Science.gov

Sample records for acid etching technique

  1. New Etch Monitoring Technique

    NASA Astrophysics Data System (ADS)

    Kaiser, Christina; Adamcyk, Martin; Levy, Yuval; Tiedje, Tom; Young, Jeff F.; Kelson, Itzhak

    2000-05-01

    Plasma etching is an important tool for the development of various types of nanostructures. The development of specific plasma etching procedures is often time-consuming. We will describe an new technique for IN-SITU monitoring of the etch rate and sidewall profile of 1D GRATINGS in a remote plasma etcher. The technique involves monitoring the energy loss of alpha particles that propagate through the layer being etched. Samples to be etched are impregnated by a thin near-surface layer of 224Ra nuclei that decay by alpha particle emission. The energy spectrum of the alpha particles is acquired at intervals in the etch process. The etch rate on flat surfaces can be determined quite simply by measuring the change in the peak energy of the transmitted particles. By using a simple geometric model that employs the Bethe Bloch formula for energy loss of charges particles the etch profile of masked samples can also be inferred.

  2. In vitro evaluation of microleakage under orthodontic brackets using two different laser etching, self etching and acid etching methods.

    PubMed

    Hamamci, Nihal; Akkurt, Atilim; Başaran, Güvenç

    2010-11-01

    This study evaluated the microleakage of brackets bonded by four different enamel etching techniques. Forty freshly extracted human premolars were divided randomly into four equal groups and received the following treatment: group 1, acid etching; group 2, self-etching primer (SEP); group 3, erbium:yttrium-aluminum-garnet (Er:YAG) laser etching; and group 4, erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser etching. After photopolymerization, the teeth were kept in distilled water for 1 month and then subjected to 500 thermal cycles. Then, the specimens were sealed with nail varnish, stained with 0.5% basic fuchsin for 24 h, sectioned, and examined under a stereomicroscope. In addition, they were scored for marginal microleakage at the adhesive-enamel and bracket-adhesive interfaces from the incisal and gingival margins. Statistical analyses consisted of the Kruskal-Wallis test and the Mann-Whitney U test with Bonferroni correction. Microleakage occurred between the adhesive-enamel and bracket-adhesive interfaces in all groups. For the adhesive-enamel surface, a significant difference was observed between group 1 and groups 2 (P = 0.011), 3 (P = 0.002), and 4 (P = 0.000) on the gingival side. Overall, significant differences were observed between group 1 and groups 3 (P = 0.003) and 4 (P = 0.000). In dental bonding procedures, acid etching was found to result in the least microleakage. Since etching with a laser decreases the risk of caries and is time-saving, it may serve as an alternative to acid etching.

  3. A wet etching technique for accurate etching of GaAs/AlAs distributed Bragg reflectors

    SciTech Connect

    Bacher, K.; Harris, J.S. Jr.

    1995-07-01

    The authors have demonstrated a wet etching technique capable of producing accurate and uniform etch depths in distributed Bragg reflectors (DBRs) and other GaAs/AlAs superlattice structures. The process utilizes two selective etchants, citric acid/hydrogen peroxide in a 4:1 ratio and phosphoric acid/hydrogen peroxide/water in a 3:1:50 ratio, to sequentially etch away each pair of superlattice layers. The authors have used this technique to expose a 680 {angstrom} thick conduction GaAs layer buried beneath a 15 period, 2.1 {micro}m thick, undoped GaAs/AlAs DBR mirror. Transmission line measurements pads were formed on the exposed layer to determine the contact and sheet resistance. Comparison with a similar layer on the surface of the wafer reveals that the exposed layer is easily contacted with only a slight increase in sheet resistance indicating less than 125 {angstrom} of overetching, 0.6% of the total etch depth.

  4. Technique for etching monolayer and multilayer materials

    DOEpatents

    Bouet, Nathalie C. D.; Conley, Raymond P.; Divan, Ralu; Macrander, Albert

    2015-10-06

    A process is disclosed for sectioning by etching of monolayers and multilayers using an RIE technique with fluorine-based chemistry. In one embodiment, the process uses Reactive Ion Etching (RIE) alone or in combination with Inductively Coupled Plasma (ICP) using fluorine-based chemistry alone and using sufficient power to provide high ion energy to increase the etching rate and to obtain deeper anisotropic etching. In a second embodiment, a process is provided for sectioning of WSi.sub.2/Si multilayers using RIE in combination with ICP using a combination of fluorine-based and chlorine-based chemistries and using RF power and ICP power. According to the second embodiment, a high level of vertical anisotropy is achieved by a ratio of three gases; namely, CHF.sub.3, Cl.sub.2, and O.sub.2 with RF and ICP. Additionally, in conjunction with the second embodiment, a passivation layer can be formed on the surface of the multilayer which aids in anisotropic profile generation.

  5. In Vitro Evaluation of Microleakage Around Orthodontic Brackets Using Laser Etching and Acid Etching Methods

    PubMed Central

    Toodehzaeim, Mohammad Hossein; Yassaei, Sogra; Karandish, Maryam; Farzaneh, Sedigeh

    2014-01-01

    Objective: path of microleakage between the enamel and adhesive potentially allows microbial ingress that may consequently cause enamel decalcification. The aim of this study was to compare microleakage of brackets bonded either by laser or acid etching techniques. Materials and Method: The specimens were 33 extracted premolars that were divided into three groups as the acid etching group (group 1), laser etching with Er:YAG at 100 mJ and 15 Hz for 15s (group 2), and laser etching with Er:YAG at 140 mJ and 15 Hz for 15s (group 3). After photo polymerization, the teeth were subjected to 500 thermal cycles. Then the specimens were sealed with nail varnish, stained with 2% methylen blue for 24hs, sectioned, and examined under a stereomicroscope. They were scored for marginal microleakage that occurred between the adhesive-enamel and bracket-adhesive interfaces from the occlusal and gingival margins. Data were analyzed with the Kruskal- Wallis test. Results: For the adhesive-enamel and bracket-adhesive surfaces, significant differences were not observed between the three groups. Conclusion: According to this study, the Er:YAG laser with 1.5 and 2.1 watt settings may be used as an adjunctive for preparing the surface for orthodontic bracket bonding. PMID:25628661

  6. Recovering obliterated engraved marks on aluminium surfaces by etching technique.

    PubMed

    Baharum, Mohd Izhar Mohd; Kuppuswamy, R; Rahman, Azari Abd

    2008-05-20

    A study has been made of the characteristics of restoration of obliterated engraved marks on aluminium surfaces by etching technique. By etching different reagents on 0.61mm thick sheets of aluminium (99wt%) on which some engraved marks had been erased to different depths it was found that the reagent 60% hydrochloric acid and 40% sodium hydroxide on alternate swabbing on the surfaces was found to be the most sensitive one for these metal surfaces. This reagent was able to restore marks in the above plates erased down to 0.04mm below the bottom of the engraving. The marks also presented excellent contrast with the background. This reagent was further experimented with similar aluminium surfaces, but of relatively greater thickness of 1.5mm. It was noticed that the recovery depth increased slightly to 0.06mm; this suggested the dependence of recovery depth on the thickness of the sheet metal. Further, the depth of restoration decreased in cases where the original number was erased and over which a new number was engraved; the latter results are similar to those of steel surfaces reported earlier [M.A.M. Zaili, R. Kuppuswamy, H. Harun, Restoration of engraved marks on steel surfaces by etching technique, Forensic Sci. Int. 171 (2007) 27-32].

  7. Semiconductor structure and recess formation etch technique

    DOEpatents

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  8. Rolled-Up Nanotech: Illumination-Controlled Hydrofluoric Acid Etching of AlAs Sacrificial Layers

    NASA Astrophysics Data System (ADS)

    Costescu, Ruxandra M.; Deneke, Christoph; Thurmer, Dominic J.; Schmidt, Oliver G.

    2009-12-01

    The effect of illumination on the hydrofluoric acid etching of AlAs sacrificial layers with systematically varied thicknesses in order to release and roll up InGaAs/GaAs bilayers was studied. For thicknesses of AlAs below 10 nm, there were two etching regimes for the area under illumination: one at low illumination intensities, in which the etching and releasing proceeds as expected and one at higher intensities in which the etching and any releasing are completely suppressed. The “etch suppression” area is well defined by the illumination spot, a feature that can be used to create heterogeneously etched regions with a high degree of control, shown here on patterned samples. Together with the studied self-limitation effect, the technique offers a way to determine the position of rolled-up micro- and nanotubes independently from the predefined lithographic pattern.

  9. Evaluation of over-etching technique in the endodontically treated tooth restoration

    PubMed Central

    Migliau, Guido; Piccoli, Luca; Besharat, Laith Konstantinos; Di Carlo, Stefano; Pompa, Giorgio

    2015-01-01

    Summary The main purpose of a post-endodontic restoration with posts is to guarantee the retention of the restorative material. The aim of the study was to examine, through the push-out test, how bond strength between the post and the dentin varied with etching time with 37% orthophosphoric acid, before cementation of a glass fiber post. Moreover, it has been examined if over-etching (application time of the acid: 2 minutes) was an effective technique to improve the adhesion to the endodontic substrate, after highlighting the problems of adhesion concerning its anatomical characteristics and the changes after the endodontic treatment. Highest bond strength values were found by etching the substrate for 30 sec., while over-etching didn’t improve bond strength to the endodontic substrate. PMID:26161247

  10. Comparison of Self-Etch Primers with Conventional Acid Etching System on Orthodontic Brackets

    PubMed Central

    Zope, Amit; Zope-Khalekar, Yogita; Chitko, Shrikant S.; Kerudi, Veerendra V.; Patil, Harshal Ashok; Jaltare, Pratik; Dolas, Siddhesh G

    2016-01-01

    Introduction The self-etching primer system consists of etchant and primer dispersed in a single unit. The etching and priming are merged as a single step leading to fewer stages in bonding procedure and reduction in the number of steps that also reduces the chance of introduction of error, resulting in saving time for the clinician. It also results in smaller extent of enamel decalcification. Aim To compare the Shear Bond Strength (SBS) of orthodontic bracket bonded with Self-Etch Primers (SEP) and conventional acid etching system and to study the surface appearance of teeth after debonding; etching with conventional acid etch and self-etch priming, using stereomicroscope. Materials and Methods Five Groups (n=20) were created randomly from a total of 100 extracted premolars. In a control Group A, etching of enamel was done with 37% phosphoric acid and bonding of stainless steel brackets with Transbond XT (3M Unitek, Monrovia, California). Enamel conditioning in left over four Groups was done with self-etching primers and adhesives as follows: Group B-Transbond Plus (3M Unitek), Group C Xeno V+ (Dentsply), Group D-G-Bond (GC), Group E-One-Coat (Coltene). The Adhesive Remnant Index (ARI) score was also evaluated. Additionally, the surface roughness using profilometer were observed. Results Mean SBS of Group A was 18.26±7.5MPa, Group B was 10.93±4.02MPa, Group C was 6.88±2.91MPa while of Group D was 7.78±4.13MPa and Group E was 10.39±5.22MPa respectively. In conventional group ARI scores shows that over half of the adhesive was remaining on the surface of tooth (score 1 to 3). In self-etching primer groups ARI scores show that there was no or minor amount of adhesive remaining on the surface of tooth (score 4 and 5). SEP produces a lesser surface roughness on the enamel than conventional etching. However, statistical analysis shows significant correlation (p<0.001) of bond strength with surface roughness of enamel. Conclusion All groups might show clinically

  11. Innovative, Inexpensive Etching Technique Developed for Polymer Electro- Optical Structures

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.

    1999-01-01

    Electro-optic, polymer-based integrated optic devices for high-speed communication and computing applications offer potentially significant advantages over conventional inorganic electro-optic crystals. One key area of integrated optical technology--primary processing and fabrication--may particularly benefit from the use of polymer materials. However, as efforts concentrate on the miniaturization of electro-integrated circuit pattern geometries, the ability to etch fine features and smoothly sloped sidewalls is essential to make polymers useful for electro-integrated circuit applications. There are many existing processes available to etch polymer materials, but they all yield nearly vertical sidewalls. Vertical sidewalls are too difficult to reliably cover with a metal layer, and incomplete metalization degrades microwave performance, particularly at high frequency. However, obtaining a very sloped sidewall greatly improves the deposition of metal on the sidewall, leading to low-loss characteristics, which are essential to integrating these devices in highspeed electro-optic modulators. The NASA Lewis Research Center has developed in-house an inexpensive etching technique that uses a photolithography method followed by a simple, wet chemical etching process to etch through polymer layers. In addition to being simpler and inexpensive, this process can be used to fabricate smoothly sloped sidewalls by using a commercial none rodible mask: Spin-On-Glass. A commercial transparent material, Spin-On-Glass, uses processes and equipment similar to that for photoresist techniques.

  12. The effects of acid etching time on surface mechanical properties of dental hard tissues.

    PubMed

    Zafar, Muhammad Sohail; Ahmed, Naseer

    2015-01-01

    The objective of this study was to evaluate the effect of etching time on the surface properties of dental hard tissues including enamel and dentin. For this purpose, samples were prepared using extracted human teeth and treated with 37% phosphoric acid for various length of time using the set protocol. The effects of etching time on surface roughness were assessed using non-contact surface roughness profilometer and surface hardness was measured using nanoindentation technique. All results were analyzed statistically using SPSS computer software. Within the limitation of this study, it was concluded that etching time influences on the surface properties of dental hard tissues particularly the enamel. Enamel surface properties such as roughness and hardness can be altered remarkable as a matter of few seconds. Prolonged etching time than recommended is likely to increase the surface roughness and decrease surface hardness; compromising the bond strength of adhesive materials in clinical applications.

  13. Adhesive dentistry: the development of immediate dentin sealing/selective etching bonding technique.

    PubMed

    Helvey, Gregg A

    2011-01-01

    A major objective of dental research over the past 60 years has been a search for the "dream-team" of dental adhesives. In fact, a recent Medline search produced more than 6,500 papers on dentin bonding and its techniques. Adhesive systems are designed to retain direct and indirect restorations, minimize leakage at the margin, and be simple to place while producing consistent results. The development of materials and techniques has an interesting history; some have recirculated from the past and are being used in some form today. Buonocore used the etchant phosphoric acid at the beginning of the adhesive revolution. Though not accepted for many years it eventually became the "gold standard" for etching enamel. Technique sensitivity moved it out of favor and, through the development of self-etching acidic primers, was eliminated from some adhesive systems. Although these primers may have successfully addressed postoperative sensitivity, adhesion was compromised. The bond strength of these systems has now been improved with the incorporation of phosphoric acid-etch to condition enamel prior to using the adhesive system. This article will trace the history of adhesive techniques and materials and how it has led to the creation of a new technique that combines two bonding methods.

  14. Effective diffraction gratings via acidic etching of thermally poled glass

    NASA Astrophysics Data System (ADS)

    Kamenskii, A. N.; Reduto, I. V.; Petrikov, V. D.; Lipovskii, A. A.

    2016-12-01

    Relief diffraction gratings are formed via acidic chemical etching of a periodically poled soda-lime glass. The thermal poling under 1000 V DC is performed at 325 °C using a thermally stable glassy-carbon anodic electrode with periodic grooves, the depth of the grooves being of ∼650 nm. Poling-induced modification of the glass results in deepening the glass anodic surface in the regions under the ribs of the anodic electrode due to volume relaxation and in increasing chemical durability of these regions in acidic media comparatively to the virgin glass. Chemical etching of the poled glass in NH4F:8H2O solution allows additional to the thermal poling shaping of the glass surface via faster dissolution of unpoled/less poled glass regions. The morphology of the glass surface before and after the etching is characterized with atomic force and scanning electron microscopy. About 30 min etching provides the formation of ∼0.9 μm in height relief diffraction gratings with the diffraction efficiency close to the theoretically achievable ∼30% for multi-order diffraction. In vivo measuring of the diffraction efficiency in the course of the etching allows precise fabrication of the gratings.

  15. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Steeves, Arthur F.; Stewart, James C.

    1981-01-01

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  16. Overlapping double etch technique for evaluation of metallic alloys to stress corrosion cracking

    DOEpatents

    Not Available

    1980-05-28

    A double overlapping etch zone technique for evaluation of the resistance of metallic alloys to stress corrosion cracking is described. The technique involves evaluating the metallic alloy along the line of demarcation between an overlapping double etch zone and single etch zone formed on the metallic alloy surface.

  17. Thermal reactive ion etching technique involving use of self-heated cathode.

    PubMed

    Yamada, S; Minami, Y; Sohgawa, M; Abe, T

    2015-04-01

    In this work, the thermal reactive ion etching (TRIE) technique for etching hard-to-etch materials is presented. The TRIE technique employs a self-heated cathode and a thermally insulated aluminum plate is placed on the cathode of a regular reactive ion etching (RIE) system. By optimizing the beam size to support the sample stage, the temperature of the stage can be increased to a desired temperature without a cathode heater. The technique was used to etch a bulk titanium plate. An etch rate of 0.6 μm/min and an etch selectivity to nickel of 100 were achieved with SF6 plasma. The proposed technique makes a regular RIE system a more powerful etcher without the use of chlorine gas, a cathode heater, and an inductively coupled plasma source.

  18. Thermal reactive ion etching technique involving use of self-heated cathode

    SciTech Connect

    Yamada, S.; Minami, Y.; Sohgawa, M.; Abe, T.

    2015-04-15

    In this work, the thermal reactive ion etching (TRIE) technique for etching hard-to-etch materials is presented. The TRIE technique employs a self-heated cathode and a thermally insulated aluminum plate is placed on the cathode of a regular reactive ion etching (RIE) system. By optimizing the beam size to support the sample stage, the temperature of the stage can be increased to a desired temperature without a cathode heater. The technique was used to etch a bulk titanium plate. An etch rate of 0.6 μm/min and an etch selectivity to nickel of 100 were achieved with SF{sub 6} plasma. The proposed technique makes a regular RIE system a more powerful etcher without the use of chlorine gas, a cathode heater, and an inductively coupled plasma source.

  19. Thermal reactive ion etching technique involving use of self-heated cathode

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Minami, Y.; Sohgawa, M.; Abe, T.

    2015-04-01

    In this work, the thermal reactive ion etching (TRIE) technique for etching hard-to-etch materials is presented. The TRIE technique employs a self-heated cathode and a thermally insulated aluminum plate is placed on the cathode of a regular reactive ion etching (RIE) system. By optimizing the beam size to support the sample stage, the temperature of the stage can be increased to a desired temperature without a cathode heater. The technique was used to etch a bulk titanium plate. An etch rate of 0.6 μm/min and an etch selectivity to nickel of 100 were achieved with SF6 plasma. The proposed technique makes a regular RIE system a more powerful etcher without the use of chlorine gas, a cathode heater, and an inductively coupled plasma source.

  20. Measuring fast-neutron flux by track-etch technique

    SciTech Connect

    Not Available

    1981-01-01

    The method covers the measurement of neutron flux by the use of fissionable materials. Fission fragments emitted by the fissionable materials during neutron bombardment penetrate a suitable recording medium, such as plastic, glass, or mica, that is in contact with the fissionable material. Appropriate etching techniques render the path of the fragment in the recording medium visible under an optical microscope. Since measurement of the decay of radioisotopes is not involved in this method, irradiation times are limited only by the maximum number of fission fragment tracks that can be clearly distinguished without pile up: approximately 2 x 10/sup 5//cm/sup 2/. The method includes a discussion of apparatus, reagents and materials, procedure, calculations, precision, and accuracy. (JMT)

  1. Acid-etched microtexture for enhancement of bone growth into porous-coated implants.

    PubMed

    Hacking, S A; Harvey, E J; Tanzer, M; Krygier, J J; Bobyn, J D

    2003-11-01

    We designed an in vivo study to determine if the superimposition of a microtexture on the surface of sintered titanium beads affected the extent of bone ingrowth. Cylindrical titanium intramedullary implants were coated with titanium beads to form a porous finish using commercial sintering techniques. A control group of implants was left in the as-sintered condition. The test group was etched in a boiling acidic solution to create an irregular surface over the entire porous coating. Six experimental dogs underwent simultaneous bilateral femoral intramedullary implantation of a control implant and an acid etched implant. At 12 weeks, the implants were harvested in situ and the femora processed for undecalcified, histological examination. Eight transverse serial sections for each implant were analysed by backscattered electron microscopy and the extent of bone ingrowth was quantified by computer-aided image analysis. The extent of bone ingrowth into the control implants was 15.8% while the extent of bone ingrowth into the etched implants was 25.3%, a difference of 60% that was statistically significant. These results are consistent with other research that documents the positive effect of microtextured surfaces on bone formation at an implant surface. The acid etching process developed for this study represents a simple method for enhancing the potential of commonly available porous coatings for biological fixation.

  2. Nanoporous Gallium Nitride Through Anisotropic Metal-Assisted Electroless Photochemical Wet Etching Technique

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-12-01

    Nanoporous gallium nitride (GaN) has many potential applications in light-emitting diodes (LEDs), photovoltaics, templates and chemical sensors. This article reports the porosification of GaN through UV enhanced metal-assisted electroless photochemical wet etching technique using three different acid-based etchants and platinum served as catalyst for porosification. The etching process was conducted at room temperature for a duration of 90min. The morphological, structural, spectral and optical features of the developed porous GaN were studied with appropriate characterization techniques and the obtained results were presented. Field emission scanning electron micrographs exhibited the porosity nature along with excellent porous network of the etched samples. Structural studies confirmed the mono crystalline quality of the porous nanostructures. Raman spectral analyzes inferred the presenting phonon modes such as E2 (TO) and A1 (LO) in fabricated nanoporous structures. The resulted porous nanostructures hold the substantially enhanced photoluminescence intensity compared with the pristine GaN epitaxial film that is interesting and desirable for several advances in the applications of Nano-optoelectronic devices.

  3. Revealing obliterated engraved marks on high strength aluminium alloy (AA7010) surfaces by etching technique.

    PubMed

    Bong, Yeu Uei; Kuppuswamy, R

    2010-02-25

    Restoration of obliterated engraved marks on high strength Al-Zn-Mg-Cu alloy (AA7010) surfaces by etching technique was studied. The alloy surfaces were mechanically engraved with some identification marks using "Gravograph". The marks were then erased by removing the metal to different levels up to and below the depth of engraving. Five metallographic reagents were tested on the obliterated surfaces by etching. The following two methods (i) immersion in 10% aq. phosphoric acid and (ii) alternate swabbing of 60% HCl and 40% NaOH were found to be quite effective to reveal the obliterated marks. These two procedures were also able to show effectively the marks obliterated by over-engraving and centre punching. Of the two techniques immersion in phosphoric acid provided more contrast. Interestingly, alternate swabbing of 60% HCl and 40% NaOH presented itself to be the common reagent for restoration on pure aluminium as well as its alloy surfaces. This is evident from our own current experiments and those of earlier researchers [G. Peeler, S. Gutowski, H. Wrobel, G. Dower, The restoration of impressed characters on aluminium alloy motor cycle frames, J. Forensic Ident. 58 (1) (2008) 27-32; M. Izhar M. Baharum, R. Kuppuswamy, A.A. Rahman, Restoration of engraved marks on aluminium surfaces by etching technique, Forensic Sci. Int. 177 (2008) 221-227]. The findings have assumed importance as engines and chassis of cars and frames of firearms are currently made of high strength aluminium alloys and recovery on these surfaces by current methods is not satisfactory.

  4. An analysis of the shear strength of the bond between enamel and porcelain laminate veneers with different etching systems: acid and Er,Cr:YSGG laser separately and combined.

    PubMed

    Dundar, Berivan; Guzel, Kahraman Gündüz

    2011-11-01

    Conditioning of the enamel surface is now an accepted and widely applied technique used to improve retention in porcelain laminate veneer restorations. The aim of this study was to evaluate strength of the bond between porcelain laminate veneers and tooth surfaces etched with acid and laser, separately and together. The teeth studied comprised 60 incisors extracted for periodontal reasons. These were divided into four groups according to etching method: group 1, acid etching alone; group 2, acid etching followed by laser etching; group 3, laser etching followed by acid etching; group 4, laser etching alone. The teeth were etched with 37% phosphoric acid and a Er,Cr:YSGG laser system. In addition, 60 IPS Empress II cylindrical blocks 2 mm in height and 5 mm in diameter were also prepared for the etched tooth surface. These blocks were bonded to the teeth with dual cured resin cement and shear tests were then performed. After the shear tests, Scanning electron microscopy images of the tooth surfaces were obtained at a magnification of ×3,800. Etching with acid alone yielded the highest mean value of bond shear strength (15.4±3.8 MPa), while laser etching followed by acid etching gave the lowest mean value (11.5±4.6 MPa). The mean values of the bond shear strength for acid etching followed by laser etching and laser etching alone were 13.8±3.9 MPa and 12.8±4.6 MPa, respectively. Statistical analysis revealed no significant differences between the groups. The results suggest that laser etching is easy to apply and less time-consuming. They further suggest that the order in which the acid and laser are applied in combined treatments is important.

  5. Effects of fluoride treatment on phosphoric acid-etching in primary teeth: an AFM observation.

    PubMed

    Choi, Samjin; Rhee, Yeri; Park, Jeong-Hoon; Lee, Gi-Ja; Kim, Kyung-Sook; Park, Jae-Hong; Park, Young-Guk; Park, Hun-Kuk

    2010-07-01

    The aim of this study was to examine the effect of fluoride application on 37% phosphoric acid-etching by atomic force microscopy (AFM) in primary tooth samples based on a clinical protocol used in a pediatric dental hospital. Enamel samples were prepared from 36 exfoliated and non-carious primary teeth. Primary tooth samples were randomly assigned to one of the four groups based on the timing of acid-etching with 37% phosphoric acid after an acidulated phosphate fluoride (APF) pre-treatment. Group 1 received no fluoride application, Group 2 was pre-treated with fluoride and then received acid-etching 2 weeks later. One week separated the fluoride treatment and the acid-etching in Group 3, while Group 4 received acid-etching immediately after the fluoride treatment. The vestibular enamel surfaces of each primary tooth sample were scanned in air at a resolution of 512 x 512 pixels and a scan speed of 0.8 line/s. On the enamel surfaces of the primary teeth after APF pre-treatment, debris were observed although the teeth were smoother than they were prior to APF. As a result, it was concluded that APF treatment is responsible for decreased primary tooth surface roughness. The enamel surfaces etched for 20s showed that acid-etching was effective not only in removing scratches and debris, but also for evaluating enamel rod characteristics. Primary tooth enamel surfaces after etching showed minute structures caused by the decreased hydroxyapatite nanoparticle space, compared to those before etching. Also, acid-etching showed significantly increased roughness effects (p<0.0001, n=9). Finally, as more time elapsed after APF pre-treatment, the roughness was decreased to a lesser degree (p=0.005, n=9). We suggest that primary teeth etching 2 weeks after APF pre-treatment used clinically in pediatric hospitals may be effective to obtain properly etched enamel surfaces.

  6. Investigation of etching techniques for superconductive Nb/Al-Al2O3/Nb fabrication processes

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Lea, D. M.; Lloyd, F. L.

    1993-01-01

    Wet etching, CF4 and SF6 reactive ion etching (RIE), RIE/wet hybrid etching, Cl-based RIE, ion milling, and liftoff techniques have been investigated for use in superconductive Nb/Al-Al2O3/Nb fabrication processes. High-quality superconductor-insulator-superconductor (SIS) junctions have been fabricated using a variety of these etching methods; however, each technique offers distinct tradeoffs for a given process an wafer design. In particular, it was shown that SF6 provides an excellent RIE chemistry for low-voltage anisotropic etching of Nb with high selectivity to Al. The SF6 tool has greatly improved the trilevel resist junction insulation process. Excellent repeatability, selectivity with respect to quartz, and submicron resolution make Cl2 + BCl3 + CHCl3 RIE a very attractive process for trilayer patterning.

  7. Shear bond strength and debonding characteristics of metal and ceramic brackets bonded with conventional acid-etch and self-etch primer systems: An in-vivo study

    PubMed Central

    Mirzakouchaki, Behnam; Sharghi, Reza; Shirazi, Samaneh; Moghimi, Mahsan; Shahrbaf, Shirin

    2016-01-01

    Background Different in-vitro studies have reported various results regarding shear bond strength (SBS) of orthodontic brackets when SEP technique is compared to conventional system. This in-vivo study was designed to compare the effect of conventional acid-etching and self-etching primer adhesive (SEP) systems on SBS and debonding characteristics of metal and ceramic orthodontic brackets. Material and Methods 120 intact first maxillary and mandibular premolars of 30 orthodontic patients were selected and bonded with metal and ceramic brackets using conventional acid-etch or self-etch primer system. The bonded brackets were incorporated into the wire during the study period to simulate the real orthodontic treatment condition. The teeth were extracted and debonded after 30 days. The SBS, debonding characteristics and adhesive remnant indices (ARI) were determined in all groups. Results The mean SBS of metal brackets was 10.63±1.42 MPa in conventional and 9.38±1.53 MPa in SEP system, (P=0.004). No statistically significant difference was noted between conventional and SEP systems in ceramic brackets. The frequency of 1, 2 and 3 ARI scores and debonding within the adhesive were the most common among all groups. No statistically significant difference was observed regarding ARI or failure mode of debonded specimens in different brackets or bonding systems. Conclusions The SBS of metal brackets bonded using conventional system was significantly higher than SEP system, although the SBS of SEP system was clinically acceptable. No significant difference was found between conventional and SEP systems used with ceramic brackets. Total SBS of metal brackets was significantly higher than ceramic brackets. Due to adequate SBS of SEP system in bonding the metal brackets, it can be used as an alternative for conventional system. Key words:Shear bond strength, Orthodontic brackets, Adhesive remnant index, self-etch. PMID:26855704

  8. Effect of Hydrofluoric Acid Etching Time on Titanium Topography, Chemistry, Wettability, and Cell Adhesion

    PubMed Central

    Zahran, R.; Rosales Leal, J. I.; Rodríguez Valverde, M. A.; Cabrerizo Vílchez, M. A.

    2016-01-01

    Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time. PMID:27824875

  9. In vitro bonding effectiveness of self-etch adhesives with different application techniques: A microleakage and scanning electron microscopic study

    PubMed Central

    Nagpal, Rajni; Manuja, Naveen; Tyagi, Shashi Prabha; Singh, Udai Pratap

    2011-01-01

    Aim: To evaluate and compare the microleakage of self-etch adhesives placed under different clinical techniques and to analyze the resin–dentin interfacial ultrastructure under scanning electron microscope (SEM). Materials and Methods: 100 extracted human premolars were divided into two groups for different adhesives (Clearfil S3 and Xeno III). Class V cavities were prepared. Each group was further divided into four subgroups (n = 10) according to the placement technique of the adhesive, i.e. according to manufacturer's directions (Group 1), with phosphoric acid etching of enamel margins (Group 2), with hydrophobic resin coat application (Group 3), with techniques of both groups 2 and 3 (Group 4). The cavities were restored with composite. Ten samples from each group were subjected to microleakage study. Five samples each of both the adhesives from groups 1 and 3 were used for SEM examination of the micromorphology of the resin–dentin interface. Results: At enamel margins for both the adhesives tested, groups 2 and 4 showed significantly lesser leakage than groups 1 and 3. At dentin margins, groups 3 and 4 depicted significantly reduced leakage than groups 1 and 2 for Xeno III. SEM observation of the resin–dentin interfaces revealed generalized gap and poor resin tag formation in both the adhesives. Xeno III showed better interfacial adaptation when additional hydrophobic resin coat was applied. Conclusions: In enamel, prior phosphoric acid etching reduces microleakage of self-etch adhesives, while in dentin, hydrophobic resin coating over one-step self-etch adhesives decreases the microleakage. PMID:22025829

  10. Bonding durability of single-step adhesives to previously acid-etched dentin.

    PubMed

    Ikeda, Masahiko; Tsubota, Keishi; Takamizawa, Toshiki; Yoshida, Takeshi; Miyazaki, Masashi; Platt, Jeffrey A

    2008-01-01

    This study investigated the effect of phosphoric acid etching on the dentin bond strength of five single-step self-etch adhesive systems; Absolute, Clearfil tri-S Bond, Fluoro Bond Shake One, G-Bond and One-Up Bond F Plus. Bovine mandibular incisors were mounted in self-curing resin and the facial surfaces were wet ground with #600 SiC paper. Adhesives were applied on the prepared dentin surfaces with and without prior phosphoric acid etching and light irradiated. Resin composite was condensed into a mold (ø4x2 mm), light irradiated and stored in water at 37 degrees C. Four groups (n=10) were made per adhesive system: with and without prior acid etching and with and without thermal cycling between 5 degrees C and 55 degrees C for 10,000 cycles. The specimens were tested in a shear mode at a crosshead speed of 1.0 mm/minute. Two-way ANOVA, Student t-test and Tukey HSD test at a level of 0.05 were done. For specimens without prior acid etching, the mean bond strengths to bovine dentin ranged from 12.8 to 17.1 MPa and ranged from 6.7 to 13.3 MPa for specimens with prior acid etching after 24 hours storage in water. When the specimens were subjected to thermal cycling, the mean bond strengths ranged from 10.7 to 24.8 MPa for the specimens without prior acid etching and 4.6 to 13.9 MPa for the specimens with prior acid etching. The changes in dentin bond strength were different among the adhesive systems tested. Failure modes were commonly adhesive failure associated with mixed failure for specimens with prior acid etching. For specimens without prior acid etching, failures in composite and dentin were increased. From the results of this in vitro study, prior acid etching might be not acceptable for increasing the dentin bond strengths of single-step self-etch adhesive systems.

  11. Efficient process development for bulk silicon etching using cellular automata simulation techniques

    NASA Astrophysics Data System (ADS)

    Marchetti, James; He, Yie; Than, Olaf; Akkaraju, Sandeep

    1998-09-01

    This paper describes cellular automata simulation techniques used to predict the anisotropic etching of single-crystal silicon. In particular, this paper will focus on the application of wet etching of silicon wafers using typical anisotropic etchants such as KOH, TMAH, and EDP. Achieving a desired final 3D geometry of etch silicon wafers often is difficult without requiring a number of fabrication design iterations. The result is wasted time and resources. AnisE, a tool to simulate anisotropic etching of silicon wafers using cellular automata simulation, was developed in order to efficiently prototype and manufacture MEMS devices. AnisE has been shown to effectively decrease device development time and costs by up to 50% and 60%, respectively.

  12. Dry etching techniques for active devices based on hexagonal boron nitride epilayers

    SciTech Connect

    Grenadier, Samuel; Li, Jing; Lin, Jingyu; Jiang, Hongxing

    2013-11-15

    Hexagonal boron nitride (hBN) has emerged as a fundamentally and technologically important material system owing to its unique physical properties including layered structure, wide energy bandgap, large optical absorption, and neutron capture cross section. As for any materials under development, it is necessary to establish device processing techniques to realize active devices based on hBN. The authors report on the advancements in dry etching techniques for active devices based on hBN epilayers via inductively coupled plasma (ICP). The effect of ICP radio frequency (RF) power on the etch rate and vertical side wall profile was studied. The etching depth and angle with respect to the surface were measured using atomic force microscopy showing that an etching rate ∼1.25 μm/min and etching angles >80° were obtained. Profilometer data and scanning electron microscope images confirmed these results. This work demonstrates that SF{sub 6} is very suitable for etching hBN epilayers in RF plasma environments and can serve as a guide for future hBN device processing.

  13. Resin Adaptation of Radicular Dentin Tubules after Endodontic Instrumentation and Acid Etching.

    DTIC Science & Technology

    1983-02-01

    the manuscript. DISCLAIMERS The statements, opinions, and advertisements in the Journal of Endodontics are solely those of the individual authors...I RD-Ai26 872 RESIN ADAPTATION OF RADICULAR DENTIN TUBULES AFTER / I ENDODONTIC INSTRUMENTATION AND ACID ETCHING(U) WALTER I REED ARMY INST OF...Adaptation to Radicular Dentin Tubules SbisoofpeAfter Endodontic Instrumentation and Acid Etching 1982-1983 6. PERFORMING ORG. REPORTNUMBER -, AUTHOR(a) S

  14. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-04

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  15. Fabrication of narrow-striped InAs/GaAs quantum dot laser with wet etching technique

    NASA Astrophysics Data System (ADS)

    Li, S. G.; Gong, Q.; Cao, C. F.; Wang, X. Z.; Xia, L. Z.; Yan, J. Y.; Wang, Y.

    2013-07-01

    An InAs/GaAs quantum dot laser, fabricated with a narrow-striped width of 6 μm by a wet etching technique, is reported. The etching solutions are composed of three components, i.e. phosphoric acid, hydrogen peroxide, and deionized water. We observed that the unavoidable undercutting was changed with the ratio of etching solution in the GaAs materials. By taking a suitable ratio of etching solution, good performance of quantum dot laser with a size of 6 μm × 700 μm was achieved for fabrication at room temperature. Under continuous wave mode, the lasing wavelength exhibited a single mode, which is located in the region of 1051 nm. In contrast, multimode lasing with a series of non-lasing gaps appeared and the spectra were gradually broadened to the high energy side by increasing the injection current. The laser has one facet power more than 22 mW, with a slope efficiency of 140 mW/A, just a little above threshold current.

  16. Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants.

    PubMed

    Kim, Mu-Hyon; Park, Kyeongsoon; Choi, Kyung-Hee; Kim, Soo-Hong; Kim, Se Eun; Jeong, Chang-Mo; Huh, Jung-Bo

    2015-05-06

    The authors describe a new type of titanium (Ti) implant as a Modi-anodized (ANO) Ti implant, the surface of which was treated by sandblasting, acid etching (SLA), and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control), SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC) of Modi-ANO Ti (74.20%±10.89%) was much greater than those of machined (33.58%±8.63%), SLA (58.47%±12.89), or ANO Ti (59.62%±18.30%). In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  17. Effect of prior acid etching on bonding durability of single-step adhesives.

    PubMed

    Watanabe, Takayuki; Tsubota, Keishi; Takamizawa, Toshiki; Kurokawa, Hiroyasu; Rikuta, Akitomo; Ando, Susumu; Miyazaki, Masashi

    2008-01-01

    This study investigated the effect of prior phosphoric acid etching on the enamel bond strength of five single-step self-etch adhesive systems: Absolute, Clearfil tri-S Bond, Fluoro Bond Shake One, G-Bond and One-Up Bond F Plus. Bovine mandibular incisors were mounted in self-curing resin, and the facial surfaces were wet ground with #600 silicon carbide paper. Adhesives were applied to the enamel surfaces with or without prior phosphoric-acid etching and light irradiated. The resin composites were condensed into a mold and light irradiated. In total, 40 specimens were tested per adhesive system with and without prior acid etching and were further divided into two groups: those stored in water at 37 degrees C for 24 hours without cycling and those stored in water at 37 degrees C for 24 hours followed by thermal cycling between 5 degrees C and 55 degrees C with 10,000 repeats. After storage under each set of conditions, the specimens were tested in shear mode at a crosshead speed of 1.0 mm/minute. Two-way analysis of variance, the Student's t-test and the Tukey HSD test were used to analyze the data at a significance level of 0.05. For the specimens without prior acid etching, the mean bond strengths to enamel ranged from 11.0 to 14.6 MPa after 24-hour storage in water, while the corresponding values for specimens with prior acid etching ranged from 15.2 to 19.3 MPa. When these specimens were subjected to thermal cycling, the mean bond strengths ranged from 11.3 to 17.0 MPa without prior acid etching and from 12.3 to 23.2 MPa with prior acid etching. The changes in enamel bond strengths differed among the adhesive systems tested. After 24-hour storage in water, the most common failure modes were adhesive failure and mixed failure for specimens with and without prior acid etching, respectively. Thus, through a careful choice of adhesive system, prior acid etching can increase the bond strengths of single-step self-etch adhesive systems.

  18. Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

    PubMed Central

    Hsiao, Chun-Ching; Siao, An-Shen

    2013-01-01

    Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively. PMID:24025557

  19. Comparative Evaluation of the Etching Pattern of Er,Cr:YSGG & Acid Etching on Extracted Human Teeth-An ESEM Analysis

    PubMed Central

    Mazumdar, Dibyendu; Ranjan, Shashi; Krishna, Naveen Kumar; Kole, Ravindra; Singh, Priyankar; Lakiang, Deirimika; Jayam, Chiranjeevi

    2016-01-01

    Introduction Etching of enamel and dentin surfaces increases the surface area of the substrate for better bonding of the tooth colored restorative materials. Acid etching is the most commonly used method. Recently, hard tissue lasers have been used for this purpose. Aim The aim of the present study was to evaluate and compare the etching pattern of Er,Cr:YSGG and conventional etching on extracted human enamel and dentin specimens. Materials and Methods Total 40 extracted non-diseased teeth were selected, 20 anterior and 20 posterior teeth each for enamel and dentin specimens respectively. The sectioned samples were polished by 400 grit Silicon Carbide (SiC) paper to a thickness of 1.0 ± 0.5 mm. The enamel and dentin specimens were grouped as: GrE1 & GrD1 as control specimens, GrE2 & GrD2 were acid etched and GrE3 & GrD3 were lased. Acid etching was done using Conditioner 36 (37 % phosphoric acid) according to manufacturer instructions. Laser etching was done using Er,Cr:YSGG (Erbium, Chromium : Ytrium Scandium Gallium Garnet) at power settings of 3W, air 70% and water 20%. After surface treatment with assigned agents the specimens were analyzed under ESEM (Environmental Scanning Electron Microscope) at X1000 and X5000 magnification. Results Chi Square and Student “t” statistical analysis was used to compare smear layer removal and etching patterns between GrE2-GrE3. GrD2 and GrD3 were compared for smear layer removal and diameter of dentinal tubule opening using the same statistical analysis. Chi-square test for removal of smear layer in any of the treated surfaces i.e., GrE2-E3 and GrD2-D3 did not differ significantly (p>0.05). While GrE2 showed predominantly type I etching pattern (Chi-square=2.78, 0.05

    0.10) and GrE3 showed type III etching (Chi-square=4.50, p<0.05). The tubule diameters were measured using GSA (Gesellschaft fur Softwareentwicklung und Analytik, Germany) image analyzer and the ‘t’ value of student ‘t’ test was 18.10 which was a

  20. Comparison of shear bond strength of reattached incisor fragment using Er,Cr:YSGG laser etching and conventional acid etching: An in vitro study

    PubMed Central

    Kumar, Gyanendra; Goswami, Mridula; Dhillon, Jatinder Kaur

    2016-01-01

    Aim: The aim of this invitro study is to evaluate the shear bond strength of reattached fractured incisor fragments using Er,Cr:YSGG laser and conventional acid etching without additional tooth preparation. Materials and methods: Forty extracted human teeth were divided in two groups of 20 each (Groups A and B). In Group A, fractured surface was treated by an Er, Cr: YSGG laser system (Waterlase MD, Biolase Technology Inc., San Clemente, CA, USA) operating at a wavelength of 2,780 nm and frequency of 20 Hz. In Group B, fractured surface was etched using 37% phosphoric acid (Scotchbond, 3M). In both the groups, further subdivision with 10 sample each was made based on horizontal and oblique fracture. After laser or acid etching, all the samples were reattached using flowable composite resin and light cured. The samples were tested for shear bond strength. Results: Mean shear bond strength for Group A (94.70±39.158) was lower as compared to Group B (121.25±49.937), although the difference was not statistically significant(p value=0.121). Similarly no statistical significant difference was observed amongst the subgroups. (p>0.05) Conclusion: Er,Cr:YSGG laser etching in reattachment of fractured incisor fragment is a good alternative to conventional acid etching. Er,Cr:YSGG showed comparable efficiency in rebonding of fractured teeth fragment as acid etching. PMID:27721563

  1. Evaluating EDTA as a substitute for phosphoric acid-etching of enamel and dentin.

    PubMed

    Imbery, Terence A; Kennedy, Matthew; Janus, Charles; Moon, Peter C

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes released when dentin is acid-etched. The enzymes are capable of destroying unprotected collagen fibrils that are not encapsulated by the dentin adhesive. Chlorhexidine applied after etching inhibits the activation of released MMPs, whereas neutral ethylenediamine tetra-acetic acid (EDTA) prevents the release of MMPs. The purpose of this study was to determine if conditioning enamel and dentin with EDTA can be a substitute for treating acid-etching enamel and dentin with chlorhexidine. A column of composite resin was bonded to enamel and dentin after conditioning. Shear bond strengths were evaluated after 48 hours and after accelerated aging for three hours in 12% sodium hypochlorite. Shear bond strengths ranged from 15.6 MP a for accelerated aged EDTA enamel specimens to 26.8 MPa for dentin conditioned with EDTA and tested after 48 hours. A three-way ANOVA and a Tukey HSD test found statistically significant differences among the eight groups and the three independent variables (P < 0.05). EDTA was successfully substituted for phosphoric acid-etched enamel and dentin treated with chlorhexidine. Interactions of conditioning agent and aging were significant for dentin but not for enamel. In an effort to reduce the detrimental effects of MMPs, conditioning enamel and dentin with EDTA is an alternative to treating acid-etched dentin and enamel with chlorhexidine.

  2. Noble Gases and Nitrogen Released from a Lunar Soil Pyroxene Separate by Acid Etching

    NASA Astrophysics Data System (ADS)

    Rider, P. E.

    1993-07-01

    We report initial results from a series of experiments designed to measure recently implanted solar wind (SW) ions in lunar soil mineral grains [1]. An acid-etching technique similar to the CSSE method developed at ETH Zurich was used to make abundance and isotope measurements of the SW noble gas and nitrogen compositions. Among the samples examined was a pyroxene separate from soil 75081. It was first washed with H2O to remove contamination from the sample finger walls and grain surfaces. H2O also acted as a weak acid, releasing gases from near-surface sites. Treatment with H2SO3 followed the water washes. Acid pH (~1.8 to ~1.0) and temperature (~23 degrees C to ~90 degrees C) and duration of acid attack (several minutes to several days) were varied from step to step. Finally, the sample was pyrolyzed in several steps to remove the remaining gases, culminating with a high-temperature pyrolysis at 1200 degrees C. Measurements of the light noble gases were mostly consistent with those from previous CSSE experiments performed on pyroxene [2,3]. It should be noted, however, that the Zurich SEP component was not easily distinguishable in the steps where it was expected to be observed. We suspect our experimental protocol masked the SEP reservoir, preventing us from seeing its distinctive signature. The most interesting results from this sample are its Kr and Xe isotopic and elemental compositions. Pyroxene apparently retains heavy noble gases as well as ilmenite (and plagioclase [4]). The heavy noble gas element ratios from this sample along with those previously reported [5,6] are, however, considerably heavier than the theoretically determined "solar system" values [7,8]. Explanations for the difference include the possibility that the derivations are incorrect, that there is another component of lunar origin mixing with the solar component, or that some type of loss mechanism is altering the noble gas reservoirs of the grains. The Kr and Xe isotopic compositions for

  3. BOND STRENGTH AND MORPHOLOGY OF ENAMEL USING SELF-ETCHING ADHESIVE SYSTEMS WITH DIFFERENT ACIDITIES

    PubMed Central

    Moura, Sandra Kiss; Reis, Alessandra; Pelizzaro, Arlete; Dal-Bianco, Karen; Loguercio, Alessandro Dourado; Arana-Chavez, Victor Elias; Grande, Rosa Helena Miranda

    2009-01-01

    Objectives: To assess the bond strength and the morphology of enamel after application of self-etching adhesive systems with different acidities. The tested hypothesis was that the performance of the self-etching adhesive systems does not vary for the studied parameters. Material and methods: Composite resin (Filtek Z250) buildups were bonded to untreated (prophylaxis) and treated (burcut or SiC-paper) enamel surfaces of third molars after application of four self-etching and two etch-and-rinse adhesive systems (n=6/condition): Clearfil SE Bond (CSE); OptiBond Solo Plus Self-Etch (OP); AdheSe (AD); Tyrian Self Priming Etching (TY), Adper Scotchbond Multi-Purpose Plus (SBMP) and Adper Single Bond (SB). After storage in water (24 h/37°C), the bonded specimens were sectioned into sticks with 0.8 mm2 cross-sectional area and the microtensile bond strength was tested at a crosshead speed of 0.5 mm/min. The mean bond strength values (MPa) were subjected to two-way ANOVA and Tukey's test (α=0.05). The etching patterns of the adhesive systems were also observed with a scanning electron microscope. Results: The main factor adhesive system was statistically significant (p<0.05). The mean bond strength values (MPa) and standard deviations were: CSE (20.5±3.5), OP (11.3±2.3), AD (11.2±2.8), TY (11.1±3.0), SBMP (21.9±4.0) and SB (24.9±3.0). Different etching patterns were observed for the self-etching primers depending on the enamel treatment and the pH of the adhesive system. Conclusion: Although there is a tendency towards using adhesive systems with simplified application procedures, this may compromise the bonding performance of some systems to enamel, even when the prismless enamel is removed. PMID:19668991

  4. Surface characterization of alkali- and heat-treated Ti with or without prior acid etching

    NASA Astrophysics Data System (ADS)

    An, Sang-Hyun; Matsumoto, Takuya; Miyajima, Hiroyuki; Sasaki, Jun-Ichi; Narayanan, Ramaswamy; Kim, Kyo-Han

    2012-03-01

    Titanium and its alloys are used as implant materials in dental and orthopaedic applications. The material affinities to host bone tissue greatly concern with the recovery period and good prognosis. To obtain a material surface having excellent affinity to bone, acid etching prior to alkali- and heat-treatment of Ti was conducted. The surface characteristics of the prepared sample indicated that the roughness as well as the wettability increased by pre-etching. Bone-like apatite was formed on pre-etched, alkali- and heat-treated Ti surface in simulated body fluid (SBF) within 3 days, while it takes 5 days on the solely alkali- and heat-treated surface. Osteoblastic cells showed better compatibility on the per-etched surface compared to the pure Ti surface or alkali- and heat-treated surface. Moreover, the pre-etched surface showed better pull-off tensile adhesion strength against the deposited apatite. Thus, acid etching prior to alkali- and heat-treatment would be a promising method for enhancing the affinity of Ti to host bone tissue.

  5. Grafting of acrylic acid on etched latent tracks induced by swift heavy ions on polypropylene films

    NASA Astrophysics Data System (ADS)

    Mazzei, R.; Fernández, A.; García Bermúdez, G.; Torres, A.; Gutierrez, M. C.; Magni, M.; Celma, G.; Tadey, D.

    2008-06-01

    In order to continue with a systematic study that include different polymers and monomers, the residual active sites produced by heavy ion beams, that remain after the etching process, were used to start the grafting process. To produce tracks, foils of polypropylene (PP) were irradiated with 208Pb of 25.62 MeV/n. Then, these were etched and grafted with acrylic acid (AA) monomers. Experimental curves of grafting yield as a function of grafting time with the etching time as a parameter were measured. Also, the grating yield as a function of the fluence and etching time was obtained. In addition, the permeation of solutions, with different pH, through PP grafted foils was measured.

  6. Protein adsorption and cell adhesion on three-dimensional polycaprolactone scaffolds with respect to plasma modification by etching and deposition techniques

    NASA Astrophysics Data System (ADS)

    Myung, Sung Woon; Ko, Yeong Mu; Kim, Byung Hoon

    2014-11-01

    In this work, protein adsorption and cell adhesion on three-dimensional (3D) polycaprolactone (PCL) scaffolds treated by plasma etching and deposition were performed. The 3D PCL scaffold used as a substrate of a bone tissue was fabricated by recent rapid prototype techniques. To increase surface properties, such as hydrophilicity, roughness, and surface chemistry, through good protein adhesion on scaffolds, oxygen (O2) plasma etching and acrylic acid or allyamine plasma deposition were performed on the 3D PCL scaffolds. The O2 plasma etching induced the formation of random nanoporous structures on the roughened surfaces of the 3D PCL scaffolds. The plasma deposition with acrylic acid and allyamine induced the chemical modification for introducing a functional group. The protein adsorption increased on the O2 plasma-etched surface compared with an untreated 3D PCL scaffold. MC3T3-E1 cells adhered bioactively on the etched and deposited surface compared with the untreated surface. The present plasma modification might be sought as an effective technique for enhancing protein adsorption and cell adhesion.

  7. Production of submicrometre fused silica gratings using laser-induced backside dry etching technique

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Vass, Cs; Smausz, T.; Bor, Zs

    2006-11-01

    Laser micromachining of transparent materials is a promising technique for producing micro-optical elements. Several types of both direct (e.g. ablation) and indirect (e.g. laser-induced backside wet etching: LIBWE) procedures have already been developed and presented in the last two decades. Here we present a new method (laser-induced backside dry etching (LIBDE)) in the analogy of LIBWE for the micro and nanoprocessing of transparent materials. In our experiments 1 mm thick fused silica plates were used as transparent work pieces. The plates were covered with 100 nm thick silver layers. The metal absorbing films were irradiated through the fused silica by a KrF excimer laser beam (λ = 248 nm, FWHM = 30 ns). The illuminated area was 1.05 mm2 and the fluence on the silver-quartz interface varied in the range 0-1800 mJ cm-2. We have provided evidence that LIBDE is more effective and simple than LIBWE, its etch rate being much higher at a given laser fluence. Our interference experiments proved that the LIBDE etching technique is suitable to fabricate gratings displaying submicrometre periods in transparent materials. On the basis of all these, it is suggested that this method may be useful to produce other nano and microoptical elements, too.

  8. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  9. Comparison of bond strength and surface morphology of dental enamel for acid and Nd-YAG laser etching

    NASA Astrophysics Data System (ADS)

    Parmeswearan, Diagaradjane; Ganesan, Singaravelu; Ratna, P.; Koteeswaran, D.

    1999-05-01

    Recently, laser pretreatment of dental enamel has emerged as a new technique in the field of orthodontics. However, the changes in the morphology of the enamel surface is very much dependent on the wavelength of laser, emission mode of the laser, energy density, exposure time and the nature of the substance absorbing the energy. Based on these, we made a comparative in vitro study on laser etching with acid etching with reference to their bond strength. Studies were conducted on 90 freshly extracted, non carious, human maxillary or mandibular anteriors and premolars. Out of 90, 60 were randomly selected for laser irradiation. The other 30 were used for conventional acid pretreatment. The group of 60 were subjected to Nd-YAG laser exposure (1060 nm, 10 Hz) at differetn fluences. The remaining 30 were acid pretreated with 30% orthophosphoric acid. Suitable Begg's brackets were selected and bound to the pretreated surface and the bond strength were tested using Instron testing machine. The bond strength achieved through acid pretreatment is found to be appreciably greater than the laser pretreated tooth. Though the bond strength achieved through the acid pretreated tooth is found to be significantly greater than the laser pretreated specimens, the laser pretreatement is found to be successful enough to produce a clinically acceptable bond strength of > 0.60 Kb/mm. Examination of the laser pre-treated tooth under SEM showed globule formation which may produce the mechanical interface required for the retention of the resin material.

  10. Effect of acid etching of glass ionomer cement surface on the microleakage of sandwich restorations.

    PubMed

    Bona, Alvaro Della; Pinzetta, Caroline; Rosa, Vinícius

    2007-06-01

    The purposes of this study were to evaluate the sealing ability of different glass ionomer cements (GICs) used for sandwich restorations and to assess the effect of acid etching of GIC on microleakage at GIC-resin composite interface. Forty cavities were prepared on the proximal surfaces of 20 permanent human premolars (2 cavities per tooth), assigned to 4 groups (n=10) and restored as follows: Group CIE - conventional GIC (CI) was applied onto the axial and cervical cavity walls, allowed setting for 5 min and acid etched (E) along the cavity margins with 35% phosphoric acid for 15 s, washed for 30 s and water was blotted; the adhesive system was applied and light cured for 10 s, completing the restoration with composite resin light cured for 40 s; Group CIN - same as Group CIE, except for acid etching of the CI surface; Group RME - same as CIE, but using a resin modified GIC (RMGIC); Group RMN - same as Group RME, except for acid etching of the RMGIC surface. Specimens were soaked in 1% methylene blue dye solution at 24 degrees C for 24 h, rinsed under running water for 1 h, bisected longitudinally and dye penetration was measured following the ISO/TS 11405-2003 standard. Results were statistically analyzed by Kruskal-Wallis and chi-square tests (a=0.05). Dye penetration scores were as follow: CIE - 2.5; CIN - 2.5; RME - 0.9; and RMN - 0.6. The results suggest that phosphoric acid etching of GIC prior to the placement of composite resin does not improve the sealing ability of sandwich restorations. The RMGIC was more effective in preventing dye penetration at the GIC-resin composite-dentin interfaces than CI.

  11. Reactive ion etching (RIE) technique for application in crystalline silicon solar cells

    SciTech Connect

    Yoo, Jinsu

    2010-04-15

    Saw damage removal (SDR) and texturing by conventional wet chemical processes with alkali solution etch about 20 micron of silicon wafer on both sides, resulting in thin wafers with which solar cell processing is difficult. Reactive ion etching (RIE) for silicon surface texturing is very effective in reducing surface reflectance of thin crystalline silicon wafers by trapping the light of longer wavelength. High efficiency solar cells were fabricated during this study using optimized RIE. Saw damage removal (SDR) with acidic mixture followed by RIE-texturing showed the decrease in silicon loss by {proportional_to}67% and {proportional_to}70% compared to conventional SDR and texturing by alkaline solution. Also, the crystalline silicon solar cells fabricated by using RIE-texturing showed conversion efficiency as high as 16.7% and 16.1% compared with 16.2%, which was obtained in the case of the cell fabricated with SDR and texturing with NaOH solution. (author)

  12. Metal etching composition

    NASA Technical Reports Server (NTRS)

    Otousa, Joseph E. (Inventor); Thomas, Clark S. (Inventor); Foster, Robert E. (Inventor)

    1991-01-01

    The present invention is directed to a chemical etching composition for etching metals or metallic alloys. The composition includes a solution of hydrochloric acid, phosphoric acid, ethylene glycol, and an oxidizing agent. The etching composition is particularly useful for etching metal surfaces in preparation for subsequent fluorescent penetrant inspection.

  13. Miniature tapered photonic crystal fiber interferometer with enhanced sensitivity by acid microdroplets etching.

    PubMed

    Qiu, Sun-jie; Chen, Ye; Kou, Jun-long; Xu, Fei; Lu, Yan-qing

    2011-08-01

    We fabricate a miniature tapered photonic crystal fiber (PCF) interferometer with enhanced sensitivity by acid microdroplets etching. This method is very simple and cost effective, avoiding elongating the PCF, moving and refixing the device during etching, and measuring. The refractive index sensing properties with different PCF diameters are investigated both theoretically and experimentally. The tapering velocity can be controlled by the microdroplet size and position. The sensitivity greatly increases (five times, 750 nm/RIU) and the size decreases after slightly tapering the PCF. The device keeps low temperature dependence before and after tapering. More uniformly and thinly tapered PCFs can be realized with higher sensitivity (∼100 times) by optimizing the etching process.

  14. Temperature Rise Induced by Light Curing Unit Can Shorten Enamel Acid-Etching Time

    PubMed Central

    Najafi Abrandabadi, Ahmad; Sheikh-Al-Eslamian, Seyedeh Mahsa; Panahandeh, Narges

    2015-01-01

    Objectives: The aim of this in-vitro study was to assess the thermal effect of light emitting diode (LED) light curing unit on the enamel etching time. Materials and Methods: Three treatment groups with 15 enamel specimens each were used in this study: G1: Fifteen seconds of etching, G2: Five seconds of etching, G3: Five seconds of etching plus LED light irradiation (simultaneously). The micro shear bond strength (μSBS) of composite resin to enamel was measured. Results: The mean μSBS values ± standard deviation were 51.28±2.35, 40.47±2.75 and 50.00±2.59 MPa in groups 1, 2 and 3, respectively. There was a significant difference between groups 1 and 2 (P=0.013) and between groups 2 and 3 (P=0.032) in this respect, while there was no difference between groups 1 and 3 (P=0.932). Conclusion: Simultaneous application of phosphoric acid gel over enamel surface and light irradiation using a LED light curing unit decreased enamel etching time to five seconds without compromising the μSBS. PMID:27559352

  15. A self-limiting layer-by-layer etching technique for 2H-MoS2

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Lee, Edwin W., II; McCulloch, William; Jamal-Eddine, Zane; Krishnamoorthy, Sriram; Newburger, Michael J.; Kawakami, Roland K.; Wu, Yiying; Rajan, Siddharth

    2017-03-01

    We report controlled layer-by-layer removal of large-area, sulfurized, single-crystal molybdenum disulfide (MoS2) films using a digital etching technique, which utilizes oxidation and removal of the oxidized layer. We demonstrate a self-limiting oxidation process where Mo oxide covered the surface of MoS2. A constant etching rate of one monolayer/cycle and the uniformity of the etching process were also verified. We show that the etching of an integer number of MoS2 layers can be precisely controlled. No noticeable film quality degradation was observed after multiple cycles of digital etching, as confirmed by Raman mapping of the ratio of the \\text{E}\\text{2g}1 and A1g peak intensities.

  16. Magnetic field sensor using the fiber loop ring-down technique and an etched fiber coated with magnetic fluid.

    PubMed

    Shen, Tao; Feng, Yue; Sun, Binchao; Wei, Xinlao

    2016-02-01

    The fiber loop ring-down spectroscopy technique is introduced into the evanescent-field-based sensing scheme in order to create a new type of fiber-based magnetic field sensor. As a consequence, the sensitivity and stability of the magnetic field sensing system are significantly enhanced. The sensor head is constructed using a section of a single-mode fiber with its cladding partially etched. The process of fiber etching is described in detail, and the relationship between the diameter of the etched fiber and the etching time is experimentally investigated. After adopting the appropriate size of the etched fiber, the final experimental results show that the magnetic field strength has a well-defined linear relationship with the inverse of the ring-down time τ over a range of 30 mT with a sensitivity of 95.5 ns/mT.

  17. Synthesis of anatase titanium dioxide nanocaps via hydrofluoric acid etching towards enhanced photocatalysis

    SciTech Connect

    Ding, Kun; Wang, Dan; Yang, Ping; Cheng, Xin

    2016-02-15

    Graphical abstract: Anatase TiO{sub 2} nanocaps prepared by HF-assisted chemical etching method exhibit enhanced photocatalytic activity compared with commercial P25 because of HF served as an etching agent to remove doped impurities. - Highlights: • Anatase TiO{sub 2} nanocaps were synthesized by HF etching process. • The optimal conditions of experiment are 700 °C calcination and 0.2 mL HF solution. • The photocatalytic properties was studied upon UV and Visible irradiation. • The unique TiO{sub 2} nanocaps structure shows excellent photocatalytic activity. - Abstract: Anatase titanium dioxide (TiO{sub 2}) nanocaps were created via a four-step process including the preparation of SiO{sub 2} spheres, the deposition of a TiO{sub 2} layer to fabricate SiO{sub 2}@TiO{sub 2} composite spheres, the calcination for obtaining the crystal structure of anatase phase, and hydrofluoric acid (HF) etching to dissolve SiO{sub 2} cores. The SiO{sub 2}@TiO{sub 2} spheres calcined at 700 °C revealed fine photocatalytic activity. Interestingly, most of samples transformed into TiO{sub 2} nanocaps via HF etching, and TiO{sub 2} nanocaps prepared using optimal conditions exhibited quick degradation (k is 0.052 min{sup −1}) compared with commercial P25 (k is 0.030 min{sup −1}) and the TiO{sub 2} nanostructures etched by a NaOH solution. The excellent photocatalytic performance is attributed to its unique hollow hemispherical nanocaps structure, which is in favor of making full use of incident light. The photocatalysis phenomenon in visible light was also observed after depositing Au nanoparticles on anantase TiO{sub 2} nanocaps.

  18. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    PubMed Central

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  19. In vitro short-term bonding performance of zirconia treated with hot acid etching and primer conditioning etching and primer conditioning.

    PubMed

    Xie, Haifeng; Chen, Chen; Dai, Wenyong; Chen, Gang; Zhang, Feimin

    2013-01-01

    This study aimed to investigate and compare the resin bond strengths of zirconia conditioned as follows: alumina sandblasting; alumina sandblasting+application of 10-MDP-containing primer; alumina sandblasting+application of Z-Prime Plus or Metal/Zirconia Primer (new zirconia primers); tribochemical silica coating+silanization; hot acid etching in three different combinations [H2SO4/(NH4)2SO4, HF/HNO3, H2SO4/HF/HNO3]+application of 10-MDP-containing primer. Shear bond strengths (SBS) after water storage for 24 h and 40 days were measured to assess resin bonding performance. Surface and chemical properties of conditioned zirconia surfaces and primers were characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and atomic force microscopy. Surface roughness ranked in descending order was: hot acid etching > tribochemical silica coating > alumina sandblasting. Combination of tribochemical silica coating and silanization showed the highest initial SBS (12.46±2.13 MPa) (P<0.01). Etching with H2SO4/(NH4)2SO4 (13.15±3.24 MPa) and HF/HNO3 (13.48±2.15 MPa) showed significantly better bond durability (P<0.01). Hot acid etching seemed to be a promising surface roughening treatment to improve resin-zirconia bonding.

  20. Hydrogen content in titanium and a titanium-zirconium alloy after acid etching.

    PubMed

    Frank, Matthias J; Walter, Martin S; Lyngstadaas, S Petter; Wintermantel, Erich; Haugen, Håvard J

    2013-04-01

    Dental implant alloys made from titanium and zirconium are known for their high mechanical strength, fracture toughness and corrosion resistance in comparison with commercially pure titanium. The aim of the study was to investigate possible differences in the surface chemistry and/or surface topography of titanium and titanium-zirconium surfaces after sand blasting and acid etching. The two surfaces were compared by X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, scanning electron microscopy and profilometry. The 1.9 times greater surface hydrogen concentration of titanium zirconium compared to titanium was found to be the major difference between the two materials. Zirconium appeared to enhance hydride formation on titanium alloys when etched in acid. Surface topography revealed significant differences on the micro and nanoscale. Surface roughness was increased significantly (p<0.01) on the titanium-zirconium alloy. High-resolution images showed nanostructures only present on titanium zirconium.

  1. Effect of acid etching on bond strength of nanoionomer as an orthodontic bonding adhesive

    PubMed Central

    Khan, Saba; Verma, Sanjeev K.; Maheshwari, Sandhya

    2015-01-01

    Aims: A new Resin Modified Glass Ionomer Cement known as nanoionomer containing nanofillers of fluoroaluminosilicate glass and nanofiller 'clusters' has been introduced. An in-vitro study aimed at evaluating shear bond strength (SBS) and adhesive remnant index (ARI) of nanoionomer under etching/unetched condition for use as an orthodontic bonding agent. Material and Methods: A total of 75 extracted premolars were used, which were divided into three equal groups of 25 each: 1-Conventional adhesive (Enlight Light Cure, SDS, Ormco, CA, USA) was used after and etching with 37% phosphoric acid for 30 s, followed by Ortho Solo application 2-nanoionomer (Ketac™ N100, 3M, ESPE, St. Paul, MN, USA) was used after etching with 37% phosphoric acid for 30 s 3-nanoionomer was used without etching. The SBS testing was performed using a digital universal testing machine (UTM-G-410B, Shanta Engineering). Evaluation of ARI was done using scanning electron microscopy. The SBS were compared using ANOVA with post-hoc Tukey test for intergroup comparisons and ARI scores were compared with Chi-square test. Results: ANOVA (SBS, F = 104.75) and Chi-square (ARI, Chi-square = 30.71) tests revealed significant differences between groups (P < 0.01). The mean (SD) SBS achieved with conventional light cure adhesive was significantly higher (P < 0.05) (10.59 ± 2.03 Mpa, 95% CI, 9.74-11.41) than the nanoionomer groups (unetched 4.13 ± 0.88 Mpa, 95% CI, 3.79-4.47 and etched 9.32 ± 1.87 Mpa, 95% CI, 8.58-10.06). However, nanoionomer with etching, registered SBS in the clinically acceptable range of 5.9–7.8 MPa, as suggested by Reynolds (1975). The nanoionomer groups gave significantly lower ARI values than the conventional adhesive group. Conclusion: Based on this in-vitro study, nanoionomer with etching can be successfully used as an orthodontic bonding agent leaving less adhesive remnant on enamel surface, making cleaning easier. However, in-vivo studies are needed to confirm the validity

  2. Bond strength of composite to dentin: effect of acid etching and laser irradiation through an uncured self-etch adhesive system

    NASA Astrophysics Data System (ADS)

    Castro, F. L. A.; Carvalho, J. G.; Andrade, M. F.; Saad, J. R. C.; Hebling, J.; Lizarelli, R. F. Z.

    2014-08-01

    This study evaluated the effect on micro-tensile bond strength (µ-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer’s instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd:YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm2) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (α = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher µ-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in µ-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher µ-TBS when compared to the suggested manufacturer’s technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.

  3. Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching

    PubMed Central

    STEINHAUSER, Henrique Caballero; TURSSI, Cecília Pedroso; FRANÇA, Fabiana Mantovani Gomes; do AMARAL, Flávia Lucisano Botelho; BASTING, Roberta Tarkany

    2014-01-01

    Objective The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. Material and Methods Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8): C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. Results One-way ANOVA test showed no significant difference between treatments (p=0.3197) and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. Conclusions Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed. PMID:24676577

  4. Effects of laser and acid etching and air abrasion on mineral content of dentin.

    PubMed

    Malkoc, Meral Arslan; Taşdemir, Serife Tuba; Ozturk, A Nilgun; Ozturk, Bora; Berk, Gizem

    2011-01-01

    The aim of this study was to evaluate the mineral content of dentin prepared using an Er,Cr:YSGG laser at four different power settings, acid etching, and air abrasion. The study teeth comprised 35 molars which were randomly divided into seven equal groups. The occlusal third of the crowns were cut with a slow-speed diamond saw. The groups were as follows: group A, control group; group B, dentin etched with 35% buffered phosphoric acid for 30 s; group C, dentin abraded at 60 psi with 50-µm aluminium oxide for 1 s; groups D-G, dentin irradiated with the Er,Cr:YSGG laser at 1.50 W (group D), 2.25 W (group E), 3.00 W (group F), and 3.50 W (group G). The levels of Mg, P, Ca, K and Na in each dentin slab were measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Data were analysed by one way analysis of variance and Tukey HSD tests. There were no significant differences between the groups in the levels of Ca, P and Na, and the Ca/P ratio (p>0.05); however, there were significant differences in the levels of K (p<0.001) and Mg (p=0.13). In addition, the levels of Mg in the air abrasion group were higher than in the other groups (p<0.01). Etching with the Er,Cr:YSGG laser system, air abrasion and acid etching did not affect the levels of Ca, P and Na, or the Ca/P ratio, in the dentin surface.

  5. Development and application of the electrochemical etching technique. Annual progress report

    SciTech Connect

    Not Available

    1980-08-01

    This annual progress report documents further advances in the development and application of electrochemical etching of polycarbonate foils (ECEPF) for fast, intermediate, and thermal neutron dosimetry as well as alpha particle dosimetry. The fast (> 1.1 MeV) and thermal neutron dosimetry techniques were applied to a thorough investigation of the neutron contamination inherent in and about the primary x-ray beam of several medical therapy electron accelerators. Because of the small size of ECEPF dosimeters in comparison to other neutron meters, they have an unusually low perturbation of the radiation field under measurement. Due to this small size and the increased sensitivity of the ECEPF dosimeter over current techniques of measuring neutrons in a high photon field, the fast neutron contamination in the primary x-ray beam of all the investigated accelerators was measured with precision and found to be greater than that suggested by the other, more common, neutron dosimetry methods.

  6. Effect of acid-etching on remineralization of enamel white spot lesions.

    PubMed

    Al-Khateeb, S; Exterkate, R; Angmar-Månsson, B; ten Cate, J M; ten Cate, B

    2000-02-01

    This in vitro study aimed at investigating whether full remineralization would occur in white spot lesions when the surface porosity was increased by acid-etching. The effect of fluoride was also investigated. Enamel blocks with in vitro produced white spot lesions were used. Group A was exposed to a remineralizing solution only. In group B, the lesions were etched with 35% phosphoric acid for 30 s, then treated as in group A. Group C was treated as group A + daily treatment with a fluoride toothpaste slurry (1,000 ppm) for 5 min. Group D was treated as group B + the daily fluoride treatment of group C. The remineralization was measured weekly with Quantitative Light-induced Fluorescence during the experimental period. After 10 weeks of remineralization, mineral profiles were assessed with transverse microradiography. The enamel fluorescence was partly regained. There were significant differences in the lesion depth, mineral content at the surface layer, and integrated mineral loss between the groups. Addition of fluoride accelerated the remineralization only in the beginning; in later stages the process leveled out and even reached a plateau in all the groups. It was concluded that full remineralization was not achieved by etching, by the addition of fluoride, nor by the combination of both treatments in this in vitro study.

  7. Investigation of acid-etched CO2 laser ablated enamel surfaces using polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nahm, Byung J.; Kang, Hobin; Chan, Kenneth; Fried, Daniel

    2012-01-01

    A carbon dioxide laser operating at the highly absorbed wavelength of 9.3μm with a pulse duration of 10-15μs is ideally suited for caries removal and caries prevention. The enamel thermally modified by the laser has enhanced resistance to acid dissolution. This is an obvious advantage for caries prevention; however, it is often necessary to etch the enamel surface to increase adhesion to composite restorative materials and such surfaces may be more resistant to etching. The purpose of the study was to non-destructively measure the susceptibility of laser-ablated enamel surfaces to acid dissolution before and after acid-etching using Polarization Sensitive Optical Coherence Tomography (PS-OCT). PS-OCT was used to acquire images of bovine enamel surfaces after exposure to laser irradiation at ablative fluence, acid-etching, and a surface softened dissolution model. The integrated reflectivity from lesion and the lesion depth were measured using PS-OCT. Samples were also sectioned for examination by Polarized Light Microscopy (PLM). PS-OCT images showed that acid-etching greatly accelerated the formation of subsurface lesions on both laser-irradiated and non-irradiated surfaces (P<0.05). A 37.5% phosphoric acid etch removed the laser modified enamel layer after 5-10 seconds.

  8. Micro/nanofabrication of poly(L-lactic acid) using focused ion beam direct etching

    NASA Astrophysics Data System (ADS)

    Oyama, Tomoko Gowa; Hinata, Toru; Nagasawa, Naotsugu; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi; Taguchi, Mitsumasa

    2013-10-01

    Micro/nanofabrication of biocompatible and biodegradable poly(L-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  9. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  10. Observation of thermally etched grain boundaries with the FIB/TEM technique

    SciTech Connect

    Palizdar, Y.; San Martin, D.; Ward, M.; Cochrane, R.C.; Brydson, R.; Scott, A.J.

    2013-10-15

    Thermal etching is a method which is able to reveal and characterize grain boundaries, twins or dislocation structures and determine parameters such as grain boundary energies, surface diffusivities or study phase transformations in steels, intermetallics or ceramic materials. This method relies on the preferential transfer of matter away from grain boundaries on a polished sample during heating at high temperatures in an inert/vacuum atmosphere. The evaporation/diffusion of atoms at high temperatures results in the formation of grooves at the intersections of the planes of grain/twin boundaries with the polished surface. This work describes how the combined use of Focussed Ion Beam and Transmission Electron Microscopy can be used to characterize not only the grooves and their profile with the surface, but also the grain boundary line below the groove, this method being complementary to the commonly used scanning probe techniques. - Highlights: • Thermally etched low-carbon steel samples have been characterized by FIB/TEM • Grain boundary (GB) lines below the groove have been characterized in this way • Absence of ghost traces and large θ angle suggests that GB are not stationary but mobile • Observations correlate well with previous works and Mullins' investigations [22].

  11. Influence of previous acid etching on bond strength of universal adhesives to enamel and dentin.

    PubMed

    Torres, Carlos Rocha Gomes; Zanatta, Rayssa Ferreira; Silva, Tatiane Josefa; Huhtala, Maria Filomena Rocha Lima; Borges, Alessandra Bühler

    2017-01-01

    The objective of this study was to evaluate the effect of acid pretreatment on the bond strength of composite resin bonded to enamel and dentin with 2 different universal self-etching adhesives. The null hypothesis was that the acid treatment performed prior to adhesive application would not significantly change the bond strength to enamel or dentin for either universal adhesive tested. A sample of 112 bovine incisors were selected and embedded in acrylic resin. Half were ground until a flat enamel surface was obtained, and the other half were polished until a 6 × 6-mm area of dentin was exposed, resulting into 2 groups (n = 56). The enamel and dentin groups were divided into 2 subgroups according to the adhesive system applied: Futurabond U or Scotchbond Universal. Each of these subgroups was divided into 2 additional subgroups (n = 14); 1 subgroup received phosphoric acid pretreatment, and 1 subgroup did not. The bond strength was assessed with a microtensile test. Data from enamel and dentin specimens were analyzed separately using 1-way analysis of variance. The acid pretreatment did not significantly change the bond strength of the adhesives tested, either to enamel (P = 0.4161) or to dentin (P = 0.4857). The acid etching pretreatment did not affect the bond strength to dentin and enamel when the tested universal multipurpose adhesive systems were used.

  12. Oxidation and etching behaviors of the InAs surface in various acidic and basic chemical solutions

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2017-04-01

    Indium arsenide (InAs) is the candidate of choice as a new channel material for application in future technologies beyond the Si-based electronic devices because it has a much higher electron mobility than silicon. In this study, the oxidation and etching behaviors of InAs (100) in various acidic and basic solutions, such as HF, HCl, H2SO4, NaOH, KOH, and NH4OH, were investigated. In addition, the effect of pH on the oxidation and etching reactions taking place on the InAs surface was studied using solutions with a pH ranging from 1 to 13. It was observed that the oxidation of the InAs surface was hindered in acidic solutions, which was attributed to the dissolution of the oxidized surface layer. In particular, the treatment of the InAs surface using a strongly acidic solution with a pH of less than 3 produced an oxide-free surface due to the predominant etching of the InAs surface. The addition of H2O2 to the acidic solutions greatly increased the etching rate of the InAs surface, which suggests that the oxidation process is the rate-limiting step in the sequence of reactions that occur during the etching of the InAs surface in acidic solutions. The etching of InAs was suppressed in neutral solutions, which resulted in the formation of a relatively thicker oxide layer on the surface, and mild etching of the InAs surface took place in basic solutions. However, in basic solutions, the addition of H2O2 did not significantly contribute to the increase of the oxidation state of the InAs surface; thus, its effect on the etching rate of InAs was smaller than in acidic solutions.

  13. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    PubMed Central

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  14. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics.

    PubMed

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A; Divakar, Darshan Devang; Matinlinna, Jukka P; Vallittu, Pekka K

    2016-05-27

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces' microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey's test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability.

  15. Deep Wet Etching in Hydrofluoric Acid, Nitric Acid, and Acetic Acid of Cavities in a Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Yifan, Zhou; Sihai, Chen; Edmond, Samson; Bosseboeuf, Alain

    2013-07-01

    This paper reports an experimental investigation of deep isotropic etching in HF:HNO3:CH3COOH solution for the fabrication of large microcavities in a silicon wafer. The effects of different practical parameters, e.g., back protective layer, etch window diameter and agitation method, are evaluated experimentally and then discussed. Results show that, for the conditions used, the back protective layer has little influence on the etched depth. Experimental etched profiles are in agreement with the mathematical model of Kuiken's assuming a purely diffusion-controlled etching. Vertical anisotropy and asymmetry of etched profiles were observed. A 100 µm deep hemispherical microcavity was obtained for a 60 min etching with magnetic agitation at room temperature.

  16. Shear Bond Strength of an Etch-and-rinse Adhesive to Er:YAG Laser- and/or Phosphoric Acid-treated Dentin

    PubMed Central

    Davari, Abdolrahim; Sadeghi, Mostafa; Bakhshi, Hamid

    2013-01-01

    Background and aims. Er:YAG laser irradiation has been claimed to improve the adhesive properties of dentin; therefore, it has been proposed as an alternative to acid etching. The aim of this in vitro study was to investigate the shear bond strength of an etch-and-rinse adhesive system to dentin surfaces following Er:YAG laser and/or phosphoric acid etching. Materials and methods. The roots of 75 sound maxillary premolars were sectioned below the CEJ and the crowns were embedded in auto-polymerizing acrylic resin with the buccal surfaces facing up. The buccal surfaces were ground using a diamond bur and polished until the dentin was exposed; the samples were randomly divided into five groups (n=15) according to the surface treatment: (1) acid etching; (2) laser etching; (3) laser etching followed by acid etching; (4) acid etching followed by laser etching and (5) no acid etching and no laser etching (control group). Composite resin rods (Point 4, Kerr Co) were bonded to treated dentin surfaces with an etch-and-rise adhesive system (Optibond FL, Kerr Co) and light-cured.After storage for two weeks at 37°C and 100% humidity and then thermocycling, bond strength was measured with a Zwick Universal Testing Machine at a crosshead speed of 1 mm/min. Data was analyzed using parametric and non-parametric tests (P<0.05). Results. Mean shear bond strength for acid etching (20.1±1.8 MPa) and acid+laser (15.6±3.5 MPa) groups were significantly higher than those for laser+acid (15.6±3.5 MPa), laser etching (14.1±3.4 MPa) and control (8.1±2.1 MPa) groups. However, there were no significant differences between acid etching and acid+laser groups, and between laser+acid and laser groups. Conclusion. When the cavity is prepared by bur, it is not necessary to etch the dentin surface by Er:YAG laser following acid etching and acid etching after laser etching. PMID:23875083

  17. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  18. Ultrastructure of the surface of dental enamel with molar incisor hypomineralization (MIH) with and without acid etching.

    PubMed

    Bozal, Carola B; Kaplan, Andrea; Ortolani, Andrea; Cortese, Silvina G; Biondi, Ana M

    2015-01-01

    The aim of the present work was to analyze the ultrastructure and mineral composition of the surface of the enamel on a molar with MIH, with and without acid etching. A permanent tooth without clinical MIH lesions (control) and a tooth with clinical diagnosis of mild and moderate MIH, with indication for extraction, were processed with and without acid etching (H3PO4 37%, 20") for observation with scanning electron microscope (SEM) ZEISS (Supra 40) and mineral composition analysis with an EDS detector (Oxford Instruments). The control enamel showed normal prismatic surface and etching pattern. The clinically healthy enamel on the tooth with MIH revealed partial loss of prismatic pattern. The mild lesion was porous with occasional cracks. The moderate lesion was more porous, with larger cracks and many scales. The mineral composition of the affected surfaces had lower Ca and P content and higher O and C. On the tooth with MIH, even on normal looking enamel, the demineralization does not correspond to an etching pattern, and exhibits exposure of crystals with rods with rounded ends and less demineralization in the inter-prismatic spaces. Acid etching increased the presence of cracks and deep pores in the adamantine structure of the enamel with lesion. In moderate lesions, the mineral composition had higher content of Ca, P and Cl. Enamel with MIH, even on clinically intact adamantine surfaces, shows severe alterations in the ultrastructure and changes in ionic composition, which affect the acid etching pattern and may interfere with adhesion.

  19. Color Stability of Enamel following Different Acid Etching and Color Exposure Times

    PubMed Central

    Jahanbin, Arezoo; Basafa, Mohammad; Moazzami, Mostafa; Basafa, Behnoush; Eslami, Neda

    2014-01-01

    Background and aims. The aim of this study was to evaluate the effect of different etching times on enamel color stability after immediate versus delayed exposure to colored artificial saliva (CAS). Materials and methods. Human first premolars were divided into five groups of twenty. A colorimeter was used according to the CIE system on the mid-buccal and mid-lingual surfaces to evaluate initial tooth color. Samples in group A remained unetched. In groups B to E, buccal and lingual surfaces were initially etched with phosphoric acid for 15 and 60 seconds, respectively. Then, the samples in groups A and C were immersed in colored artificial saliva (cola+saliva). In group B, the teeth were immersed in simple artificial saliva (AS). Samples in groups D and E were immersed in AS for 24 and 72 hours, respectively before being immersed in colored AS. The teeth were immersed for one month in each solution before color measurement. During the test period, the teeth were retrieved from the staining solution and stored in AS for five minutes. This was repeated 60 times. Color changes of buccal and lingual surfaces were calculated. Kruskal-Wallis and Wilcoxon tests were used for statistical analysis (α ≤0.05). Results. There were no significant differences between the groups in term of ΔE of buccal (P = 0.148) and lingual surfaces (P = 0.73). Conclusion. Extended time of etching did not result in significant enamel color change. Immediate and delayed exposure of etched enamel to staining solutions did not result in clinically detectable tooth color changes. PMID:25093048

  20. The critical barrier to progress in dentine bonding with the etch-and-rinse technique

    PubMed Central

    Brackett, M.G.; Li, N.; Brackett, W.W.; Sword, R.J.; Qi, Y.P.; Niu, L.N.; Pucci, C.R.; Dib, A.; Pashley, D.H.; Tay, F.R.

    2011-01-01

    Objectives The lack of durability in resin–dentine bonds led to the use of chlorhexidine as MMP-inhibitor to prevent the degradation of hybrid layers. Biomimetic remineralisation is a concept-proven approach in preventing the degradation of resin–dentine bonds. The purpose of this study is to examine the integrity of aged resin–dentine interfaces created with a nanofiller-containing etch-and-rinse adhesive after the application of these two approaches. Methods The more established MMP-inhibition approach was examined using a parallel in vivo and in vitro ageing design to facilitate comparison with the biomimetic remineralisation approach using an in vitro ageing design. Specimens bonded without chlorhexidine exhibited extensive degradation of the hybrid layer after 12 months of in vivo ageing. Results Dissolution of nanofillers could be seen within a water-rich zone within the adhesive layer. Although specimens bonded with chlorhexidine exhibited intact hybrid layers, water-rich regions remained in those hybrid layers and degradation of nanofillers occurred within the adhesive layer. Specimens subjected to in vitro biomimetic remineralisation followed by in vitro ageing demonstrated intrafibrillar collagen remineralisation within hybrid layers and deposition of mineral nanocrystals in nanovoids within the adhesive. Conclusions The impact was realized by understanding the lack of an inherent mechanism to remove water from resin–dentine interfaces as the critical barrier to progress in bonding with the etch-and-rinse technique. The experimental biomimetic remineralisation strategy offers a creative solution for incorporating a progressive hydration mechanism to achieve this goal, which warrants its translation into a clinically applicable technique. PMID:21215788

  1. Strength determination of periodontal splints fabricated from acid-etched retained materials.

    PubMed

    Compton, F H; Beagrie, G S; Chernecky, R

    1977-07-01

    Six systems (one polycarboxylate, one polymethyl methacrylate, one unfilled BIS-GMA resin, two combinations of methyl cyanoacrylate and polymethyl methacrylate, and one combination of unfilled BIS-GMA and filled composite resin) were evaluated for in vitro retention to acid-etched human enamel. Also tested were one unfilled-filled resin combination backed by perforated orthodontic band metal and another unfilled resin backed by stainless steel wire mesh. Significant differences in retention were found. Results show that retention depends pril surface and to resist subsequent chemical degradation.

  2. Comparison of shear bond strength and surface structure between conventional acid etching and air-abrasion of human enamel.

    PubMed

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-11-01

    Recently, air-abrasion technology has been examined for potential applications within dentistry, including the field of orthodontics. The purpose of this study was to compare the traditional acid-etch technique with an air-abrasion surface preparation technique, with two different sizes of abrading particles. The following parameters were evaluated: (a) shear bond strength, (b) bond failure location, and (c) enamel surface preparation, as viewed through a scanning electron microscope. Sixty extracted human third molars were pumiced and divided into three groups of 20. The first group was etched with a 37% phosphoric acid gel for 30 seconds, rinsed for 30 seconds, and dried for 20 seconds. The second and third groups were air-abraded with (a) a 50 microm particle and (b) a 90 microm particle of aluminum oxide, with the Micro-etcher microabrasion machine (Danville Engineering Inc.). All three groups had molar stainless steel orthodontic brackets bonded to the buccal surface of each tooth with Transbond XT bonding system (3M Unitek). A Zwick Universal Testing Machine (Calitek Corp.) was used to determine shear bond strengths. The analysis of variance was used to compare the three groups. The Adhesive Remnant Index (ARI) was used to evaluate the residual adhesive on the enamel after bracket removal. The chi square test was used to evaluate differences in the ARI scores among the groups. The significance for all tests was predetermined at p < or = 0.05. The results indicated that there was a significant difference in shear bond strength among the three groups (p = 0.0001). The Duncan Multiple Range test showed a significant decrease in shear bond strength in the air-abraded groups. The chi square test revealed significant differences among the ARI scores of the acid-etched group and the air-abraded groups (chi(2) = 0.0001), indicating no adhesive remained on the enamel surface after debonding when air-abrasion was used. In conclusion, the current findings indicate that

  3. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  4. Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge.

    PubMed

    Huang, Zhiyuan; Xie, Fengchun; Ma, Yang

    2011-01-15

    A method was developed to recover the copper and iron from Printed Circuit Boards (PCB) manufacturing generated spent acid etching solution and waste sludge with ultrasonic energy at laboratory scale. It demonstrated that copper-containing PCB spent etching solution could be utilized as a leaching solution to leach copper from copper contained PCB waste sludge. It also indicated that lime could be used as an alkaline precipitating agent in this method to precipitate iron from the mixture of acidic PCB spent etching solution and waste sludge. This method provided an effective technique for the recovery of copper and iron through simultaneous use of PCB spent acid solution and waste sludge. The leaching rates of copper and iron enhanced with ultrasound energy were reached at 93.76% and 2.07% respectively and effectively separated copper from iron. Followed by applying lime to precipitate copper from the mixture of leachate and rinsing water produced by the copper and iron separation, about 99.99% and 1.29% of soluble copper and calcium were settled as the solids respectively. Furthermore the settled copper could be made as commercial rate copper. The process performance parameters studied were pH, ultrasonic power, and temperature. This method provided a simple and reliable technique to recover copper and iron from waste streams generated by PCB manufacturing, and would significantly reduce the cost of chemicals used in the recovery.

  5. Effect of Lactic Acid Etching on Bonding Effectiveness of Orthodontic Bracket after Water Storage

    PubMed Central

    Alsulaimani, Fahad F.

    2014-01-01

    Objective. To determine the effect of lactic acid at various concentrations on the shear bond strength of orthodontic brackets bonded with the resin adhesive system before and after water storage. Materials and Methods. Hundred extracted human premolars were divided into 5 treatment groups and etched for 30 seconds with one of the following agents: lactic acid solution with (A) 10%, (B) 20%, (C) 30%, and (D) 50%; group E, 37% phosphoric acid (control). Metal brackets were bonded using a Transbond XT. Bonding effectiveness was assessed by shear bond strength after 24 hours and 6 months of water storage at 37°C. The data were analyzed with 2-way analysis of variance and Tukey's Honestly Significant Difference (HSD) test (α = .001). Results. Lactic acid concentration and water storage resulted in significant differences for brackets bond strength (P < .001). 20% lactic acid had significantly higher mean bond strength values (SD) for all conditions: 24 hours [12.2 (.7) MPa] and 6 months [10.1 (.6) MPa] of water storage. 37% phosphoric acid had intermediate bond strength values for all conditions: 24 hours [8.2 (.6) MPa] and 6 months [6.2 (.6) MPa] of water storage. Also, there were differences in bond strength between storage time, with a reduction in values from 24 hours and 6 months for all experimental groups (P < .001). Conclusion. Lactic acid could be used in place of phosphoric acid as an enamel etchant for bonding of orthodontic brackets. PMID:25006465

  6. Comparative Study of the Effect of Acid Etching on Enamel Surface Roughness between Pumiced and Non-pumiced Teeth

    PubMed Central

    Abreu, Lucas Guimarães; Paiva, Saul Martins; Pretti, Henrique; Lages, Elizabeth Maria Bastos; Júnior, João Batista Novães; Ferreira, Ricardo Alberto Neto

    2015-01-01

    Background: The objective was to perform a comparative analysis of the effect of acid etching on enamel roughness between pumiced and non-pumiced teeth. Materials and Methods: The sample was composed of 32 dental surfaces divided into two groups: Group 1-16 surfaces having received pumice prophylaxis; and Group 2-16 surfaces not having received pumice prophylaxis. The teeth were kept in saline until the first record of surface roughness prior to etching. For each surface, a roughness graph was obtained through trials using a surface roughness tester. This procedure was repeated two more times at different locations for a total of three readings which, later, were converted in a mean value. The teeth were then acid etched with a 37% phosphoric acid for 60 s, rinsed with water, air dried, and tested with the roughness tester again using the same protocol described for baseline. The Quantikov image analysis program was used to measure the length of the graphs. The average value of the lengths was recorded for each surface before and after etching. The increase in roughness caused by acid etching was calculated and compared between groups. Results: The mean increase in roughness caused by the etching was 301 µm (11.37%) in Group 1 and 214 µm (8.33%) in Group 2. No statistically significant difference was found between samples with and without pumice prophylaxis (P = 0.283). Conclusion: The present study showed that the effect of acid etching on enamel roughness was not significantly affected by prior pumice prophylaxis. PMID:26435607

  7. In vitro remineralization of acid-etched human enamel with Ca 3SiO 5

    NASA Astrophysics Data System (ADS)

    Dong, Zhihong; Chang, Jiang; Deng, Yan; Joiner, Andrew

    2010-02-01

    Bioactive and inductive silicate-based bioceramics play an important role in hard tissue prosthetics such as bone and teeth. In the present study, a model was established to study the acid-etched enamel remineralization with tricalcium silicate (Ca 3SiO 5, C 3S) paste in vitro. After soaking in simulated oral fluid (SOF), Ca-P precipitation layer was formed on the enamel surface, with the prolonged soaking time, apatite layer turned into density and uniformity and thickness increasingly from 250 to 350 nm for 1 day to 1.7-1.9 μm for 7 days. Structure of apatite crystals was similar to that of hydroxyapatite (HAp). At the same time, surface smoothness of the remineralized layer is favorable for the oral hygiene. These results suggested that C 3S treated the acid-etched enamel can induce apatite formation, indicating the biomimic mineralization ability, and C 3S could be used as an agent of inductive biomineralization for the enamel prosthesis and protection.

  8. Electrical properties of Hg1-xCdxTe by different etching techniques

    NASA Astrophysics Data System (ADS)

    Chen, X. T.; Qiao, H.; Liu, X. Y.; Yang, K. J.

    2015-11-01

    Effects on the electrical properties of HgCdTe photoconductive devices etched by inductively coupled plasma (ICP) based on CH4-Ar mixture, ion beam milling (IBM) and bromine-hydrogen bromide solution (Br2/HBr) have been investigated. Magnetic-field-dependent Hall measurement and optoelectronic performance measurement at liquid nitrogen temperature were performed. Mobility spectrum analysis (MSA) and multicarrier fitting (MCF) were applied to evaluate the carrier characteristics. Sample etched by ICP indicated a higher mobility and the carrier scattering mechanism was dominated by polar optical phonon (POP) which could lead to superior detector performance accordingly. Meanwhile, sample etched by IBM was found to have large amount of electron concentration and sample etched by Br2/HBr showed a very low mobility. The dominant mechanism of Br2/HBr etched sample was ionized impurity scattering for the carriers which meant inferior resultant detector performance.

  9. The effect of topical fluorides, after acid etching of enamel, on the bond strength of directly bonded orthodontic brackets.

    PubMed

    Hirce, J D; Sather, A H; Chao, E Y

    1980-10-01

    This study tests the hypothesis that the beneficial effects of topical fluoride can be realized without reducing the bond strength of the resin adhesive. Twenty-eight groups of four teeth (third molars and premolars) were extracted from twenty-eight patients and stored in distilled water. Twin brackets on Ormesh pads were bonded to all teeth with Endur adhesive. One tooth from each group was bonded according to the manufacturer's instructions. These teeth, Subgroup I, served as controls. Subgroup II teeth were etched for 4 minutes with 50% phosphoric acid containing 2 percent sodium fluoride. Subgroup III teeth received a 3-minute application of a basic phosphate fluoride solution (10(-2)M NA3PO4, 10(3) ppm F) after 1 minute of etching with 50 percent phosphoric acid. Subgroup IV teeth received a 4-minute application of 8 percent stannous fluoride solution after 1 minute of etching with 50 percent phosphoric acid. Each tooth was mounted in a block of improved dental stone; guide wires were used to reproduce bracket orientation. The M.T.S. materials-testing apparatus was used to generate a torsional moment on the bracket at a rate of 1 degree per second. Fluoride uptake by enamel has been shown to be greater in an acid medium or after acid etching. The application of directly bonded orthodontic brackets and pit-and-fissure sealants requires acid etching of the enamel surface. This study supports the use of topical fluoride after acid etching, a procedure that achieves the benefits of increased fluoride uptake without changing the bond strength of the resin adhesive.

  10. Effect of Acid Etching, Silane and Thermal Cycling on the Bond Strength of Metallic Brackets to Ceramic.

    PubMed

    Matos, Natália Regina Santos de; Costa, Ana Rosa; Valdrighi, Heloísa Cristina; Correr, Américo Bortolazzo; Vedovello, Silvia Amélia; Santamaria, Milton; Correr-Sobrinho, Lourenço

    2016-01-01

    The aim of this study was to evaluate the effect of silanes, thermal cycling and acid etching on the shear bond strength (SBS) of metallic brackets to feldspathic ceramic. Feldspathic ceramic cylinders (Groups 1, 2, 5 and 6) were etched for 60 s with 10% hydrofluoric acid and Groups 3, 4, 7 and 8, without acid etching. Two layers of silane Clearfil Ceramic Primer (CCP, Groups 1 to 4) and two layers of RelyX Ceramic Primer (RCP, groups 5 to 8) were applied and dried for 60 s. Brackets were bonded to the cylinders with Transbond XT and light-activated for 40 s with Bluephase G2. All specimens were stored in deionized water at 37 °C for 24 h, and the specimens of groups 1, 3, 5 and 7 were submitted to 7,000 thermal cycles (5 °C/55 °C). After storage, the SBS test was performed at a crosshead speed of 1 mm/min. Data were subjected to three-way ANOVA and Tukey's post hoc test (α=0.05). The adhesive remnant index (ARI) was evaluated at 8x magnification. The SBS of CCP was significantly greater than of RCP (p<0.05), with or without thermal cycling. Thermal cycling significantly reduced the SBS (p<0.05). The groups submitted to acid etching showed significantly higher SBS than those without acid etching (p<0.05). In conclusion, thermal cycling reduced SBS for all groups. The best ceramic surface treatment for bracket bonding was achieved by acid etching and CCP silane. The ARI results showed predominance of score 0 for all groups.

  11. Effect of acid labile ether protecting groups on the oxide etch resistance and lithographic performance of 248-nm resists

    NASA Astrophysics Data System (ADS)

    Varanasi, Pushkara R.; Cornett, Kathleen M.; Lawson, Margaret C.

    2000-06-01

    In our attempts to develop etch resistance 248 nm positive resists, we have designed and synthesized thermally stable and acid sensitive methylbenzyl ether (MBE) protected poly(hydroxystyrene) derivatives. Results presented in this paper clearly illustrate that the MBE protecting group provides superior etch resistance to conventional carbonate, ester and acetal/ketal based protecting groups. It is also shown that the MBE protecting group is thermally stable and undergoes acid catalyzed deprotection leading to preferential rearrangement products due to electrophilic ring substitution. Such a rearrangement is shown to provide a unique mechanism to reduce/eliminate resist shrinkage and improve lithographic performance.

  12. Fabrication of Alumina Nanowires from Porous Alumina Membranes by Etching in Phosphoric Acid Solution

    NASA Astrophysics Data System (ADS)

    Wang, Xuehua; Li, Chengyong; Ma, Lianjiao; Cao, Hong; Zhang, Baohua

    Alumina nanowires (ANWs) with high aspect ratios were synthesized by the chemical etching of porous alumina membranes (PAMs) in phosphoric acid solution. The morphology and structure of ANWs were analyzed by SEM and XRD, respectively. The results showed that the typical features of ANWs are around 35 nm in diameter and around 20 μm in length, the crystalline structure of the ANWs was amorphous, which was in accordance with that of the PAMs. Furthermore, the morphology of the PAMs was characterized by AFM and SEM in detail. On the basis of AFM and SEM observations, a possible formation mechanism of ANWs was discussed, and the inhomogeneous of the dissolution between the triple points and the side walls was considered to be the essential factor deciding the formation of ANWs.

  13. Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

    PubMed Central

    Sen, Deniz; Tuncelli, Betul; Özcan, Mutlu

    2013-01-01

    PURPOSE This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% H3PO4 + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey's tests (α=.05). RESULTS Overall, PAN adhesive cement showed significantly higher mean bond strength (12.5 ± 2.3 - 14.1 ± 2.4 MPa) than CSA cement (9.3 ± 1.4 - 13.9 ± 1.9 MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions. CONCLUSION In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period. PMID:24049562

  14. Effect of adhesive hydrophilicity and curing-time on the permeability of resins bonded to water vs. ethanol-saturated acid-etched dentin

    PubMed Central

    Cadenaro, Milena; Breschi, Lorenzo; Rueggeberg, Frederick A.; Agee, Kelli; Di Lenarda, Roberto; Carrilho, Marcela; Tay, Franklin R.; Pashley, David H.

    2009-01-01

    Objective This study examined the ability of five comonomer blends (R1-R5) of methacrylate-based experimental dental adhesives solvated with 10 mass% ethanol, at reducing the permeability of acid-etched dentin. The resins were light-cured for 20, 40 or 60 s. The acid-etched dentin was saturated with water or 100% ethanol. Method Human unerupted third molars were converted into crown segments by removing the occlusal enamel and roots. The resulting crown segments were attached to plastic plates connected to a fluid-filled system for quantifying fluid flow across smear layer-covered dentin, acid-etched dentin and resin-bonded dentin. The degree of conversion of the resins was measured using Fourier transform infrared spectroscopy. Result Application of the most hydrophobic comonomer blend (R1) to water-saturated dentin produced the smallest reductions in dentin permeability (31.9, 44.1 and 61.1% after light-curing for 20, 40 or 60 s respectively). Application of the same blend to ethanol-saturated dentin reduced permeability of 74.1, 78.4 and 81.2%, respectively (p<0.05). Although more hydrophilic resins produced larger reductions in permeability, the same trend of significantly greater reductions in ethanol-saturated dentin over that of water-saturated dentin remained. This result can be explained by the higher solubility of resins in ethanol vs. water. Significance The largest reductions in permeability produced by resins were equivalent but not superior, to those produced by smear layers. Resin sealing of dentin remains a technique-sensitive step in bonding etch-and-rinse adhesives to dentin. PMID:18571228

  15. Comparative Evaluation of Tensile – Bond Strength of An Orthodontic Adhesive with and without Fluoride Application, After Acid Etching -An Invitro Study

    PubMed Central

    Yugandhar, G; Ramana, I Venkata; Srinivas, K; Yadav, S. Sarjeev Singh

    2015-01-01

    Background Fixed appliances hinder the effective control of plaque accumulation and white spot lesions may develop under the ill fitting bands or adjacent to the stainless steel brackets during orthodontic treatment particularly the etching process. Aims and Objectives Comparative study of tensile bond strength of an orthodontic adhesive with and without fluoride application after acid etching to know the effect of fluoride on bond strength. Materials and Methods This study is carried out on 90 non carious human premolar teeth, and divided in 6 groups with each group of 15 specimens. In those Groups I and IV were control group acid etch treatment, Group II and V is 1.23% APF gel (acid etch plus APF gel treatment,) and group III and VI is 8% SnF2 (acid etch plus SnF2 treatment). Samples of Group I, II and III bond strength were tested after 24 h and groups IV, V and VI after one month on microtechtensometer machine. The scanning electron microscope (SEM) investigation was carried out for the 2 specimens for the control group after acid etch and 4 specimens after acid etch with fluoride application for fluoride groups. Results Control and SnF2 treated groups was found to be nearly similar to the control group whereas APF treated group showed less focal holes than the other 2 groups. Conclusion Fluoride application after acid etching without having an adverse effect on bond strength but we can prevent the white spot lesions and caries. PMID:26023648

  16. Mixed matrix membranes with HF acid etched ZSM-5 for ethanol/water separation: Preparation and pervaporation performance

    NASA Astrophysics Data System (ADS)

    Zhan, Xia; Lu, Juan; Tan, Tingting; Li, Jiding

    2012-10-01

    The mixed matrix membranes (MMMs) were prepared from crosslinked PDMS incorporated with HF acid etched ZSM-5. ZSM-5 zeolite was etched with a series of HF aqueous-acetone solution and characterized by SEM, BET, XRD and FT-IR. It was found that HF etching process was very effective for removing organic impurities in zeolite and micro-pores were observed out of the surface of zeolite particles, which enhanced the hydrophobicity and surface roughness of ZSM-5 successfully. Both tensile strength and swelling resistance of ZSM-5/PDMS MMMs increased with the rising concentration of HF solution, which can mainly be attributed to the improved zeolite-PDMS interfacial adhesion resulted from the intrusion of PDMS into micro-pores out of the ZSM-5 surface. Subsequently, the sorption experiment was performed with the results suggesting preferential sorption of ethanol by MMMs. Moreover, the sorption selectivity of ZSM-5/PDMS MMMs increased notably as the concentration of HF solution increased. The pervaporation performance of ethanol/water mixtures using MMMs was also investigated in detail. The MMMs filled with etched ZSM-5 showed much better selectivity than that filled with non-etched ones, with a little expense of permeability. It was found that with the same zeolite loading, increasing the HF acid concentration in etching process enhanced the zeolite-PDMS interfacial adhesion which promoted the ethanol selectivity of MMMs, while depressed the total permeation flux a little. In addition, both ethanol permeation and the selectivity increased with an increase of the zeolite loading from 10% to 30%. Nevertheless, excessive zeolite loading or decreasing thickness of selective layer led to the poor selectivity to ethanol. A decline of the ethanol selectivity was also observed as the feed ethanol concentration as well as feed temperature increased.

  17. Fabrication, characterization, and biological assessment of multilayer DNA coatings on sandblasted-dual acid etched titanium surface.

    PubMed

    Liu, Li; Song, Li-Na; Yang, Guo-Li; Zhao, Shi-Fang; He, Fu-Ming

    2011-06-01

    As local gene therapy has received attention, immobilizing functional gene onto irregular oral implant surface has become an advanced challenge. Electrostatic layer-by-layer (LBL) assembly technique could achieve this goal and allow local and efficient administration of genes to the target cells. In this study, multilayers of cationic lipid/plasmid DNA (pEGFP-C1) complex (LDc) and anionic hyaluronic acid were assembled onto sandblasted-dual acid etched titanium disks by the LBL technique. Surface characteristics of the coatings were performed by x-ray photospectroscopy (XPS), contact angle measurements, and scanning electron microscopy (SEM). The cell biological characteristics of the coatings were evaluated by in vitro experiments. SEM results demonstrated that the porous titanium surface was gradually flattened with the increase of the multilayer. The XPS survey indicated that the N element was found from the coating. The coating degradation and pEGFP-C1 releasing kinetics showed that the more assembled layer numbers were, the larger the amount of DNA released in the first 30 h. MC3T3-E1 cells were cultured directly on the DNA-loaded surface. Higher enhanced green fluorescent protein (EGFP) expression efficiency was achieved by increasing the number of layers when cells were cultured after 24 or 72 h. The MC3T3-E1 cell viability on the surface of multilayer DNA coatings was significantly higher than that on control porous titanium surface. It was concluded that the approach established by the LBL technique had great potential in immobilizing gene coatings onto the porous titanium surface and subsequently influenced the function of the cultured cell.

  18. Determination of the Microstructure of Powder Tool Steels by Different Etching Techniques

    NASA Astrophysics Data System (ADS)

    Atapek, Ş. H.; Polat, Ş.; Gümüş, S.; Erişir, E.; Altuğ, G. S.

    2014-07-01

    The microstructure of three powder high-speed steels is studied in quenched and tempered conditions by methods of light and scanning electron microscopy. Several types of carbides with different morphology are detected by using various methods of etching of specimens. The composition of the carbide phases is determined by the method of energy dispersive local analysis.

  19. Fourier transform infrared photoacoustic spectroscopy study of physicochemical interaction between human dentin and etch-&-rinse adhesives in a simulated moist bond technique.

    PubMed

    Ubaldini, Adriana L M; Baesso, Mauro L; Sehn, Elizandra; Sato, Francielle; Benetti, Ana R; Pascotto, Renata C

    2012-06-01

    The purpose of this study was to provide the physicochemical interactions at the interfaces between two commercial etch-&-rinse adhesives and human dentin in a simulated moist bond technique. Six dentin specimens were divided into two groups (n=3) according to the use of two different adhesive systems: (a) 2-hydroxyethylmethacrylate (HEMA) and 4-methacryloxyethyl trimellitate anhydrate (4-META), and (b) HEMA. The Fourier transform infrared photoacoustic spectroscopy was performed before and after dentin treatment with 37% phosphoric acid, with adhesive systems and also for the adhesive systems alone. Acid-conditioning resulted in a decalcification pattern. Adhesive treated spectra subtraction suggested the occurrence of chemical bonding to dentin expressed through modifications of the OH stretching peak (3340 cm(-1)) and symmetric CH stretching (2900 cm(-1)) for both adhesives spectra; a decrease of orthophosphate absorption band (1040 to 970 cm(-1)) for adhesive A and a better resolved complex band formation (1270 to 970 cm(-1)) for adhesive B were observed. These results suggested the occurrence of chemical bonding between sound human dentin and etch-&-rinse adhesives through a clinical typical condition.

  20. Inactivation of Matrix-bound MMPs by Cross-linking Agents in Acid Etched Dentin

    PubMed Central

    Scheffel, Débora Lopes Salles; Hebling, Josimeri; Scheffel, Régis Henke; Agee, Kelly A.; Turco, Gianluca; de Souza Costa, Carlos Alberto; Pashley, David H.

    2014-01-01

    Objectives Published TEM analysis of in vivo resin-dentin bonds shows that in 44 months almost 70% of collagen fibrils from the hybrid layer disappear. Matrix metalloproteinases (MMPs) play an important role in that process and are thought to be the main factor responsible for the solubitization of dentin collagen. Therefore, this study aimed to evaluate the inactivation of matrix-bound MMPs by carbodiimide (EDC) or proanthocyanidin (PA) both cross-linking agents, or the MMP-inhibitor, chlorhexidine (CHX), on acid-etched dentin using a simplified MMP assay method. Methods Dentin beams (1×1×6mm) were obtained from mid-coronal dentin of sound third molars and randomly divided into 6 groups (G) according to the dentin treatment: G1: Deionized water (control), G2: 0.1M EDC, G3: 0.5M EDC, G4: 0.5M EDC+35% HEMA, G5: 5% Proanthocyanidin (PA) and G6: 2% CHX. The beams were etched for 15s with 37% phosphoric acid, rinsed and then immersed for 60s in one of the treatment solutions. The total MMP activity of dentin was analyzed for 1 h by colorimetric assay (Sensolyte). Data were submitted to Wilcoxon non-parametric test and Mann-Whitney tests (p>0.05). Results All experimental cross-linking solutions significantly reduced MMP activity compared to control, except 0.1M EDC (53.6% ±16.1). No difference was observed between cross-linking agents and 2% CHX 0.5M EDC + 35% HEMA (92.3% ±8.0) was similar to 0.5M EDC (89.1% ±6.4), 5% PA (100.8% ±10.9) and 2% CHX (83.4% ±10.9). Conclusion Dentin treatment with cross-linking agents is effective to significantly reduce MMP activity. Mixing 0.5M EDC and 35% HEMA did not influence EDC inhibitor potential. PMID:23786610

  1. Effect of the application time of phosphoric acid and self-etch adhesive systems to sclerotic dentin

    PubMed Central

    MENA-SERRANO, Alexandra Patricia; GARCIA, Eugenio Jose; PEREZ, Miguel Muñoz; MARTINS, Gislaine Cristine; GRANDE, Rosa Helena Miranda; LOGUERCIO, Alessandro Dourado; REIS, Alessandra

    2013-01-01

    Objectives: To evaluate the effect of application time on the resin-dentin bond strength (µTBS) and etching pattern of adhesive systems applied on sclerotic dentine. Material and Methods: A total of forty-two bovine incisors had their roots removed. The 1-step self-etch GO (SDI), the 2-step self-etch Adper SE Bond (3MESPE) and the 35% phosphoric acid (3MESPE) from the 2-step etch-and-rinse Adper Single Bond 2 (3MESPE) were applied on the bovine incisal surfaces according to the manufacturer's instructions or duplicating the recommended conditioning time. After adhesive application, thirty teeth were restored with composite resin, stored for 24 h in distilled water at 37º C, and sectioned into resin-dentin bonded sticks (0.8 mm2) and tested according to the µTBS at 0.5 mm/min. The etching pattern of the remaining twelve teeth (n=4 for each material) was examined under scanning electron microscopy. Each tooth was divided into a buccal-to-lingual direction into three thirds, and each third randomly assigned to the groups: control (no treatment), according to the manufacturers' instructions and duplicating the recommended application time. The µTBS and the relative percentage of the tubule area opening were evaluated by two-way repeated measures ANOVA and Tukey's tests (α=0.05). Results: The duplication of the conditioning time favored only the GO adhesive (p<0.05). Both application methods significantly increased the tubule area opening (p<0.05) compared to the controls. Conclusions: The efficacy of duplicating the conditioning time was only effective for the 1-step self-etch adhesive system tested. PMID:23739856

  2. Prediction of UV spectra and UV-radiation damage in actual plasma etching processes using on-wafer monitoring technique

    NASA Astrophysics Data System (ADS)

    Jinnai, Butsurin; Fukuda, Seiichi; Ohtake, Hiroto; Samukawa, Seiji

    2010-02-01

    UV radiation during plasma processing affects the surface of materials. Nevertheless, the interaction of UV photons with surface is not clearly understood because of the difficulty in monitoring photons during plasma processing. For this purpose, we have previously proposed an on-wafer monitoring technique for UV photons. For this study, using the combination of this on-wafer monitoring technique and a neural network, we established a relationship between the data obtained from the on-wafer monitoring technique and UV spectra. Also, we obtained absolute intensities of UV radiation by calibrating arbitrary units of UV intensity with a 126 nm excimer lamp. As a result, UV spectra and their absolute intensities could be predicted with the on-wafer monitoring. Furthermore, we developed a prediction system with the on-wafer monitoring technique to simulate UV-radiation damage in dielectric films during plasma etching. UV-induced damage in SiOC films was predicted in this study. Our prediction results of damage in SiOC films shows that UV spectra and their absolute intensities are the key cause of damage in SiOC films. In addition, UV-radiation damage in SiOC films strongly depends on the geometry of the etching structure. The on-wafer monitoring technique should be useful in understanding the interaction of UV radiation with surface and in optimizing plasma processing by controlling UV radiation.

  3. Effect of a fluoride-releasing self-etch acidic primer on the shear bond strength of orthodontic brackets.

    PubMed

    Bishara, Samir E; Ajlouni, Raed; Laffoon, John F; Warren, John J

    2002-06-01

    Conventional adhesive systems use three different agents--an enamel conditioner, a primer solution, and an adhesive resin--during the bonding of orthodontic brackets to enamel. A unique characteristic of some new bonding systems in operative dentistry is that they combine the conditioning and priming agents into a single application. Combining conditioning and priming saves time and should be more cost-effective to the clinician and indirectly to the patient. The purpose of this study was to assess and compare the effects of self-etching primers, including a fluoride-releasing primer, on the shear bond strength of orthodontic brackets. The brackets were bonded to extracted human teeth according to one of four protocols. In group 1 (control), teeth were etched with 37% phosphoric acid; after the sealant was applied, the brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif) and light cured for 20 seconds. In group 2, a self-etch acidic primer (3M ESPE, St Paul, Minn) was applied as suggested by the manufacturer, and the brackets were then bonded with Transbond XT as in the first group. In group 3, an experimental self-etch primer EXL #547 (3M ESPE) was applied to the teeth as suggested by the manufacturer, and the brackets were then bonded as in groups 1 and 2. In group 4, a fluoride-releasing self-etch primer, One-Up Bond F (J. Mortia, USA Inc. Irvine, Calif) that also has a novel dye-sensitized photo polymerization initiator system was applied as suggested by the manufacturer, and the brackets were then bonded as in the other groups. The present in vitro findings indicated that the shear bond strengths of the four groups were significantly different (P = .001). Duncan multiple range tests indicated that One-Up Bond F (mean +/- SD strength, 5.1+/-2.5 MPa) and Prompt L-Pop (strength, 7.1+/-4.4 MPa) had significantly lower shear bond strengths than both the EXL #547 self-etch primer (strength, 9.7+/-3.7 MPa) or the phosphoric acid etch and the

  4. An improved technique for dental alloy etching with a potentiostatic device.

    PubMed

    Hong, C Y

    1989-10-01

    Since a good retention of direct bonded retainers onto abutment teeth is the primary requirement for the fabrication of etched fixed partial dentures, successful formation of a micromechanical retentive architecture on the bonding surface is one of the most important procedures. For creating such a retentive dendritic pattern on nonprecious metal, a 2-electrode electrolytic method has been used. This equipment consists of a low-voltage DC power supply and two electrodes, namely, a working and a counter one. However, the current and voltage should be monitored during the entire processing time and the etching area must be pre-estimated. A potentiostat has been used to automatically stabilize the voltage across the working electrode and reference electrode by adjusting the current, as commonly employed in electro-chemical technology. A 3-electrode corrosion device originally developed for laboratory research was adapted for dental retainer etching in this study. The results revealed that the etching of dental nonprecious metal (Ni-Cr-Be alloy) could successfully be performed by using the system with a potentiostat. Moreover, the working potential was found to be approximately 1.3 volts by taking the midpoint between the breakdown and the critical potentials for passivation on the potentiostatic anode polarization curves. The optimal exposure time has been found to be in a range of 3 to 5 minutes and 4 minutes to be ideal as determined by SEM microphotographic observation which showed a uniform dendritic pattern with regular lattice form of alternating ridges and valleys.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Characterization and adsorption properties of diatomaceous earth modified by hydrofluoric acid etching.

    PubMed

    Tsai, Wen-Tien; Lai, Chi-Wei; Hsien, Kuo-Jong

    2006-05-15

    This work was a study of the chemical modification of diatomaceous earth (DE) using hydrofluoric acid (HF) solution. Under the experimental conditions investigated, it was found that HF under controlled conditions significantly etched inward into the interior of the existing pore structure in the clay mineral due to its high content of silica, leaving a framework possessing a larger BET surface area (ca. 10 m2 g(-1)) in comparison with that (ca. 4 m2 g(-1)) of its precursor (i.e., DE). Further, the results indicated that the HF concentration is a more determining factor in creating more open pores than other process parameters (temperature, holding time, and solid/liquid ratio). This observation was also in close agreement with the examinations by the silicon analysis, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption kinetics and the adsorption isotherm of methylene blue onto the resulting clay adsorbent can be well described by a pseudo-second-order reaction model and the Freundlich model, respectively.

  6. Studies on a novel mask technique with high selectivity and aspect-ratio patterns for HgCdTe trenches ICP etching

    NASA Astrophysics Data System (ADS)

    Ye, Z. H.; Hu, W. D.; Li, Y.; Huang, J.; Yin, W. T.; Lin, C.; Hu, X. N.; Ding, R. J.; Chen, X. S.; Lu, W.; He, L.

    2012-06-01

    A novel mask technique, combining high selectivity silicon dioxide patterns over high aspect-ratio photoresist (PR) patterns has been exploited to perform mesa etching for device delineation and electrical isolation of HgCdTe third-generation infrared focal plane arrays (IRFPAs). High-density silicon dioxide film covering high aspect-ratio PR patterns was deposited at the temperature of 80°C and silicon dioxide film patterns over high aspect-ratio PR patterns of HgCdTe etching samples was developed by standard photolithography and wet chemical etch. Scanning electron microscopy (SEM) shows that the surfaces of inductively coupled plasma (ICP) etched samples are quite clean and smooth. The etching selectivity between the novel mask and HgCdTe of the samples is increased to above 32: 1 while the side-wall impact of etching plasma is suppressed by the high aspect ratio patterns. These results show that the combined patterning of silicon dioxide film and thick PR film is a readily available and promising masking technique for HgCdTe mesa etching.

  7. Photopolymerization of phosphoric acid ester-based self-etch dental adhesives

    PubMed Central

    ZHANG, Ying; WANG, Yong

    2014-01-01

    The objective of the study was to gain more understanding on the photopolymerization mechanism and the role of individual monomers in the polymerization behavior of a PAE-based self-etch adhesive system with the presence of HAp and water. The photo-polymerization process of the model adhesive system (2MP / HEMA) was monitored by using real-time attenuated total reflectance Fourier transform infrared (ATR/FT-IR) technique. The effect of monomer ratio, HAp incorporation, and water content were investigated. The degree of conversion (DC) and the polymerization rate (PR) of the adhesives were determined to evaluate the polymerization efficacy. The results showed that the DC and PR increased consistently as the 2MP content increased from 30% to 70%, while they declined drastically as the 2MP content was further elevated to 100%. The incorporation of HAp considerably increased the DC and PR; however, the increase in water content was found to have negative influence on the photopolymerization. PMID:23370865

  8. Effect of acid etching duration on tensile bond strength of composite resin bonded to erbium:yttrium-aluminium-garnet laser-prepared dentine. Preliminary study.

    PubMed

    Chousterman, M; Heysselaer, D; Dridi, S M; Bayet, F; Misset, B; Lamard, L; Peremans, A; Nyssen-Behets, C; Nammour, S

    2010-11-01

    The purpose of this study was to compare the tensile bond strength of composite resin bonded to erbium:yttrium-aluminium-garnet (Er:YAG) laser-prepared dentine after different durations of acid etching. The occlusal third of 68 human third molars was removed in order to expose the dentine surface. The teeth were randomly divided into five groups: group B (control group), prepared with bur and total etch system with 15 s acid etching [37% orthophosphoric acid (H(3)PO(4))]; group L15, laser photo-ablated dentine (200 mJ) (laser irradiation conditions: pulse duration 100 micros, air-water spray, fluence 31.45 J/ cm(2), 10 Hz, non-contact hand pieces, beam spot size 0.9 mm, irradiation speed 3 mm/s, and total irradiation time 2 x 40 s); group L30, laser prepared, laser conditioned and 30 s acid etching; group L60, laser prepared, laser conditioned and 60 s acid etching; group L90, laser prepared, laser conditioned and 90 s acid etching. A plot of composite resin was bonded onto each exposed dentine and then tested for tensile bond strength. The values obtained were statistically analysed by analysis of variance (ANOVA) coupled with the Tukey-Kramer test at the 95% level. A 90 s acid etching before bonding showed the best bonding value (P < 0.05) when compared with all the other groups including the control group. There is no significance difference between other groups, nor within each group and the control group. There was a significant increase in tensile bond strength of the samples acid etched for 90 s.

  9. Plasma etching and ashing: a technique for demonstrating internal structures of helminths using scanning electron microscopy.

    PubMed

    Veltkamp, C J; Chubb, J C

    2006-03-01

    Plasma etching and ashing for demonstrating the three-dimensional ultrastructure of the internal organs of helminths is described. Adult worms of the cestode Caryophyllaeides fennica were dehydrated through an ethanol series, critical point dried (Polaron E3000) and sputter coated with 60% gold-palladium (Polaron E5100) and glued to a standard scanning electron microscope (SEM) stub positioned as required for ashing. After initial SEM viewing of worm surfaces for orientation, stubs were placed individually in the reactor chamber of a PT7150 plasma etching and ashing machine. Worms were exposed to a radio frequency (RF) potential in a low pressure (0.2 mbar) oxygen atmosphere at room temperature. The oxidation process was controlled by varying the times of exposure to the RF potential between 2 to 30 min, depending on the depth of surface tissue to be removed to expose target organs or tissues. After each exposure the oxidized layer was blown from the surface with compressed air, the specimen sputter-coated, and viewed by SEM. The procedure was repeated as necessary, to progressively expose successive layers. Fine details of organs, cells within, and cell contents were revealed. Ashing has the advantage of providing three dimensional images of the arrangement of organs that are impossible to visualize by any other procedure, for example facilitating testes counts in cestodes. Both freshly-fixed and long-term stored helminths can be ashed. Ashing times to obtain the desired results were determined by trial so that some duplicate material was needed.

  10. Instrumentation With Ultrasonic Scalers Facilitates Cleaning of the Sandblasted and Acid-Etched Titanium Implants.

    PubMed

    Park, Jun-Beom; Lee, Sung-Hoon; Kim, NamRyang; Park, Seojin; Jin, Seong-Ho; Choi, Bong-Kyu; Kim, Kack-Kyun; Ko, Youngkyung

    2015-08-01

    Mechanical instrumentation is widely used to debride dental implants, but this may alter the surface properties of titanium, which in turn may influence bacterial adhesion and make it more difficult to remove the biofilm. This in vitro study was performed (1) to assess the amount of biofilm formation on a sand-blasted and acid-etched titanium fixture treated with ultrasonic scalers with metal, plastic, and carbon tips and (2) to evaluate how this treatment of titanium surfaces affects implant cleaning by brushing with dentifrice. The titanium fixtures were treated with various ultrasonic scaler tips, and surface roughness parameters were measured by confocal microscopy. Biofilm was formed on the treated fixtures by using pooled saliva from 10 subjects, and the quantity of the adherent bacteria was compared with crystal violet assay. The fixture surfaces with biofilm were brushed for total of 30 seconds with a toothbrush with dentifrice. The bacteria remaining on the brushed fixture surfaces were quantified by scanning electron microscopy. Surface changes were evident, and the changes of the surfaces were more discernible when metal tips were used. A statistically significant decrease in roughness value (arithmetic mean height of the surface) was seen in the 2 metal-tip groups and the single plastic-tip group. After brushing with dentifrice, the treated surfaces in all the treatment groups showed significantly fewer bacteria compared with the untreated surfaces in the control group, and the parts of the surfaces left untreated in the test groups. Within the limits of this study, treatment of titanium fixture surfaces with ultrasonic metal, plastic, or carbon tips significantly enhanced the bacterial removal efficacy of brushing. Thorough instrumentation that smooths the whole exposed surface may facilitate maintenance of the implants.

  11. Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware

    NASA Astrophysics Data System (ADS)

    Fukuta, Yamato; Fujita, Hiroyuki; Toshiyoshi, Hiroshi

    2003-06-01

    We have developed a novel technique of sacrificial layer etching for micro electro mechanical systems (MEMS). Our technique uses vapor of hydrofluoric acid (HF) to etch sacrificial silicon oxide and to make freestanding silicon microstructures. The advantages of this technique are: (1) no subsequent water rinse is needed, (2) freestanding silicon microstructures can be successfully released without sticking to the substrate, (3) equipment for our vapor phase HF etching simply consists of Teflon beakers only. Conditions for the technique have been optimized by estimating etching rate with test patterns made of silicon-on-insulator (SOI) wafers and by observing water droplets condensation on the sample surface with thermally oxidized silicon chips. By this technique we have successfully obtained freestanding microstructures of SOI wafers. Microcantilevers of as long as 5000 μm (a 5-μm-wide, 10-μm-thick, and 5000-μm-long cantilever over a 0.6-μm-gap) have been successfully released without adhering to the base substrate or contacting the neighboring cantilevers. We have also fabricated and actuated electrostatic comb-drive actuators of 60 and 200 comb pairs to demonstrate high processing yield of our nonstick releasing technique.

  12. Effect of fluoride on the morphology of calcium phosphate crystals grown on acid-etched human enamel.

    PubMed

    Fan, Y; Sun, Z; Moradian-Oldak, J

    2009-01-01

    The aim of this study was to examine the effect of fluoride ion concentration on the morphology of calcium phosphate crystals grown on acid-etched enamel as a model for tooth enamel erosion. Samples were immersed in calcification solution for 16 h and changes in crystal morphology were monitored by field emission scanning electron microscopy. Without fluoride, plate-like octacalcium phosphate crystals (20 nm thick, 2-10 microm wide) were formed. With 1-10 mg/l fluoride, arrays of denser needle-like nanocrystals (20-30 nm wide, >500 nm in length) were formed. We conclude that there is a minimal fluoride concentration (1 mg/l) that dramatically affects the morphology of calcium phosphate crystals grown on etched enamel in vitro.

  13. Effect of Fluoride on the Morphology of Calcium Phosphate Crystals Grown on Acid-Etched Human Enamel

    PubMed Central

    Fan, Y.; Sun, Z.; Moradian-Oldak, J.

    2009-01-01

    The aim of this study was to examine the effect of fluoride ion concentration on the morphology of calcium phosphate crystals grown on acid-etched enamel as a model for tooth enamel erosion. Samples were immersed in calcification solution for 16 h and changes in crystal morphology were monitored by field emission scanning electron microscopy. Without fluoride, plate-like octacalcium phosphate crystals (20 nm thick, 2–10 μm wide) were formed. With 1–10 mg/l fluoride, arrays of denser needle-like nanocrystals (20–30 nm wide, >500 nm in length) were formed. We conclude that there is a minimal fluoride concentration (1 mg/l) that dramatically affects the morphology of calcium phosphate crystals grown on etched enamel in vitro. PMID:19321991

  14. Micro/nanofabrication of poly({sub L}-lactic acid) using focused ion beam direct etching

    SciTech Connect

    Oyama, Tomoko Gowa; Nagasawa, Naotsugu; Taguchi, Mitsumasa; Hinata, Toru; Washio, Masakazu; Oshima, Akihiro; Tagawa, Seiichi

    2013-10-14

    Micro/nanofabrication of biocompatible and biodegradable poly({sub L}-lactic acid) (PLLA) using focused Ga ion beam direct etching was evaluated for future bio-device applications. The fabrication performance was determined with different ion fluences and fluxes (beam currents), and it was found that the etching speed and fabrication accuracy were affected by irradiation-induced heat. Focused ion beam (FIB)-irradiated surfaces were analyzed using micro-area X-ray photoelectron spectroscopy. Owing to reactions such as the physical sputtering of atoms and radiation-induced decomposition, PLLA was gradually carbonized with increasing C=C bonds. Controlled micro/nanostructures of PLLA were fabricated with C=C bond-rich surfaces expected to have good cell attachment properties.

  15. Effect of a self-etching primer and phosphoric acid etching on the bond strength of 4-META/MMA-TBB resin to human enamel.

    PubMed

    Nogawa, Hiroshi; Koizumi, Hiroyasu; Saiki, Osamu; Hiraba, Haruto; Nakamura, Mitsuo; Matsumura, Hideo

    2015-01-01

    The purpose of this study was to evaluate the shear bond strength and durability of 4-META/MMA-TBB resin to human enamel. A self-etching primer that contained 4-META (Teeth Primer, TP) and 35-45% or 60-65% concentrations of phosphoric acid (K-Etchant Gel, KE, and Super Bond C&B Red Activator, RA) were used as the surface treatment agents. A methyl methacrylate (MMA)-based self-polymerizing resin (Super-Bond C&B) was used as a luting agent. The shear bond strength was determined both pre and post thermocycling. The results were statistically analyzed with a non-parametric procedure. The post-thermocycling shear bond strength of the TP group was significantly higher than that of other groups, and that of the KE group was significantly higher compared with the RA group. These results demonstrated that 4-META was effective. Furthermore, when the degree of tooth demineralization was compared, surface treatment with less demineralization using TP was the most effective treatment.

  16. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s.

  17. Effect of pretreatment with mildly acidic hypochlorous acid on adhesion to caries-affected dentin using a self-etch adhesive.

    PubMed

    Kunawarote, Sitthikorn; Nakajima, Masatoshi; Foxton, Richard M; Tagami, Junji

    2011-02-01

    Caries-affected dentin is covered with a thicker and organically enriched smear layer than normal dentin. This may affect the demineralization ability and the infiltration of self-etch adhesives, thus reducing the efficacy of bonding to caries-affected dentin. This study evaluated the adhesion of a two-step self-etching adhesive to normal and caries-affected dentin after pretreatment with mildly acidic hypochlorous acid (HOCl) solutions. We used a microtensile bond strength (μTBS) test to compare the μTBS of Clearfil SE Bond to either caries-affected dentin or to normal dentin, after pretreatment for 5 s with one of three solutions (806 mM NaOCl, or 0.95 or 1.91 mM HOCl). The μTBS of the self-etch adhesive was significantly lower to caries-affected dentin than to normal dentin. Pretreatment with 0.95 mM HOCl improved the μTBS of the self-etch adhesive to caries-affected dentin, but there was no significant difference compared with normal dentin. On the other hand, pretreatment with 806 mM NaOCl or 1.91 mM HOCl did not demonstrate a significant improvement in the μTBS to caries-affected dentin. None of the pretreatments demonstrated a negative effect on adhesion to normal dentin.

  18. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    NASA Astrophysics Data System (ADS)

    Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.

  19. Surface Topographical Changes of a Failing Acid-Etched Long-Term in Function Retrieved Dental Implant.

    PubMed

    Monje, Alberto; González-García, Raúl; Fernández-Calderón, María Coronada; Hierro-Oliva, Margarita; González-Martín, María Luisa; Del Amo, Fernando Suarez-Lopez; Galindo-Moreno, Pablo; Wang, Hom-Lay; Monje, Florencio

    2016-02-01

    The aim of the present study was to report the main topographical and chemical changes of a failing 18-year in function retrieved acid-etching implant in the micro- and nanoscales. A partially edentulous 45 year old rehabilitated with a dental implant at 18 years of age exhibited mobility. After careful examination, a 3.25 × 13-mm press-fit dental implant was retrieved. Scanning electron microscope (SEM) analysis was carried out to study topographical changes of the retrieved implant compared with an unused implant with similar topographical characteristics. Moreover, X-ray photoelectron spectroscopy (XPS) analysis was used to study the surface composition of the retrieved failing implant. Clear changes related to the dual dioxide layer are present as visible in ≥×500 magnification. In addition, it was found that, for the retrieved implant, the surface composition consisted mainly of Ti2p, O1s, C1s, and Al2p. Also, a meaningful decrease of N and C was noticed, whereas the peaks of Ti2p, Al2p, and O1s increased when analyzing deeper (up to ×2000s) in the sample. It was shown that the superficial surface of a retrieved press-fit dual acid-etched implant 18 years after placement is impaired. However, the causes and consequences for these changes cannot be determined.

  20. Investigations of AlGaN/GaN HFETs utilizing post-metallization etching by nitric acid treatment

    NASA Astrophysics Data System (ADS)

    Chou, Bo-Yi; Hsu, Wei-Chou; Lee, Ching-Sung; Liu, Han-Yin; Tsai, Chih-Ming; Ho, Chiu-Sheng

    2013-07-01

    This work investigates AlGaN/GaN heterostructure field-effect transistors (HFETs) processed by using a simple post-metallization etching (PME) treatment. Decreased gate length (LG) can be achieved by using nitric acid (HNO3) PME treatment owing to the high etching selectivity of HNO3 of Ni against the Au and GaN layer. Influences on LG, etched gate profiles and device characteristics with respect to different PME processing parameters by HNO3 treatment are systematically investigated. Optimum device performance is obtained as LG was reduced to 0.5 µm by using a 1 µm long gate mask by immersing the device into a 45% diluted HNO3 solution for 35 s. Improved device performances, including maximum drain-source current density (IDS, max: 657.6 mA mm-1 → 898.5 mA mm-1), drain-source saturation current density at zero gate bias (IDSS0: 448.3 mA mm-1 → 653.4 mA mm-1), maximum extrinsic transconductance (gm, max: 158.3 mS mm-1 → 219.2 mS mm-1), unity-gain cut-off frequency (fT: 12.35 GHz → 22.05 GHz), maximum oscillation frequency (fmax: 17.55 GHz → 29.4 GHz) and power-added efficiency (P.A.E.: 26.3% → 34.5%) compared to the untreated reference device, have been successfully achieved.

  1. Controlled in situ etch-back

    NASA Technical Reports Server (NTRS)

    Mattauch, R. J.; Seabaugh, A. C. (Inventor)

    1981-01-01

    A controlled in situ etch-back technique is disclosed in which an etch melt and a growth melt are first saturated by a source-seed crystal and thereafter etch-back of a substrate takes place by the slightly undersaturated etch melt, followed by LPE growth of a layer by the growth melt, which is slightly supersaturated.

  2. Relation between etch-pit morphology and step retreat velocity on a calcite surface in aspartic acid solution

    NASA Astrophysics Data System (ADS)

    Yoshino, Toru; Kagi, Hiroyuki; Kamiya, Natsumi; Kokawa, Ryohei

    2010-04-01

    Effects of L-aspartic acid ( L-Asp) on dissolution of calcite were investigated. The step retreat velocity and dissolution rate of calcite were measured simultaneously using an AFM flow-through system. The etch-pit morphology of calcite was observed using confocal laser scanning microscopy. Results show that the etch-pit morphologies changed drastically depending on the L-Asp concentration ([ L-Asp]) in the order of rhomboidal, pentagonal, and triangular (not perfectly, but retaining an extra step). The change in obtuse step directions and appearance of the [0 1 0] step triggered these morphological changes. Addition of L-Asp accelerated all step retreats at [ L-Asp]<0.01 M, which implied the effect of L-Asp on the diffusive barrier. In contrast, at [ L-Asp]>0.01 M, L-Asp inhibited the retreats of obtuse steps and [0 1 0] step, although the retreat velocities of acute steps were constant irrespective of [ L-Asp]. These results suggest that the directional changes and the inhibition of retreat velocities of obtuse steps were attributed to the generation of [ 4 1 1] and [4 5 1] steps caused by L-Asp. Moreover, we confirmed the preferential effects of L-Asp on the [4 8 1] + to [ 4 4 1] ± step edge, and proposed the preferential effects of L-Asp on the [ 4 1 1] to [4 5 1] step edge.

  3. The etch-bleach-seal technique for managing stained enamel defects in young permanent incisors.

    PubMed

    Wright, J Timothy

    2002-01-01

    Hypomineralized enamel defects frequently are manifest as a mottled-white appearance and can be associated with variable degrees of discrete yellow-brown intrinsic staining. Numerous treatment approaches have been proposed, ranging from bleaching to enamel reduction to restorative techniques. Bleaching of hypomineralized enamel lesions, using 1 to 2 applications (10 to 15 minutes each) of 5% sodium hypochlorite, has been applied clinically. Treatment using this approach has proven successful in removing yellow-brown discolorations from lesions in young permanent teeth. Young permanent incisors with yellow-brown intrinsic discolorations can often be treated by a simple and conservative bleaching protocol using sodium hypochlorite.

  4. Effect of cavity preparation method on microtensile bond strength of a self-etching primer vs phosphoric acid etchant to enamel.

    PubMed

    de Souza-Zaroni, Wanessa Christine; Delfino, Carina Sinclér; Ciccone-Nogueira, Juliane Cristina; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2007-10-01

    This study evaluated the effect of cavity preparation using air abrasion or carbide bur on bond strength to enamel treated with a self-etching primer (Tyrian SPE) or a phosphoric acid etchant. Twenty-four molars were divided into three groups: high-speed; standard handpiece (ST air abrasion) or supersonic handpiece (SP air abrasion) of the same air-abrasive system. The enamel surfaces were treated with one of the two etchants and the same adhesive agent One Step Plus, and then composite buildups were done with Filtek Z250. After 24 h at 37 degrees C, beams (0.8 mm2) were obtained and subjected to tensile stress in a universal testing machine (0.5 mm/min). The data were submitted to analysis of variance and Tukey's test (P < 0.05). For the conditioning agents, it was observed that the specimens conditioned with phosphoric acid presented superior results than the specimens that used Tyrian SPE. For the preparation techniques, it was verified that the SP air abrasion groups showed the highest bond strengths and carbide-bur groups presented the lowest bond strengths when the specimens were conditioned with Tyrian SPE. It can be concluded that the influence of the cavity preparation method was dependent on the conditioning system used, only when using carbide-bur preparation technique.

  5. TiO2 nanowire arrays modified with a simultaneous "etching, doping and deposition" technique for ultrasensitive amperometric immunosensing.

    PubMed

    Liu, Xiaoqiang; Huo, Xiaohe; Liu, Peipei; Tang, Yunfei; Xu, Jun; Ju, Huangxian

    2017-06-15

    In this work, an ultrasensitive immunosensing scaffold was structured with TiO2 nanowire (TiNW) arrays modified with molybdenum (Mo) and MoS2 flakes by a triplex "etching, doping and deposition" technique. The triply modification of TiNW arrays improved their electron transfer, and the decoration of MoS2 flakes on TiNW arrays increased both the conductivity and the specific surface area of TiNW. Accordingly, the triply modified TiNW arrays provided a biocompatible microenviroment for the biomolecules and high specific surface area to load big amount of biomolecules. The immunosensor was prepared by immobilizing capture antibody on the scaffold surface with double amino-reactive crosslinker, and the tracing labels were prepared by immobilizing signal antibody and horseradish peroxidase molecules on cylinder-shaped TiO2 nanorods. After sandwich-type immunoreaction, the tracing labels were quantitatively captured on the immunosensor surface for the detection of carcinoembryonic antigen as a model analyte. This amperometric method showed a linear range of 0.001 and 150ngmL(-1) with a detection limit of 0.5pgmL(-1). This work provided a promising platform for sensitive amperometric immunosensing of protein biomarkers.

  6. An In Vitro Comparison of the Bond Strength of Composite to Superficial and Deep Dentin, Treated With Er:YAG Laser Irradiation or Acid-Etching.

    PubMed

    Alaghehmand, Homayoon; Nezhad Nasrollah, Fatemeh; Nokhbatolfoghahaei, Hanieh; Fekrazad, Reza

    2016-01-01

    Introduction: The aim of this study was to compare the micro-shear bond strength of composite resin on superficial and deep dentin after conditioning with phosphoric acid and Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser. Methods: Thirty human molars were selected, roots were removed and crowns were bisected to provide a total of 60 half-crowns. Specimens were ground to expose superficial and deep dentin. Samples were assigned to six groups: (1) AS (acid etching of superficial dentin); (2) AD (acid etching of deep dentin); (3) LS (Er:YAG laser irradiation on superficial dentin); (4) LD (Er:YAG laser irradiation on deep dentin); (5) LAS (Er:YAG laser irradiation on superficial dentin followed by acid etching); (6) LAD (Er:YAG laser irradiation on deep dentin followed by acid etching) The adhesive protocol was performed. Samples were thermocycled and micro-shear bond strength was tested to failure. The data were submitted to statistical analysis with one-way analysis of variance (ANOVA) and Tukey post hoc test. Results: The AS group, demonstrated the greatest amount of micro-shear bond strength. Statistical analysis showed a decrease in bond strength in laser-treated groups which was more significant for deep dentin. Conclusion: Preparation of dentin with laser did not improve bonding to superficial and deep dentin.

  7. An In Vitro Comparison of the Bond Strength of Composite to Superficial and Deep Dentin, Treated With Er:YAG Laser Irradiation or Acid-Etching

    PubMed Central

    Alaghehmand, Homayoon; Nezhad Nasrollah, Fatemeh; Nokhbatolfoghahaei, Hanieh; Fekrazad, Reza

    2016-01-01

    Introduction: The aim of this study was to compare the micro-shear bond strength of composite resin on superficial and deep dentin after conditioning with phosphoric acid and Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser. Methods: Thirty human molars were selected, roots were removed and crowns were bisected to provide a total of 60 half-crowns. Specimens were ground to expose superficial and deep dentin. Samples were assigned to six groups: (1) AS (acid etching of superficial dentin); (2) AD (acid etching of deep dentin); (3) LS (Er:YAG laser irradiation on superficial dentin); (4) LD (Er:YAG laser irradiation on deep dentin); (5) LAS (Er:YAG laser irradiation on superficial dentin followed by acid etching); (6) LAD (Er:YAG laser irradiation on deep dentin followed by acid etching) The adhesive protocol was performed. Samples were thermocycled and micro-shear bond strength was tested to failure. The data were submitted to statistical analysis with one-way analysis of variance (ANOVA) and Tukey post hoc test. Results: The AS group, demonstrated the greatest amount of micro-shear bond strength. Statistical analysis showed a decrease in bond strength in laser-treated groups which was more significant for deep dentin. Conclusion: Preparation of dentin with laser did not improve bonding to superficial and deep dentin. PMID:28144437

  8. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Lan, Linfeng; Xu, Miao; Zou, Jianhua; Wang, Lei; Wang, Dan; Peng, Junbiao

    2011-12-01

    Indium-zinc-oxide thin-film transistors (TFTs) with back-channel-etch (BCE) structure were demonstrated. A stacked structure of Mo/Al/Mo was used as the source/drain electrodes and patterned by a wet-etch-method. Good etching profile with few residues on the channel was obtained. The TFT showed a field effect mobility of 11.3 cm2 V-1 s-1 and a sub-threshold swing of 0.24 V/decade. The performance of this kind of TFT was better than that of the TFT with etch-stopper-layer structure, which was proved to be due to the lower contact resistance. The BCE-TFTs fabricated with this method have good prospect due to the advantage of low cost.

  9. Changes in the surface of bone and acid-etched and sandblasted implants following implantation and removal

    PubMed Central

    Eroglu, Cennet Neslihan; Ertugrul, Abdullah Seckin; Eskitascioglu, Murat; Eskitascioglu, Gurcan

    2016-01-01

    Objective: The aim of this study was to determine whether there are any changes in the surface of bone or implant structures following the removal of a screwed dental implant. Materials and Methods: For this, six individual samples of acid-etched and sandblasted implants from three different manufacturers’ implant systems were used. They were screwed in a D1 bovine bone, and they were removed after primary stabilization. The bone and implant surfaces are evaluated with scanning electron microscope. Results: Through examination of the surfaces of the bone prior to implantation and of the used and unused implant surfaces, it was found that inhomogeneity in the implant surface can cause microcracking in the bone. Conclusions: This is attributed to the stress induced during the implantation of self-tapping implants and suggests that a tap drill may be required in some instances to protect the implant surface. PMID:27011744

  10. Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique.

    PubMed

    Lin, Hsin-Han; Chen, Wen-Hwa; Hong, Franklin C-N

    2013-05-01

    The creation of nanostructures on polycrystalline silicon wafer surface to reduce the solar reflection can enhance the solar absorption and thus increase the solar-electricity conversion efficiency of solar cells. The self-masking reactive ion etching (RIE) was studied to directly fabricate nanostructures on silicon surface without using a masking process for antireflection purpose. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6), and oxygen (O2) were activated by radio-frequency plasma in an RIE system at a typical pressure of 120-130 mTorr to fabricate the nanoscale pyramids. Poly-Si wafers were etched directly without masking for 6-10 min to create surface nanostructures by varying the compositions of SF6, Cl2, and O2 gas mixtures in the etching process. The wafers were then treated with acid (KOH:H2O = 1:1) for 1 min to remove the damage layer (100 nm) induced by dry etching. The damage layer significantly reduced the solar cell efficiencies by affecting the electrical properties of the surface layer. The light reflectivity from the surface after acid treatment could be significantly reduced to <10% for the wavelengths between 500 and 900 nm. The effects of RIE and surface treatment conditions on the surface nanostructures and the optical performance as well as the efficiencies of solar cells will be presented and discussed. The authors have successfully fabricated large-area (156 × 156 mm(2)) subwavelength antireflection structure on poly-Si substrates, which could improve the solar cell efficiency reproducibly up to 16.27%, higher than 15.56% using wet etching.

  11. Improvement of polycrystalline silicon wafer solar cell efficiency by forming nanoscale pyramids on wafer surface using a self-mask etching technique

    PubMed Central

    Lin, Hsin-Han; Chen, Wen-Hwa; Hong, Franklin C.-N.

    2013-01-01

    The creation of nanostructures on polycrystalline silicon wafer surface to reduce the solar reflection can enhance the solar absorption and thus increase the solar-electricity conversion efficiency of solar cells. The self-masking reactive ion etching (RIE) was studied to directly fabricate nanostructures on silicon surface without using a masking process for antireflection purpose. Reactive gases comprising chlorine (Cl2), sulfur hexafluoride (SF6), and oxygen (O2) were activated by radio-frequency plasma in an RIE system at a typical pressure of 120–130 mTorr to fabricate the nanoscale pyramids. Poly-Si wafers were etched directly without masking for 6–10 min to create surface nanostructures by varying the compositions of SF6, Cl2, and O2 gas mixtures in the etching process. The wafers were then treated with acid (KOH:H2O = 1:1) for 1 min to remove the damage layer (100 nm) induced by dry etching. The damage layer significantly reduced the solar cell efficiencies by affecting the electrical properties of the surface layer. The light reflectivity from the surface after acid treatment could be significantly reduced to <10% for the wavelengths between 500 and 900 nm. The effects of RIE and surface treatment conditions on the surface nanostructures and the optical performance as well as the efficiencies of solar cells will be presented and discussed. The authors have successfully fabricated large-area (156 × 156 mm2) subwavelength antireflection structure on poly-Si substrates, which could improve the solar cell efficiency reproducibly up to 16.27%, higher than 15.56% using wet etching. PMID:23847751

  12. Effects of solvent volatilization time on the bond strength of etch-and-rinse adhesive to dentin using conventional or deproteinization bonding techniques

    PubMed Central

    de Sousa Júnior, José Aginaldo; Carregosa Santana, Márcia Luciana; de Figueiredo, Fabricio Eneas Diniz

    2015-01-01

    Objectives This study determined the effect of the air-stream application time and the bonding technique on the dentin bond strength of adhesives with different solvents. Furthermore, the content and volatilization rate of the solvents contained in the adhesives were also evaluated. Materials and Methods Three adhesive systems with different solvents (Stae, SDI, acetone; XP Bond, Dentsply De Trey, butanol; Ambar, FGM, ethanol) were evaluated. The concentrations and evaporation rates of each adhesive were measured using an analytical balance. After acid-etching and rinsing, medium occlusal dentin surfaces of human molars were kept moist (conventional) or were treated with 10% sodium hypochlorite for deproteinization. After applying adhesives over the dentin, slight air-stream was applied for 10, 30 or 60 sec. Composite cylinders were built up and submitted to shear testing. The data were submitted to ANOVA and Tukey's test (α = 0.05). Results Stae showed the highest solvent content and Ambar the lowest. Acetone presented the highest evaporation rate, followed by butanol. Shear bond strengths were significantly affected only by the factors of 'adhesive' and 'bonding technique' (p < 0.05), while the factor 'duration of air-stream' was not significant. Deproteinization of dentin increased the bond strength (p < 0.05). Stae showed the lowest bond strength values (p < 0.05), while no significant difference was observed between XP Bond and Ambar. Conclusions Despite the differences in content and evaporation rate of the solvents, the duration of air-stream application did not affect the bond strength to dentin irrespective of the bonding technique. PMID:26295023

  13. A highly tunable lateral quantum dot realized in InGaAs/InP by an etching technique

    NASA Astrophysics Data System (ADS)

    Larsson, M.; Wallin, D.; Xu, H. Q.

    2008-04-01

    We report on the realization of a quantum dot in a modulation doped InGaAs/InP heterostructure by electron beam lithography and chemical wet etching. Using etched trench defined in-plane gates and a local top gate, the tunneling barriers, electron density, and electrostatic potential of the dot can be tuned. Electrical measurements reveal clear Coulomb blockade behavior of the electron transport through the dot and the behavior of electron tunneling through its excited states.

  14. Advances in analytical techniques for neutron capture therapy: thin layer chromatography matrix and track etch thin layer chromatography methods for boron-10 analysis

    SciTech Connect

    Schremmer, J.M.; Noonan, D.J.

    1987-09-01

    A new track etch autoradiographic technique for quantitating boron-10 containing compounds used for neutron capture therapy is described. Instead of applying solutions of Cs2B12H11SH and its oxidation products directly to solid-state nuclear track detectors, diethylaminoethyl cellulose thin layer chromatography (TLC) plates are utilized as sample matrices. The plates are juxtaposed with Lexan polycarbonate detectors and irradiated in a beam of thermal neutrons. The detectors are then chemically etched, and the resultant tracks counted with an optoelectronic image analyzer. Sensitivity to boron-10 in solution reaches the 1 pg/microliter level, or 1 ppb. In heparinized blood samples, 100 pg boron-10/microliter are detected. This TLC matrix method has the advantage that sample plates can be reanalyzed under different reactor conditions to optimize detector response to the boron-10 carrier material. Track etch/TLC allows quantitation of the purity of boron neutron capture therapy compounds by utilizing the above method with TLC plates developed in solvent systems that resolve Cs2B12H11SH and its oxidative analogs. Detectors irradiated in juxtaposition to the thin layer chromatograms are chemically etched, and the tracks are counted in the sample lane from the origin of the plate to the solvent front. A graphic depiction of the number of tracks per field yields a quantitative analysis of compound purity.

  15. Redox buffered hydrofluoric acid etchant for the reduction of galvanic attack during release etching of MEMS devices having noble material films

    DOEpatents

    Hankins, Matthew G.

    2009-10-06

    Etchant solutions comprising a redox buffer can be used during the release etch step to reduce damage to the structural layers of a MEMS device that has noble material films. A preferred redox buffer comprises a soluble thiophosphoric acid, ester, or salt that maintains the electrochemical potential of the etchant solution at a level that prevents oxidation of the structural material. Therefore, the redox buffer preferentially oxidizes in place of the structural material. The sacrificial redox buffer thereby protects the exposed structural layers while permitting the dissolution of sacrificial oxide layers during the release etch.

  16. Effect of self-etching primer vs phosphoric acid etchant on bonding to bur-prepared dentin.

    PubMed

    Ogata, M; Harada, N; Yamaguchi, S; Nakajima, M; Tagami, J

    2002-01-01

    This study evaluated the effect of dentin conditioner on tensile bond strength to dentin prepared with different types of burs. A self-etching primer system, Mac-Bond II (MB, Tokuyama Dental) and a phosphoric acid etching system, Single Bond (SB, 3M) were used for conditioning. Twenty-four extracted intact human molars were ground flat to expose occlusal dentin. After the dentin surfaces were polished with #600 SiC paper, the teeth were randomly divided into a control group and three experimental groups according to the bur grits used: #600 SiC paper only as the control, fine cut steel bur (SB600), crosscut steel bur (SB703) and regular grit diamond bur (DB) mounted in a dental handpiece utilizing water cooling. The dentin surfaces were treated with one of two adhesive systems, then composite buildups were done with Clearfil AP-X (Kuraray Medical). After soaking the bond specimens for 24 hours in 37 degrees C water, multiple vertical serial sections (0.7 mm thick, 7-8 slices per one tooth) were made, trimmed to form an hour-glass shape with a 1.0 mm2 cross-section and tensile bond strengths were determined at a crosshead speed of 1 mm/minute. Statistical analysis was made using one and two-way ANOVA and Fisher's PLSD test (p<0.05). Six additional molars were used for SEM observations of the dentin surfaces of each group before and after treatment with the self-etching primer of MB, and another four teeth were used to observe the resin-dentin interface of each group of SB. Using MB, the DB group produced the lowest tensile bond strength (TBS) among the groups that received bur preparation, and there were no statistical differences among SB600, SB703 and the control. For SB, the TBS of SB703 was the highest, and there were no statistical differences among the other groups and the control. The influence of the method used to prepare dentin for micro-tensile bond strength testing was dependent on the adhesive system used.

  17. Photoelectrochemical etching of gallium nitride surface by complexation dissolution mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-Rong; Hou, Fei; Wang, Zu-Gang; Zhang, Shao-Hui; Pan, Ge-Bo

    2017-07-01

    Gallium nitride (GaN) surface was etched by 0.3 M ethylenediamine tetraacetic acid disodium (EDTA-2Na) via photoelectrochemical etching technique. SEM images reveal the etched GaN surface becomes rough and irregular. The pore density is up to 1.9 × 109 per square centimeter after simple acid post-treatment. The difference of XPS spectra of Ga 3d, N 1s and O 1s between the non-etched and freshly etched GaN surfaces can be attributed to the formation of Ga-EDTA complex at the etching interface between GaN and EDTA-2Na. The proposed complexation dissolution mechanism can be broadly applicable to almost all neutral etchants under the prerequisite of strong light and electric field. From the point of view of environment, safety and energy, EDTA-2Na has obvious advantages over conventionally corrosive etchants. Moreover, as the further and deeper study of such nearly neutral etchants, GaN etching technology has better application prospect in photoelectric micro-device fabrication.

  18. Comparison of Shear Bond Strength of Orthodontic Brackets Bonded to Enamel Prepared By Er:YAG Laser and Conventional Acid-Etching

    PubMed Central

    Hosseini, M.H.; Namvar, F.; Chalipa, J.; Saber, K.; Chiniforush, N.; Sarmadi, S.; Mirhashemi, A.H.

    2012-01-01

    Introduction: The purpose of this study was to compare shear bond strength (SBS) of orthodontic brackets bonded to enamel prepared by Er:YAG laser with two different powers and conventional acid-etching. Materials and Methods: Forty-five human premolars extracted for orthodontic purposes were randomly assigned to three groups based on conditioning method: Group 1- conventional etching with 37% phosphoric acid; Group 2- irradiation with Er:YAG laser at 1 W; and Group 3- irradiation with Er:YAG laser at 1.5 W. Metal brackets were bonded on prepared enamel using a light-cured composite. All groups were subjected to thermocycling process. Then, the specimens mounted in auto-cure acryle and shear bond strength were measured using a universal testing machine with a crosshead speed of 0.5 mm per second. After debonding, the amount of resin remaining on the teeth was determined using the adhesive remnant index (ARI) scored 1 to 5. One-way analysis of variance was used to compare shear bond strengths and the Kruskal-Wallis test was performed to evaluate differences in the ARI for different etching types. Results: The mean and standard deviation of conventional acid-etch group, 1W laser group and 1.5W laser group was 3.82 ± 1.16, 6.97 ± 3.64 and 6.93 ± 4.87, respectively. Conclusion: The mean SBS obtained with an Er:YAG laser operated at 1W or 1.5W is approximately similar to that of conventional etching. However, the high variability of values in bond strength of irradiated enamel should be considered to find the appropriate parameters for applying Er:YAG laser as a favorable alternative for surface conditioning. PMID:22924098

  19. Evaluation of modifying the bonding protocol of a new acid-etch primer on the shear bond strength of orthodontic brackets.

    PubMed

    Ajlouni, Raed; Bishara, Samir E; Oonsombat, Charuphan; Denehy, Gerald E

    2004-06-01

    The purpose of the study was to evaluate the shear bond strength of orthodontic brackets when light curing both the self-etch primer and the adhesive in one step. Fourty eight teeth were bonded with self-etch primer Angel I (3M/ESPE, St Paul, Minn) and divided into three groups. In group I (control), 16 teeth were stored in deionized water for 24 hours before debonding. In group II, 16 teeth were debonded within half-an-hour to simulate when the initial archwires were ligated. In group III, 16 additional teeth were bonded using exactly the same procedure as in groups I and II, but the light cure used for 10 seconds after applying the acid-etch primer was eliminated, and the light cure used for 20 seconds after the precoated bracket was placed over the tooth. This saved at least two minutes of the total time of the bonding procedure. The teeth in this group were also debonded within half-an-hour from the time of initial bonding. The teeth debonded after 24 hours of water storage at 37 degrees C had a mean shear bond strength of 6.0 +/- 3.5 MPa, the group that was debonded within half-an-hour of two light exposures had a mean shear bond strength of 5.9 +/- 2.7 MPa, and the mean for the group with only one light cure exposure was 4.3 +/- 2.6 MPa. Light curing the acid-etch primer together with the adhesive after placing the orthodontic bracket did not significantly diminish the shear bond strength as compared with light curing the acid-etch primer and the adhesive separately.

  20. Precise identification of <1 0 0> directions on Si{0 0 1} wafer using a novel self-aligning pre-etched technique

    NASA Astrophysics Data System (ADS)

    Singh, S. S.; Veerla, S.; Sharma, V.; Pandey, A. K.; Pal, P.

    2016-02-01

    Micromirrors with a tilt angle of 45° are widely used in optical switching and interconnect applications which require 90° out of plane reflection. Silicon wet bulk micromachining based on surfactant added TMAH is usually employed to fabricate 45° slanted walls at the < 1 0 0> direction on Si≤ft\\{0 0 1\\right\\} wafers. These slanted walls are used as 45° micromirrors. However, the appearance of a precise 45° ≤ft\\{0 1 1\\right\\} wall is subject to the accurate identification of the < 1 0 0> direction. In this paper, we present a simple technique based on pre-etched patterns for the identification of < 1 0 0> directions on the Si≤ft\\{0 0 1\\right\\} surface. The proposed pre-etched pattern self-aligns itself at the < 1 0 0> direction while becoming misaligned at other directions. The < 1 0 0> direction is determined by a simple visual inspection of pre-etched patterns and does not need any kind of measurement. To test the accuracy of the proposed method, we fabricated a 32 mm long rectangular opening with its sides aligned along the < 1 0 0> direction, which is determined using the proposed technique. Due to the finite etch rate of the ≤ft\\{1 1 0\\right\\} plane, undercutting occurred, which was measured at 12 different locations along the longer edge of the rectangular strip. The mean of these undercutting lengths, measured perpendicular to the mask edge, is found to be 13.41 μm with a sub-micron standard deviation of 0.38 μm. This level of uniform undercutting indicates that our method of identifying the < 1 0 0> direction is precise and accurate. The developed method will be extremely useful in fabricating arrays of 45° micromirrors.

  1. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  2. From acid etching treatments to tribocorrosive properties of dental implants: do some experimental results on surface treatments have an influence on the tribocorrosion behaviour of dental implants?

    NASA Astrophysics Data System (ADS)

    Geringer, Jean; Demanget, Nicolas; Pellier, Julie

    2013-10-01

    Surface treatments of dental implants aim at promoting osseointegration, i.e. the anchorage of the metallic part. Titanium-, grade II-V, based material is used as a bulk material for dental implants. For promoting the anchorage of this metallic biomaterial in human jaw, some strategies have been applied for improving the surface state, i.e. roughness, topography and coatings. A case study, experimental study, is described with the method of acid etching on titanium grade 4, CpTi. The main goal is to find the right proportion in a mixture of two acids in order to obtain the best surface state. Finally, a pure theoretical prediction is quite impossible and some experimental investigations are necessary to improve the surface state. The described acid etching is compared with some other acid etching treatments and some coatings available on dental implants. Thus, the discussion is focused on the tribocorrosion behaviour of titanium-based materials. The purpose of the coating is that the lifetime under tribocorrosion is limited. Moreover, the surgery related to the implantation has a huge impact on the stability of dental implants. Thus, the performance of dental implants depends on factors related to surgery (implantation) that are difficult to predict from the biomaterial characteristics. From the tribocorrosion point of view, i.e. during the mastication step, the titanium material is submitted to some deleterious factors that cause the performance of dental implants to decrease.

  3. Femtosecond laser etching of dental enamel for bracket bonding.

    PubMed

    Kabas, Ayse Sena; Ersoy, Tansu; Gülsoy, Murat; Akturk, Selcuk

    2013-09-01

    The aim is to investigate femtosecond laser ablation as an alternative method for enamel etching used before bonding orthodontic brackets. A focused laser beam is scanned over enamel within the area of bonding in a saw tooth pattern with a varying number of lines. After patterning, ceramic brackets are bonded and bonding quality of the proposed technique is measured by a universal testing machine. The results are compared to the conventional acid etching method. Results show that bonding strength is a function of laser average power and the density of the ablated lines. Intrapulpal temperature changes are also recorded and observed minimal effects are observed. Enamel surface of the samples is investigated microscopically and no signs of damage or cracking are observed. In conclusion, femtosecond laser exposure on enamel surface yields controllable patterns that provide efficient bonding strength with less removal of dental tissue than conventional acid-etching technique.

  4. Effect of etching with cysteamine assisted phosphoric acid on gallium nitride surface oxide formation

    NASA Astrophysics Data System (ADS)

    Wilkins, S. J.; Paskova, T.; Ivanisevic, A.

    2013-08-01

    In-situ functionalization of polar GaN was performed by adding cysteamine to a phosphoric acid etchant in order to study its effect on photoluminescence and oxide formation on the surfaces. The functionalization was characterized by atomic force microscopy, x-ray photoelectron spectroscopy, photoluminescence (PL), and water contact angle measurements. Two sets of polar GaN samples with different dislocation densities were evaluated, thin GaN layers residing on sapphire and thick free-standing GaN separated from sapphire substrate aiming to reveal the effect of material quality on in-situ functionalization. The addition of cysteamine to the phosphoric acid solution was found to result in: (i) decreased surface roughness, (ii) no change to hydrophobicity, (iii) decreased oxygen content especially at high-temperature treatments. The effect of the in-situ functionalization on the PL efficiency was more pronounced in the free-standing sample than in the film residing on the sapphire, which was attributed to a higher crystal quality free from strain.

  5. Petrologic and experimental evidence for the etching of garnets by organic acids in the upper Jurassic Morrision Formation, northwestern New Mexico.

    USGS Publications Warehouse

    Hansley, P.L.

    1987-01-01

    Etching of garnets and partial to complete dissolution of other aluminosilicate minerals were caused by high concentrations of organic acids generated during the maturation of epigenetic organic matter (predominantly type-III kerogen) in the Morrison Formation. The presence of authigenic phases that form near 100oC indicates that temperatures were high enough during diagenesis to cause the thermal degradation of kerogen.-from Author

  6. Chemical etching and EDAX analysis of beryllium-free nickel-chromium ceramo-metal alloy.

    PubMed

    Atta, O M; Mosleh, I E; Shehata, M T

    1995-10-01

    A chemical etching technique is described for producing etch patterns in beryllium-free nickel chromium ceramo-metal alloy. Disc-shaped samples were chemically etched, evaluated with SEM and analysed by the EDAX technique. Scanning electron micrographs revealed, profound retentive cavities. The EDAX analysis provided a comprehensive interpretation of the etch mechanism. The obtained results show that the developed chemical etching has the potential to produce a highly retentive etched surface with less problematic and less technique sensitive than electrolytic etching.

  7. Surface Properties and Osteoblastic Cytocompatibility of Two Blasted and Acid-Etched Titanium Implant Systems with Distinct Microtopography

    PubMed Central

    Mesquita, Pedro; Gomes, Pedro de Sousa; Sampaio, Paula; Juodzbalys, Gintaras; Afonso, Américo

    2012-01-01

    ABSTRACT Objectives The aim of this study is to compare two commercially available screw-type sandblasted and acid-etched (SLA) Ti implant systems from Eckermann Laboratorium S.L., with similar geometry and distinct microtopography, regarding surface properties and osteoblastic cytocompatibility. Material and Methods Implant I (referred as a conventional SLA system) and Implant II (a system patented as Eckcyte®) were characterized for macro and microtopograpphy, surface roughness and chemical composition. For the cytocompatibility studies, human bone marrow osteoblastic cells were seeded over the implants' surface, and the cell response was assessed for cell adhesion and proliferation, alkaline phosphatase (ALP) activity and matrix mineralization. Results Implant I presented a rough surface with irregularly shaped and sized cavities among flatter-appearing areas, whereas Implant II exhibited a homogeneous rough microporous surface. Compared to Implant I, Implant II presented higher Ra values (0.8 [SD 0.008] μm and 1.21 [SD 0.15] μm, respectively, P < 0.05) and also increased values of Rz, Rt and Rsm, a more negative value of Rsk, and similar RKu values. XPS showed the expected presence of Ti, O, C and N; Al, Si, F, P and Ca were detected in low concentrations. Implant II exhibited significantly lower Al levels. Both implants supported the adhesion, proliferation and differentiation of osteoblastic cells. Implant II showed a thicker fibrilar cell layer and an earlier onset and more abundant matrix mineralization. Conclusions The homogeneous rough and microporous surface of Implant II is most probably a main contributor for its improved cell response. PMID:24422006

  8. Uniform nano-ripples on the sidewall of silicon carbide micro-hole fabricated by femtosecond laser irradiation and acid etching

    SciTech Connect

    Khuat, Vanthanh; Chen, Tao; Gao, Bo; Si, Jinhai Ma, Yuncan; Hou, Xun

    2014-06-16

    Uniform nano-ripples were observed on the sidewall of micro-holes in silicon carbide fabricated by 800-nm femtosecond laser and chemical selective etching. The morphology of the ripple was analyzed using scanning electronic microscopy. The formation mechanism of the micro-holes was attributed to the chemical reaction of the laser affected zone with mixed solution of hydrofluoric acid and nitric acid. The formation of nano-ripples on the sidewall of the holes could be attributed to the standing wave generated in z direction due to the interference between the incident wave and the reflected wave.

  9. Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques.

    PubMed

    Caballero, David; Villanueva, Guillermo; Plaza, Jose Antonio; Mills, Christopher A; Samitier, Josep; Errachid, Abdelhamid

    2010-01-01

    The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 degrees or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

  10. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.

    PubMed

    Van Hoang, Nguyen; Kumar, Sanjeev; Kim, Gil-Ho

    2009-03-25

    The growth of multisegment nanorods comprising gold (Au) and sacrificial silver (Ag) segments (Au-Ag-Au or Au-Ag-Au-Ag-Au) using the electrochemical wet etching method is reported. The nanorods were fabricated using an alumina template of thickness 100 microm and pore size of 200 nm. A variety of nanorods from single to seven segments comprising alternate Au and Ag segments were fabricated with better control of growth rate. The multisegment nanorods were selectively etched by removing the Ag segments to create gaps in the fabricated nanorods. A careful investigation led to the creation of a wide variety of nanogaps in the fabricated multisegment nanorods. The size of the nanogap was controlled by the passage of current through the electrochemical process, and size below 10 nm was achievable at exchanged charges of approximately 1 mC. A further lowering in the size of nanogaps was achieved by diluting the silver plating solution and a segmented nanorod with nanogap (Au-nanogap-Au) of 3.8 nm at exchanged charges of 0.2 mC was successfully created. In addition, segmented nanorods with two or more nanogaps (Au-nanogap-Au-nanogap-Ag) placed symmetrically and asymmetrically on either side of the central Au segments were also created. A prototype of a single-electron transistor device based on segmented nanorods with two nanogaps is proposed. The results obtained could form the basis for the realization of quantum tunneling devices where the barrier thickness is very critical and demands values less than 5 nm. The encouraging results show the promise of multisegment nanorods for fabricating devices working at the de Broglie wavelength such as single-electron transistors.

  11. Effect of acid vapor etching on morphological and opto-electric properties of flat silicon and silicon nanowire arrays: A comparative study

    NASA Astrophysics Data System (ADS)

    Amri, Chohdi; Ouertani, Rachid; Hamdi, Abderrahmen; Ezzaouia, Hatem

    2016-03-01

    In this paper, we report a comparative study between porous silicon (pSi) and porous silicon nanowires (pSiNWs). Acid Vapor Etching (AVE) treatment has been used to perform porous structure on flat Si and SiNWs array substrates respectively. SiNW structure is prepared by the widely used Silver catalyzed etching method. SEM and TEM images show that AVE treatment induces porous structure in the whole Si wafer and the SiNW sidewall. Comparatively to pSi, pSiNWs exhibit a low reflectivity in the whole spectral range which decreases with etching duration. However, the reflectivity of pSi changes with porous layer thickness. Both pSi and pSiNWs exhibit a significant PL peak situated at 2 eV. PL peaks are attributed to the quantum confinement effect in the silicon nanocrystallites (SiNCs). We discussed the significant enhancement in the peak intensities and a shift toward lower energy displayed in Raman spectra for both pSi and pSiNWs. We reported a correlative study of the AVE treatment effect on the minority carrier life time of flat silicon and SiNW arrays with the passivation effect of chemical induced silicon oxides highlighted by FTIR spectra.

  12. Optical investigation of the intergrowth structure and accessibility of Brønsted acid sites in etched SSZ-13 zeolite crystals by confocal fluorescence microscopy.

    PubMed

    Sommer, Linn; Svelle, Stian; Lillerud, Karl Petter; Stöcker, Michael; Weckhuysen, Bert M; Olsbye, Unni

    2010-11-02

    Template decomposition followed by confocal fluorescence microscopy reveals a tetragonal-pyramidal intergrowth of subunits in micrometer-sized nearly cubic SSZ-13 zeolite crystals. In order to accentuate intergrowth boundaries and defect-rich areas within the individual large zeolite crystals, a treatment with an etching NaOH solution is applied. The defective areas are visualized by monitoring the spatial distribution of fluorescent tracer molecules within the individual SSZ-13 crystals by confocal fluorescence microscopy. These fluorescent tracer molecules are formed at the inner and outer crystal surfaces by utilizing the catalytic activity of the zeolite in the oligomerization reaction of styrene derivatives. This approach reveals various types of etching patterns that are an indication for the defectiveness of the studied crystals. We can show that specially one type of crystals, denoted as core-shell type, is highly accessible to the styrene molecules after etching. Despite the large crystal dimensions, the whole core-shell type SSZ-13 crystal is utilized for catalytic reaction. Furthermore, the confocal fluorescence microscopy measurements indicate a nonuniform distribution of the catalytically important Brønsted acid sites underlining the importance of space-resolved measurements.

  13. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching.

    PubMed

    Faverani, Leonardo P; Assunção, Wirley G; de Carvalho, Paulo Sérgio P; Yuan, Judy Chia-Chun; Sukotjo, Cortino; Mathew, Mathew T; Barao, Valentim A

    2014-01-01

    Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no

  14. Effect of acid etching on marginal adaptation of mineral trioxide aggregate to apical dentin: microcomputed tomography and scanning electron microscopy analysis.

    PubMed

    Al-Fouzan, Khalid; Al-Garawi, Ziad; Al-Hezaimi, Khalid; Javed, Fawad; Al-Shalan, Thakib; Rotstein, Ilan

    2012-12-01

    The present investigation assessed the effect of acid etching on marginal adaptation of white- and gray-colored mineral trioxide aggregate (MTA) to apical dentin using microcomputed tomography (micro-CT) and scanning electron microscopy (SEM). Sixty-four extracted single-rooted human maxillary teeth were used. Following root-end resection and apical preparation, the teeth were equally divided into four groups according to the following root end filling materials: (i) white-colored MTA (WMTA), (ii) etched WMTA (EWMTA), (iii) gray-colored MTA (GMTA) and (iv) etched GMTA (EGMTA). After 48 h, the interface between root-end filling materials and the dentinal walls was assessed using micro-CT and SEM. Data were statistically analyzed using the Kruskal-Wallis and Dunn tests. Micro-CT analysis revealed gap volumes between the apical cavity dentin walls and EGMTA, GMTA, EWMTA and WMTA of (0.007 1±0.004) mm(3), (0.053±0.002) mm(3), (0.003 6±0.001) mm(3) and (0.005 9±0.002) mm(3) respectively. SEM analysis revealed gap sizes for EGMTA, WMTA, EWMTA and GMTA to be (492.3±13.8) µm, (594.5±17.12) µm, (543.1±15.33) µm and (910.7±26.2) µm respectively. A significant difference in gap size between root end preparations filled with GMTA and EGMTA was found (P<0.05). No significance difference in gap size between WMTA and EWMTA were found in either SEM or micro-CT analysis. In conclusion, pre-etching of apical dentin can provide a better seal for GMTA but not for WMTA.

  15. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin

    PubMed Central

    Anja, Baraba; Walter, Dukić; Nicoletta, Chieffi; Marco, Ferrari; Pezelj Ribarić, Sonja; Ivana, Miletić

    2015-01-01

    The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group), according to the pretreatment of the dentin: (1) control group, (2) air abrasion group, and (3) sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P > 0.05). Mean microtensile bond strength (MPa) values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin. PMID:25879053

  16. Quantum size effects in GaAs nanodisks fabricated using a combination of the bio-template technique and neutral beam etching.

    PubMed

    Tamura, Yosuke; Kaizu, Toshiyuki; Kiba, Takayuki; Igarashi, Makoto; Tsukamoto, Rikako; Higo, Akio; Hu, Weiguo; Thomas, Cedric; Fauzi, Mohd Erman; Hoshii, Takuya; Yamashita, Ichiro; Okada, Yoshitaka; Murayama, Akihiro; Samukawa, Seiji

    2013-07-19

    We successfully fabricated defect-free, distributed and sub-20-nm GaAs quantum dots (named GaAs nanodisks (NDs)) by using a novel top-down technique that combines a new bio-template (PEGylated ferritin) and defect-free neutral beam etching (NBE). Greater flexibility was achieved when engineering the quantum levels of ND structures resulted in greater flexibility than that for a conventional quantum dot structure because structures enabled independent control of thickness and diameter parameters. The ND height was controlled by adjusting the deposition thickness, while the ND diameter was controlled by adjusting the hydrogen-radical treatment conditions prior to NBE. Photoluminescence emission due to carrier recombination between the ground states of GaAs NDs was observed, which showed that the emission energy shift depended on the ND diameters. Quantum level engineering due to both diameter and thickness was verified from the good agreement between the PL emission energy and the calculated quantum confinement energy.

  17. Alternative control techniques document: Nitric and adipic acid manufacturing plants

    SciTech Connect

    Lazzo, D.W.

    1991-12-01

    The Alternative Control Techniques document describes available control techniques for reducing NOx emission levels from nitric and adipic acid manufacturing plants. The document contains information on the formation of NOx and uncontrolled NOx emissions from nitric and adipic acid plants. The following NOx control techniques for nitric acid plants are discussed: extended absorption, nonselective catalytic reduction (NSCR), and selective catalytic reduction (SCR). The following NOx control techniques for adipic acid plants are discussed: extended absorption and thermal reduction. For each control technique, achievable controlled NOx emission levels, capital and annual costs, cost effectiveness, and environmental and energy impacts are presented.

  18. Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit.

    PubMed

    He, F M; Yang, G L; Li, Y N; Wang, X X; Zhao, S F

    2009-06-01

    The aim of this study was to evaluate the influence of a roughened H(2)O(2)/HCl heat-treated titanium surface on peri-implant bone formation at an early stage in vivo. 24 Ti(6)Al(4)V alloy implants were used; half were treated by sandblasted and dual acid-etched treatments (control group), while the others were treated by sandblasted, dual acid-etched and H(2)O(2)/HCl heat treatments (test group). The morphology and roughness were analyzed by field emission SEM and atomic force microscopy. The implants were inserted into the femora of 12 adult white rabbits. After 2 and 4 weeks, femora block specimens were prepared for histological and histomorphometric analysis. SEM micrographs showed that multilevel and different sized pits were formed on both surfaces. New bone formation was observed on both implant surfaces. Test implants demonstrated a greater mean percentage of bone-implant contact as compared with controls at 2 (46.84 vs. 41.81, p=0.000) and 4 weeks (49.43 vs. 44.87, p=0.006) of healing. It is concluded that the H(2)O(2)/HCl heat-treated rough titanium surface promoted enhanced bone apposition during the early stages of new bone formation around the implant.

  19. Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application.

    PubMed

    Reshak, A H; Shahimin, M M; Shaari, S; Johan, N

    2013-11-01

    The potential of solar cells have not been fully tapped due to the lack of energy conversion efficiency. There are three important mechanisms in producing high efficiency cells to harvest solar energy; reduction of light reflectance, enhancement of light trapping in the cell and increment of light absorption. The current work represent studies conducted in surface modification of single-crystalline silicon solar cells using wet chemical etching techniques. Two etching types are applied; alkaline etching (KOH:IPA:DI) and acidic etching (HF:HNO3:DI). The alkaline solution resulted in anisotropic profile that leads to the formation of inverted pyramids. While acidic solution formed circular craters along the front surface of silicon wafer. This surface modification will leads to the reduction of light reflectance via texturizing the surface and thereby increases the short circuit current and conversion rate of the solar cells.

  20. Morphology of resin-dentin interfaces after Er,Cr:YSGG laser and acid etching preparation and application of different bonding systems.

    PubMed

    Beer, Franziska; Buchmair, Alfred; Körpert, Wolfram; Marvastian, Leila; Wernisch, Johann; Moritz, Andreas

    2012-07-01

    The goal of this study was to show the modifications in the ultrastructure of the dentin surface morphology following different surface treatments. The stability of the adhesive compound with dentin after laser preparation compared with conventional preparation using different bonding agents was evaluated. An Er,Cr:YSGG laser and 36% phosphoric acid in combination with various bonding systems were used. A total of 100 caries-free human third molars were used in this study. Immediately after surgical removal teeth were cut using a band saw and 1-mm thick dentin slices were created starting at a distance of 4 mm from the cusp plane to ensure complete removal of the enamel. The discs were polished with silicon carbide paper into rectangular shapes to a size of 6 × 4 mm (±0,2 mm).The discs as well as the remaining teeth stumps were stored in 0.9% NaCl at room temperature. The specimens were divided into three main groups (group I laser group, group II etch group, group III laser and etch group) and each group was subdivided into three subgroups which were allocated to the different bonding systems (subgroup A Excite, subgroup B Scotchbond, subgroup C Syntac). Each disc and the corresponding tooth stump were treated in the same way. After preparation the bonding composite material was applied according to the manufacturers' guidelines in a hollow tube of 2 mm diameter to the disc as well as to the corresponding tooth stump. Shear bond strength testing and environmental scanning electron microscopy were used to assess the morphology and stability of the resin-dentin interface. The self-etching bonding system showed the highest and the most constant shear values in all three main groups, thus enabling etching with phosphoric acid after laser preparation to be avoided. Thus we conclude that laser preparation creates a surface texture that allows prediction of the quality of the restoration without the risk of negative influences during the following treatment steps. This

  1. Optical fiber nanoprobe preparation for near-field optical microscopy by chemical etching under surface tension and capillary action.

    PubMed

    Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan

    2009-10-26

    We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.

  2. Investigation of Nitride Morphology After Self-Aligned Contact Etch

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Keil, J.; Helmer, B. A.; Chien, T.; Gopaladasu, P.; Kim, J.; Shon, J.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Self-Aligned Contact (SAC) etch has emerged as a key enabling technology for the fabrication of very large-scale memory devices. However, this is also a very challenging technology to implement from an etch viewpoint. The issues that arise range from poor oxide etch selectivity to nitride to problems with post etch nitride surface morphology. Unfortunately, the mechanisms that drive nitride loss and surface behavior remain poorly understood. Using a simple langmuir site balance model, SAC nitride etch simulations have been performed and compared to actual etched results. This approach permits the study of various etch mechanisms that may play a role in determining nitride loss and surface morphology. Particle trajectories and fluxes are computed using Monte-Carlo techniques and initial data obtained from double Langmuir probe measurements. Etched surface advancement is implemented using a shock tracking algorithm. Sticking coefficients and etch yields are adjusted to obtain the best agreement between actual etched results and simulated profiles.

  3. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  4. New phase formation in titanium aluminide during chemical etching

    SciTech Connect

    Takasaki, Akito; Ojima, Kozo; Taneda, Youji . Dept. of Mathematics and Physics)

    1994-05-01

    A chemical etching technique is widely used for metallographic observation. Because this technique is based on a local corrosion phenomenon on a sample, the etching mechanism, particularly for two-phase alloys, can be understood by electrochemical consideration. This paper describes formation of a new phase in a Ti-45Al (at.%) titanium aluminide during chemical etching, and the experimental results are discussed electrochemically.

  5. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  6. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  7. Influence of acid-base conditioning on the bond strength of five luting agents employing self-etching primer to enamel and dentin.

    PubMed

    Yokomichi, Rie; Taira, Yohsuke; Soeno, Kohyoh; Atsuta, Mitsuru

    2005-06-01

    The purpose of this study was to evaluate the effect of multi-step conditioning (PA-AD conditioning) with phosphoric acid and sodium hypochlorite on the bond strength of five luting materials to enamel and dentin. Three commercial self-etching/priming systems (Panavia, Linkmax, and Multibond) and two experimental systems (ED/Super-Bond and EDFe/Super-Bond) were used. The surfaces of bovine enamel or dentin were bonded to a stainless steel rod. Tensile bond strength was determined after 24-hour immersion in water. PA-AD conditioning significantly improved the bond strength between enamel and three of the systems (Panavia, ED/Super-Bond, and EDFe/Super-Bond), but did not have any effect on Linkmax and Multibond. Likewise, PA-AD conditioning did not significantly improve the bond strength of Panavia, Linkmax, Multibond, and ED/Super-Bond to dentin. Highest bond strength to dentin (19.7 MPa) was obtained when self-etching primer containing ferric chloride (EDFe/Super-Bond) was used, but additional PA-AD conditioning significantly weakened the bonding (12.6 MPa).

  8. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  9. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  10. Fabrication of tapered single mode fiber by chemical etching and used as a chemical sensor based on evanescent field absorption

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Tarun K.; Halder, A.; Das, S.; Paul, M. C.; Pal, M.; Salza, M.; Gagliardi, G.

    2010-12-01

    Single mode tapered fiber (SMTF) has been fabricated with core diameter of 8 μm and reduced cladding diameter up to 11 μm by hydrofluoric acid (HF) etching technique. To obtain the required cladding diameter, the time of etching has been optimized by using different HF concentrations. The mechanism as well as kinetics path of etching reaction on standard optical fiber is discussed. This study is related to surface catalyzed dissociation of HF followed by direct reaction with adsorbate molecules and the surface silicon oxide molecules. The etched tapered fibers are then packaged on quartz substrate to use as sensor element. Finally, the etched fiber is used as an element within chemical sensor based on evanescent field absorption. In this experiment, a 419-ppm cobalt nitrate solution is used for sensing.

  11. Copper-assisted, anti-reflection etching of silicon surfaces

    DOEpatents

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  12. Restoration of obliterated engraved marks on steel surfaces by chemical etching reagent.

    PubMed

    Song, Qingfang

    2015-05-01

    Chemical etching technique is widely used for restoration of obliterated engraved marks on steel surface in the field of public security. The consumed thickness of steel surface during restoration process is considered as a major criterion for evaluating the efficiency of the chemical etching reagent. The thinner the consumed thickness, the higher the restoration efficiency. According to chemical principles, maintaining the continuous oxidative capabilities of etching reagents and increasing the kinetic rate difference of the reaction between the engraved and non-engraved area with the chemical etching reagent can effectively reduce the consumed steel thickness. The study employed steel surface from the engine case of motorcycle and the car frame of automobile. The chemical etching reagents are composed of nitric acid as the oxidizer, hydrofluoric acid as the coordination agent and mixed with glacial acetic acid or acetone as the solvents. Based on the performance evaluation of three different etching reagents, the one composed of HNO3, HF and acetone gave the best result.

  13. A review of the developments of self-etching primers and adhesives -Effects of acidic adhesive monomers and polymerization initiators on bonding to ground, smear layer-covered teeth.

    PubMed

    Ikemura, Kunio; Kadoma, Yoshinori; Endo, Takeshi

    2011-01-01

    This paper reviews the developments of self-etching primers and adhesives, with a special focus on the effect of acidic adhesive monomers and polymerization initiators on bonding to ground, smear layer-covered teeth. Ionized acidic adhesive monomers chemically interact with tooth substrates and facilitate good bonding to ground dentin. Polymerization initiators in self-etching primers further promote effective bonding to ground dentin. To promote bonding to both dentin and enamel, phosphonic acid monomers such as 6-methacryloyloxyhexyl phosphonoacetate (6-MHPA) were developed. These novel adhesive monomers also have a water-soluble nature and are hence endowed with sufficient demineralization capability. A new single-bottle, self-etching, 2-hydroxyethyl methacrylate (HEMA)-free adhesive comprising 6-MHPA and 4-acryloyloxyethoxycarbonylphthalic acid (4-AET) was developed. This novel adhesive enabled strong adhesion to both ground enamel and dentin, but its formulation stability was influenced by pH value of the adhesive. To develop hydrolytically stable, single-bottle, self-etching adhesives, hydrolytically stable, radical-polymerizable acidic monomers with amide or ether linkages have been developed.

  14. Human dental implants with a sandblasted, acid-etched surface retrieved after 5 and 10 years: a light and scanning electron microscopy evaluation of two cases.

    PubMed

    Mangano, Carlo; Perrotti, Vittoria; Raspanti, Mario; Mangano, Francesco; Luongo, Giuseppe; Piattelli, Adriano; Iezzi, Giovanna

    2013-01-01

    The aim of the present study was a light and scanning electron microscopy (SEM) evaluation of the peri-implant tissues around sandblasted, acid-etched implants, retrieved from man, after a loading period of 5 and 10 years, respectively. Two implants (Leone Implant System) had been retrieved for a fracture of the prosthetic superstructure respectively after 5 and 10 years of loading. Both implants were stable before retrieval and had been retrieved using a 5-mm trephine bur. One implant was treated to obtain thin ground sections, while the other underwent evaluation under SEM. Compact, mature lamellar bone was present over most of the implant perimeter in close contact with the implant surface and with many remodeling areas. Under SEM, small concavities, completely filled by mineralized bone, were present on the implant surface. The present histologic results showed that these implants were well integrated over the long term, and the peri-implant bone was undergoing continuous remodeling at the interface.

  15. Histological and immunohistochemical evaluation of the peri-implant soft tissues around machined and acid-etched titanium healing abutments: a prospective randomised study.

    PubMed

    Degidi, Marco; Artese, Luciano; Piattelli, Adriano; Scarano, Antonio; Shibli, Jamil A; Piccirilli, Marcello; Perrotti, Vittoria; Iezzi, Giovanna

    2012-06-01

    A close spatial correlation has been described between the roughness of intraoral materials and the rate of bacterial colonisation. The aim of the present study in man was to conduct a comparative immunohistochemical evaluation of the inflammatory infiltrate, microvessel density, the nitric oxide synthases 1 and 3 and the vascular endothelial growth factor expression, the proliferative activity, and the B and T lymphocyte and histiocyte positivity in the peri-implant soft tissues around machined and acid-etched titanium healing caps. Ten patients participated in this study. The patients were enrolled consecutively. All patients received dental implants left to heal in a non-submerged mode. Healing caps were inserted in all implants. Half of the implants were supplied randomly with machined caps of titanium (control), while the other half were provided randomly with acid-etched titanium caps (test). After a 6-month healing period, a gingival biopsy was performed with a circular scalpel around the healing caps of both groups. The inflammatory infiltrate was mostly present in test specimens. Their extension was much larger than that of the control samples. A higher number of T and B lymphocytes were observed in test specimens. Higher values of microvessel density and a higher expression of vascular endothelial growth factor intensity were observed in the test samples. Furthermore, the Ki-67, NOS1 and NOS3 expression was significantly higher in the test specimens. All these results showed that the tissues around test healing caps underwent a higher rate of restorative processes, most probably correlated to the higher inflammation processes observed in these tissues.

  16. Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask.

    PubMed

    Guo, Jian; Yu, Bingjun; Wang, Xiaodong; Qian, Linmao

    2014-01-01

    A new fabrication method is proposed to produce nanostructures on monocrystalline silicon based on the friction-induced selective etching of its Si3N4 mask. With low-pressure chemical vapor deposition (LPCVD) Si3N4 film as etching mask on Si(100) surface, the fabrication can be realized by nanoscratching on the Si3N4 mask and post-etching in hydrofluoric acid (HF) and potassium hydroxide (KOH) solution in sequence. Scanning Auger nanoprobe analysis indicated that the HF solution could selectively etch the scratched Si3N4 mask and then provide the gap for post-etching of silicon substrate in KOH solution. Experimental results suggested that the fabrication depth increased with the increase of the scratching load or KOH etching period. Because of the excellent masking ability of the Si3N4 film, the maximum fabrication depth of nanostructure on silicon can reach several microns. Compared to the traditional friction-induced selective etching technique, the present method can fabricate structures with lesser damage and deeper depths. Since the proposed method has been demonstrated to be a less destructive and flexible way to fabricate a large-area texture structure, it will provide new opportunities for Si-based nanofabrication.

  17. Bioanalytical applications of isothermal nucleic acid amplification techniques.

    PubMed

    Deng, Huimin; Gao, Zhiqiang

    2015-01-01

    The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique.

  18. Chemically assisted ion beam etching of polycrystalline and (100)tungsten

    NASA Technical Reports Server (NTRS)

    Garner, Charles

    1987-01-01

    A chemically assisted ion-beam etching technique is described which employs an ion beam from an electron-bombardment ion source and a directed flux of ClF3 neutrals. This technique enables the etching of tungsten foils and films in excess of 40 microns thick with good anisotropy and pattern definition over areas of 30 sq mm, and with a high degree of selectivity. (100) tungsten foils etched with this process exhibit preferred-orientation etching, while polycrystalline tungsten films exhibit high etch rates. This technique can be used to pattern the dispenser cathode surfaces serving as electron emitters in traveling-wave tubes to a controlled porosity.

  19. Dry etching technologies for reflective multilayer

    NASA Astrophysics Data System (ADS)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  20. Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg.

    PubMed

    Perez, Kari; Yeam, Inhwa; Kang, Byoung-Cheorl; Ripoll, Daniel R; Kim, Jinhee; Murphy, John F; Jahn, Molly M

    2012-12-01

    Potyvirus resistance in Capsicum spp. has been attributed to amino acid substitutions at the pvr1 locus that cause conformational shifts in eukaryotic translation initiation factor eIF4E. The viral genome-linked protein (VPg) sequence was isolated and compared from three Tobacco etch virus (TEV) strains, highly aphid-transmissible (HAT), Mex21, and N, which differentially infect Capsicum genotypes encoding Pvr1(+), pvr1, and pvr1(2). Viral chimeras were synthesized using the TEV-HAT genome, replacing HAT VPg with Mex21 or N VPg. TEV HAT did not infect pepper plants homozygous for either the pvr1 or pvr1(2) allele. However, the novel chimeric TEV strains, TEVHAT(Mex21-VPg) and TEV-HAT(N-VPg), infected pvr1 and pvr1(2) pepper plants, respectively, demonstrating that VPg is the virulence determinant in this pathosystem. Three dimensional structural models predicted interaction between VPg and the susceptible eIF4E genotype in every case, while resistant genotypes were never predicted to interact. To determine whether there is a correlation between physical interaction of VPg with eIF4E and infectivity, the effects of amino acid variation within VPg were assessed. Interaction between pvr1(2) eIF4E and N VPg was detected in planta, implying that the six amino acid differences in N VPg relative to HAT VPg are responsible for restoring the physical interaction and infectivity.

  1. Rapid formation of AgnX(X = S, Cl, PO4, C2O4) nanotubes via an acid-etching anion exchange reaction

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Yang, Wenlong; Ning, Jiqiang; Zhong, Yijun; Hu, Yong

    2014-05-01

    This work presents a rapid nanotube fabrication method for a series of silver compounds AgnX, such as Ag2S, AgCl, Ag3PO4, and Ag2C2O4, from pregrown Ag2CO3 nanorod templates. The anion exchange process involved takes place in non-aqueous solutions just at room temperature and completes within 10 minutes. An acid-etching anion exchange reaction mechanism has been proved underneath the transformation process from Ag2CO3 nanorods to AgnX nanotubes by the observation of an intermediate yolk-shell nanostructure. It has been found that the final structure of the products can be conveniently controlled by simply varying the concentration of HnX acids, and the organic solvents employed play a vital role in the formation of the nanotubes by effectively controlling the diffusion rates of different species of reacting ions. As a demonstration, the as-prepared AgCl and Ag3PO4 nanotubes exhibit enhanced photocatalytic activity and favorable recyclability for the photodegradation of rhodamine B (RhB) under visible-light irradiation.This work presents a rapid nanotube fabrication method for a series of silver compounds AgnX, such as Ag2S, AgCl, Ag3PO4, and Ag2C2O4, from pregrown Ag2CO3 nanorod templates. The anion exchange process involved takes place in non-aqueous solutions just at room temperature and completes within 10 minutes. An acid-etching anion exchange reaction mechanism has been proved underneath the transformation process from Ag2CO3 nanorods to AgnX nanotubes by the observation of an intermediate yolk-shell nanostructure. It has been found that the final structure of the products can be conveniently controlled by simply varying the concentration of HnX acids, and the organic solvents employed play a vital role in the formation of the nanotubes by effectively controlling the diffusion rates of different species of reacting ions. As a demonstration, the as-prepared AgCl and Ag3PO4 nanotubes exhibit enhanced photocatalytic activity and favorable recyclability for the

  2. Alkaline etch system qualification

    SciTech Connect

    Goldammer, S.E.; Pemberton, S.E.; Tucker, D.R.

    1997-04-01

    Based on the data from this qualification activity, the Atotech etch system, even with minimum characterization, was capable of etching production printed circuit products as good as those from the Chemcut system. Further characterization of the Atotech system will improve its etching capability. In addition to the improved etch quality expected from further characterization, the Atotech etch system has additional features that help reduce waste and provide for better consistency in the etching process. The programmable logic controller and computer will allow operators to operate the system manually or from pre-established recipes. The evidence and capabilities of the Atotech system made it as good as or better than the Chemcut system for etching WR products. The Printed Wiring Board Engineering Department recommended that the Atotech system be released for production. In December 1995, the Atotech system was formerly qualified for production.

  3. Evaluation of Meterorite Amono Acid Analysis Data Using Multivariate Techniques

    NASA Technical Reports Server (NTRS)

    McDonald, G.; Storrie-Lombardi, M.; Nealson, K.

    1999-01-01

    The amino acid distributions in the Murchison carbonaceous chondrite, Mars meteorite ALH84001, and ice from the Allan Hills region of Antarctica are shown, using a multivariate technique known as Principal Component Analysis (PCA), to be statistically distinct from the average amino acid compostion of 101 terrestrial protein superfamilies.

  4. Rapid formation of Ag(n)X(X = S, Cl, PO4, C2O4) nanotubes via an acid-etching anion exchange reaction.

    PubMed

    Li, Jingjing; Yang, Wenlong; Ning, Jiqiang; Zhong, Yijun; Hu, Yong

    2014-06-07

    This work presents a rapid nanotube fabrication method for a series of silver compounds AgnX, such as Ag2S, AgCl, Ag3PO4, and Ag2C2O4, from pregrown Ag2CO3 nanorod templates. The anion exchange process involved takes place in non-aqueous solutions just at room temperature and completes within 10 minutes. An acid-etching anion exchange reaction mechanism has been proved underneath the transformation process from Ag2CO3 nanorods to AgnX nanotubes by the observation of an intermediate yolk-shell nanostructure. It has been found that the final structure of the products can be conveniently controlled by simply varying the concentration of HnX acids, and the organic solvents employed play a vital role in the formation of the nanotubes by effectively controlling the diffusion rates of different species of reacting ions. As a demonstration, the as-prepared AgCl and Ag3PO4 nanotubes exhibit enhanced photocatalytic activity and favorable recyclability for the photodegradation of rhodamine B (RhB) under visible-light irradiation.

  5. Etch proximity correction through machine-learning-driven etch bias model

    NASA Astrophysics Data System (ADS)

    Shim, Seongbo; Shin, Youngsoo

    2016-03-01

    Accurate prediction of etch bias has become more important as technology node shrinks. A simulation is not feasible solution in full chip level due to excessive runtime, so etch proximity correction (EPC) often relies on empirically obtained rules or models. However, simple rules alone cannot accurately correct various pattern shapes, and a few empirical parameters in model-based EPC is still not enough to achieve satisfactory OCV. We propose a new approach of etch bias modeling through machine learning (ML) technique. A segment of interest (and its surroundings) are characterized by some geometric and optical parameters, which are received by an artificial neural network (ANN), which then outputs predicted etch bias of the segment. The ANN is used as our etch bias model for new EPC, which we propose in this paper. The new etch bias model and EPC are implemented in commercial OPC tool and demonstrated using 20nm technology DRAM gate layer.

  6. The tower technique: a novel technique for the injection of hyaluronic acid fillers.

    PubMed

    Bartus, Cynthia L; Sattler, Gerhard; Hanke, C William

    2011-11-01

    A number of injection techniques have been described for the placement of hyaluronic acid fillers. Such techniques include, but are not limited to, linear threading, depot, fanning, and layering. The tower technique for hyaluronic acid filler injection is a novel variation of the depot and layering techniques. With this technique, the hyaluronic acid is deposited via a perpendicular approach to the deep tissue plane with a gradual tapering of product deposition as the needle is withdrawn. A series of towers or struts are thus created. These towers serve as support structures for the overlying soft tissue, thereby restoring the face to a more youthful appearance. The anatomic areas most amenable to this technique include the lateral brow, the nasolabial folds, the marionette lines, the prejowl sulcus, and the mental region. A detailed description of the tower technique for facial volume restoration with hyaluronic acid fillers is provided. Further prospective studies are needed to compare the efficacy, safety, and longevity of this technique to other commonly used techniques for the injection of hyaluronic acid fillers.

  7. Quantification of proteins using enhanced etching of Ag coated Au nanorods by the Cu2+/bicinchoninic acid pair with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Liu, Wenqi; Hou, Shuai; Yan, Jiao; Zhang, Hui; Ji, Yinglu; Wu, Xiaochun

    2015-12-01

    Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu2+. The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu2+/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu2+ and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical simulation shows that Au nanorods with large aspect ratios and small core sizes show high detection sensitivity. Via optimized sensor design, we achieved an increased sensitivity (the limit of detection was 3.4 ng ml-1) and a wide working range (0.5 to 1000 μg ml-1) compared with the traditional BCA assay. The universal applicability of our method to various proteins further proves its potential in practical applications.Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu2+. The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu2+/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu2+ and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical

  8. Selective enamel etching: effect on marginal adaptation of self-etch LED-cured bond systems in aged Class I composite restorations.

    PubMed

    Souza-Junior, E J; Prieto, L T; Araújo, C T P; Paulillo, L A M S

    2012-01-01

    The aim of this study was to evaluate the influence of previous enamel etch and light emitting diode (LED) curing on gap formation of self-etch adhesive systems in Class I composite restorations after thermomechanical aging (TMA). Thus, on 192 human molars, a box-shaped Class I cavity was prepared maintaining enamel margins. Self-etch adhesives (Clearfil SE and Clearfil S3) were used to restore the preparation with a microhybrid composite. Before application of the adhesives, half of the teeth were enamel etched for 15 seconds with 37% phosphoric acid; the other half were not etched. For the photoactivation of the adhesives and composite, three light-curing units (LCUs) were used: one polywave (Ultra-Lume LED 5, UL) and two single-peak (FlashLite 1401, FL and Radii-cal, RD) LEDs. After this, epoxy resin replicas of the occlusal surface were made, and the specimens were submitted to TMA. New replicas were made from the aged specimens for marginal adaptation analysis by scanning electron microscopy. Data were submitted to Kruskal-Wallis and Wilcoxon tests (α=0.05). Before TMA, when enamel was etched before the application of S3, no gap formation was observed; however, there were gaps at the interface for the other tested conditions, with a statistical difference (p≤0.05). After TMA, the selective enamel etching previous to the S3 application, regardless of the LCU, promoted higher marginal adaptation compared to the other tested groups (p≤0.05). Prior to TMA, higher marginal integrity was observed, in comparison with specimens after TMA (p≤0.05). With regard to Clearfil SE and Clearfil Tri-S cured with FL, no differences of gap formation were found between before and after aging (5.3 ± 3.8 and 7.4 ± 7.5, respectively), especially when the Clearfil Tri-S was used in the conventional protocol. When cured with RD or UL and not etched, Clearfil Tri-S presented the higher gap formation. In conclusion, additional enamel etching promoted better marginal integrity

  9. Light Enhanced Hydrofluoric Acid Passivation: A Sensitive Technique for Detecting Bulk Silicon Defects.

    PubMed

    Grant, Nicholas E

    2016-01-04

    A procedure to measure the bulk lifetime (>100 µsec) of silicon wafers by temporarily attaining a very high level of surface passivation when immersing the wafers in hydrofluoric acid (HF) is presented. By this procedure three critical steps are required to attain the bulk lifetime. Firstly, prior to immersing silicon wafers into HF, they are chemically cleaned and subsequently etched in 25% tetramethylammonium hydroxide. Secondly, the chemically treated wafers are then placed into a large plastic container filled with a mixture of HF and hydrochloric acid, and then centered over an inductive coil for photoconductance (PC) measurements. Thirdly, to inhibit surface recombination and measure the bulk lifetime, the wafers are illuminated at 0.2 suns for 1 min using a halogen lamp, the illumination is switched off, and a PC measurement is immediately taken. By this procedure, the characteristics of bulk silicon defects can be accurately determined. Furthermore, it is anticipated that a sensitive RT surface passivation technique will be imperative for examining bulk silicon defects when their concentration is low (<10(12) cm(-3)).

  10. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching

    USGS Publications Warehouse

    Gratz, A.J.; Fisler, D.K.; Bohor, B.F.

    1996-01-01

    Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.

  11. From Hypo- to Hypersuppression: Effect of Amino Acid Substitutions on the RNA-Silencing Suppressor Activity of the Tobacco etch potyvirus HC-Pro

    PubMed Central

    Torres-Barceló, Clara; Martín, Susana; Daròs, José-Antonio; Elena, Santiago F.

    2008-01-01

    RNA silencing participates in several important functions: from the regulation of cell metabolism and organism development to sequence-specific antiviral defense. Most plant viruses have evolved proteins that suppress RNA silencing and that in many cases are multifunctional. Tobacco etch potyvirus (TEV) HC-Pro protein suppresses RNA silencing and participates in aphid-mediated transmission, polyprotein processing, and genome amplification. In this study, we have generated 28 HC-Pro amino acid substitution mutants and quantified their capacity as suppressors of RNA silencing in a transient expression assay. Most mutations either had no quantitative effect or completely abolished silencing suppression (10 in each class), 3 caused a significant decrease in the activity, and 5 significantly increased it, revealing an unexpected high frequency of mutations conferring hypersuppressor activity. A representative set of the mutant alleles, containing both hypo- and hypersuppressors, was further analyzed for their effect on TEV accumulation and the strength of induced symptoms. Whereas TEV variants with hyposuppressor mutants were far less virulent than wild-type TEV, those with hypersuppressor alleles induced symptoms that were not more severe than those characteristic of the wild-type virus, suggesting that there is not a perfect match between suppression and virulence. PMID:18780745

  12. Effects of rhBMP-2 on Sandblasted and Acid Etched Titanium Implant Surfaces on Bone Regeneration and Osseointegration: Spilt-Mouth Designed Pilot Study

    PubMed Central

    Kim, Nam-Ho; Lee, So-Hyoun; Ryu, Jae-Jun; Choi, Kyung-Hee; Huh, Jung-Bo

    2015-01-01

    This study was conducted to evaluate effects of rhBMP-2 applied at different concentrations to sandblasted and acid etched (SLA) implants on osseointegration and bone regeneration in a bone defect of beagle dogs as pilot study using split-mouth design. Methods. For experimental groups, SLA implants were coated with different concentrations of rhBMP-2 (0.1, 0.5, and 1 mg/mL). After assessment of surface characteristics and rhBMP-2 releasing profile, the experimental groups and untreated control groups (n = 6 in each group, two animals in each group) were placed in split-mouth designed animal models with buccal open defect. At 8 weeks after implant placement, implant stability quotients (ISQ) values were recorded and vertical bone height (VBH, mm), bone-to-implant contact ratio (BIC, %), and bone volume (BV, %) in the upper 3 mm defect areas were measured. Results. The ISQ values were highest in the 1.0 group. Mean values of VBH (mm), BIC (%), and BV (%) were greater in the 0.5 mg/mL and 1.0 mg/mL groups than those in 0.1 and control groups in buccal defect areas. Conclusion. In the open defect area surrounding the SLA implant, coating with 0.5 and 1.0 mg/mL concentrations of rhBMP-2 was more effective, compared with untreated group, in promoting bone regeneration and osseointegration. PMID:26504807

  13. Quantification of proteins using enhanced etching of Ag coated Au nanorods by the Cu(2+)/bicinchoninic acid pair with improved sensitivity.

    PubMed

    Liu, Wenqi; Hou, Shuai; Yan, Jiao; Zhang, Hui; Ji, Yinglu; Wu, Xiaochun

    2016-01-14

    Plasmonic nanosensors show great potential in ultrasensitive detection, especially with the plasmon peak position as the detection modality. Herein, a new sensitive but simple total protein quantification method termed the SPR-BCA assay is demonstrated by combining plasmonic nanosensors with protein oxidation by Cu(2+). The easy tuning of localized surface plasmon resonance (LSPR) features of plasmonic nanostructures makes them ideal sensing platforms. We found that the Cu(2+)/bicinchoninic acid (BCA) pair exhibits accelerated etching of Au@Ag nanorods and results in the LSPR peak shift. A linear relationship between Cu(2+) and the LSPR shift is found in a double logarithmic coordinate. Such double logarithm relationship is transferred to the concentration of proteins. Theoretical simulation shows that Au nanorods with large aspect ratios and small core sizes show high detection sensitivity. Via optimized sensor design, we achieved an increased sensitivity (the limit of detection was 3.4 ng ml(-1)) and a wide working range (0.5 to 1000 μg ml(-1)) compared with the traditional BCA assay. The universal applicability of our method to various proteins further proves its potential in practical applications.

  14. Surface engineering of SiC via sublimation etching

    NASA Astrophysics Data System (ADS)

    Jokubavicius, Valdas; Yazdi, Gholam R.; Ivanov, Ivan G.; Niu, Yuran; Zakharov, Alexei; Iakimov, Tihomir; Syväjärvi, Mikael; Yakimova, Rositsa

    2016-12-01

    We present a technique for etching of SiC which is based on sublimation and can be used to modify the morphology and reconstruction of silicon carbide surface for subsequent epitaxial growth of various materials, for example graphene. The sublimation etching of 6H-, 4H- and 3C-SiC was explored in vacuum (10-5 mbar) and Ar (700 mbar) ambient using two different etching arrangements which can be considered as Si-C and Si-C-Ta chemical systems exhibiting different vapor phase stoichiometry at a given temperature. The surfaces of different polytypes etched under similar conditions are compared and the etching mechanism is discussed with an emphasis on the role of tantalum as a carbon getter. To demonstrate applicability of such etching process graphene nanoribbons were grown on a 4H-SiC surface that was pre-patterned using the thermal etching technique presented in this study.

  15. Is total-etch dead? Evidence suggests otherwise.

    PubMed

    Alex, Gary

    2012-01-01

    Both the total-etch and self-etching systems of today have the potential to provide durable adhesive interface, and despite the proclamations of some, total-etch is alive and well. Indeed, evidence indicates that a viable and growing market remains for total-etch adhesive systems. This paper will discuss the origins, evolution, and idiosyncrasies of the total-etch technique as well as its place in dentistry today. New innovations, the use of antimicrobials to inhibit matrix metalloproteinases (MMPs), and sensitivity issues will also be discussed.

  16. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  17. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  18. Metal etching with reactive gas cluster ion beams using pickup cell

    SciTech Connect

    Toyoda, Noriaki; Yamada, Isao

    2012-11-06

    Mixed gas cluster ion beams were formed using pickup cell for metal etching. O{sub 2} neutral clusters pick up acetic acid and formed mixed cluster beam. By using O{sub 2}-GCIB with acetic acid, enhancement of Cu etching was observed. Because of dense energy deposition by GCIB, etching of Cu proceeds by CuO formation, enhancement of chemical reaction with acetic acid and desorption of etching products. Surface roughening was not observed on poly crystalline Cu because of the small dependence of etching rate on crystal orientation. Halogen free and low-temperature metal etching with GCIB using pickup cell is possible.

  19. Sputtered gold mask for deep chemical etching of silicon

    NASA Technical Reports Server (NTRS)

    Pisciotta, B. P.; Gross, C.; Olive, R. S.

    1975-01-01

    Sputtered mask resists chemical attack from acid and has adherence to withstand prolonged submergence in etch solution without lifting from silicon surface. Even under prolonged etch conditions with significant undercutting, gold mask maintained excellent adhesion to silicon surface and imperviousness to acid.

  20. Nanoparticle-based etching of silicon surfaces

    DOEpatents

    Branz, Howard [Boulder, CO; Duda, Anna [Denver, CO; Ginley, David S [Evergreen, CO; Yost, Vernon [Littleton, CO; Meier, Daniel [Atlanta, GA; Ward, James S [Golden, CO

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  1. The Effects of Using a Commercial Grade Plasma Etching Chamber to Etch Anodized Niobium Surfaces

    NASA Astrophysics Data System (ADS)

    Epperson, Christiana; Drake, Dereth; Winska, Kalina

    2015-11-01

    Anodized niobium surfaces are used in particle accelerators for construction of the superconducting cavities. These surfaces must be cleaned regularly to remove containments and maintain the surface smoothness. The most common method used is that of chemically etching the surface using acid baths; however, this process can affect the smoothness of the layer and is extremely time consuming and hazardous. Plasma etching is one alternative that has shown great promise. We are using a commercial grade plasma etching chamber to clean anodized niobium samples that have varying oxide layer thicknesses. Spectral profiles of the surfaces of the samples are taken before and after etching. All measured results are compared to a simple theoretical model in order to determine the effects of the etching process on each surface.

  2. Galvanic etch stop for Si in KOH

    NASA Astrophysics Data System (ADS)

    Connolly, E. J.; French, P. J.; Xia, X. H.; Kelly, J. J.

    2004-08-01

    Etch stops and etch-stopping techniques are essential 'tools' for 2D and 3D MEMS devices. Until now, use of a galvanic etch stop (ES) for micromachining in alkaline solutions was usually prohibited due to the large Au:Si area needed and/or high oxygen content required to achieve the ES. We report a new galvanic ES which requires a Au:exposed silicon area ratio of only ~1. Thus for the first time a practical galvanic ES for KOH has been achieved. The ES works by adding small amounts of sodium hypochlorite, NaOCl, to KOH solutions. Essentially the NaOCl increases the oxygen content in the KOH etchant. The dependancy of the galvanic ES on KOH concentration and temperature is investigated. Also, we report on the effects of the added NaOCl on etch rates. SEM images are used to examine the galvanically etch-stopped membranes and their surface morphology. For 33% KOH solutions the galvanic etch stop worked well, producing membranes with uniform thickness ~6 µm (i.e. slightly greater than the deposited epilayer). For 20% KOH solutions, the galvanic etch stop still worked, but the resulting membranes were a little thicker (~10 µm).

  3. High density plasma etching of magnetic devices

    NASA Astrophysics Data System (ADS)

    Jung, Kee Bum

    Magnetic materials such as NiFe (permalloy) or NiFeCo are widely used in the data storage industry. Techniques for submicron patterning are required to develop next generation magnetic devices. The relative chemical inertness of most magnetic materials means they are hard to etch using conventional RIE (Reactive Ion Etching). Therefore ion milling has generally been used across the industry, but this has limitations for magnetic structures with submicron dimensions. In this dissertation, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma) for the etching of magnetic materials (NiFe, NiFeCo, CoFeB, CoSm, CoZr) and other related materials (TaN, CrSi, FeMn), which are employed for magnetic devices like magnetoresistive random access memories (MRAM), magnetic read/write heads, magnetic sensors and microactuators. This research examined the fundamental etch mechanisms occurring in high density plasma processing of magnetic materials by measuring etch rate, surface morphology and surface stoichiometry. However, one concern with using Cl2-based plasma chemistry is the effect of residual chlorine or chlorinated etch residues remaining on the sidewalls of etched features, leading to a degradation of the magnetic properties. To avoid this problem, we employed two different processing methods. The first one is applying several different cleaning procedures, including de-ionized water rinsing or in-situ exposure to H2, O2 or SF6 plasmas. Very stable magnetic properties were achieved over a period of ˜6 months except O2 plasma treated structures, with no evidence of corrosion, provided chlorinated etch residues were removed by post-etch cleaning. The second method is using non-corrosive gas chemistries such as CO/NH3 or CO2/NH3. There is a small chemical contribution to the etch mechanism (i.e. formation of metal carbonyls) as determined by a comparison with Ar and N2 physical sputtering. The discharge should be NH3

  4. Improved wet bonding of methyl methacrylate-tri-n-butylborane resin to dentin etched with ten percent phosphoric acid in the presence of ferric ions.

    PubMed

    Iwasaki, Yasuhiko; Toida, Tetsuya; Nakabayashi, Nobuo

    2004-03-01

    The objective of this study was to determine the influence of dissolved dentinal substances in demineralized dentin on the hybridization of resin for bonding to dentin. It was hypothesized that these substances, including polyelectrolytes, significantly change the substrates, which could then be assessed by the addition of Na(+), Ca(2+), or Fe(3+) in 10% phosphoric acid. Bovine dentin specimens were etched for 10 s with a solution of 10% phosphoric acid (control) or of 22.0 mM dissolved sodium chloride (10P-Na), calcium chloride (10P-Ca), or ferric chloride (10P-Fe). The specimens were then rinsed, blot-dried, and primed three times with 5% 4-methacryloyloxyethyl trimellitate anhydride in acetone for 60 s. Methyl methacrylate-tri-n-butylborane resin was then applied. The tensile bond strength of each of the dumbbell-shaped specimens was then measured. The fractured surfaces and modified cross-sections were examined by scanning electron microscopy. The cross-sections were soaked in 6N HCl for 10 s and then in 1% sodium hypochlorite for 30 min to determine the resin content in the hybridized specimens. Shrinkage of the demineralized dentins upon drying was assessed by atomic force microscopy. The tensile bond strengths were 10.8 +/- 4.5 (control), 15.0 +/- 7.0 (10P-Na), 19.3 +/- 5.5 (10P-Ca), and 27.8 +/- 8.1 (10P-Fe) MPa. The atomic force microscopy studies showed that Fe(3+) minimized the shrinkage by drying for 10 s but Ca(2+) and Na(+) did not decrease the shrinkage the same as the control. The results support the hypothesis that the monomer permeability of wet demineralized dentin is effectively improved by dissolving ferric ions in the phosphoric acid, resulting in a greater bond strength and higher resin content in the hybridized dentin. The dissolved dentinal substances, including the polyelectrolytes, had a significant influence on the characteristics of the demineralized dentin, changing the degree of hybridization and bonding.

  5. Simulation of Plasma Etching

    NASA Astrophysics Data System (ADS)

    Moroz, Paul; Moroz, Daniel

    2016-09-01

    Plasma is an indispensable tool in materials processing. It provides chemically and physically active species and directional flows of energetic species enabling deep etching with good straight profiles required by the industry. At present time, the only feasible methods of simulating the resulting feature profiles are those which fall within the scope of feature-scale (FS) simulation methods, utilizing engineering-type of reactions of incoming species with solid materials. At the same time, the molecule dynamics (MD) methods are emerging as an important alternative approach to simulating extremely small features with sizes below of a few nanometers. In our presentation, we discuss both FS methods implemented into the FPS3D code and MD methods implemented into the MDSS code. We also discuss the ways of extracting information about the reactions and interactions used in FS codes from the MD simulations utilizing the approach of interatomic potentials. For this presentation, we selected two types of simulation cases for etching. The first type considers simulation of mostly etching and implantation, such as during Si etching by chlorine-argon plasma. The second type considers ALE (atomic layer etch) when etching is done by a cyclic process of surface passivation/activation with the following process of etching/removal of a single atomic layer per cycle or per a few cycles, allowing ultimate processing accuracy. The simulations are carried out with both FS and MD codes to provide the data for relation and comparison between those two very different approaches.

  6. Dry etched SiO2 Mask for HgCdTe Etching Process

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  7. Black Germanium fabricated by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the <110> crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to <2.5 % for normal incidence and still to <6 % at an angle of incidence of 70°. The presented Black Germanium might find applications as low-cost AR structure in optoelectronics and IR optics.

  8. Analysis of p-Si macropore etching using FFT-impedance spectroscopy.

    PubMed

    Ossei-Wusu, Emmanuel; Carstensen, Jürgen; Föll, Helmut

    2012-06-20

    The dependence of the etch mechanism of lithographically seeded macropores in low-doped p-type silicon on water and hydrofluoric acid (HF) concentrations has been investigated. Using different HF concentrations (prepared from 48 and 73 wt.% HF) in organic electrolytes, the pore morphologies of etched samples have been related to in situ impedance spectra (IS) obtained by Fast Fourier Transform (FFT) technique. It will be shown that most of the data can be fitted with a simple equivalent circuit model. The model predicts that the HF concentration is responsible for the net silicon dissolution rate, while the dissolution rate selectivity at the pore tips and walls that ultimately enables pore etching depends on the water content. The 'quality' of the pores increases with decreasing water content in HF/organic electrolytes.

  9. Effects of chlorhexidine in self-etching adhesive: 24 hours results.

    PubMed

    Nishitani, Yoshihiro; Hosaka, Keiichi; Hoshika, Tomohiro; Yoshiyama, Masahiro; Pashley, David H

    2013-01-01

    It is known that chlorhexidine (CHX) does not inhibit micro-tensile bond strengths (MTBS) when it is used in etch-and-rinse adhesives. In that technique, CHX is applied to dentin as a primer after phosphoric acid-etching before bonding with Single Bond. It would be more convenient if it is possible to incorporate CHX into the adhesive. The purpose of this study was to compare the MTBS and the FT-IR percent conversion of an all-in-one self-etching adhesives contained varying concentration of CHX. Extracted human third molars were bonded with a control all-in-one adhesive or experimental versions containing 0.5, 1, 2 or 5% CHX. The MTBS and the percent conversion of experimental adhesives containing up to 1% CHX were not significantly CHX-free control adhesives. However, addition of 2 or especially 5% CHX experimental adhesives produced significant reductions in both the MTBS and the percent conversion.

  10. Bulk Etch Rate and Swell Rate of CR-39

    NASA Astrophysics Data System (ADS)

    Clarkson, David; Ume, Rubab; Sheets, Rebecca; Regan, Sean; Sangster, Craig; Padalino, Stephen; McLean, James

    2016-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C, producing micron-scale signal pits at the nuclear track sites. The development of these pits depends on both the bulk etch rate and the faster etch rate along the track, and is complicated by swelling as water is absorbed. Contrary to common etching models, we find the bulk etch rate to be depth dependent within 15 μ m of the surface, as revealed by swelling TASTRACK CR-39 pieces to their maximum capacity prior to etching. The bulk etch rate was measured using the standard mass method as well as the fission fragment track diameter method. Combining models of swelling and etching rates predicts the progress of bulk etching during a standard etch, without pre-swelling. This result has implications for the understanding the chemistry of the etch process, as well as the outcome of CR-39 surface preparation methods. Funded in part by a LLE contract through the DOE.

  11. Anisotropic etching of Al by a directed Cl2 flux

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Mountain, R. W.; Lincoln, G. A.; Randall, J. N.

    1986-01-01

    A new Al etching technique is described that uses an ion beam from a Kaufman ion source and a directed Cl2 flux. The ion beam is used primarily to remove the native oxide and to allow the Cl2 to spontaneously react with the Al film forming volatile Al2Cl6. By controlling both the flux equivalent pressure of Cl2 and the ion beam current, this etching technique makes possible the anisotropic etching of Al with etch rates from 100 nm/min to nearly 10 microns/min with a high degree of selectivity.

  12. A technique of repairing acid burns of the stomach.

    PubMed Central

    Gupta, S.

    1988-01-01

    A technique of repairing acid burns of the stomach which are followed by fibrosis and stricture formation, is described. The operation has been done on 3 patients with a maximum follow-up of 4 years. The method has an advantage over conventional gastrojejunostomy of enlarging small gastric remnants especially when an oesophageal bypass is either necessary at the same time or later on. Also normal gastroduodenal continuity is maintained. Images Fig. 1 Fig. 2 Fig. 3 PMID:3408163

  13. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  14. Bulk filling of Class II cavities with a dual-cure composite: Effect of curing mode and enamel etching on marginal adaptation

    PubMed Central

    Bortolotto, Tissiana; Roig, Miguel; Krejci, Ivo

    2014-01-01

    Objectives: This study attempted to find a simple adhesive restorative technique for class I and II cavities on posterior teeth. Study Design: The tested materials were a self-etching adhesive (Parabond, Coltène/Whaledent) and a dual-cure composite (Paracore, Coltène/Whaledent) used in bulk to restore the cavities. Class II MO cavities were performed and assigned to 4 groups depending on the orthophosphoric acid (H3PO4) conditioning of enamel and polymerization method used (chemical or dual). Specimens were subjected to quantitative marginal analysis before and after thermo-mechanical loading. Results: Higher percentages of marginal adaptation at the total margin length, both before and after thermo-mechanical loading, were found in groups in which enamel was etched with phosphoric acid, without significant differences between the chemically and dual-cured modes. The restorations performance was similar on enamel and dentin, obtaining low results of adaptation on occlusal enamel in the groups without enamel etching, the lowest scores were on cervical dentin in the group with no ortophosphoric acid and self-cured. Conclusions: A dual-cure composite applied in bulk on acid etched enamel obtained acceptable marginal adaptation results, and may be an alternative technique for the restoration of class II cavities. Key words:Dual-cure composite, bulk technique, class II restoration, selective enamel etching, marginal adaptation. PMID:25674316

  15. Plasma etching: Yesterday, today, and tomorrow

    SciTech Connect

    Donnelly, Vincent M.; Kornblit, Avinoam

    2013-09-15

    The field of plasma etching is reviewed. Plasma etching, a revolutionary extension of the technique of physical sputtering, was introduced to integrated circuit manufacturing as early as the mid 1960s and more widely in the early 1970s, in an effort to reduce liquid waste disposal in manufacturing and achieve selectivities that were difficult to obtain with wet chemistry. Quickly, the ability to anisotropically etch silicon, aluminum, and silicon dioxide in plasmas became the breakthrough that allowed the features in integrated circuits to continue to shrink over the next 40 years. Some of this early history is reviewed, and a discussion of the evolution in plasma reactor design is included. Some basic principles related to plasma etching such as evaporation rates and Langmuir–Hinshelwood adsorption are introduced. Etching mechanisms of selected materials, silicon, silicon dioxide, and low dielectric-constant materials are discussed in detail. A detailed treatment is presented of applications in current silicon integrated circuit fabrication. Finally, some predictions are offered for future needs and advances in plasma etching for silicon and nonsilicon-based devices.

  16. Unveiling the shape-diversified silicon nanowires made by HF/HNO3 isotropic etching with the assistance of silver.

    PubMed

    Chen, Chia-Yun; Wong, Ching-Ping

    2015-01-21

    Hydrofluoric (HF)/nitric (HNO3)/acetic (CH3COOH) acid, normally referred to as the HNA method, is a widely utilized technique for performing isotropic etching on silicon (Si) in industrial Si-based processing and device construction. Here, we reported a novel etching strategy based on a HF/HNO3 process with the assistance of silver (Ag) nano-seeds, offering good controllability in preparing diversified Si nanostructure arrays with particularly smooth top surfaces. The involved mechanism was visualized by systematically investigating both the time and temperature dependencies on the etching kinetics with various ratios of HF to HNO3. Moreover, by testing different Ag(+)-ion containing oxidants on Si etching, we have re-examined the state-of-the-art metal-assisted chemical etching (MaCE) using HF/AgNO3 etchants. In contrast with previous reports, we found that the interplay of hole injections from Ag(+) and NO3(-) ions to the valence band of Si collectively contributes to the unidirectional dissolution of Si. Finally, we explored the engineering of the Ag nano-seeds to regularize the orientation of the etched nanowires formed on non-Si (100) wafers, which further provides a reliable pathway for constructing the desired morphologies of one-dimensional Si nanostructures regardless of wafer orientation.

  17. Lateral electrochemical etching of III-nitride materials for microfabrication

    DOEpatents

    Han, Jung

    2017-02-28

    Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.

  18. Plasma etching a ceramic composite. [evaluating microstructure

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  19. Recipes and Techniques for Producing Artist's Materials.

    ERIC Educational Resources Information Center

    School Arts, 1979

    1979-01-01

    Instructions are given for making oil ground, glue gesso, glue water size, oil colors, damar varnish, water colors, encaustic painting, egg tempera painting, etching inks, etching grounds, etching acids, and sugar-lift. (SJL)

  20. Etching radical controlled gas chopped deep reactive ion etching

    DOEpatents

    Olynick, Deidre; Rangelow, Ivo; Chao, Weilun

    2013-10-01

    A method for silicon micromachining techniques based on high aspect ratio reactive ion etching with gas chopping has been developed capable of producing essentially scallop-free, smooth, sidewall surfaces. The method uses precisely controlled, alternated (or chopped) gas flow of the etching and deposition gas precursors to produce a controllable sidewall passivation capable of high anisotropy. The dynamic control of sidewall passivation is achieved by carefully controlling fluorine radical presence with moderator gasses, such as CH.sub.4 and controlling the passivation rate and stoichiometry using a CF.sub.2 source. In this manner, sidewall polymer deposition thicknesses are very well controlled, reducing sidewall ripples to very small levels. By combining inductively coupled plasmas with controlled fluorocarbon chemistry, good control of vertical structures with very low sidewall roughness may be produced. Results show silicon features with an aspect ratio of 20:1 for 10 nm features with applicability to nano-applications in the sub-50 nm regime. By comparison, previous traditional gas chopping techniques have produced rippled or scalloped sidewalls in a range of 50 to 100 nm roughness.

  1. Ion beam sputter etching

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1986-01-01

    An ion beam etching process which forms extremely high aspect ratio surface microstructures using thin sputter masks is utilized in the fabrication of integrated circuits. A carbon rich sputter mask together with unmasked portions of a substrate is bombarded with inert gas ions while simultaneous carbon deposition occurs. The arrival of the carbon deposit is adjusted to enable the sputter mask to have a near zero or even slightly positive increase in thickness with time while the unmasked portions have a high net sputter etch rate.

  2. Ridge structure etching of LiNbO 3 crystal for optical waveguide applications

    NASA Astrophysics Data System (ADS)

    Park, W. J.; Yang, W. S.; Kim, W. K.; Lee, H. Y.; Lim, J.-W.; Isshiki, M.; Yoon, D. H.

    2006-02-01

    A plasma dry etching technique has been applied to the fabrication of LiNbO3 optical waveguide with a ridge structure for broadband operation. The etching characteristics of a LiNbO3 single crystal have been investigated according to various ratios of Ar/C3F8 gas mixture. A Ni metal was used as a dry etching mask. The effects of a gas mixture ratio on etching profile angle, sidewall roughness and etching rate were also studied. The etching surface roughness was evaluated by atomic force microscopy (AFM). The etch rate and profile was observed by scanning electron microscopy (SEM). The optimum etching conditions, considering etch rate, profile and surface roughness, were obtained at the 20 sccm C3F8 gas flow.

  3. Extreme ultraviolet lithography mask etch study and overview

    NASA Astrophysics Data System (ADS)

    Wu, Banqiu; Kumar, Ajay; Chandrachood, Madhavi; Sabharwal, Amitabh

    2013-04-01

    enhance the resolution. Other resolution enhancement techniques, such as phase shifting, are also in consideration for EUVL. Phase-shifting will involve partial etching of the multilayer. The trend to use shorter EUV wavelength (e.g., 6.7 nm) for enhancing resolution will use new multilayer and absorber compositions, and will require new etch process development efforts. TaBO/TaBN absorber layers (features down to 40 nm) were etched with vertical profiles, low etch CD bias, and 1.7 nm etch CD uniformity (3σ). In the light shed application, Mo/Si multilayer etching yielded vertical profiles and high etch selectivity.

  4. Electrolytic etching process provides effective bonding surface on stainless steel

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Electrolytic etching process prepares surfaces of a stainless steel shell for reliable, high strength adhesive bonding to dielectric materials. The process uses a 25 percent aqueous solution of phosphoric acid.

  5. Chemical downstream etching of tungsten

    SciTech Connect

    Blain, M.G.; Jarecki, R.L.; Simonson, R.J.

    1998-07-01

    The downstream etching of tungsten and tungsten oxide has been investigated. Etching of chemical vapor deposited tungsten and e-beam deposited tungsten oxide samples was performed using atomic fluorine generated by a microwave discharge of argon and NF{sub 3}. Etching was found to be highly activated with activation energies approximated to be 6.0{plus_minus}0.5thinspkcal/mol and 5.4{plus_minus}0.4thinspkcal/mol for W and WO{sub 3}, respectively. In the case of F etching of tungsten, the addition of undischarged nitric oxide (NO) directly into the reaction chamber results in the competing effects of catalytic etch rate enhancement and the formation of a nearly stoichiometric WO{sub 3} passivating tungsten oxide film, which ultimately stops the etching process. For F etching of tungsten oxide, the introduction of downstream NO reduces the etch rate. {copyright} {ital 1998 American Vacuum Society.}

  6. Etching of nanopatterns in silicon using nanopantography

    NASA Astrophysics Data System (ADS)

    Xu, Lin; Nasrullah, Azeem; Chen, Zhiying; Jain, Manish; Ruchhoeft, Paul; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    Nanopantography is a technique for parallel writing of nanopatterns over large areas. A broad ion beam impinges on a substrate containing many microfabricated electrostatic lenses that focus ions to spots at the substrate surface. Here, etching of nanopatterns is demonstrated. The substrate was continuously titled about x and y axes with 0.11° precision, corresponding to a translation of the ion foci of 1.5nm on the substrate. With tilting in one direction, 15nm full width at half maximum trenches 45nm deep were etched into a Si wafer using an Ar+ beam in a Cl2 ambient. T-shaped patterns were etched by tilting the substrates in two directions.

  7. 2D Raman spectroscopy as an alternative technique for distinguishing oleanoic acid and ursolic acid

    NASA Astrophysics Data System (ADS)

    Mello, César; Crotti, Antônio E. M.; Vessecchi, Ricardo; Cunha, Wilson R.

    2006-11-01

    The isomeric triterpenes oleanoic acid and ursolic acid are compounds exhibiting a variety of biological activities. Structurally, they differ only in the position of the methyl group (C-29) at ring E. The differentiation of these two compounds requires a detailed analysis of their 13C and 1H NMR spectra which is often tedious and time-consuming, besides the need of using deuterated solvents. In this work, we report the use of bidimensional Raman spectroscopy as a fast technique to distinguish these two bioactive isomeric compounds.

  8. Effect of Ethylene diamine tetra acetic acid and sodium hypochlorite solution conditioning on microtensile bond strength of one-step self-etch adhesives

    PubMed Central

    Kasraei, Shahin; Azarsina, Mohadese; Khamverdi, Zahra

    2013-01-01

    Background: Attempts to improve bond strength of self-etch adhesives can enhance the durability of composite restorations. Aims: The aim of the present study was to evaluate the effect of collagen and smear layer removal with sodium hypochlorite solution (NaOCl) and EDTA on micro-tensile bond strength (μTBS) of self-etch adhesives to dentin. Settings and Design: It was an in-vitro study. Materials and Methods: Seventy-two teeth were divided into eight groups and their crowns were ground perpendicular to their long axis to expose dentin. The teeth were polished with silicon-carbide papers. The groups were treated as follows: No conditioning, 0.5-M EDTA conditioning, 2.5% NaOCl conditioning, NaOCl + EDTA conditioning. The surfaces were rinsed and blot-dried. Clearfil S3 and I-Bond were applied according to manufacturers’ instructions and restored with Z100 composite. After 500 cycles of thermo-cycling between 5°C and 55°C, the samples were sectioned and tested for μTBS. Statistical Analysis: Data were analyzed by two-way ANOVA and Tukey-HSD test. Results: The highest μTBS was recorded with Clearfil S3 + NaOCl + EDTA, and the lowest was recorded with I-Bond without conditioning. μTBS in EDTA-and EDTA + NaOCl-treated groups was significantly higher than the control and NaOCl-conditioned groups. Conclusions: Application of EDTA or EDTA + NaOCl before one-step self-etch adhesives increased μTBS. PMID:23833459

  9. Atomic force microscopy observation of enamel surfaces treated with self-etching primer.

    PubMed

    Hashimoto, Yusuke; Hashimoto, Yoshiya; Nishiura, Aki; Matsumoto, Naoyuki

    2013-01-01

    Orthodontists use a self-etching adhesive system when attaching brackets to enamel. The purpose of this study was to evaluate the erosion effects of common clinically used adhesive systems on human enamel surfaces by atomic force microscopy (AFM). Four commercially available adhesive systems (i. e., Kurasper F, Beauty Ortho Bond, Orthophia LC, and Transbond XT) were applied to ground enamel surfaces of extracted human teeth. Enamel surface roughness (ESR), absolute depth profile (ADP), and surface hardness were evaluated by AFM. The ESR and ADP were significantly higher after the pretreatment with the phosphoric acid-etching adhesive system than after the pretreatments with the three self-etching adhesive systems. The surface nanohardness decreased after the pretreatment with the phosphoric acid-etching adhesive system but increased after the pretreatments with the self-etching adhesive systems. These results suggest that the use of a self-etching primer for enamel conditioning might prevent decalcification caused by phosphoric acid etching.

  10. Orthodox etching of HVPE-grown GaN

    SciTech Connect

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  11. Consideration of VT5 etch-based OPC modeling

    NASA Astrophysics Data System (ADS)

    Lim, ChinTeong; Temchenko, Vlad; Kaiser, Dieter; Meusel, Ingo; Schmidt, Sebastian; Schneider, Jens; Niehoff, Martin

    2008-03-01

    Including etch-based empirical data during OPC model calibration is a desired yet controversial decision for OPC modeling, especially for process with a large litho to etch biasing. While many OPC software tools are capable of providing this functionality nowadays; yet few were implemented in manufacturing due to various risks considerations such as compromises in resist and optical effects prediction, etch model accuracy or even runtime concern. Conventional method of applying rule-based alongside resist model is popular but requires a lot of lengthy code generation to provide a leaner OPC input. This work discusses risk factors and their considerations, together with introduction of techniques used within Mentor Calibre VT5 etch-based modeling at sub 90nm technology node. Various strategies are discussed with the aim of better handling of large etch bias offset without adding complexity into final OPC package. Finally, results were presented to assess the advantages and limitations of the final method chosen.

  12. Deep and vertical silicon bulk micromachining using metal assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Zahedinejad, Mohammad; Delaram Farimani, Saeed; Khaje, Mahdi; Mehrara, Hamed; Erfanian, Alireza; Zeinali, Firooz

    2013-05-01

    In this paper, a newfound and simple silicon bulk micromachining process based on metal-assisted chemical etching (MaCE) is proposed which opens a whole new field of research in MEMS technology. This method is anisotropic and by controlling the etching parameters, deep vertical etching, relative to substrate surface, can be achieved in micrometer size for <1 0 0> oriented Si wafer. By utilizing gold as a catalyst and a photoresist layer as the single mask layer for etching, 60 µm deep gyroscope micromachined structures have been fabricated for 2 µm features. The results indicate that MaCE could be the only wet etching method comparable to conventional dry etching recipes in terms of achievable etch rate, aspect ratio, verticality and side wall roughness. It also does not need a vacuum chamber and the other costly instruments associated with dry etching techniques.

  13. Reactive ion etching of quartz and Pyrex for microelectronic applications

    NASA Astrophysics Data System (ADS)

    Zeze, D. A.; Forrest, R. D.; Carey, J. D.; Cox, D. C.; Robertson, I. D.; Weiss, B. L.; Silva, S. R. P.

    2002-10-01

    The reactive ion etching of quartz and Pyrex substrates was carried out using CF4/Ar and CF4/O2 gas mixtures in a combined radio frequency (rf)/microwave (μw) plasma. It was observed that the etch rate and the surface morphology of the etched regions depended on the gas mixture (CF4/Ar or CF4/O2), the relative concentration of CF4 in the gas mixture, the rf power (and the associated self-induced bias) and microwave power. An etch rate of 95 nm/min for quartz was achieved. For samples covered with a thin metal layer, ex situ high resolution scanning electron microscopy and atomic force microscopy imaging indicated that, during etching, surface roughness is produced on the surface beneath the thin metallic mask. Near vertical sidewalls with a taper angle greater than 80° and smooth etched surfaces at the nanometric scale were fabricated by carefully controlling the etching parameters and the masking technique. A simulation of the electrostatic field distribution was carried out to understand the etching process using these masks for the fabrication of high definition features.

  14. Nonconventional techniques for separation of biosynthetic amino acids.

    PubMed

    Kloetzer, Lenuţa; Poştaru, Mădălina; Cheptea, Corina; Caşcaval, D; Galaction, Anca-Irina

    2014-01-01

    Amino acids can be obtained by biosynthesis, by protein hydrolysis or by extraction from natural sources. The most efficient methods are the first two, but the separation of amino acids from fermentation broths or protein hydrolysates is rather difficult. Amino acids dissociate in aqueous solutions, forming characteristic ionic species depending on the solution pH-value. These properties make amino acids to be hydrophilic at any pH-value. This paper presents a review of the separation studies of some amino acids by nonconventional methods, namely individual or selective reactive extraction. Separation of some amino acids from their mixture obtained either by fermentation or protein hydrolysis by reactive extraction with different extractants indicated the possibility of the amino acids selective separation as a function of the pH-value of aqueous solution correlated with the acidic or basic character of each amino acid.

  15. Self-etch adhesive systems: a literature review.

    PubMed

    Giannini, Marcelo; Makishi, Patrícia; Ayres, Ana Paula Almeida; Vermelho, Paulo Moreira; Fronza, Bruna Marin; Nikaido, Toru; Tagami, Junji

    2015-01-01

    This paper presents the state of the art of self-etch adhesive systems. Four topics are shown in this review and included: the historic of this category of bonding agents, bonding mechanism, characteristics/properties and the formation of acid-base resistant zone at enamel/dentin-adhesive interfaces. Also, advantages regarding etch-and-rinse systems and classifications of self-etch adhesive systems according to the number of steps and acidity are addressed. Finally, issues like the potential durability and clinical importance are discussed. Self-etch adhesive systems are promising materials because they are easy to use, bond chemically to tooth structure and maintain the dentin hydroxyapatite, which is important for the durability of the bonding.

  16. A simple technique for bonding lingual retainer.

    PubMed

    Hattarki, Rohan S; Rastogi, Shikha

    2015-01-01

    The present article describes an easy method to place a bonded lingual retainer. This technique is also helpful in limiting the flow of the acid etchant used for etching and also limiting the flow of the adhesive on to the lingual surfaces of the teeth.

  17. Unveiling the wet chemical etching characteristics of polydimethylsiloxane film for soft micromachining applications

    NASA Astrophysics Data System (ADS)

    Kakati, A.; Maji, D.; Das, S.

    2017-01-01

    Micromachining of a polydimethylsiloxane (PDMS) microstructure by wet chemical etching is explored for microelectromechanical systems (MEMS) and microfluidic applications. A 100 µm thick PDMS film was patterned with different microstructure designs by wet chemical etching using a N-methyl-2-pyrrolidone (C16H36FN) and tetra-n-butylammonium fluoride (C5H9NO) mixture solution with 3:1 volume ratio after lithography for studying etching characteristics. The patterning parameters, such as etch rate, surface roughness, pH of etchant solution with time, were thoroughly investigated. A detailed study of surface morphology with etching time revealed nonlinear behaviour of the PDMS surface roughness and etch rate. A maximum rate of 1.45 µm min-1 for 10 min etching with surface roughness of 360 nm was achieved. A new approach of wet chemical etching with pH controlled doped etchant was introduced for lower surface roughness of etched microstructures, and a constant etch rate during etching. Variation of the etching rate and surface roughness by pH controlled etching was performed by doping 5-15 gm l-1 of silicic acid (SiO2x H2O) into the traditional etchant solution. PDMS etching by silicic acid doped etchant solution showed a reduction in surface roughness from 400 nm to 220 nm for the same 15 µm etching. This study is beneficial for micromachining of various MEMS and microfluidic structures such as micropillars, microchannels, and other PDMS microstructures.

  18. Plasma etching for advanced polymer optical devices

    NASA Astrophysics Data System (ADS)

    Bitting, Donald S.

    Plasma etching is a common microfabrication technique which can be applied to polymers as well as glasses, metals, and semiconductors. The fabrication of low loss and reliable polymer optical devices commonly makes use of advanced microfabrication processing techniques similar in nature to those utilized in standard semiconductor fabrication technology. Among these techniques, plasma/reactive ion etching is commonly used in the formation of waveguiding core structures. Plasma etching is a powerful processing technique with many potential applications in the emerging field of polymer optical device fabrication. One such promising application explored in this study is in the area of thin film-substrate adhesion enhancement. Two approaches involving plasma processing were evaluated to improve substrate-thin film adhesion in the production of polymer waveguide optical devices. Plasma treatment of polymer substrates such as polycarbonate has been studied to promote the adhesion of fluoropolymer thin film coatings for waveguide device fabrication. The effects of blanket oxygen plasma etchback on substrate, microstructural substrate feature formation, and the long term performance and reliability of these methods were investigated. Use of a blanket oxygen plasma to alter the polycarbonate surface prior to fluoropolymer casting was found to have positive but limited capability to improve the adhesive strength between these polymers. Experiments show a strong correlation between surface roughness and adhesion strength. The formation of small scale surface features using microlithography and plasma etching on the polycarbonate surface proved to provide outstanding adhesion strength when compared to any other known treatment methods. Long term environmental performance testing of these surface treatment methods provided validating data. Test results showed these process approaches to be effective solutions to the problem of adhesion between hydrocarbon based polymer

  19. Formation of nanostructured silicon surfaces by stain etching.

    PubMed

    Ayat, Maha; Belhousse, Samia; Boarino, Luca; Gabouze, Noureddine; Boukherroub, Rabah; Kechouane, Mohamed

    2014-01-01

    In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min.

  20. Formation of nanostructured silicon surfaces by stain etching

    PubMed Central

    2014-01-01

    In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min. PMID:25435830

  1. Optical properties of quantum energies in GaAs quantum nanodisks produced using a bio-nanotemplate and a neutral beam etching technique

    NASA Astrophysics Data System (ADS)

    Ohori, Daisuke; Fukuyama, Atsuhiko; Thomas, Cedric; Higo, Akio; Samukawa, Seiji; Ikari, Tetsuo

    2016-09-01

    We demonstrated that the lattice-matched GaAs quantum nanodisks (QNDs) embedded in an AlGaAs matrix were fabricated by our original top-down nanoprocess. Lattice-matched GaAs QNDs are very attractive in quantum cryptography because the spin relaxation time of QNDs might be longer than that of strained quantum dots. Quantum levels of QNDs were investigated by the photoluminescence (PL) technique. The minimum diameter and thickness of QNDs were 7 and 8 nm, respectively. PL peaks of QNDs at 1.64 and 1.66 eV were observed to be higher than that of multiple quantum wells (MQWs) observed at 1.57 eV. It is suggested that these peaks are due to the diameter distribution of QNDs. The calculated quantum levels were in good agreement with the present experimental results. The observation of the PL peaks from QNDs demonstrates that the quantum level is strongly confined not only in the perpendicular direction but also in the lateral direction.

  2. Individualized Learning Package about Etching.

    ERIC Educational Resources Information Center

    Sauer, Michael J.

    An individualized learning package provides step-by-step instruction in the fundamentals of the etching process. Thirteen specific behavioral objectives are listed. A pretest, consisting of matching 15 etching terms with their definitions, is provided along with an answer key. The remainder of the learning package teaches the 13 steps of the…

  3. Ultrasonic metal etching for metallographic analysis

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1971-01-01

    Ultrasonic etching delineates microstructural features not discernible in specimens prepared for metallographic analysis by standard chemical etching procedures. Cavitation bubbles in ultrasonically excited water produce preferential damage /etching/ of metallurgical phases or grain boundaries, depending on hardness of metal specimens.

  4. A high efficiency industrial polysilicon solar cell with a honeycomb-like surface fabricated by wet etching using a photoresist mask

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Ding, Bin; Chen, Tianhang

    2016-11-01

    In this paper, an effective and low cost method of texturization was introduced into the fabrication process for industrial multicrystalline silicon solar cell production. The purpose of the method was to reduce reflectance by creating a honeycomb-like textured surface using a masked wet etching process. A negative photoresist film was selected as an etching mask. Although large surface roughness of wafer was considered to affect the adhesion and acid resistance of etching mask, a honeycomb-like textured surface with a pitch of 18 μm was fabricated successfully. The etched pits had a nearly smooth spherical segment surface, an average aperture of 15.1 μm, and a depth of 6.5 μm. This regular textured surface had a low light reflectivity of approximately 20.5% and greatly increased the carrier lifetime. Compared with multicrystalline silicon solar cells textured by conventional acid etching, the average short circuit current increased by 2.2% and the average efficiency increased from 17.41% to 17.75%, a net gain of 0.34%. And a high throughput above 2400 pieces per hour was obtained. This texturing technique is expected to promote the application of diamond-wire cut multicrystalline silicon wafers with the low saw-damage in the future.

  5. Plasma etching of cesium iodide

    NASA Astrophysics Data System (ADS)

    Yang, X.; Hopwood, J.; Tipnis, S.; Nagarkar, V.; Gaysinskiy, V.

    2002-01-01

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 °C, the minimum ion-bombardment energy for etching is Ei~50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ~40 nm/min at 40 °C to 380 nm/min at 330 °C. The temperature dependence corresponds to an activation energy of 0.13+/-0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides.

  6. Temporal fossa defects: techniques for injecting hyaluronic acid filler and complications after hyaluronic acid filler injection.

    PubMed

    Juhász, Margit Lai Wun; Marmur, Ellen S

    2015-09-01

    Facial changes with aging include thinning of the epidermis, loss of skin elasticity, atrophy of muscle, and subcutaneous fat and bony changes, all which result in a loss of volume. As temporal bones become more concave, and the temporalis atrophies and the temporal fat pad decreases, volume loss leads to an undesirable, gaunt appearance. By altering the temporal fossa and upper face with hyaluronic acid filler, those whose specialty is injecting filler can achieve a balanced and more youthful facial structure. Many techniques have been described to inject filler into the fossa including a "fanned" pattern of injections, highly diluted filler injection, and the method we describe using a three-injection approach. Complications of filler in the temporal fossa include bruising, tenderness, swelling, Tyndall effect, overcorrection, and chewing discomfort. Although rare, more serious complications include infection, foreign body granuloma, intravascular necrosis, and blindness due to embolization into the ophthalmic artery. Using reversible hyaluronic acid fillers, hyaluronidase can be used to relieve any discomfort felt by the patient. Injectors must be aware of the complications that may occur and provide treatment readily to avoid morbidities associated with filler injection into this sensitive area.

  7. Comparison between phosphoric acid and hydrochloric acid in microabrasion technique for the treatment of dental fluorosis

    PubMed Central

    Bassir, Mahshid Mohammadi; Bagheri, Golnaz

    2013-01-01

    Purpose: To compare the effectiveness of phosphoric acid (H3PO4)-pumice compound with conventional hydrochloric acid (HCl)-pumice compound in treating different severities of dental fluorosis with the microabrasion technique. Materials and Methods: Sixty-seven anterior teeth from seven patients with different severities of dental fluorosis were treated. In each patient, half of the teeth were treated with HCl-pumice compound and the other half with H3PO4-pumice compound (split-mouth design). Both treatment compounds were applied for 30-second periods and treatment continued up to 10 minutes. Before and after treatment, standardized photographs were taken. The photographs were compared by two experienced observers unaware of the modality of treatment. Two indices of aesthetics, improvement in appearance (IA) and degree of stain removal (DSR), were determined according to a visual analog scale. The inter- and intra-correlation coefficients were made; then, statistical analyses were calculated using Mann-Whitney and t-test. Results: There were no significant differences in interobserver evaluation. Improvements in aesthetic indices were observed in all fluorotic teeth by both compounds; however, the mean treatment time with HCl-pumice was significantly lower than H3PO4-pumice. Conclusion: The H3PO4-pumice compound improved aesthetic indices in fluorotic teeth similar to the HCl-pumice compound. PMID:23349575

  8. Unveiling the shape-diversified silicon nanowires made by HF/HNO3 isotropic etching with the assistance of silver

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Wong, Ching-Ping

    2014-12-01

    Hydrofluoric (HF)/nitric (HNO3)/acetic (CH3COOH) acid, normally referred to as the HNA method, is a widely utilized technique for performing isotropic etching on silicon (Si) in industrial Si-based processing and device construction. Here, we reported a novel etching strategy based on a HF/HNO3 process with the assistance of silver (Ag) nano-seeds, offering good controllability in preparing diversified Si nanostructure arrays with particularly smooth top surfaces. The involved mechanism was visualized by systematically investigating both the time and temperature dependencies on the etching kinetics with various ratios of HF to HNO3. Moreover, by testing different Ag+-ion containing oxidants on Si etching, we have re-examined the state-of-the-art metal-assisted chemical etching (MaCE) using HF/AgNO3 etchants. In contrast with previous reports, we found that the interplay of hole injections from Ag+ and NO3- ions to the valence band of Si collectively contributes to the unidirectional dissolution of Si. Finally, we explored the engineering of the Ag nano-seeds to regularize the orientation of the etched nanowires formed on non-Si (100) wafers, which further provides a reliable pathway for constructing the desired morphologies of one-dimensional Si nanostructures regardless of wafer orientation.Hydrofluoric (HF)/nitric (HNO3)/acetic (CH3COOH) acid, normally referred to as the HNA method, is a widely utilized technique for performing isotropic etching on silicon (Si) in industrial Si-based processing and device construction. Here, we reported a novel etching strategy based on a HF/HNO3 process with the assistance of silver (Ag) nano-seeds, offering good controllability in preparing diversified Si nanostructure arrays with particularly smooth top surfaces. The involved mechanism was visualized by systematically investigating both the time and temperature dependencies on the etching kinetics with various ratios of HF to HNO3. Moreover, by testing different Ag

  9. Atomic layer etching removal of damaged layers in a contact hole for low sheet resistance

    SciTech Connect

    Kim, Jong Kyu; Cho, Sung Il; Lee, Sung Ho; Kim, Chan Kyu; Min, Kyung Suk; Yeom, Geun Young

    2013-11-15

    A damaged layer remains on silicon substrates after high-aspect-ratio contact (HARC) etching when using a fluorocarbon gas. Atomic layer etching (ALET) is a technique that can be applied to remove the damaged layer of silicon, removing about 1.36 Å per etch cycle. The characteristics of contact damage removal by ALET are investigated and compared with the conventional damage removal technique of low-power CF{sub 4} plasma etching. The low-power CF{sub 4} plasma etching technique not only has inadequate etch depth control, but also introduces secondary damage by implanting impurities about 25 Å into the contact bottom of the silicon surface. However, ALET allows contact damage to be removed effectively without introducing secondary damage to the substrate, and with precision etch depth control at the angstrom scale. When ALET is applied subsequent to low-power CF{sub 4} plasma etching, the fluorine- and carbon-damaged silicon is effectively removed in about 10 cycles. The sheet resistance of HARC etched silicon decreases from 142 to 137 Ω/□ after using low-power CF{sub 4} plasma etching, and subsequent ALET treatment further decreases the sheet resistance to 129 Ω/□, which is close to the reference value of 124 Ω/□.

  10. Submicron patterned metal hole etching

    DOEpatents

    McCarthy, Anthony M.; Contolini, Robert J.; Liberman, Vladimir; Morse, Jeffrey

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  11. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography

    SciTech Connect

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2006-12-01

    This report describes a study designed to explore the different properties of two different chalcogenide materials, As2S3 and As24S38Se38, when subjected to photolithographic wet-etching techniques. Chalcogenide glasses are made by combining chalcogen elements S, Se, and Te with Group IV and/or V elements. The etchant was selected from the literature and was composed of sodium hydroxide, isopropyl alcohol, and deionized water and the types of chalcogenide glass for study were As2S3 and As24S38Se38. The main goals here were to obtain a single variable etch rate curve of etch depth per time versus NaOH overall solution concentration in M and to see the difference in etch rate between a given etchant when used on the different chalcogenide stoichiometries. Upon completion of these two goals, future studies will begin to explore creating complex, integrated photonic devices via these methods.

  12. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  13. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  14. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials.

    PubMed

    Wu, Peiwen; Yu, Yang; McGhee, Claire E; Tan, Li Huey; Lu, Yi

    2014-12-10

    In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.

  15. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    SciTech Connect

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey; Lu, Yi

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.

  16. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    DOE PAGES

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...

    2014-09-10

    In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less

  17. Improvement in etching rate for epilayer lift-off with surfactant

    NASA Astrophysics Data System (ADS)

    Wu, Fan-Lei; Horng, Ray-Hua; Lu, Jian-Heng; Chen, Chun-Li; Kao, Yu-Cheng

    2013-03-01

    In this study, the GaAs epilayer is quickly separated from GaAs substrate by epitaxial lift-off (ELO) process with mixture etchant solution. The HF solution mixes with surfactant as mixture etchant solution to etch AlAs sacrificial layer for the selective wet etching of AlAs sacrificial layer. Addiction surfactants etchant significantly enhance the etching rate in the hydrofluoric acid etching solution. It is because surfactant provides hydrophilicity to change the contact angle with enhances the fluid properties of the mixture etchant between GaAs epilayer and GaAs substrate. Arsine gas was released from the etchant solution because the critical reaction product in semiconductor etching is dissolved arsine gas. Arsine gas forms a bubble, which easily displaces the etchant solution, before the AlAs layer was undercut. The results showed that acetone and hydrofluoric acid ratio of about 1:1 for the fastest etching rate of 13.2 μm / min. The etching rate increases about 4 times compared with pure hydrofluoric acid, moreover can shorten the separation time about 70% of GaAs epilayer with GaAs substrate. The results indicate that etching ratio and stability are improved by mixture etchant solution. It is not only saving the epilayer and the etching solution exposure time, but also reducing the damage to the epilayer structure.

  18. Prediction of etching-shape anomaly due to distortion of ion sheath around a large-scale three-dimensional structure by means of on-wafer monitoring technique and computer simulation

    NASA Astrophysics Data System (ADS)

    Kubota, Tomohiro; Ohtake, Hiroto; Araki, Ryosuke; Yanagisawa, Yuuki; Iwasaki, Takuya; Ono, Kohei; Miwa, Kazuhiro; Samukawa, Seiji

    2013-10-01

    A system for predicting distortion of a profile during plasma etching was developed. The system consists of a combination of measurement and simulation. An ‘on-wafer sheath-shape sensor’ for measuring the plasma-sheath parameters (sheath potential and thickness) on the stage of the plasma etcher was developed. The sensor has numerous small electrodes for measuring sheath potential and saturation ion-current density, from which sheath thickness can be calculated. The results of the measurement show reasonable dependence on source power, bias power and pressure. Based on self-consistent calculation of potential distribution and ion- and electron-density distributions, simulation of the sheath potential distribution around an arbitrary 3D structure and the trajectory of incident ions from the plasma to the structure was developed. To confirm the validity of the distortion prediction by comparing it with experimentally measured distortion, silicon trench etching under chlorine inductively coupled plasma (ICP) was performed using a sample with a vertical step. It was found that the etched trench was distorted when the distance from the step was several millimetres or less. The distortion angle was about 20° at maximum. Measurement was performed using the on-wafer sheath-shape sensor in the same plasma condition as the etching. The ion incident angle, calculated as a function of distance from the step, successfully reproduced the experimentally measured angle, indicating that the combination of measurement by the on-wafer sheath-shape sensor and simulation can predict distortion of an etched structure. This prediction system will be useful for designing devices with large-scale 3D structures (such as those in MEMS) and determining the optimum etching conditions to obtain the desired profiles.

  19. Northern Arabia Etched Terrain

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 23 May 2002) The Science Many places on Mars display scabby, eroded landscapes that commonly are referred to as etched terrain. These places have a ragged, tortured look that reveals a geologic history of intense deposition and erosion. This THEMIS image shows such a place. Here a 10 km diameter crater is superposed on the floor of a 40 km diameter crater, most of which is outside of the image but apparent in the MOLA context image. The rugged crater rim material intermingles with low, flat-topped mesas and layers with irregular outlines along with dune-like ridges on many of the flat surfaces. The horizontal layers that occur throughout the scene at different elevations are evidence of repeated episodes of deposition. The apparent ease with which these deposits have been eroded, most likely by wind, suggests that they are composed of poorly consolidated material. Air-fall sediments are the likely candidate for this material rather than lava flows. The dune-like ridges are probably inactive granule ripples produced from the interaction of wind and erosional debris. The large interior crater displays features that are the result of deposition and subsequent erosion. Its raised rim is barely discernable due to burial while piles and blocks of slumped material along the interior circumference attest to the action of erosion. Some of the blocks retain the same texture as the surrounding undisrupted surface. It appears as if the crater had been buried long enough for the overlying material to be eroded into the texture seen today. Then at some point this overburden foundered and collapsed into the crater. Continuing erosion has caused the upper layer to retreat back from what was probably the original rim of the crater, producing the noncircular appearance seen today. The length of time represented by this sequence of events as well as the conditions necessary to produce them are unknown. The Story Have you ever seen an ink etching, where the artistic cross

  20. Low-Roughness Plasma Etching of HgCdTe Masked with Patterned Silicon Dioxide

    NASA Astrophysics Data System (ADS)

    Ye, Z. H.; Hu, W. D.; Yin, W. T.; Huang, J.; Lin, C.; Hu, X. N.; Ding, R. J.; Chen, X. S.; Lu, W.; He, L.

    2011-08-01

    A novel mask technique utilizing patterned silicon dioxide films has been exploited to perform mesa etching for device delineation and electrical isolation of HgCdTe third-generation infrared focal-plane arrays (IRFPAs). High-density silicon dioxide films were deposited at temperature of 80°C, and a procedure for patterning and etching of HgCdTe was developed by standard photolithography and wet chemical etching. Scanning electron microscopy (SEM) showed that the surfaces of inductively coupled plasma (ICP) etched samples were quite clean and smooth. Root-mean-square (RMS) roughness characterized by atomic force microscopy (AFM) was less than 1.5 nm. The etching selectivity between a silicon dioxide film and HgCdTe in the samples masked with patterned silicon dioxide films was greater than 30:1. These results show that the new masking technique is readily available and promising for HgCdTe mesa etching.

  1. Etching and Growth of GaAs

    NASA Technical Reports Server (NTRS)

    Seabaugh, A. C.; Mattauch, R., J.

    1983-01-01

    In-place process for etching and growth of gallium arsenide calls for presaturation of etch and growth melts by arsenic source crystal. Procedure allows precise control of thickness of etch and newly grown layer on substrate. Etching and deposition setup is expected to simplify processing and improve characteristics of gallium arsenide lasers, high-frequency amplifiers, and advanced integrated circuits.

  2. Etching Of Semiconductor Wafer Edges

    DOEpatents

    Kardauskas, Michael J.; Piwczyk, Bernhard P.

    2003-12-09

    A novel method of etching a plurality of semiconductor wafers is provided which comprises assembling said plurality of wafers in a stack, and subjecting said stack of wafers to dry etching using a relatively high density plasma which is produced at atmospheric pressure. The plasma is focused magnetically and said stack is rotated so as to expose successive edge portions of said wafers to said plasma.

  3. Method of etching zirconium diboride

    SciTech Connect

    Heath, L.S.; Kwiatkowski, B.

    1988-03-31

    The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to us of any royalty thereon. This invention relates in general to a method of etching, zirconium diboride(ZrB/sub 2/) and, in particular, to a method of dry etching a thin film of ZrB/sub 2/ that has been deposited onto a substrate and patterned using photolithography. U.S. patent application S.N. 156, 124, filed 16 February, 1988, of Linda S. Heath for Method of Etching Titanium Diboride and assigned to a common assignee and with which this application is copending describes and claims a method of etching titanium diboride with a dry etch. Zirconium diboride, like titanium diboride, TiB/sub 2/, has become of interest in laboratory research because of its resistance to change or degradation at high temperatures. By adjusting the process parameters, one is able to attain etch rates of 67 to 140 A/min for ZrB/sub 2/. This is useful for patterning ZrB/sub 2/ as a diffusion barrier or a Schottky contact to semiconductors. The ZrB/sub 2/ film may be on a GaAs substrate.

  4. Identification of dislocation etch pits in n-type GaAs by NIR transmission microscopy

    NASA Technical Reports Server (NTRS)

    Cao, X. Z.; Witt, A. F.

    1991-01-01

    An optical method is described for identifying dislocation etch pits in n-type GaAS, using near-IR brightfield transmission microscopy. Dislocations are revealed in a nondestructive manner through contrasts that are likely due to impurity decoration of the dislocation lines. By subjecting the same wafers to a photoetching technique, it was established that each etch pit on the surface is associated with a dislocation and that the termination of each (decorated) dislocation is an etch pit.

  5. Etching properties and electrical characterization of surfaces of silicon-on-insulator substrates in presence of halogens

    SciTech Connect

    Abbadie, A.; Hamaide, G.; Chaupin, M.; Brunier, F.; Mariolle, D.; Martinez, E.; Maehliss, J.

    2012-03-15

    We have studied the etching properties of silicon-on-insulator (SOI) substrates in recently developed chromium-free solutions containing halogens. We have shown that the presence of halogen compounds X (I{sup -}, Br{sup -}...) in HF/HNO{sub 3}/CH{sub 3}COOH solutions is required for a selective and preferential etching on SOI. The etching rate of such solutions increases with the dissolved halogen concentrations. The chemical reactivity of Si-X (X = Br{sup -}, I{sup -}..) bonds has been analyzed by X-ray Photoelectron Spectroscopy (XPS), Pseudo-MOS (flatband potential) and Kelvin Force Microscopy (KFM) measurements. A negative shift of flatband potential values is explained by an increasing concentration of halogen compounds in the solution and a substitution of Si-H (F) bonds by Si-X bonds during the reaction. Though Si-X bonds, and more particularly Si-I bonds, have been confirmed only at trace levels using XPS, we believe that the formation of Si-X bonds is supported by a mechanism of surface dipoles. Unexpectedly, no significant change in work function could be detected using KFM measurements. Some suggestions, based on KFM technique improvements, are made to explain such results. Finally, though the interaction mechanism between silicon, fluoride, iodide, and nitric acid is not clearly elucidated by our experimental results, the formation of Si-halogen bonds is crucial for etching and defect decoration capability.

  6. Etching properties and electrical characterization of surfaces of silicon-on-insulator substrates in presence of halogens

    NASA Astrophysics Data System (ADS)

    Abbadie, A.; Hamaide, G.; Mariolle, D.; Chaupin, M.; Brunier, F.; Martinez, E.; Mähliß, J.

    2012-03-01

    We have studied the etching properties of silicon-on-insulator (SOI) substrates in recently developed chromium-free solutions containing halogens. We have shown that the presence of halogen compounds X (I-, Br-…) in HF/HNO3/CH3COOH solutions is required for a selective and preferential etching on SOI. The etching rate of such solutions increases with the dissolved halogen concentrations. The chemical reactivity of Si-X (X = Br-, I-..) bonds has been analyzed by X-ray Photoelectron Spectroscopy (XPS), Pseudo-MOS (flatband potential) and Kelvin Force Microscopy (KFM) measurements. A negative shift of flatband potential values is explained by an increasing concentration of halogen compounds in the solution and a substitution of Si-H (F) bonds by Si-X bonds during the reaction. Though Si-X bonds, and more particularly Si-I bonds, have been confirmed only at trace levels using XPS, we believe that the formation of Si-X bonds is supported by a mechanism of surface dipoles. Unexpectedly, no significant change in work function could be detected using KFM measurements. Some suggestions, based on KFM technique improvements, are made to explain such results. Finally, though the interaction mechanism between silicon, fluoride, iodide, and nitric acid is not clearly elucidated by our experimental results, the formation of Si-halogen bonds is crucial for etching and defect decoration capability.

  7. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  8. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas

    PubMed Central

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology. PMID:25278821

  9. Uniform vertical trench etching on silicon with high aspect ratio by metal-assisted chemical etching using nanoporous catalysts.

    PubMed

    Li, Liyi; Liu, Yan; Zhao, Xueying; Lin, Ziyin; Wong, Ching-Ping

    2014-01-08

    Recently, metal-assisted chemical etching (MaCE) has been proposed as a promising wet-etching method for the fabrication of micro- and nanostructures on silicon with low cost. However, uniform vertical trench etching with high aspect ratio is still of great challenge for traditional MaCE. Here we report an innovated MaCE method, which combined the use of a nanoporous gold thin film as the catalyst and a hydrofluoric acid (HF)-hydrogen peroxide (H2O2) mixture solution with a low HF-to-H2O2 concentration ratio (ρ) as the etchant. The reported method successfully fabricated vertical trenches on silicon with a width down to 2 μm and an aspect ratio of 16. The geometry of the trenches was highly uniform throughout the 3D space. The vertical etching direction was favored on both (100)- and (111)-oriented silicon substrates. The reported method was also capable of producing multiple trenches on the same substrate with individually-tunable lateral geometry. An etching mechanism including a through-catalyst mass-transport process and an electropolishing-favored charge-transport process was identified by a comparative study. The novel method fundamentally solves the problems of distortion and random movement of isolated catalysts in MaCE. The results mark a breakthrough in high-quality silicon trench-etching technology with a cost of more than 2 orders of magnitude lower than that of the currently available methods.

  10. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.

  11. Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition.

    PubMed

    Rezayi, Toktam; Entezari, Mohammad H

    2016-02-01

    Fabrication of suitable roughness is a fundamental step for acquiring superhydrophobic surfaces. For this purpose, a deposition of ZnO nanoparticles on Al surface was carried out by simple immersion and ultrasound approaches. Then, surface energy reduction was performed using stearic acid (STA) ethanol solution for both methods. The results demonstrated that ultrasound would lead to more stable superhydrophobic Al surfaces (STA-ZnO-Al-U) in comparison with simple immersion method (STA-ZnO-Al-I). Besides, etching in HCl solution in another sample was carried out before ZnO deposition for acquiring more mechanically stable superhydrophobic surface. The potentiodynamic measurements demonstrate that etching in HCl solution under ultrasound leads to superhydrophobic surface (STA-ZnO-Al(E)-U). This sample shows remarkable decrease in corrosion current density (icorr) and long-term stability improvement versus immersion in NaCl solution (3.5%) in comparison with the sample prepared without etching (STA-ZnO-Al-U). Scanning electron micrograph (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed a more condense and further particle deposition on Al substrate when ultrasound was applied in the system. The crystallite evaluation of deposited ZnO nanoparticles was carried out using X-ray diffractometer (XRD). Finally, for STA grafting verification on Al surface, Fourier transform infrared in conjunction with attenuated total reflection (FTIR-ATR) was used as a proper technique.

  12. Manganese-tuned chemical etching of a platinum-copper nanocatalyst with platinum-rich surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Y. Y.; Zhao, T. S.; Zhao, G.; Yan, X. H.; Xu, K.

    2016-02-01

    This work presents a modified chemical etching strategy to fabricate binary metal nanocatalysts with large active areas. The strategy employs PtCu alloy particles with Pt-rich outer layers as the precursor and manganese species to manipulate the acid leaching processes. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy techniques are used to analyze the catalyst structures and the tuning mechanism of manganese species during etching. It is found that the introduction of manganese species allows more Pt active sites to be formed onto the catalyst surface after etching, possibly due to reduction in the number of Pt atoms enclosed inside particles. The electrochemically active surface area of the synthetic MnA-PtCu/C catalyst increases by 90% relative to commercial Pt/C catalyst. As a result of the increase in active areas and the additional promotion effects by Cu, the MnA-PtCu/C catalyst reveals a methanol oxidation activity 1.7 and 4.0 times higher than that of the synthetic PtCu/C and commercial Pt/C catalysts, respectively.

  13. Level Set Approach to Anisotropic Wet Etching of Silicon

    PubMed Central

    Radjenović, Branislav; Radmilović-Radjenović, Marija; Mitrić, Miodrag

    2010-01-01

    In this paper a methodology for the three dimensional (3D) modeling and simulation of the profile evolution during anisotropic wet etching of silicon based on the level set method is presented. Etching rate anisotropy in silicon is modeled taking into account full silicon symmetry properties, by means of the interpolation technique using experimentally obtained values for the etching rates along thirteen principal and high index directions in KOH solutions. The resulting level set equations are solved using an open source implementation of the sparse field method (ITK library, developed in medical image processing community), extended for the case of non-convex Hamiltonians. Simulation results for some interesting initial 3D shapes, as well as some more practical examples illustrating anisotropic etching simulation in the presence of masks (simple square aperture mask, convex corner undercutting and convex corner compensation, formation of suspended structures) are shown also. The obtained results show that level set method can be used as an effective tool for wet etching process modeling, and that is a viable alternative to the Cellular Automata method which now prevails in the simulations of the wet etching process. PMID:22399916

  14. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties

    NASA Astrophysics Data System (ADS)

    Gao, Qingxue; Liu, Rong; Xiao, Hongdi; Cao, Dezhong; Liu, Jianqiang; Ma, Jin

    2016-11-01

    A strong phase-separated InGaN/GaN layer, which consists of multiple quantum wells (MQW) and superlattices (SL) layers and can produce a blue wavelength spectrum, has been grown on n-GaN thin film, and then fabricated into nanoporous structures by electrochemical etching method in oxalic acid. Scanning electron microscopy (SEM) technique reveals that the etching voltage of 8 V leads to a vertically aligned nanoporous structure, whereas the films etched at 15 V show branching pores within the n-GaN layer. Due to the low doping concentration of barriers (GaN layers) in the InGaN/GaN layer, we observed a record-low rate of etching (<100 nm/min) and nanopores which are mainly originated from the V-pits in the phase-separated layer. In addition, there exists a horizontal nanoporous structure at the interface between the phase-separated layer and the n-GaN layer, presumably resulting from the high transition of electrons between the barrier and the well (InGaN layer) at the interface. As compared to the as-grown MQW structure, the etched MQW structure exhibits a photoluminescence (PL) enhancement with a partial relaxation of compressive stress due to the increased light-extracting surface area and light-guiding effect. Such a compressive stress relaxation can be further confirmed by Raman spectra.

  15. Fabrication of polymer nanowires via maskless O2 plasma etching.

    PubMed

    Du, Ke; Wathuthanthri, Ishan; Liu, Yuyang; Kang, Yong Tae; Choi, Chang-Hwan

    2014-04-25

    In this paper, we introduce a simple fabrication technique which can pattern high-aspect-ratio polymer nanowire structures of photoresist films by using a maskless one-step oxygen plasma etching process. When carbon-based photoresist materials on silicon substrates are etched by oxygen plasma in a metallic etching chamber, nanoparticles such as antimony, aluminum, fluorine, silicon or their compound materials are self-generated and densely occupy the photoresist polymer surface. Such self-masking effects result in the formation of high-aspect-ratio vertical nanowire arrays of the polymer in the reactive ion etching mode without the necessity of any artificial etch mask. Nanowires fabricated by this technique have a diameter of less than 50 nm and an aspect ratio greater than 20. When such nanowires are fabricated on lithographically pre-patterned photoresist films, hierarchical and hybrid nanostructures of polymer are also conveniently attained. This simple and high-throughput fabrication technique for polymer nanostructures should pave the way to a wide range of applications such as in sensors, energy storage, optical devices and microfluidics systems.

  16. Graphene-Assisted Chemical Etching of Silicon Using Anodic Aluminum Oxides as Patterning Templates.

    PubMed

    Kim, Jungkil; Lee, Dae Hun; Kim, Ju Hwan; Choi, Suk-Ho

    2015-11-04

    We first report graphene-assisted chemical etching (GaCE) of silicon by using patterned graphene as an etching catalyst. Chemical-vapor-deposition-grown graphene transferred on a silicon substrate is patterned to a mesh with nanohole arrays by oxygen plasma etching using an anodic- aluminum-oxide etching mask. The prepared graphene mesh/silicon is immersed in a mixture solution of hydrofluoric acid and hydro peroxide with various molecular fractions at optimized temperatures. The silicon underneath graphene mesh is then selectively etched to form aligned nanopillar arrays. The morphology of the nanostructured silicon can be controlled to be smooth or porous depending on the etching conditions. The experimental results are systematically discussed based on possible mechanisms for GaCE of Si.

  17. VUV and Optical Emission Characterization of Fluorocarbon SiO2 Etch Processes and Correlation to Etch Feature Quality

    NASA Astrophysics Data System (ADS)

    Hsueh, H.; Dandapani, E.; McGrath, R.; Messier, R.; Ji, B.; Karwacki, E.

    2000-10-01

    Fluorocarbon discharges used for SiO2 etch were characterized using optical (OES) and VUV emission spectroscopy. Actinometry was used to monitor atomic fluorine concentration (N_F) as power, pressure and gas mix were varied. Thermal oxide films were photolithographically patterned to define 0.5-2.0 μ m trench features, and then etched in an AMAT Mark II reactor. Etch rate, selectivity and feature critical dimension were measured using SEM and other techniques. DC self-bias was also recorded for each set of process conditions. Good etch features, etch rates of 1175 Åmin, and selectivity of 7.9 were obtained for reactor operation at 750 W, 80 mTorr, and with a gas mixture of CF_4/CHF_3/Ar at 85/10/5 sccm. Etch rate, selectivity and feature critical dimensions observed have been correlated to actinometric estimates of N_F, to self-bias voltage and to OES and VUV emissions. While varying process conditions around the reference values defined above, NF was found to increase monotonically between 0.75 and 1.2x10^13/cm^3 as pressure was increased from 70 to 100 mTorr, as power was increased from 650 to 850 W, and as CF4 gas fraction was increased from 5the reference gas mixture, etch rate was found to increase (1150 to 1550 Åmin) with increasing power, and to decrease (1550 to 550 Åmin) with increasing pressure. In these cases, etch rate trend tracked the self-bias voltage established. However, when CF4 gas fraction was increased from 5Åmin, while NF concentration increased by only 15self-bias varied by only 8feature profiles, and associated reaction processes will be presented.

  18. High-density plasma etching of aluminum copper on titanium tungsten

    NASA Astrophysics Data System (ADS)

    Dang, Kim

    1999-09-01

    A multi-step high density plasma etch process, based on chlorine and sulfur hexafluoride chemistry (SF6), for LRC single wafer metal etcher was developed, characterized and optimized to anisotropically etch the metal stack which consists of a thin titanium tungsten ARC, hot deposited aluminum copper over titanium tungsten. The titanium tungsten used in the metal structure presents unique constraints on etch selectivity to underlying film while simultaneously requiring clearing metal stringers. The etching was further complicated by lateral etching of aluminum copper (AlCu) during titanium tungsten (TiW) etch and overetch steps. With the help of design-of-experiment techniques, multi-variable factorial experiments were conducted to determine the optimum processes for the bulk metal etch, barrier metal layer etch and overetch steps. Characterization parameters include the metal etch rate, etch selectivity, CD line-width, metal resistance and plasma charging damages. Special attention was paid to the overetch window since the metal quality is very sensitive to the overetch conditions. Insufficient overetch may leave metal stingers or metal shorts. Excessive overetch may cause severe CD undercutting and great loss of TEOS oxide under-layer.

  19. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates.

    PubMed

    Qian, Baitai; Shen, Ziqiu

    2005-09-27

    A surface roughening method by simple chemical etching was developed for the fabrication of superhydrophobic surfaces on three polycrystalline metals, namely aluminum, copper, and zinc. The key to the etching technique was the use of a dislocation etchant that preferentially dissolves the dislocation sites in the grains. The etched metallic surfaces, when hydrophobized with fluoroalkylsilane, exhibited superhydrophobic properties with water contact angles of larger than 150 degrees, as well as roll-off angles of less than 10 degrees for 8-microL drops. Also, the dislocation etching concept introduced here may be helpful in the fabrication of superhydrophobic surfaces on other polycrystalline substrates.

  20. Characterization of reactive ion etching of sol-gel SiO2 using Taguchi optimization method

    NASA Astrophysics Data System (ADS)

    Wee, Terence C.; Ooi, Boon Siew; Zhou, Yan; Chan, Yuen Chuen; Lam, Yee Loy

    1999-11-01

    SiO2 films prepared using sol-gel technique have found enormous potential applications in photonics, electronics and sensor devices. However, the feasibility of the devices utilizing sol-gel technology lies on the ease of the fabrication processes such as patterns transfer using wet or dry etchings. Dry etching is preferred over wet etching as it is able to produce finer features with high anisotropic etch profile. In this paper, we report the development of a dry reactive ion etching process for sol-gel SiO2 using a mixture of CF4 and O2 plasma. Parameters such as RF power, chamber pressure, CF4 and O2 flow rate, were optimized using a statistical method called Taguchi Technique. Etch rate of as high as 50nm/min, with high anisotropy etched profile, has been obtained.

  1. Bonding with self-etching primers--pumice or pre-etch? An in vitro study.

    PubMed

    Fitzgerald, Ian; Bradley, Gerard T; Bosio, Jose A; Hefti, Arthur F; Berzins, David W

    2012-04-01

    The purpose of this study was to compare the shear bond strengths (SBSs) of orthodontic brackets bonded with self-etching primer (SEP) using different enamel surface preparations. A two-by-two factorial study design was used. Sixty human premolars were harvested, cleaned, and randomly assigned to four groups (n = 15 per group). Teeth were bathed in saliva for 48 hours to form a pellicle. Treatments were assigned as follows: group 1 was pumiced for 10 seconds and pre-etched for 5 seconds with 37 per cent phosphoric acid before bonding with SEP (Transbond Plus). Group 2 was pumiced for 10 seconds before bonding. Group 3 was pre-etched for 5 seconds before bonding. Group 4 had no mechanical or chemical preparation before bonding. All teeth were stored in distilled water for 24 hours at 37°C before debonding. The SBS values and adhesive remnant index (ARI) score were recorded. The SBS values (± 1 SD) for groups 1-4 were 22.9 ± 6.6, 16.1 ± 7.3, 36.2 ± 8.2, and 13.1 ± 10.1 MPa, respectively. Two-way analysis of variance and subsequent contrasts showed statistically significant differences among treatment groups. ARI scores indicated the majority of adhesive remained on the bracket for all four groups. Pre-etching the bonding surface for 5 seconds with 37 per cent phosphoric acid, instead of pumicing, when using SEPs to bond orthodontic brackets, resulted in greater SBSs.

  2. High-precision structure fabrication based on an etching resistance layer

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Deng, Qiling; Shi, Lifang; Cao, Axiu; Pang, Hui; Liu, Xin; Wang, Jiazhou; Hu, Song

    2016-10-01

    The high-precision fabrication of micro-/nano-structure is a challenge. In this paper, we proposed a new fabrication method of high-precision structure based on an etching resistance layer. The high-precision features were fabricated by photolithography technique, followed by the etching process to transfer the features to the substrate. During this process, the etching uniformity and error lead to the feature distortion. We introduced an etching resistance layer between feature layer and substrate. The etching process will stop when arriving at the resistance layer. Due to the high precision of the plating film, the high-precision structure depth was achieved. In our experiment, we introduced aluminum trioxide as the etching resistance layer. The structures with low depth error of less than 5% were fabricated.

  3. Wetting ability of an acetone/based etch&rinse adhesive after NaOCl-treatment

    PubMed Central

    Aguilera, Fátima S.; Osorio, Raquel; Osorio, Estrella; Moura, Pedro

    2012-01-01

    Objectives: to evaluate the effect of sodium hypochlorite (NaOCl) treatment on surface dentin roughness (Ra) and contact angle (CA) when using Prime&Bond NT adhesive (PB NT). Study Design: Extracted human third molars were sectioned to expose flat, superficial and deep dentin surfaces. CA and Ra were measured (1) before and (2) after 35% H3PO4 etching, and (3) H3PO4 etching + 5% NaOCl treated for 2 minutes before the application of PB NT. CA was measured by the Axisymmetric Drop Shape Analysis Technique using distilled and deionized water and PB NT. Roughness was evaluated with a profilometer, twelve radial measurements were performed in each treatment surface. Data were analyzed with two-way ANOVA and Newman-Keuls multiple comparison test procedures. Results: CA values decreased after acid etching and even more after NaOCl treatment on deep dentin when water was tested. With resin, there were not differences on CA results after H3PO4 neither after NaOCl treatment, in both dentin surfaces. Etching and NaOCl treatment resulted in surface roughness increase. Conclusions: In spite of the higher roughness after NaOCl treatment on superficial and deep dentin, the use of 5% NaOCl for 2 min after dentin demineralization when PB NT was employed did not improved the wettability of dentin, probably due to nanofiller content and/or hydrogen-bonding interactions with residues of the organic matrix on collagen-depleted dentin. Key words:Sodium hypochlorite, contact angle, roughness, Prime&Bond NT, superficial dentin, deep dentin. PMID:22322490

  4. State of the art etch-and-rinse adhesives

    PubMed Central

    Pashley, David H; Tay, Franklin R; Breschi, Lorenzo; Tjäderhane, Leo; Carvalho, Ricardo M; Carrilho, Marcela; Tezvergil-Mutluay, Arzu

    2013-01-01

    Etch-and-rinse adhesive systems are the oldest of the multi-generation evolution of resin bonding systems. In the 3-step version, they involve acid-etching, priming and application of a separate adhesive. Each step can accomplish multiple goals. This review explores the therapeutic opportunities of each separate step. Acid-etching, using 32-37% phosphoric acid (pH 0.1-0.4) not only simultaneously etches enamel and dentin, but the low pH kills many residual bacteria. Some etchants include anti-microbial compounds such as benzalkonium chloride that also inhibits matrix metalloproteinases (MMPs) in dentin. Primers are usually water and HEMA-rich solutions that ensure complete expansion of the collagen fibril meshwork and wet the collagen with hydrophilic monomers. However, water alone can re-expand dried dentin and can also serve as a vehicle for protease inhibitors or protein cross-linking agents that may increase the durability of resin-dentin bonds. In the future, ethanol or other water-free solvents may serve as dehydrating primers that may also contain antibacterial quaternary ammonium methacrylates to inhibit dentin MMPs and increase the durability of resin-dentin bonds. The complete evaporation of solvents is nearly impossible. Manufacturers may need to optimize solvent concentrations. Solvent-free adhesives can seal resin-dentin interfaces with hydrophobic resins that may also contain fluoride and antimicrobial compounds. Etch-and-rinse adhesives produce higher resin-dentin bonds that are more durable than most 1 and 2-step adhesives. Incorporation of protease inhibitors in etchants and/or cross-linking agents in primers may increase the durability of resin-dentin bonds. The therapeutic potential of etch-and-rinse adhesives has yet to be fully exploited. PMID:21112620

  5. Dry etch development of W/WSi short Gate MESFETs

    SciTech Connect

    Shul, R.J.; Sherwin, M.E.; Baca, A.G.; Zolper, J.C.; Rieger, D.J.

    1996-01-01

    The use of refractory metal thin films in the fabrication of high-speed, high-density GaAs field effect transistors (FETs) are prominent with applications as interconnects, via plugs, and ohmic and Schottky contacts. Tungsten and tungsten silicide can be used in a self-aligned gate process as the ion implantation mask during the formation of source and drain regions for metal-semiconductor FETs (MESFETs). The gate etch must be highly anisotropic to accurately define the implant region. Reactive ion etch (RIE) techniques have been used to etch W and WSi films in fluorine-based discharges. The etch mechanism tends to be very chemical and often results in severe undercutting of the feature due to the lateral attack of the refractory metal. The undercut is often so severe that critical dimensions are not maintained and gate profiles do not properly align to the implant region resulting in poor device characteristics. As device design rules shrink, the etch requirements and patterning techniques become even more critical.

  6. Regenerative Electroless Etching of Silicon.

    PubMed

    Kolasinski, Kurt W; Gimbar, Nathan J; Yu, Haibo; Aindow, Mark; Mäkilä, Ermei; Salonen, Jarno

    2017-01-09

    Regenerative electroless etching (ReEtching), described herein for the first time, is a method of producing nanostructured semiconductors in which an oxidant (Ox1 ) is used as a catalytic agent to facilitate the reaction between a semiconductor and a second oxidant (Ox2 ) that would be unreactive in the primary reaction. Ox2 is used to regenerate Ox1 , which is capable of initiating etching by injecting holes into the semiconductor valence band. Therefore, the extent of reaction is controlled by the amount of Ox2 added, and the rate of reaction is controlled by the injection rate of Ox2 . This general strategy is demonstrated specifically for the production of highly luminescent, nanocrystalline porous Si from the reaction of V2 O5 in HF(aq) as Ox1 and H2 O2 (aq) as Ox2 with Si powder and wafers.

  7. Self-etch bonding agent beneath sealant: Bond strength for laser-irradiated enamel

    PubMed Central

    Borsatto, Maria Cristina; Giuntini, Jackelline de Lemes; Contente, Marta Maria Martins Giamatei; Gomes-Silva, Jaciara Miranda; Torres, Carolina Paes; Galo, Rodrigo

    2013-01-01

    Objectives: This study evaluated the in vitro shear bond strength (SBS) of a resin-based pit-and-fissure sealant (Fluroshield [F], Dentsply/Caulk) associated with either an etch-and-rinse (Adper Single Bond 2 [SB], 3M/ESPE) or a two-step self-etch adhesive system (Adper SE Plus [SE], 3M/ESPE) on Er: YAG laser-irradiated enamel. Materials and Methods: Seventeen sound third molar crowns were embedded in acrylic resin, and the mesial–distal enamel surfaces were flattened. The enamel sites were irradiated with a 2.94-μm wavelength Er: YAG laser (120 mJ, 4 Hz, noncontact mode/17 mm, 20 s). The specimens were randomly assigned to three groups according to the bonding technique: I - 37% phosphoric acid etching + SB + F; II - SE + F and III - F applied to acid-etched enamel, without an intermediate layer of bonding agent. In all of the groups, a 3-mm diameter enamel-bonding site was demarcated and the sealant cylinders were bonded. After 24 hours in distilled water, the shear bond strength was tested at a crosshead speed of 0.5 mm/minute. The data were analyzed by one-way ANOVA and Tukey's test. The debonded specimens were examined with a stereomicroscope to assess the failure modes. Results: The mean SBS values in MPa were I = 6.39 (±1.44); II = 9.50 (±2.79); and III = 5.26 (±1.82). No statistically significant differences were observed between groups I and III; SE/F presented a significantly higher SBS than that of the other groups (P = 0.001). With regard to the failure mode, groups I (65%) and II (75%) presented adhesive failures, while group III showed 50% adhesive failure. Cohesive failure did not occur. Conclusion: The application of the two-step self-etch bonding agent (Adper SE Plus) beneath the resin pit-and-fissure sealant placement resulted in a significantly higher bond strength for the Er:YAG laser-irradiated enamel. PMID:24926208

  8. Advanced Simulation Technology to Design Etching Process on CMOS Devices

    NASA Astrophysics Data System (ADS)

    Kuboi, Nobuyuki

    2015-09-01

    Prediction and control of plasma-induced damage is needed to mass-produce high performance CMOS devices. In particular, side-wall (SW) etching with low damage is a key process for the next generation of MOSFETs and FinFETs. To predict and control the damage, we have developed a SiN etching simulation technique for CHxFy/Ar/O2 plasma processes using a three-dimensional (3D) voxel model. This model includes new concepts for the gas transportation in the pattern, detailed surface reactions on the SiN reactive layer divided into several thin slabs and C-F polymer layer dependent on the H/N ratio, and use of ``smart voxels''. We successfully predicted the etching properties such as the etch rate, polymer layer thickness, and selectivity for Si, SiO2, and SiN films along with process variations and demonstrated the 3D damage distribution time-dependently during SW etching on MOSFETs and FinFETs. We confirmed that a large amount of Si damage was caused in the source/drain region with the passage of time in spite of the existing SiO2 layer of 15 nm in the over etch step and the Si fin having been directly damaged by a large amount of high energy H during the removal step of the parasitic fin spacer leading to Si fin damage to a depth of 14 to 18 nm. By analyzing the results of these simulations and our previous simulations, we found that it is important to carefully control the dose of high energy H, incident energy of H, polymer layer thickness, and over-etch time considering the effects of the pattern structure, chamber-wall condition, and wafer open area ratio. In collaboration with Masanaga Fukasawa and Tetsuya Tatsumi, Sony Corporation. We thank Mr. T. Shigetoshi and Mr. T. Kinoshita of Sony Corporation for their assistance with the experiments.

  9. Low damage etching method of low-k material with a neutral beam for interlayer dielectric of semiconductor device

    SciTech Connect

    Kang, Seung Hyun; Kim, Jong Kyu; Lee, Sung Ho; Kim, Jin Woo; Yeom, Geun Young

    2015-03-15

    To reduce the cross-talk between nanoscale devices, low-k materials such as methyl silsesquioxane (MSQ), which is damaged easily during plasma etching, are introduced as an intermetallic dielectric material in addition to the use of copper as the conducting material for the reduction of parasitic resistance and capacitance. In this study, beam techniques such as neutral/ion beams were used in the etching of MSQ and the effect of these beam techniques on the reduction of the degradation of the MSQ were investigated. When MSQ was etched using the same CF{sub 4} etch gas at the similar etch rate as that used for conventional MSQ etching using inductively coupled plasmas (ICPs), the neutral/ion beam etching showed lower F contents and lower penetration depth of F, indicating decreased degradation by fluorination of MSQ during etching using the beam techniques. Especially, the neutral beam etching technique showed the lowest F contamination and the lower penetration depth of F among the etch methods. When the dielectric constant was measured after the etching of the same depth, the MSQ etched with the neutral beam showed the lowest change of the dielectric constant, while that etched using the ICP showed the highest change of dielectric constant. The lower degradation, that is, the lower chemical modification of MSQ material with the beam technique is believed to be related to the decreased concentration of radical species in the processing chamber reacting with the MSQ surface, while the lowest degradation using the neutral beam is believed to be due to the lower reaction rate of the reactive neutral compared to reactive ions.

  10. In situ etch rate measurements of thin film combinatorial libraries

    SciTech Connect

    Perkins, J. D.; van Hest, M. F. A. M.; Teplin, C. W.; Dabney, M. S.; Ginley, D. S.

    2007-11-01

    We demonstrate the use of optical reflection mapping as an in situ characterization tool to evaluate the corrosion rate of compositionally graded thin film combinatorial libraries coated with a commercial glass etching paste. A multi-channel fiber-optically coupled CCD-array-based spectrometer was used to collect a series of reflectance maps from 300 to 1000 nm versus time. The thin film interference oscillations in the measured reflection spectra have been fitted to determine the film thickness as a function of time and thereby the etch rate. Application of this technique to an In–Mo–O composition spread library is presented as an example.

  11. Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching

    PubMed Central

    Nazarov, Denis V.; Zemtsova, Elena G.; Solokhin, Alexandr Yu.; Valiev, Ruslan Z.; Smirnov, Vladimir M.

    2017-01-01

    In this study, we present the detailed investigation of the influence of the etching medium (acidic or basic Piranha solutions) and the etching time on the morphology and surface relief of ultrafine grained (UFG) and coarse grained (CG) titanium. The surface relief and morphology have been studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), and the spectral ellipsometry. The composition of the samples has been determined by X-ray fluorescence analysis (XRF) and X-ray Photoelectron Spectroscopy (XPS). Significant difference in the etching behavior of UFG and CG titanium has been found. UFG titanium exhibits higher etching activity independently of the etching medium. Formed structures possess higher homogeneity. The variation of the etching medium and time leads to micro-, nano-, or hierarchical micro/nanostructures on the surface. Significant difference has been found between surface composition for UFG titanium etched in basic and acidic Piranha solution. Based on the experimental data, the possible reasons and mechanisms are considered for the formation of nano- and microstructures. The prospects of etched UFG titanium as the material for implants are discussed. PMID:28336849

  12. Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips

    SciTech Connect

    Khan, Yasser; Al-Falih, Hisham; Zhang Yaping; Ng, Tien Khee; Ooi, Boon S.

    2012-06-15

    Dynamic electrochemical etching technique is optimized to produce tungsten tips with controllable shape and radius of curvature of less than 10 nm. Nascent features such as 'dynamic electrochemical etching' and reverse biasing after 'drop-off' are utilized, and 'two-step dynamic electrochemical etching' is introduced to produce extremely sharp tips with controllable aspect ratio. Electronic current shut-off time for conventional dc 'drop-off' technique is reduced to {approx}36 ns using high speed analog electronics. Undesirable variability in tip shape, which is innate to static dc electrochemical etching, is mitigated with novel 'dynamic electrochemical etching.' Overall, we present a facile and robust approach, whereby using a novel etchant level adjustment mechanism, 30 Degree-Sign variability in cone angle and 1.5 mm controllability in cone length were achieved, while routinely producing ultra-sharp probes.

  13. Development and Research on the Mechanism of Novel Mist Etching Method for Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Kawaharamura, Toshiyuki; Hirao, Takashi

    2012-03-01

    A novel etching process with etchant mist was developed and applied to oxide thin films such as zinc oxide (ZnO), zinc magnesium oxide (ZnMgO), and indium tin oxide (ITO). By using this process, it was shown that precise control of the etching characteristics is possible with a reasonable etching rate, for example, in the range of 10-100 nm/min, and a fine pattern of high accuracy can also be realized, even though this is usually very difficult by conventional wet etching processes, for ZnO and ZnMgO. The mist etching process was found to be similarly and successfully applied to ITO. The mechanism of mist etching has been studied by examining the etching temperature dependence of pattern accuracy, and it was shown that the mechanism was different from that of conventional liquid-phase spray etching. It was ascertained that fine pattern etching was attained using mist droplets completely (or partly) gasified by the heat applied to the substrate. This technique was applied to the fabrication of a ZnO thin-film transistor (TFT) with a ZnO active channel length of 4 µm. The electrical properties of the TFT were found to be excellent with fine uniformity over the entire 4-in. wafer.

  14. Copper dry etching by sub-atmospheric-pressure pure hydrogen glow plasma

    NASA Astrophysics Data System (ADS)

    Ohmi, Hiromasa; Sato, Jumpei; Hirano, Tatsuya; Kubota, Yusuke; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2016-11-01

    Copper (Cu) dry etching is demonstrated using a narrow-gap hydrogen plasma generated at 13.3 kPa (100 Torr) for applications in the Cu wiring technology of integrated circuits. A localized hydrogen plasma is generated around the apex of a fine pipe electrode. The Cu etching can be observed only when the process gas contains hydrogen, and the etching rates decrease with decreased hydrogen concentration. The plasma heating effect owing to plasma localization is negligible for the Cu etching because no etching occurs in the presence of pure N2 plasma whose volume is almost equal to that of the pure H2 plasma. Furthermore, the influences of physical sputtering and vacuum ultraviolet irradiation on the Cu etching are confirmed to be insignificant by exposing the samples to rare-gas plasma. The maximum Cu etching rate of 500 nm/min can be achieved at a stage temperature of 0 °C. However, the Cu etching rate has no obvious dependence on the stage temperature in a range from -20 to 330 °C. In contrast, the etching rates for Si and SiO2 at a stage temperature of 0 °C are 100 μm/min and 50 nm/min, respectively. The Cu etching rate is 10 times higher than that of SiO2, which implies that this etching technique has potential applications for Cu wiring on an SiO2 layer. The Cu surface etched by the hydrogen plasma is roughened and exhibits many round pits and bumps, which seems to be owing to excessive incorporation of the diffused hydrogen in the Cu bulk.

  15. Plasma etching of superconducting Niobium tips for scanning tunneling microscopy

    SciTech Connect

    Roychowdhury, A.; Dana, R.; Dreyer, M.; Anderson, J. R.; Lobb, C. J.; Wellstood, F. C.

    2014-07-07

    We have developed a reproducible technique for the fabrication of sharp superconducting Nb tips for scanning tunneling microscopy (STM) and scanning tunneling spectroscopy. Sections of Nb wire with 250 μm diameter are dry etched in an SF₆ plasma in a Reactive Ion Etcher. The gas pressure, etching time, and applied power are chosen to control the ratio of isotropic to anisotropic etch rates and produce the desired tip shape. The resulting tips are atomically sharp, with radii of less than 100 nm, mechanically stable, and superconducting. They generate good STM images and spectroscopy on single crystal samples of Au(111), Au(100), and Nb(100), as well as a doped topological insulator Bi₂Se₃ at temperatures ranging from 30 mK to 9 K.

  16. Fabrication of sub-15 nm aluminum wires by controlled etching

    NASA Astrophysics Data System (ADS)

    Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; McQueen, T. M.; Marković, N.

    2014-04-01

    We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices.

  17. Semiconductor etching by hyperthermal neutral beams

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K. (Inventor); Giapis, Konstantinos P. (Inventor)

    1999-01-01

    An at-least dual chamber apparatus and method in which high flux beams of fast moving neutral reactive species are created, collimated and used to etch semiconductor or metal materials from the surface of a workpiece. Beams including halogen atoms are preferably used to achieve anisotropic etching with good selectivity at satisfactory etch rates. Surface damage and undercutting are minimized.

  18. Methods for dry etching semiconductor devices

    DOEpatents

    Bauer, Todd; Gross, Andrew John; Clews, Peggy J.; Olsson, Roy H.

    2016-11-01

    The present invention provides methods for etching semiconductor devices, such aluminum nitride resonators. The methods herein allow for devices having improved etch profiles, such that nearly vertical sidewalls can be obtained. In some examples, the method employs a dry etch step with a primary etchant gas that omits BCl.sub.3, a common additive.

  19. Fluorimetric determination of total ascorbic acid by a stopped-flow mixing technique.

    PubMed

    Pérez-Ruiz, T; Martínez-Lozano, C; Tomás, V; Fenoll, J; Fenol, J

    2001-08-01

    A simple, rapid and automatic fluorimetric method for the determination of total ascorbic acid is described. The method makes use of the stopped-flow mixing technique in order to achieve the rapid oxidation of ascorbic acid by dissolved oxygen to dehydroascorbic acid, which then reacts with o-phenylenediamine to form a fluorescent quinoxaline. The initial rate and fluorescence signal of this system are directly proportional to the ascorbic acid concentration. The calibration graph was linear over the range 0.1-30 microg ml(-1) (kinetic method) and 0.25-34 microg ml(-1) (equilibrium method). The precision (% RSD) was close to 0.5%. The method has been used for the determination of ascorbic acid in pharmaceutical formulations, fruit juices, soft drinks and blood serum.

  20. Hydroxyapatite Effect on Photopolymerization of Self-etching Adhesives with Different Aggressiveness

    PubMed Central

    Zhang, Ying; Wang, Yong

    2012-01-01

    Objective To understand the correlation of the acidic monomer/hydroxyapatite (HAp) reaction with the photopolymerization behavior of self-etching adhesives with different aggressiveness. Methods Two commercial self-etching adhesives the strong Adper Prompt L-Pop (APLP, pH~0.8) and the mild Adper Easy Bond (AEB, pH~2.5) were used. HAp powders were incorporated into both adhesives to acquire solutions with concentrations of 0, 1, 3, 5, 7 wt%. The attenuated total reflectance Fourier transform infrared (ATR/FT-IR) technique was employed to collect the in-situ spectra during light-curing, from which the degree of conversion (DC) and polymerization rate (PR) were calculated. The pH of each tested solution was also measured. Results Without HAp incorporation, the DC and PR of the strong APLP (7.8% and 0.12%/s, respectively) were much lower than those of the mild AEB (85.5% and 5.7%/s, respectively). The DC and PR of APLP displayed an apparent increasing trend with the HAp content. For example, the DC increased from 7.8% to 58.4% and the PR increased from 0.12 to 3.8%/s when the HAp content increased from 0 to 7 wt%. In contrast, the DC and PR of AEB were much less affected by the HAp content. The observations were correlated well with the spectral and pH changes, which indicated that APLP underwent a higher extent of chemical reaction with HAp than AEB. Conclusions The results disclosed the important role of the acidic monomer/HAp chemical reaction in improving the photopolymerization of the strong (low-pH) self-etching adhesives such as APLP. The phenomenon of polymerization improvement strongly depended on the adhesive aggressiveness. PMID:22445789

  1. Post-synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals

    PubMed Central

    Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2016-01-01

    Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, via acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, among these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution. PMID:26458081

  2. Note: Dissolved hydrogen detection in power transformer oil based on chemically etched fiber Bragg grating.

    PubMed

    Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin

    2015-10-01

    A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.

  3. Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals.

    PubMed

    Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2015-11-23

    Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein, we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, by an acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, along these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution.

  4. Binding of caffeine with caffeic acid and chlorogenic acid using fluorescence quenching, UV/vis and FTIR spectroscopic techniques.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-03-01

    The interactions of caffeine (CF) with chlorogenic acid (CGA) and caffeic acid (CFA) were investigated by fluorescence quenching, UV/vis and Fourier transform infrared (FTIR) spectroscopic techniques. The results of the study indicated that the fluorescence quenching between caffeine and hydroxycinnamic acids could be rationalized in terms of static quenching or the formation of non-fluorescent CF-CFA and CF-CGA complexes. From fluorescence quenching spectral analysis, the quenching constant (KSV), quenching rate constant (kq), number of binding sites (n), thermodynamic properties and conformational changes of the interaction were determined. The quenching constants (KSV) between CF and CGA, CFA are 1.84 × 10(4) and 1.04 × 10(4) L/mol at 298 K and their binding site n is ~ 1. Thermodynamic parameters determined using the Van't Hoff equation indicated that hydrogen bonds and van der Waal's forces have a major role in the reaction of caffeine with caffeic acid and chlorogenic acid. The 3D fluorescence, UV/vis and FTIR spectra also showed that the binding of CF with CFA and CGA induces conformational changes in CFA and CGA.

  5. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  6. Selective Si Etching Using HCl Vapor

    NASA Astrophysics Data System (ADS)

    Isheden, C.; Hellström, P. E.; Radamson, H. H.; Zhang, S.-L.; Östling, M.

    2004-01-01

    Selective Si etching using HCl in a reduced pressure chemical vapor deposition reactor in the temperature range 800 1000°C is investigated. At 900°C, the etch process is anisotropic, exhibiting the densely packed (100), (311) and (111) surfaces. This behavior indicates that the etch process is limited by surface reaction, since the etch rate in the directions with higher atomic concentration is lower. When the temperature is decreased to 800°C, etch pits occur. A more isotropic etch is obtained at 1000°C, however at this temperature the masking oxide is attacked and the etch surface is rough. Thus the temperature has to be under the present process conditions, confined to a narrow window to yield desirable properties.

  7. A review of the different techniques for solid surface acid-base characterization.

    PubMed

    Sun, Chenhang; Berg, John C

    2003-09-18

    In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).

  8. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M. S. A.

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20-30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications.

  9. TECHNIQUES AND METHODS FOR THE DETERMINATION OF HALOACETIC ACIDS IN POTABLE WATER

    EPA Science Inventory

    Haloethanoic (haloacetic) acids (HAAs) are formed as disinfection byproducts (DBPs) during the chlorination of natural water to make it fit for consumption. Sundry analytical techniques have been applied in order to determine the concentrations of the HAAs in potable water suppli...

  10. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements

    PubMed Central

    PAMIR, Tijen; ŞEN, Bilge Hakan; EVCIN, Özgür

    2012-01-01

    Objective This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements. Material and Methods Conventional (KetacTM Molar Quick ApplicapTM) or resin-modified (PhotacTM Fil Quick AplicapTM) glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2) or single-step self-etching adhesive (AdperTM PromptTM L-PopTM) was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1) no etching, (2) 15 s of etching with 35% phosphoric acid, (3) 30 s of etching, and (4) 60 s of etching. Following the placement of the composite resin (FiltekTM Z250), the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA) followed by the Tukey's HSD post hoc analysis (p=0.05). Then, the fractured surfaces were examined by scanning electron microscopy. Results The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p<0.001). No significant differences were determined between the self-etching and etch-rinse & bond adhesives at any etching time (p>0.05). However, a greater bond strength was obtained with 30 s of phosphoric acid application. Conclusions The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal. PMID:23329245

  11. Simultaneous determination of iron (II) and ascorbic acid in pharmaceuticas based on flow sandwich technique.

    PubMed

    Vakh, Christina; Freze, Elena; Pochivalov, Alexsey; Evdokimova, Ekaterina; Kamencev, Mihail; Moskvin, Leonid; Bulatov, Andrey

    2015-01-01

    The simple and easy performed flow system based on sandwich technique has been developed for the simultaneous separate determination of iron (II) and ascorbic acid in pharmaceuticals. The implementation of sandwich technique assumed the injection of sample solution between two selective reagents and allowed the carrying out in reaction coil two chemical reactions simultaneously: iron (II) with 1,10-phenanthroline and ascorbic acid with sodium 2,6-dichlorophenolindophenol. For achieving of excellent repeatability and considerable reagent saving the various parameters such as flow rate, sample and reagent volumes, reaction coil length were also optimized. The limits of detection (LODs) obtained by using the developed flow sandwich-type approach were 0.2 mg L(-1) for iron (II) and 0.7 mg L(-1) for ascorbic acid. The suggested approach was validated according to the following parameters: linearity and sensitivity, precision, recoveries and accuracy. The sampling frequency was 41 h(-1).

  12. The effect of additional etching and curing mechanism of composite resin on the dentin bond strength

    PubMed Central

    Lee, In-Su; Son, Sung-Ae; Hur, Bock; Kwon, Yong-Hoon

    2013-01-01

    PURPOSE The aim of this study was to evaluate the effects of additional acid etching and curing mechanism (light-curing or self-curing) of a composite resin on the dentin bond strength and compatibility of one-step self-etching adhesives. MATERIALS AND METHODS Sixteen human permanent molars were randomly divided into eight groups according to the adhesives used (All-Bond Universal: ABU, Clearfil S3 Bond: CS3), additional acid etching (additional acid etching performed: EO, no additional acid etching performed: EX), and composite resins (Filtek Z-250: Z250, Clearfil FII New Bond: CFNB). Group 1: ABU-EO-Z250, Group 2: ABU-EO-CFNB, Group 3: ABU-EX-Z250, Group 4: ABU-EX-CFNB, Group 5: CS3-EO-Z250, Group 6: CS3-EO-CFNB, Group 7: CS3-EX-Z250, Group 8: CS3-EX-CFNB. After bonding procedures, composite resins were built up on dentin surfaces. After 24-hour water storage, the teeth were sectioned to make 10 specimens for each group. The microtensile bond strength test was performed using a microtensile testing machine. The failure mode of the fractured specimens was examined by means of an optical microscope at ×20 magnification. The data was analyzed using a one-way ANOVA and Scheffe's post-hoc test (α=.05). RESULTS Additional etching groups showed significantly higher values than the no additional etching group when using All-Bond Universal. The light-cured composite resin groups showed significantly higher values than the self-cured composite resin groups in the Clearfil S3 Bond. CONCLUSION The additional acid etching is beneficial for the dentin bond strength when using low acidic one-step self-etch adhesives, and low acidic one-step self-etch adhesives are compatible with self-cured composite resin. The acidity of the one-step self-etch adhesives is an influencing factor in terms of the dentin bonding strength and incompatibility with a self-cured composite resin. PMID:24353889

  13. Multi-Step Deep Reactive Ion Etching Fabrication Process for Silicon-Based Terahertz Components

    NASA Technical Reports Server (NTRS)

    Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Chattopadhyay, Goutam (Inventor); Perez, Jose Vicente Siles (Inventor); Lin, Robert H. (Inventor); Mehdi, Imran (Inventor); Lee, Choonsup (Inventor); Cooper, Ken B. (Inventor); Peralta, Alejandro (Inventor)

    2016-01-01

    A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.

  14. Plasma etching of high-resolution features in a fullerene molecular resist

    NASA Astrophysics Data System (ADS)

    Manyam, J.; Manickam, M.; Preece, J. A.; Palmer, R. E.; Robinson, A. P. G.

    2011-04-01

    As resist films become thinner, so as to reduce problems of aspect ratio related pattern collapse at high-resolution, it is becoming increasingly difficult to transfer patterns with useful aspect ratio by directly etching the resist. It has become common to use the photoresist to pattern an intermediate hardmask, which then protects the silicon substrate during etching, allowing useful aspect ratios but adding process complexity. We have previously described a fullerene based electron beam lithography resist capable of 20 nm halfpitch and 12 nm sparse features, at a sensitivity of less than 10 μC/cm2 at 20 keV. The fullerene resist has high etch durability - comparable to that of commercial novolac resists - and has previously demonstrated an etch selectivity of 3:1 to silicon using electron cyclotron resonance microwave plasma etching with SF6. Here a study of the capabilities of this resist when using Inductively Coupled Plasma etching is presented. Line-space patterns with half-pitches in the range 25 nm to 100 nm, together with sparse features (~20 nm linewidth on a 200 nm pitch) were produced in ~30 nm thick resist films using electron beam lithography, and transferred to silicon using an inductively coupled plasma etcher. Several combinations of SF6, CF4, CHF3 and C4F8process gases were explored. Etch selectivity and anisotropy were studied as a range of etching parameters, such as ICP and RF power, gas flow rate, pressure and temperature were varied. Etch selectivities in excess of 9:1 were demonstrated. Techniques for minimizing aspect ratio dependent etching effects in dense features, including the use of ashing or high etching pressures were also examined.

  15. Damage during SiO2 Etching by Low-Angle Forward Reflected Neutral Beam

    NASA Astrophysics Data System (ADS)

    Lee, Dohaing; Chung, Minjae; Park, Sangduk; Yeom, Geunyoung

    2002-12-01

    In this study, energetic reactive radical beams were formed with SF6 using a low-angle forward reflected neutral beam technique and the etch properties of SiO2 and possible damage induced by the radical beam were investigated. The results showed that when SiO2 was etched with the energetic reactive radical beams generated with SF6, SiO2 etch rates higher than 22 nm/min could be obtained. Also, when the etch damage was studied in terms of the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of metal-nitride-oxide-silicon (MNOS) and metal-oxide-silicon (MOS) devices exposed to the radical beams, nearly no etch damage could be found.

  16. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process.

  17. Bond strength of resin-reinforced glass ionomer cements after enamel etching.

    PubMed

    Cortes, O; Garcia-Godoy, F; Boj, J R

    1993-12-01

    This study evaluated the shear bond strength of resin-reinforced glass ionomers to enamel etched or unetched. Human, non-carious extracted permanent molars stored in distilled water were used. Flat buccal and lingual enamel surfaces were ground wet on 600-grit silicon carbide paper. The teeth were then distributed at random into six groups of 5 teeth (10 surfaces) each: Group 1: Fuji II LC, no enamel etching; Group 2: Fuji II LC, enamel etched with 10% phosphoric acid for 10 seconds; Group 3: Dyract, no enamel etching; Group 4: Dyract, enamel etched with 10% phosphoric acid for 10 seconds; Group 5: Photac-Fil, no enamel etching; Group 6: Photac-Fil, enamel etched with 10% phosphoric acid for 10 seconds. Cylindrical samples of the glass ionomers were prepared in plastic molds and bonded to the enamel surface according to the manufacturers' instructions. All samples were placed in distilled water for 24 hours, and sheared with an Instron at a crosshead speed of 0.5 mm/minute. The results (in MPa) were: Group 1: 11.29 +/- 4.84; Group 2: 19.64 +/- 5.43; Group 3: 8.26 +/- 3.61; Group 4: 22.04 +/- 5.40; Group 5: 2.05 +/- 3.05; Group 6: 9.12 +/- 6.61. ANOVA and Student-Newman-Keuls procedure revealed that on etched enamel, Fuji II LC and Dyract had a significantly higher bond strength than all the other groups tested (P < 0.0001), but not significantly different between each other. With these two groups, cohesive failure within the material was recorded in all samples while in the unetched samples, all specimens displayed an adhesive failure (glass ionomer-enamel interface). All samples with Photac-Fil, with or without enamel etching had adhesive failures.

  18. In-Plasma Photo-Assisted Etching

    NASA Astrophysics Data System (ADS)

    Economou, Demetre

    2015-09-01

    A methodology to precisely control the ion energy distribution (IED) on a substrate allowed the study of silicon etching as a function of ion energy at near-threshold energies. Surprisingly, a substantial etching rate was observed, independent of ion energy, when the ion energy was below the ion-assisted etching threshold (~ 16 eV for etching silicon with chlorine plasma). Careful experiments led to the conclusion that this ``sub-threshold'' etching was due to photons, predominately at wavelengths <1700 Å. Among the plasmas investigated, photo-assisted etching (PAE) was lowest in Br2/Ar gas mixtures and highest in HBr/Cl2/Ar. Above threshold etching rates scaled with the square root of ion energy. PAE rates scaled with the product of surface halogen coverage (measured by X-ray photoelectron spectroscopy) and Ar emission intensity (7504 Å). Scanning electron and atomic force microscopy (SEM and AFM) revealed that photo-etched surfaces were very rough, quite likely due to the inability of the photo-assisted process to remove contaminants from the surface. In-plasma PAE may be be a complicating factor for processes that require low ion energies, such as atomic layer etching. On the other hand PAE could produce sub-10 nm high aspect ratio (6:1) features by highly selective plasma etching to transfer nascent nanopatterns in silicon. Work supported by DOE Plasma Science Center and NSF.

  19. Study on the impact of silicon doping level on the trench profile using metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Cao, Zhe; Huang, Qiyu; Zhao, Chuanrui; Zhang, Qing

    2016-10-01

    Metal-assisted chemical etching (MACE) has been used as a promising alternative method to fabricate micro/nano-structures on silicon substrates inexpensively. In this paper, profiles of deep trenches on silicon substrates, with different doping levels, fabricated by MACE were studied. A layer of interconnected gold islands was first deposited onto the silicon substrate as catalyst. Electrochemical etching was then performed in a hydrofluoric acid (HF) and hydrogen peroxide (H2O2) mixture solution with different HF-to-H2O2 ratio ρ (ρ = [HF]/([HF] + [H2O2])). Vertical deep trenches were fabricated successfully by using this method. It was observed that even under identical experimental condition, sidewalls with various tilting angles and different morphology could still form on silicon substrates with different resistivity. This possibly because with different resistivity silicon substrate, the gradient of holes in it greatly changed, and so did the final morphology. As a result, the tilting angle of etched trench sidewall can be tuned from 6° to 96° using silicon substrates with different resistivity and etchants with different ρ. By applying the angle-tuning technique revealed in this study, high aspect ratio patterns with vertical sidewalls could be fabricated and three-dimensional complex structures could be designed and realized in the future. [Figure not available: see fulltext.

  20. Etching of CVD diamond films using oxygen ions in ECR plasma

    NASA Astrophysics Data System (ADS)

    Ma, Zhibin; Wu, Jun; Shen, Wulin; Yan, Lei; Pan, Xin; Wang, Jianhua

    2014-01-01

    Etching with oxygen ions produced by ECR plasma with an asymmetric magnetic mirror field was investigated as a potential technique for polishing CVD diamond. The morphology, structure and roughness of the diamond film surface before and after etching were analyzed respectively using scanning electron microscope (SEM), Raman spectroscopy and surface roughness measuring instrument. It was found that the ridges on diamond surface had been preferentially etched away and thereby the surface roughness decreased from 3.061 to 1.083 μm after 4 h etching. Meanwhile, non-diamond phase appeared on surface and dramatically increased with the extending of etching time. In order to fundamentally understand the etching mechanism, an etching model of diamond film was reasonably proposed on the ground of the experimental results and the theory of plasma physics. The as-generated ions taking screw movement are firstly accelerated along the magnetic field lines in the plasma and collisional presheath, and then deflected from their route towards the diamond film in the MP. When coming into Debye sheath, the motion of ions will be deflected further and strongly accelerated by electric field in the direction normal to the (1 1 1) crystal facets. This process gave rise to energetic ion bombardment towards every (1 1 1) crystal face, and thereby caused preferential etching of pyramidal crystallites.

  1. Reactive ion etching of sputtered silicon carbide and tungsten thin films for device applications. Final report

    SciTech Connect

    Pan, W.S.; Steck, A.J.

    1989-01-01

    For high-temperature processing and device applications, refractory materials, such as silicon carbide (SiC) and tungsten (W), are actively considered or evaluated as the basic semiconductor and metallization materials for future generations of integrated circuits. In order to pattern fine lines in SiC and W thin films, a selective and anisotropic etching technique needs to be developed for future device applications. Therefore, the etching process including basic mechanisms and process requirement have been chosen as the overall research goals of this project. Reactive ion etching (RIE) of SiC thin films in a variety of fluorinated gas plasmas, such as SF{sub 6}, CBrF{sub 3} and CHF{sub 3} mixed with oxygen was investigated in depth. The best anisotropic profile was observed by using CHF{sub 3} gas in the RIE mode. A typical DC bias, -300V, is concluded from etching experiments to determine the dependence of SiC etch rate and physical reaction under RIE mode. Reactive ion etching of tungsten (W) thin film was also investigated by using the different fluorinated gas plasmas, such as CF{sub 4}, SF{sub 6}, CBrF{sub 3} and CHF{sub 3} mixed with oxygen. The obtaining of anisotropic etching profiles in W etching was suggested and the mechanisms were also studied.

  2. Post-column labeling techniques in amino acid analysis by liquid chromatography.

    PubMed

    Rigas, Pantelis G

    2013-10-01

    Amino acid analysis (AAA) has always presented an analytical challenge in terms of sample preparation, separation, and detection. Because of the vast number of amino acids, various separation methods have been applied taking into consideration the large differences in their chemical structures, which span from nonpolar to highly polar side chains. Numerous separation methods have been developed in the past 60 years, and impressive achievements have been made in the fields of separation, derivatization, and detection of amino acids (AAs). Among the separation methods, liquid chromatography (LC) prevailed in the AAA field using either pre-column or post-column labeling techniques in order to improve either separation of AAs or selectivity and sensitivity of AAA. Of the two approaches, the post-column technique is a more rugged and reproducible method and provides excellent AAs separation relatively free from interferences. This review considers current separations combined with post-column labeling techniques for AAA, comparison with the pre-column methods, and the strategies used to develop effective post-column methodology. The focus of the article is on LC methods coupled with post-column labeling techniques and studying the reactions to achieve optimum post-column derivatization (PCD) conditions in order to increase sensitivity and selectivity using various types of detectors (UV-Vis, fluorescence, electrochemical etc.) and illustrating the versatility of the PCD methods for practical analysis.

  3. A Reactive-Ion Etch for Patterning Piezoelectric Thin Film

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wild, Larry

    2003-01-01

    Reactive-ion etching (RIE) under conditions described below has been found to be a suitable means for patterning piezoelectric thin films made from such materials as PbZr(1-x)Ti(x)O3 or Ba(x)Sr(1.x)TiO3. In the original application for which this particular RIE process was developed, PbZr(1-x)Ti(x)O3 films 0.5 microns thick are to be sandwiched between Pt electrode layers 0.1 microns thick and Ir electrode layers 0.1 microns thick to form piezoelectric capacitor structures. Such structures are typical of piezoelectric actuators in advanced microelectromechanical systems now under development or planned to be developed in the near future. RIE of PbZr(1-x)Ti(x)O3 is usually considered to involve two major subprocesses: an ion-assisted- etching reaction, and a sputtering subprocess that removes reactive byproducts. RIE is favored over other etching techniques because it offers a potential for a high degree of anisotropy, high-resolution pattern definition, and good process control. However, conventional RIE is not ideal for patterning PbZr(1-x)Ti(x)O3 films at a thickness as great as that in the original intended application. In order to realize the potential benefits mentioned above, it is necessary to optimize process conditions . in particular, the composition of the etching gas and the values of such other process parameters as radio-frequency power, gas pressure, gas-flow rate, and duration of the process. Guidelines for determining optimum conditions can be obtained from experimental determination of etch rates as functions of these parameters. Etch-gas mixtures of BCl3 and Cl2, some also including Ar, have been found to offer a high degree of selectivity as needed for patterning of PbZr(1-x)Ti(x)O3 films on top of Ir electrode layers in thin-film capacitor structures. The selectivity is characterized by a ratio of approx.10:1 (rate of etching PbZr(1-x)Ti(x)O3 divided by rate of etching Ir and IrO(x)). At the time of reporting the information for this article

  4. Direct comparison of the performance of commonly used e-beam resists during nano-scale plasma etching of Si, SiO2, and Cr

    NASA Astrophysics Data System (ADS)

    Goodyear, Andy; Boettcher, Monika; Stolberg, Ines; Cooke, Mike

    2015-03-01

    Electron beam writing remains one of the reference pattern generation techniques, and plasma etching continues to underpin pattern transfer. We report a systematic study of the plasma etch resistance of several e-beam resists, both negative and positive as well as classical and Chemically Amplified Resists: HSQ[1,2] (Dow Corning), PMMA[3] (Allresist GmbH), AR-P6200 (Allresist GmbH), ZEP520 (Zeon Corporation), CAN028 (TOK), CAP164 (TOK), and an additional pCAR (non-disclosed provider). Their behaviour under plasma exposure to various nano-scale plasma etch chemistries was examined (SF6/C4F8 ICP silicon etch, CHF3/Ar RIE SiO2 etch, Cl2/O2 RIE and ICP chrome etch, and HBr ICP silicon etch). Samples of each resist type were etched simultaneously to provide a direct comparison of their etch resistance. Resist thicknesses (and hence resist erosion rates) were measured by spectroscopic ellipsometer in order to provide the highest accuracy for the resist comparison. Etch selectivities (substrate:mask etch rate ratio) are given, with recommendations for the optimum resist choice for each type of etch chemistry. Silicon etch profiles are also presented, along with the exposure and etch conditions to obtain the most vertical nano-scale pattern transfer. We identify one resist that gave an unusually high selectivity for chlorinated and brominated etches which could enable pattern transfer below 10nm without an additional hard mask. In this case the resist itself acts as a hard mask. We also highlight the differing effects of fluorine and bromine-based Silicon etch chemistries on resist profile evolution and hence etch fidelity.

  5. An interactive technique for the display of nucleic acid secondary structure.

    PubMed Central

    Shapiro, B A; Lipkin, L E; Maizel, J

    1982-01-01

    The ability to visualize nucleic acid secondary structure has become quite important since the advent of computer prediction and biochemical techniques that depict such structures. Manually drawing the conformations can be quite time consuming and tedious. Thus, the ability to draw with the aid of a computer the secondary structure of nucleic acid molecules is quite advantageous. This paper describes an interactive algorithm that permits one to generate such drawings which may then be used for further analysis and/or publications. PMID:7177857

  6. Method for etching thin films of niobium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, Robert T.; Schuller, Ivan K.; Falco, Charles M.

    1981-01-01

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate, and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  7. Method for etching thin films of niboium and niobium-containing compounds for preparing superconductive circuits

    DOEpatents

    Kampwirth, R.T.; Schuller, I.K.; Falco, C.M.

    1979-11-23

    An improved method of preparing thin film superconducting electrical circuits of niobium or niobium compounds is provided in which a thin film of the niobium or niobium compound is applied to a nonconductive substrate and covered with a layer of photosensitive material. The sensitive material is in turn covered with a circuit pattern exposed and developed to form a mask of the circuit in photoresistive material on the surface of the film. The unmasked excess niobium film is removed by contacting the substrate with an aqueous etching solution of nitric acid, sulfuric acid, and hydrogen fluoride, which will rapidly etch the niobium compound without undercutting the photoresist. A modification of the etching solution will permit thin films to be lifted from the substrate without further etching.

  8. Etching of glass microchips with supercritical water.

    PubMed

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-07

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  9. Etching method for photoresists or polymers

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R. (Inventor); Wydeven, Theodore J., Jr. (Inventor)

    1991-01-01

    A method for etching or removing polymers, photoresists, and organic contaminants from a substrate is disclosed. The method includes creating a more reactive gas species by producing a plasma discharge in a reactive gas such as oxygen and contacting the resulting gas species with a sacrificial solid organic material such as polyethylene or polyvinyl fluoride, reproducing a highly reactive gas species, which in turn etches the starting polymer, organic contaminant, or photoresist. The sample to be etched is located away from the plasma glow discharge region so as to avoid damaging the substrate by exposure to high energy particles and electric fields encountered in that region. Greatly increased etching rates are obtained. This method is highly effective for etching polymers such as polyimides and photoresists that are otherwise difficult or slow to etch downstream from an electric discharge in a reactive gas.

  10. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  11. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  12. Controlled ion implant damage profile for etching

    DOEpatents

    Arnold, Jr., George W.; Ashby, Carol I. H.; Brannon, Paul J.

    1990-01-01

    A process for etching a material such as LiNbO.sub.3 by implanting ions having a plurality of different kinetic energies in an area to be etched, and then contacting the ion implanted area with an etchant. The various energies of the ions are selected to produce implant damage substantially uniformly throughout the entire depth of the zone to be etched, thus tailoring the vertical profile of the damaged zone.

  13. Selective etching of silicon carbide films

    DOEpatents

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  14. Evaluation of shear bond strength of orthodontic brackets bonded with Er-YAG laser etching

    PubMed Central

    Raji, S. Hamid; Birang, Reza; Majdzade, Fateme; Ghorbanipour, Reza

    2012-01-01

    Background: Based on contradictory findings concerning the use of lasers for enamel etching, the purpose of this study was to investigate the shear bond strength of teeth prepared for bonding with Er-YAG laser etching and compare them with phosphoric acid etching. Materials and Methods: In this in vitro study forty – eight premolars, extracted for orthodontic purposes were randomly divided in to three groups. Thirty-two teeth were exposed to laser energy for 25 s: 16 teeth at 100 mj setting and 16 teeth at 150 mj setting. Sixteen teeth were etched with 37% phosphoric acid. The shear bond strength of bonded brackets with the Transbond XT adhesive system was measured with the Zwick testing machine. Descriptive statistics, Kolmogorov–Smirnov test, of homogeneity of variances, one- way analysis of variances and Tukey's test and Kruskal Wallis were used to analyze the data. Results: The mean shear bond strength of the teeth lased with 150 mj was 12.26 ± 4.76 MPa, which was not significantly different from the group with acid etching (15.26 ± 4.16 MPa). Irradiation with 100 mj resulted in mean bond strengths of 9.05 ± 3.16 MPa, which was significantly different from that of acid etching (P < 0.001). Conclusions: laser etching at 150 and 100 mj was adequate for bond strength but the failure pattern of brackets bonded with laser etching is dominantly at adhesive – enamel interface and is not safe for enamel during debonding. PMID:23087733

  15. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers

    NASA Astrophysics Data System (ADS)

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-12-01

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

  16. Method for dry etching of transition metals

    DOEpatents

    Ashby, C.I.H.; Baca, A.G.; Esherick, P.; Parmeter, J.E.; Rieger, D.J.; Shul, R.J.

    1998-09-29

    A method for dry etching of transition metals is disclosed. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorus-containing {pi}-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/{pi}-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the {pi}-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the {pi}-acceptor ligand for forming the volatile transition metal/{pi}-acceptor ligand complex.

  17. Method for dry etching of transition metals

    DOEpatents

    Ashby, Carol I. H.; Baca, Albert G.; Esherick, Peter; Parmeter, John E.; Rieger, Dennis J.; Shul, Randy J.

    1998-01-01

    A method for dry etching of transition metals. The method for dry etching of a transition metal (or a transition metal alloy such as a silicide) on a substrate comprises providing at least one nitrogen- or phosphorous-containing .pi.-acceptor ligand in proximity to the transition metal, and etching the transition metal to form a volatile transition metal/.pi.-acceptor ligand complex. The dry etching may be performed in a plasma etching system such as a reactive ion etching (RIE) system, a downstream plasma etching system (i.e. a plasma afterglow), a chemically-assisted ion beam etching (CAIBE) system or the like. The dry etching may also be performed by generating the .pi.-acceptor ligands directly from a ligand source gas (e.g. nitrosyl ligands generated from nitric oxide), or from contact with energized particles such as photons, electrons, ions, atoms, or molecules. In some preferred embodiments of the present invention, an intermediary reactant species such as carbonyl or a halide ligand is used for an initial chemical reaction with the transition metal, with the intermediary reactant species being replaced at least in part by the .pi.-acceptor ligand for forming the volatile transition metal/.pi.-acceptor ligand complex.

  18. Analysis of the binding interaction in uric acid - Human hemoglobin system by spectroscopic techniques.

    PubMed

    Makarska-Bialokoz, Magdalena

    2017-01-31

    The binding interaction between human hemoglobin and uric acid has been studied for the first time, by UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence techniques. Characteristic effects observed for human hemoglobin intrinsic fluorescence during interaction with uric acid at neutral pH point at the formation of stacking non-covalent and non-fluorescent complexes. All the calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants, as well as Förster resonance energy transfer parameters confirm the existence of static quenching. The results of synchronous fluorescence measurements indicate that the fluorescence quenching of human hemoglobin originates both from Trp and Tyr residues and that the addition of uric acid could significantly hinder the physiological functions of human hemoglobin.

  19. Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory.

    PubMed Central

    Ieven, M; Goossens, H

    1997-01-01

    Clinical laboratories are increasingly receiving requests to perform nucleic acid amplification tests for the detection of a wide variety of infectious agents. In this paper, the efficiency of nucleic acid amplification techniques for the diagnosis of respiratory tract infections is reviewed. In general, these techniques should be applied only for the detection of microorganisms for which available diagnostic techniques are markedly insensitive or nonexistent or when turnaround times for existing tests (e.g., viral culture) are much longer than those expected with amplification. This is the case for rhinoviruses, coronaviruses, and hantaviruses causing a pulmonary syndrome, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae, and Coxiella burnetii. For Legionella spp. and fungi, contamination originating from the environment is a limiting factor in interpretation of results, as is the difficulty in differentiating colonization and infection. Detection of these agents in urine or blood by amplification techniques remains to be evaluated. In the clinical setting, there is no need for molecular diagnostic tests for the diagnosis of Pneumocystis carinii. At present, amplification methods for Mycobacterium tuberculosis cannot replace the classical diagnostic techniques, due to their lack of sensitivity and the absence of specific internal controls for the detection of inhibitors of the reaction. Also, the results of interlaboratory comparisons are unsatisfactory. Furthermore, isolates are needed for susceptibility studies. Additional work remains to be done on sample preparation methods, comparison between different amplification methods, and analysis of results. The techniques can be useful for the rapid identification of M. tuberculosis in particular circumstances, as well as the rapid detection of most rifampin-resistant isolates. The introduction of diagnostic amplification techniques into a clinical laboratory implies a level of proficiency for

  20. Continuous flow ink etching for direct micropattern of silicon dioxide

    NASA Astrophysics Data System (ADS)

    Xing, Jiyao; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2016-07-01

    A continuous flow ink etching (CFIE) method is presented to directly create micropatterns on a 60 nm thick silicon dioxide (SiO2) layer. This technique employs a micropipette filled with potassium bifluoride (KHF2) aqueous solution to localize SiO2 dissolution in the vicinity of the micropipette tip. Both dot and line features with well-defined edges were fabricated and used as hardmasks for silicon etching. The linear density of etchant ink deposited on the SiO2 can be used to regulate the depth, width and 2D morphology of the line pattern. The characterization of CFIE including the resolution (about 4 μm), reproducibility and capability to form complex structures are reported. This technique provides a simple and flexible alternative to generate the SiO2 hardmask for silicon microstructure fabrication.

  1. Aspects of native oxides etching on n-GaSb(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Cotirlan, C.; Ghita, R. V.; Negrila, C. C.; Logofatu, C.; Frumosu, F.; Lungu, G. A.

    2016-02-01

    Gallium antimonide (GaSb) is the basis of the most photovoltaic and thermophotovoltaic (TPV) systems and its innovative technological aspects based on modern ultra-high vacuum techniques are in trend for device achievement. The real surface of GaSb is modified by technological processes that can conduce to problems related to the reproducible control of its surface properties. The GaSb surface is reactive in atmosphere due to oxygen presence and exhibits a native oxide layer. The evolution of native oxides during the ion sputtering, chemical etching and thermal annealing processes for preparing the surface is presented in detailed way. Ratios of surface constituents are obtained by Angle Resolved X-ray Photoelectron Spectroscopy (ARXPS). Moreover, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) and Low-Energy Electron Diffraction (LEED) are used for characterization. The surface stoichiometry is changed using a specific etchant (e.g. citric acid) at different etching time and is analyzed by ARXPS, SEM, EDS and AFM methods. The experimental results provide useful information regarding surface native oxides characteristics on n-GaSb(1 0 0) to be taken into account for development of low resistance contacts for TPV devices based on GaSb alloy.

  2. Ag-assisted lateral etching of Si nanowires and its application to nanowire transfer

    NASA Astrophysics Data System (ADS)

    Li, Chuanbo; Fobelets, Kristel; Liu, Chang; Xue, Chunlai; Cheng, Buwen; Wang, Qiming

    2013-10-01

    Ag-assisted anisotropic lateral etching along the ⟨100⟩ directions in Si nanowire arrays (Si NWAs) is investigated. It is found that Ag ions, generated by H2O2 oxidation of Ag particles, re-nucleate on the sidewalls of the nanowires, causing side etching and tapering of the wires. By enhancing the side etching effect, fractures can be formed at specific positions along the nanowires. This technique is applied to transfer large-area Si NWAs onto a glass substrate.

  3. Single and multilayered materials processing by argon ion beam etching: study of ion angle incidence and defect formation

    NASA Astrophysics Data System (ADS)

    Gosset, N.; Boufnichel, M.; Bahette, E.; Khalfaoui, W.; Ljazouli, R.; Grimal-Perrigouas, V.; Dussart, R.

    2015-09-01

    Ion beam etching (IBE) is a very promising technique in microelectronics because of its capability to etch small patterns with a high resolution and inert materials. In this study, the angular incidence of an argon ion beam on the etch rate and uniformity is discussed in the case of several materials often used in microelectronics. The capability of the IBE technique to etch multilayered stack samples with positive anisotropic profiles was demonstrated on TiNiAu, TiNiCuAu, BST and PZT. Two typical defects involved in IBE processing (fences and not etched pattern foots) due to shadow masking and redeposition effect, are explained and solutions are presented to avoid them. Deep IBE was performed on GaN with an etch depth as high as 10 μm, using a 8 μm thick SiO2 mask. The etching of other mask materials, such as TiN, was investigated in order to improve the selectivity. Using a TiN mask, a selectivity to GaN as high as 5 is reported. Finally, the etch rate enhancement needed for deep etching was studied.

  4. AFM and SEM study of the effects of etching on IPS-Empress 2 TM dental ceramic

    NASA Astrophysics Data System (ADS)

    Luo, X.-P.; Silikas, N.; Allaf, M.; Wilson, N. H. F.; Watts, D. C.

    2001-10-01

    The aim of this study was to investigate the effects of increasing etching time on the surface of the new dental material, IPS-Empress 2 TM glass ceramic. Twenty one IPS-Empress 2 TM glass ceramic samples were made from IPS-Empress 2 TM ingots through lost-wax, hot-pressed ceramic fabrication technology. All samples were highly polished and cleaned ultrasonically for 5 min in acetone before and after etching with 9.6% hydrofluoric acid gel. The etching times were 0, 10, 20, 30, 60, 90 and 120 s respectively. Microstructure was analysed by scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to evaluate the surface roughness and topography. Observations with SEM showed that etching with hydrofluoric acid resulted in preferential dissolution of glass matrix, and that partially supported crystals within the glass matrix were lost with increasing etching time. AFM measurements indicated that etching increased the surface roughness of the glass-ceramic. A simple least-squares linear regression was used to establish a relationship between surface roughness parameters ( Ra, RMS), and etching time, for which r2>0.94. This study demonstrates the benefits of combining two microscopic methods for a better understanding of the surface. SEM showed the mode of action of hydrofluoric acid on the ceramic and AFM provided valuable data regarding the extent of surface degradation relative to etching time.

  5. Damaged silicon contact layer removal using atomic layer etching for deep-nanoscale semiconductor devices

    SciTech Connect

    Kim, Jong Kyu; Cho, Sung Il; Lee, Sung Ho; Kim, Chan Kyu; Min, Kyung Suk; Kang, Seung Hyun; Yeom, Geun Young

    2013-11-15

    Silicon atomic layer etching (ALET) using Cl{sub 2} is applied to remove the damaged layer on a 30 nm contact silicon surface formed by high-energy reactive ions during high aspect ratio contact etching, and its effects on the damage removal characteristics are investigated. Compared to a conventional damage removal method, such as the low-power CF{sub 4} plasma treatment technique, ALET produces less secondary damage to the substrate and gives exact etch depth control and extremely high etch selectivity to the contact SiO{sub 2} insulating pattern mold. When ALET is applied after a conventional damage removal technique, the sheet resistance of the damaged contact silicon surface is improved to a level close to that of a clean silicon surface, while exact atomic-scale depth control is maintained without changes in the pattern mold profile.

  6. One-Year Clinical Evaluation of the Bonding Effectiveness of a One-Step, Self-Etch Adhesive in Noncarious Cervical Lesion Therapy

    PubMed Central

    Faye, Babacar; Sarr, Mouhamed; Bane, Khaly; Aidara, Adjaratou Wakha; Niang, Seydina Ousmane; Kane, Abdoul Wakhabe

    2015-01-01

    This study evaluated the one-year clinical performance of a one-step, self-etch adhesive (Optibond All-in-One, Kerr, CA, USA) combined with a composite (Herculite XRV Ultra, Kerr Hawe, CA, USA) to restore NCCLs with or without prior acid etching. Restorations performed by the same practitioner were evaluated at baseline and after 3, 6, and 12 months using modified USPHS criteria. At 6 months, the recall rate was 100%. The retention rate was 84.2% for restorations with prior acid etching, but statistically significant differences were observed between baseline and 6 months. Without acid etching, the retention rate was 77%, and no statistically significant difference was noted between 3 and 6 months. Marginal integrity (93.7% with and 87.7% without acid etching) and discoloration (95.3% with and 92.9% without acid etching) were scored as Alpha or Bravo, with better results after acid etching. After one year, the recall rate was 58.06%. Loss of pulp vitality, postoperative sensitivity, or secondary caries were not observed. After one year retention rate was of 90.6% and 76.9% with and without acid conditioning. Optibond All-in-One performs at a satisfactory clinical performance level for restoration of NCCLs after 12 months especially after acid etching. PMID:25810720

  7. Ultradeep fused silica glass etching with an HF-resistant photosensitive resist for optical imaging applications

    NASA Astrophysics Data System (ADS)

    Nagarah, John M.; Wagenaar, Daniel A.

    2012-03-01

    Microfluidic and optical sensing platforms are commonly fabricated in glass and fused silica (quartz) because of their optical transparency and chemical inertness. Hydrofluoric acid (HF) solutions are the etching media of choice for deep etching into silicon dioxide substrates, but processing schemes become complicated and expensive for etching times greater than 1 h due to the aggressiveness of HF migration through most masking materials. We present here etching into fused silica more than 600 µm deep while keeping the substrate free of pits and maintaining a polished etched surface suitable for biological imaging. We utilize an HF-resistant photosensitive resist (HFPR) which is not attacked in 49% HF solution. Etching characteristics are compared for substrates masked with the HFPR alone and the HFPR patterned on top of Cr/Au and polysilicon masks. We used this etching process to fabricate suspended fused silica membranes, 8-16 µm thick, and show that imaging through the membranes does not negatively affect image quality of fluorescence microscopy of biological tissue. Finally, we realize small through-pore arrays in the suspended membranes. Such devices will have applications in planar electrophysiology platforms, especially where optical imaging is required.

  8. Control over the permeation of silica nanoshells by surface-protected etching with water.

    PubMed

    Hu, Yongxing; Zhang, Qiao; Goebl, James; Zhang, Tierui; Yin, Yadong

    2010-10-14

    We demonstrate a water-based etching strategy for converting solid silica shells into porous ones with controllable permeability. It overcomes the challenges of the alkaline-based surface-protected etching process that we previously developed for the production of porous and hollow silica nanostructures. Mild etching around the boiling point of water partially breaks the imperfectly condensed silica network and forms soluble monosilicic acid, eventually producing mesoscale pores in the silica structures. With the surface protection from poly(vinyl pyrrolidone) (PVP), it is possible to maintain the overall shape of the silica structures while at the same time to create porosity inside. By using bulky PVP molecules which only protect the near-surface region, we are able to completely remove the interior silica and produce hollow particles. Because the etching is mild and controllable, this process is particularly useful for treating small silica particles or core-shell particles with very thin silica shells for which the alkaline-based etching method has been difficult to control. We demonstrated the precise control of the permeation of the chemical species through the porous silica shells by using a model reaction which involves the etching of Ag encapsulated inside Ag@SiO(2) by a halocarbon. It is expected that the water-based surface-protected etching method can be conveniently extended to the production of various porous silica shells containing functional materials whose diffusion to outside and/or reaction with outside species can be easily controlled.

  9. Influence of laser etching on enamel and dentin bond strength of Silorane System Adhesive.

    PubMed

    Ustunkol, Ildem; Yazici, A Ruya; Gorucu, Jale; Dayangac, Berrin

    2015-02-01

    The aim of this in vitro study was to evaluate the shear bond strength (SBS) of Silorane System Adhesive to enamel and dentin surfaces that had been etched with different procedures. Ninety freshly extracted human third molars were used for the study. After the teeth were embedded with buccal surfaces facing up, they were randomly divided into two groups. In group I, specimens were polished with a 600-grit silicon carbide (SiC) paper to obtain flat exposed enamel. In group II, the overlying enamel layer was removed and exposed dentin surfaces were polished with a 600-grit SiC paper. Then, the teeth in each group were randomly divided into three subgroups according to etching procedures: etched with erbium, chromium:yttrium-scandium-gallium-garnet laser (a), etched with 35% phosphoric acid (b), and non-etched (c, control). Silorane System Adhesive was used to bond silorane restorative to both enamel and dentin. After 24-h storage in distilled water at room temperature, a SBS test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed using two-way ANOVA and Bonferroni tests (p < 0.05). The highest SBS was found after additional phosphoric acid treatment in dentin groups (p < 0.05). There were no statistically significant differences between the laser-etched and non-etched groups in enamel and dentin (p > 0.05). The SBS of self-etch adhesive to dentin was not statistically different from enamel (p > 0.05). Phosphoric acid treatment seems the most promising surface treatment for increasing the enamel and dentin bond strength of Silorane System Adhesive.

  10. Fabrication of GaAs nanometer scale structures by dry etching

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Tatsuro; Chuang, Chih-Li; Khitrova, Galina; Warren, Mial E.; Chavez-Pirson, Arturo; Gibbs, Hyatt M.; Sarid, Dror; Gallagher, Mark J.

    1990-10-01

    Nanometer-sized features as small as 400Ahave been fabricated in single-quantum-well GaAs/A1GaAs heterostructures for studies of quantum confinement effects in quantum dots. The features have been fabricated by dry-etching techniques using nanometer-sized etch masks by a novel surface deposition of colloidally-suspended spherical particles. SEM was used to examine the feature size.

  11. Ge and GeOx films as sacrificial layer for MEMS technology based on piezoelectric AlN: etching and planarization processes (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Sangrador, J.; Olivares, J.; Iborra, E.; Vergara, L.; Clement, M.; Sanz-Hervas, A.

    2005-07-01

    In this article we present a study of deposition and etching techniques of germanium (Ge) and amorphous oxygen germanium (GeOx) films, with the aim of using them as sacrificial layer in the fabrication of AlN-based MEMS by surface micromachining processes. The Ge and GeOx layers were deposited by RF magnetron sputtering in Ar and Ar/O2 atmospheres. By controlling the process parameters we were able to set the final composition of the GeOx films, which was assessed by FTIR measurements. We have studied the etch rates of GeOx films with x ranging from 0 to 1 in H2O2 and H2O2/acid solutions. Depending on the etching temperature and the oxygen content in the layers, etch rates ranging from 0.2 to 2 μm/min were obtained. Nearly stoichiometric germanium oxide (GeO2) was etched in pure H2O at very high rate (>1 μm/min at room temperature). We have also developed a chemomechanical polishing (CMP) process for the planarization of Ge and GeOx. The influence of the slurries containing diverse powders (CeO2, Al2O3) and chemical agents (NH4OH, HCl), the different pads, and the various process parameters on the removal rate and the final sample topography has been studied. Finally, we have analysed the compatibility of the materials involved in the process flow with the processes of planarization and removal of the sacrificial layers.

  12. SAXS study on the morphology of etched and un-etched ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Afra, B.; Rodriguez, M. D.; Mota-Santiago, P.; Muradoglu, S.; Hawley, A.; Kluth, P.

    2015-04-01

    Natural apatite samples were irradiated with 185 MeV Au and 2.3 GeV Bi ions to simulate fission tracks. The resulting track morphology was investigated using synchrotron small angle x-ray scattering (SAXS) measurements before and after chemical etching. We present preliminary results from the SAXS measurement showing the etching process is highly anisotropic yielding faceted etch pits with a 6-fold symmetry. The measurements are a first step in gaining new insights into the correlation between etched and unetched fission tracks and the use of SAXS as a tool for studying etched tracks.

  13. Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles

    NASA Astrophysics Data System (ADS)

    Hamzah, A. A.; Abd Aziz, N.; Yeop Majlis, B.; Yunas, J.; Dee, C. F.; Bais, B.

    2012-09-01

    High aspect ratio solid silicon microneedles with a concave conic shape were fabricated. Hydrofluoric acid-nitric acid-acetic acid (HNA) etching parameters were characterized and optimized to produce microneedles that have long and narrow bodies with smooth surfaces, suitable for transdermal drug delivery applications. The etching parameters were characterized by varying the HNA composition, the optical mask's window size, the etching temperature and bath agitation. An L9 orthogonal Taguchi experiment with three factors, each having three levels, was utilized to determine the optimal fabrication parameters. Isoetch contours for HNA composition with 0% and 10% acetic acid concentrations were presented and a high nitric acid region was identified to produce microneedles with smooth surfaces. It is observed that an increase in window size indiscriminately increases the etch rate in both the vertical and lateral directions, while an increase in etching temperature beyond 35 °C causes the etching to become rapid and uncontrollable. Bath agitation and sample placement could be manipulated to achieve a higher vertical etch rate compared to its lateral counterpart in order to construct high aspect ratio microneedles. The Taguchi experiment performed suggests that a HNA composition of 2:7:1 (HF:HNO3:CH3COOH), window size of 500 µm and agitation rate of 450 RPM are optimal. Solid silicon microneedles with an average height of 159.4 µm, an average base width of 110.9 µm, an aspect ratio of 1.44, and a tip angle and diameter of 19.2° and 0.38 µm respectively were successfully fabricated.

  14. Simulation of Etching Profiles Using Level Sets

    NASA Technical Reports Server (NTRS)

    Hwang, Helen; Govindan, T. R.; Meyyappan, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Using plasma discharges to etch trenches and via holes in substrates is an important process in semiconductor manufacturing. Ion enhanced etching involves both neutral fluxes, which are isotropic, and ion fluxes, which are anisotropic. The angular distributions for the ions determines the degree of vertical etch, while the amount of the neutral fluxes determines the etch rate. We have developed a 2D profile evolution simulation which uses level set methods to model the plasma-substrate interface. Using level sets instead of traditional string models avoids the use of complicated delooping algorithms. The simulation calculates the etch rate based on the fluxes and distribution functions of both ions and neutrals. We will present etching profiles of Si substrates in low pressure (10s mTorr) Ar/Cl2 discharges for a variety of incident ion angular distributions. Both ion and neutral re-emission fluxes are included in the calculation of the etch rate, and their contributions to the total etch profile will be demonstrated. In addition, we will show RIE lag effects as a function of different trench aspect ratios. (For sample profiles, please see http://www.ipt.arc.nasa.gov/hwangfig1.html)

  15. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  16. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  17. A novel decomposition technique of friable asbestos by CHClF2-decomposed acidic gas.

    PubMed

    Yanagisawa, Kazumichi; Kozawa, Takahiro; Onda, Ayumu; Kanazawa, Masazumi; Shinohara, Junichi; Takanami, Tetsuro; Shiraishi, Masatsugu

    2009-04-30

    Asbestos was widely used in numerous materials and building products due to their desirable properties. It is, however, well known that asbestos inhalation causes health damage and its inexpensive decomposition technique is necessary to be developed for pollution prevention. We report here an innovative decomposition technique of friable asbestos by acidic gas (HF and HCl) generated from the decomposition of CHClF(2) by the reaction with superheated steam at 800 degrees C. Chrysotile-asbestos fibers were completely decomposed to sellaite and magnesium silicofluoride hexahydrate by the reaction with CHClF(2)-decomposed acidic gas at 150 degrees C for 30 min. At high temperatures beyond 400 degrees C, sellaite and hematite were detected in the decomposed product. In addition, crocidolite containing wastes and amosite containing wastes were decomposed at 500 degrees C and 600 degrees C for 30 min, respectively, by CHClF(2)-decomposed acidic gas. The observation of the reaction products by phase-contrast microscopy (PCM) and scanning electron microscopy (SEM) confirmed that the resulting products did not contain any asbestos.

  18. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview.

    PubMed

    Biskup, C S; Gaber, T; Helmbold, K; Bubenzer-Busch, S; Zepf, F D

    2015-04-01

    Imbalances of neurotransmitter systems, particularly serotonin (5-HT) and dopamine (DA), are known to play an essential role in many neuropsychiatric disorders. The transient manipulation of such systems through the alteration of their amino acid precursors is a well-known research tool. Among these methods are alterations of tryptophan, the essential amino acid (AA) precursor of 5-HT, as well as manipulations of tyrosine and phenylalanine, the AA precursors of DA, which can be metabolized into norepinephrine and subsequently into epinephrine. These systems can be loaded by applying a large dose of these AAs or depleted by applying an amino acid mixture lacking the respective AAs serving as precursors. Functional neuroimaging has given insights into differential brain activation patterns and functions depending on the tasks performed, pharmacological treatments or specific disorders. Such research has shed light on the function of many brain areas as well as their interactions. The combination of AA challenge approaches with neuroimaging techniques has been subject of numerous studies. Overall, the studies conducted in this particular field of research have shown that AA challenge techniques are valid and effective research tools that allow the investigation of serotonergic and dopaminergic systems without causing serious side effects or long-term damage to the subjects. In this review, we will present an overview of the results obtained so far and discuss the implications of these findings as well as open questions that remain to be answered.

  19. Gallium nitride nanowires by maskless hot phosphoric wet etching

    NASA Astrophysics Data System (ADS)

    Bharrat, D.; Hosalli, A. M.; Van Den Broeck, D. M.; Samberg, J. P.; Bedair, S. M.; El-Masry, N. A.

    2013-08-01

    We demonstrate gallium nitride (GaN) nanowires formation by controlling the selective and anisotropic etching of N-polar GaN in hot phosphoric acid. Nanowires of ˜109/cm,2 total height of ˜400 nm, and diameters of 170-200 nm were obtained. These nanowires have both non-polar {11¯00}/ {112¯0} and semi-polar {1011¯} facets. X-Ray Diffraction characterization shows that screw dislocations are primarily responsible for preferential etching to create nanowires. Indium gallium nitride multi-quantum wells (MQWs) grown on these GaN nanowires showed a blue shift in peak emission wavelength of photoluminescence spectra, and full width at half maximum decreased relative to MQWs grown on planar N-polar GaN, respectively.

  20. Etch selectivity of a wet chemical formulation for premetal cleaning

    NASA Astrophysics Data System (ADS)

    Epton, Jeremy W.; Jarrett, Deborah L.; Doohan, Ian J.

    2001-04-01

    This paper examines the relative etching rates of doped and thermal silicon dioxide when using NSSL etchant, comprising of a mixture of ammonium fluoride, water and ammonium dihydrogen phosphate [(NH4)H2PO4] and investigates their dependence on both temperature and mixture composition. The possible reaction mechanism is discussed and compared with the known mechanism for standard buffered oxide etchants (BOE). The observed etch selectivity and mechanisms of BOE and NSSL are also compared with the behavior of a third chemical formulation, referred to as mixed oxide etchant, which comprises of ammonium fluoride (NH4F) solution, diammonium hydrogen phosphate [(NH4)2HPO4] and orthophosphoric acid (H3PO4). It is concluded that no major change in oxide selectivity is observed if either BOE or NSSL etchants are used in the metal pre-clean process.

  1. Mechanisms of Hydrocarbon Based Polymer Etch

    NASA Astrophysics Data System (ADS)

    Lane, Barton; Ventzek, Peter; Matsukuma, Masaaki; Suzuki, Ayuta; Koshiishi, Akira

    2015-09-01

    Dry etch of hydrocarbon based polymers is important for semiconductor device manufacturing. The etch mechanisms for oxygen rich plasma etch of hydrocarbon based polymers has been studied but the mechanism for lean chemistries has received little attention. We report on an experimental and analytic study of the mechanism for etching of a hydrocarbon based polymer using an Ar/O2 chemistry in a single frequency 13.56 MHz test bed. The experimental study employs an analysis of transients from sequential oxidation and Ar sputtering steps using OES and surface analytics to constrain conceptual models for the etch mechanism. The conceptual model is consistent with observations from MD studies and surface analysis performed by Vegh et al. and Oehrlein et al. and other similar studies. Parameters of the model are fit using published data and the experimentally observed time scales.

  2. Predicting copper concentrations in acid mine drainage: a comparative analysis of five machine learning techniques.

    PubMed

    Betrie, Getnet D; Tesfamariam, Solomon; Morin, Kevin A; Sadiq, Rehan

    2013-05-01

    Acid mine drainage (AMD) is a global problem that may have serious human health and environmental implications. Laboratory and field tests are commonly used for predicting AMD, however, this is challenging since its formation varies from site-to-site for a number of reasons. Furthermore, these tests are often conducted at small-scale over a short period of time. Subsequently, extrapolation of these results into large-scale setting of mine sites introduce huge uncertainties for decision-makers. This study presents machine learning techniques to develop models to predict AMD quality using historical monitoring data of a mine site. The machine learning techniques explored in this study include artificial neural networks (ANN), support vector machine with polynomial (SVM-Poly) and radial base function (SVM-RBF) kernels, model tree (M5P), and K-nearest neighbors (K-NN). Input variables (physico-chemical parameters) that influence drainage dynamics are identified and used to develop models to predict copper concentrations. For these selected techniques, the predictive accuracy and uncertainty were evaluated based on different statistical measures. The results showed that SVM-Poly performed best, followed by the SVM-RBF, ANN, M5P, and KNN techniques. Overall, this study demonstrates that the machine learning techniques are promising tools for predicting AMD quality.

  3. In situ measurement of the ion incidence angle dependence of the ion-enhanced etching yield in plasma reactors

    SciTech Connect

    Belen, Rodolfo Jun; Gomez, Sergi; Kiehlbauch, Mark; Aydil, Eray S.

    2006-11-15

    The authors propose and demonstrate a technique to determine the ion incidence angle dependence of the ion-enhanced etching yield under realistic plasma conditions and in situ in an arbitrary plasma reactor. The technique is based on measuring the etch rate as a function of position along the walls of features that initially have nearly semicircular cross sections. These initial feature shapes can be easily obtained by wet or isotropic plasma etching of holes patterned through a mask. The etch rate as a function of distance along the feature profile provides the etching yield as a function of the ion incidence angle. The etch rates are measured by comparing digitized scanning electron micrograph cross sections of the features before and after plasma etching in gas mixtures of interest. The authors have applied this technique to measure the ion incidence angle dependence of the Si etching yield in HBr, Cl{sub 2}, SF{sub 6}, and NF{sub 3} plasmas and binary mixtures of SF{sub 6} and NF{sub 3} with O{sub 2}. Advantages and limitations of this method are also discussed.

  4. Silicon Nanostructures Produced by Modified MacEtch Method for Antireflective Si Surface.

    PubMed

    Nichkalo, Stepan; Druzhinin, Anatoly; Evtukh, Anatoliy; Bratus', Oleg; Steblova, Olga

    2017-12-01

    This work pertains to the method for modification of silicon (Si) wafer morphology by metal-assisted chemical etching (MacEtch) technique suitable for fabrication of antireflective Si surfaces. For this purpose, we made different Au catalyst patterns on the surface of Si substrate. This modification allowed to obtain the close-packed Au nanodrop (ND) pattern that generates the nanowires (NWs) and the well-separated Au NDs, which induce the nanopore (NP) formation. The antireflective properties of these structures in comparison with NWs produced by the conventional Ag-MacEtch method were analysed. The total surface reflectance of 1~7% for SiNWs and ~17% for SiNPs was observed over the entire Si-absorbing region. Moreover, SiNWs prepared by Au-MacEtch demonstrate better antireflective properties in contrast to those formed by conventional Ag-assisted chemical etching. So, the use of SiNWs produced by the modified Au-MacEtch method as the antireflective material is favored over those prepared by Ag-MacEtch due to their higher light absorption and lower reflectance. The possible reason of these findings is discussed.

  5. Controlled Patterning of Vertical Silicon Structures Using Polymer Lithography and Wet Chemical Etching.

    PubMed

    Kim, Han-Jung; Lee, Su-Han; Lee, Jihye; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Joo-Yun; Jeong, Jun-Ho; Choi, Dae-Geun

    2015-06-01

    In order to improve their performance for various applications, a facile method for the wafer-scale fabrication of micro/nano-patterned vertical silicon (Si) structures such as silicon nanowires (SiNWs), silicon nanorods (SiNRs), and porous silicon (p-Si) was developed. The method is based on the combination of lithography techniques (photolithography, thermal nano-imprint lithography, nanosphere lithography) and wet chemical etching (electro-chemical etching, metal-assisted chemical etching) processes. Micro-patterned p-Si with various pore diameters from 30 nm to 1.2 um were fabricated via electro-chemical etching. Micro/nano-patterned Si microstructures, nanorods, and nanowires were also successfully fabricated by changing the thickness of the metal layer of 5 nm or 20 nm in the metal-assisted chemical etching process. This study also investigated the effect of the etching time and patterning on the etched SiNWs length. This method provides advantages of simplicity, speed, large-scale production, easy size and shape manipulation, and low cost.

  6. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires.

    PubMed

    Balasundaram, Karthik; Sadhu, Jyothi S; Shin, Jae Cheol; Azeredo, Bruno; Chanda, Debashis; Malik, Mohammad; Hsu, Keng; Rogers, John A; Ferreira, Placid; Sinha, Sanjiv; Li, Xiuling

    2012-08-03

    We report the fabrication of degenerately doped silicon (Si) nanowires of different aspect ratios using a simple, low-cost and effective technique that involves metal-assisted chemical etching (MacEtch) combined with soft lithography or thermal dewetting metal patterning. We demonstrate sub-micron diameter Si nanowire arrays with aspect ratios as high as 180:1, and present the challenges in producing solid nanowires using MacEtch as the doping level increases in both p- and n-type Si. We report a systematic reduction in the porosity of these nanowires by adjusting the etching solution composition and temperature. We found that the porosity decreases from top to bottom along the axial direction and increases with etching time. With a MacEtch solution that has a high [HF]:[H(2)O(2)] ratio and low temperature, it is possible to form completely solid nanowires with aspect ratios of less than approximately 10:1. However, further etching to produce longer wires renders the top portion of the nanowires porous.

  7. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires

    NASA Astrophysics Data System (ADS)

    Balasundaram, Karthik; Sadhu, Jyothi S.; Shin, Jae Cheol; Azeredo, Bruno; Chanda, Debashis; Malik, Mohammad; Hsu, Keng; Rogers, John A.; Ferreira, Placid; Sinha, Sanjiv; Li, Xiuling

    2012-08-01

    We report the fabrication of degenerately doped silicon (Si) nanowires of different aspect ratios using a simple, low-cost and effective technique that involves metal-assisted chemical etching (MacEtch) combined with soft lithography or thermal dewetting metal patterning. We demonstrate sub-micron diameter Si nanowire arrays with aspect ratios as high as 180:1, and present the challenges in producing solid nanowires using MacEtch as the doping level increases in both p- and n-type Si. We report a systematic reduction in the porosity of these nanowires by adjusting the etching solution composition and temperature. We found that the porosity decreases from top to bottom along the axial direction and increases with etching time. With a MacEtch solution that has a high [HF]:[H2O2] ratio and low temperature, it is possible to form completely solid nanowires with aspect ratios of less than approximately 10:1. However, further etching to produce longer wires renders the top portion of the nanowires porous.

  8. Silicon Nanostructures Produced by Modified MacEtch Method for Antireflective Si Surface

    NASA Astrophysics Data System (ADS)

    Nichkalo, Stepan; Druzhinin, Anatoly; Evtukh, Anatoliy; Bratus', Oleg; Steblova, Olga

    2017-02-01

    This work pertains to the method for modification of silicon (Si) wafer morphology by metal-assisted chemical etching (MacEtch) technique suitable for fabrication of antireflective Si surfaces. For this purpose, we made different Au catalyst patterns on the surface of Si substrate. This modification allowed to obtain the close-packed Au nanodrop (ND) pattern that generates the nanowires (NWs) and the well-separated Au NDs, which induce the nanopore (NP) formation. The antireflective properties of these structures in comparison with NWs produced by the conventional Ag-MacEtch method were analysed. The total surface reflectance of 1 7% for SiNWs and 17% for SiNPs was observed over the entire Si-absorbing region. Moreover, SiNWs prepared by Au-MacEtch demonstrate better antireflective properties in contrast to those formed by conventional Ag-assisted chemical etching. So, the use of SiNWs produced by the modified Au-MacEtch method as the antireflective material is favored over those prepared by Ag-MacEtch due to their higher light absorption and lower reflectance. The possible reason of these findings is discussed.

  9. Characterization of Thermal and Photo-Enhanced Remote Plasma Etching of Gallium Arsenide and Indium Phosphide

    NASA Astrophysics Data System (ADS)

    Lishan, David George

    The desire to shrink dimensions and improve performance of devices has focused attention on fabrication processes that induce a minimum of material damage. A technique which accomplishes this goal involves the utilization of remote plasma etching. In this work, the design of a flexible, high vacuum, remote plasma dry etch processing chamber with multiple in situ analytical capabilities is described. With this new chamber, a systematic study of temperature and flux dependence using hydrogen chloride (HCl) and chlorine (Cl_2) to etch GaAs and InP is performed. Reactant flux limited etching was observed using HCl. These results agree qualitatively with thermodynamic predictions and provide a more complete understanding of reactant flux and product desorption dynamics. Along with the insight into the mechanisms associated with halogen etching of III-V materials, the control, low damage, and material selectivity aspects of remote plasma etching are discussed using as examples, photochemical enhanced etching, fabrication of quantum wires, and in situ real time current monitoring.

  10. Charging effect simulation model used in simulations of plasma etching of silicon

    SciTech Connect

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Rangelow, Ivo W.; Cooke, Mike

    2012-10-15

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)-a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured-as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  11. Etch-a-Sketch Nanoelectronics

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    2009-10-01

    The popular children's toy Etch-a-Sketch has motivated the invention of a new material capable of writing and erasing wires so small they approach the spacing between atoms. The interface between two normally insulating materials, strontium titanate and lanthanum aluminate, can be switched between the insulating and conducting state with the use of the sharp metallic probe of an atomic-force microscope. By ``sketching'' this probe in various patterns, one can create electronic materials with remarkably diverse properties. This material system shows promise both for ultra-high density storage and as possible replacements for silicon-based logic (CMOS). This work is supported by the National Science Foundation, Defense Advanced Research Projects Agency, Army Research Office and Air Force Office of Scientific Research.

  12. Nanoscale etching and flattening of metals with ozone water.

    PubMed

    Hatsuki, Ryuji; Yamamoto, Takatoki

    2012-06-13

    Etchants used for metal etching are generally harmful to the environment. We propose an environmentally friendly method that uses ozone water to etch metals. We measured the dependencies of ozone water etching on the temperature and ozone concentration for several metals and evaluated the surface roughness of the etched surfaces. The etching rate was proportional to the dissolved ozone concentration, and the temperature and the surfaces were smoothed by etching.

  13. A blanching technique for intradermal injection of the hyaluronic acid Belotero.

    PubMed

    Micheels, Patrick; Sarazin, Didier; Besse, Stéphanie; Sundaram, Hema; Flynn, Timothy C

    2013-10-01

    With the proliferation of dermal fillers in the aesthetic workplace have come instructions from various manufacturers regarding dermal placement. Determination of injection needle location in the dermis has in large part been based on physician expertise, product and needle familiarity, and patient-specific skin characteristics. An understanding of the precise depth of dermal structures may help practitioners improve injection specificity. Unlike other dermal fillers that suggest intradermal and deep dermal injection planes, a new hyaluronic acid with a cohesive polydensified matrix may be more appropriate for the superficial dermis because of its structure and its high degree of integration into the dermis. To that end, the authors designed a small study to quantify the depth of the superficial dermis by means of ultrasound and histology. Using ultrasound resources, the authors determined the depths of the epidermis, the dermis, and the reticular dermis in the buttocks of six patients; the authors then extrapolated the depth of the superficial reticular dermis. Histologic studies of two of the patients showed full integration of the product in the reticular dermis. Following determination of injection depths and filler integration, the authors describe a technique ("blanching") for injection of the cohesive polydensified matrix hyaluronic acid into the superficial dermis. At this time, blanching is appropriate only for injection of the cohesive polydensified matrix hyaluronic acid known as Belotero Balance in the United States, although it may have applications for other hyaluronic acid products outside of the United States.

  14. Surface passivation of silicon nanowires based metal nano-particle assisted chemical etching for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Ben Rabha, Mohamed; Khezami, Lotfi; Jemai, Abdelbasset Bessadok; Alhathlool, Raed; Ajbar, Abdelhamid

    2017-03-01

    Metal Nano-particle Assisted Chemical Etching (MNpACE) is an extraordinary developed wet etching method for producing uniform semiconductor nanostructure (silicon nanowires) from patterned metallic film on crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs).The creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. The combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties especially a PL response at 640 nm are presented. As a results, the effective lifetime (τeff) and surface recombination velocity (Seff) evolution of SiNWs after stain etching treatment showed significant improvements and less than 1% reflectance was achieved over the wavelength range of 400-800 nm and more than 36% reduction was observed compared to untreated surface. It has, thus, been demonstrated that all these factors may lead to improved energy efficiency from 8% to nearly 14.2% for a cell with SiNWs treated in acid (HF/HNO3/H2O) solution.

  15. Wet etching of InSb surfaces in aqueous solutions: Controlled oxide formation

    NASA Astrophysics Data System (ADS)

    Aureau, D.; Chaghi, R.; Gerard, I.; Sik, H.; Fleury, J.; Etcheberry, A.

    2013-07-01

    This paper investigates the wet etching of InSb surfaces by two different oxidant agents: Br2 and H2O2 and the consecutive oxides generation onto the surfaces. The strong dependence between the chemical composition of the etching baths and the nature of the final surface chemistry of this low band-gap III-V semiconductor will be especially highlighted. One aqueous etching solution combined hydrobromic acid and Bromine (HBr-Br2:H2O) with adjusted concentrations. The other solution combines orthophosphoric and citric acids with hydrogen peroxide (H3PO4-H2O2:H2O). Depending on its composition, each formulation gave rise to variable etching rate. The dosage of Indium traces in the etching solution by atomic absorption spectroscopy (AAS) gives the kinetic variation of the dissolution process. The variations on etching rates are associated to the properties and the nature of the formed oxides on InSb surfaces. Surface characterization is specifically performed by X-ray photoelectron spectroscopy (XPS). A clear evidence of the differences between the formed oxides is highlighted. Atomic force microscopy is used to monitor the surface morphology and pointed out that very different final morphologies can be reached. This paper presents new results on the strong variability of the InSb oxides in relation with the InSb reactivity toward environment interaction.

  16. Effect of wet etching process on the morphology and transmittance of fluorine doped tin oxide (FTO)

    NASA Astrophysics Data System (ADS)

    Triana, S. L.; Kusumandari; Suryana, R.

    2016-11-01

    Wet etching process was performed on the surface of FTO. The FTO coated glasses subtrates with size of 2×2 cm covered by screen were patterned using zinc powder and concentrated hydrochloric acid (1 M). The substrates were then cleaned in ultrasonic baths of special detergent(helmanex) diluted in deionized water and isopropanol in sequence. The screens with various of hole size denotes by T32, T49 and T55 were used in order to create a pattern of surface textured. The atomic force microscopy (AFM) image revealed that wet etching process changes the morphology of FTO. It indicates that texturization occured. Moreover, from the UV-Vis Spectrophotometer measurement, the transmittance of FTO increase after wet etching process. The time of etching and pattern of screen were affect to the morphology and the transmittance of FTO.

  17. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity

    SciTech Connect

    Grass, Michael E.; Yue, Yao; Habas, Susan E.; Rioux, Robert M.; Teall, Chelsea I.; Somorjai, G.A.

    2008-01-09

    A procedure has been developed for the selective etching of Ag from Pt nanoparticles of well-defined shape, resulting in the formation of elementally-pure Pt cubes, cuboctahedra, or octahedra, with a largest vertex-to-vertex distance of {approx}9.5 nm from Ag-modified Pt nanoparticles. A nitric acid etching process was applied Pt nanoparticles supported on mesoporous silica, as well as nanoparticles dispersed in aqueous solution. The characterization of the silica-supported particles by XRD, TEM, and N{sub 2} adsorption measurements demonstrated that the structure of the nanoparticles and the mesoporous support remained conserved during etching in concentrated nitric acid. Both elemental analysis and ethylene hydrogenation indicated etching of Ag is only effective when [HNO{sub 3}] {ge} 7 M; below this concentration, the removal of Ag is only {approx}10%. Ethylene hydrogenation activity increased by four orders of magnitude after the etching of Pt octahedra that contained the highest fraction of silver. High-resolution transmission electron microscopy of the unsupported particles after etching demonstrated that etching does not alter the surface structure of the Pt nanoparticles. High [HNO{sub 3}] led to the decomposition of the capping agent, polyvinylpyrollidone (PVP); infrared spectroscopy confirmed that many decomposition products were present on the surface during etching, including carbon monoxide.

  18. Effect of temperature on acid-base equilibria in separation techniques. A review.

    PubMed

    Gagliardi, Leonardo G; Tascon, Marcos; Castells, Cecilia B

    2015-08-19

    Studies on the theoretical principles of acid-base equilibria are reviewed and the influence of temperature on secondary chemical equilibria within the context of separation techniques, in water and also in aqueous-organic solvent mixtures, is discussed. In order to define the relationships between the retention in liquid chromatography or the migration velocity in capillary electrophoresis and temperature, the main properties of acid-base equilibria have to be taken into account for both, the analytes and the conjugate pairs chosen to control the solution pH. The focus of this review is based on liquid-liquid extraction (LLE), liquid chromatography (LC) and capillary electrophoresis (CE), with emphasis on the use of temperature as a useful variable to modify selectivity on a predictable basis. Simplified models were evaluated to achieve practical optimizations involving pH and temperature (in LLE and CE) as well as solvent composition in reversed-phase LC.

  19. Marginal adaptation of composite resins under two adhesive techniques.

    PubMed

    Dačić, Stefan; Veselinović, Aleksandar M; Mitić, Aleksandar; Nikolić, Marija; Cenić, Milica; Dačić-Simonović, Dragica

    2016-11-01

    In the present research, different adhesive techniques were used to set up fillings with composite resins. After the application of etch and rinse or self etch adhesive technique, marginal adaptation of composite fillings was estimated by the length of margins without gaps, and by the microretention of resin in enamel and dentin. The study material consisted of 40 extracted teeth. Twenty Class V cavities were treated with 35% phosphorous acid and restored after rinsing by Adper Single Bond 2 and Filtek Ultimate-ASB/FU 3M ESPE composite system. The remaining 20 cavities were restored by Adper Easy One-AEO/FU 3M ESPE composite system. Marginal adaptation of composite fillings was examined using a scanning electron microscope (SEM). The etch and rinse adhesive technique showed a significantly higher percentage of margin length without gaps (in enamel: 92.5%, in dentin: 57.3%), compared with the self-etch technique with lower percentage of margin length without gaps, in enamel 70.4% (p < .001), and in dentin-22.6% (p < .05). In the first technique, microretention was composed of adhesive and hybrid layers as well as resin tugs in interprismatic spaces of enamel, while the dentin microretention was composed of adhesive and hybrid layers with resin tugs in dentin canals. In the second technique, resin tugs were rarely seen and a microgap was dominant along the border of restoration margins. The SEM analysis showed a better marginal adaptation of composite resin to enamel and dentin with better microretention when the etch and rinse adhesive procedure was applied.

  20. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  1. Random and Uniform Reactive Ion Etching Texturing of Si

    SciTech Connect

    Zaidi, S.H.

    1999-04-01

    The performance of a solar cell is critically dependent on absorption of incident photons and their conversion into electrical current. This report describes research efforts that have been directed toward the use of nanoscale surface texturing techniques to enhance light absorption in Si. This effort has been divided into two approaches. The first is to use plasma-etching to produce random texturization on multicrystalline Si cells for terrestrial use, since multicrystalline Si cannot be economically textured in any other way. The second approach is to use interference lithography and plasma-etching to produce gettering structures on Si cells for use in space, so that long-wavelength light can be absorbed close to the junction and make the cells more resistant to cosmic radiation damage.

  2. Bias-assisted KOH etching of macroporous silicon membranes

    NASA Astrophysics Data System (ADS)

    Mathwig, K.; Geilhufe, M.; Müller, F.; Gösele, U.

    2011-03-01

    This paper presents an improved technique to fabricate porous membranes from macroporous silicon as a starting material. A crucial step in the fabrication process is the dissolution of silicon from the backside of the porous wafer by aqueous potassium hydroxide to open up the pores. We improved this step by biasing the silicon wafer electrically against the KOH. By monitoring the current-time characteristics a good control of the process is achieved and the yield is improved. Also, the etching can be stopped instantaneously and automatically by short-circuiting Si and KOH. Moreover, the bias-assisted etching allows for the controlled fabrication of silicon dioxide tube arrays when the silicon pore walls are oxidized and inverted pores are released.

  3. Fe-catalyzed etching of graphene layers

    NASA Astrophysics Data System (ADS)

    Cheng, Guangjun; Calizo, Irene; Hight Walker, Angela; PML, NIST Team

    We investigate the Fe-catalyzed etching of graphene layers in forming gas. Fe thin films are deposited by sputtering onto mechanically exfoliated graphene, few-layer graphene (FLG), and graphite flakes on a Si/SiO2 substrate. When the sample is rapidly annealed in forming gas, particles are produced due to the dewetting of the Fe thin film and those particles catalyze the etching of graphene layers. Monolayer graphene and FLG regions are severely damaged and that the particles catalytically etch channels in graphite. No etching is observed on graphite for the Fe thin film annealed in nitrogen. The critical role of hydrogen indicates that this graphite etching process is catalyzed by Fe particles through the carbon hydrogenation reaction. By comparing with the etched monolayer and FLG observed for the Fe film annealed in nitrogen, our Raman spectroscopy measurements identify that, in forming gas, the catalytic etching of monolayer and FLG is through carbon hydrogenation. During this process, Fe particles are catalytically active in the dissociation of hydrogen into hydrogen atoms and in the production of hydrogenated amorphous carbon through hydrogen spillover.

  4. Etch Characteristics of GaN using Inductively Coupled Cl2 Plasma Etching

    NASA Astrophysics Data System (ADS)

    Rosli, Siti Azlina; Aziz, A. Abdul

    2008-05-01

    In this study, the plasma characteristics and GaN etch properties of inductively coupled Cl2/Ar plasmas were investigated. It has shown that the results of a study of inductively coupled plasma (ICP) etching of gallium nitride by using Cl2/Ar is possible to meet the requirement (anisotropy, high etch rate and high selectivity), simultaneously. We have investigated the etching rate dependency on the percentage of Argon in the gas mixture, the total pressure and DC voltage. We found that using a gas mixture with 20 sccm of Ar, the optimum etch rate of GaN was achieved. The etch rate were found to increase with voltage, attaining a maximum rate 2500 Å/min at -557 V. The addition of an inert gas, Ar is found to barely affect the etch rate. Surface morphology of the etched samples was verified by scanning electron microscopy and atomic force microscopy. It was found that the etched surface was anisotropic and the smoothness of the etched surface is comparable to that of polished wafer.

  5. Method for providing an arbitrary three-dimensional microstructure in silicon using an anisotropic deep etch

    DOEpatents

    Morales, Alfredo M.; Gonzales, Marcela

    2004-06-15

    The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

  6. Fountain pen nanochemistry: Atomic force control of chrome etching

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Kheifetz, Yuri; Shambrodt, Efim; Radko, Anna; Khatchatryan, Edward; Sukenik, Chaim

    1999-10-01

    In this report we demonstrate a general method for affecting chemical reactions with a high degree of spatial control that has potentially wide applicability in science and technology. Our technique is based on complexing the delivery of liquid or gaseous materials through a cantilevered micropipette with an atomic force microscope that is totally integrated into a conventional optical microscope. Controlled etching of chrome is demonstrated without detectable effects on the underlying glass substrate. This simple combination allows for the nanometric spatial control of the whole world of chemical reactions in defined regions of surfaces. Applications of the technique in critical areas such as mask repair are likely.

  7. Sensitivity Enhancement of RF Plasma Etch Endpoint Detection With K-means Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Honyoung; Jang, Haegyu; Lee, Hak-Seung; Chae, Heeyeop

    2015-09-01

    Plasma etching process is the core process in semiconductor fabrication, and the etching endpoint detection is one of the essential FDC (Fault Detection and Classification) for yield management and mass production. In general, Optical emission spectrocopy (OES) has been used to detect endpoint because OES can be a non-invasive and real-time plasma monitoring tool. In OES, the trend of a few sensitive wavelengths is traced. However, in case of small-open area etch endpoint detection (ex. contact etch), it is at the boundary of the detection limit because of weak signal intensities of reaction reactants and products. Furthemore, the various materials covering the wafer such as photoresist, dielectric materials, and metals make the analysis of OES signals complicated. In this study, full spectra of optical emission signals were collected and the data were analyzed by a data-mining approach, modified K-means cluster analysis. The K-means cluster analysis is modified suitably to analyze a thousand of wavelength variables from OES. This technique can improve the sensitivity of EPD for small area oxide layer etching processes: about 1.0% oxide area. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as EPD. Plasma Etch, EPD, K-means Cluster Analysis.

  8. Dry etching method for compound semiconductors

    DOEpatents

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  9. Dry etching method for compound semiconductors

    SciTech Connect

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  10. Method of sputter etching a surface

    DOEpatents

    Henager, Jr., Charles H.

    1984-01-01

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion.

  11. Method of sputter etching a surface

    DOEpatents

    Henager, C.H. Jr.

    1984-02-14

    The surface of a target is textured by co-sputter etching the target surface with a seed material adjacent thereto, while the target surface is maintained at a pre-selected temperature. By pre-selecting the temperature of the surface while sputter etching, it is possible to predetermine the reflectance properties of the etched surface. The surface may be textured to absorb sunlight efficiently and have minimal emittance in the infrared region so as to be well-suited for use as a solar absorber for photothermal energy conversion. 4 figs.

  12. Electroless epitaxial etching for semiconductor applications

    DOEpatents

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  13. A comparison of various modes of liquid-liquid based microextraction techniques: determination of picric acid.

    PubMed

    Burdel, Martin; Šandrejová, Jana; Balogh, Ioseph S; Vishnikin, Andriy; Andruch, Vasil

    2013-03-01

    Three modes of liquid-liquid based microextraction techniques--namely auxiliary solvent-assisted dispersive liquid-liquid microextraction, auxiliary solvent-assisted dispersive liquid-liquid microextraction with low-solvent consumption, and ultrasound-assisted emulsification microextraction--were compared. Picric acid was used as the model analyte. The determination is based on the reaction of picric acid with Astra Phloxine reagent to produce an ion associate easily extractable by various organic solvents, followed by spectrophotometric detection at 558 nm. Each of the compared procedures has both advantages and disadvantages. The main benefit of ultrasound-assisted emulsification microextraction is that no hazardous chlorinated extraction solvents and no dispersive solvent are necessary. Therefore, this procedure was selected for validation. Under optimized experimental conditions (pH 3, 7 × 10(-5) mol/L of Astra Phloxine, and 100 μL of toluene), the calibration plot was linear in the range of 0.02-0.14 mg/L and the LOD was 7 μg/L of picric acid. The developed procedure was applied to the analysis of spiked water samples.

  14. Determination of nucleic acids with a near infrared cyanine dye using resonance light scattering technique

    NASA Astrophysics Data System (ADS)

    Fang, Fang; Zheng, Hong; Li, Ling; Wu, Yuqin; Chen, Jinlong; Zhuo, Shujuan; Zhu, Changqing

    2006-06-01

    A new method for the determination of nucleic acids has been developed based on the enhancement effect of resonance light scattering (RLS) with a cationic near infrared (NIR) cyanine dye. Under the optimal conditions, the enhanced RLS intensity at 823 nm is proportional to the concentration of nucleic acids in the range of 0-400 ng mL -1 for both calf thymus DNA (CT DNA) and fish sperm DNA (FS DNA), 0-600 ng mL -1 for snake ovum RNA (SO RNA). The detection limits are 3.5 ng mL -1, 3.4 ng mL -1 and 2.9 ng mL -1 for CT DNA, FS DNA and SO RNA, respectively. Owing to performing in near infrared region, this method not only has high sensitivity endowed by RLS technique but also avoids possible spectral interference from background. It has been applied to the determination of nucleic acids in synthetic and real samples and satisfactory results were obtained.

  15. Acid demineralization susceptibility of dental enamel submitted to different bleaching techniques and fluoridation regimens.

    PubMed

    Salomão, Dlf; Santos, Dm; Nogueira, Rd; Palma-Dibb, Rg; Geraldo-Martins, Vr

    2014-01-01

    The aim of the current study was to assess the acid demineralization susceptibility of bleached dental enamel submitted to different fluoride regimens. One hundred bovine enamel blocks (6×6×3 mm) were randomly divided into 10 groups (n=10). Groups 1 and 2 received no bleaching. Groups 3 to 6 were submitted to an at-home bleaching technique using 6% hydrogen peroxide (HP; G3 and G4) or 10% carbamide peroxide (CP; G5 and G6). Groups 7 to 10 were submitted to an in-office bleaching technique using 35% HP (G7 and G8) or 35% CP (G9 and G10). During bleaching, a daily fluoridation regimen of 0.05% sodium fluoride (NaF) solution was performed on groups 3, 5, 7, and 9, while weekly fluoridation with a 2% NaF gel was performed on groups 4, 6, 8, and 10. The samples in groups 2 to 10 were pH cycled for 14 consecutive days. The samples from all groups were then assessed by cross-sectional Knoop microhardness at different depths from the outer enamel surface. The average Knoop hardness numbers (KHNs) were compared using one-way analysis of variance and Tukey tests (α=0.05). The comparison between groups 1 and 2 showed that the demineralization method was effective. The comparison among groups 2 to 6 showed the same susceptibility to acid demineralization, regardless of the fluoridation method used. However, the samples from groups 8 and 10 showed more susceptibility to acid demineralization when compared with group 2 (p<0.05). Groups 7 and 9 provided similar results to group 2, but the results of those groups were different when compared with groups 8 and 10. The use of 6% HP and 10% CP associated with daily or weekly fluoridation regimens did not increase the susceptibility of enamel to acid demineralization. However, the use of 35% HP and 35% CP must be associated with a daily fluoridation regimen, otherwise the in-office bleaching makes the bleached enamel more susceptible to acid demineralization.

  16. Understanding and controlling the step bunching instability in aqueous silicon etching

    NASA Astrophysics Data System (ADS)

    Bao, Hailing

    Chemical etching of silicon has been widely used for more than half a century in the semiconductor industry. It not only forms the basis for current wafer cleaning processes, it also serves as a powerful tool to create a variety of surface morphologies for different applications. Its potential for controlling surface morphology at the atomic scale over micron-size regions is especially appealing. In spite of its wide usage, the chemistry of silicon etching is poorly understood. Many seemingly simple but fundamental questions have not been answered. As a result, the development of new etchants and new etching protocols are based on expensive and tedious trial-and-error experiments. A better understanding of the etching mechanism would direct the rational formulation of new etchants that produce controlled etch morphologies. Particularly, micron-scale step bunches spontaneously develop on the vicinal Si(111) surface etched in KOH or other anisotropic aqueous etchants. The ability to control the size, orientation, density and regularity of these surface features would greatly improve the performance of microelectromechanical devices. This study is directed towards understanding the chemistry and step bunching instability in aqueous anisotropic etching of silicon through a combination of experimental techniques and theoretical simulations. To reveal the cause of step-bunching instability, kinetic Monte Carlo simulations were constructed based on an atomistic model of the silicon lattice and a modified kinematic wave theory. The simulations showed that inhomogeneity was the origin of step-bunching, which was confirmed through STM studies of etch morphologies created under controlled flow conditions. To quantify the size of the inhomogeneities in different etchants and to clarify their effects, a five-parallel-trench pattern was fabricated. This pattern used a nitride mask to protect most regions of the wafer; five evenly spaced etch windows were opened to the Si(110

  17. Biomachining: metal etching via microorganisms.

    PubMed

    Díaz-Tena, Estíbaliz; Barona, Astrid; Gallastegui, Gorka; Rodríguez, Adrián; López de Lacalle, L Norberto; Elías, Ana

    2017-05-01

    The use of microorganisms to remove metal from a workpiece is known as biological machining or biomachining, and it has gained in both importance and scientific relevance over the past decade. Conversely to mechanical methods, the use of readily available microorganisms is low-energy consuming, and no thermal damage is caused during biomachining. The performance of this sustainable process is assessed by the material removal rate, and certain parameters have to be controlled for manufacturing the machined part with the desired surface finish. Although the variety of microorganisms is scarce, cell concentration or density plays an important role in the process. There is a need to control the temperature to maintain microorganism activity at its optimum, and a suitable shaking rate provides an efficient contact between the workpiece and the biological medium. The system's tolerance to the sharp changes in pH is quite limited, and in many cases, an acid medium has to be maintained for effective performance. This process is highly dependent on the type of metal being removed. Consequently, the operating parameters need to be determined on a case-by-case basis. The biomachining time is another variable with a direct impact on the removal rate. This biological technique can be used for machining simple and complex shapes, such as series of linear, circular, and square micropatterns on different metal surfaces. The optimal biomachining process should be fast enough to ensure high production, a smooth and homogenous surface finish and, in sum, a high-quality piece. As a result of the high global demand for micro-components, biomachining provides an effective and sustainable alternative. However, its industrial-scale implementation is still pending.

  18. Carrier-lifetime-controlled selective etching process for semiconductors using photochemical etching

    DOEpatents

    Ashby, Carol I. H.; Myers, David R.

    1992-01-01

    The minority carrier lifetime is significantly much shorter in semiconductor materials with very high impurity concentrations than it is in semiconductor materials with lower impurity concentration levels. This phenomenon of reduced minority carrier lifetime in semiconductor materials having high impurity concentration is utilized to advantage for permitting highly selective semiconductor material etching to be achieved using a carrier-driven photochemical etching reaction. Various means may be employed for increasing the local impurity concentration level in specific near-surface regions of a semiconductor prior to subjecting the semiconductor material to a carrier-driven photochemical etching reaction. The regions having the localized increased impurity concentration form a self-aligned mask inhibiting photochemical etching at such localized regions while the adjacent regions not having increased impurity concentrations are selectively photochemically etched. Liquid- or gas-phase etching may be performed.

  19. Freeze fracture and freeze etching.

    PubMed

    Chandler, Douglas E; Sharp, William P

    2014-01-01

    Freeze fracture depends on the property of frozen tissues or cells, when cracked open, to split along the hydrophobic interior of membranes, thus revealing broad panoramas of membrane interior. These large panoramas reveal the three-dimensional contours of membranes making the methods well suited to studying changes in membrane architecture. Freshly split membrane faces are visualized by platinum or tungsten shadowing and carbon backing to form a replica that is then cleaned of tissue and imaged by TEM. Etching, i.e., removal of ice from the frozen fractured specimen by sublimation prior to shadowing, can also reveal the true surfaces of the membrane as well as the extracellular matrix and cytoskeletal networks that contact the membranes. Since the resolution of detail in the metal replicas formed is 1-2 nm, these methods can also be used to visualize macromolecules or macromolecular assemblies either in situ or displayed on a mica surface. These methods are available for either specimens that have been chemically fixed or specimens that have been rapidly frozen without chemical intervention.

  20. Metal assisted anodic etching of silicon

    NASA Astrophysics Data System (ADS)

    Lai, Chang Quan; Zheng, Wen; Choi, W. K.; Thompson, Carl V.

    2015-06-01

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P+-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N+-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si.Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P+-type and N+-type Si wafers and a wide range of nanostructure morphologies were observed

  1. Influence of the LED curing source and selective enamel etching on dentin bond strength of self-etch adhesives in class I composite restorations.

    PubMed

    Souza-Junior, Eduardo José; Araújo, Cíntia Tereza Pimenta; Prieto, Lúcia Trazzi; Paulillo, Luís Alexandre Maffei Sartini

    2012-11-01

    The aim of this study was to evaluate the influence of the LED curing unit and selective enamel etching on dentin microtensile bond strength (μTBS) for self-etch adhesives in class I composite restorations. On 96 human molars, box-shaped class I cavities were made maintaining enamel margins. Self-etch adhesives (Clearfil SE - CSE and Clearfil S(3) - S3) were used to bond a microhybrid composite. Before adhesive application, half of the teeth were enamel acid-etched and the other half was not. Adhesives and composites were cured with the following light curing units (LCUs): one polywave (UltraLume 5 - UL) and two single-peak (FlashLite 1401 - FL and Radii Cal - RD) LEDs. The specimens were then submitted to thermomechanical aging and longitudinally sectioned to obtain bonded sticks (0.9 mm(2)) to be tested in tension at 0.5 mm/min. The failure mode was then recorded. The μTBS data were submitted to a three-way ANOVA and Tukey's (α = 0.05). For S3, the selective enamel-etching provided lower μTBS values (20.7 ± 2.7) compared to the non-etched specimens (26.7 ± 2.2). UL yielded higher μTBS values (24.1 ± 3.2) in comparison to the photoactivation approach with FL (18.8 ±3.9) and RD (19.9 ±1.8) for CSE. The two-step CSE was not influenced by the enamel etching (p ≥ 0.05). Enamel acid etching in class I composite restorations affects the dentin μTBS of the one-step self-etch adhesive Clearfil S(3), with no alterations for Clearfil SE bond strength. The polywave LED promoted better bond strength for the two-step adhesive compared to the single-peak ones.

  2. Effect of etching time and light source on the bond strength of metallic brackets to ceramic.

    PubMed

    Gonçalves, Paulo Roberto Amaral; Moraes, Rafael Ratto de; Costa, Ana Rosa; Correr, Américo Bortolazzo; Nouer, Paulo Roberto Aranha; Sinhoreti, Mário Alexandre Coelho; Correr-Sobrinho, Lourenço

    2011-01-01

    This study evaluated the bond strength of brackets to ceramic testing different etching times and light sources for photo-activation of the bonding agent. Cylinders of feldspathic ceramic were etched with 10% hydrofluoric acid for 20 or 60 s. After application of silane on the ceramic surface, metallic brackets were bonded to the cylinders using Transbond XT (3M Unitek). The specimens for each etching time were assigned to 4 groups (n=15), according to the light source: XL2500 halogen light, UltraLume 5 LED, AccuCure 3000 argon laser, and Apollo 95E plasma arc. Light-activation was carried out with total exposure times of 40, 40, 20 and 12 s, respectively. Shear strength testing was carried out after 24 h. The adhesive remnant index (ARI) was evaluated under magnification. Data were subjected to two-way ANOVA and Tukey's test (α=0.05). Specimens etched for 20 s presented significantly lower bond strength (p<0.05) compared with those etched for 60 s. No significant differences (p>0.05) were detected among the light sources. The ARI showed a predominance of scores 0 in all groups, with an increase in scores 1, 2 and 3 for the 60 s time. In conclusion, only the etching time had significant influence on the bond strength of brackets to ceramic.

  3. Pattern inspection of etched multilayer extreme ultraviolet mask

    NASA Astrophysics Data System (ADS)

    Iida, Susumu; Hirano, Ryoichi; Amano, Tsuyoshi; Watanabe, Hidehiro

    2016-04-01

    Patterned mask inspection for an etched multilayer (ML) extreme ultraviolet mask was investigated. In order to optimize the mask structure from the standpoint of a pattern inspection the mask structure not only from the standpoint of a pattern inspection by using a projection electron microscope but also by using a projection electron microscope but also by considering the other fabrication processes using electron beam techniques such as critical dimension metrology and mask repair, we employed a conductive layer between the ML and substrate. By measuring the secondary electron emission coefficients of the candidate materials for the conductive layer, we evaluated the image contrast and the influence of the charging effect. In the cases of 40-pair ML, 16-nm-sized extrusion and intrusion defects were found to be detectable more than 10 sigma in half pitch 44, 40, and 32 nm line-and-space patterns. Reducing 40-pair ML to 20-pair ML degraded the image contrast and the defect detectability. However, by selecting B4C as a conductive layer, 16-nm-sized defects and etching residues remained detectable. The 16-nm-sized defects were also detected after the etched part was refilled with Si. A double-layer structure with 2.5-nm-thick B4C on metal film used as a conductive layer was found to have sufficient conductivity and also was found to be free from the surface charging effect and influence of native oxide.

  4. Overview of atomic layer etching in the semiconductor industry

    SciTech Connect

    Kanarik, Keren J. Lill, Thorsten; Hudson, Eric A.; Sriraman, Saravanapriyan; Tan, Samantha; Marks, Jeffrey; Vahedi, Vahid; Gottscho, Richard A.

    2015-03-15

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.

  5. Method for anisotropic etching in the manufacture of semiconductor devices

    DOEpatents

    Koontz, Steven L.; Cross, Jon B.

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.

  6. Method for anisotropic etching in the manufacture of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

  7. Metal assisted anodic etching of silicon.

    PubMed

    Lai, Chang Quan; Zheng, Wen; Choi, W K; Thompson, Carl V

    2015-07-07

    Metal assisted anodic etching (MAAE) of Si in HF, without H2O2, is demonstrated. Si wafers were coated with Au films, and the Au films were patterned with an array of holes. A Pt mesh was used as the cathode while the anodic contact was made through either the patterned Au film or the back side of the Si wafer. Experiments were carried out on P-type, N-type, P(+)-type and N(+)-type Si wafers and a wide range of nanostructure morphologies were observed, including solid Si nanowires, porous Si nanowires, a porous Si layer without Si nanowires, and porous Si nanowires on a thick porous Si layer. Formation of wires was the result of selective etching at the Au-Si interface. It was found that when the anodic contact was made through P-type or P(+)-type Si, regular anodic etching due to electronic hole injection leads to formation of porous silicon simultaneously with metal assisted anodic etching. When the anodic contact was made through N-type or N(+)-type Si, generation of electronic holes through processes such as impact ionization and tunnelling-assisted surface generation were required for etching. In addition, it was found that metal assisted anodic etching of Si with the anodic contact made through the patterned Au film essentially reproduces the phenomenology of metal assisted chemical etching (MACE), in which holes are generated through metal assisted reduction of H2O2 rather than current flow. These results clarify the linked roles of electrical and chemical processes that occur during electrochemical etching of Si.

  8. Plasma/Neutral-Beam Etching Apparatus

    NASA Technical Reports Server (NTRS)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  9. Dislocation Etching Solutions for Mercury Cadmium Selenide

    DTIC Science & Technology

    2014-09-01

    Dislocation Etching Solutions for Mercury Cadmium Selenide by Kevin Doyle and Sudhir Trivedi ARL-CR-0744 September 2014...Etching Solutions for Mercury Cadmium Selenide Kevin Doyle and Sudhir Trivedi Sensors and Electron Devices Directorate, ARL prepared by...Solutions for Mercury Cadmium Selenide 5a. CONTRACT NUMBER W811NF-12-2-0019 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kevin Doyle and

  10. Back-etch method for plan view transmission electron microscopy sample preparation of optically opaque films.

    PubMed

    Yao, Bo; Coffey, Kevin R

    2008-04-01

    Back-etch methods have been widely used to prepare plan view transmission electron microscopy (TEM) samples of thin films on membranes by removal of the Si substrate below the membrane by backside etching. The conventional means to determine when to stop the etch process is to observe the color of the light transmitted through the sample, which is sensitive to the remaining Si thickness. However, most metallic films thicker than 75 nm are opaque, and there is no detectable color change prior to film perforation. In this paper, a back-etch method based on the observation of an abrupt change of optical reflection contrast is introduced as a means to determine the etch endpoint to prepare TEM samples for these films. As the acid etchant removes the Si substrate material a rough interface is generated. This interface becomes a relatively smooth and featureless region when the etchant reaches the membrane (film/SiO2). This featureless region is caused by the mirror reflection of the film plane (film/SiO2 interface) through the optically transparent SiO2 layer. The lower etch rate of SiO2 (compared with Si) gives the operator enough time to stop the etching without perforating the film. A clear view of the morphology and control of Si roughness during etching are critical to this method, which are discussed in detail. The procedures of mounting wax removal and sample rinsing are also described in detail, as during these steps damage to the membrane may easily occur without appropriate consideration. As examples, the preparation of 100-nm-thick Fe-based amorphous alloy thin film and 160-nm-thick Cu-thin film samples for TEM imaging is described.

  11. Correlation between grain orientation and the shade of color etching

    SciTech Connect

    Szabo, Peter J.; Kardos, I.

    2010-08-15

    Color etching is an extremely effective metallographic technique not only for making grains well visible, but also for making them distinguishable for automated image analyzers. During color etching, a thin film is formed on the surface of the specimen. The thickness of this layer is in the order of magnitude of the visible light and since both the metal-film boundary and the film surface reflect light, an interference occurs. A wavelength-component of the white line is eliminated and its complementary color will be seen on the surface. As the thickness changes, the colors also change grain by grain. The thickness of the film is dependent on several factors, mostly on the type of the phase. However, different color shades can be observed on the surfaces of single phase materials, which phenomenon is caused by the different crystallographic orientations of the grains. This paper shows a combined color etching electron backscatter diffraction (EBSD) investigation of cast iron. An area of the surface of a gray cast iron specimen was etched. Colors were characterized by their luminescence and their red, green and blue intensity. An EBSD orientation map was taken from the same area and the orientations of the individual grains were determined. Results showed that a strong correlation was found between the luminescence and the R, G, B intensity of the color and the angle between the specimen normal and the < 100> direction, while such correlation was not observed between the color parameters and the < 110 > and < 111> directions, respectively. This indicates that film thickness is sensitive to the < 100> direction of the crystal.

  12. Improved lead recovery and sulphate removal from used lead acid battery through electrokinetic technique.

    PubMed

    Soundarrajan, C; Sivasankar, A; Maruthamuthu, S; Veluchamy, A

    2012-05-30

    This paper presents improvement in lead (Pb) recovery and sulphate removal from used Pb acid battery (ULAB) through Electrokinetic technique, a process aimed to eliminate environmental pollution that arises due to emission of gases and metal particles from the existing high temperature pyrometallurgical process. Two different cell configurations, (1) one with Nafion membrane placed between anode and middle compartments and Agar membrane between cathode and middle compartments and (2) another with only Agar membrane placed between both sides of the middle compartments were designed for the Pb and sulphate separation from ULAB. This paper concludes that the cell with only Agar membranes performed better than the cell with Nafion and Agar membranes in combinations and also explains the mechanism underlying the chemical and electrochemical processes in the cell.

  13. Effects of Acidity and Stress on Stomach Motility, Assessed by Biomagnetic Technique: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Córdova-Fraga, T.; Sosa-Aquino, M.; Huerta-Franco, R.; Vargas-Luna, M.; Gutiérrez-Juárez, G.; Bernal-Alvarado, J.

    2004-09-01

    The human stomach is a J shaped hollowed organ that undergoes a variable luminal volume without significant pressure changes. This organ has two valves: the cardiac localized in the upper part, and the pillory on the lower part of the organ respectively. The main functions of these valves are to storage, carry, triturate and empty the lumen content. However, their activity could be affected for different agents such as chemical stimulus (alcoholic beverages) and psychological stress. In this contribution we show by the first time, the importance of biomagnetic signal technique in order to measure the human stomach peristaltic frequency in healthy subjects who were evaluated in basal conditions, and after to be submitted at the effects of: acidity caused by alcoholic beverages and psychological stress.

  14. Wet-etching of precipitation-based thin film microstructures for micro-solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Rupp, Jennifer L. M.; Muecke, Ulrich P.; Nalam, Prathima C.; Gauckler, Ludwig J.

    In micro-solid oxide fuel cells (μ-SOFCs) ceramic thin films are integrated as free-standing membranes on micromachinable substrates such as silicon or Foturan ® glass ceramic wafers. The processing of μ-SOFCs involves unavoidable dry- or wet-chemical etching for opening the substrate below the free-standing fuel cell membranes. In the first part of this paper current dry- and wet-chemical etchants for structuring of ceria-based electrolyte materials are reviewed, and compared to the etch-rates of common μ-SOFCs substrates. Wet-chemical etchants such as hydrofluoric acid are of high interest in μ-SOFC processing since they allow for homogeneous etching of ceria-based electrolyte thin films contrary to common dry-etching methods. In addition, HF acid is the only choice for substrate etching of μ-SOFC based on Foturan ® glass ceramic wafers. Etching of Ce 0.8Gd 0.2O 1.9- x spray pyrolysis electrolyte thin films with 10% HF:H 2O is investigated. The etch-resistance and microstructures of these films show a strong dependency on post deposition annealing, i.e. degree of crystallinity, and damage for low acid exposure times. Their ability to act as a potential etch-resistance for μ-SOFC membranes is broadly discussed. Guidance for thermal annealing and etching of Ce 0.8Gd 0.2O 1.9- x thin films for the fabrication of Foturan ®-based μ-SOFCs is given.

  15. Reduced Noise UV Enhancement of Etch Rates for Nuclear Tracks in CR-39

    NASA Astrophysics Data System (ADS)

    Sheets, Rebecca; Clarkson, David; Ume, Rubab; Regan, Sean; Sangster, Craig; Padalino, Stephen; McLean, James

    2016-10-01

    The use of CR-39 plastic as a Solid State Nuclear Track Detector is an effective technique for obtaining data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched in NaOH at 80°C for 6 hours, producing micron-scale signal pits at the nuclear track sites. Using CR-39 irradiated with 5.4 MeV alpha particles and 1.0 MeV protons, we show that exposing the CR-39 to high intensity UV light before etching, with wavelengths between 240 nm and 350 nm, speeds the etch process. Elevated temperatures during UV exposure amplifies this effect, with etch rates up to 50% greater than unprocessed conditions. CR-39 pieces exposed to UV light and heat can also exhibit heightened levels of etch-induced noise (surface features not caused by nuclear particles). By illuminating the CR-39 from the side opposite to the tracks, a similar level of etch enhancement was obtained with little to no noise. The effective wavelength range is reduced, due to strong attenuation of shorter wavelengths. Funded in part by a LLE contract through the DOE.

  16. New Deep Reactive Ion Etching Process Developed for the Microfabrication of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2005-01-01

    Silicon carbide (SiC) is a promising material for harsh environment sensors and electronics because it can enable such devices to withstand high temperatures and corrosive environments. Microfabrication techniques have been studied extensively in an effort to obtain the same flexibility of machining SiC that is possible for the fabrication of silicon devices. Bulk micromachining using deep reactive ion etching (DRIE) is attractive because it allows the fabrication of microstructures with high aspect ratios (etch depth divided by lateral feature size) in single-crystal or polycrystalline wafers. Previously, the Sensors and Electronics Branch of the NASA Glenn Research Center developed a DRIE process for SiC using the etchant gases sulfur hexafluoride (SF6) and argon (Ar). This process provides an adequate etch rate of 0.2 m/min and yields a smooth surface at the etch bottom. However, the etch sidewalls are rougher than desired, as shown in the preceding photomicrograph. Furthermore, the resulting structures have sides that slope inwards, rather than being precisely vertical. A new DRIE process for SiC was developed at Glenn that produces smooth, vertical sidewalls, while maintaining an adequately high etch rate.

  17. Formulation of curcumin-loaded solid lipid nanoparticles produced by fatty acids coacervation technique.

    PubMed

    Chirio, Daniela; Gallarate, Marina; Peira, Elena; Battaglia, Luigi; Serpe, Loredana; Trotta, Michele

    2011-01-01

    Curcumin (CU) loaded solid lipid nanoparticles (SLNs) of fatty acids (FA) were prepared with a coacervation technique based on FA precipitation from their sodium salt micelles in the presence of polymeric non-ionic surfactants. Myristic, palmitic, stearic, and behenic acids, and different polymers with various molecular weights and hydrolysis grades were employed as lipid matrixes and stabilisers, respectively. Generally, spherical-shaped nanoparticles with mean diameters below 500 nm were obtained, and using only middle-high hydrolysis, grade-polymer SLNs with diameters lower than 300 nm were produced. CU encapsulation efficiency was in the range 28-81% and highly influenced by both FA and polymer type. Chitosan hydrochloride was added to FA SLN formulations to produce bioadhesive, positively charged nanoparticles. A CU-chitosan complex formation could be hypothesised by DSC analysis, UV-vis spectra and chitosan surface tension determination. A preliminary study on HCT-116 colon cancer cells was developed to evaluate the influence of CU-loaded FA SLNs on cell viability.

  18. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching

    NASA Astrophysics Data System (ADS)

    Held, J.; Gaspar, J.; Ruther, P.; Hagner, M.; Cismak, A.; Heilmann, A.; Paul, O.

    2010-02-01

    This paper reports on the characterization of dry etching-based processes for the fabrication of silicon microneedles using a design of experiment (DoE) approach. The possibility of using such microneedles as protruding microelectrodes able to electroporate adherently growing cells and record intracellular potentials motivates the systematic analysis of the influence of etching parameters on the needle shape. Two processes are characterized: a fully isotropic etch process and a three-step etching approach. In the first case, the shape of the microneedles is defined by a single etch step. For the stepped method, the structures are realized using the following sequence: a first, isotropic step defines the tip; this is followed by anisotropic etching that increases the height of the needle; a final isotropic procedure thins the microneedle and sharpens its tip. From the various process parameters tested, it is concluded that the isotropic fabrication is influenced mostly by four process parameters, whereas six parameters dominantly govern the outcome of the stepped etching technique. The dependence of the needle shape on the etch mask diameter is also investigated. Microneedles with diameters down to the sub-micrometer range and heights below 10 µm are obtained. The experimental design is performed using the D-optimal method. The resulting geometry, i.e. heights, diameters and radii of curvature measured at different positions, is extracted from scanning electron micrographs of needle cross-sections obtained from cuts by focused ion beam. The process parameters are used as inputs and the geometry features of the microneedles as outputs for the analysis of the process.

  19. Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching

    NASA Astrophysics Data System (ADS)

    Debnath, Kapil; Khokhar, Ali; Boden, Stuart; Arimoto, Hideo; Oo, Swe; Chong, Harold; Reed, Graham; Saito, Shinichi

    2016-11-01

    We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI) platform. Waveguides oriented along the (11-2) direction on the Si (110) plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  20. The development of a method of producing etch resistant wax patterns on solar cells

    NASA Technical Reports Server (NTRS)

    Pastirik, E.

    1980-01-01

    A potentially attractive technique for wax masking of solar cells prior to etching processes was studied. This technique made use of a reuseable wax composition which was applied to the solar cell in patterned form by means of a letterpress printing method. After standard wet etching was performed, wax removal by means of hot water was investigated. Application of the letterpress wax printing process to silicon was met with a number of difficulties. The most serious shortcoming of the process was its inability to produce consistently well-defined printed patterns on the hard silicon cell surface.

  1. Note: Mechanical etching of atomic force microscope tip and microsphere attachment for thermal radiation scattering enhancement

    SciTech Connect

    Brissinger, D.; Parent, G. Lacroix, D.

    2013-12-15

    This Note describes a mechanical etching technique which can be used to prepare silicon tips used in atomic force microscopy apparatus. For such devices, dedicated tips with specific shapes are now commonly used to probe surfaces. Yet, the control of the tip morphology where characteristic scales are lower than 1 μm remains a real challenge. Here, we detail a controlled etching process of AFM probes apex allowing micrometer-sized sphere attachment. The technique used and influent parameters are discussed and SEM images of the achieved tips are given. Deceptive problems and drawbacks that might occur during the process are also covered.

  2. Chemically Etched Open Tubular and Monolithic Emitters for Nanoelectrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Page, Jason S.; Luo, Quanzhou; Moore, Ronald J.; Orton, Daniel J.; Tang, Keqi; Smith, Richard D.

    2006-11-15

    We have developed a new procedure for fabricating fused silica emitters for electrospray ionization-mass spectrometry (ESI-MS) in which the end of a bare fused silica capillary is immersed into aqueous hydrofluoric acid, and water is pumped through the capillary to prevent etching of the interior. Surface tension causes the etchant to climb the capillary exterior, and the etch rate in the resulting meniscus decreases as a function of distance from the bulk solution. Etching continues until the silica touching the hydrofluoric acid reservoir is completely removed, essentially stopping the etch process. The resulting emitters have no internal taper, making them much less prone to clogging compared to e.g. pulled emitters. The high aspect ratios and extremely thin walls at the orifice facilitate very low flow rate operation; stable ESI-MS signals were obtained for model analytes from 5-μm-diameter emitters at a flow rate of 5 nL/min with a high degree of inter-emitter reproducibility. In extensive evaluation, the etched emitters were found to enable approximately four times as many LC-MS analyses of proteomic samples before failing compared with conventional pulled emitters. The fabrication procedure was also employed to taper the ends of polymer monolith-containing silica capillaries for use as ESI emitters. In contrast to previous work, the monolithic material protrudes beyond the fused silica capillaries, improving the monolith-assisted electrospray process.

  3. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques.

    PubMed

    Auld, Ryan R; Myre, Maxine; Mykytczuk, Nadia C S; Leduc, Leo G; Merritt, Thomas J S

    2013-05-01

    We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment.

  4. The effectiveness of a modified hydrochloric acid-quartz-pumice abrasion technique on fluorosis stains: a case report.

    PubMed

    Erdogan, G

    1998-02-01

    Endemic dental fluorosis is a form of enamel hypoplasia characterized by moderate-to-severe staining of the tooth surface. Since 1916, numerous investigators have used hydrochloric acid alone on fluorosis stains. More recently, 18% hydrochloric acid-pumice microabrasion has been used to achieve color modification. The main disadvantage of this procedure is the high concentration and low viscosity of hydrochloric acid, which can cause damage to oral and dental tissues. To eliminate this problem, quartz particles can be mixed with the hydrochloric acid. The quartz particles prevent the hydrochloric acid from flowing uncontrollablely by altering it to a gel-like form. A modified 18% hydrochloric acid-quartz-pumice abrasion technique was used to remove fluorine stains from vital teeth in a teenager.

  5. Shear bond strength of resin to acid/pumice-microabraded enamel.

    PubMed

    Royer, M A; Meiers, J C

    1995-01-01

    The effect of enamel microabrasion techniques consisting of either 18% hydrochloric acid in pumice or a commercially available abrasive/10% hydrochloric acid mixture, PREMA, on composite/enamel shear bond strengths was investigated. Sixty extracted third molars had the bonding surface flattened and were divided into six treatment groups (n=10) with the enamel treated prior to bonding as follows: Group 1-- untreated; Group 2--37% phosphoric acid etched for 30 seconds; Group 3--18% hydrochloric acid/pumice mixture applied for five 20-second treatments; Group 4--similar to Group 3 with additional 37% phosphoric acid etch; Group 5--treated with PREMA compound applied for five 20-second treatments; Group 6--similar to Group 5 treatment with additional 37% phosphoric acid. Herculite XR composite resin was then bonded to all samples using a VLC unit. Samples were tested in shear, and fractured enamel surfaces were evaluated using light microscopy to determine the enamel-to-resin failures. Resin bond strengths to microabraded and H3PO4-etched enamel were similar to bond strengths of untreated H3PO4-etched enamel and were significantly better than bond strengths to PREMA-treated or unetched enamel.

  6. Bonding to silicate ceramics: Conventional technique compared with a simplified technique

    PubMed Central

    Perez-Barquero, Jorge-Alonso; Gonzalez-Angulo, Eva; Fons-Font, Antonio; Bustos-Salvador, Jose-Luis

    2017-01-01

    Background Silicate ceramic bonding is carried out by acid-etching with hydrofluoric acid (HF) followed by an application of silane. By replacing HF with ammonium polyfluoride, contained in the same flask as the silane, the number of steps in this clinical procedure, can be reduced, while maintaining bond strength values, and reducing toxicity. A shear bond test was performed to compare the conventional and the simplified surface treatment techniques. Material and Methods Twenty ceramic samples were fabricated from IPS emax CAD® ceramic (Ivoclar Vivadent) and divided into two groups (G1 and G2) (n=10). The conventional technique was applied to G1 samples, and the simplified technique to G2 samples. A resin cement cylinder was bonded to each sample. Afterwards, samples underwent shear bond strength testing in a universal test machine. Results G1 obtained 26.53±6.33 MPa and G2 23.52±8.41 MPa, without statistically significant differences between the two groups. Conclusions Monobond Etch&Prime appears to obtain equivalent results in terms of bond strength while simplifying the technique. Further investigation is required to corroborate these preliminary findings. Key words:Shear bond strength, surface treatment, bonding to ceramic, hydrofluoric acid, ammonium polyfluoride. PMID:28298979

  7. Integrated adsorptive technique for efficient recovery of m-cresol and m-toluidine from actual acidic and salty wastewater.

    PubMed

    Chen, Da; Liu, Fuqiang; Zong, Lidan; Sun, Xiaowen; Zhang, Xiaopeng; Zhu, Changqing; Tao, Xuewen; Li, Aimin

    2016-07-15

    An integrated adsorptive technique combining an m-cresol adsorption unit, an acid retardation unit and an m-toluidine adsorption unit in sequence was designed to recover m-cresol and m-toluidine from highly acidic and salty m-cresol manufacturing wastewater. In the first column packed with hypercrosslinked polymeric resin (NDA-99), most m-cresol was captured through π-π and hydrogen-bonding interactions as well as the salting-out effect, while m-toluidine was not absorbed due to protonation. To separate acid from salt, an acid retardation unit was introduced successively to adsorb sulfuric acid by strong base anion exchange resin (201×7). After the acid retardation unit and mild neutralization reaction, the last column filled with NDA-99 was applied to trap neutral m-toluidine from the salty effluent. Moreover, the eluent of the acid retardation unit was utilized as the regenerant to recover m-toluidine, and the recycled high-acidity and low-salinity solution of m-toluidine was directly used to produce m-cresol as the raw material. Therefore, the proposed method not only efficiently recycled m-cresol and m-toluidine, but also reduced the consumption of alkali dramatically (saving 0.1628t/t wastewater). These findings will inspire design of integrated adsorptive techniques for treating complex organic wastewater with high efficiency and low cost.

  8. Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products

    NASA Astrophysics Data System (ADS)

    Nakazaki, Nobuya; Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2014-12-01

    Atomic- or nanometer-scale surface roughening has been investigated during Si etching in inductively coupled Cl2 plasmas, as a function of rf bias power or ion incident energy Ei, by varying feed gas flow rate, wafer stage temperature, and etching time. The experiments revealed two modes of surface roughening which occur depending on Ei: one is the roughening mode at low Ei < 200-300 eV, where the root-mean-square (rms) roughness of etched surfaces increases with increasing Ei, exhibiting an almost linear increase with time during etching (t < 20 min). The other is the smoothing mode at higher Ei, where the rms surface roughness decreases substantially with Ei down to a low level < 0.4 nm, exhibiting a quasi-steady state after some increase at the initial stage (t < 1 min). Correspondingly, two different behaviors depending on Ei were also observed in the etch rate versus √{Ei } curve, and in the evolution of the power spectral density distribution of surfaces. Such changes from the roughening to smoothing modes with increasing Ei were found to correspond to changes in the predominant ion flux from feed gas ions Clx+ to ionized etch products SiClx+ caused by the increased etch rates at increased Ei, in view of the results of several plasma diagnostics. Possible mechanisms for the formation and evolution of surface roughness during plasma etching are discussed with the help of Monte Carlo simulations of the surface feature evolution and classical molecular dynamics simulations of etch fundamentals, including stochastic roughening and effects of ion reflection and etch inhibitors.

  9. Two modes of surface roughening during plasma etching of silicon: Role of ionized etch products

    SciTech Connect

    Nakazaki, Nobuya Tsuda, Hirotaka; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2014-12-14

    Atomic- or nanometer-scale surface roughening has been investigated during Si etching in inductively coupled Cl{sub 2} plasmas, as a function of rf bias power or ion incident energy E{sub i}, by varying feed gas flow rate, wafer stage temperature, and etching time. The experiments revealed two modes of surface roughening which occur depending on E{sub i}: one is the roughening mode at low E{sub i} < 200–300 eV, where the root-mean-square (rms) roughness of etched surfaces increases with increasing E{sub i}, exhibiting an almost linear increase with time during etching (t < 20 min). The other is the smoothing mode at higher E{sub i}, where the rms surface roughness decreases substantially with E{sub i} down to a low level < 0.4 nm, exhibiting a quasi-steady state after some increase at the initial stage (t < 1 min). Correspondingly, two different behaviors depending on E{sub i} were also observed in the etch rate versus √(E{sub i}) curve, and in the evolution of the power spectral density distribution of surfaces. Such changes from the roughening to smoothing modes with increasing E{sub i} were found to correspond to changes in the predominant ion flux from feed gas ions Cl{sub x}{sup +} to ionized etch products SiCl{sub x}{sup +} caused by the increased etch rates at increased E{sub i}, in view of the results of several plasma diagnostics. Possible mechanisms for the formation and evolution of surface roughness during plasma etching are discussed with the help of Monte Carlo simulations of the surface feature evolution and classical molecular dynamics simulations of etch fundamentals, including stochastic roughening and effects of ion reflection and etch inhibitors.

  10. A computer controlled chemical bevel etching apparatus: applications to Auger analysis of multi-layered structures

    NASA Astrophysics Data System (ADS)

    El-Gomati, M.; Gelsthorpe, A.; Srnanek, R.; Liday, J.; Vogrincic, P.; Kovac, J.

    1999-04-01

    Analysis of thin layer structures can be achieved by chemically etching a bevel and subsequently analysing the surface. However non-linear bevels often result due to differing etch rates of the materials leading to incorrect analysis results. We report on a computer controlled stepper motor reactor whereby the specimen is lowered into the etchant at a rate which compensates for the different etch rates of the various layers constituting the sample. The apparatus is used to produce linear bevels of various magnifications on GaAs/AlGaAs heterostructures. The etchant of H 3PO 4/H 2O 2/H 2O is used for bevel preparation capped by a water layer to suppress the meniscus. Application of the technique to Multi Quantum Wells (MQW) and Bragg diffraction layers is shown. The depth resolution of the bevelled samples are analysed by AES and a comparison is made to conventional ion sputtering techniques.

  11. Pulsed plasma etching for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Economou, Demetre J.

    2014-07-01

    Power-modulated (pulsed) plasmas have demonstrated several advantages compared to continuous wave (CW) plasmas. Specifically, pulsed plasmas can result in a higher etching rate, better uniformity, and less structural, electrical or radiation (e.g. vacuum ultraviolet) damage. Pulsed plasmas can also ameliorate unwanted artefacts in etched micro-features such as notching, bowing, micro-trenching and aspect ratio dependent etching. As such, pulsed plasmas may be indispensable in etching of the next generation of micro-devices with a characteristic feature size in the sub-10 nm regime. This work provides an overview of principles and applications of pulsed plasmas in both electropositive (e.g. argon) and electronegative (e.g. chlorine) gases. The effect of pulsing the plasma source power (source pulsing), the electrode bias power (bias pulsing), or both source and bias power (synchronous pulsing), on the time evolution of species densities, electron energy distribution function and ion energy and angular distributions on the substrate is discussed. The resulting pulsed plasma process output (etching rate, uniformity, damage, etc) is compared, whenever possible, to that of CW plasma, under otherwise the same or similar conditions.

  12. Investigation of liquid and gas chromatography techniques for separation of diastereomers of beta-(alpha-methylbenzyl) amino isobutyric acid.

    PubMed

    Held, Charles B; Robbins, David K

    2003-09-01

    Cryptophycins are macrolides investigated as potential anticancer agents. These large cyclic molecules are generated via a convergent process, utilizing the coupling of several smaller fragments synthesized individually. During early synthetic development of the beta-amino acid fragment C, analytical methods are necessary for the characterization of products resulting from the various routes being studied. One route being evaluated produces (RR) and (RS) diastereomers of beta-(alpha-methylbenzyl) amino isobutyric acid as intermediates. To measure diastereomeric excess (%de), assay conditions using high-performance liquid chromatography (HPLC) and capillary gas chromatographic (GC) techniques are explored. Derivatization methods using trifluoroacetyl- and silyl-derivatives are investigated for use with capillary GC. The results of the GC investigations are found to be only partially successful. Ion-pair HPLC is determined to be the optimal technique, utilizing pentanesulfonic acid as the counter ion to the amine group of beta-(alpha-methylbenzyl) amino isobutyric acid.

  13. Study on the etching process GaAs-based VCSEL

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Liu, Guojun; Hao, Yongqin; Yan, Changling; Zhang, Jiabin; Li, Yang; Li, Zaijin

    2016-11-01

    Wet etching process is a key technology in fabrication of VCSEL and their array in order to improve opto-electric characteristics of high-power VCSEL, devices with multi-ring distribution hole VCSEL is fabricated. The H3PO4 etching solution was used in the wet etching progress and etching rate is studied by changing etching solution concentration and etching time. The optimum technological conditions were determined by studying the etching morphology and etching depth of the GaAs-VCSEL. The tested results show that the complete morphology and the appropriate depth can be obtained by using the concentration ratio of 1:1:10, which can meet the requirements of GaAs-based VCSEL micro- structure etching process.

  14. Geometric characteristics of silicon cavities etched in EDP

    NASA Astrophysics Data System (ADS)

    Ju, Hui; Ohta, Takayuki; Ito, Masafumi; Sasaki, Minoru; Hane, Kazuhiro; Hori, Masaru

    2007-05-01

    Etching characteristics of hexagonal and triangular cavities on a lang1 1 1rang-oriented silicon wafer in the etchant of ethylene diamine, pyrocatechol and water (EDP/EPW) were investigated. The patterns are aligned to keep the sides perpendicular to lang1 1 0rang crystal orientations, in order that the sidewalls of cavities are parallel to {1 1 0} crystalline planes. RIE-ICP etching is used to define the depth of the triangular and hexagonal cavities, and EDP etching is followed for different etching times. The final self-etch-stop profiles of cavities are determined by the dimension of mask patterns and the depth of cavities in the wafer. The etching process of the hexagon and triangle cavities is modeled, based on the crystal structure and wet etching principle. The results of etched cavities confirm the condition to determine the final etching profiles.

  15. [Identification of Six Isomers of Dimethylbenzoic Acid by Using Terahertz Time-Domain Spectroscopy Technique].

    PubMed

    Liu, Jian-wei; Shen, Jing-ling; Zhang, Bo

    2015-11-01

    In this paper, the absorption spectra of 6 isomers of dimethylbenzoic acid, which were widely used in chemical and pharmaceutical production as intermediate substance, were measured by using the terahertz time-domain spectroscopy (THz-TDS) system in the range 0.2-2.2 THz at room temperature. The experimental results show that the six measured isomers present apparent different spectral response. However, the results of using infrared spectroscopy indicates that different isomers show high similarity in absorption spectra in the range 1450-1700 cm⁻¹. The vibrational frequencies are calculated by using the density functional theory (DFT), and identification of vibrational modes are given. It is clear that the absorption peaks of the 6 isomers in the range 1450-1700 cm⁻¹ come from the stretching vibration of benzene ring and C==O, while the absorption peaks in the terahertz range are caused by the relative wagging of benzene ring and all the chains out of plane, which lead to the different absorption characteristics of the 6 isomers in the range 0.2-2.2 THz. The results suggest that the difference and similarity of the absorption spectra observed in the two different frequency range are resulted from the difference and similarity of the molecular structures of the six isomers. By using the different absorption characteristics, we can identify the six isomers of dimethylbenzoic acid effectively. Our study indicates that it is feasible to distinguish the isomers by using terahertz and infrared spectroscopy technique. It provides an effective way to identify different isomers and test the purity of the intermediate substance in the process of production quickly and accurately.

  16. Effect of MTAD on the shear bond strength of self-etch adhesives to dentin

    PubMed Central

    Mortazavi, Vajihesadat; Khademi, Abbasali; Khosravi, Kazem; Fathi, Mohammadhossein; Ebrahimi–Chaharom, Mohammadesmaeil; Shahnaseri, Shirin; Khalighinejad, Navid; Badrian, Hamid

    2012-01-01

    Background: As the use of different irrigants to eliminate residual debris and smear layer in the field of endodontic is unavoidable, by considering the effect of irrigants on the bond strength of resin composite restorations, this study was designed to evaluate the effect of a mixture of a tetracycline isomer, an acid, and a detergent (MTAD) on the shear bond strength of two self-etch adhesives, Clearfil SE Bond and Adper Prompt L- Pop to dentin. Materials and Methods: The crowns of 80 extracted premolars were transversally sectioned to expose dentin. Flat dentin surfaces were wet abraded with 320-grit abrasive paper and randomly assigned to eight groups according to two self-etch adhesive and four dentin surface treatments: direct application over smear layer (no treatment), etching with 35% phosphoric acid for 15s, 1 min 5.25% NaOCl/1 min MTAD and 20min 1.3% NaOCl/5min MTAD. Shear bond strength was tested 24 h after storage in distilled water at 37°C in incubator. Data were analyzed using one-way ANOVA followed by duncan post-hoc (α=0.05). Results: Phosphoric acid etching prior to SE Bond application significantly decreased the shear bond strength to dentin (P<0.05). Application of MTAD clinical protocol (20min 1.3% NaOCl/5min MTAD) did not significantly decrease the shear bond strength of self-etch adhesives to dentin (P=0.745) Conclusions: Based on the results of present investigation, it seems that the use of clinical protocol of 1.3% NaOCl as a root canal irrigant and a 5-min application of MTAD as a final rinse to remove the smear layer has no adverse effect on the shear bond strength of self-etch adhesives to dentin. PMID:22363359

  17. Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching

    SciTech Connect

    Pappas, C.; Pissadakis, S.

    2006-12-01

    The patterning of submicron period ({approx_equal}500 nm) Bragg reflectors in the Er/Yb-codoped IOG1 Schott, phosphate glass is demonstrated. A high yield patterning technique is presented, wherein high volume damage is induced into the glass matrix by exposure to intense ultraviolet 213 nm, 150 ps Nd:YAG laser radiation and, subsequently, a chemical development in potassium hydroxide (KOH)/ethylenediamine tetra-acetic acid (EDTA) aqueous solution selectively etches the exposed areas. The electronic changes induced by the 213 nm ultraviolet irradiation are examined by employing spectrophotometric measurements, while an estimation of the refractive index changes recorded is provided by applying Kramers-Kronig transformation to the absorption change data. In addition, real time diffraction efficiency measurements were obtained during the formation of the volume damage grating. After the exposure, the growth of the relief grating pattern in time was measured at fixed time intervals and the dependence of the grating depth on the etching time and exposure conditions is presented. The gratings fabricated are examined by atomic and scanning electron microscopies to reveal the relief topology of the structures. Gratings with average depth of 120 nm and excellent surface quality were fabricated by exposing the IOG1 phosphate glass to 36 000 pulses of 208 mJ/cm{sup 2} energy density, followed by developing in the KOH/EDTA agent for 6 min.

  18. Impedance Profiling: A Convenient Technique for Determining the Redox or Protonic Acid Doping Characteristics of Conducting Polymers

    DTIC Science & Technology

    1991-03-18

    public release and sale; its distribution is unlimited. IMPEDANCE PROFILING: A CONVENIENT TECHNIqUE FOR DETERMINING THE REDOX OR PROTONIC ACID DOPING...methods. Results for the oxidative doping of trans-(CH)x in HBF 4 (48% aq.)/H 2 02 , and in CF3 COOH (80%, aq.)/H 20 2 , for cis- (CH)x in iodine / CCl4 ...TECHNIQUE FOR DETERMINING THE REDOX OR PROTONIC ACID DOPING CHARACTERISTICS OF CONDUCTING POLYMERS" 12. PERSONAL AUTHOR(S) D.B. Swanson, A.G. MacDiarmid and

  19. Reactive Ion Etched Unstable and Stable Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Biellak, Stephen Alexander

    1995-01-01

    High power, diffraction-limited semiconductor laser diodes are desirable for numerous applications such as efficient solid state laser pumping, nonlinear frequency conversion, and free-space communication. In the past several years, wide-stripe diode lasers and laser arrays with powers of up to several watts have become commercially available, but the beam quality of these devices is generally poor due to filamentation, a nonlinear material effect that aberrates the output beam profile. An attractive alternative to these simple Fabry-Perot lasers is offered by unstable resonators, which have inherently large gain volumes and a cavity geometry that inhibits filamentation. Prototype unstable resonators with dry-etched cavity mirrors have recently been demonstrated to achieve near diffraction -limited operation at moderately high output powers. However, the lateral mode properties of unstable resonators have heretofore not been examined in detail, nor has a reliable, high-throughput mirror etch process been developed for these devices. In this work, we have developed a GaAs RIE etching technique using common process equipment that yields mirrors with RMS surface roughness of 3 to 5 nm. We have fabricated unstable resonators and have measured lateral M ^2 beam quality values as low as 1.25 at 300 mW single facet output power in high magnification devices. The impact of cavity geometry and processing techniques on device performance was studied, and the optimal parameters for high-brightness applications were determined. Nearly concentric stable-resonator diode lasers were also fabricated for the first time using this etching technique. These stable-resonators were observed to operate in lateral modes determined primarily by the physical resonator structure up to several times threshold, after which nonlinear effects dominated the cavity modes. Based on these measurements, a description of stable device behavior in terms of gain saturation was developed. Finally, a

  20. SERUM VITAMIN B12, IRON AND FOLIC ACID DEFICIENCIES IN OBESE INDIVIDUALS SUBMITTED TO DIFFERENT BARIATRIC TECHNIQUES

    PubMed Central

    SILVA, Rafaella de Andrade; MALTA, Flávia Monteiro França; CORREIA, Maria Flora Ferreira Sampaio Carvalho; BURGOS, Maria Goretti Pessoa de Araújo

    2016-01-01

    ABSTRACT Background: Different surgical techniques to combat obesity combine malabsorption with restrictive procedures and can lead to metabolic problems, such as micronutrient deficiencies. Aim: Assess vitamin B12, iron and folic acid deficiencies associated with the lifestyle of obese individuals having been submitted to different bariatric techniques. Methods: A retrospective analysis was performed using the electronic charts of patients submitted to bariatric surgery involving adjustable gastric banding and Roux-en-Y gastric bypass at the São João Hospital Center in the city of Porto, Portugal, between 2005 and 2010. The following data were collected: surgical technique, sex, age, marital status, serum concentrations of vitamin B12, iron and folic acid and postoperative lifestyle. A 5% significance level was used for the statistical analysis (p<0.05). Results: Among 286 individuals evaluated, females accounted for 90.9% of the overall sample (both techniques). Gastric banding was performed more (68.9%), but greater nutrient deficiencies were found following gastric bypass. Iron was the most prevalent deficiency (21.3%), followed by vitamin B12 (16.9%) and folic acid (4.5%). Mild to moderate alcohol intake, adherence to the diet and the use of multivitamins reduced the frequency, but did not avoid micronutrient deficiency. Conclusion: Vitamin B12, iron and folic acid deficiencies were found in the first and second year following the two bariatric techniques analyzed and were more frequent among individuals submitted to gastric bypass. PMID:27683779

  1. ICP Etching of SiC

    SciTech Connect

    Grow, J.M.; Lambers, E.S.; Ostling, M.; Pearton, S.J.; Ren, F.; Shul, R.J.; Wang, J.J.; Zetterling, C.-M.

    1999-02-04

    A number of different plasma chemistries, including NF{sub 3}/O{sub 2}, SF{sub 6}/O{sub 2}, SF{sub 6}/Ar, ICl, IBr, Cl{sub 2}/Ar, BCl{sub 3}/Ar and CH{sub 4}/H{sub 2}/Ar, have been investigated for dry etching of 6H and 3C-SiC in a Inductively Coupled Plasma tool. Rates above 2,000 {angstrom} cm{sup {minus}1} are found with fluorine-based chemistries at high ion currents. Surprisingly, Cl{sub 2}-based etching does not provide high rates, even though the potential etch products (SiCi{sub 4} and CCl{sub 4}) are volatile. Photoresist masks have poor selectivity over SiC in F{sub 2}-based plasmas under normal conditions, and ITO or Ni are preferred.

  2. Radicals Are Required for Thiol Etching of Gold Particles.

    PubMed

    Dreier, Timothy A; Ackerson, Christopher J

    2015-08-03

    Etching of gold with an excess of thiol ligand is used in both synthesis and analysis of gold particles. Mechanistically, the process of etching gold with excess thiol is unclear. Previous studies have obliquely considered the role of oxygen in thiolate etching of gold. Herein, we show that oxygen or a radical initiator is a necessary component for efficient etching of gold by thiolates. Attenuation of the etching process by radical scavengers in the presence of oxygen, and the restoration of activity by radical initiators under inert atmosphere, strongly implicate the oxygen radical. These data led us to propose an atomistic mechanism in which the oxygen radical initiates the etching process.

  3. Cu/Cu direct bonding by metal salt generation bonding technique with organic acid and persistence of reformed layer

    NASA Astrophysics Data System (ADS)

    Koyama, Shinji; Hagiwara, Naoki; Shohji, Ikuo

    2015-03-01

    In this study, the effect of the metal salt generation bonding technique on the strength of a direct-bonded copper-copper interface was investigated. Copper surfaces were modified by boiling in several types of organic acids, and direct bonding was performed at a bonding temperature of 423-673 K under a load of 588 N (for a bonding time of 0.9 ks). As a result of the surface modification, bonded joints were obtained at bonding temperatures of 150 K (after treatment with formic acid) and 100 K (after citric acid treatment) lower than that required for the unmodified surfaces. In addition, the duration of the modification effects was investigated by exposing the modified surface to an air atmosphere furnace kept at 323 K. The bonding strength of the citric acid-modified surface remained unchanged even after 168 h, whereas that of the surface modified with formic acid decreased within 6 h.

  4. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Mohanty, B. P.; Saini, G. S. S.

    2016-02-01

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  5. Structure, spectra and antioxidant action of ascorbic acid studied by density functional theory, Raman spectroscopic and nuclear magnetic resonance techniques.

    PubMed

    Singh, Gurpreet; Mohanty, B P; Saini, G S S

    2016-02-15

    Structure, vibrational and nuclear magnetic resonance spectra, and antioxidant action of ascorbic acid towards hydroxyl radicals have been studied computationally and in vitro by ultraviolet-visible, nuclear magnetic resonance and vibrational spectroscopic techniques. Time dependant density functional theory calculations have been employed to specify various electronic transitions in ultraviolet-visible spectra. Observed chemical shifts and vibrational bands in nuclear magnetic resonance and vibrational spectra, respectively have been assigned with the help of calculations. Changes in the structure of ascorbic acid in aqueous phase have been examined computationally and experimentally by recording Raman spectra in aqueous medium. Theoretical calculations of the interaction between ascorbic acid molecule and hydroxyl radical predicted the formation of dehydroascorbic acid as first product, which has been confirmed by comparing its simulated spectra with the corresponding spectra of ascorbic acid in presence of hydrogen peroxide.

  6. Differentiating Milk and Non-milk Proteins by UPLC Amino Acid Fingerprints Combined with Chemometric Data Analysis Techniques.

    PubMed

    Lu, Weiying; Lv, Xiaxia; Gao, Boyan; Shi, Haiming; Yu, Liangli Lucy

    2015-04-22

    Amino acid fingerprinting combined with chemometric data analysis was used to differentiate milk and non-milk proteins in this study. Microwave-assisted hydrolysis and ultraperformance liquid chromatography (UPLC) were used to obtain the amino acid fingerprints. Both univariate and multivariate chemometrics methods were applied for differentiation. The confidence boundary of amino acid concentration, principal component analysis (PCA), and partial least-squares-discriminant analysis (PLS-DA) of the amino acid fingerprints demonstrated that there were significant differences between milk proteins and inexpensive non-milk protein powders from other biological sources including whey, peanut, corn, soy, fish, egg yolk, beef extract, collagen, and cattle bone. The results indicate that the amino acid compositions with the chemometric techniques could be applied for the detection of potential protein adulterants in milk.

  7. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis.

    PubMed

    Beck-Fruchter, Ronit; Shalev, Eliezer; Weiss, Amir

    2016-03-01

    The human oocyte is surrounded by hyaluronic acid, which acts as a natural selector of spermatozoa. Human sperm that express hyaluronic acid receptors and bind to hyaluronic acid have normal shape, minimal DNA fragmentation and low frequency of chromosomal aneuploidies. Use of hyaluronic acid binding assays in intracytoplasmic sperm injection (ICSI) cycles to improve clinical outcomes has been studied, although none of these studies had sufficient statistical power. In this systematic review and meta-analysis, electronic databases were searched up to June 2015 to identify studies of ICSI cycles in which spermatozoa able to bind hyaluronic acid was selected. The main outcomes were fertilization rate and clinical pregnancy rate. Secondary outcomes included cleavage rate, embryo quality, implantation rate, spontaneous abortion and live birth rate. Seven studies and 1437 cycles were included. Use of hyaluronic acid binding sperm selection technique yielded no improvement in fertilization and pregnancy rates. A meta-analysis of all available studies showed an improvement in embryo quality and implantation rate; an analysis of prospective studies only showed an improvement in embryo quality. Evidence does not support routine use of hyaluronic acid binding assays in all ICSI cycles. Identification of patients that might benefit from this technique needs further study.

  8. Alternative process for thin layer etching: Application to nitride spacer etching stopping on silicon germanium

    SciTech Connect

    Posseme, N. Pollet, O.; Barnola, S.

    2014-08-04

    Silicon nitride spacer etching realization is considered today as one of the most challenging of the etch process for the new devices realization. For this step, the atomic etch precision to stop on silicon or silicon germanium with a perfect anisotropy (no foot formation) is required. The situation is that none of the current plasma technologies can meet all these requirements. To overcome these issues and meet the highly complex requirements imposed by device fabrication processes, we recently proposed an alternative etching process to the current plasma etch chemistries. This process is based on thin film modification by light ions implantation followed by a selective removal of the modified layer with respect to the non-modified material. In this Letter, we demonstrate the benefit of this alternative etch method in term of film damage control (silicon germanium recess obtained is less than 6 A), anisotropy (no foot formation), and its compatibility with other integration steps like epitaxial. The etch mechanisms of this approach are also addressed.

  9. Single beam determination of porosity and etch rate in situ during etching of porous silicon

    NASA Astrophysics Data System (ADS)

    Foss, S. E.; Kan, P. Y. Y.; Finstad, T. G.

    2005-06-01

    A laser reflection method has been developed and tested for analyzing the etching of porous silicon (PS) films. It allows in situ measurement and analysis of the time dependency of the etch rate, the thickness, the average porosity, the porosity profile, and the interface roughness. The interaction of an infrared laser beam with a layered system consisting of a PS layer and a substrate during etching results in interferences in the reflected beam which is analyzed by the short-time Fourier transform. This method is used for analysis of samples prepared with etching solutions containing different concentrations of HF and glycerol and at different current densities and temperatures. Variations in the etch rate and porosity during etching are observed, which are important effects to account for when optical elements in PS are made. The method enables feedback control of the etching so that PS films with a well-controlled porosity are obtainable. By using different beam diameters it is possible to probe interface roughness at different length scales. Obtained porosity, thickness, and roughness values are in agreement with values measured with standard methods.

  10. Development of experimental techniques to study protein and nucleic acid structures

    SciTech Connect

    Trewhella, J.; Bradbury, E.M.; Gupta, G.; Imai, B.; Martinez, R.; Unkefer, C.

    1996-04-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to develop experimental tools for structural biology, specifically those applicable to three-dimensional, biomolecular-structure analysis. Most biological systems function in solution environments, and the ability to study proteins and polynucleotides under physiologically relevant conditions is of paramount importance. The authors have therefore adopted a three-pronged approach which involves crystallographic and nuclear magnetic resonance (NMR) spectroscopic methods to study protein and DNA structures at high (atomic) resolution as well as neutron and x-ray scattering techniques to study the complexes they form in solution. Both the NMR and neutron methods benefit from isotope labeling strategies, and all provide experimental data that benefit from the computational and theoretical tools being developed. The authors have focused on studies of protein-nucleic acid complexes and DNA hairpin structures important for understanding the regulation of gene expression, as well as the fundamental interactions that allow these complexes to form.

  11. Resonance Rayleigh scattering technique for simple and sensitive analysis of tannic acid with carbon dots

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Yang, Liu; Zhu, Jinghui; Yang, Jidong; Liu, Shaopu; Qiao, Man; Duan, Ruilin; Hu, Xiaoli

    2017-02-01

    Carbon dots (CDs) are raising a substantial amount of attention owing to their many unique and novel physicochemical properties. Herein one-pot synthesized CDs, to the best of our knowledge, were first served as the robust nanoprobe for detection tannic acid (TA) based on resonance Rayleigh scattering technique. The as-prepared CDs can combine with TA via hydrogen bond, resulting in remarkable enhancement of scattering signal with no changes in the fluorescence of CDs. Therefore, a novel protocol for TA determination was established and this strategy allowed quantitative detection of TA in the linear range of 0.2-10.0 μmol L- 1 with an excellent detection limit of 9.0 nmol L- 1. Moreover, the CDs based nanoprobe can be applied to the determination of TA in water sample with satisfactory results. Our study can potentially influence our current views on CDs and particularly impressive and offers new insights into application of CDs beyond the traditional understanding of CDs.

  12. Resonance Rayleigh scattering technique for simple and sensitive analysis of tannic acid with carbon dots.

    PubMed

    Shi, Ying; Yang, Liu; Zhu, Jinghui; Yang, Jidong; Liu, Shaopu; Qiao, Man; Duan, Ruilin; Hu, Xiaoli

    2017-02-15

    Carbon dots (CDs) are raising a substantial amount of attention owing to their many unique and novel physicochemical properties. Herein one-pot synthesized CDs, to the best of our knowledge, were first served as the robust nanoprobe for detection tannic acid (TA) based on resonance Rayleigh scattering technique. The as-prepared CDs can combine with TA via hydrogen bond, resulting in remarkable enhancement of scattering signal with no changes in the fluorescence of CDs. Therefore, a novel protocol for TA determination was established and this strategy allowed quantitative detection of TA in the linear range of 0.2-10.0μmolL(-1) with an excellent detection limit of 9.0nmolL(-1). Moreover, the CDs based nanoprobe can be applied to the determination of TA in water sample with satisfactory results. Our study can potentially influence our current views on CDs and particularly impressive and offers new insights into application of CDs beyond the traditional understanding of CDs.

  13. Glyphosate detection with ammonium nitrate and humic acids as potential interfering substances by pulsed voltammetry technique.

    PubMed

    Martínez Gil, Pablo; Laguarda-Miro, Nicolas; Camino, Juan Soto; Peris, Rafael Masot

    2013-10-15

    Pulsed voltammetry has been used to detect and quantify glyphosate on buffered water in presence of ammonium nitrate and humic substances. Glyphosate is the most widely used herbicide active ingredient in the world. It is a non-selective broad spectrum herbicide but some of its health and environmental effects are still being discussed. Nowadays, glyphosate pollution in water is being monitored but quantification techniques are slow and expensive. Glyphosate wastes are often detected in countryside water bodies where organic substances and fertilizers (commonly based on ammonium nitrate) may also be present. Glyphosate also forms complexes with humic acids so these compounds have also been taken into consideration. The objective of this research is to study the interference of these common pollutants in glyphosate measurements by pulsed voltammetry. The statistical treatment of the voltammetric data obtained lets us discriminate glyphosate from the other studied compounds and a mathematical model has been built to quantify glyphosate concentrations in a buffer despite the presence of humic substances and ammonium nitrate. In this model, the coefficient of determination (R(2)) is 0.977 and the RMSEP value is 2.96 × 10(-5) so the model is considered statistically valid.

  14. Preparation of Poly Acrylic Acid-Poly Acrylamide Composite Nanogels by Radiation Technique

    PubMed Central

    Ghorbaniazar, Parisa; Sepehrianazar, Amir; Eskandani, Morteza; Nabi-Meibodi, Mohsen; Kouhsoltani, Maryam; Hamishehkar, Hamed

    2015-01-01

    Purpose: Nanogel, a nanoparticle prepared from a cross-linked hydrophilic polymer network, has many biomedical applications. A radiation technique has recently been introduced as one of the appropriate methods for the preparation of polymeric nanogels due to its additive-free initiation and easy control procedure. Methods: We have investigated the formation of nano-sized polymeric gels, based on the radiation-induced inter- and intra-molecular cross-linking of the inter-polymer complex (IPC) of polyacrylamide (PAAm) and polyacrylic acide (PAAc). Results: The results indicated that the prepared polymeric complex composed of PAAm and PAAc was converted into nanogel by irradiation under different doses (1, 3, 5 and 7 kGy). This was due to inter- and intra-molecular cross-linking at the range of 446-930 nm as characterized by the photon correlation spectroscopy method. Increasing the irradiation dose reduced the size of nanoparticles to 3 kGy; however, the higher doses increased the size and size distribution. Scanning electron microscopy images indicated the nanogel formation in the reported size by particle size and showed the microcapsule structure of the prepared nanogels. Biocompatibility of nanogels were assessed and proved by MTT assay. Conclusion: It was concluded that low dose irradiation can be successfully applied for nanometre-ranged hydrogel. PMID:26236667

  15. Phenanthrene binding by humic acid-protein complexes as studied by passive dosing technique.

    PubMed

    Zhao, Jian; Wang, Zhenyu; Ghosh, Saikat; Xing, Baoshan

    2014-01-01

    This work investigated the binding behavior of phenanthrene by humic acids (HA-2 and HA-5), proteins (bovine serum albumin (BSA)), lysozyme and pepsin), and their complexes using a passive dosing technique. All sorption isotherms were fitted well with Freundlich model and the binding capability followed an order of HA-5 > HA-2 > BSA > pepsin > lysozyme. In NaCl solution, phenanthrene binding to HA-BSA complexes was much higher than the sum of binding to individual HA and BSA, while there was no enhancement for HA-pepsin. Positively charged lysozyme slightly lowered phenanthrene binding on both HAs due to strong aggregation of HA-lysozyme complexes, leading to reduction in the number of binding sites. The binding enhancement by HA-BSA was observed under all tested ion species and ionic strengths. This enhancement can be explained by unfolding of protein, reduction of aggregate size and formation of HA-BSA complexes with favorable conformations for binding phenanthrene.

  16. Comparative analysis of rodent tissue preservation methods and nucleic acid extraction techniques for virus screening purposes.

    PubMed

    Yama, Ines N; Garba, Madougou; Britton-Davidian, Janice; Thiberville, Simon-Djamel; Dobigny, Gauthier; Gould, Ernest A; de Lamballerie, Xavier; Charrel, Remi N

    2013-05-01

    The polymerase chain reaction (PCR) has become an essential method for the detection of viruses in tissue specimens. However, it is well known that the presence of PCR inhibitors in tissue samples may cause false-negative results. Hence the identification of PCR inhibitors and evaluation and optimization of nucleic acid extraction and preservation methods is of prime concern in virus discovery programs dealing with animal tissues. Accordingly, to monitor and remove inhibitors we have performed comparative analyses of two commonly used tissue storage methods and five RNA purification techniques using a variety of animal tissues, containing quantified levels of added MS2 bacteriophages as the indicator of inhibition. The results showed (i) no significant difference between the two methods of sample preservation, viz. direct storage at -80°C or 4°C in RNAlater, (ii) lung rodent tissues contained lower levels of inhibitor than liver, kidney and spleen, (iii) RNA extraction using the EZ1+PK RNA kit was the most effective procedure for removal of RT-PCR inhibitors.

  17. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    PubMed

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one.

  18. Studies on the interaction of salvianolic acid B with human hemoglobin by multi-spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Chen, Tingting; Zhu, Shajun; Cao, Hui; Shang, Yanfang; Wang, Miao; Jiang, Guoqing; Shi, Yujun; Lu, Tianhong

    2011-04-01

    The interaction between salvianolic acid B (Sal B) and human hemoglobin (HHb) under physiological conditions was investigated by UV-vis absorption, fluorescence, synchronous fluorescence and circular dichroism spectroscopic techniques. The experimental results indicate that the quenching mechanism of fluorescence of HHb by Sal B is a static quenching procedure, the binding reaction is spontaneous, and the hydrophobic interactions play a major role in binding of Sal B to HHb. Based on Förster's theory of non-radiative energy transfer, the binding distance between Sal B and the inner tryptophan residues of HHb was determined to be 2.64 nm. The synchronous fluorescence experiment revealed that Sal B can not lead to the microenvironmental changes around the Tyr and Trp residues of HHb, and the binding site of Sal B on HHb is located at α 1β 2 interface of HHb. Furthermore, the CD spectroscopy indicated the secondary structure of HHb is not changed in the presence of Sal B.

  19. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    NASA Astrophysics Data System (ADS)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  20. A DLVO model for catalyst motion in metal-assisted chemical etching based upon controlled out-of-plane rotational etching and force-displacement measurements.

    PubMed

    Hildreth, Owen J; Rykaczewski, Konrad; Fedorov, Andrei G; Wong, Ching P

    2013-02-07

    Metal-assisted Chemical Etching of silicon has recently emerged as a powerful technique to fabricate 1D, 2D, and 3D nanostructures in silicon with high feature fidelity. This work demonstrates that out-of-plane rotational catalysts utilizing polymer pinning structures can be designed with excellent control over rotation angle. A plastic deformation model was developed establishing that the catalyst is driven into the silicon substrate with a minimum pressure differential across the catalyst thickness of 0.4-0.6 MPa. Force-displacement curves were gathered between an Au tip and Si or SiO(2) substrates under acidic conditions to show that Derjaguin and Landau, Verwey and Overbeek (DLVO) based forces are capable of providing restorative forces on the order of 0.2-0.3 nN with a calculated 11-18 MPa pressure differential across the catalyst. This work illustrates that out-of-plane rotational structures can be designed with controllable rotation and also suggests a new model for the driving force for catalyst motion based on DLVO theory. This process enables the facile fabrication of vertically aligned thin-film metallic structures and scalloped nanostructures in silicon for applications in 3D micro/nano-electromechanical systems, photonic devices, nanofluidics, etc.

  1. Etching of InP by H3PO4, H2O2 Solutions

    NASA Astrophysics Data System (ADS)

    Mouton, A.; Sundararaman, C. S.; Lafontaine, H.; Poulin, S.; Currie, J. F.

    1990-10-01

    This paper deals with the chemical etching of (100) InP using a phosphoric acid and hydrogen peroxide mixture. It is shown that the etching rate is strongly dependent on the relative concentration of the two species; it is maximal for an equivolumic solution, and depending on the dilution it ranges from 70 to 20 Å/min. The activation energy of a non-diluted solution is approximately 14 kcal/mol. The post-etch surface state of the sample analysed by SEM and XPS, shows a very smooth surface for all concentrations, and the formation of a InPO4\\cdotxH2O layer. This solution can be used as a very precise etchant in devices processes.

  2. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  3. Dry-etching resistance of fluoropolymers for 157-nm single-layer resists

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yasuhide; Irisawa, Jun; Kodama, Shun-ichi; Okada, Shinji; Takebe, Yoko; Kaneko, Isamu; Yokokoji, Osamu; Ishikawa, Seiichi; Irie, Shigeo; Hagiwara, Takuya; Itani, Toshiro

    2003-06-01

    Novel fluoropolymers having partially fluorinated monocyclic (5-membered and 6-membered ring) structure have been synthesized with radical cyclo-polymerization, which have C-F bond in the polymer main chain and also possess fluorocontaining acidic alcohol group. These polymers have excellent transparency lower than 1.0 μm-1 at 157nm wavelength, a small amount of outgassing, high sensitivity and good adhesion to the wafer. However, this fluoropolymer have lower etching resistance (half of conventional KrF resists) and it must be improved for applying to the single-layer resist. In this paper, we show the new model of the estimation of the dry-etching resistance for designing polymer compositions. It is well known that the model using carbon-atom-density as a parameter is useful for estimating dry-etching resistance. However, these models did not agree with the results of our fluoropolymers. Our new model was focused on the surface area and the volume of the polymer. We succeeded to explain the relationship between the dry-etching resistance and the composition of the fluoropolymer. According to this model, the compositions of fluoropolymer such as protective groups, protective ration and co-polymer units were optimized to improve their etching resistance.

  4. Effect of Alkaline pH on Polishing and Etching of Single and Polycrystalline Silicon

    NASA Astrophysics Data System (ADS)

    Venkatesh, R. Prasanna; Prasad, Y. Nagendra; Kwon, Tae-Young; Kang, Young-Jae; Park, Jin-Goo

    2012-07-01

    In this paper, the polishing and etching behavior of single and polycrystalline silicon were studied. Prior to chemical mechanical polishing (CMP) process, the surfaces were treated with dilute hydrofluoric acid (DHF) to remove native oxides. The surface analysis shows that the poly contains trace amount of oxygen even after DHF treatment. The static and dynamic etch rates, and removal rates were measured as a function of slurry pH. The single silicon showed a higher static etch rate than the poly. After static etch rate measurements, poly showed higher surface roughness and more hydrophilic which indicates that the surface of poly is different from single crystal silicon. The friction force between pad and substrate and pad temperature was also measured as a function of pH during polishing in order to get more understanding of polishing process. At all the pH values being investigated, poly showed lower dynamic and removal rates, higher friction force and higher temperature. This indicates that the removal of poly in CMP is predominantly by mechanical actions. Also, these results, suggest a mechanism in which the oxygen present in the poly grain boundaries strongly influences the etching and removal mechanism.

  5. Evaluation of Cu Ion Concentration Effects on Cu Etching Rate in Chemical-Mechanical Polishing Slurry

    NASA Astrophysics Data System (ADS)

    Nishizawa, Hideaki; Sugiura, Osamu; Matsumura, Yoshiyuki; Kinoshita, Masaharu

    2007-04-01

    The effects of Cu ion concentration of the different solutions on Cu etching rate were investigated. From the dipping experiment of Cu substrates in different solutions of malic acid, hydrogen peroxide (H2O2), benzotriazole (BTA), and Cu ions, it was revealed that Cu etching rate is increased if the concentration of Cu(II) ions added in the solution is high. This is considered to be caused by the effect of Cu(II) ions on H2O2 molecules. In the solution of pH 7, the Cu etching rate increased markedly between 1.7× 10-4 and 3.4× 10-4 M Cu(II) ion concentrations. The maximum increase in the etching rate was from 990 to 2200 nm/min at a H2O2 concentration of 2 wt %. In the solution of pH 3, a marked change in the etching rate was not observed. Our results show that the concentration of Cu ions on the polishing pad in chemical-mechanical polishing (CMP) process is very important.

  6. Formation of Mach angle profiles during wet etching of silica and silicon nitride materials

    NASA Astrophysics Data System (ADS)

    Ghulinyan, M.; Bernard, M.; Bartali, R.; Pucker, G.

    2015-12-01

    In integrated circuit technology peeling of masking photoresist films is a major drawback during the long-timed wet etching of materials. It causes an undesired film underetching, which is often accompanied by a formation of complex etch profiles. Here we report on a detailed study of wedge-shaped profile formation in a series of silicon oxide, silicon oxynitride and silicon nitride materials during wet etching in a buffered hydrofluoric acid (BHF) solution. The shape of etched profiles reflects the time-dependent adhesion properties of the photoresist to a particular material and can be perfectly circular, purely linear or a combination of both, separated by a knee feature. Starting from a formal analogy between the sonic boom propagation and the wet underetching process, we model the wedge formation mechanism analytically. This model predicts the final form of the profile as a function of time and fits the experimental data perfectly. We discuss how this knowledge can be extended to the design and the realization of optical components such as highly efficient etch-less vertical tapers for passive silicon photonics.

  7. Maskless micro/nanofabrication on GaAs surface by friction-induced selective etching

    PubMed Central

    2014-01-01

    In the present study, a friction-induced selective etching method was developed to produce nanostructures on GaAs surface. Without any resist mask, the nanofabrication can be achieved by scratching and post-etching in sulfuric acid solution. The effects of the applied normal load and etching period on the formation of the nanostructure were studied. Results showed that the height of the nanostructure increased with the normal load or the etching period. XPS and Raman detection demonstrated that residual compressive stress and lattice densification were probably the main reason for selective etching, which eventually led to the protrusive nanostructures from the scratched area on the GaAs surface. Through a homemade multi-probe instrument, the capability of this fabrication method was demonstrated by producing various nanostructures on the GaAs surface, such as linear array, intersecting parallel, surface mesas, and special letters. In summary, the proposed method provided a straightforward and more maneuverable micro/nanofabrication method on the GaAs surface. PMID:24495647

  8. Spectrophotometric Determination of the Dissociation Constant of an Acid-Base Indicator Using a Mathematical Deconvolution Technique

    ERIC Educational Resources Information Center

    Alter, Krystyn P.; Molloy, John L.; Niemeyer, Emily D.

    2005-01-01

    A laboratory experiment reinforces the concept of acid-base equilibria while introducing a common application of spectrophotometry and can easily be completed within a standard four-hour laboratory period. It provides students with an opportunity to use advanced data analysis techniques like data smoothing and spectral deconvolution to…

  9. Photoelectrochemical etching of silicon carbide (SiC) and its characterization

    NASA Technical Reports Server (NTRS)

    Collins, D. M.; Harris, G. L.; Wongchotigul, K.

    1995-01-01

    Silicon carbide (SiC) is an attractive semiconductor material for high speed, high density, and high temperature device applications due to its wide bandgap (2.2-3.2 eV), high thermal conductivity, and high breakdown electric field (4 x 10(exp 6) V/cm). An instrumental process in the fabrication of semiconductor devices is the ability to etch in a highly controlled and selective manner for direct patterning techniques. A novel technique in etching using electrochemistry is described. This procedure involves the ultraviolet (UV) lamp-assisted photoelectrochemical etching of n-type 3C- and 6H-SiC to enhance the processing capability of device structures in SiC. While under UV illumination, the samples are anodically biased in an HF based aqueous solution since SiC has photoconductive properties. In order for this method to be effective, the UV light must be able to enhance the production of holes in the SiC during the etching process thus providing larger currents with light from the photocurrents generated than those currents with no light. Otherwise dark methods would be used as in the case of p-type 3C-SiC. Experiments have shown that the I/V characteristics of the SiC-electrolyte interface reveal a minimum etch voltage of 3 V and 4 V for n- and p-type 3C-SiC, respectively. Hence it is possible for etch-stops to occur. Etch rates calculated have been as high as 0.67 micrometer/min for p-type, 1.4 micrometer/min for n-type, and 1.1 micrometer/min for pn layer. On n-type 3C- SiC, an oxide formation is present where after etching a yellowish layer corresponds to a low Si/C ratio and a white layer corresponds to a high Si/C ratio. P-type 3C-SiC shows a grayish layer. Additionally, n-type 6H-SiC shows a brown layer with a minimum etch voltage of 3 V.

  10. Effect of ceramic etching protocols on resin bond strength to a feldspar ceramic.

    PubMed

    Bottino, M A; Snellaert, A; Bergoli, C D; Özcan, M; Bottino, M C; Valandro, L F

    2015-01-01

    This study sought to evaluate the resin microtensile bond strength (MTBS) stability of a leucite-reinforced ceramic after different ceramic etching protocols. The microtensile test had 40 ceramic blocks (5×5×6 mm) assigned to five groups (n=8), in accordance with the following surface etching protocols: NE nonetched (control); 9HF: hydrofluoric (HF) acid etching (9%HF)+wash/dry; 4HF: 4%HF+wash/dry; 5HF: 5%HF+wash/dry; and 5HF+N: 5%HF+neutralizer+wash/dry+ultrasonic-cleaning. Etched ceramic surfaces were treated with a silane agent. Next, resin cement blocks were built on the prepared ceramic surface and stored for 24 hours in distilled water at 37°C. The specimens were then sectioned to obtain microtensile beams (32/block), which were randomly assigned to the following conditions, nonaged (immediate test) and aged (water storage for 150 days plus 12,000 thermal cycles), before the microtensile test. Bond strength data were submitted to one-way analysis of variance and Tukey test (α=0.05). Additional ceramic samples were subjected to the different ceramic etching protocols and evaluated using a scanning electron microscope (n=2) and atomic force microscopy (n=2). Aging led to a statistically significant decrease in the MTBS for all groups, except the untreated one (NE). Among the groups submitted to the same aging conditions, the untreated (NE) revealed inferior MTBS values compared to the 9HF and 4HF groups. The 5HF and 5HF+N groups had intermediate mean values, being statistically similar to the higher values presented by the 9HF and 4HF groups and to the lower value associated with the NE group. The neutralization procedure did not enhance the ceramic/resin cement bond strength. HF acid etching is a crucial step in resin/ceramic bonding.

  11. DEFECT SELECTIVE ETCHING OF THICK ALN LAYERS GROWN ON 6H-SIC SEEDS - A TRANSMISSION ELECTRON MICROSCOPY STUDY

    SciTech Connect

    Nyakiti, Luke; Chaudhari, Jharna; Kenik, Edward A; Lu, Peng; Edgar, J H

    2008-01-01

    In the present study, the type and densities of defects in AlN crystals grown on 6H-SiC seeds by the sublimation-recombination method were assessed. The positions of the defects in AlN were first identified by defect selective etching (DSE) in molten NaOH-KOH at 400 C for 2 minutes. Etching produced pits of three different sizes: 1.77 m, 2.35 m , and 2.86 m. The etch pits were either aligned together forming a sub-grain boundary or randomly distributed. The smaller etch pits were either isolated or associated with larger etch pits. After preparing crosssections of the pits by the focused ion beam (FIB) technique, transmission electron microscopy (TEM) was performed to determine which dislocation type (edge, mixed or screw) produced a specific etch pit sizes. Preliminary TEM bright field and dark field study using different zone axes and diffraction vectors indicates an edge dislocation with a Burgers vector 1/3[1120] is associated with the smallest etch pit size.

  12. Fabricating nanostructures through a combination of nano-oxidation and wet etching on silicon wafers with different surface conditions.

    PubMed

    Huang, Jen-Ching

    2012-01-01

    This study investigates the surface conditions of silicon wafers with native oxide layers (NOL) or hydrogen passivated layers (HPL) and how they influence the processes of nano-oxidation and wet etching. We also explore the combination of nano-oxidation and wet etching processes to produce nanostructures. Experimental results reveal that the surface conditions of silicon wafers have a considerable impact on the results of nano-oxidation when combined with wet etching. The height and width of oxides on NOL samples exceeded the dimensions of oxides on HPL samples, and this difference became increasingly evident with an increase in applied bias voltage. The height of oxidized nanolines on the HPL sample increased after wet etching; however, the width of the lines increased only marginally. After wet etching, the height and width of oxides on the NOL were more than two times greater than those on the HPL. Increasing the applied bias voltage during nano-oxidation on NOL samples increased both the height and width of the oxides. After wet etching however, the increase in bias voltage appeared to have little effect on the height of oxidized nanolines, but the width of oxidized lines increased. This study also discovered that the use of higher applied bias voltages on NOL samples followed by wet etching results in nanostructures with a section profile closely resembling a curved surface. The use of this technique enabled researchers to create molds in the shape of a silicon nanolens array and an elegantly shaped nanoscale complex structures mold.

  13. Study on sapphire microstructure processing technology based on wet etching

    NASA Astrophysics Data System (ADS)

    Shang, Ying-Qi; Qi, Hong; Ma, Yun-Long; Wu, Ya-Lin; Zhang, Yan; Chen, Jing

    2017-03-01

    Aiming at the problem that sapphire surface roughness is quite large after wet etching in sapphire microstructure processing technology, we optimize the wet etching process parameters, study on the influences of concentration and temperature of etching solution and etching time on the sapphire surface roughness and etching rate, choose different process parameters for the experiment and test and analyze the sapphire results after wet etching. Aiming at test results, we also optimize the process parameters and do experiment. Experimental results show that, after optimizing the parameters of etching solution, surface roughness of etched sapphire is 0.39 nm, effectively with reduced surface roughness, improved light extraction efficiency and meeting the production requirements of high-precision optical pressure sensor.

  14. Method of making an ion beam sputter-etched ventricular catheter for hydrocephalus shunt

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1984-01-01

    The centricular catheter comprises a multiplicity of inlet microtubules. Each microtubule has both a large opening at its inlet end and a multiplicity of microscopic openings along its lateral surfaces. The microtubules are perforated by an ion beam sputter etch technique. The holes are etched in each microtubule by directing an ion beam through an electro formed mesh mask producing perforations having diameters ranging from about 14 microns to about 150 microns. This structure assures a reliable means for shunting cerebrospinal fluid from the cerebral ventricles to selected areas of the body.

  15. Metal assisted catalyzed etched (MACE) black Si: optics and device physics.

    PubMed

    Toor, Fatima; Miller, Jeffrey B; Davidson, Lauren M; Duan, Wenqi; Jura, Michael P; Yim, Joanne; Forziati, Joanne; Black, Marcie R

    2016-08-25

    Metal-assisted catalyzed etching (MACE) of silicon (Si) is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features, including nanowires (NWs), that can be tuned to achieve various useful engineering goals, in particular with respect to Si solar cells. In this review, we introduce the science and technology of MACE from the literature, and provide an in-depth analysis of MACE to enhance Si solar cells, including the outlook for commercial applications of this technology.

  16. Etch Profile Simulation Using Level Set Methods

    NASA Technical Reports Server (NTRS)

    Hwang, Helen H.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Etching and deposition of materials are critical steps in semiconductor processing for device manufacturing. Both etching and deposition may have isotropic and anisotropic components, due to directional sputtering and redeposition of materials, for example. Previous attempts at modeling profile evolution have used so-called "string theory" to simulate the moving solid-gas interface between the semiconductor and the plasma. One complication of this method is that extensive de-looping schemes are required at the profile corners. We will present a 2D profile evolution simulation using level set theory to model the surface. (1) By embedding the location of the interface in a field variable, the need for de-looping schemes is eliminated and profile corners are more accurately modeled. This level set profile evolution model will calculate both isotropic and anisotropic etch and deposition rates of a substrate in low pressure (10s mTorr) plasmas, considering the incident ion energy angular distribution functions and neutral fluxes. We will present etching profiles of Si substrates in Ar/Cl2 discharges for various incident ion energies and trench geometries.

  17. Influence of different repair procedures on bond strength of adhesive filling materials to etched enamel in vitro.

    PubMed

    Hannig, Christian; Hahn, Petra; Thiele, Patrick-Philipp; Attin, Thomas

    2003-01-01

    Contamination of etched enamel with repair bond agents during repair of dental restorations may interfere with the bonding of composite to enamel. This study examined the bond strength of adhesive filling materials to etched bovine enamel after pre-treatment with the repair systems Monobond S, Silibond and Co-Jet. The materials Tetric Ceram, Dyract and Definite and their corresponding bonding agents (Syntac Single Comp, Prime & Bond NT, Etch and Prime) were tested in combination with the repair systems. One hundred and thirty-five enamel specimens were etched (37% phosphoric acid, 60 seconds) and equally distributed among three groups (A-C). In Group A, the repair materials were applied on etched enamel followed by applying the composite materials without using their respective bonding material. In Group B, the composite materials were placed on etched enamel after applying the repair materials and bonding agents. In control Group C, the composite materials and bonding agents were applied on etched enamel without using the repair systems. In each sub-group, every composite material was applied on 15 specimens. Samples were stored in artificial saliva for 14 days and thermocycled 1,000 times (5 degrees C/55 degrees C). The shear bond strength of the samples were then determined in a universal testing machine (ISO 10477). Applying Monobond or Silibond followed by the use of its respective bonding agents resulted in a bond strength that was not statistically different from the controls for all filling materials (Group C). The three composites that used Monobond and Silibond without applying the corresponding bonding agent resulted in bond strengths that were significantly lower than the controls. Utilizing the Co-Jet-System drastically reduced the bond strength of composites on etched enamel. Contamination of etched enamel with the repairing bonding agents Monobond and Silibond does not interfere with bond strength if the application of Monobond and Silibond is

  18. Titration of strong and weak acids by sequential injection analysis technique.

    PubMed

    Maskula, S; Nyman, J; Ivaska, A

    2000-05-31

    A sequential injection analysis (SIA) titration method has been developed for acid-base titrations. Strong and weak acids in different concentration ranges have been titrated with a strong base. The method is based on sequential aspiration of an acidic sample zone and only one zone of the base into a carrier stream of distilled water. On their way to the detector, the sample and the reagent zones are partially mixed due to the dispersion and thereby the base is partially neutralised by the acid. The base zone contains the indicator. An LED-spectrophotometer is used as detector. It senses the colour of the unneutralised base and the signal is recorded as a typical SIA peak. The peak area of the unreacted base was found to be proportional to the logarithm of the acid concentration. Calibration curves with good linearity were obtained for a strong acid in the concentration ranges of 10(-4)-10(-2) and 0.1-3 M. Automatic sample dilution was implemented when sulphuric acid at concentration of 6-13 M was titrated. For a weak acid, i.e. acetic acid, a linear calibration curve was obtained in the range of 3x10(-4)-8x10(-2) M. By changing the volumes of the injected sample and the reagent, different acids as well as different concentration ranges of the acids can be titrated without any other adjustments in the SIA manifold or the titration protocol.

  19. Effects of chemical etching on the surface quality and the laser induced damage threshold of fused silica optics

    NASA Astrophysics Data System (ADS)

    Pfiffer, Mathilde; Cormont, Philippe; Néauport, Jérôme; Lambert, Sébastien; Fargin, Evelyne; Bousquet, Bruno; Dussauze, Marc

    2016-12-01

    Effects of deep wet etching on the surface quality and the laser induced damage probability have been studied on fused silica samples. Results obtained with a HF/HNO3 solution and a KOH solution were compared on both polished pristine surface and scratched surfaces. The hydrofluoric solution radically deteriorated the surface quality creating a haze on the whole surface and increasing considerably the roughness. For both solutions, neither improvement nor deterioration of the laser damage performances has been observed on the etched surfaces while the laser damage resistance of scratches has been increased to the level of the surface. We conclude that laser damage performances are equivalent with both solutions but an acid etching induces surface degradation that is not experienced with basic etching.

  20. Wet KOH etching of freestanding AlN single crystals

    NASA Astrophysics Data System (ADS)

    Bickermann, M.; Schmidt, S.; Epelbaum, B. M.; Heimann, P.; Nagata, S.; Winnacker, A.

    2007-03-01

    We investigated defect-selective wet chemical etching of freestanding aluminum nitride (AlN) single crystals and polished cuts in a molten NaOH-KOH eutectic at temperatures ranging from 240 to 400 °C. Due to the strong anisotropy of the AlN wurtzite structure, different AlN faces get etched at very different etching rates. On as-grown rhombohedral and prismatic facets, defect-related etching features could not be traced, as etching these facets was found to mainly emphasize features present already on the un-etched surface. On nitrogen polar basal planes, hexagonal pyramids/hillocks exceeding 100 μm in diameter may form within seconds of etching at 240 °C. They sometimes are arranged in lines and clusters, thus we attribute them to defects on the surface, presumably originating in the bulk material. On aluminum polar basal planes, the etch pit density which saturates after approx. 2-3 min of total etching time at 350 °C equals the density of a certain type of dislocations (presumably screw dislocations) threading the surface. Smaller etch pits form around annealed indentations, in the vicinity of some bigger etch pits after repeated etching, and sometimes also isolated on the surface area. Although alternate explanations exist, we attribute these etch pits to threading mixed and edge dislocations. This paper features etching parameters optimized for different planes and models on the formation of etching features especially on the polar faces. Finally, the issue of reliability and reproducibility of defect detection and evaluation by wet chemical etching is addressed.

  1. High index contrast polysiloxane waveguides fabricated by dry etching

    SciTech Connect

    Madden, S. J.; Zhang, M. Y.; Choi, D.-Y.; Luther-Davies, B.; Charters, R.

    2009-05-15

    The authors demonstrate the production of low loss enhanced index contrast waveguides by reactive ion etching of IPG trade mark sign polysiloxane thin films. The use of a silica mask and CHF{sub 3}/O{sub 2} etch gas led to large etch selectivity between the silica and IPG trade mark sign of >20 and etch rates of >100 nm/min. This work indicates that compact optical circuits could be successfully fabricated for telecommunication applications using polysiloxane films.

  2. Electron and Light Microscopy Techniques Suitable for Studying Fatigue Damage in a Crystallized Glass Ceramic

    NASA Technical Reports Server (NTRS)

    Harrell, Shelley; Zaretsky, Erwin V.

    1961-01-01

    The crystals of Pyroceram are randomly oriented and highly reflective so that standard microscopy techniques are not satisfactory for studying this material. Standard replicating procedures proved difficult to use. New microscopy techniques and procedures have therefore been developed. A method for locating, orienting, and identifying specific areas to be viewed with an electron microscope is described. This method not require any special equipment. Plastic replicas were found to be unsatisfactory because of their tendency to adhere to Pryoceram. This caused them to tear when released or resulted in artifacts. Preshadowed silicon monoxide replicas were satisfactory but required a releasing agent. A method of depositing the releasing agent is described. To polish specimens without evidence of fire-polishing, it was found necessary to use a vibratory polishing technique. Chrome oxide was used as the abrasive and either water or kerosene as the lubricant. Vibratory polishing is extremely slow, but surfaces so polished show no evidence of fire polishing, even when examined by electron microscopy. The most satisfactory etching process used for Pyroceram 9608 consisted of a primary etch of 5 milliliters of hydrochloric acid (concentrated), 5 milliliters of hydrogen fluoride (45 percent), and 45 milliliters of water, and a secondary etch with methyl alcohol replacing the water. Best results were obtained with total etching times from 25 to 30 seconds. Staining of the Pyroceram surface with a Sanford's marker was found to be an expedient way to reduce the glare of reflected light.

  3. Wavelength Dependence of UV Effect on Etch Rate and Noise in CR-39

    NASA Astrophysics Data System (ADS)

    Wiesner, Micah; Traynor, Nathan; McLean, James; Padalino, Stephen; Sangster, Craig; McCluskey, Michelle

    2014-10-01

    The use of CR-39 plastic as a SSNTD is an effective technique for recovering data in high-energy particle experiments including inertial confinement fusion. To reveal particle tracks after irradiation, CR-39 is chemically etched at elevated temperatures with NaOH, producing signal pits at the nuclear track sites that are measurable by an optical microscope. CR-39 pieces also exhibit etch-induced noise, either surface roughness or pit-like features not caused by nuclear particles, which negatively affects the ability of observers to distinguish actual pits. When CR-39 is exposed to high intensity UV light after nuclear irradiation and before etching, an increase in etch rates and pit diameters is observed. UV exposure can also increase noise, which in the extreme can distort the shapes of particle pits. Analyzing the effects of different wavelengths in the UV spectrum we have determined that light of the wavelength 255 nm increases etch rates and pit diameters while causing less background noise than longer UV wavelengths. Preliminary research indicates that heating CR-39 to elevated temperatures (~80 °C) during UV exposure also improves the signal-to-noise ratio for this process. Funded in part by a grant from the DOE through the Laboratory for Laser Energetics.

  4. Systematic study on pulse parameters in fabricating porous silicon-layered structures by pulse electrochemical etching

    NASA Astrophysics Data System (ADS)

    Ge, J.; Yin, W. J.; Ma, L. L.; Obbard, E.; Ding, X. M.; Hou, X. Y.

    2007-08-01

    Pulse electrochemical etching was used to improve the quality of porous silicon (PS) layers. Although alternative PS layers of different porosities have been realized by this etching technique, there is no systematic study on the influence of different etching pulse parameters on PS during the etching process. We test various combinations of pulse parameters, including duty cycle and duration, in fabricating PS-layered structures. The optical thickness and actual thickness of the PS structures fabricated are investigated by means of reflectance spectroscopy and scanning electron microscopy. It is found that reducing the duty cycle and pulse duration of the pulse can promote the formation of PS layers with a large optical thickness and high refractive index. Meanwhile, the uniformity of PS is also improved. The duty cycle of 1:10-1:20 and pulse duration of 0.1-0.2 ms can result in the best uniformity and smoothness for the highly doped p-Si wafers. We believe that our work could set the foundation for further improvement of pulse electrochemical etching.

  5. Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching

    NASA Astrophysics Data System (ADS)

    Song, Chenfei; Li, Xiaoying; Cui, Shuxun; Dong, Hanshan; Yu, Bingjun; Qian, Linmao

    2013-03-01

    A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surface. Although the rise of etching temperature can improve fabrication efficiency, fabrication depth is dependent only upon contact pressure and scanning cycles. With the increase of contact pressure during scanning, selective etching thickness of the scanned area increases from 0 to 2.9 nm before the yield of the quartz surface and then tends to stabilise after the appearance of a wear. Refabrication on existing nanostructures can be realised to produce deeper structures on the quartz surface. Based on Arrhenius fitting of the etching rate and transmission electron microscopy characterization of the nanostructure, fabrication mechanism could be attributed to the selective etching of the friction-induced amorphous layer on the quartz surface. As a maskless and low-destructive technique, the proposed friction-induced method will open up new possibilities for further nanofabrication.

  6. Anisotropic etching of amorphous perfluoropolymer films in oxygen-based inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Ono, Takao; Akagi, Takanori; Ichiki, Takanori

    2009-01-01

    An amorphous perfluoropolymer, "Cytop™" (Asahi Glass Co., Ltd.), is a preferable material for the fabrication of micro total analysis system devices because of its superior optical transparency over a wide wavelength range and low refractive index of 1.34, which is almost the same as that of water, as well as excellent chemical stability. To establish the precise microfabrication technology for this unique resin, the dry etching of the amorphous perfluoropolymer in Ar/O2 low-pressure inductively coupled plasma has been studied. A relatively high etch rate of approximately 6.3 μm/min at maximum and highly anisotropic etched features was attained. Plasma measurements by a single Langmuir probe technique and actinometry revealed that etching is dominated by ion-assisted surface desorption above a 10% O2 mixing ratio, whereas the supply of active oxygen species is the rate-limiting process below 10%. Moreover, angled x-ray photoelectron spectroscopy measurements of an etched trench pattern revealed that a high anisotropy is attributed to the formation of a carbon-rich sidewall protection layer.

  7. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching.

    PubMed

    Liebes, Yael; Hadad, Binyamin; Ashkenasy, Nurit

    2011-07-15

    The fabrication of nanometric pores with controlled size is important for applications such as single molecule detection. We have recently suggested the use of focused electron beam induced etching (FEBIE) for the preparation of such nanopores in silicon nitride membranes. The use of a scanning probe microscope as the electron beam source makes this technique comparably accessible, opening the way to widespread fabrication of nanopores. Since the shape of the nanopores is critically important for their performance, in this work we focus on its analysis and study the dependence of the nanopore shape on the electron beam acceleration voltage. We show that the nanopore adopts a funnel-like shape, with a central pore penetrating the entire membrane, surrounded by an extended shallow-etched region at the top of the membrane. While the internal nanopore size was found to depend on the electron acceleration voltage, the nanopore edges extended beyond the primary electron beam spot size due to long-range effects, such as radiolysis and diffusion. Moreover, the size of the peripheral-etched region was found to be less dependent on the acceleration voltage. We also found that chemical etching is the rate-limiting step of the process and is only slightly dependent on the acceleration voltage. Furthermore, due to the chemical etch process the chemical composition of the nanopore rims was found to maintain the bulk membrane composition.

  8. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching

    NASA Astrophysics Data System (ADS)

    Liebes, Yael; Hadad, Binyamin; Ashkenasy, Nurit

    2011-07-01

    The fabrication of nanometric pores with controlled size is important for applications such as single molecule detection. We have recently suggested the use of focused electron beam induced etching (FEBIE) for the preparation of such nanopores in silicon nitride membranes. The use of a scanning probe microscope as the electron beam source makes this technique comparably accessible, opening the way to widespread fabrication of nanopores. Since the shape of the nanopores is critically important for their performance, in this work we focus on its analysis and study the dependence of the nanopore shape on the electron beam acceleration voltage. We show that the nanopore adopts a funnel-like shape, with a central pore penetrating the entire membrane, surrounded by an extended shallow-etched region at the top of the membrane. While the internal nanopore size was found to depend on the electron acceleration voltage, the nanopore edges extended beyond the primary electron beam spot size due to long-range effects, such as radiolysis and diffusion. Moreover, the size of the peripheral-etched region was found to be less dependent on the acceleration voltage. We also found that chemical etching is the rate-limiting step of the process and is only slightly dependent on the acceleration voltage. Furthermore, due to the chemical etch process the chemical composition of the nanopore rims was found to maintain the bulk membrane composition.

  9. Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: High performance materials for supercapacitor applications

    SciTech Connect

    Kazemi, Sayed Habib; Maghami, Mostafa Ghaem; Kiani, Mohammad Ali

    2014-12-15

    Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.

  10. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    SciTech Connect

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  11. Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells

    SciTech Connect

    Ruby, D.S.; Wilbanks, W.L.; Fleddermann, C.B.; Rosenblum, M.D.; Roncin, S.; Narayanan, S.

    1996-06-01

    The authors conducted an investigation of plasma deposition and etching processes on full-size multicrystalline (mc-Si) cells processed in commercial production lines, so that any improvements obtained will be immediately relevant to the PV industry. In one case, the authors performed a statistically designed multiparameter experiment to determine the optimum PECVD-nitride deposition conditions specific to EFG silicon from ASE Americas, Inc. In a related effort, they studied whether plasma-etching techniques can use standard screen-printed gridlines as etch masks to form self-aligned, patterned-emitter profiles on mc-Si cells from Solarex Corp. Initial results found a statistically significant improvement of about half an absolute percentage point in cell efficiency when the self-aligned emitter etchback was combined with the PECVD-nitride surface passivation treatment. Additional improvement is expected when the successful bulk passivation treatment is also added to the process.

  12. Fabrication of silicon field emission tips for vacuum microelectronics by KOH/Alcohol/Water etching

    SciTech Connect

    Hui, W.C.; Hee, E.; Ciarlo, D.

    1990-11-01

    The fabrication of sharp silicon tips for field emission cathodes by KOH/Alcohol/Water (KAW) solution was investigated. The KOH/Alcohol/Water solution was found to work better and easier than the Ethylene-Diamine/Pyrocathechol/Water solution in etching silicon tips. It etched the (100) silicon surface more slowly, but in a more controllable manor. The resulting tips were usually very uniform and pretty sharp in most studies. Actually, there were some systems showing non-uniform etching behavior. However, we were able to demonstrate that the uniformity could be improved by shifting the reaction from mass transfer controlled to chemical kinetics controlled. Such technique could allow us to fabricate uniform silicon cones even in a very primitive apparatus with non-uniform mass transfer. 5 refs., 7 figs.

  13. Fabrication of sub-15 nm aluminum wires by controlled etching

    SciTech Connect

    Morgan-Wall, T.; Hughes, H. J.; Hartman, N.; Marković, N.; McQueen, T. M.

    2014-04-28

    We describe a method for the fabrication of uniform aluminum nanowires with diameters below 15 nm. Electron beam lithography is used to define narrow wires, which are then etched using a sodium bicarbonate solution, while their resistance is simultaneously measured in-situ. The etching process can be stopped when the desired resistance is reached, and can be restarted at a later time. The resulting nanowires show a superconducting transition as a function of temperature and magnetic field that is consistent with their smaller diameter. The width of the transition is similar to that of the lithographically defined wires, indicating that the etching process is uniform and that the wires are undamaged. This technique allows for precise control over the normal state resistance and can be used to create a variety of aluminum nanodevices.

  14. Use of lower-end technology etch platforms for high-etch loads

    NASA Astrophysics Data System (ADS)

    Nemelka, Jefferson O.

    2003-12-01

    In order to meet the needs of multiple customers with varying design specifications, merchant photomask suppliers need to provide photomasks for a wide range of design patterns. Some masks require etching less than 1% of the total mask film, while others require etching over 80% of the mask. Etching masks with these extremes in pattern loads can often require upgrading existing tool sets, particularly as the mask specifications become tighter. One alternative to upgrading tools is to develop new load-specific processes on existing lower-end tools, which requires a substantial amount of development work. Dry etching MoSi Embedded Attenuating Phase Shift Material using sulfur hexafluoride and helium under all etch loads presents challenges in the Unaxis Generation II mas