg(2+) and Ca(2+) ions was observed for both esterases. One to five millimolar PMSF deactivated the enzymes, whereas beta-mercaptoethanol, DTT and EDTA had no effect on the enzymes activity. PMID:15614567

  5. Design of Fexofenadine Prodrugs Based on Tissue-Specific Esterase Activity and Their Dissimilar Recognition by P-Glycoprotein.

    PubMed

    Ohura, Kayoko; Nakada, Yuichiro; Kotani, Shunsuke; Imai, Teruko

    2015-09-01

    The aim of this study was to develop a suitable prodrug for fexofenadine (FXD), a model parent drug, that is resistant to intestinal esterase but converted to FXD by hepatic esterase. Carboxylesterases (CESs), human carboxylesterase 1 (hCE1) and human carboxylesterase 2 (hCE2), are the major esterases in human liver and intestine, respectively. These two CESs show quite different substrate specificities, and especially, hCE2 poorly hydrolyzes prodrugs with large acyl groups. FXD contains a carboxyl group and is poorly absorbed because of low membrane permeability and efflux by P-glycoprotein (P-gp). Therefore, two potential FXD prodrugs, ethyl-FXD and 2-hydroxyethyl-FXD, were synthesized by substitution of the carboxyl group in FXD. Both derivatives were resistant to intestinal hydrolysis, indicating their absorption as intact prodrugs. Ethyl-FXD was hydrolyzed by hepatic hCE1, but 2-hydroxyethyl-FXD was not. Both derivatives showed high membrane permeability in human P-gp-negative LLC-PK1 cells. In LLC-GA5-COL300 cells overexpressing human P-gp, ethyl-FXD was transported by P-gp, but its efflux was easily saturated. Whereas 2-hydroxyethyl-FXD showed more efficient P-gp-mediated transport than FXD. Although the structure of 2-hydroxyethyl-FXD only differs from ethyl-FXD by substitution of a hydroxyl group, 2-hydroxyethyl-FXD is unsuitable as a prodrug. However, ethyl-FXD is a good candidate prodrug because of good intestinal absorption and hepatic conversion by hCE1. PMID:25953731

  6. Synthesis, structure-activity, and structure-stability relationships of 2-substituted-N-(4-oxo-3-oxetanyl) N-acylethanolamine acid amidase (NAAA) inhibitors.

    PubMed

    Vitale, Romina; Ottonello, Giuliana; Petracca, Rita; Bertozzi, Sine Mandrup; Ponzano, Stefano; Armirotti, Andrea; Berteotti, Anna; Dionisi, Mauro; Cavalli, Andrea; Piomelli, Daniele; Bandiera, Tiziano; Bertozzi, Fabio

    2014-02-01

    N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator-activated receptor-α (PPAR-α). Compounds that feature an α-amino-β-lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti-inflammatory effects that are mediated through FAE-dependent activation of PPAR-α. We synthesized and tested a series of racemic, diastereomerically pure β-substituted α-amino-β-lactones, as either carbamate or amide derivatives, investigating the structure-activity and structure-stability relationships (SAR and SSR) following changes in β-substituent size, relative stereochemistry at the α- and β-positions, and α-amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β-position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability. PMID:24403170

  7. A membrane-bound esterase PA2949 from Pseudomonas aeruginosa is expressed and purified from Escherichia coli.

    PubMed

    Kovacic, Filip; Bleffert, Florian; Caliskan, Muttalip; Wilhelm, Susanne; Granzin, Joachim; Batra-Safferling, Renu; Jaeger, Karl-Erich

    2016-05-01

    Pseudomonas aeruginosa strain 1001 produces an esterase (EstA) that can hydrolyse the racemic methyl ester of β-acetylthioisobutyrate to produce the (D)-enantiomer, which serves as a precursor of captopril, a drug used for treatment of hypertension. We show here that PA2949 from P. aeruginosa PA01, a homologue of EstA, can efficiently be expressed in an enzymatically active form in E. coli. The enzyme is membrane-associated as demonstrated by cell fractionation studies. PA2949 was purified to homogeneity after solubilisation with the nonionic detergent, Triton X-100, and was shown to possess a conserved esterase catalytic triad consisting of Ser137-His258-Asp286. Our results should allow the development of an expression and purification strategy to produce this biotechnologically relevant esterase in a pure form with a high yield. PMID:27419054

  8. The kinetics and inhibition of p-nitrophenylacetate-hydrolysing esterases in a solitary bee, Megachile rotundata (Fab.).

    PubMed

    Frohlich, D R; Boeker, E A; Brindley, W A

    1990-05-01

    1. The kinetics and inhibition of p-nitrophenylacetate hydrolysis by cytosolic esterases of female alfalfa leafcutting bees, Megachile rotundata (Fab.) was examined. 2. For p-nitrophenylacetate, the Km = 1.24 x 10(-4) M and Vmax = 2.29 x 10(-9) mol/s per mg protein. 3. Regarding four organophosphate insecticides, the mechanism of inhibition in all cases was mixed (competitive and uncompetitive) and, based on inhibition constants, the order of toxicity was naled greater than paraoxon greater than trichlorfon greater than oxydemeton methyl. 4. Comparisons are made to the honey bee, Apis mellifera. PMID:2349807

  9. Expression of gastric antisecretory and prostaglandin E receptor binding activity of misoprostol by misoprostol free acid.

    PubMed

    Tsai, B S; Kessler, L K; Stolzenbach, J; Schoenhard, G; Bauer, R F

    1991-05-01

    In enriched canine parietal cell preparations, misoprostol, an analog of prostaglandin E1 methyl ester, was rapidly deesterified to misoprostol free acid. Under this circumstance, misoprostol and misoprostol free acid exhibited equal antisecretory potency against histamine-stimulated acid secretion and bound equally well to prostaglandin E receptors. When the deesterification of misoprostol was inhibited by paraoxon, an esterase inhibitor, the antisecretory and receptor binding activity of misoprostol was markedly reduced, with potency much less than misoprostol free acid. These results indicate that misoprostol free acid is the active biological form of misoprostol that binds to prostaglandin E receptors and mediates the antisecretory action of misoprostol. PMID:1850690

  10. Genetic variability in the natural populations of Lasioderma serricorne (F.) (Coleoptera: Anobiidae), detected by RAPD markers and by esterase isozymes.

    PubMed

    Coelho-Bortolo, T; Mangolin, C A; Lapenta, A S

    2016-02-01

    Lasioderma serricorne (F.) is a small cosmopolitan beetle regarded as a destructive pest of several stored products such as grains, flour, spices, dried fruit and tobacco. Chemical insecticides are one of the measures used against the pest. However, intensive insecticide use has resulted in the appearance of resistant insect populations. Therefore, for the elaboration of more effective control programs, it is necessary to know the biological aspects of L. serricorne. Among these aspects, the genetic variability knowledge is very important and may help in the development of new control methods. The objective of this study was to evaluate the genetic variability of 11 natural populations of L. serricorne collected respectively in three and four towns in the states of Paraná and São Paulo, Brazil, using 20 primers random amplified polymorphic DNA (RAPD) and polymorphisms of esterases. These primers produced 352 polymorphic bands. Electrophoretic analysis of esterases allowed the identification of four polymorphic loci (Est-2, Est-4, Est-5 and Est-6) and 18 alleles. Results show that populations are genetically differentiated and there is a high level of genetic variability within populations. The high degree of genetic differentiation is not directly correlated to geographical distance. Thus, our data indicate that movement of infested commodities may contribute to the dissemination of L. serricorne, facilitating gene flow. PMID:26459013

  11. Assessment of esterase gene expression as a risk marker for insecticide resistance in Florida Culex nigripalpus (Diptera: Culicidae).

    PubMed

    Shin, Dongyoung; Smartt, Chelsea T

    2016-06-01

    Esterases are enzymatic proteins known to play a role in insecticide resistance formation. To further our understanding of the development of insecticide resistance, we tested the gene expression level of a gene implicated in insecticide resistance (Temsha est-1) from Culex nigripalpus Theobald (Diptera: Culicidae) in field mosquitoes. We found that the level of expression of TE-1 differed depending on the frequency of exposure to organophosphate insecticide through expression studies. Temsha est-1 cDNA is 1,808 base pairs and fully sequenced with up to 96% nucleotide sequence identity to esterase B genes of other mosquito species. The genes from five different species, including TE-1, were closely related by genetic distance and phylogenetic analysis. Differential expression of this gene that is correlated to differences in susceptibility towards organophosphate would provide the ability to use Temsha est-1 as an indicator of the formation of tolerance/resistance. This would greatly enhance mosquito control efforts by allowing targeted application of insecticides to mosquito populations that are most susceptible. Also, it would provide resistance information so that a rational design could be used for insecticide rotation schedules. PMID:27232126

  12. Crystallization and preliminary crystallographic studies of LipA, a secretory lipase/esterase from Xanthomonas oryzae pv. oryzae

    SciTech Connect

    Aparna, Gudlur; Chatterjee, Avradip; Jha, Gopaljee; Sonti, Ramesh V.; Sankaranarayanan, Rajan

    2007-08-01

    The crystallization and preliminary crystallographic studies of LipA, a lipase/esterase secreted by X. oryzae pv. oryzae during its infection of rice plants, are reported. Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight, a serious disease of rice. Several enzymes that are secreted through the type II secretion system of this bacterium play an important role in the plant–microbe interaction, being important for virulence and also being able to induce potent host defence responses. One of these enzymes is a secretory lipase/esterase, LipA, which shows a very weak homology to other bacterial lipases and gives a positive tributyrin plate assay. In this study, LipA was purified from the culture supernatant of an overexpressing clone of X. oryzae pv. oryzae and two types of crystals belonging to space group C2 but with two different unit-cell parameters were obtained using the hanging-drop vapour-diffusion method. Type I crystals diffract to a maximum resolution of 1.89 Å and have unit-cell parameters a = 93.1, b = 62.3, c = 66.1 Å, β = 90.8°. Type II crystals have unit-cell parameters a = 103.6, b = 54.6, c = 66.3 Å, β = 92.6° and diffract to 1.86 Å. Solvent-content analysis shows one monomer in the asymmetric unit in both the crystal forms.

  13. Fibulin-1C, C1 Esterase Inhibitor and Glucose Regulated Protein 75 Interact with the CREC Proteins, Calumenin and Reticulocalbin

    PubMed Central

    Aune Westergaard Hansen, Gry; Ludvigsen, Maja; Jacobsen, Christian; Cangemi, Claudia; Melholt Rasmussen, Lars; Vorum, Henrik; Honoré, Bent

    2015-01-01

    Affinity purification, immunoprecipitation, gel electrophoresis and mass spectrometry were used to identify fibulin-1C, C1 esterase inhibitor and glucose regulated protein 75, grp75, as binding partners of the CREC proteins, calumenin and reticulocalbin. Surface plasmon resonance was used to verify the interaction of all three proteins with each of the CREC proteins. Fibulin-1C interacts with calumenin and reticulocalbin with an estimated dissociation constant around 50-60 nM. The interaction, at least for reticulocalbin, was not dependent upon the presence of Ca2+. C1 esterase inhibitor interacted with both proteins with an estimated dissociation constant at 1 μM for reticulocalbin and 150 nM for calumenin. The interaction, at least for calumenin, was dependent upon the presence of Ca2+ with strong interaction at 3.5 mM while no detectable interaction could be found at 0.1 mM. Grp75 binds with an affinity of approximately 3-7 nM with reticulocalbin as well as with calumenin. These interactions suggest functional participation of the CREC proteins in chaperone activity, cell proliferation and transformation, cellular aging, haemostasis and thrombosis as well as modulation of the complement system in fighting bacterial infection. PMID:26161649

  14. Differential effect of the serine protease inhibitor phenyl methyl sulfonyl fluoride on cytochemically detectable esterases in human leucocytes and platelets.

    PubMed

    Dufer, J; Trentesaux, C; Desplaces, A

    1984-01-01

    Esterases of human leucocytes and platelets were studied by cytochemical methods. The aim of the study was to clarify the cellular distribution and possible nature of esterases types differing in their substrate specificity and/or their inhibitor sensitivity. 3 substrates (alpha-naphthyl acetate: ANA; naphthol AS-D chloroacetate: NASDCA; and N-acetyl DL-alanine alpha-naphthyl ester: NACALA) were used and the effects of 2 inhibitors (sodium fluoride and the serine protease inhibitor phenyl methyl sulfonyl fluoride: PMSF) were evaluated. 4 enzyme types were described: Type I, present in granulocytes, was detected using NASDCA and NACALA and was resistant to fluoride but sensitive to PMSF. Other types were detected using ANA as substrate. Type II, present in monocytes, was inhibited by both fluoride and PMSF. Type III, present in platelets and plasma cells, was inhibited by fluoride but resistant to PMSF. Type IV, present in lymphocytes, was resistant to both fluoride and PMSF. The specific aims and possible areas for application of these results are discussed. PMID:6364322

  15. Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding.

    PubMed

    Chen, Qi; Luan, Zheng-Jiao; Yu, Hui-Lei; Cheng, Xiaolin; Xu, Jian-He

    2015-11-01

    A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst1A147I/V148F/G254A was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residue Ser101 in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. This work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications. PMID:26556053

  16. Enhancement of acetyl xylan esterase activity on cellulose acetate through fusion to a family 3 cellulose binding module.

    PubMed

    Mai-Gisondi, Galina; Turunen, Ossi; Pastinen, Ossi; Pahimanolis, Nikolaos; Master, Emma R

    2015-11-01

    The current study investigates the potential to increase the activity of a family 1 carbohydrate esterase on cellulose acetate through fusion to a family 3 carbohydrate binding module (CBM). Specifically, CtCBM3 from Clostridium thermocellum was fused to the carboxyl terminus of the acetyl xylan esterase (AnAXE) from Aspergillus nidulans, and active forms of both AnAXE and AnAXE-CtCBM3 were produced in Pichia pastoris. CtCBM3 fusion had negligible impact on the thermostability or regioselectivity of AnAXE; activities towards acetylated corncob xylan, 4-methylumbelliferyl acetate, p-nitrophenyl acetate, and cellobiose octaacetate were also unchanged. By contrast, the activity of AnAXE-CtCBM3 on cellulose acetate increased by two to four times over 24 h, with greater differences observed at earlier time points. Binding studies using microcrystalline cellulose (Avicel) and a commercial source of cellulose acetate confirmed functional production of the CtCBM3 domain; affinity gel electrophoresis using acetylated xylan also verified the selectivity of CtCBM3 binding to cellulose. Notably, gains in enzyme activity on cellulose acetate appeared to exceed gains in substrate binding, suggesting that fusion to CtCBM3 increases functional associations between the enzyme and insoluble, high molecular weight cellulosic substrates. PMID:26320711

  17. 2,2-Disubstituted 4-acylthio-3-oxobutyl groups as esterase- and thermolabile protecting groups of phosphodiesters.

    PubMed

    Kiuru, Emilia; Ahmed, Zafar; Lönnberg, Harri; Beigelman, Leonid; Ora, Mikko

    2013-02-01

    Five different 2,2-disubstituted 4-acylthio-3-oxobutyl groups have been introduced as esterase-labile phosphodiester protecting groups that additionally are thermolabile. The phosphotriesters 1-3 were prepared to determine the rate of the enzymatic and nonenzymatic removal of such groups at 37 °C and pH 7.5 by HPLC-ESI-MS. Additionally, (1)H NMR spectroscopic monitoring was used for structural characterization of the intermediates and products. When treated with hog liver esterase, these groups were removed by enzymatic deacylation followed by rapid chemical cyclization to 4,4-disubstituted dihydrothiophen-3(2H)-one. The rate of the enzymatic deprotection could be tuned by the nature of the 4-acylthio substituent, the benzoyl group and acetyl groups being removed 50 and 5 times as fast as the pivaloyl group. No alkylation of glutathione could be observed upon the enzymatic deprotection. The half-life for the nonenzymatic deprotection varied from 0.57 to 35 h depending on the electronegativity of the 2-substituents and the size of the acylthio group. The acyl group evidently migrates from the sulfur atom to C3-gem-diol obtained by hydration of the keto group and the exposed mercapto group attacks on C1 resulting in departure of the protecting group as 4,4-disubstituted 3-acyloxy-4,5-dihydrothiophene with concomitant release of the desired phosphodiester. PMID:23272806

  18. Hereditary and acquired angioedema: problems and progress: proceedings of the third C1 esterase inhibitor deficiency workshop and beyond.

    PubMed

    Agostoni, Angelo; Aygören-Pürsün, Emel; Binkley, Karen E; Blanch, Alvaro; Bork, Konrad; Bouillet, Laurence; Bucher, Christoph; Castaldo, Anthony J; Cicardi, Marco; Davis, Alvin E; De Carolis, Caterina; Drouet, Christian; Duponchel, Christiane; Farkas, Henriette; Fáy, Kálmán; Fekete, Béla; Fischer, Bettina; Fontana, Luigi; Füst, George; Giacomelli, Roberto; Gröner, Albrecht; Hack, C Erik; Harmat, George; Jakenfelds, John; Juers, Mathias; Kalmár, Lajos; Kaposi, Pál N; Karádi, István; Kitzinger, Arianna; Kollár, Tímea; Kreuz, Wolfhart; Lakatos, Peter; Longhurst, Hilary J; Lopez-Trascasa, Margarita; Martinez-Saguer, Inmaculada; Monnier, Nicole; Nagy, István; Németh, Eva; Nielsen, Erik Waage; Nuijens, Jan H; O'grady, Caroline; Pappalardo, Emanuela; Penna, Vincenzo; Perricone, Carlo; Perricone, Roberto; Rauch, Ursula; Roche, Olga; Rusicke, Eva; Späth, Peter J; Szendei, George; Takács, Edit; Tordai, Attila; Truedsson, Lennart; Varga, Lilian; Visy, Beáta; Williams, Kayla; Zanichelli, Andrea; Zingale, Lorenza

    2004-09-01

    Hereditary angioedema (HAE), a rare but life-threatening condition, manifests as acute attacks of facial, laryngeal, genital, or peripheral swelling or abdominal pain secondary to intra-abdominal edema. Resulting from mutations affecting C1 esterase inhibitor (C1-INH), inhibitor of the first complement system component, attacks are not histamine-mediated and do not respond to antihistamines or corticosteroids. Low awareness and resemblance to other disorders often delay diagnosis; despite availability of C1-INH replacement in some countries, no approved, safe acute attack therapy exists in the United States. The biennial C1 Esterase Inhibitor Deficiency Workshops resulted from a European initiative for better knowledge and treatment of HAE and related diseases. This supplement contains work presented at the third workshop and expanded content toward a definitive picture of angioedema in the absence of allergy. Most notably, it includes cumulative genetic investigations; multinational laboratory diagnosis recommendations; current pathogenesis hypotheses; suggested prophylaxis and acute attack treatment, including home treatment; future treatment options; and analysis of patient subpopulations, including pediatric patients and patients whose angioedema worsened during pregnancy or hormone administration. Causes and management of acquired angioedema and a new type of angioedema with normal C1-INH are also discussed. Collaborative patient and physician efforts, crucial in rare diseases, are emphasized. This supplement seeks to raise awareness and aid diagnosis of HAE, optimize treatment for all patients, and provide a platform for further research in this rare, partially understood disorder. PMID:15356535

  19. C1 Esterase Inhibitor Reduces Lower Extremity Ischemia/Reperfusion Injury and Associated Lung Damage

    PubMed Central

    Duehrkop, Claudia; Banz, Yara; Spirig, Rolf; Miescher, Sylvia; Nolte, Marc W.; Spycher, Martin; Smith, Richard A. G.; Sacks, Steven H.; Rieben, Robert

    2013-01-01

    Background Ischemia/reperfusion injury of lower extremities and associated lung damage may result from thrombotic occlusion, embolism, trauma, or surgical intervention with prolonged ischemia and subsequent restoration of blood flow. This clinical entity is characterized by high morbidity and mortality. Deprivation of blood supply leads to molecular and structural changes in the affected tissue. Upon reperfusion inflammatory cascades are activated causing tissue injury. We therefore tested preoperative treatment for prevention of reperfusion injury by using C1 esterase inhibitor (C1 INH). Methods and Findings Wistar rats systemically pretreated with C1 INH (n = 6), APT070 (a membrane-targeted myristoylated peptidyl construct derived from human complement receptor 1, n = 4), vehicle (n = 7), or NaCl (n = 8) were subjected to 3h hind limb ischemia and 24h reperfusion. The femoral artery was clamped and a tourniquet placed under maintenance of a venous return. C1 INH treated rats showed significantly less edema in muscle (P<0.001) and lung and improved muscle viability (P<0.001) compared to controls and APT070. C1 INH prevented up-regulation of bradykinin receptor b1 (P<0.05) and VE-cadherin (P<0.01), reduced apoptosis (P<0.001) and fibrin deposition (P<0.01) and decreased plasma levels of pro-inflammatory cytokines, whereas deposition of complement components was not significantly reduced in the reperfused muscle. Conclusions C1 INH reduced edema formation locally in reperfused muscle as well as in lung, and improved muscle viability. C1 INH did not primarily act via inhibition of the complement system, but via the kinin and coagulation cascade. APT070 did not show beneficial effects in this model, despite potent inhibition of complement activation. Taken together, C1 INH might be a promising therapy to reduce peripheral ischemia/reperfusion injury and distant lung damage in complex and prolonged surgical interventions requiring tourniquet application

  20. Thermodynamically based solvent design for enzymatic saccharide acylation with hydroxycinnamic acids in non-conventional media.

    PubMed

    Zeuner, Birgitte; Kontogeorgis, Georgios M; Riisager, Anders; Meyer, Anne S

    2012-02-15

    Enzyme-catalyzed synthesis has been widely studied with lipases (EC 3.1.1.3), but feruloyl esterases (FAEs; EC 3.1.1.73) may provide advantages such as higher substrate affinity and regioselectivity in the synthesis of hydroxycinnamate saccharide esters. These compounds are interesting because of their amphiphilicity and antioxidative potential. Synthetic reactions using mono- or disaccharides as one of the substrates may moreover direct new routes for biomass upgrading in the biorefinery. The paper reviews the available data for enzymatic hydroxycinnamate saccharide ester synthesis in organic solvent systems as well as other enzymatic hydroxycinnamate acylations in ionic liquid systems. The choice of solvent system is highly decisive for enzyme stability, selectivity, and reaction yields in these synthesis reactions. To increase the understanding of the reaction environment and to facilitate solvent screening as a crucial part of the reaction design, the review explores the use of activity coefficient models for describing these systems and - more importantly - the use of group contribution model UNIFAC and quantum chemistry based COSMO-RS for thermodynamic predictions and preliminary solvent screening. Surfactant-free microemulsions of a hydrocarbon, a polar alcohol, and water are interesting solvent systems because they accommodate different substrate and product solubilities and maintain enzyme stability. Ionic liquids may provide advantages as solvents in terms of increased substrate and product solubility, higher reactivity and selectivity, as well as tunable physicochemical properties, but their design should be carefully considered in relation to enzyme stability. The treatise shows that thermodynamic modeling tools for solvent design provide a new toolbox to design enzyme-catalyzed synthetic reactions from biomass sources. PMID:22154740

  1. The synthesis and enzymatic incorporation of sialic acid derivatives for use as tools to study the structure, activity, and inhibition of glycoproteins and other glycoconjugates.

    PubMed

    Martin, R; Witte, K L; Wong, C H

    1998-08-01

    Methods have been developed for the enzymatic synthesis of complex carbohydrates and glycoproteins containing in the sialic acid moiety the heavy metal mercury or the transition-state analog phosphonate of the influenza C 9-O-acetyl-neuraminic acid esterase-catalyzed reaction. 5-Acetamido-3, 5-dideoxy-9-methylphosphono-beta-D-glycero-D-galacto-nonulopyra nosidonic acid (1), 5-acetamido-3,5-dideoxy-9-methylphosphono-2-propyl-alpha-D- glycero-D-galacto-nonulopyranosidonic acid triethylammonium salt (2), and 5-acetamido-9-thiomethylmercuric-3, 5,9-trideoxy-beta-D-glycero-D-galacto-nonulopyranosidonic acid (3) were synthesized. Compounds 1 and 2 are proposed transition state inhibitors of an esterase vital for the binding and infection of influenza C. Compound 3 was enzymatically incorporated into an oligosaccharide and a non-natural glycoprotein for use as an aid in the structure determination of these compounds by X-ray crystallography. PMID:9784869

  2. MODE OF ACTION OF ACETYLXYLAN ESTERASE FROM STREPTOMYCES LIVIDANS: A STUDY WITH DEOXY AND DEOXY-FLUORO ANALOGUES OF ACETYLATED METHYL BETA-D-XYLOPYRANOSIDE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The action of Streptomyces lividans acetylxylan esterase on methyl 2,4-di-O-acetyl- and 3,4-di-O-acetyl beta-D-xylopyranoside was compared with its action on the 2- and 3-deoxy and 2- and 3-deoxy-fluoro-analogues of the two diacetates in order to elucidate the role of the free hydroxyl group in the ...

  3. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal

    PubMed Central

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-01-01

    Key Clinical Message C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine. PMID:25767713

  4. Parametric optimization of feruloyl esterase production from Aspergillus terreus strain GA2 isolated from tropical agro-ecosystems cultivating sweet sorghum.

    PubMed

    Kumar, C Ganesh; Kamle, Avijeet; Mongolla, Poornima; Joseph, Joveeta

    2011-09-01

    A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71- 0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of 30 degrees C. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions. PMID:21952371

  5. Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein.

    PubMed

    Chen, Huayou; Zhang, Tianxi; Jia, Jinru; Vastermark, Ake; Tian, Rui; Ni, Zhong; Chen, Zhi; Chen, Keping; Yang, Shengli

    2015-11-01

    Esterases expressed in microbial hosts are commercially valuable, but their applications are limited due to high costs of production and harsh industrial processes involved. In this study, the esterase-DSM (from Clostridium thermocellum) was expressed and successfully displayed on the spore surface, and the spore-associated esterase was confirmed by western blot analysis and activity measurements. The optimal temperature and pH of spore surface-displayed DSM was 60 and 8.5 °C, respectively. It also demonstrates a broad temperature and pH optimum in the range of 50-70, 7-9.5 °C. The spore surface-displayed esterase-DSM retained 78, 68 % of its original activity after 5 h incubation at 60 and 70 °C, respectively, which was twofold greater activity than that of the purified DSM. The recombinant spores has high activity and stability in DMSO, which was 49 % higher than the retained activity of the purified DSM in DMSO (20 % v/v), and retained 65.2 % of activity after 7 h of incubation in DMSO (20 % v/v). However, the recombinant spores could retain 77 % activity after 3 rounds of recycling. These results suggest that enzyme displayed on the surface of the Bacillus subtilis spore could serve as an effective approach for enzyme immobilization. PMID:26318029

  6. Isomer-specific comparisons of the hydrolysis of synthetic pyrethroids and their fluorogenic analogues by esterases from the cotton bollworm Helicoverpa armigera.

    PubMed

    Yuan, G; Li, Y; Farnsworth, C A; Coppin, C W; Devonshire, A L; Scott, C; Russell, R J; Wu, Y; Oakeshott, J G

    2015-06-01

    The low aqueous solubility and chiral complexity of synthetic pyrethroids, together with large differences between isomers in their insecticidal potency, have hindered the development of meaningful assays of their metabolism and metabolic resistance to them. To overcome these problems, Shan and Hammock (2001) [7] therefore developed fluorogenic and more water-soluble analogues of all the individual isomers of the commonly used Type 2 pyrethroids, cypermethrin and fenvalerate. The analogues have now been used in several studies of esterase-based metabolism and metabolic resistance. Here we test the validity of these analogues by quantitatively comparing their hydrolysis by a battery of 22 heterologously expressed insect esterases with the hydrolysis of the corresponding pyrethroid isomers by these esterases in an HPLC assay recently developed by Teese et al. (2013) [14]. We find a strong, albeit not complete, correlation (r = 0.7) between rates for the two sets of substrates. The three most potent isomers tested were all relatively slowly degraded in both sets of data but three esterases previously associated with pyrethroid resistance in Helicoverpa armigera did not show higher activities for these isomers than did allelic enzymes derived from susceptible H. armigera. Given their amenability to continuous assays at low substrate concentrations in microplate format, and ready detection of product, we endorse the ongoing utility of the analogues in many metabolic studies of pyrethroids. PMID:26047117

  7. Angiotensin-converting enzyme inhibitors-induced angioedema treated by C1 esterase inhibitor concentrate (Berinert®): about one case and review of the therapeutic arsenal.

    PubMed

    Lipski, Samuel Michael; Casimir, Georges; Vanlommel, Martine; Jeanmaire, Mathieu; Dolhen, Pierre

    2015-02-01

    C1 esterase inhibitor (Berinert®) is generally used to treat severe attack of hereditary angioedema. We describe here the case of a patient who presented with a severe angioedema induced by angiotensin-converting enzyme inhibitors (ACEIs) endangering her life. It could be successfully treated with that medicine. PMID:25767713

  8. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    PubMed

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. PMID:26991291

  9. Interactive toxicity of chlorpyrifos and parathion in neonatal rats: Role of esterases in exposure sequence-dependent toxicity

    SciTech Connect

    Kacham, R.; Karanth, S.; Baireddy, P.; Liu, J.; Pope, C. . E-mail: carey.pope@okstate.edu

    2006-01-15

    We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequential dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less

  10. Cytotoxic action of triterpene glycosides from sea cucumbers from the genus Cucumaria on mouse spleen lymphocytes. Inhibition of nonspecific esterase.

    PubMed

    Aminin, Dmitry L; Silchenko, Alexandra S; Avilov, Sergey A; Stepanov, Vadim G; Kalinin, Vladimir I

    2009-06-01

    Four triterpene glycosides from sea cucumbers belonging to the genus Cucumaria, okhotoside A(1)-1 (1), cucumarioside A(0)-1 (2), frondoside A (3) and cucumarioside A(2)-2 (4) inhibit the activity of nonspecific esterase of mouse spleen lymphocytes. The dependence of the inhibitory activity of the glycosides on their structure is similar to that for hemolytic activity. The absence of inhibitory activity for the preparation Cumaside, which is a complex of cucumarioside A(2)-2 and related compounds with cholesterol, shows a cholesterol-dependent character of the inhibitory action of the glycosides. The effective inhibitory concentrations of frondoside A and cucumarioside A(2)-2 are significantly higher than the immunomodulatory doses of these glycosides. PMID:19634320

  11. A Thermally Stable Form of Bacterial Cocaine Esterase: A Potential Therapeutic Agent for Treatment of Cocaine Abuse

    SciTech Connect

    Brim, Remy L.; Nance, Mark R.; Youngstrom, Daniel W.; Narasimhan, Diwahar; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K.; Woods, James H.

    2010-09-03

    Rhodococcal cocaine esterase (CocE) is an attractive potential treatment for both cocaine overdose and cocaine addiction. CocE directly degrades cocaine into inactive products, whereas traditional small-molecule approaches require blockade of the inhibitory action of cocaine on a diverse array of monoamine transporters and ion channels. The usefulness of wild-type (wt) cocaine esterase is hampered by its inactivation at 37 C. Herein, we characterize the most thermostable form of this enzyme to date, CocE-L169K/G173Q. In vitro kinetic analyses reveal that CocE-L169K/G173Q displays a half-life of 2.9 days at 37 C, which represents a 340-fold improvement over wt and is 15-fold greater than previously reported mutants. Crystallographic analyses of CocE-L169K/G173Q, determined at 1.6-{angstrom} resolution, suggest that stabilization involves enhanced domain-domain interactions involving van der Waals interactions and hydrogen bonding. In vivo rodent studies reveal that intravenous pretreatment with CocE-L169K/G173Q in mice provides protection from cocaine-induced lethality for longer time periods before cocaine administration than wt CocE. Furthermore, intravenous administration (pretreatment) of CocE-L169K/G173Q prevents self-administration of cocaine in a time-dependent manner. Termination of the in vivo effects of CoCE seems to be dependent on, but not proportional to, its clearance from plasma as its half-life is approximately 2.3 h and similar to that of wt CocE (2.2 h). Taken together these data suggest that CocE-L169K/G173Q possesses many of the properties of a biological therapeutic for treating cocaine abuse but requires additional development to improve its serum half-life.

  12. Amelioration of the cardiovascular effects of cocaine in rhesus monkeys by a long-acting mutant form of cocaine esterase.

    PubMed

    Collins, Gregory T; Carey, Kathy A; Narasimhan, Diwahar; Nichols, Joseph; Berlin, Aaron A; Lukacs, Nicholas W; Sunahara, Roger K; Woods, James H; Ko, Mei-Chuan

    2011-04-01

    A long-acting mutant form of a naturally occurring bacterial cocaine esterase (T172R/G173Q CocE; double mutant CocE (DM CocE)) has previously been shown to antagonize the reinforcing, convulsant, and lethal effects of cocaine in rodents. However, the effectiveness and therapeutic characteristics of DM CocE in nonhuman primates, in a more clinically relevant context, are unknown. The current studies were aimed at (1) characterizing the cardiovascular effects of cocaine in freely moving rhesus monkeys, (2) evaluating the capacity of DM CocE to ameliorate these cocaine-induced cardiovascular effects when administered 10 min after cocaine, and (3) assessing the immunological responses of monkeys to DM CocE following repeated administration. Intravenous administration of cocaine produced dose-dependent increases in mean arterial pressure (MAP) and heart rate (HR) that persisted throughout the 2-h observation period following a dose of 3.2 mg/kg cocaine. Cocaine failed to produce reliable changes in electrocardiograph (ECG) parameters, body temperature, and locomotor activity. DM CocE produced a rapid and dose-dependent amelioration of the cardiovascular effects, with saline-like MAP measures restored within 5-10 min, and saline-like HR measures restored within 20-40 min of DM CocE administration. Although administration of DM CocE produced increases in anti-CocE antibodies, they did not appear to have a neutralizing effect on the capacity of DM CocE to reverse the cardiovascular effects of cocaine. In conclusion, these findings in monkeys provide strong evidence to suggest that highly efficient cocaine esterases, such as DM CocE, can provide a potential therapeutic option for treatment of acute cocaine intoxication in humans. PMID:21289605

  13. An extended loop in CE7 carbohydrate esterase family is dispensable for oligomerization but required for activity and thermostability.

    PubMed

    Singh, Mrityunjay K; Manoj, Narayanan

    2016-06-01

    The carbohydrate esterase family 7 (CE7) belonging to the α/β hydrolase superfamily contains a structurally conserved loop extension element relative to the canonical α/β hydrolase fold. This element called the β-interface loop contributes 20-30% of the total buried surface area at intersubunit interfaces of the functional hexameric state. To test whether this loop is an enabling region for the structure and function of the oligomeric assembly, we designed a truncation variant of the thermostable CE7 acetyl esterase from Thermotoga maritima (TmAcE). Although deletion of 26 out of 40 residues in the loop had little impact on the hexamer formation, the variant exhibited altered dynamics of the oligomeric assembly and a loss of thermal stability. Furthermore, the mutant lacked catalytic activity. Crystal structures of the variant and a new crystal form of the wild type protein determined at 2.75Å and 1.76Å, respectively, provide a rationale for the properties of the variant. The hexameric assembly in the variant is identical to that of the wild type and differed only in the lack of buried surface area interactions at the original intersubunit interfaces. This is accompanied by disorder in an extended region of the truncated loop that consequently induces disorder in the neighboring oxyanion hole loop. Overall, the results suggest that the β-interface loop in CE7 enzymes is dispensable for the oligomeric assembly. Rather, the loop extension event was evolutionarily selected to regulate activity, conformational flexibility and thermal stability. PMID:27085421

  14. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema

    PubMed Central

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette; Rasmussen, Eva Rye

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema (ACEi-AE) of the hypopharynx that completely resolved rapidly after the infusion of plasma-derived C1-inhibitor concentrate adding to the sparse reports in the existing literature. PMID:27123347

  15. Structure-reactivity relationships for the inhibition mechanism at the second alkyl-chain-binding site of cholesterol esterase and lipase.

    PubMed

    Lin, G; Shieh, C T; Ho, H C; Chouhwang, J Y; Lin, W Y; Lu, C P

    1999-08-01

    Alkyl-N-phenyl carbamates (2-8) (see Figure 1), alkyl-N-phenyl thiocarbamates (9-15), 2,2'-biphenyl-2-ol-2'-N-substituted carbamates (16-23), and 2, 2'-biphenyl-2-N-octadecylcarbamate-2'-N-substituted carbamates (24-31) are prepared and evaluated for their inhibition effects on porcine pancreatic cholesterol esterase and Pseudomona species lipase. All inhibitors are characterized as transient or pseudo substrate inhibitors for both enzymes. Both enzymes are not protected from inhibition and further inactivated by carbamates 2-8 and thiocarbamates 9-15 in the presence of trifluoroacetophenone. Therefore, carbamates 2-8 and thiocarbamates 9-15 are exceptions for active site binding inhibitors and are probably the second alkyl-chain binding-site-directed inhibitors for both enzymes. The inhibition data for carbamates 2-8 and thiocarbamates 9-15 are correlated with the steric constant, E(s), and the hydrophobicity constant, pi; however, the inhibition data are not correlated with the Taft substituent constant, sigma. A comparison of the inhibition data for carbamates 2-8 and thiocarbamates 9-15 toward both enzymes indicates that thiocarbamates 9-15 are more potent inhibitors than carbamates 2-8. A comparison of the inhibition data for cholesterol esterase and Pseudomona species lipase by carbamates 2-8 or thiocarbamates 9-15 indicates that cholesterol esterase is more sensitive to the E(s) and pi values than Pseudomona species lipase. The negative slope values for the logarithms of inhibition data for Pseudomona species lipase by carbamates 2-8 and thiocarbamates 9-15 versus E(s) and pi indicate that the second alkyl-chain-binding site of Pseudomona species lipase is huge, hydrophilic, compared to that of cholesterol esterase, and prefers to interact with a bulky, hydrophilic inhibitor rather than a small, hydrophobic one. On the contrary, the second alkyl-chain-binding site of cholesterol esterase prefers to bind to a small, hydrophobic inhibitor. Both enzymes are

  16. The Use of Plasma-Derived Complement C1-Esterase Inhibitor Concentrate (Berinert®) in the Treatment of Angiotensin Converting Enzyme-Inhibitor Related Angioedema.

    PubMed

    Hermanrud, Thorbjørn; Duus, Nicolaj; Bygum, Anette; Rasmussen, Eva Rye

    2016-01-01

    Angioedema of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to pharmaceuticals influencing the generation or degradation of the vasoactive molecule bradykinin. Plasma-derived C1-esterase inhibitor concentrate is a well-established treatment option of hereditary and acquired complement C1-esterase inhibitor deficiency, which are also mediated by an increased level of bradykinin resulting in recurrent angioedema. We here present a case of severe angiotensin converting enzyme-inhibitor related angioedema (ACEi-AE) of the hypopharynx that completely resolved rapidly after the infusion of plasma-derived C1-inhibitor concentrate adding to the sparse reports in the existing literature. PMID:27123347

  17. Identification and characterization of carboxyl esterases of gill chamber-associated microbiota in the deep-sea shrimp Rimicaris exoculata by using functional metagenomics.

    PubMed

    Alcaide, María; Tchigvintsev, Anatoli; Martínez-Martínez, Mónica; Popovic, Ana; Reva, Oleg N; Lafraya, Álvaro; Bargiela, Rafael; Nechitaylo, Taras Y; Matesanz, Ruth; Cambon-Bonavita, Marie-Anne; Jebbar, Mohamed; Yakimov, Michail M; Savchenko, Alexei; Golyshina, Olga V; Yakunin, Alexander F; Golyshin, Peter N; Ferrer, Manuel

    2015-03-01

    The shrimp Rimicaris exoculata dominates the fauna in deep-sea hydrothermal vent sites along the Mid-Atlantic Ridge (depth, 2,320 m). Here, we identified and biochemically characterized three carboxyl esterases from microbial communities inhabiting the R. exoculata gill that were isolated by naive screens of a gill chamber metagenomic library. These proteins exhibit low to moderate identity to known esterase sequences (≤52%) and to each other (11.9 to 63.7%) and appear to have originated from unknown species or from genera of Proteobacteria related to Thiothrix/Leucothrix (MGS-RG1/RG2) and to the Rhodobacteraceae group (MGS-RG3). A library of 131 esters and 31 additional esterase/lipase preparations was used to evaluate the activity profiles of these enzymes. All 3 of these enzymes had greater esterase than lipase activity and exhibited specific activities with ester substrates (≤356 U mg(-1)) in the range of similar enzymes. MGS-RG3 was inhibited by salts and pressure and had a low optimal temperature (30°C), and its substrate profile clustered within a group of low-activity and substrate-restricted marine enzymes. In contrast, MGS-RG1 and MGS-RG2 were most active at 45 to 50°C and were salt activated and barotolerant. They also exhibited wider substrate profiles that were close to those of highly active promiscuous enzymes from a marine hydrothermal vent (MGS-RG2) and from a cold brackish lake (MGS-RG1). The data presented are discussed in the context of promoting the examination of enzyme activities of taxa found in habitats that have been neglected for enzyme prospecting; the enzymes found in these taxa may reflect distinct habitat-specific adaptations and may constitute new sources of rare reaction specificities. PMID:25595762

  18. Identification and Characterization of Carboxyl Esterases of Gill Chamber-Associated Microbiota in the Deep-Sea Shrimp Rimicaris exoculata by Using Functional Metagenomics

    PubMed Central

    Alcaide, María; Tchigvintsev, Anatoli; Martínez-Martínez, Mónica; Popovic, Ana; Reva, Oleg N.; Lafraya, Álvaro; Bargiela, Rafael; Nechitaylo, Taras Y.; Matesanz, Ruth; Cambon-Bonavita, Marie-Anne; Jebbar, Mohamed; Yakimov, Michail M.; Savchenko, Alexei; Golyshina, Olga V.; Yakunin, Alexander F.

    2015-01-01

    The shrimp Rimicaris exoculata dominates the fauna in deep-sea hydrothermal vent sites along the Mid-Atlantic Ridge (depth, 2,320 m). Here, we identified and biochemically characterized three carboxyl esterases from microbial communities inhabiting the R. exoculata gill that were isolated by naive screens of a gill chamber metagenomic library. These proteins exhibit low to moderate identity to known esterase sequences (≤52%) and to each other (11.9 to 63.7%) and appear to have originated from unknown species or from genera of Proteobacteria related to Thiothrix/Leucothrix (MGS-RG1/RG2) and to the Rhodobacteraceae group (MGS-RG3). A library of 131 esters and 31 additional esterase/lipase preparations was used to evaluate the activity profiles of these enzymes. All 3 of these enzymes had greater esterase than lipase activity and exhibited specific activities with ester substrates (≤356 U mg−1) in the range of similar enzymes. MGS-RG3 was inhibited by salts and pressure and had a low optimal temperature (30°C), and its substrate profile clustered within a group of low-activity and substrate-restricted marine enzymes. In contrast, MGS-RG1 and MGS-RG2 were most active at 45 to 50°C and were salt activated and barotolerant. They also exhibited wider substrate profiles that were close to those of highly active promiscuous enzymes from a marine hydrothermal vent (MGS-RG2) and from a cold brackish lake (MGS-RG1). The data presented are discussed in the context of promoting the examination of enzyme activities of taxa found in habitats that have been neglected for enzyme prospecting; the enzymes found in these taxa may reflect distinct habitat-specific adaptations and may constitute new sources of rare reaction specificities. PMID:25595762

  19. Mapping structural and functional changes in esterase-treated pectin and characterizing enzyme mode of action

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organoleptic qualities of processed and formulated foods are primary determinates of consumer acceptability. Stabilization of milk proteins in acid dairy drinks, gelation in jams and jellies, and texture-firming ionic interactions in fruits and vegetables are product qualities mediated by structural...

  20. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: new insights from bioinformatics analysis

    PubMed Central

    2012-01-01

    Background GDSL esterases/lipases are a newly discovered subclass of lipolytic enzymes that are very important and attractive research subjects because of their multifunctional properties, such as broad substrate specificity and regiospecificity. Compared with the current knowledge regarding these enzymes in bacteria, our understanding of the plant GDSL enzymes is very limited, although the GDSL gene family in plant species include numerous members in many fully sequenced plant genomes. Only two genes from a large rice GDSL esterase/lipase gene family were previously characterised, and the majority of the members remain unknown. In the present study, we describe the rice OsGELP (Oryza sativa GDSL esterase/lipase protein) gene family at the genomic and proteomic levels, and use this knowledge to provide insights into the multifunctionality of the rice OsGELP enzymes. Results In this study, an extensive bioinformatics analysis identified 114 genes in the rice OsGELP gene family. A complete overview of this family in rice is presented, including the chromosome locations, gene structures, phylogeny, and protein motifs. Among the OsGELPs and the plant GDSL esterase/lipase proteins of known functions, 41 motifs were found that represent the core secondary structure elements or appear specifically in different phylogenetic subclades. The specification and distribution of identified putative conserved clade-common and -specific peptide motifs, and their location on the predicted protein three dimensional structure may possibly signify their functional roles. Potentially important regions for substrate specificity are highlighted, in accordance with protein three-dimensional model and location of the phylogenetic specific conserved motifs. The differential expression of some representative genes were confirmed by quantitative real-time PCR. The phylogenetic analysis, together with protein motif architectures, and the expression profiling were analysed to predict the

  1. Mitigation of Acetylcholine Esterase Activity in the 1,7-Diazacarbazole Series of Inhibitors of Checkpoint Kinase 1.

    PubMed

    Gazzard, Lewis; Williams, Karen; Chen, Huifen; Axford, Lorraine; Blackwood, Elizabeth; Burton, Brenda; Chapman, Kerry; Crackett, Peter; Drobnick, Joy; Ellwood, Charles; Epler, Jennifer; Flagella, Michael; Gancia, Emanuela; Gill, Matthew; Goodacre, Simon; Halladay, Jason; Hewitt, Joanne; Hunt, Hazel; Kintz, Samuel; Lyssikatos, Joseph; Macleod, Calum; Major, Sarah; Médard, Guillaume; Narukulla, Raman; Ramiscal, Judi; Schmidt, Stephen; Seward, Eileen; Wiesmann, Christian; Wu, Ping; Yee, Sharon; Yen, Ivana; Malek, Shiva

    2015-06-25

    Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development. A campaign of analogue synthesis established SAR delineating ChK1 and AChE activities and allowing identification of new leads with improved profiles. In silico docking using a model of AChE permitted rationalization of the observed SAR. Compounds 19 (GNE-900) and 30 (GNE-145) were identified as selective, orally bioavailable ChK1 inhibitors offering excellent in vitro potency with significantly reduced AChE activity. In combination with gemcitabine, these compounds demonstrate an in vivo pharmacodynamic effect and are efficacious in a mouse p53 mutant xenograft model. PMID:25988399

  2. Modulation of human neutrophil polymorphonuclear leucocyte migration by human plasma alpha-globulin inhibitors and synthetic esterase inhibitors.

    PubMed Central

    Goetzl, E J

    1975-01-01

    The exposure of isolated washed human neutrophils to purified human alpha1-antitrypsin resulted in a transient 2-fold enhancement of random migration and concomitant 70-90 per cent inhibition of chemotactic responsiveness to C5a or C3a, while treatment with alpha2-macroglobulin gave a less pronounced brief enhancement of random migration and prolonged 40-60 per cent suppression of chemotaxis. Peak effects occurred with concentrations of 1 mug/ml of alpha1-antitrypsin and 10 mug/ml of alpha2-macroglobulin. In contrast, the inhibitor of the activated first component of complement, at the highest concentration studied of 100/mug/ml, slightly enhanced chemotactic migration in response to C5a without influencing random migration. Preincubation of neutrophils with either L-1-tosylamide-2-phenylethyl-chloromethyl ketone (TPCK) or N-alpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK) at concentrations of 10-8-10-4M suppressed chemotaxis with concomitant inhibition of random migration by TPCK and enhancement of random migration by TLCK. All agents worked directly and irreversibly on the cells but caused only slight stimulation of the activity of the hexose monophosphate shunt of layers of adherent neutrophils. The results suggest that interaction of the plasma alpha-globulins or synthetic esterase inhibitors with surface receptors on neutrophils can influence both the random migration and responsiveness to chemotactic factors of these cells. PMID:49293

  3. Effects of juvenile hormone (JH) analog insecticides on larval development and JH esterase activity in two spodopterans.

    PubMed

    El-Sheikh, El-Sayed A; Kamita, Shizuo G; Hammock, Bruce D

    2016-03-01

    Juvenile hormone analog (JHA) insecticides are biological and structural mimics of JH, a key insect developmental hormone. Toxic and anti-developmental effects of the JHA insecticides methoprene, fenoxycarb, and pyriproxyfen were investigated on the larval and pupal stages of Spodoptera littoralis and Spodoptera frugiperda. Bioassays showed that fenoxycarb has the highest toxicity and fastest speed of kill in 2nd instar S. littoralis. All three JHAs affected the development of 6th instar (i.e., final instar) and pupal S. frugiperda. JH esterase (JHE) is a critical enzyme that helps to regulate JH levels during insect development. JHE activity in the last instar S. littoralis and S. frugiperda was 11 and 23 nmol min(-1) ml(-1) hemolymph, respectively. Methoprene and pyriproxyfen showed poor inhibition of JHE activity from these insects, whereas fenoxycarb showed stronger inhibition. The inhibitory activity of fenoxycarb, however, was more than 1000-fold lower than that of OTFP, a highly potent inhibitor of JHEs. Surprisingly, topical application of methoprene, fenoxycarb or pyriproxyfen on 6th instars of S. littoralis and S. frugiperda prevented the dramatic reduction in JHE activity that was found in control insects. Our findings suggest that JHAs may function as JH agonists that play a disruptive role or a hormonal replacement role in S. littoralis and S. frugiperda. PMID:26969437

  4. Luminescence and antibacterial studies of silver nanoparticles using the esterases-containing latex of E. Tirucalli plant via green route

    NASA Astrophysics Data System (ADS)

    Sudheerkumar, K. H.; Dhananjaya, N.; Reddy Yadav, L. S.

    2016-04-01

    Silver nanoparticles (Ag NPs) synthesized from silver nitrate solutions using the esterase-containing latex of the E. Tirucalli plant widely found in a large region in Karnataka, India. Plant-mediated synthesis of nanoparticles is a green chemistry approach that intercom-nects nanotechnology and plant biotechnology. The effect of extract concentration, contact time, and temperature on the reaction rate and the shape of the Ag nanoparticles was investigated. The nanoparticles have been characterized by powder X-ray diffraction, UV-visible spectroscopy, photoluminescence spectroscopy and morphology by scanning electron microscope, transmission electron microscopy, as a function of the ratio of silver ions to reducing agent molecules. Powder X-ray diffraction patterns show that the crystal structure obtained is face-centered cubic (fcc). The morphology of the silver nanoparticle was uniform with well-distributed elliptical particles with a range from 15 to 25nm. Ag NPs exhibit significant antibacterial activity against Bacillus cereus using the agar well diffusion method.

  5. Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity

    PubMed Central

    Verma, Pradeep; Dyckmans, Jens; Militz, Holger

    2008-01-01

    Beech and pine wood blocks were treated with 1,3-dimethylol-4,5-dihydroxyethylen urea (DMDHEU) to increasing weight percent gains (WPG). The resistance of the treated specimens against Trametes versicolor and Coniophora puteana, determined as mass loss, increased with increasing WPG of DMDHEU. Metabolic activity of the fungi in the wood blocks was assessed as total esterase activity (TEA) based on the hydrolysis of fluorescein diacetate and as heat or energy production determined by isothermal micro-calorimetry. Both methods revealed that the fungal activity was related with the WPG and the mass loss caused by the fungi. Still, fungal activity was detected even in wood blocks of the highest WPG and showed that the treatment was not toxic to the fungi. Energy production showed a higher consistency with the mass loss after decay than TEA; higher mass loss was more stringently reflected by higher heat production rate. Heat production did not proceed linearly, possibly due to the inhibition of fungal activity by an excess of carbon dioxide. PMID:18542949

  6. Automated high-throughput in vitro screening of the acetylcholine esterase inhibiting potential of environmental samples, mixtures and single compounds.

    PubMed

    Froment, Jean; Thomas, Kevin V; Tollefsen, Knut Erik

    2016-08-01

    A high-throughput and automated assay for testing the presence of acetylcholine esterase (AChE) inhibiting compounds was developed, validated and applied to screen different types of environmental samples. Automation involved using the assay in 96-well plates and adapting it for the use with an automated workstation. Validation was performed by comparing the results of the automated assay with that of a previously validated and standardised assay for two known AChE inhibitors (paraoxon and dichlorvos). The results show that the assay provides similar concentration-response curves (CRCs) when run according to the manual and automated protocol. Automation of the assay resulted in a reduction in assay run time as well as in intra- and inter-assay variations. High-quality CRCs were obtained for both of the model AChE inhibitors (dichlorvos IC50=120µM and paraoxon IC50=0.56µM) when tested alone. The effect of co-exposure of an equipotent binary mixture of the two chemicals were consistent with predictions of additivity and best described by the concentration addition model for combined toxicity. Extracts of different environmental samples (landfill leachate, wastewater treatment plant effluent, and road tunnel construction run-off) were then screened for AChE inhibiting activity using the automated bioassay, with only landfill leachate shown to contain potential AChE inhibitors. Potential uses and limitations of the assay were discussed based on the present results. PMID:27085000

  7. Biosensor assay of neuropathy target esterase in whole blood as a new approach to OPIDN risk assessment: review of progress.

    PubMed

    Makhaeva, Galina F; Malygin, Vladimir V; Strakhova, Nadezhda N; Sigolaeva, Larisa V; Sokolovskaya, Lidia G; Eremenko, Arkady V; Kurochkin, Ilya N; Richardson, Rudy J

    2007-04-01

    Organophosphates (OPs) that inhibit neuropathy target esterase (NTE) with subsequent ageing can produce OP-induced delayed neuropathy (OPIDN). NTE inhibition in lymphocytes can be used as a biomarker of exposure to neuropathic OPs. An electrochemical method was developed to assay NTE in whole blood. The high sensitivity of the tyrosinase carbon-paste biosensors for the phenol produced by hydrolysis of the substrate, phenyl valerate, allowed NTE activity to be measured in diluted samples of whole blood, which cannot be done using the standard colorimetric assay. The biosensor was used to establish correlations of NTE inhibitions in blood with that in lymphocytes and brain after dosing hens with a neuropathic OP. The results of further studies demonstrated that whole blood NTE is a reliable biomarker of neuropathic OPs for up to 96 hours after exposure. These validation results suggest that the biosensor NTE assay for whole blood could be developed to measure human exposure to neuropathic OPs as a predictor of OPIDN. The small blood volume required (100 microL), simplicity of sample preparation and rapid analysis times indicate that the biosensor should be useful in biomonitoring and epidemiological studies. The present paper is an overview of our previous and ongoing work in this area. PMID:17615108

  8. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.

    PubMed

    Truongvan, Ngoc; Jang, Sei-Heon; Lee, ChangWoo

    2016-06-28

    Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes. PMID:27259687

  9. Group A Streptococcus Secreted Esterase Hydrolyzes Platelet-Activating Factor to Impede Neutrophil Recruitment and Facilitate Innate Immune Evasion

    PubMed Central

    Li, Jinquan; Garcia, Cristiana C.; Feng, Wenchao; Kirpotina, Liliya N.; Hilmer, Jonathan; Tavares, Luciana P.; Layton, Arthur W.; Quinn, Mark T.; Bothner, Brian; Teixeira, Mauro M.; Lei, Benfang

    2012-01-01

    The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (ΔsseMGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and kcat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of ΔsseMGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses. PMID:22496650

  10. Food-induced esterase electromorphs in Carinarion spp. and their effects on taxonomic data analysis (Gastropoda, Pulmonata, Arionidae).

    PubMed

    Jordaens, K; Van Riel, P; Verhagen, R; Backeljau, T

    1999-03-01

    Nonspecific esterases (EST) are often used to measure genetic variation, yet they may be influenced by environmental factors such as food, climate and age. This may produce misleading similarity indices and genetic diversity estimates (i.e., clone or strain diversities in uniparental organisms). Therefore, polyacrylamide gel electrophoresis (PAGE) and isoelectric focusing (IEF) were used to investigate environmental effects on the EST variation in natural Carinarion populations, as well as in 45 individuals that were raised individually on carrots to produce offspring by selfing. Food effects on EST profiles in these progenies were examined by raising them on different food items (lettuce, nettle, or paper). Our results indicated that: (i) Arion (Carinarion) fasciatus and A. (C.) silvaticus show species-specific EST profiles, (ii) A. fasciatus-like outcrossers most probably are conspecific with A. fasciatus s.s., (iii) not all EST variation has a Mendelian basis since lettuce and nettle altered EST profiles, and (iv) food effects on EST profiles differed strongly between individuals. Although food-induced EST profiles did not affect taxonomic interpretations, they did inflate genetic diversity estimates and thus provided misleading population-genetic data. PMID:10217156

  11. Inhibition, recovery and oxime-induced reactivation of muscle esterases following chlorpyrifos exposure in the earthworm Lumbricus terrestris.

    PubMed

    Collange, B; Wheelock, C E; Rault, M; Mazzia, C; Capowiez, Y; Sanchez-Hernandez, J C

    2010-06-01

    Assessment of wildlife exposure to organophosphorus (OP) pesticides generally involves the measurement of cholinesterase (ChE) inhibition, and complementary biomarkers (or related endpoints) are rarely included. Herein, we investigated the time course inhibition and recovery of ChE and carboxylesterase (CE) activities in the earthworm Lumbricus terrestris exposed to chlorpyrifos, and the ability of oximes to reactivate the phosphorylated ChE activity. Results indicated that these esterase activities are a suitable multibiomarker scheme for monitoring OP exposure due to their high sensitivity to OP inhibition and slow recovery to full activity levels following pesticide exposure. Moreover, oximes reactivated the inhibited ChE activity of the earthworms exposed to 12 and 48 mg kg(-1) chlorpyrifos during the first week following pesticide exposure. This methodology is useful for providing evidence for OP-mediated ChE inhibition in individuals with a short history of OP exposure (< or = 1 week); resulting a valuable approach for assessing multiple OP exposure episodes in the field. PMID:20334963

  12. Coexpressing Escherichia coli cyclopropane synthase with Sterculia foetida Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation.

    PubMed

    Yu, Xiao-Hong; Prakash, Richa Rawat; Sweet, Marie; Shanklin, John

    2014-01-01

    Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation. PMID:24204024

  13. A novel cold active esterase derived from Colombian high Andean forest soil metagenome.

    PubMed

    Jiménez, Diego Javier; Montaña, José Salvador; Alvarez, Diana; Baena, Sandra

    2012-01-01

    In order to search new lipolytic enzymes and conduct bioprospecting of microbial communities from high Andean forest soil, a metagenomic library of approximately 20,000 clones was constructed in Escherichia coli using plasmid p-Bluescript II SK+. The library covered 80 Mb of the metagenomic DNA mainly from Proteobacteria, Actinobacteria and Acidobacteria. Two clones with lipolytic activity in tributyrin as a substrate were recovered. Clone BAA3G2 (pSK-estGX1) was selected and the entire 4.6 Kb insert sequence was determined. The sequence had a GC content of 70.6% and could be derived from an undescribed Actinobacteria genome. One open reading frame encoded a polypeptide of 210 amino acids (gene estGX1) with a molecular mass of 22.4 kDa that contained the pentapeptide G-P-S-G-G near the N-terminus essential for lipase activity and the putative catalytic triad was identified, also a putative ribosomal binding site located 18 bp upstream the estGX1 ATG start codon was identified. The phylogenetic analysis suggested that the protein belonged to a new lipase family. The secreted enzyme showed a preference for short length fatty acids, with specific activity against p-nitrophenyl-butyrate (0.142 U/mg of total protein), it was cold active with relative activity of 30% at 10°C and moderately thermo active with relative activity of 80% at 50°C and had a pH optimum of 8.0 at 40°C. PMID:22806812

  14. Neuropathy target esterase inhibitors: enantiomeric separation and stereospecificity of 2-substituted-4H-1,3,2-benzodioxaphosphorin 2-oxides.

    PubMed

    Wu, S Y; Casida, J E

    1994-01-01

    2-Substituted-4H-1,3,2-benzodioxaphosphorin 2-oxides (2-substituted-BDPOs) are known to be potent neuropathy target esterase (NTE) inhibitors (I50s for the racemates of 0.2-3 nM) when the 2-substituents are n-alkyl (C5-C12), N-alkoxy (C7-C10), or p-n-alkylbenzyl (C3 and C4). The list of potent inhibitors (I50s < 3 nM) is expanded by the new n-alkylamino (C9) and n-alkylthio (C5, C7, and C9) analogs reported here. The optimal chain length of the 2-substituent is about 10 atoms in the alkylamino and alkylthio series as in our previous study on alkyl and alkoxy moieties. In contrast, an I50 of 60 nM is reported for o-methylphenoxy-BDPO, the neuropathic metabolite of tri-o-cresyl phosphate (TOCP). In addition to substituent effects, each of these compounds contains two enantiomers of unknown stereospecificity as NTE inhibitors. Separation by chiral HPLC with the CHIRALCEL OC column and hexane-2-propanol eluent gives individual enantiomers of > 98% e.e. and a stereospecificity for NTE inhibition depending on the type and chain length of the 2-substituent; e.g., the ratio for inhibitory potency of the individual enantiomers is 1.7-fold for nonylthio, 1255-fold for nonylamino, and 9-fold for the TOCP metabolite. In comparing enantiomeric pairs of BDPOs with alkyl, alkoxy, alkylamino, alkylthio, benzyl, p-butylbenzyl, o-methylphenoxy, or phenyl as the 2-substituent, the more retained enantiomer in HPLC is always the better NTE inhibitor (in a series of twenty-two pairs) and housefly toxicant (based on two pairs) than the less retained one.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8155829

  15. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna.

    PubMed

    Barata, Carlos; Solayan, Arun; Porte, Cinta

    2004-02-10

    In this study, the cladoceran Daphnia magna was exposed to two model organophosphorous and one carbamate pesticides including malathion, chlorpyrifos and carbofuran to assess acetylcholinesterase (AChE) and carboxylesterase (CbE) inhibition and recovery patterns and relate those responses with individual level effects. Our results revealed differences in enzyme inhibition and recovery patterns among the studied esterase enzymes and pesticides. CbE was more sensitive to organophosphorous than AChE, whereas both CbE and AChE showed equivalent sensitivities to the carbamate carbofuran. Recovery patterns of AChE and CbE activities following exposure to the studied pesticides were similar with 80-100% recoveries taking place 12 and 96 h after exposure to organophosphorous and carbamates pesticides, respectively. The physiological role of AChE and CbE inhibition patterns in Daphnia was examined by using organophosphorous and carbamate compounds alone and with specific inhibitors of CbE. Under exposure to organophosphorous pesticides, survival of Daphnia juveniles was impaired at AChE inhibition levels higher than 50% whereas under exposure to the carbamate carbofuran low levels of AChE inhibition affected mortality. Inhibition of CbE by 80-90% increased toxicity to organophosphorous and carbamate pesticides by up to two- and four-fold, respectively. Our results suggest that both AChE and CbE enzymes are involved in determining toxicity of Daphnia to the studied chemicals and that AChE inhibition levels higher than 50% can be considered of environmental concern to Daphnia species. PMID:15036868

  16. Perturbation-Reperturbation Test of Selection Vs. Hitchhiking of the Two Major Alleles of Esterase-5 in Drosophila Pseudoobscura

    PubMed Central

    Arnason, E.

    1991-01-01

    A perturbation-reperturbation tests selective neutrality of 100/100/100/100/100 and 106/100/100/100/100, the two most common alleles at the highly polymorphic X-linked locus Esterase-5 in Drosophila pseudoobscura. A total of 22 replicate populations are set up in cages, 11 start at a high frequency of 76% (U) and 11 at a low frequency of 21% (N) of the 106 allele. Allele frequencies change directionally and decrease in both U and N populations as groups and reach equilibria of 60 and 14%, respectively, after 200-300 days. These changes suggest natural selection. A hypothesis of balancing selection accounts for the pattern and predicts a dynamic equilibrium. A rival neutral hypothesis accounts for the pattern equally well by postulating hitchhiking and breakup of linkage leaving the Est-5 variants to drift at neutral equilibria. A reperturbation of allele frequencies in each population, creating 22 additional reperturbed populations EN and EU, with the original populations as controls, directly addresses the question of balancing selection or hitchhiking and breakup of linkage effects. Allele frequencies do not change directionally among the reperturbed populations as a group. The hypothesis of balancing selection is rejected in favor of the hypothesis of initial hitchhiking and dissipated linkage effects. The power of the experimental design to detect selection is studied by simulation. Within the limits of power set by the design, it is concluded that the 100 and 106 are iso-fitness alleles of Est-5 under the environmental conditions of the laboratory populations. The requirements of method of perturbation and reperturbation are discussed. PMID:1936955

  17. An antennal carboxylesterase from Drosophila melanogaster, esterase 6, is a candidate odorant-degrading enzyme toward food odorants

    PubMed Central

    Chertemps, Thomas; Younus, Faisal; Steiner, Claudia; Durand, Nicolas; Coppin, Chris W.; Pandey, Gunjan; Oakeshott, John G.; Maïbèche, Martine

    2015-01-01

    Reception of odorant molecules within insect olfactory organs involves several sequential steps, including their transport through the sensillar lymph, interaction with the respective sensory receptors, and subsequent inactivation. Odorant-degrading enzymes (ODEs) putatively play a role in signal dynamics by rapid degradation of odorants in the vicinity of the receptors, but this hypothesis is mainly supported by in vitro results. We have recently shown that an extracellular carboxylesterase, esterase-6 (EST-6), is involved in the physiological and behavioral dynamics of the response of Drosophila melanogaster to its volatile pheromone ester, cis-vaccenyl acetate. However, as the expression pattern of the Est-6 gene in the antennae is not restricted to the pheromone responding sensilla, we tested here if EST-6 could play a broader function in the antennae. We found that recombinant EST-6 is able to efficiently hydrolyse several volatile esters that would be emitted by its natural food in vitro. Electrophysiological comparisons of mutant Est-6 null flies and a control strain (on the same genetic background) showed that the dynamics of the antennal response to these compounds is influenced by EST-6, with the antennae of the null mutants showing prolonged activity in response to them. Antennal responses to the strongest odorant, pentyl acetate, were then studied in more detail, showing that the repolarization dynamics were modified even at low doses but without modification of the detection threshold. Behavioral choice experiments with pentyl acetate also showed differences between genotypes; attraction to this compound was observed at a lower dose among the null than control flies. As EST-6 is able to degrade various bioactive odorants emitted by food and plays a role in the response to these compounds, we hypothesize a role as an ODE for this enzyme toward food volatiles. PMID:26594178

  18. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity.

    PubMed Central

    Watanabe, H; Tanase, S; Nakajou, K; Maruyama, T; Kragh-Hansen, U; Otagiri, M

    2000-01-01

    Recombinant wild-type human serum albumin (rHSA), the single-residue mutants R410A, Y411A, Y411S and Y411F and the double mutant R410A/Y411A were produced using a yeast expression system. The recombinant proteins were correctly folded, as they had the same stability towards guanidine hydrochloride and the same CD spectrum as HSA isolated from serum (native HSA). Thus the global structures of the recombinant proteins are probably very similar to that of native HSA. We investigated, by ultrafiltration and CD, the high-affinity binding of two representative site II ligands, namely ketoprofen and diazepam. According to the crystal structure of HSA, the residues Arg-410 and Tyr-411 protrude into the centre of site II (in subdomain 3A), and the binding results showed that the guanidino moiety of Arg-410, the phenolic oxygen and the aromatic ring of Tyr-411 are important for ketoprofen binding. The guanidino moiety probably interacts electrostatically with the carboxy group of ketoprofen, the phenolic oxygen could make a hydrogen-bond with the keto group of the ligand, and the aromatic ring may participate in a specific stacking interaction with one of or both of the aromatic rings of ketoprofen. By contrast, Arg-410 is not important for diazepam binding. The two parts of Tyr-411 interact favourably with diazepam, and probably do so in the same way as with ketoprofen. In addition to its unique ligand binding properties, HSA also possesses an esterase-like activity, and studies with p-nitrophenyl acetate as a substrate showed that, although Arg-410 is important, the enzymic activity of HSA is much more dependent on the presence of Tyr-411. A minor activity could be registered when serine, but not alanine or phenylalanine, was present at position 411. PMID:10903143

  19. Role of arg-410 and tyr-411 in human serum albumin for ligand binding and esterase-like activity.

    PubMed

    Watanabe, H; Tanase, S; Nakajou, K; Maruyama, T; Kragh-Hansen, U; Otagiri, M

    2000-08-01

    Recombinant wild-type human serum albumin (rHSA), the single-residue mutants R410A, Y411A, Y411S and Y411F and the double mutant R410A/Y411A were produced using a yeast expression system. The recombinant proteins were correctly folded, as they had the same stability towards guanidine hydrochloride and the same CD spectrum as HSA isolated from serum (native HSA). Thus the global structures of the recombinant proteins are probably very similar to that of native HSA. We investigated, by ultrafiltration and CD, the high-affinity binding of two representative site II ligands, namely ketoprofen and diazepam. According to the crystal structure of HSA, the residues Arg-410 and Tyr-411 protrude into the centre of site II (in subdomain 3A), and the binding results showed that the guanidino moiety of Arg-410, the phenolic oxygen and the aromatic ring of Tyr-411 are important for ketoprofen binding. The guanidino moiety probably interacts electrostatically with the carboxy group of ketoprofen, the phenolic oxygen could make a hydrogen-bond with the keto group of the ligand, and the aromatic ring may participate in a specific stacking interaction with one of or both of the aromatic rings of ketoprofen. By contrast, Arg-410 is not important for diazepam binding. The two parts of Tyr-411 interact favourably with diazepam, and probably do so in the same way as with ketoprofen. In addition to its unique ligand binding properties, HSA also possesses an esterase-like activity, and studies with p-nitrophenyl acetate as a substrate showed that, although Arg-410 is important, the enzymic activity of HSA is much more dependent on the presence of Tyr-411. A minor activity could be registered when serine, but not alanine or phenylalanine, was present at position 411. PMID:10903143

  20. Biosensor detection of neuropathy target esterase in whole blood as a biomarker of exposure to neuropathic organophosphorus compounds.

    PubMed

    Makhaeva, Galina F; Sigolaeva, Larisa V; Zhuravleva, Lyudmila V; Eremenko, Arkady V; Kurochkin, Ilya N; Malygin, Vladimir V; Richardson, Rudy J

    2003-04-11

    Neuropathy target esterase (NTE) is the target protein for neuropathic organophosphorus (OP) compounds that produce OP compound-induced delayed neurotoxicity (OPIDN). Inhibition/aging of brain NTE within hours of exposure predicts the potential for development of OPIDN in susceptible animal models. Lymphocyte NTE has also found limited use as a biomarker of human exposure to neuropathic OP compounds. Recently, a highly sensitive biosensor was developed for NTE activity using a tyrosinase carbon-paste electrode for amperometric detection of phenol produced by hydrolysis of the substrate, phenyl valerate. The I50 (20 min at 37 degrees C) for N,N'-di-2-propylphosphorodiamidofluoridate (mipafox) against hen lymphocyte NTE was 6.94 +/- 0.28 microM amperometrically and 6.02 +/- 0.71 microM colorimetrically. For O,O-di1-propyl O-2,2-dichlorvinyl phosphate (PrDChVP), the I50 against hen brain NTE was 39 +/- 8 nM amperometrically and 42 +/- 2 nM colorimetrically. The biosensor enables NTE to be assayed in whole blood, whereas this cannot be done with the usual colorimetric method. Amperometrically, I50 values for PrDChVP against hen and human blood NTE were 66 +/- 3 and 70 +/- 14 nM, respectively. To study the possibility of using blood NTE inhibition as a biochemical marker of neuropathic OP compound exposure, NTE activities in brain and lymphocytes as well in brain and blood were measured 24 h after dosing hens with PrDChVP. Brain, lymphocyte, and blood NTE were inhibited in a dose-responsive manner, and NTE inhibition was highly correlated between brain and lymphocyte (r = .994) and between brain and blood (r = .997). The results suggest that the biosensor NTE assay for whole blood could serve as a biomarker of exposure to neuropathic OP compounds as well as a predictor of OPIDN and an adjunct to its early diagnosis. PMID:12746135

  1. Extracellular secretion of Pseudoalteromonas sp. cold-adapted esterase in Escherichia coli in the presence of Pseudoalteromonas sp. components of ABC transport system.

    PubMed

    Długołecka, Anna; Cieśliński, Hubert; Turkiewicz, Marianna; Białkowska, Aneta M; Kur, Józef

    2008-12-01

    Recently we described identification and characterization of GDSL esterase EstA from psychrotrophic bacterium Pseudoalteromonas sp. 643A. Attempts to obtain heterologous overexpression of this enzyme in Escherichia coli system were not satisfactory. The EstA protein was expressed as inclusion bodies, most of that were inactive after purification step, and the recovery of esterolytic activity was very low after refolding. Based on the sequence analysis we found that the esterase EstA gene is clustered with three genes encoding components of ABC transport system. These genes, designated abc1, abc2, and abc3 encode an ATP-binding protein (ABC1) and two permease proteins (ABC2 and ABC3). In present study, to obtain larger amounts of the active cold-adapted EstA esterase from Pseudoalteromonas sp. 643A, we designed a two-plasmid E. coli expression system where the gene encoding EstA enzyme was cloned into pET30b(+) expression vector and three genes encoding components of ABC transport system were cloned into pACYC-pBAD vector. It was shown that the created expression system was useful for extracellular production of active EstA enzyme which was purified from the culture medium. In the presence of all the three transporter proteins the secretion of EstA was at the highest level. When one or two of these components were missing, EstA secretion was also possible, but not so effective. It indicates that ABC2 and ABC3 proteins of Pseudoalteromonas sp. 643A could be replaced with their homologous proteins of E. coli. PMID:18700165

  2. Diagnostic Value of Leukocyte Esterase Test Strip Reagents for Rapid Clinical Diagnosis of Spontaneous Bacterial Peritonitis in Patients Admitted to Hospital Emergency Departments in Iran

    PubMed Central

    Hashemian, Amir Masoud; Ahmadi, Koorosh; Zamani Moghaddam, Hamid; Zakeri, Hosein; Davoodi Navakh, Seyed Akbar; Sharifi, Mohammad Davood; Bahrami, Abdollah

    2015-01-01

    Background: Spontaneous bacterial peritonitis (SBP) is a common and important clinical problem and is life-threatening in decompensated liver disease. Ascites fluid test by leukocyte esterase test strip has been recently proposed as an effective and rapid method to diagnose SBP in patients with cirrhosis. Objectives: This study aimed to evaluate sensitivity and specificity of leukocyte esterase test strip in the diagnosis of SBP. Patients and Methods: The population of this research was all patients with cirrhosis and ascites admitted to the emergency room at Imam Reza (AS) hospital, Mashhad. A written consent was taken for inclusion in the study. 50 mL ascites sample was taken from all patients for use in a urine test strip (LER) (Urine Test Strips Convergys®Urine Matrix 11). The patient’s ascites samples were evaluated for cell counting. Positive dipstick test for LER in this study considered as grade 3 +. The values of WBC > 500 cell/mm3 or PMN > 250 cell/mm3 considered as positive result of the gold standard method for the diagnosis of SBP. Results: In this study, 100 patients with ascites due to cirrhosis, with an average age of 38.9 ± 6.54 years were evaluated. Twenty cases had positive results, of whom 17 cases were also detected based on the standard diagnostic criteria and other three cases were healthy individuals. Thus, sensitivity, specificity, positive and negative predictive values, and accuracy of the method were 95%, 96.3%, 85%, 97.5% and 95%, respectively. Conclusions: The use of leukocyte esterase urine dipstick test can be a quick and easy method in early diagnosis of SBP to start the treatment until preparation of SBP-cell count results. PMID:26568859

  3. Kinetics of the inhibitory interaction of organophosphorus neuropathy inducers and non-inducers in soluble esterases in the avian nervous system

    SciTech Connect

    Mangas, Iris; Vilanova, Eugenio; Estevez, Jorge

    2011-11-15

    Some published studies suggest that low level exposure to organophosphorus esters (OPs) may cause neurological and neurobehavioral effects at long term exposure. These effects cannot be explained by action on known targets. In this work, the interactions (inhibition, spontaneous reactivation and 'ongoing inhibition') of two model OPs (paraoxon, non neuropathy-inducer, and mipafox, neuropathy-inducer) with the chicken brain soluble esterases were evaluated. The best-fitting kinetic model with both inhibitors was compatible with three enzymatic components. The amplitudes (proportions) of the components detected with mipafox were similar to those obtained with paraoxon. These observations confirm the consistency of the results and the model applied and may be considered an external validation. The most sensitive component (E{alpha}) for paraoxon (11-23% of activity, I{sub 50} (30 min) = 9-11 nM) is also the most sensitive for mipafox (I{sub 50} (30 min) = 4 nM). This component is spontaneously reactivated after inhibition with paraoxon. The second sensitive component to paraoxon (E{beta}, 71-84% of activity; I{sub 50} (30 min) = 1216 nM) is practically resistant to mipafox. The third component (E{gamma}, 5-8% of activity) is paraoxon resistant and has I{sub 50} (30 min) of 3.4 {mu}M with mipafox, similar to NTE (neuropathy target esterase). The role of these esterases remains unknown. Their high sensitivity suggests that they may either play a role in toxicity in low-level long-term exposure of organophosphate compounds or have a protective effect related with the spontaneous reactivation. They will have to be considered in further metabolic and toxicological studies. -- Research Highlights: Black-Right-Pointing-Pointer Paraoxon and mipafox interactions have been evaluated with chicken soluble brain esterases. Black-Right-Pointing-Pointer The paraoxon inhibition was analyzed considering the simultaneous spontaneous reactivation. Black-Right-Pointing-Pointer The best

  4. Morpho-functional characterization and esterase patterns of the midgut of Tribolium castaneum Herbst, 1797 (Coleoptera: Tenebrionidae) parasitized by Gregarina cuneata (Apicomplexa: Eugregarinidae).

    PubMed

    Gigliolli, Adriana A Sinópolis; Lapenta, Ana Silva; Ruvolo-Takasusuki, Maria Claudia Colla; Abrahão, Josielle; Conte, Hélio

    2015-09-01

    Tribolium castaneum (Coleoptera: Tenebrionidae) is a common pest of stored grains and byproducts and is normally infected by Gregarina cuneata (Apicomplexa: Eugregarinidae). The life cycle of this parasite includes the sporozoite, trophozoite, gamont, gametocyte, and oocyst stages, which occur between the epithelium and lumen of the host's midgut. This study aims to describe the morphofunctional alterations in the midgut and determine the esterase patterns in T. castaneum when parasitized by gregarines. To achieve this purpose, midguts of adult insects were isolated, processed, and analysed using light and electron microscopy. We determined total protein content, amylase activity, and the expression and related activities of the esterases by using polyacrylamide gel electrophoresis (PAGE). The midgut of T. castaneum is formed by digestive, regenerative, and endocrine cells. The effects of parasitism on the digestive cells are severe, because the gregarines remain attached to these cells to absorb all the nutrients they need throughout their development. In these cells, the most common alterations observed include expansion and fragmentation of the rough endoplasmic reticulum, development of the smooth endoplasmic reticulum, changes in mitochondrial cristae, cytoplasmic vacuolization, formation of myelin structures, spherites, large intercellular spaces, autophagic vesicles, expansion of the basal labyrinth, and cytoplasmic protrusions. Deposits of glycogen granules were also observed. Amylase activity was reduced in parasitized insects. Regenerative cells were found in disorganized crypts and did not differentiate into new cells, thus, compromising the restoration of the damaged epithelium. Though few morphological alterations were observed in the endocrine cells, results suggest that the synthesis and/or release of hormones might be impaired. Nine esterases (EST-1 to 9) were identified in the midgut of T. castaneum and were expressed in varying levels in response

  5. [Hereditary angioneurotic edema: a molecular disease caused by a defect in the O-glycosylation of C1 esterase inhibitor (C1-INH)].

    PubMed

    Ollier-Hartmann, M P; Strecker, G; Montreuil, J; Hartmann, L

    1984-01-01

    A quantitative and qualitative study of neutral and aminosaccharides in C 1-esterase inhibitor (C 1-INH), protein of the complement system, was performed. We observe a mixed glycosylation of the molecule with an N-glycosylated: O-glycosylated chain ratio of 1: 4. The loss of the inhibitory activity of the molecule in hereditary angioedema (O ANH) is associated with an O-glycosylation deficiency which differs according to the two molecular variants: C 1-INH (1 A) and C 1-INH (II) previously described. PMID:6440668

  6. The fate of bacterial cocaine esterase (CocE): an in vivo study of CocE-mediated cocaine hydrolysis, CocE pharmacokinetics, and CocE elimination.

    PubMed

    Brim, Remy L; Noon, Kathleen R; Collins, Gregory T; Stein, Aron; Nichols, Joseph; Narasimhan, Diwa; Ko, Mei-Chuan; Woods, James H; Sunahara, Roger K

    2012-01-01

    Cocaine abuse and toxicity remain widespread problems in the United States. Currently cocaine toxicity is treated only symptomatically, because there is no Food and Drug Administration-approved pharmacotherapy for this indication. To address the unmet need, a stabilized mutant of bacterial cocaine esterase [T172R/G173Q-CocE (DM-CocE)], which hydrolyzes cocaine into inactive metabolites and has low immunogenic potential, has been developed and previously tested in animal models of cocaine toxicity. Here, we document the rapid cocaine hydrolysis by low doses of DM-CocE in vitro and in vivo, as well as the pharmacokinetics and distribution of the DM-CocE protein in rats. DM-CocE at 50.5 μg/kg effectively eliminated 4 mg/kg cocaine within 2 min in both male and female rats as measured by mass spectrometry. We expanded on these findings by using a pharmacologically relevant dose of DM-CocE (0.32 mg/kg) in rats and monkeys to hydrolyze convulsant doses of cocaine. DM-CocE reduced cocaine to below detection limits rapidly after injection; however, elimination of DM-CocE resulted in peripheral cocaine redistribution by 30 to 60 min. Elimination of DM-CocE was quantified by using [³⁵S] labeling of the enzyme and was found to have a half-life of 2.1 h in rats. Minor urinary output of DM-CocE was also observed. Immunohistochemistry, Western blotting, and radiography all were used to elucidate the mechanism of DM-CocE elimination, rapid proteolysis, and recycling of amino acids into all tissues. This rapid elimination of DM-CocE is a desirable property of a therapeutic for cocaine toxicity and should reduce the likelihood of immunogenic or adverse reactions as DM-CocE moves toward clinical use. PMID:21990608

  7. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease

    PubMed Central

    Fourrier, Mickael; Lester, Katherine; Markussen, Turhan; Falk, Knut; Secombes, Christopher J.; McBeath, Alastair; Collet, Bertrand

    2015-01-01

    In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes. PMID:26517828

  8. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533

    PubMed Central

    2013-01-01

    The potential of Lactobacillus johnsonii NCC 533 to metabolize chlorogenic acids from green coffee extract was investigated. Two enzymes, an esterase and a hydroxycinnamate decarboxylase (HCD), were involved in this biotransformation. The complete hydrolysis of 5-caffeoylquinic acid (5-CQA) into caffeic acid (CA) by L. johnsonii esterase occurred during the first 16 h of reaction time. No dihydrocaffeic acid was identified in the reaction mixture. The decarboxylation of CA into 4-vinylcatechol (4-VC) started only when the maximum concentration of CA was reached (10 μmol/ml). CA was completely transformed into 4-VC after 48 h of incubation. No 4-vinylphenol or other derivatives could be identified in the reaction media. In this study we demonstrate the capability of L. johnsonii to transform chlorogenic acids from green coffee extract into 4-VC in two steps one pot reaction. Thus, the enzymatic potential of certain lactobacilli might be explored to generate flavor compounds from plant polyphenols. PMID:23692950

  9. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533.

    PubMed

    Bel-Rhlid, Rachid; Thapa, Dinesh; Kraehenbuehl, Karin; Hansen, Carl Erik; Fischer, Lutz

    2013-01-01

    The potential of Lactobacillus johnsonii NCC 533 to metabolize chlorogenic acids from green coffee extract was investigated. Two enzymes, an esterase and a hydroxycinnamate decarboxylase (HCD), were involved in this biotransformation. The complete hydrolysis of 5-caffeoylquinic acid (5-CQA) into caffeic acid (CA) by L. johnsonii esterase occurred during the first 16 h of reaction time. No dihydrocaffeic acid was identified in the reaction mixture. The decarboxylation of CA into 4-vinylcatechol (4-VC) started only when the maximum concentration of CA was reached (10 μmol/ml). CA was completely transformed into 4-VC after 48 h of incubation. No 4-vinylphenol or other derivatives could be identified in the reaction media. In this study we demonstrate the capability of L. johnsonii to transform chlorogenic acids from green coffee extract into 4-VC in two steps one pot reaction. Thus, the enzymatic potential of certain lactobacilli might be explored to generate flavor compounds from plant polyphenols. PMID:23692950

  10. Performance of Spodoptera litura Fabricius on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect.

    PubMed

    Ghumare, S S; Mukherjee, S N

    2003-08-01

    Five host plants [castor, Ricinus communis (Carolus Linnaeus); cotton, Gossypium hirsutm (Carolus Linnaeus); tomato, Lycopersicum esculentum (Philip Miller); mint, Mentha arvensis (Carolus Linnaeus) and cabbage, Brassica oleracea (Carolus Linnaeus)] belonging to different families were used to study the performance of the Asian armyworm, Spodoptera litura larvae. Highest consumption of food and dry weight gain was observed in larvae fed on castor. Mint did not support optimum larval growth because of low digestibility and low efficiency of conversion of digested food to body matter. Dry weight gain ranged from 26.64 mg on mint to 86.80 mg in castor. These differences tend to be related to nitrogen and total phenolics content of the leaf tissues; however, the most clear-cut correlation is an inverse one between the host plant preference and the ratio of total phenolics to nitrogen in the leaf tissues. Mid-gut esterase activity in larvae showed an increasing trend with the increase in total phenolics: nitrogen ratio in the test plants and the order of mid-gut esterase activity in larvae was mint > cabbage > cotton > tomato > castor. PMID:15248492

  11. Elevated expression of esterase and cytochrome P450 are related with lambda-cyhalothrin resistance and lead to cross resistance in Aphis glycines Matsumura.

    PubMed

    Xi, Jinghui; Pan, Yiou; Bi, Rui; Gao, Xiwu; Chen, Xuewei; Peng, Tianfei; Zhang, Min; Zhang, Hua; Hu, Xiaoyue; Shang, Qingli

    2015-02-01

    A resistant strain of the Aphis glycines Matsumura (CRR) has developed 76.67-fold resistance to lambda-cyhalothrin compared with the susceptible (CSS) strain. Synergists piperonyl butoxide (PBO), S,S,S-Tributyltrithiophosphate (DEF) and triphenyl phosphate (TPP) dramatically increased the toxicity of lambda-cyhalothrin to the resistant strain. Bioassay results indicated that the CRR strain had developed high levels of cross-resistance to chlorpyrifos (11.66-fold), acephate (8.20-fold), cypermethrin (53.24-fold), esfenvalerate (13.83-fold), cyfluthrin (9.64-fold), carbofuran (14.60-fold), methomyl (9.32-fold) and bifenthrin (4.81-fold), but did not have cross-resistance to chlorfenapyr, imidacloprid, diafenthiuron, abamectin. The transcriptional levels of CYP6A2-like, CYP6A14-like and cytochrome b-c1 complex subunit 9-like increased significantly in the resistant strain than that in the susceptible. Similar trend were observed in the transcripts and DNA copy number of CarE and E4 esterase. Overall, these results demonstrate that increased esterase hydrolysis activity, combined with elevated cytochrome P450 monooxygenase detoxicatication, plays an important role in the high levels of lambda-cyhalothrin resistance and can cause cross-resistance to other insecticides in the CRR strain. PMID:25752434

  12. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines

    PubMed Central

    Nascimento, Rafael; Gouran, Hossein; Chakraborty, Sandeep; Gillespie, Hyrum W.; Almeida-Souza, Hebréia O.; Tu, Aye; Rao, Basuthkar J.; Feldstein, Paul A.; Bruening, George; Goulart, Luiz R.; Dandekar, Abhaya M.

    2016-01-01

    Pierce’s disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms. PMID:26753904

  13. The Type II Secreted Lipase/Esterase LesA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines.

    PubMed

    Nascimento, Rafael; Gouran, Hossein; Chakraborty, Sandeep; Gillespie, Hyrum W; Almeida-Souza, Hebréia O; Tu, Aye; Rao, Basuthkar J; Feldstein, Paul A; Bruening, George; Goulart, Luiz R; Dandekar, Abhaya M

    2016-01-01

    Pierce's disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell w