Science.gov

Sample records for acid ethylene glycol

  1. Enhanced bioconversion of ethylene glycol to glycolic acid by a newly isolated Burkholderia sp. EG13.

    PubMed

    Gao, Xiaoxin; Ma, Zhengfei; Yang, Limin; Ma, Jiangquan

    2014-10-01

    Burkholderia sp. EG13 with high ethylene glycol-oxidizing activity was isolated from soil, which could be used for the synthesis of glycolic acid from the oxidation of ethylene glycol. Using the resting cells of Burkholderia sp. EG13 as biocatalysts, the optimum reaction temperature and pH were 30 °C and 6.0, respectively. After 24 h of biotransformation, the yield of glycolic acid from 200 mM ethylene glycol was 98.8 %. Furthermore, an integrated bioprocess for the production of glycolic acid which involved in situ product removal (ISPR) was investigated. Using fed-batch method with ISPR, a total of 793 mM glycolic acid has been accumulated in the reaction mixture after the 4th feed.

  2. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  3. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    NASA Astrophysics Data System (ADS)

    Yadav, Vishnu P.; Mukherjee, Rudra Palash; Bantraj, Kandi; Maity, Sunil K.

    2010-10-01

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  4. Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid

    SciTech Connect

    Yadav, Vishnu P.; Maity, Sunil K.; Mukherjee, Rudra Palash; Bantraj, Kandi

    2010-10-26

    The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

  5. Intermediates to ethylene glycol: carbonylation of formaldehyde catalyzed by Nafion solid perfluorosulfonic acid resin

    SciTech Connect

    Hendriksen, D.E.

    1983-01-01

    Details of a series of reactions for the production of ethylene glycol using a catalyst of Nafion solid perfluorosulfonic acid resin was detailed. The reactions included the carbonylation of formaldehyde and esterification and then hydrogenation of the product of the carbonylation, glycolic acid. Other preparations included in the work included methyl glycolate, acetylglycolic acid, methyl acetylglycolate, and methyl methoxyacetate.

  6. Synthesis of elastic biodegradable polyesters of ethylene glycol and butylene glycol from sebacic acid.

    PubMed

    Park, Hyung-seok; Seo, Jung-a; Lee, Hye-Young; Kim, Hae-Won; Wall, Ivan B; Gong, Myoung-Seon; Knowles, Jonathan C

    2012-08-01

    High molecular weight biodegradable polyesters were prepared from sebacic acid, ethylene glycol and butylene glycol through a simple non-solvent polycondensation with a low toxicity catalyst. The successful synthesis of the polyesters was confirmed by gel permeation chromatography, (1)H-nuclear magnetic resonance and Fourier transform-infrared spectroscopies and differential scanning calorimetry. The degradation tests were performed at 37 °C in phosphate buffer solution (pH 7.4) and showed a mass loss of ~5% over 12 weeks compared with only 2% for polycaprolactone (PCL). Reverse transcription polymerase chain reaction results following culture of osteoblasts on the polymer surface showed that poly(ethylene sebacate) and poly(butylene sebacate) films were optimal for osteoblast formation in terms of Runx 2 and osteocalcin gene expression.

  7. Synthesis and characterization of hydrolytically degradable copolyester biomaterials based on glycolic acid, sebacic acid and ethylene glycol.

    PubMed

    Simitzis, J; Soulis, S; Triantou, D; Zoumpoulakis, L; Zotali, P

    2011-12-01

    Copolyesters of glycolic acid (G) combined with sebacic acid (S) and ethylene glycol were synthesized in different molar ratios (G: 0-100% and S: 100-0%) and their hydrolytic degradation was studied and correlated with their structures. Based on the FTIR spectra of the homopolyesters and copolyesters and the normalized peak intensity of the I(2918), I(2848) and I(1087) for the corresponding wavenumbers, it is concluded that the I(2918) and the I(2848) are in accordance with the mean number degree of polymerization of ethylene sebacate units and the I(1087) is in accordance with the mean number degree of polymerization of glycolate units. Based on the XRD diffractograms, poly(ethylene sebacate) and poly(glycolic acid) belong to the monoclinic and the orthorhombic crystal system, respectively and both have higher crystallinity than the copolyesters. The experimental data of the hydrolytic degradation were fitted with exponential rise to maximum type functions using two-parameter model and four-parameter model. Three regions can been distinguished for the hydrolytic degradation by decreasing the molar feed ratio of sebacic acid, which are correlated with the changes of crystallinity. Two copolyesters are proposed: first the copolyester with high amount of glycolate units (S10G90) having higher hydrolytic degradation than G100 and second the copolyester with equal amount of glycolate and ethylene sebacate units (S50G50), having lower hydrolytic degradation than G100. These hydrolytically degradable copolyesters are soluble in common organic solvents, opposite to poly(glycolic acid) and could have perspectives for biomedical applications.

  8. Acid-base equilibria in ethylene glycol--III: selection of titration conditions in ethylene glycol medium, protolysis constants of alkaloids in ethylene glycol and its mixtures.

    PubMed

    Zikolov, P; Zikolova, T; Budevsky, O

    1976-08-01

    Theoretical titration curves are used for the selection of appropriate conditions for the acid-base volumetric determination of weak bases in ethylene glycol medium. The theoretical curves for titration of some alkaloids are deduced graphically on the basis of the logarithmic concentration diagram. The acid-base constants used for the construction of the theoretical titration curves were determined by potentiometric titration in a cell without liquid junction, equipped with a glass and a silver-silver chloride electrode. It is shown that the alkaloids investigated can be determined accurately by visual or potentiometric titration. The same approach for the selection of titration conditions seems to be applicable to other non-aqueous amphiprotic solvents.

  9. [Chronic ethylene glycol poisoning].

    PubMed

    Kaiser, W; Steinmauer, H G; Biesenbach, G; Janko, O; Zazgornik, J

    1993-04-30

    Over a six-week period a 60-year-old patient had several unexplained intoxication-like episodes. He finally had severe abdominal cramps with changes in the level of consciousness and oligoanuric renal failure (creatinine 4.7 mg/dl). The history, marked metabolic acidosis (pH 7.15, HCO3- 2.2 mmol/l, pCO2 6.6 mmHg) as well as raised anion residue (43 mmol/l) and the presence of oxalates in urine suggested poisoning by ethylene glycol contained in antifreeze liquid. Intensive haemodialysis adequately eliminated ethylene glycol and its toxic metabolites (glycol aldehyde, glycolic acid). Renal function returned within 10 days, although the concentrating power of the kidney remained impaired for several weeks because of interstitial nephritis. The intoxication had been caused by a defective heating-pipe system from which the antifreeze had leaked into the hot-water boiler (the patient had habitually prepared hot drinks by using water from the hot-water tap). Gas chromatography demonstrated an ethylene glycol concentration of 21 g per litre of water.

  10. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-01

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials.

  11. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-01

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials. PMID:21661073

  12. Mode of Action: Oxalate Crystal-Induced Renal Tubule Degeneration and Glycolic Acid-Induced Dysmorphogenesis—Renal and Developmental Effects of Ethylene Glycol

    SciTech Connect

    Corley, Rick A.; Meek, M E.; Carney, E W.

    2005-10-01

    Ethylene glycol can cause both renal and developmental toxicity, with metabolism playing a key role in the mode of action (MOA) for each form of toxicity. Renal toxicity is ascribed to the terminal metabolite oxalic acid, which precipitates in the kidney in the form of calcium oxalate crystals and is believed to cause physical damage to the renal tubules. The human relevance of the renal toxicity of ethylene glycol is indicated by the similarity between animals and humans of metabolic pathways, the observation of renal oxalate crystals in toxicity studies in experimental animals and human poisonings, and cases of human kidney and bladder stones related to dietary oxalates and oxalate precursors. High-dose gavage exposures to ethylene glycol also cause axial skeletal defects in rodents (but not rabbits), with the intermediary metabolite, glycolic acid, identified as the causative agent. However, the mechanism by which glycolic acid perturbs development has not been investigated sufficiently to develop a plausible hypothesis of mode of action, nor have any cases of ethylene glycol-induced developmental effects been reported in humans. Given this, and the variations in sensitivity between animal species in response, the relevance to humans of ethylene glycol-induced developmental toxicity in animals is unknown at this time.

  13. Miscibility and degradability of poly(lactic acid)poly(ethylene oxide)/poly(ethylene glycol) blends

    SciTech Connect

    Yue, C.L.; Dave, V.; Gross, R.A.; McCarthy, S.P.

    1995-12-01

    Poly(lactic acid) [PLA] was melt blended with polyethylene(oxide) [PEG] and poly(ethylene glycol) [PEG] in different compositions to form blown films. It was determined that PLA was miscible with PEO in all compositions. Based on Gordon-Taylor equation, it was determined that the interactions between PLA and PEO is stronger than PEG. The addition of low molecular weight PEG improved the elongation and tear strength of the blends. Enzymatic degradation results shows that the weight loss of all the samples was more than 80% of the initial weight in 48 hours.

  14. Ethylene glycol, hazardous substance in the household.

    PubMed

    Patocka, Jirí; Hon, Zdenek

    2010-01-01

    Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment. PMID:20608228

  15. Ethylene Glycol Metabolism by Pseudomonas putida

    PubMed Central

    Mückschel, Björn; Simon, Oliver; Klebensberger, Janosch; Graf, Nadja; Rosche, Bettina; Altenbuchner, Josef; Pfannstiel, Jens; Huber, Armin

    2012-01-01

    In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol. PMID:23023748

  16. Ethylene glycol metabolism by Pseudomonas putida.

    PubMed

    Mückschel, Björn; Simon, Oliver; Klebensberger, Janosch; Graf, Nadja; Rosche, Bettina; Altenbuchner, Josef; Pfannstiel, Jens; Huber, Armin; Hauer, Bernhard

    2012-12-01

    In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol.

  17. Poly(N-vinylimidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids.

    PubMed

    Schemeth, Dieter; Noël, Jean-Christophe; Jakschitz, Thomas; Rainer, Matthias; Tessadri, Richard; Huck, Christian W; Bonn, Günther K

    2015-07-23

    In this study we report the novel polymeric resin poly(N-vinyl imidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. The monomer to crosslinker ratio and the porogen composition were optimized for isolating phenolic acids diluted in acetonitrile at normal phase chromatography conditions, first. Acetonitrile serves as polar, aprotic solvent, dissolving phenolic acids but not interrupting interactions with the stationary phase due to the approved Hansen solubility parameters. The optimized resin demonstrated high loading capacities and adsorption abilities particularly for phenolic acids in both, acetonitrile and aqueous solutions. The adsorption behavior of aqueous standards can be attributed to ion exchange effects due to electrostatic interactions between protonated imidazole residues and deprotonated phenolic acids. Furthermore, adsorption experiments and subsequent curve fittings provide information of maximum loading capacities of single standards according to the Langmuir adsorption model. Recovery studies of the optimized polymer in the normal-phase and ion-exchange mode illustrate the powerful isolation properties for phenolic acids and are comparable or even better than typical, commercially available solid phase extraction materials. In order to prove the applicability, a highly complex extract of rosemary leaves was purified by poly(N-vinyl imidazole/ethylene glycol dimethacrylate) and the isolated compounds were identified using UHPLC-qTOF-MS.

  18. Fast determination of ethylene glycol, 1,2-propylene glycol and glycolic acid in blood serum and urine for emergency and clinical toxicology by GC-FID.

    PubMed

    Hložek, Tomáš; Bursová, Miroslava; Čabalaa, Radomír

    2014-12-01

    A simple, cost effective, and fast gas chromatography method with flame ionization detection (GC-FID) for simultaneous measurement of ethylene glycol, 1,2-propylene glycol and glycolic acid was developed and validated for clinical toxicology purposes. This new method employs a relatively less used class of derivatization agents - alkyl chloroformates, allowing the efficient and rapid derivatization of carboxylic acids within seconds while glycols are simultaneously derivatized by phenylboronic acid. The entire sample preparation procedure is completed within 10 min. To avoid possible interference from naturally occurring endogenous acids and quantitation errors 3-(4-chlorophenyl) propionic acid was chosen as an internal standard. The significant parameters of the derivatization have been found using chemometric procedures and these parameters were optimized using the face-centered central composite design. The calibration dependence of the method was proved to be quadratic in the range of 50-5000 mg mL(-1), with adequate accuracy (92.4-108.7%) and precision (9.4%). The method was successfully applied to quantify the selected compounds in serum of patients from emergency units.

  19. Interstellar Antifreeze: Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Lovas, F. J.; Jewell, P. R.; Coudert, L. H.

    2002-01-01

    Interstellar ethylene glycol (HOCH2CH2,OH) has been detected in emission toward the Galactic center source Sagittarius B2(N-LMH) by means of several millimeter-wave rotational torsional transitions of its lowest energy conformer. The types and kinds of molecules found to date in interstellar clouds suggest a chemistry that favors aldehydes and their corresponding reduced alcohols-e.g., formaldehyde (H2CO)/methanol (CH3OH), acetaldehyde (CH3CHO)/ethanol (CH3CH2OH). Similarly, ethylene glycol is the reduced alcohol of glycolaldehyde (CH2OHCHO), which has also been detected toward Sgr B2(N-LMH). While there is no consensus as to how any such large complex molecules are formed in the interstellar clouds, atomic hydrogen (H) and carbon monoxide (CO) could form formaldehyde on grain surfaces, but such surface chemistry beyond that point is uncertain. However, laboratory experiments have shown that the gas-phase reaction of atomic hydrogen (H) and solid-phase CO at 10-20 K can produce formaldehyde and methanol and that alcohols and other complex molecules can be synthesized from cometary ice analogs when subject to ionizing radiation at 15 K. Thus, the presence of aldehyde/ reduced alcohol pairs in interstellar clouds implies that such molecules are a product of a low-temperature chemistry on grain surfaces or in grain ice mantles. This work suggests that aldehydes and their corresponding reduced alcohols provide unique observational constraints on the formation of complex interstellar molecules.

  20. DEVELOPMENT OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR ETHYLENE GLYCOL AND ITS MAJOR METABOLITE, GLYCOLIC ACID, IN RATS AND HUMANS

    SciTech Connect

    Corley, Rick A.; Bartels, M J.; Carney, E W.; Weitz, Karl K.; Soelberg, Jolen J.; Gies, Richard A.; Thrall, Karla D.

    2005-05-19

    An extensive database on the toxicity and modes of action of the major industrial chemical, ethylene glycol (EG), has been developed over the past several decades. These studies have consistently identified the kidney as a primary target organ, with rats being more sensitive than mice and males more sensitive than females following chronic exposure. Renal toxicity has been associated with the terminal metabolite, oxalic acid which can precipitate with calcium to form crystals. EG also induces developmental toxicity, although these effects appear to require high-doses or accelerated dose-rates, and have been reported only in rats and mice. The developmental toxicity of EG has been attributed to the intermediate metabolite, glycolic acid (GA). The developmental toxicity of EG has been the subject of extensive research and regulatory review in recent years. Therefore, a physiologically based pharmacokinetic (PBPK) model was developed to integrate the extensive mode of action and pharmacokinetic data on EG and GA for use in developmental risk assessment. Metabolic rate constants and partition coefficients for EG and GA were estimated from in vitro studies. Other biochemical constants were optimized from appropriate in vivo pharmacokinetic studies. The resulting PBPK model includes inhalation, oral, dermal, intravenous and subcutaneous routes of administration. Metabolism of EG and GA were described in the liver with elimination via the kidneys. Several rat and human metabolism studies were used to validate the resulting PBPK model. Consistent with these studies, simulations indicated that the metabolism of EG to GA was essentially first-order (linear) up to 2500 mg/kg/day while the metabolism of GA saturated between bolus ethylene glycol doses of 200 and 1000 mg/kg/day. This saturation results in non-linear increases in blood GA concentrations, correlating with the developmental toxicity of EG. Pregnancy had no effect on maternal EG and GA kinetics over a broad dose

  1. Performance of AA5052 alloy anode in alkaline ethylene glycol electrolyte with dicarboxylic acids additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin

    2015-11-01

    Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.

  2. Poly(acrylic acid)-poly(ethylene glycol) nanoparticles designed for ophthalmic drug delivery.

    PubMed

    Vasi, Ana-Maria; Popa, Marcel Ionel; Tanase, Edi Constantin; Butnaru, Maria; Verestiuc, Liliana

    2014-02-01

    Poly(acrylic acid) (PAA) and poly(ethylene glycol) (PEG), four-arm, amine-terminated particles with nanometer size and spherical shape were obtained by the polymers cross-linking, via activation with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride, in a w/o emulsion. The morphology and surface charge of the final particles are strongly dependent on the molar ratio of PAA-PEG and the PAA concentration. The physicochemical characteristics correlated with the drug-loading capacity, in vitro and ex vivo release kinetics of pilocarpine hydrochloride and biocompatibility results indicate that these nanoparticles exhibit the prerequisite behavior for use as carriers of ophthalmic drugs. PMID:24357331

  3. Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation.

    PubMed

    Fan, Min; Liao, Jinfeng; Guo, Gang; Ding, Qiuxia; Yang, Yi; Luo, Feng; Qian, Zhiyong

    2014-04-01

    Soft tissue augmentation using various injectable fillers has gained popularity as more patients seek esthetic improvement through minimally invasive procedures requiring little or no recovery time. The currently available injectable skin fillers can be divided into three categories. With careful assessment, stimulatory fillers are the most ideal fillers. In this study, dexamethasone-loaded poly(D, L-lactic acid) (PLA) microspheres of approximately 90 micro m suspended in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles were prepared as stimulatory filler for skin augmentation. The biodegradable PECE copolymer can form nano-sized micelles in water, which instantly turns into a non-flowing gel at body temperature due to micellar aggregation. The PECE micelles (making up 90% of composite) served as vehicle for subcutaneous injection were metabolized within 44 days. At the same time, the dexamethasone-loaded PLA microspheres (10% of composite) merely served as stimulus for connective tissue formation. Dexamethasone-loaded PLA microspheres/PECE micelles composite presented great hemocompatibility in vitro. It was demonstrated in the in vive study that the composite was biodegradable, biocompatible, nontoxic and nonmigratory. Histopathological studies indicated that the composite could stimulate collagen regeneration. Furthermore, granuloma, the main complication of the stimulatory fillers, did not appear when the composite was injected into the back of SD rats, because of the dexamethasone controlled release from the composite. All results suggested that dexamethasone-loaded PLA microspheres/PECE micelles composite may be an efficient and promising biomaterial for skin augmentation. PMID:24734511

  4. Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation.

    PubMed

    Fan, Min; Liao, Jinfeng; Guo, Gang; Ding, Qiuxia; Yang, Yi; Luo, Feng; Qian, Zhiyong

    2014-04-01

    Soft tissue augmentation using various injectable fillers has gained popularity as more patients seek esthetic improvement through minimally invasive procedures requiring little or no recovery time. The currently available injectable skin fillers can be divided into three categories. With careful assessment, stimulatory fillers are the most ideal fillers. In this study, dexamethasone-loaded poly(D, L-lactic acid) (PLA) microspheres of approximately 90 micro m suspended in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles were prepared as stimulatory filler for skin augmentation. The biodegradable PECE copolymer can form nano-sized micelles in water, which instantly turns into a non-flowing gel at body temperature due to micellar aggregation. The PECE micelles (making up 90% of composite) served as vehicle for subcutaneous injection were metabolized within 44 days. At the same time, the dexamethasone-loaded PLA microspheres (10% of composite) merely served as stimulus for connective tissue formation. Dexamethasone-loaded PLA microspheres/PECE micelles composite presented great hemocompatibility in vitro. It was demonstrated in the in vive study that the composite was biodegradable, biocompatible, nontoxic and nonmigratory. Histopathological studies indicated that the composite could stimulate collagen regeneration. Furthermore, granuloma, the main complication of the stimulatory fillers, did not appear when the composite was injected into the back of SD rats, because of the dexamethasone controlled release from the composite. All results suggested that dexamethasone-loaded PLA microspheres/PECE micelles composite may be an efficient and promising biomaterial for skin augmentation.

  5. [Crystalluria in ethylene glycol intoxication].

    PubMed

    Montagnac, Richard; Thouvenin, Maxime; Luxey, Grégoire; Schendel, Adeline; Parent, Xavier

    2014-11-01

    When seen, some habits of calcium oxalate monohydrate crystals (whewellite) are so typical of ethylene glycol intoxication that they may be helpful for its diagnosis when circumstances are not clearly established.

  6. Novel microbial screen for detection of 1,4-butanediol, ethylene glycol, and adipic acid.

    PubMed

    Stieglitz, B; Weimer, P J

    1985-03-01

    A novel microbial-screening procedure was developed for separate detection of 1,4-butanediol, ethylene glycol, and adipic acid, three commercially important oxychemicals potentially derivable from bacterial omega-oxidation of n-butanol, ethanol, and hexanoic acid, respectively. The screening method involved postproduction addition of one of several specific Pseudomonas strains which produce a soluble fluorescent pigment during growth on the product of interest. A mutation and selection procedure was developed for isolation of specific strains with phenotypes for growth and pigment production on the desired product (e.g., 1,4-butanediol), but not on its bioconversion substrate (e.g., n-butanol), common by-products (e.g., n-butyrate), or product isomers. Pigment production was growth associated and required cultivation of the screening strains under limiting Fe3+ concentrations. The pigments resembled well-characterized, iron-chelating siderophores produced by other fluorescent pseudomonads. The sensitivity of the assay for product accumulation was enhanced by (i) conducting the screening in microtiter dishes to permit examination of individual isolates of putative producers and to control product diffusion, (ii) using a wavelength cutoff filter to reduce background source light, and (iii) using adapted screening strains which grew at lower (0.3 mM) concentrations of test compounds. The potential utility of the method for detecting a variety of oxidative catabolic products is discussed.

  7. Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection.

    PubMed

    Yu, Lin; Xu, Wei; Shen, Wenjia; Cao, Luping; Liu, Yan; Li, Zhaoshen; Ding, Jiandong

    2014-03-01

    Endoscopic submucosal dissection (ESD) is a clinical therapy for early stage neoplastic lesions in the gastrointestinal tract. It is, however, faced with a crucial problem: the high occurrence of perforation. The formation of a submucosal fluid cushion (SFC) via a fluid injection is the best way to avoid perforation, and thus an appropriate biomaterial is vital for this minimally invasive endoscopic technique. In this study, we introduced an injectable thermogel as a novel submucosal injection substance in ESD. The hydrogel synthesized by us was composed of poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymers. The polymer/water system was a low-viscosity fluid at room temperature and thus easily injected, and turned into a non-flowing gel at body temperature after injection. The submucosal injection of the thermogel to create SFCs was performed in both resected porcine stomachs and living minipigs. High mucosal elevation with a clear margin was maintained for a long duration. Accurate en bloc resection was achieved with the assistance of the thermogel. The mean procedure time was strikingly reduced. Meanwhile, no obvious bleeding, perforation and tissue damage were observed. The application of the thermogel not only facilitated the ESD procedure, but also increased the efficacy and safety of ESD. Therefore, the PLGA-PEG-PLGA thermogel provides an excellent submucosal injection system, and has great potential to improve the ESD technique significantly.

  8. Colorometric detection of ethylene glycol vapor

    NASA Technical Reports Server (NTRS)

    Helm, C.; Mosier, B.; Verostko, C. E.

    1970-01-01

    Very low concentrations of ethylene glycol in air or other gases are detected by passing a sample through a glass tube with three partitioned compartments containing reagents which successively convert the ethylene glycol vapor into a colored compound.

  9. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  10. Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture.

    PubMed

    He, Yu-Cai; Liu, Feng; Gong, Lei; Lu, Ting; Ding, Yun; Zhang, Dan-Ping; Qing, Qing; Zhang, Yue

    2015-02-01

    To improve the enzymatic saccharification of lignocellulosic biomass, a mixture of ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) was used for pretreating corn stover in this study. After the optimization in oil-bath system, the optimum pretreatment temperature and time were 130 °C and 30 min, respectively. After the saccharification of 10 g/L pretreated corn stover for 48 h, the saccharification rate was obtained in the yield of 77.4 %. To decrease pretreatment temperature and shorten pretreatment time, ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) media under microwave irradiation was employed to pretreat corn stover effectively at 100 °C and 200 W for 5 min. Finally, the recovered hydrolyzates containing glucose obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. These results would be helpful for developing a cost-effective pretreatment combined with enzymatic saccharification of cellulosic materials for the production of lignocellulosic ethanol.

  11. Health Hazard Evaluation Report HETA 83-166-1594, Witco Chemical Corporation, Perth Amboy, New Jersey. [Ethylene oxide, glycols, and adipic acid

    SciTech Connect

    Cummings, C.E.; Roseman, J.

    1985-05-01

    Area and personel air samples were analyzed for ethylene oxide, glycols, and adipic-acid at the Witco Chemical Corporation, Perth Amboy, New Jersey from November to December, 1983 and May, 1984. The evaluation was requested by the union to investigate possible health effects due to polychlorinated biphenyls (PCBs), glycols, and ethylene oxide. The evaluation was assigned to the New Jersey State Department of Health. The authors conclude that health hazards due to ethylene oxide and airborne fatty acid exposures exist. Recommendations include improving ventilation and work practices and implementing an OSHA approved respirator program.

  12. Extension of a PBPK model for ethylene glycol and glycolic acid to include the competitive formation and clearance of metabolites associated with kidney toxicity in rats and humans

    SciTech Connect

    Corley, R.A.; Saghir, S.A.; Bartels, M.J.; Hansen, S.C.; Creim, J.; McMartin, K.E.; Snellings, W.M.

    2011-02-01

    A previously developed PBPK model for ethylene glycol and glycolic acid was extended to include glyoxylic acid, oxalic acid, and the precipitation of calcium oxalate that is associated with kidney toxicity in rats and humans. The development and evaluation of the PBPK model was based upon previously published pharmacokinetic studies coupled with measured blood and tissue partition coefficients and rates of in vitro metabolism of glyoxylic acid to oxalic acid, glycine and other metabolites using primary hepatocytes isolated from male Wistar rats and humans. Precipitation of oxalic acid with calcium in the kidneys was assumed to occur only at concentrations exceeding the thermodynamic solubility product for calcium oxalate. This solubility product can be affected by local concentrations of calcium and other ions that are expressed in the model using an ion activity product estimated from toxicity studies such that calcium oxalate precipitation would be minimal at dietary exposures below the NOAEL for kidney toxicity in the sensitive male Wistar rat. The resulting integrated PBPK predicts that bolus oral or dietary exposures to ethylene glycol would result in typically 1.4-1.6-fold higher peak oxalate levels and 1.6-2-fold higher AUC's for calcium oxalate in kidneys of humans as compared with comparably exposed male Wistar rats over a dose range of 1-1000 mg/kg. The converse (male Wistar rats predicted to have greater oxalate levels in the kidneys than humans) was found for inhalation exposures although no accumulation of calcium oxalate is predicted to occur until exposures are well in excess of the theoretical saturated vapor concentration of 200 mg/m{sup 3}. While the current model is capable of such cross-species, dose, and route-of-exposure comparisons, it also highlights several areas of potential research that will improve confidence in such predictions, especially at low doses relevant for most human exposures.

  13. Poly(ethylene glycol)-co-methacrylamide-co-acrylic acid based nanogels for delivery of doxorubicin.

    PubMed

    Kumar, Parveen; Behl, Gautam; Sikka, Manisha; Chhikara, Aruna; Chopra, Madhu

    2016-10-01

    Polymeric nanogels have been widely explored for their potential application as delivery carriers for cancer therapeutics. The ability of nanogels to encapsulate therapeutics by simple diffusion mechanism and the ease of their fabrication to impart target specificity in addition to their ability to get internalized into target cells make them good candidates for drug delivery. The present study aims to investigate the applicability of poly(ethylene glycol)-co-methacrylamide-co-acrylic acid (PMA)-based nanogels as a viable option for the delivery of doxorubicin (DOX). The nanogels were synthesized by free radical polymerization in an inverse mini-emulsion and characterized by nuclear magnetic resonance spectroscopy ((1)H NMR), Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction and differential scanning calorimetry. DOX was physically incorporated into the nanogels (PMA-DOX) and the mechanism of its in vitro release was studied. TEM experiment revealed spherical morphology of nanogels and the hydrodynamic diameter of the neat nanogels was in the range of 160 ± 46.95 nm. The size of the nanogels increased from 235.1 ± 28.46 to 403.7 ± 89.89 nm with the increase in drug loading capacity from 4.68 ± 0.03 to 13.71 ± 0.01%. The sustained release of DOX was observed upto 80 h and the release rate decreased with increased loading capacity following anomalous release mechanism as indicated by the value of diffusion exponent (n = 0.64-0.75) obtained from Korsmeyer-Peppas equation. Further, cytotoxicity evaluation of PMA-DOX nanogels on HeLa cells resulted in relatively higher efficacy (IC50~5.88 μg/mL) as compared to free DOX (IC50~7.24 μg/mL) thus demonstrating that the preparation is potentially a promising drug delivery carrier.

  14. Degradation of ethylene glycol using Fenton's reagent and UV.

    PubMed

    McGinnis, B D; Adams, V D; Middlebrooks, E J

    2001-10-01

    Oxidation of ethylene glycol in aqueous solutions was found to occur with the addition of Fenton's reagent with further conversion observed upon UV irradiation. The pH range studied was 2.5-9.0 with initial H2O2 concentrations ranging from 100 to 1000 mg/l. Application of this method to airport storm-water could potentially result in reduction of chemical oxygen demand by conversion of ethylene glycol to oxalic and formic acids. Although the amount of H2O2 added follows the amount of ethylene glycol degraded, smaller H2O2 doses were associated with increases in the ratio of ethylene glycol removed per unit H2O2 added indicating the potential of pulsed doses or constant H2O2 feed systems. Ethylene glycol removal was enhanced by exposure to UV light after treatment with Fenton's reagent, with rates dependent on initial H2O2 concentration. In addition to ethylene glycol, the principle products of this reaction, oxalic and formic acids, have been shown to be mineralized in other HO generating systems presenting the potential for ethylene glycol mineralization in this system with increased HO* production.

  15. Structure and DNA Hybridization Properties of Mixed Nucleic Acid/Maleimide-Ethylene Glycol Monolayers

    SciTech Connect

    Lee,C.; Nguyen, P.; Grainger, D.; Gamble, L.; Castner, D.

    2007-01-01

    The surface structure and DNA hybridization performance of thiolated single-strand DNA (HS-ssDNA) covalently attached to a maleimide-ethylene glycol disulfide (MEG) monolayer on gold have been investigated. Monolayer immobilization chemistry and surface coverage of reactive ssDNA probes were studied by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. Orientation of the ssDNA probes was determined by near-edge X-ray absorption fine structure (NEXAFS). Target DNA hybridization on the DNA-MEG probe surfaces was measured by surface plasmon resonance (SPR) to demonstrate the utility of these probe surfaces for detection of DNA targets from both purified target DNA samples and complex biological mixtures such as blood serum. Data from complementary techniques showed that immobilized ssDNA density is strongly dependent on the spotted bulk DNA concentration and buffer ionic strength. Variation of the immobilized ssDNA density had a profound influence on the DNA probe orientation at the surface and subsequent target hybridization efficiency. With increasing surface probe density, NEXAFS polarization dependence results (followed by monitoring the N 1s {yields} {pi}* transition) indicate that the immobilized ssDNA molecules reorient toward a more upright position on the MEG monolayer. SPR assays of DNA targets from buffer and serum showed that DNA hybridization efficiency increased with decreasing surface probe density. However, target detection in serum was better on the 'high-density' probe surface than on the 'high-efficiency' probe surface. The amounts of target detected for both ssDNA surfaces were several orders of magnitude poorer in serum than in purified DNA samples due to nonspecific serum protein adsorption onto the sensing surface.

  16. Poly(lactic acid) / Poly(ethylene glycol) blends: Mechanical, thermal and morphological properties

    NASA Astrophysics Data System (ADS)

    Bijarimi, M.; Ahmad, S.; Rasid, R.; Khushairi, M. A.; Zakir, M.

    2016-04-01

    The poly(lactic acid) (PLA) was melt blended with linear polyethylene glycol (PEG) in an effort to increase the toughness of PLA. Melt blending was carried out in an internal mixer at 180 °C mixing temperature with 50 rpm for 15 minutes. The blends were characterized in terms of mechanical, thermal and morphological properties. It was found that tensile and flexural strength, stiffness and notched Izod impact strength decreased significantly when the PEG was added to the PLA matrix at 2.5-10% of PEG concentrations. Both glass transition and melting temperatures (Tg and Tm) lowered as the concentration of PEG was increased. Moreover, it was noted that the PLA/PEG blends showed a lower onset and peak degradation temperatures but with lower final degradation temperature as compared to the neat PLA. The morphological analysis revealed that the PEG was dispersed as droplets in the PLA matrix with a clear boundary between PLA matrix and PEG phases.

  17. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment.

    PubMed

    Sundara Rajan, Sujata; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L; Sinko, Patrick J

    2014-11-28

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH7.4) and acetate buffer (AB, pH4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%-14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV.

  18. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.

    PubMed

    Wang, Qichen; Uzunoglu, Emel; Wu, Yong; Libera, Matthew

    2012-05-01

    We explored the use of self-assembled microgels to inhibit the bacterial colonization of synthetic surfaces both by modulating surface cell adhesiveness at length scales comparable to bacterial dimensions (∼1 μm) and by locally storing/releasing an antimicrobial. Poly(ethylene glycol) [PEG] and poly(ethylene glycol)-co-acrylic acid [PEG-AA] microgels were synthesized by suspension photopolymerization. Consistent with macroscopic gels, a pH dependence of both zeta potential and hydrodynamic diameter was observed in AA-containing microgels but not in pure PEG microgels. The microgels were electrostatically deposited onto poly(l-lysine) (PLL) primed silicon to form submonolayer surface coatings. The microgel surface density could be controlled via the deposition time and the microgel concentration in the parent suspension. In addition to their intrinsic antifouling properties, after deposition, the microgels could be loaded with a cationic antimicrobial peptide (L5) because of favorable electrostatic interactions. Loading was significantly higher in PEG-AA microgels than in pure PEG microgels. The modification of PLL-primed Si by unloaded PEG-AA microgels reduced the short-term (6 h) S. epidermidis surface colonization by a factor of 2, and the degree of inhibition increased when the average spacing between microgels was reduced. Postdeposition L5 peptide loading into microgels further reduced bacterial colonization to the extent that, after 10 h of S. epidermidis culture in tryptic soy broth, the colonization of L5-loaded PEG-AA microgel-modified Si was comparable to the very small level of colonization observed on macroscopic PEG gel controls. The fact that these microgels can be deposited by a nonline-of-sight self-assembly process and hinder bacterial colonization opens the possibility of modifying the surfaces of topographically complex biomedical devices and reduces the rate of biomaterial-associated infection.

  19. Poly(acrylic acid)/poly(ethylene glycol) adduct for attaining multifunctional cellulosic fabrics.

    PubMed

    Ibrahim, N A; Amr, A; Eid, B M; Mohamed, Z E; Fahmy, H M

    2012-06-20

    Aqueous polymerization of partially neutralized acrylic acid (AA) along with polyethylene glycol (PEG-600) at AA/PEG-600 mass ratio 3/1 using ammonium persulfate as initiator under proper conditions results in formation of PAA/PEG-600 adduct. The structure of the adduct was confirmed by FT-IR spectra. The potential applications of the prepared adduct in: sizing, durable hand building of cotton cellulose, as well as in functional finishing of cellulose containing fabrics, i.e. cotton, viscose and cotton/polyester, with Ag- or TiO2-nanoparticles were investigated. The modified substrates using the prepared adduct showed a remarkable improvement in their sizing, hand building and/or functional properties, i.e. antibacterial, anti-UV, and self cleaning, in addition to durability to wash. TEM images of the prepared nano-particles, SEM images of the untreated and treated substrates, as well as EDX spectra to analyze the surface elemental compositions were examined. The tentative mechanisms were also suggested. PMID:24750770

  20. Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wohl, Adam Richard

    Fine control of the physical and chemical properties of customized materials is a field that is rapidly advancing. This is especially critical in pursuits to develop and optimize novel nanoparticle drug delivery. Specifically, I aim to apply chemistry concepts to test the hypothesis "Silicate ester prodrugs of paclitaxel, customized to have the proper hydrophobicity and hydrolytic lability, can be formulated with well-defined, biocompatible, amphiphilic block copolymers into nanoparticles that are effective drugs." Chapter 1 briefly describes the context and motivation of the scientific pursuits described in this thesis. In Chapter 2, a family of model silicate esters is synthesized, the hydrolysis rate of each compound is benchmarked, and trends are established based upon the steric bulk and leaving group ability of the silicate substituents. These trends are then applied to the synthesis of labile silicate ester prodrugs in Chapter 3. The bulk of this chapter focuses on the synthesis, hydrolysis, and cytotoxicity of prodrugs based on paclitaxel, a widely used chemotherapeutic agent. In Chapter 4, a new methodology for the synthesis of narrowly dispersed, "random" poly(lactic-co-glycolic acid) polymers by a constant infusion of the glycolide monomer is detailed. Using poly(ethylene glycol) as a macroinitiator, amphiphilic block copolymers were synthesized. Co-formulating a paclitaxel silicate and an amphiphilic block copolymer via flash nanoprecipitation led to highly prodrug-loaded, kinetically trapped nanoparticles. Studies to determine the structure, morphology, behavior, and efficacy of these nanoparticles are described in Chapter 5. Efforts to develop a general strategy for the selective end-functionalization of the polyether block of these amphiphilic block copolymers are discussed in Chapter 6. Examples of this strategy include functionalization of the polyether with an azide or a maleimide. Finally, Chapter 7 provides an outlook for future development of

  1. Block and Random Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendant Groups: Aggregation, Thermosensitivity, and Drug Loading

    PubMed Central

    2015-01-01

    A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy. PMID:24725005

  2. Block and random copolymers bearing cholic acid and oligo(ethylene glycol) pendant groups: aggregation, thermosensitivity, and drug loading.

    PubMed

    Shao, Yu; Jia, Yong-Guang; Shi, Changying; Luo, Juntao; Zhu, X X

    2014-05-12

    A series of block and random copolymers consisting of oligo(ethylene glycol) and cholic acid pendant groups were synthesized via ring-opening metathesis polymerization of their norbornene derivatives. These block and random copolymers were designed to have similar molecular weights and comonomer ratios; both types of copolymers showed thermosensitivity in aqueous solutions with similar cloud points. The copolymers self-assembled into micelles in water as shown by dynamic light scattering and transmission electron microscopy. The hydrodynamic diameter of the micelles formed by the block copolymer is much larger and exhibited a broad and gradual shrinkage from 20 to 54 °C below its cloud point, while the micelles formed by the random copolymers are smaller in size but exhibited some swelling in the same temperature range. Based on in vitro drug release studies, 78% and 24% paclitaxel (PTX) were released in 24 h from micelles self-assembled by the block and random copolymers, respectively. PTX-loaded micelles formed by the block and random copolymers exhibited apparent antitumor efficacy toward the ovarian cancer cells with a particularly low half-maximal inhibitory concentration (IC50) of 27.4 and 40.2 ng/mL, respectively. Cholic acid-based micelles show promise as a versatile and potent platform for cancer chemotherapy. PMID:24725005

  3. Reactive Poly(Amic Acid)/ Poly(Glycidyl Methacrylate-r-Poly(ethylene Glycol) Methyl Ether Methacrylate) Blends as Gas Permeation Membranes

    NASA Astrophysics Data System (ADS)

    Beaulieu, Michael; Watkins, James

    2012-02-01

    Polymers containing polar moieties, such as ether groups show an affinity for acidic gases, such as CO2 due to dipole-quadrapole interactions. Polymer blends in which one of the components is poly(ethylene glycol) (PEG) have been studied extensively in literature as a CO2/light gas permeation membrane, but due to the crystallization and poor mechanical properties have been difficult to incorporate PEG above 60wt%. In this study, a series of random copolymers containing both glycidyl methacrylate and poly(ethylene glycol) methyl ether methacrylate in different ratios are blended with a poly(amic acid) prepolymer made from 4, 4'-oxydianiline and pyromellitic dianhydride to create gas permeation membranes. By using a reactive blend PEG loadings above 70% have been realized with sufficient mechanical properties, and since the side chain on the PEGMA is short these blends do not suffer from crystallization.

  4. Evaluation of Physical and Mechanical Properties of Porous Poly (Ethylene Glycol)-co-(L-Lactic Acid) Hydrogels during Degradation

    PubMed Central

    Chiu, Yu-Chieh; Kocagöz, Sevi; Larson, Jeffery C.; Brey, Eric M.

    2013-01-01

    Porous hydrogels of poly(ethylene glycol) (PEG) have been shown to facilitate vascularized tissue formation. However, PEG hydrogels exhibit limited degradation under physiological conditions which hinders their ultimate applicability for tissue engineering therapies. Introduction of poly(L-lactic acid) (PLLA) chains into the PEG backbone results in copolymers that exhibit degradation via hydrolysis that can be controlled, in part, by the copolymer conditions. In this study, porous, PEG-PLLA hydrogels were generated by solvent casting/particulate leaching and photopolymerization. The influence of polymer conditions on hydrogel architecture, degradation and mechanical properties was investigated. Autofluorescence exhibited by the hydrogels allowed for three-dimensional, non-destructive monitoring of hydrogel structure under fully swelled conditions. The initial pore size depended on particulate size but not polymer concentration, while degradation time was dependent on polymer concentration. Compressive modulus was a function of polymer concentration and decreased as the hydrogels degraded. Interestingly, pore size did not vary during degradation contrary to what has been observed in other polymer systems. These results provide a technique for generating porous, degradable PEG-PLLA hydrogels and insight into how the degradation, structure, and mechanical properties depend on synthesis conditions. PMID:23593296

  5. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  6. Potential of Hydrogels Based on Poly(Ethylene Glycol) and Sebacic Acid as Orthopedic Tissue Engineering Scaffolds

    PubMed Central

    Kim, Jinku; Hefferan, Theresa E.; Yaszemski, Michael J.

    2009-01-01

    In this study, the bioactive effects of poly(ethylene glycol) (PEG) sebacic acid diacrylate (PEGSDA) hydrogels with or without RGD peptide modification on osteogenic differentiation and mineralization of marrow stromal cells (MSCs) were examined. In a separate experiment, the ability of PEGSDA hydrogel to serve as a delivery vehicle for bone morphogenetic protein 2 (BMP-2) was also investigated. As a scaffold, the attachment and proliferation of MSCs on PEGSDA hydrogel scaffolds with and without RGD peptide modification was similar to the control, tissue culture polystyrene. In contrast, cells were barely seen on unmodified PEG diacrylate (PEGDA) hydrogel throughout the culture period for up to 21 days. Osteogenic phenotypic expression such as alkaline phosphatase (ALP) of MSCs as well as mineralized calcium content were significantly higher on PEGSDA-based hydrogels than those on the control or PEGDA hydrogels. Potential use of PEGSDA scaffold as a delivery vehicle of osteogenic molecules such as BMP-2 was also evaluated. Initial burst release of BMP-2 from PEGSDA hydrogel scaffold (14.7%) was significantly reduced compared to PEGDA hydrogel scaffold (84.2%) during the first 3 days of a 21-day release period. ALP activity of an osteoblast was significantly higher in the presence of BMP-2 released from PEGSDA hydrogel scaffolds compared to that in the presence of BMP-2 released from PEGDA scaffolds, especially after 6 days of release. Overall, PEGSDA hydrogel scaffolds without further modification may be useful as orthopedic tissue engineering scaffolds as well as local drug carriers for prolonged sustained release of osteoinductive molecules. PMID:19292677

  7. Complete recovery after massive ethylene glycol ingestion.

    PubMed

    Curtin, L; Kraner, J; Wine, H; Savitt, D; Abuelo, J G

    1992-06-01

    We treated a 64-year-old man who recovered completely from a massive antifreeze ingestion with ethylene glycol levels well above those of previously described survivors. Rapid and aggressive treatment of the patient with recognized methods, including hemodialysis, resulted in the favorable outcome.

  8. Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol)

    Integrated Risk Information System (IRIS)

    Ethylene glycol monobutyl ether ( EGBE ) ( 2 - Butoxyethanol ) ; CASRN 111 - 76 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I (

  9. Accidental and intentional poisonings with ethylene glycol in infancy: diagnostic clues and management.

    PubMed

    Saladino, R; Shannon, M

    1991-04-01

    Ethylene glycol has long been recognized as a potentially lethal poison and remains available today as automotive antifreeze and windshield deicer fluids. Ethylene glycol is rapidly absorbed from the gastrointestinal tract, with peak levels measured one to four hours after ingestion. Metabolism of the parent compound and the production of several organic acids are responsible for the metabolic acidosis observed in ethylene glycol poisoning. Target organ cellular damage is seen in the kidney, brain, myocardium, pancreas, and blood vessel walls. Renal tubular deposition of calcium oxalate crystals is felt to be responsible for the development of the severe renal injury which may accompany ethylene glycol ingestion. The clinical course is quite varied and includes inebriation, hematuria, cardiorespiratory compromise, and neurologic effects. Prompt diagnosis and initiation of treatment, including ethanol therapy and hemodialysis, is necessary to ameliorate the effects of ethylene glycol ingestion. Two cases of ethylene glycol poisoning, one accidental and one intentional, are reviewed.

  10. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA.

    PubMed

    Perez, C; Sanchez, A; Putnam, D; Ting, D; Langer, R; Alonso, M J

    2001-07-10

    The purpose of the present work was to produce and characterize poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles (size lower than 300 nm) containing a high loading of plasmid DNA in a free form or co-encapsulated with either poly(vinyl alcohol) (PVA) or poly(vinylpyrrolidone) (PVP). The plasmid alone or with PVA or PVP was encapsulated by two different techniques: an optimized w/o/w emulsion-solvent evaporation technique as well as by a new w/o emulsion-solvent diffusion technique. Particle size, zeta potential, plasmid DNA loading and in vitro release were determined for the three plasmid-loaded formulations. The influence of the initial plasmid loadings (5, 10, 20 microg plasmid DNA/mg PLA-PEG) on those parameters was also investigated. The plasmid loaded into the nanoparticles and released in vitro was quantified by fluorimetry and the different molecular forms were identified by gel electrophoresis. PLA-PEG nanoparticles containing plasmid DNA in a free form or co-encapsulated with PVA or PVP were obtained in the range size of 150-300 nm and with a negative zeta potential, both parameters being affected by the preparation technique. Encapsulation efficiencies were high irrespective of the presence of PVA or PVP (60-90%) and were slightly affected by the preparation technique and by the initial loading. The final plasmid DNA loading in the nanoparticles was up to 10-12 microg plasmid DNA/mg polymer. Plasmid DNA release kinetics varied depending on the plasmid incorporation technique: nanoparticles prepared by the w/o diffusion technique released their content rapidly whereas those obtained by the w/o/w showed an initial burst followed by a slow release for at least 28 days. No significant influence of the plasmid DNA loading and of the co-encapsulation of PVP or PVA on the in vitro release rate was observed. In all cases the conversion of the supercoiled form to the open circular and linear forms was detected. In conclusion, plasmid DNA can be

  11. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary

  12. Glycyrrhetinic acid-poly(ethylene glycol)-glycyrrhetinic acid tri-block conjugates based self-assembled micelles for hepatic targeted delivery of poorly water soluble drug.

    PubMed

    Wu, Fengbo; Xu, Ting; Liu, Chi; Chen, Can; Song, Xiangrong; Zheng, Yu; He, Gu

    2013-01-01

    The triblock 18β-glycyrrhetinic acid-poly(ethylene glycol)18β-glycyrrhetinic acid conjugates (GA-PEG-GA) based self-assembled micelles were synthesized and characterized by FTIR, NMR, transmission electron microscopy, and particle size analysis. The GA-PEG-GA conjugates having the critical micelle concentration of 6 × 10(-5) M were used to form nanosized micelles, with mean diameters of 159.21 ± 2.2 nm, and then paclitaxel (PTX) was incorporated into GA-PEG-GA micelles by self-assembly method. The physicochemical properties of the PTX loaded GA-PEG-GA micelles were evaluated including in vitro cellular uptake, cytotoxicity, drug release profile, and in vivo tissue distribution. The results demonstrate that the GA-PEG-GA micelles had low cytotoxicity and good ability of selectively delivering drug to hepatic cells in vitro and in vivo by the targeting moiety glycyrrhetinic acid. In conclusion, the GA-PEG-GA conjugates have potential medical applications for targeted delivery of poor soluble drug delivery.

  13. Shape Memory Performance of Thermoplastic Amphiphilic Triblock Copolymer poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA)/Hydroxyapatite Composites

    PubMed Central

    Kutikov, Artem B.; Reyer, Kevin A.

    2015-01-01

    Biodegradable polymer/hydroxyapatite (HA) composites are desired for skeletal tissue engineering. When engineered with thermal-responsive shape memory properties, they may be delivered in a minimally invasive temporary shape and subsequently triggered to conform to a tissue defect. Here we report the shape memory properties of thermoplastic amphiphilic poly(D,L-lactic acid-co-ethylene glycol-co-D,L-lactic acid) (PELA, 120 kDa) and HA-PELA composites. These materials can be cold-deformed and stably fixed into temporary shapes at room temperature and undergo rapid shape recovery (< 3 s) at 50 °C. Stable fixation (>99% fixing ratio) of large deformations is achieved at −20 °C. While the shape recovery from tensile deformations slows with higher HA contents, all composites (up to 20 wt% HA) achieve high shape recovery (>90%) upon 10-min equilibration at 50 °C. The permanent shapes of HA-PELA can be reprogramed at 50 °C, and macroporous shape memory scaffolds can be fabricated by rapid prototyping. PMID:26457046

  14. Acute oxalate nephropathy caused by ethylene glycol poisoning

    PubMed Central

    Seo, Jung Woong; Lee, Jong-Ho; Son, In Sung; Kim, Yong Jin; Kim, Do Young; Hwang, Yong; Chung, Hyun Ah; Choi, Hong Seok; Lim, So Dug

    2012-01-01

    Ethylene glycol (EG) is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions. PMID:26889430

  15. Electrospraying and Electrospinning of Polymers for Biomedical Applications. Poly(Lactic-Co-Glycolic Acid) and Poly(Ethylene-Co-Vinylacetate). Appendix 2

    NASA Technical Reports Server (NTRS)

    Stitzel, Joel D.; Bowlin, Gary L.; Mansfield, Kevin; Wnek, Gary E.; Simpson, David G.

    2000-01-01

    Significant opportunities exist for the processing of polymers (homopolymers and blends) using electric fields. Specific attention is given here to electrospinning, but we note that electroaerosol formation and field-modulated film casting represent additional processing options. Of particular interest is the ability to generate polymer fibers of sub-micron dimensions using electrospinning, down to about 0.05 microns (50 nm), a size range that has been traditionally difficult to access. In our work, poly(lactic-co-glycolic acid), PLA/PGA, poly(lactic acid) PLA, and poly(ethylene-co-vinylacetate) (PEVA) have been deposited from solutions in methylene chloride or chloroform by electrospraying or electrospinning to afford morphologically tailored materials for tissue engineering and related applications. Low solution concentrations tend to favor electrostatic spraying ('electro-aerosolization') while higher concentrations lead to spinning on fibrous mats. Preliminary observations of muscle cell growth on PLA electrospun mats are reported.

  16. Structural and cyclic volta metric investigations on BIPBVOX solid electrolyte synthesized by ethylene glycol-citric acid sol-gel route

    NASA Astrophysics Data System (ADS)

    Naqvi, Faria K.; Beg, Saba; Al-Areqi, Niyazi A. S.

    2016-05-01

    Samples of BIPBVOX.x (Bi2V1-xPbxO5.5-x/2) in the composition range 0.05 ≤ x ≤ 0.20 were prepared by ethylene glycol- citric acid sol-gel synthesis route. Structural investigations were carried out by X-ray diffraction, DTA. The highly conducting γ'- phase was effectively stabilized at room temperature for compositions with x ≥ 0.17. Cyclic voltammetric measurements showed reversible redox reactions of vanadium and irreversible redox reaction of Bi3+ in the BIPBVOX system during the first cathodic and anodic sweep. However, a higher stability against the reduction of Bi3+ to metallic bismuth was seen for x=0.20.

  17. Ethylene glycol: properties, synthesis, and applications.

    PubMed

    Yue, Hairong; Zhao, Yujun; Ma, Xinbin; Gong, Jinlong

    2012-06-01

    Ethylene glycol (EG) is an important organic compound and chemical intermediate used in a large number of industrial processes (e.g. energy, plastics, automobiles, and chemicals). Indeed, owing to its unique properties and versatile commercial applications, a variety of chemical systems (e.g., catalytic and non-catalytic) have been explored for the synthesis of EG, particularly via reaction processes derived from fossil fuels (e.g., petroleum, natural gas, and coal) and biomass-based resources. This critical review describes a broad spectrum of properties of EG and significant advances in the prevalent synthesis and applications of EG, with emphases on the catalytic reactivity and reaction mechanisms of the main synthetic methodologies and applied strategies. We also provide an overview regarding the challenges and opportunities for future research associated with EG. PMID:22488259

  18. Complexes of Imidazole with Poly(ethylene glycol) as a Corrosion Inhibitor for Carbon Steel in Sulphuric Acid

    NASA Astrophysics Data System (ADS)

    Salimi, Saeed; Nasr-Esfahani, Mojtaba; Umoren, Saviour A.; Saebnoori, Ehsan

    2015-12-01

    The inhibiting action of polyethylene glycol and imidazole (PEG/IMZ)) complexes prepared by a simple deprotonation procedure on carbon steel corrosion in 0.5 mol/L sulphuric acid was evaluated using the weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy techniques complemented by surface analysis using scanning electron microscopy. The inhibiting effect of the PEG/IMZ complexes on carbon steel corrosion was compared with the non-complex forms. Results obtained show that PEG/IMZ complex is a very effective corrosion inhibitor of carbon steel in the acid environment. The inhibition efficiency increased with the increase in the temperature and also with increasing percentage of imidazole in the complex. Corrosion inhibition occurs by virtue of adsorption of PEG/IMZ complexes on the steel surface which was found to follow the Temkin adsorption isotherm model. The PEG/IMZ complexes function as a mixed-type inhibitor. Results from all the methods employed are in a reasonably good agreement.

  19. Tacticity-induced changes in the micellization and degradation properties of poly(lactic acid)-block-poly(ethylene glycol) copolymers.

    PubMed

    Agatemor, Christian; Shaver, Michael P

    2013-03-11

    Poly(lactic acid)-block-poly(ethylene glycol) copolymers (PLA-b-PEG) featuring varying tacticities (atactic, heterotactic, isotactic) in the PLA block were synthesized and investigated for their micellar stability, degradation, and thermal properties. Utilizing tin(II) bis(2-ethylhexanoate), aluminum salan, and aluminum salen catalysts, the copolymers were synthesized through the ring-opening polymerization of d-, l-, rac-, or a blend of l- and rac-lactide using monomethoxy-poly(ethylene glycol) as a macroinitiator. The critical micelle concentration, which reflects the micellar stability, was probed using a fluorescence spectroscopic method with pyrene as the probe. The copolymers were degraded in a methanolic solution of 1,5,7-triaza-bicyclo[4.4.0]dec-5-ene and the degradation was measured by (1)H NMR spectroscopic and gel permeation chromatographic analyses. Differential scanning calorimetry and thermogravimetric analysis provided information on the thermal properties of the copolymers. Atactic and heterotactic microstructures in the PLA block resulted in lower micellar stability, as well as faster degradation and shorter erosion time compared to polymers with high isotactic enchainment (Pm). By modification of the Pm, micellar stability, degradation, and erosion rates of the copolymers can be tuned to specific biomedical applications. Interestingly, while tin(II) bis(2-ethylhexanoate) and aluminum salan-catalyzed PLA-b-PEG copolymers exhibited similar micellization behavior, the aluminum salen-catalyzed PLA-b-PEG exhibited unique behavior at high micelle concentration in the presence of the pyrene probe. This unique behavior can be attributed to the disintegration of the micelles through the interactions of long isotactic stereoblock segments. PMID:23402292

  20. Surface characterization of poly(L-lactic acid)-methoxy poly(ethylene glycol) diblock copolymers by static and dynamic contact angle measurements, FTIR, and ATR-FTIR.

    PubMed

    Mert, O; Doganci, E; Erbil, H Y; Demir, A S

    2008-02-01

    The surface composition and surface free energy properties of two types of amphiphilic and semicrystalline diblock copolymers consisting of poly(L-lactic acid) coupled to (methoxy poly(ethylene glycol) (PLLA-MePEG) having differing block lengths of PEG were investigated by using static and dynamic contact angle measurements, transmission Fourier infrared spectroscopy (FTIR), and attenuated total reflection spectroscopy (ATR-FTIR) and compared with results obtained from PLLA and MePEG homopolymers. The contact angle results were evaluated by using the van Oss-Good method (acid-base method), and it was determined that the Lewis base surface tension coefficient (gamma-) of the copolymers increased with an increase of the PEG molar content at the copolymer surface. This result is in good agreement with the transmission FTIR and ATR-FTIR results but not proportional to them, indicating that the surfaces of the copolymers are highly mobile and that the molecular rearrangement takes place upon contact with a polar liquid drop. The dynamic contact angle measurements showed that the strong acid-base interaction between the oxygen atoms in the copolymer backbone of the relatively more hydrophilic PEG segments with the Lewis acidic groups of the polar and hydrogen-bonding water molecules enabled the surface molecules to restructure (conformational change) at the contact area, so that the PEG segments moved upward, whereas the apolar methyl pendant groups of PLLA segments buried downward.

  1. Thermophysical properties of ethylene glycol mixture based CNT nanofluids

    NASA Astrophysics Data System (ADS)

    Camarano, D. M.; Mansur, F. A.; Araújo, T. L. C. F.; Salles, G. C.; Santos, A. P.

    2016-07-01

    Nanofluids are produced by dispersing nanometer-scale solid particles into base liquids such as water, ethylene glycol, etc. The thermal quadrupole method is utilized to determine the thermophysical properties of materials. By this technique, the thermal diffusivity and conductivity of different nanofluids containing the surfactants humic acid, sodium salt of humic acid and sodium carboxymethyl cellulose and multi-wall carbon nanotubes were evaluated at room temperature and at 75 oC. Values of thermal diffusivity varying in the range from 9.60x10-8 m2s-1 to 1.46x10-7 m2s-1 and thermal conductivity from 0.26 Wm-1K-1 to 41 Wm-1K-1 were obtained. As main conclusions, it was noted that nanofluids exhibit superior heat transfer characteristics than the conventional heat transfer fluid and the thermal conductivity is enhanced by 50% for the nanofluid containing 0.0275 mg/mL of sodium salt of humic acid + ethylene glycol, at the temperature of 25 oC.

  2. Redox-labelled poly(ethylene glycol) used as a diffusion probe in poly(ethylene glycol) melts

    SciTech Connect

    Haas, O.; Velasquez, C.; Porat, Z.

    1995-12-01

    Ferrocene labelled monomethyl poly(ethylene glycol) MPEG with molecular weights of 1900 and 750 was prepared and used as an electrochemical diffusion probe in poly(ethylene glycol) melts. Cyclic voltammetry and chronoamperometry were used in connection with microdisk electrodes to measure the diffusion coefficient of redox tagged molecules using melted poly(ethylene glycol) as a solvent. The molecular weight of the solvent polymer was 750, 2000 and 20000. Results from the temperature dependency of the diffusion process and of the viscosity and conductivity of the polymer electrolyte are presented and discussed.

  3. In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain

    SciTech Connect

    Liu Qingfeng; Shao Xiayan; Chen Jie; Shen Yehong; Feng Chengcheng; Gao Xiaoling; Zhao Yue; Li Jingwei; Zhang Qizhi Jiang, Xinguo

    2011-02-15

    Biodegradable polymer-based nanoparticles have been widely studied to deliver therapeutic agents to the brain after intranasal administration. However, knowledge as to the side effects of nanoparticle delivery system to the brain is limited. The aim of this study was to investigate the in vivo toxicity and immunogenicity of wheat germ agglutinin (WGA) conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles (WGA-NP) after intranasal instillation. Sprague-Dawley rats were intranasally given WGA-NP for 7 continuous days. Amino acid neurotransmitters, lactate dehydrogenase (LDH) activity, reduced glutathione (GSH), acetylcholine, acetylcholinesterase activity, tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-8 (IL-8) in rat olfactory bulb (OB) and brain were measured to estimate the in vivo toxicity of WGA-NP. Balb/C mice were intranasally immunized by WGA-NP and then WGA-specific antibodies in serum and nasal wash were detected by indirect ELISA. WGA-NP showed slight toxicity to brain tissue, as evidenced by increased glutamate level in rat brain and enhanced LDH activity in rat OB. No significant changes in acetylcholine level, acetylcholinesterase activity, GSH level, TNF-{alpha} level and IL-8 level were observed in rat OB and brain for the WGA-NP group. WGA-specific antibodies in mice serum and nasal wash were not increased after two intranasal immunizations of WGA-NP. These results demonstrate that WGA-NP is a safe carrier system for intranasal delivery of therapeutic agents to the brain.

  4. Resveratrol-Loaded Nanoparticles Based on Poly(epsilon-caprolactone) and Poly(d,l-lactic-co-glycolic acid)–Poly(ethylene glycol) Blend for Prostate Cancer Treatment

    PubMed Central

    Sanna, Vanna; Siddiqui, Imtiaz Ahmad; Sechi, Mario; Mukhtar, Hasan

    2014-01-01

    Nanoencapsulation of antiproliferative and chemopreventive phytoalexin trans-resveratrol (RSV) is likely to provide protection against degradation, enhancement of bioavailability, improvement in intracellular penetration and control delivery. In this study, polymeric nanoparticles (NPs) encapsulating RSV (nano-RSV) as novel prototypes for prostate cancer (PCa) treatment were designed, characterized and evaluated using human PCa cells. Nanosystems, composed of a biocompatible blend of poly(epsilon-caprolactone) (PCL) and poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol) conjugate (PLGA-PEG-COOH), were prepared by a nanoprecipitation method, and characterized in terms of morphology, particle size and zeta potential, encapsulation efficiency, thermal analyses, and in vitro release studies. Cellular uptake of NPs was then evaluated in PCa cell lines DU-145, PC-3, and LNCaP using confocal fluorescence microscopy, and antiproliferative efficacy was assessed using MTT assay. With encapsulation efficiencies ranging from 74% to 98%, RSV was successfully loaded in PCL:PLGA-PEG-COOH NPs, which showed an average diameter of 150 nm. NPs were able to control the RSV release at pH 6.5 and 7.4, mimicking the acidic tumoral microenvironment and physiological conditions, respectively, with only 55% of RSV released within 7 h. In gastrointestinal simulated fluids, NPs released about 55% of RSV in the first 2 h in acidic medium, and their total RSV content within the subsequent 5 h at pH 7.4. Confocal fluorescence microscopy observations revealed that NPs were efficiently taken up by PCa cell lines. Furthermore, nano-RSV significantly improved the cytotoxicity compared to that of free RSV toward all three cell lines, at all tested concentrations (from 10 µM to 40 µM), proving a consistent sensitivity toward both the androgen-independent DU-145 and hormone-sensitive LNCaP cells. Our findings support the potential use of developed nanoprototypes for the controlled delivery of

  5. VITRIFICATION OF THAI NATIVE CATTLE OOCYTES: EFFECTS OF ETHYLENE GLYCOL CONCENTRATIONS AND EXPOSURE TIME, LINOLEIC ACID ALBUMIN AND CHOLESTEROL-LOADED METHYL-B-CYCLODEXTRIN.

    PubMed

    Chasombat, Jakkhaphan; Vongpralub, Thevin; Sirisathien, Saksiri; Phasuk, Yupin; Sonseeda, Pronjit

    2015-01-01

    The present study aimed to improve the oocyte vitrification procedure for preservation of Thai native cattle genetic resources. In Experiment I, oocytes were exposed to various doses (2%, 4% and 6%) of ethylene glycol (EG) in vitrification solution I (VS-I) for different equilibration times (10 or 20 min) before being exposed to VS-II and then subjected to vitrification. Experiment II was divided into two parts: (a) oocytes were matured in medium supplemented with linoleic acid albumin (LAA) (1% or 2%) and then vitrified; (b) matured oocytes were preincubated with cholesterol-loaded methyl-β-cyclodextrin (CLC) (1% or 2%) and then vitrified. Equilibration of oocytes by exposure to 6% EG in VS-I for 10 min (Experiment I), and in vitro maturation of immature oocytes in medium supplementation with 2% LAA (Experiment II) were the most effective methods; vitrified/thawed oocytes showed higher rates of survival and subsequent embryonic development compared with the other experimental groups. PMID:26510334

  6. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    NASA Astrophysics Data System (ADS)

    Islas, Luisa; Ruiz, Juan-Carlos; Muñoz-Muñoz, Franklin; Isoshima, Takashi; Burillo, Guillermina

    2016-10-01

    Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from 60Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C1s and O1s content at the catheter's surface, revealed that the catheter's surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC's Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  7. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    NASA Astrophysics Data System (ADS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-03-01

    A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  8. CO2-free power generation on an iron group nanoalloy catalyst via selective oxidation of ethylene glycol to oxalic acid in alkaline media.

    PubMed

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-08

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  9. Hindered Diffusion of Oligosaccharides in High Strength Poly(ethylene glycol)/Poly(acrylic acid) Interpenetrating Network Hydrogels: Hydrodynamic Versus Obstruction Models

    PubMed Central

    Waters, Dale J.; Frank, Curtis W.

    2010-01-01

    Diffusion coefficients of small oligosaccharides within high strength poly(ethylene glycol)/poly(acrylic acid) interpenetrating network (PEG/PAA IPN) hydrogels were measured by diffusion through hydrogel slabs. The ability of hindered diffusion models previously presented in the literature to fit the experimental data is examined. A model based solely on effects due to hydrodynamics is compared to a model based solely on solute obstruction. To examine the effect of polymer volume fraction on the observed diffusion coefficients, the equilibrium volume fraction of polymer in PEG/PAA IPNs was systematically varied by changing the initial PEG polymer concentration in hydrogel precursor solutions from 20 to 50 wt./wt.%. To examine the effect of solute radius on the observed diffusion coefficients, solute radii were varied from 3.3 to 5.1 Å by measuring diffusion coefficients of glucose, a monosaccharide; maltose, a disaccharide; and maltotriose, a trisaccharide. Both the hydrodynamic and obstruction models rely on scaling relationships to predict diffusion coefficients. The proper scaling relationship for each of the hindered diffusion models is evaluated based on fits to experimental data. The scaling relationship employed is found to have a greater significance for the hydrodynamic model than the obstruction model. Regardless of the scaling relationship employed, the obstruction model provides a better fit to our experimental data than the hydrodynamic model. PMID:20514136

  10. Cooperation of Amphiphilicity and Crystallization for Regulating the Self-Assembly of Poly(ethylene glycol)-block-poly(lactic acid) Copolymers.

    PubMed

    Wang, Zhen; Cao, Yuanyuan; Song, Jiaqi; Xie, Zhigang; Wang, Yapei

    2016-09-20

    Tuning the amphiphilicity of block copolymers has been extensively exploited to manipulate the morphological transition of aggregates. The introduction of crystallizable moieties into the amphiphilic copolymers also offers increasing possibilities for regulating self-assembled structures. In this work, we demonstrate a detailed investigation of the self-assembly behavior of amphiphilic poly(ethylene glycol)-block-poly(l-lactic acid) (PEG-b-PLLA) diblock copolymers with the assistance of a common solvent in aqueous solution. With a given length of the PEG block, the molecular weight of the PLA block has great effect on the morphologies of self-assembled nanoaggregates as a result of varying molecular amphiphilicity and polymer crystallization. Common solvents including N,N-dimethylformamide, dioxane, and tetrahydrofuran involved in the early stage of self-assembly led to the change in chain configuration, which further influences the self-assembly of block copolymers. This study expanded the scope of PLA-based copolymers and proposed a possible mechanism of the sphere-to-lozenge and platelet-to-cylinder morphological transitions. PMID:27496056

  11. Facile and controllable preparation of mesoporous TiO2 using poly(ethylene glycol) as structure-directing agent and peroxotitanic acid as precursor

    NASA Astrophysics Data System (ADS)

    Nguyen, Dongthanh; Wang, Wei; Long, Haibo; Ru, Hongqiang

    2016-09-01

    This work demonstrated that mesoporous TiO2 (meso-TiO2) with controllable mesoporous and crystalline structures can be facilely prepared by using poly (ethylene glycol) (PEG) as structure-directing (SD) agent and peroxotitanic acid (PTA) as precursor. Meso-TiO2 with high specific surface area (157 m2•g-1), pore volume (0.45 cm3•g-1) and large mesopore size of 13.9 nm can be obtained after calcination at 450°C. Such meso-TiO2 also shows relatively high thermal stability. BET surface area still reaches 114 m2•g-1 after calcination at 550°C. In the synthesis and calcination process, PEG that plays multiple and important roles in delivering thermally stable and tunable mesoporous and crystalline structures shows to be a suitable low-cost SD agent for the controllable preparation of nanocrystalline meso-TiO2. The photocatalytic activity tests show that both high surface area and bi-crystallinity of obtained meso-TiO2 are important in enhancing the performance in photo-decomposing Rhodamine B in water.

  12. Magnetic nanocarriers of doxorubicin coated with poly(ethylene glycol) and folic acid: relation between coating structure, surface properties, colloidal stability, and cancer cell targeting.

    PubMed

    Kaaki, Karine; Hervé-Aubert, Katel; Chiper, Manuela; Shkilnyy, Andriy; Soucé, Martin; Benoit, Roland; Paillard, Archibald; Dubois, Pierre; Saboungi, Marie-Louise; Chourpa, Igor

    2012-01-17

    We report the efficient one-step synthesis and detailed physicochemical evaluation of novel biocompatible nanosystems useful for cancer therapeutics and diagnostics (theranostics). These systems are the superparamagnetic iron oxide nanoparticles (SPIONs) carrying the anticancer drug doxorubicin and coated with the covalently bonded biocompatible polymer poly(ethylene glycol) (PEG), native and modified with the biological cancer targeting ligand folic acid (PEG-FA). These multifunctional nanoparticles (SPION-DOX-PEG-FA) are designed to rationally combine multilevel mechanisms of cancer cell targeting (magnetic and biological), bimodal cancer cell imaging (by means of MRI and fluorescence), and bimodal cancer treatment (by targeted drug delivery and by hyperthermia effect). Nevertheless, for these concepts to work together, the choice of ingredients and particle structure are critically important. Therefore, in the present work, a detailed physicochemical characterization of the organic coating of the hybrid nanoparticles is performed by several surface-specific instrumental methods, including surface-enhanced Raman scattering (SERS) spectroscopy, X-ray photoelectron spectrometry (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). We demonstrate that the anticancer drug doxorubicin is attached to the iron oxide surface and buried under the polymer layers, while folic acid is located on the extreme surface of the organic coating. Interestingly, the moderate presence of folic acid on the particle surface does not increase the particle surface potential, while it is sufficient to increase the particle uptake by MCF-7 cancer cells. All of these original results contribute to the better understanding of the structure-activity relationship for hybrid biocompatible nanosystems and are encouraging for the applications in cancer theranostics.

  13. High strength of physical hydrogels based on poly(acrylic acid)-g-poly(ethylene glycol) methyl ether: role of chain architecture on hydrogel properties.

    PubMed

    Yang, Jun; Gong, Cheng; Shi, Fu-Kuan; Xie, Xu-Ming

    2012-10-01

    This investigation was to study the connections between polymer branch architecture of physical hydrogels and their properties. The bottle-brush-like polymer chains of poly(acrylic acid)-g-poly(ethylene glycol) methyl ether (PAA-g-mPEG) with PAA as backbones and mPEG as branch architecture were synthesized and in situ grafted from silica nanoparticles (SNs) to construct hydrogels cross-linked networks in aqueous solutions. The structural variables to be discussed included molecular weight and molar ratio of branch chains, and new aspects of the formation mechanism of physical hydrogels with branch structure in the absence of organic cross-links were present. The results indicated that the differences of polymer chain architecture could be distinguished via their different interactions that are present by gelation process and mature gel properties, such as gel strength and swelling ratio. The gelation occurred at the critical polymer concentration and molecular weight, respectively, and the inorganic/organic (SNs/PAA-g-mPEG) nanoparticles began to entangle and construct the cross-linking networks afterward. The gel-to-sol transition temperature (T(g-s)) and radii of SNs that were encapsulated by polymer chains as a function of time for chains' disentanglement were monitored according to the observation of the dissolution process, and the molecular weight between two consecutive entanglements (M(e)) was calculated thereafter. This study showed that the introduction of branch chain onto the linear backbone significantly promoted the chain interactions and increased entanglement density, which contributed to the hydrogels' network integrity and rigidity, thus illustrating greater elongation at break and tensile strength than the hydrogels formulated with linear polymer chains.

  14. Polyacrylic acid attenuates ethylene glycol induced hyperoxaluric damage and prevents crystal aggregation in vitro and in vivo.

    PubMed

    Sridharan, Badrinathan; Ganesh, Rajesh Nachiappa; Viswanathan, Pragasam

    2016-05-25

    The study explores calcium oxalate crystal inhibiting characteristic of polyacrylic acid (pAA), an anionic polymer in in vitro and in vivo. Animals were divided into 5 groups where group 1 served as control, group 2 were made hyperoxaluric by supplementing with Ethylene glycol (EG) 0.75% (v/v) for 30 days. Group 3, 4 & 5 were also given with EG and treated simultaneously with 2.5, 5 & 10 mg of pAA/kg of body weight, respectively. Urine, serum and tissue analyses along with histological studies were performed at the end of the 30 days study. In vitro crystallization was significantly inhibited by pAA and further it was supported by particle size analyses, XRD and FT-IR studies. Toxicological analyses showed that pAA was safe to use in animals at concentrations below 100 mg/kg BW. In vivo anti-urolithic study showed significant improvement in urinary lithogenic factors (calcium, oxalate, phosphate, citrate & magnesium) and renal function parameters (creatinine, urea and protein). Tissue analyses on anti-oxidant enzyme activity and lipid peroxides showed maintenance of tissue antioxidant status in the pAA supplemented rats and histological studies demonstrated the nephroprotection offered by pAA and were concurrent to the biochemical analyses. Supplementation of pAA not only reduces the crystal aggregation but also regulates the expression and localization of crystal inhibiting proteins and gene expression of inflammatory cytokines in experimental animals. In summary, pAA is a potent anti-urolithic agent in rats and we can propose that 10 mg/kg body weight is the effective dosage of pAA and this concentration can be used for further studies.

  15. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.

    PubMed

    Zhang, Chunmei; Wang, Liwei; Zhai, Tianliang; Wang, Xinchao; Dan, Yi; Turng, Lih-Sheng

    2016-01-01

    Graphene oxide (GO) was incorporated into poly(lactic acid) (PLA) as a reinforcing nanofiller to produce composite nanofibrous scaffolds using the electrospinning technique. To improve the dispersion of GO in PLA and the interfacial adhesion between the filler and matrix, GO was surface-grafted with poly(ethylene glycol) (PEG). Morphological, thermal, mechanical, and wettability properties, as well as preliminary cytocompatibility with Swiss mouse NIH 3T3 cells of PLA, PLA/GO, and PLA/GO-g-PEG electrospun nanofibers, were characterized. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers decreased with filler content. Both GO and GO-g-PEG improved the thermal stability of PLA, but GO-g-PEG was more effective. The water contact angle test of the nanofiber mats showed that the addition of GO in PLA did not change the surface wettability of the materials, but PLA/GO-g-PEG samples exhibited improved wettability with lower water contact angles. The tensile strength of the composite nanofiber mats was improved with the addition of GO, and it was further enhanced when GO was surface grafted with PEG. This suggested that improved interfacial adhesion between GO and PLA was achieved by grafting PEG onto the GO. The cell viability and proliferation results showed that the cytocompatibility of PLA was not compromised with the addition of GO and GO-g-PEG. With enhanced mechanical properties as well as good wettability and cytocompatibility, PLA/GO-g-PEG composite nanofibers have the potential to be used as scaffolds in tissue engineering. PMID:26409231

  16. Cisplatin Loaded Poly(L-glutamic acid)-g-Methoxy Poly(ethylene glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, In Vitro and In Vivo Evaluation.

    PubMed

    Yu, Haiyang; Tang, Zhaohui; Li, Mingqiang; Song, Wantong; Zhang, Dawei; Zhang, Ying; Yang, Yan; Sun, Hai; Deng, Mingxiao; Chen, Xuesi

    2016-01-01

    A series of novel polypeptide-based graft copolymer poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol) (PLG-g-mPEG) was synthesized through a Steglich esterification reaction of PLG with mPEG. The structure of the copolymers was confirmed by nuclear magnetic resonance spectra (NMR) and gel permeation chromatography (GPC). MTT assay demonstrated that the PLG-g-mPEGs had good cell compatibility. The unreacted carboxyl groups of the PLG-g-mPEGs were used to complex cisplatin to form polymer-metal complex nanoparticles (CDDP/PLG-g-mPEG) for cancer therapy. The average hydrodynamic radius of the CDDP/PLG-g-mPEG nanoparticles was inr the range of 14-25 nm, which was beneficial for solid tumor targeting delivery. A sustained release without initial burst was achieved for the CDDP/PLG-g-mPEG nanoparticles, indicating that the CDDP-loaded nanoparticles had great potential to suppress the drug release in blood circulation before the nanoparticles had arrived at targeting tumors. The CDDP/PLG-g-mPEG nanoparticles showed a much longer blood retention profile as compared with the free CDDP. This indicated that the CDDP-loaded nanoparticles had much more opportunity to accumulate in tumor tissue by exerting the EPR effect. In vitro tests demonstrated that the CDDP/PLG-g-mPEG nanoparticles could inhibit the proliferation of HeLa, MCF-7 and A549 cancer cells. At equal dose (4 mg kg(-1)), the CDDP/PLG-g-mPEG nanoparticles showed comparable in vivo antitumor efficacy and significantly lower systemic toxicity as compared with free cis-Diaminedichloroplatinum (cisplatin, CDDP) in MCF-7 tumor bearing mice. These suggested that the CDDP/PLG-g-mPEG nanoparticle drug delivery system had a great potential to be used for cancer therapy.

  17. Cisplatin Loaded Poly(L-glutamic acid)-g-Methoxy Poly(ethylene glycol) Complex Nanoparticles for Potential Cancer Therapy: Preparation, In Vitro and In Vivo Evaluation.

    PubMed

    Yu, Haiyang; Tang, Zhaohui; Li, Mingqiang; Song, Wantong; Zhang, Dawei; Zhang, Ying; Yang, Yan; Sun, Hai; Deng, Mingxiao; Chen, Xuesi

    2016-01-01

    A series of novel polypeptide-based graft copolymer poly(L-glutamic acid)-graft-methoxy poly(ethylene glycol) (PLG-g-mPEG) was synthesized through a Steglich esterification reaction of PLG with mPEG. The structure of the copolymers was confirmed by nuclear magnetic resonance spectra (NMR) and gel permeation chromatography (GPC). MTT assay demonstrated that the PLG-g-mPEGs had good cell compatibility. The unreacted carboxyl groups of the PLG-g-mPEGs were used to complex cisplatin to form polymer-metal complex nanoparticles (CDDP/PLG-g-mPEG) for cancer therapy. The average hydrodynamic radius of the CDDP/PLG-g-mPEG nanoparticles was inr the range of 14-25 nm, which was beneficial for solid tumor targeting delivery. A sustained release without initial burst was achieved for the CDDP/PLG-g-mPEG nanoparticles, indicating that the CDDP-loaded nanoparticles had great potential to suppress the drug release in blood circulation before the nanoparticles had arrived at targeting tumors. The CDDP/PLG-g-mPEG nanoparticles showed a much longer blood retention profile as compared with the free CDDP. This indicated that the CDDP-loaded nanoparticles had much more opportunity to accumulate in tumor tissue by exerting the EPR effect. In vitro tests demonstrated that the CDDP/PLG-g-mPEG nanoparticles could inhibit the proliferation of HeLa, MCF-7 and A549 cancer cells. At equal dose (4 mg kg(-1)), the CDDP/PLG-g-mPEG nanoparticles showed comparable in vivo antitumor efficacy and significantly lower systemic toxicity as compared with free cis-Diaminedichloroplatinum (cisplatin, CDDP) in MCF-7 tumor bearing mice. These suggested that the CDDP/PLG-g-mPEG nanoparticle drug delivery system had a great potential to be used for cancer therapy. PMID:27301173

  18. Screening of Hyaluronic Acid-Poly(ethylene glycol) Composite Hydrogels to Support Intervertebral Disc Cell Biosynthesis using Artificial Neural Network Analysis

    PubMed Central

    Jeong, Claire G.; Francisco, Aubrey T.; Niu, Zhenbin; Mancino, Robert L; Craig, Stephen L.; Setton, Lori A.

    2014-01-01

    Hyaluronic acid (HA) poly(ethylene glycol) (PEG) composite hydrogels have been widely studied for both cell delivery and soft tissue regeneration applications. A very broad range of physical and biological properties have been engineered into HA-PEG hydrogels that may differentially affect cellular “outcomes” of survival, synthesis and metabolism. The objective of this study was to rapidly screen multiple HA-PEG composite hydrogel formulations for an effect on matrix synthesis and behaviors of nucleus pulposus (NP) and anulus fibrosus (AF) cells of the intervertebral disc (IVD). A secondary objective was to apply artificial neural network (ANN) analysis to identify relationships between HA-PEG composite hydrogel formulation parameters and biological outcome measures for each cell type of the IVD. Eight different hydrogels were developed from preparations of thiolated HA (HA-SH) and PEG vinylsulfone (PEG-VS) macromers, and used as substrates for NP and AF cell culture in vitro. Hydrogel mechanical properties ranged from 70-489 kPa depending on HA molecular weight, and measures of matrix synthesis, metabolite consumption and production, and cell morphology were obtained to study relationships to hydrogel parameters. Results showed that NP and AF cell numbers were highest upon the HA-PEG hydrogels formed from the lower molecular weight HA, with evidence of higher sGAG production also upon lower HA molecular weight composite gels. All cells formed more multi-cell clusters upon any HA-PEG composite hydrogel as compared to gelatin substrates. Formulations were clustered into neurons based largely on their HA molecular weight, with few effects of PEG molecular weight observed on any measured parameters. PMID:24859415

  19. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.

    PubMed

    Zhang, Chunmei; Wang, Liwei; Zhai, Tianliang; Wang, Xinchao; Dan, Yi; Turng, Lih-Sheng

    2016-01-01

    Graphene oxide (GO) was incorporated into poly(lactic acid) (PLA) as a reinforcing nanofiller to produce composite nanofibrous scaffolds using the electrospinning technique. To improve the dispersion of GO in PLA and the interfacial adhesion between the filler and matrix, GO was surface-grafted with poly(ethylene glycol) (PEG). Morphological, thermal, mechanical, and wettability properties, as well as preliminary cytocompatibility with Swiss mouse NIH 3T3 cells of PLA, PLA/GO, and PLA/GO-g-PEG electrospun nanofibers, were characterized. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers decreased with filler content. Both GO and GO-g-PEG improved the thermal stability of PLA, but GO-g-PEG was more effective. The water contact angle test of the nanofiber mats showed that the addition of GO in PLA did not change the surface wettability of the materials, but PLA/GO-g-PEG samples exhibited improved wettability with lower water contact angles. The tensile strength of the composite nanofiber mats was improved with the addition of GO, and it was further enhanced when GO was surface grafted with PEG. This suggested that improved interfacial adhesion between GO and PLA was achieved by grafting PEG onto the GO. The cell viability and proliferation results showed that the cytocompatibility of PLA was not compromised with the addition of GO and GO-g-PEG. With enhanced mechanical properties as well as good wettability and cytocompatibility, PLA/GO-g-PEG composite nanofibers have the potential to be used as scaffolds in tissue engineering.

  20. Characterization of pH-Responsive Hydrogels of Poly(Itaconic acid-g-Ethylene Glycol) Prepared by UV-Initiated Free Radical Polymerization as Biomaterials for Oral Delivery of Bioactive Agents

    PubMed Central

    Betancourt, Tania; Pardo, Juan; Soo, Ken; Peppas, Nicholas A.

    2009-01-01

    Effective oral delivery of proteins is impeded by steep pH gradients and proteolytic enzymes in the gastrointestinal tract, as well as low absorption of the proteins into the bloodstream due to their size, charge or solubility. In the present work, pH-responsive complexation hydrogels of poly(itaconic acid) with poly(ethylene glycol) grafts were synthesized for applications in oral drug delivery. These hydrogels were expected to be in collapsed configuration at low pH due to hydrogen bonding between poly(itaconic acid) carboxyl groups and poly(ethylene glycol), and to swell with increasing pH because of charge repulsion between deprotonated carboxylic acid groups. Hydrogels were prepared by UV-initiated free radical polymerization using tetraethylene glycol as the crosslinking agent and Irgacure® 2959 as the initiator. The effect of monomer ratios, crosslinking ratio and solvent amount on the properties of the hydrogels were investigated. The composition of the hydrogels was confirmed by FTIR. Equilibrium swelling studies in the pH range of 1.2 to 7 revealed that the extent of swelling increased with increasing pH up to a pH of about 6, when no further carboxylic acid deprotonation occurred. Studies in Caco-2 colorectal carcinoma cells confirmed the cytocompatibility of these materials at concentrations of up to 5 mg/ml. PMID:19536838

  1. Molecularly uniform poly(ethylene glycol) certified reference material

    NASA Astrophysics Data System (ADS)

    Takahashi, Kayori; Matsuyama, Shigetomo; Kinugasa, Shinichi; Ehara, Kensei; Sakurai, Hiromu; Horikawa, Yoshiteru; Kitazawa, Hideaki; Bounoshita, Masao

    2015-02-01

    A certified reference material (CRM) for poly(ethylene glycol) with no distribution in the degree of polymerization was developed. The degree of polymerization of the CRM was accurately determined to be 23. Supercritical fluid chromatography (SFC) was used to separate the molecularly uniform polymer from a standard commercial sample with wide polydispersity in its degree of polymerization. Through the use of a specific fractionation system coupled with SFC, we are able to obtain samples of poly(ethylene glycol) oligomer with exact degrees of polymerization, as required for a CRM produced by the National Metrology Institute of Japan.

  2. Comparative acute and subchronic toxicity of ethylene glycol monopropyl ether and ethylene glycol monopropyl ether acetate.

    PubMed Central

    Katz, G V; Krasavage, W J; Terhaar, C J

    1984-01-01

    The acute toxicity of ethylene glycol monopropyl ether (EGPE) and ethylene glycol monopropyl ether acetate (EGPEA) was determined in a series of standardized tests. The oral LD50 in rats was 3089 and 9456 mg/kg EGPE and EGPEA, respectively. Skin irritation was slight following an occluded single dose application of either compound to the guinea pig abdomen. The dermal LD50 for guinea pigs was 1 to 5 mL/kg and greater than 20 mL/kg EGPE and EGPEA, respectively. EGPE produced a very weak positive sensitization response in one of five guinea pigs. No positive response was elicited when 10 guinea pigs were similarly challenged with EGPEA. EGPE produced transient moderate to severe eye irritation in rabbits while EGPEA produced slight eye irritation. Subchronic toxicity was determined in a series of oral and inhalation studies. Groups of 10 male rats were dosed with 15, 7.5, 3.75 or 1.88 mmole/kg EGPE and 30, 15 or 7.5 mmole/kg EGPEA by gavage 5 days/week for 6 weeks. Hemoglobinuria was seen at least once at all dose levels of both compounds. EGPE had little effect on feed consumption or body weight gain, while body weight gain was reduced in the two high dose groups exposed to EGPEA and feed consumption was reduced at all dose levels. Hematologic changes were seen at all dose levels of both compounds. Absolute and/or relative spleen weights were increased at all but the lowest EGPE dose level and at all EGPEA dose levels. Gross and histopathologic examinations revealed significant effects on the spleen of animals exposed to EGPE and on the spleen, liver, kidney and testes of animals exposed to EGPEA. The no-observed effect level (NOEL) for splenic changes was 1.88 mmole/kg EGPE. A NOEL for hematology was not established. The NOEL for liver and testicular changes were 15 and 7.5 mmole/kg EGPEA, respectively while a NOEL for hematologic, splenic and renal changes was not established. Groups of 10 rats (5M, 5F) were exposed to 800, 400, 200 or 100 ppm EGPE or EGPEA 6 hr

  3. Ethylene glycol toxicosis in adult beef cattle fed contaminated feeds

    PubMed Central

    Barigye, Robert; Mostrom, Michelle; Dyer, Neil W.; Newell, Teresa K.; Lardy, Gregory P.

    2008-01-01

    Acute deaths of cows held in a drylot and fed several crop processing plant by-products were investigated. Clinical signs in affected cows included diarrhea, ataxia, recumbency, hypersalivation, and sunken eyes. A histological diagnosis of ethylene glycol toxicosis, based on numerous birefringent crystals in renal tubules, was supported by toxicologic findings. PMID:19119372

  4. Direct Routes from Synthesis Gas to Ethylene Glycol.

    ERIC Educational Resources Information Center

    Dombek, B. D.

    1986-01-01

    Discusses the synthesis of ethylene glycol from carbon monoxide and hydrogen using bimetallic catalysts. Although this technology has not been implemented, it illustrates two important future trends, namely, use of bimetallic catalysts and use of coal-derived carbon monoxide and hydrogen as a new feed stock. (JN)

  5. Ethylene glycol emissions from on-road vehicles.

    PubMed

    Wood, Ezra C; Knighton, W Berk; Fortner, Ed C; Herndon, Scott C; Onasch, Timothy B; Franklin, Jonathan P; Worsnop, Douglas R; Dallmann, Timothy R; Gentner, Drew R; Goldstein, Allen H; Harley, Robert A

    2015-03-17

    Ethylene glycol (HOCH2CH2OH), used as engine coolant for most on-road vehicles, is an intermediate volatility organic compound (IVOC) with a high Henry's law coefficient. We present measurements of ethylene glycol (EG) vapor in the Caldecott Tunnel near San Francisco, using a proton transfer reaction mass spectrometer (PTR-MS). Ethylene glycol was detected at mass-to-charge ratio 45, usually interpreted as solely coming from acetaldehyde. EG concentrations in bore 1 of the Caldecott Tunnel, which has a 4% uphill grade, were characterized by infrequent (approximately once per day) events with concentrations exceeding 10 times the average concentration, likely from vehicles with malfunctioning engine coolant systems. Limited measurements in tunnels near Houston and Boston are not conclusive regarding the presence of EG in sampled air. Previous PTR-MS measurements in urban areas may have overestimated acetaldehyde concentrations at times due to this interference by ethylene glycol. Estimates of EG emission rates from the Caldecott Tunnel data are unrealistically high, suggesting that the Caldecott data are not representative of emissions on a national or global scale. EG emissions are potentially important because they can lead to the formation of secondary organic aerosol following oxidation in the atmospheric aqueous phase.

  6. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance...

  7. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance...

  8. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance...

  9. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance...

  10. The delivery of poly(lactic acid)-poly(ethylene glycol) nanoparticles loaded with non-toxic drug to overcome drug resistance for the treatment of neuroblastoma

    NASA Astrophysics Data System (ADS)

    Dhulekar, Jhilmil

    Neuroblastoma is a rare cancer of the sympathetic nervous system. A neuroblastoma tumor develops in the nerve tissue and is diagnosed in infants and children. Approximately 10.2 per million children under the age of 15 are affected in the United States and is slightly more common in boys. Neuroblastoma constitutes 6% of all childhood cancers and has a long-term survival rate of only 15%. There are approximately 700 new cases of neuroblastoma each year in the United States. With such a low rate of survival, the development of more effective treatment methods is necessary. A number of therapies are available for the treatment of these tumors; however, clinicians and their patients face the challenges of systemic side effects and drug resistance of the tumor cells. The application of nanoparticles has the potential to provide a safer and more effective method of delivery drugs to tumors. The advantage of using nanoparticles for drug delivery is the ability to specifically or passively target tumors while reducing the harmful side effects of chemotherapeutics. Drug delivery via nanoparticles can also allow for lower dosage requirements with controlled release of the drugs, which can further reduce systemic toxicity. The aim of this research was to develop a polymeric nanoparticle drug delivery system for the treatment of high-risk neuroblastoma. Nanoparticles composed of a poly(lactic acid)-poly(ethylene glycol) block copolymer were formulated to deliver a non-toxic drug in combination with Temozolomide, a commonly used chemotherapeutic drug for the treatment of neuroblastoma. The non-toxic drug acts as an inhibitor to the DNA-repair protein present in neuroblastoma cells that is responsible for inducing drug resistance in the cells, which would potentially allow for enhanced temozolomide activity. A variety of studies were completed to prove the nanoparticles' low toxicity, loading abilities, and uptake into cells. Additionally, studies were performed to determine the

  11. Electrochemical measurements of diffusion coefficients of redox-labeled poly(ethylene glycol) dissolved in poly(ethylene glycol) melts

    SciTech Connect

    Haas, O.; Velazquez, C.S.; Porat, Z.; Murray, R.W.

    1995-10-12

    Ferrocene labeled monomethoxy-poly(ethylene glycol)s (MPEG) with molecular weights of 1900 and 750 were used as redox probe solutes in poly(ethylene glycol) melt solvents of molecular weight 750, 2000, and 20000. Cyclic voltammetry and chronoamperometry at microdisk electrodes were employed to measure the diffusion coefficients of the redox probes, which were independent of the probe concentration and varied between 10{sup -7} and 10{sup -10} cm{sup 2}/s. Diffusional activation barrier results also suggest that the ferrocene label does not significantly influence the diffusivity of the probe molecule in the host solvent. Activation barrier, viscosity, and ionic conductivity results show that the LiClO{sub 4} electrolyte does not influence the diffusion barrier or viscosity as long as the ether O/Li{sup +} ratio is >=250 (ca. 0.1 M) which is still a sufficient electrolyte concentration to allow quantitative electrochemical diffusion measurements. 21 refs., 7 figs., 2 tabs.

  12. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

    SciTech Connect

    Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.

    2001-02-05

    It is shown that a ''nanofluid'' consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure ethylene glycol or ethylene glycol containing the same volume fraction of dispersed oxide nanoparticles. The effective thermal conductivity of ethylene glycol is shown to be increased by up to 40% for a nanofluid consisting of ethylene glycol containing approximately 0.3 vol% Cu nanoparticles of mean diameter <10 nm. The results are anomalous based on previous theoretical calculations that had predicted a strong effect of particle shape on effective nanofluid thermal conductivity, but no effect of either particle size or particle thermal conductivity.

  13. Synthesis of amphiphilic poly(ether-amide) dendrimer endcapped with poly(ethylene glycol) grafts and its solubilization to salicylic acid.

    PubMed

    Yang, Zhu; Zhang, Wenquan; Liu, Jianhua; Shi, Wenfang

    2007-04-01

    An amphiphilic dendrimer (DPEA-PEG) grafting polyethylene glycol at the terminals was prepared by endcapping of dendritic poly(ether-amide) (DPEA) with isocyanate terminated linear polyethylene glycol (PEG-NCO). The molecular structure was verified by gel permeation chromatography (GPC), (1)H NMR and FT-IR. The micelle characteristic of DPEA-PEG in water was investigated. The critical micelle concentration (CMC) was determined by a fluorescence technique to be 55.5 mg/L. The hydrodynamic radius of micelles was measured by dynamic light scattering (DLS) to be 76.2 nm. The UV-vis spectrum showed that the solubility of salicylic acid increased from 1.91 to 2.78 mg/L when the concentration of DPEA-PEG attained 5 mg/mL in an aqueous solution.

  14. Effects of low temperature on the biodegradation of ethylene glycol and propylene glycol

    SciTech Connect

    Williams, J.B.; Blessing, R.L.

    1995-12-31

    Ethylene glycol and propylene glycol are used in a variety of applications. These compounds are well known to biodegrade readily at 20 C, which is the benchmark temperature for most biodegradation studies. These compounds may enter the environment when the ambient temperatures are significantly below 20 C. Biodegradation data at low temperatures was needed. For example, wintertime airport stormwater discharges contain glycols from deicing fluids. These compounds may enter streams at ambient winter temperatures, or wastewater treatment works which may be operating at temperatures well below 20 C. Biodegradation studies were conducted with BOD bottles incubated at 40 C and 10 C. Biodegradation was slower than 20 C but still significant. For ethylene glycol, the half-life (time at which one-half of the oxygen demand was consumed by the microorganisms) was 5 days at 20 C, 8 days at 10 C, and 25 days at 40 C. For propylene glycol, the half-life was 5 days at 20 C, 12 days at 10 C, and 28 days at 40 C. Two aircraft deicing fluids were also tested, and similar degradation rates were observed. This indicates the presence of additives in deicing fluids has little effect on biodegradation of glycols.

  15. Comparison of removal of endodontic smear layer using ethylene glycol bis (beta-amino ethyl ether)-N, N, N', N'-tetraacetic acid and citric acid in primary teeth: A scanning electron microscopic study

    PubMed Central

    Hegde, Rahul J.; Bapna, Kavita

    2016-01-01

    Background: Root canal irrigants are considered momentous in their tissue dissolving property, eliminating microorganisms, and removing smear layer. The present study was aimed to compare the removal of endodontic smear layer using ethylene glycol bis (beta-amino ethyl ether)-N, N, N', N'-tetraacetic acid (EGTA) and citric acid solutions with saline as a control in primary anterior teeth. Materials and Methods: Thirty primary anterior teeth were chosen for the study. The teeth were distributed into three groups having ten teeth each. Following instrumentation, root canals of the first group were treated with 17% EGTA and the second group with 6% citric acid. Only saline was used as an irrigant for the control group. Then, the teeth were subjected to scanning electron microscopy (SEM) study. The scale given by Rome et al. for the smear layer removal was used in the present study. Results: The pictures from the SEM showed that among the tested irrigants, 17% EGTA + 5% sodium hypochlorite (NaOCl) group showed the best results when compared to other groups. Conclusion: The results advocate that the sequential irrigation of the pulp canal walls with 17% EGTA followed by 5% NaOCl produced efficacious and smear-free root canal walls. PMID:27307670

  16. Synthesis and characterizations of palladium catalysts with high activity and stability for formic acid oxidation by hydrogen reduction in ethylene glycol at room temperature

    NASA Astrophysics Data System (ADS)

    Wu, Meixia; Li, Muwu; Wu, Xin; Li, Yuexia; Zeng, Jianhuang; Liao, Shijun

    2015-10-01

    In this work, a Pd/C catalyst with high activity as well as excellent stability has been prepared by hydrogen gas reduction of Pd(II) precursor in ethylene glycol solution with the assistance of appropriate amount of sodium citrate. Pd nanoparticles with an average particle size of 3.8 nm and excellent uniformity are obtained. The Pd/C catalyst synthesized in this work shows an electrochemical surface area of 68.6 m2 g-1 and displays activities of 819 A g-1. Strikingly, the Pd/C catalyst also exhibits excellent stability, which has been confirmed by its slow activity decay under repeated potential cycles as well as chronoamperometric test. The activity for Pd/C at the 300th and 500th cycle remains at 5.5 and 2.4 mA cm-2, respectively, which is 25% and 11% of its initial value, respectively. The oxidation currents at the Pd/C and Pd/C-Citrate (control) at 0 V decrease to 44% and 25% of their initial values. Transmission electron microscopy observations on the Pd/C catalyst after 1000 potential cycles reveal that, in addition to carbon support corrosion, Pd agglomeration together with more serious Pd dissolution occur at the same time, leading to a decrease of the electrocatalytic performance.

  17. Swelling properties of copolymeric hydrogels of poly(ethylene glycol) monomethacrylate and monoesters of itaconic acid for use in drug delivery.

    PubMed

    Teijón, César; Guerrero, Sandra; Olmo, Rosa; Teijón, José M; Blanco, M Dolores

    2009-11-01

    Copolymeric hydrogels of poly(ethylene glycol) monomethacrylate (PEGMA) (P) have been synthesized for use in drug-delivery. New copolymeric hydrogels were prepared by free radical solution polymerization of PEGMA and monomethyl itaconate (MMI) or monoethyl itaconate (MEI), using ethyleneglycol dimethacrylate and tetraethyleneglycol dimethacrylate, respectively, as cross-linkers. The effect of copolymer composition on swelling behavior, thermal decomposition and drug release was studied. Three compositions of each copolymer were studied: 70P/30MMI (or MEI), 80P/20MMI (or MEI) and 90P/10MMI (or MEI). The largest equilibrium swelling degree was observed in gels containing the highest content of MMI or MEI (84.22 +/- 0.22 wt % for 70P/30MEI; 79.56 +/- 0.64 wt % for 70P/30MMI). The swelling process was in accordance with Fick's Second Law. Methotrexate (MTX), an anticancer agent used in the treatment of different hyperproliferative epithelial diseases, was chosen to be loaded in the gels. The drug was included by immersion of the copolymeric disks in an aqueous solution of the drug. The amount of MTX in the xerogels was between 5.34 +/- 0.06 mg MTX/g (90P/10MMI) and 14.94 +/- 0.91 mg MTX/g (80P/20MEI). Two stages of thermal degradation for unloaded and MTX-loaded gels were determined; the presence of the drug in the polymeric matrices decreased the temperature of the first stage of thermal degradation. MTX release was also in accordance with Fick's Second Law. The length of total drug release (340 +/- 30 min-1502 +/- 81 min) could be modulated as a function of the comonomer composition of the hydrogel.

  18. Carbohydrate radicals: from ethylene glycol to DNA strand breakage.

    PubMed

    von Sonntag, Clemens

    2014-06-01

    Radiation-induced DNA strand breakage results from the reactions of radicals formed at the sugar moiety of DNA. In order to elucidate the mechanism of this reaction investigations were first performed on low molecular weight model systems. Results from studies on deoxygenated aqueous solutions of ethylene glycol, 2-deoxy-d-ribose and other carbohydrates and, more relevantly, of d-ribose-5-phosphate have shown that substituents can be eliminated from the β-position of the radical site either proton and base-assisted (as in the case of the OH substituent), or spontaneously (as in the case of the phosphate substituent). In DNA the C(4') radical undergoes strand breakage via this type of reaction. In the presence of oxygen the carbon-centred radicals are rapidly converted into the corresponding peroxyl radicals. Again, low molecular weights models have been investigated to elucidate the key reactions. A typical reaction of DNA peroxyl radicals is the fragmentation of the C(4')-C(S') bond, a reaction not observed in the absence of oxygen. Although OH radicals may be the important direct precursors of the sugar radicals of DNA, results obtained with poly(U) indicate that base radicals may well be of even greater importance. The base radicals, formed by addition of the water radicals (H and OH) to the bases would in their turn attack the sugar moiety to produce sugar radicals which then give rise to strand breakage and base release. For a better understanding of strand break formation it is therefore necessary to investigate in more detail the reactions of the base radicals. For a start, the radiolysis of uracil in oxygenated solutions has been reinvestigated, and it has been shown that the major peroxyl radical in this system undergoes base-catalysed elimination of [Formula: see text], a reaction that involves the proton at N(l). In the nucleic acids the pyrimidines are bound at N(l) to the sugar moiety and this type of reaction can no longer occur. Therefore, with

  19. Incorporation of Therapeutic Interventions in Physiologically Based Pharmacokinetic Modeling of Human Clinical Case Reports of Accidental or Intentional Overdosing with Ethylene Glycol

    SciTech Connect

    Corley, Rick A.; McMartin, K. E.

    2005-05-16

    Ethylene glycol is a high production volume chemical used in the manufacture of resins and fibers, antifreeze, deicing fluids, heat transfer and hydraulic fluids. Although occupational uses of ethylene glycol have not been associated with adverse effects, there are case reports where humans have either intentionally or accidentally ingested large quantities of ethylene glycol, primarily from antifreeze. The acute toxicity of ethylene glycol in humans and animals and can proceed through three stages, each associated with a different metabolite: central nervous system depression (ethylene glycol), cardiopulmonary effects associated with metabolic acidosis (glycolic acid) and ultimately renal toxicity (oxalic acid), depending upon the total amounts consumed and effectiveness of therapeutic interventions. A physiologically based pharmacokinetic (PBPK) model developed in a companion paper (Corley et al., 2004) was refined in this study to include clinically relevant treatment regimens for ethylene glycol poisoning such as hemodialysis or metabolic inhibition with either ethanol or fomepizole. Such modifications enabled the model to describe several human case reports which included analysis of ethylene glycol and/or glycolic acid. Such data and model simulations provide important confirmation that the PBPK model developed previously can adequately describe the pharmacokinetics of ethylene glycol in humans following low, occupational or environmentally relevant inhalation exposures, as well as massive oral doses even under conditions where treatments have been employed that markedly affect the disposition of ethylene glycol and glycolic acid. By integrating the case report data sets with controlled studies in this PBPK model, it was demonstrated that fomepizole, if administered early enough in a clinical situation, can be more effective than ethanol or hemodialysis in preventing the metabolism of ethylene glycol to more toxic metabolites. Hemodialysis remains an

  20. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    NASA Astrophysics Data System (ADS)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Chien Dang, Mau

    2015-09-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, 1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable.

  1. Hydrogenolysis of ethylene glycol to methanol over modified RANEY® catalysts.

    PubMed

    Wu, Cheng-Tar; Qu, Jin; Elliott, Joseph; Yu, Kai Man Kerry; Tsang, Shik Chi Edman

    2013-06-21

    There is tremendous growing interest in utilizing biomass molecules for energy provision due to their carbon neutrality. Here, we employ ethylene glycol as a model compound for catalytic activation, which represents a basic unit for complex carbohydrate molecules (polyols). In this paper, hydrogenolysis of ethylene glycol to produce methanol in hydrogen over modified RANEY® Ni and Cu catalysts has been studied. This work provides essential information that may leads to the development of new catalysts for carbohydrate activation to methanol, a novel but important reaction concerning biomass conversion to transportable form of energy. Particularly, in this study, modification of electronic structure hence adsorption properties of RANEY® catalysts has mainly been achieved by blending with second metal(s). It is found that the activity and selectivity of this reaction can be significantly affected by this approach. In contrast, there is no subtle effect on methanol selectivity despite a great variation in the d-band centre position which shows a distinctive effect on other products. This result suggests that methanol is produced on specific surface sites independent from the other sites at an intrinsic rate and will not be converted to other products by the d-band alteration. PMID:23661262

  2. Behavioral teratology of ethylene glycol monomethyl and monoethyl ethers

    SciTech Connect

    Nelson, B.K.; Brightwell, W.S.

    1984-08-01

    A recent addition to the field of teratology has been the inclusion of functional assessment techniques of offspring after prenatal exposure to exogenous agents. The present paper reviews the behavioral teratogenic effects of ethylene glycol monomethyl ether (EGME, 2-methoxyethanol) and ethylene glycol monoethyl ether (EGEE, 2-ethoxyethanol). Groups of 15 pregnant rats were exposed via inhalation to 25 ppm EGME or to 100 ppm EGEE on gestation days 7 to 13 or 14 to 20. An equal number of sham-exposed controls were included for both periods of gestation. The only effect noted in the maternal animals was a slightly prolonged gestation in the group exposed to 100 ppm EGEE on days 14 to 20. Litters were culled in four female and four male pups on the day of birth. Pups of each sex from all litters were tested on a variety of behavioral tasks (including tests of neuromuscular ability, activity, and learning ability) extending from postnatal days 10 to 90. In addition, brains from newborn and from 21-day-old offspring were removed and analyzed for concentrations of the neurotransmitters acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine (serotonin). Both the behavioral testing and the neurochemical evaluations revealed functional alterations in the litter groups experiencing prenatal exposure to EGME and EGEE at concentrations which produced no observable effects in the maternal animals. 6 references, 3 tables.

  3. Functional properties and biodistribution of poly(triethylenetetramine/cystamine bisacrylamide) and poly(triethylenetetramine/cystamine bisacrylamide)- poly(ethylene glycol) mixtures formed with nucleic acid.

    PubMed

    Brumbach, Jonathan H; Lee, Yong Won; Kim, Sung Wan; Yockman, James W

    2012-04-10

    The clinical success of non-viral gene delivery reagents is hampered by their inefficient cellular transgene delivery, which is largely influenced by carrier properties that are currently undefined and misunderstood. In an attempt to further define and understand the requirements for a safe and efficient non-viral gene delivery reagent, research labs often engineer and evaluate many putative products with subtle physiochemical differences in order to delineate requirements for improved in vitro and in vivo success. The synthesis of many putative reagents is often time-intensive, laborious and costly. In a previous manuscript published by our lab, different amounts of poly(triethylenetetramine/cystamine bisacrylamide) (p(TETA/CBA) and its pegylated counterpart, poly(triethylenetetramine/cystamine bisacrylamide)- poly(ethylene glycol) (p(TETA/CBA)-g-PEG) were mixed together to easily identify optimal reagent properties and candidates in vitro, while avoiding the synthesis of many putative candidates for study. This report uses the aforementioned facile approach to evaluate reagent properties of products that were obtained via one-pot synthesis, which improved synthetic ease. As such, synthesis time was reduced from 6days to 3days and had comparable or improved transfection and viability compared to previous works. Moreover, this synthesis resulted in higher molecular weight products than were used in the previous study and allow for lower polymer doses to be used for complexation, which is useful for systemic delivery that is used herein. The physiochemical properties of the formulations derived using these novel reagents was studied prior to investigating their in vivo biodistribution profiles in a murine colon adenocarcinoma model. Interestingly, negatively charged complexes exhibited greater passive tumor accumulation compared to positively charged complexes following their systemic administration. These studies warrant further investigation for the use of

  4. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia.

    PubMed

    Piazza, Justin; Hoare, Todd; Molinaro, Luke; Terpstra, Kristen; Bhandari, Jayant; Selvaganapathy, P Ravi; Gupta, Bhagwati; Mishra, Ram K

    2014-05-01

    Lectin-functionalized, polyethylene glycol-block-poly-(D,L)-lactic-co-glycolic acid nanoparticles loaded with haloperidol were prepared with narrow size distributions and sizes <135nm. The nanoparticles exhibited high Solanum tuberosum lectin (STL) conjugation efficiencies, encapsulation efficiencies, and drug loading capacities. The in vitro release of haloperidol was 6-8% of the loaded amount in endo-lysosomal conditions over 96h, demonstrating minimal drug leakage and the potential for the efficient drug transport to the targeted brain tissue. The haloperidol released upon erosion was successful in displacing [(3)H] N-propylnorapomorphine and binding to bovine striatal dopamine D2 receptors. Both haloperidol-loaded nanoparticle formulations were found to be highly effective at inducing catalepsy. Intranasal administration of STL-functionalized nanoparticles increased the brain tissue haloperidol concentrations by 1.5-3-fold compared to non-STL-functionalized particles and other routes of administration. This formulation demonstrates promise in the reduction of the drug dose necessary to produce a therapeutic effect with antipsychotic drugs for the treatment of schizophrenia.

  5. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds.

    PubMed

    Moroishi, Hitomi; Yoshida, Chikara; Murakami, Yoshihiko

    2013-02-01

    Sheet-shaped materials with a large contact area relative to the drug targeting site lead to advantages over conventional particle-shaped drug carriers and have several advantages for their biomedical applications. The present study proposes a methodology for preparing a novel sheet-shaped "hydrophobic" and biocompatible biomaterial in which polymeric micelles are uniformly dispersed for the incorporation of "hydrophilic" compounds into the sheet. The methoxy-terminated poly(ethylene glycol)-block-poly(lactic acid) block copolymer (CH(3)O-PEG-b-PLA) was successfully synthesized by means of the anionic ring-opening polymerization of both ethylene oxide and dl-lactide. CH(3)O-PEG-b-PLA was self-assembled and formed stable micelle-like w/o emulsion with a hydrophilic inner core in organic solvents. A sheet-shaped material containing a hydrophilic inner space for incorporating hydrophilic compounds was obtained by spin-coating both the micelle solution and a sheet-forming polymer. Fluorescent images of the sheet proved that polymeric micelles providing hydrophilic spaces were uniformly dispersed in the hydrophobic sheet. The facile technique presented in this paper can be a tool for fabricating sheet-shaped biomaterials that have a hydrophilic inner core and, consequently, that are suitable for the sustained release of hydrophilic compounds.

  6. Prehospital diagnosis of massive ethylene glycol poisoning and use of an early antidote.

    PubMed

    Amathieu, Roland; Merouani, Medhi; Borron, Stephen W; Lapostolle, Frédéric; Smail, Nadia; Adnet, Frédéric

    2006-08-01

    We report the case of a patient suspected of voluntary massive poisoning by ethylene glycol. Prehospital diagnosis was established by portable blood analyser and an early antidote with 4 MP treatment initiated in out-of-hospital setting. Use of portable blood analyser in prehospital care should be considered in case of suspected massive poisoning by ethylene glycol. PMID:16808995

  7. GLYCOLIC - FORMIC ACID FLOWSHEET DEVELOPMENT

    SciTech Connect

    Pickenheim, B.; Stone, M.; Newell, J.

    2010-11-08

    Flowsheet testing was performed to further develop the nitric/glycolic/formic acid flowsheet as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All other processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Eight runs were performed in total, including the baseline run. The baseline nitric/formic flowsheet run was extremely difficult to process under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. In the nitric/glycolic/formic flowsheet runs, mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. It is recommended that DWPF continue to support development of the nitric/glycolic/formic flowsheet. Although experience is limited at this time, this flowsheet meets or outperforms the current flowsheet in many regards, including off-gas generation, mercury removal, product rheology and general ease of processing. Additional flowsheet testing will allow for a more thorough understanding of the chemistry and effectiveness of the flowsheet over a range of sludge compositions and formic/glycolic ratios. This testing will also show whether the REDOX and metal solubility concerns with this change in the flowsheet can be addressed by just adjusting the volumes of

  8. Toxic effects of some alcohol and ethylene glycol derivatives on Cladosporium resinae.

    PubMed Central

    Lee, K H; Wong, H A

    1979-01-01

    Eleven commercially available alcohol and ethylene glycol derivatives were tested for their toxicity toward a problem organism in jet fuel, Cladosporium resinae. In the presence of glucose, 20% (vol/vol) ethylene glycol monomethyl ether prevented spore germination and mycelial growth, and 10% (vol/vol) 2-ethoxybutanol, 10% 2-isopropoxyethanol, 10% 3-methoxybutanol, 5% 2-butyloxyethanol, 5% ethylene glycol dibutyl ether, and 5% diethylene glycol monobutyl ether were found to have similar effects. In a biphasic kerosene-water system, 3-methoxybutanol, 2-butyloxyethanol, and diethylene glycol monobutyl ether were again found to be more toxic than ethylene glycol monomethyl ether. Considerable potassium efflux, protein leakage, and inhibition of endogenous respiration were observed in the presence of the more toxic compounds. 2-Butyloxyethanol also caused loss of sterols from cells. PMID:573588

  9. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol

    PubMed Central

    Vian, Alex M.; Higgins, Adam Z.

    2015-01-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm3 and an osmotically inactive volume of 165 μm3. To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37 °C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21 °C of 0.18 μm atm−1 min−1. The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21 °C was 6.4, 1.0, 8.4 and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. PMID:24269528

  10. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    PubMed

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. PMID:24269528

  11. Rheological profile of boron nitride–ethylene glycol nanofluids

    SciTech Connect

    Żyła, Gaweł; Witek, Adam; Gizowska, Magdalena

    2015-01-07

    The paper presents the complete rheological profile of boron nitride (BN)–ethylene glycol (EG) nanofluids. Nanofluids have been produced by two-step method on the basis of commercially available powder of plate-like grains of nanometrical thickness. Viscoelastic structure has been determined in oscillatory measurements at a constant frequency and temperature. Viscosity and flow curves for these materials have been measured. Studies have shown that the Carreau model can be used for the modeling of dynamic viscosity curves of the material. The samples were tested for the presence of thixotropy. The dependence of viscosity on temperature was also examined. The effect of temperature on the dynamic viscosity of BN-EG nanofluids can be modelled with the use of Vogel-Fulcher-Tammann expression.

  12. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography

    NASA Technical Reports Server (NTRS)

    Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W. G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V.

    2001-01-01

    The fabrication of hydrogel microstructures based upon poly(ethylene glycol) diacrylates, dimethacrylates, and tetraacrylates patterned photolithographically on silicon or glass substrates is described. A silicon/silicon dioxide surface was treated with 3-(trichlorosilyl)propyl methacrylate to form a self-assembled monolayer (SAM) with pendant acrylate groups. The SAM presence on the surface was verified using ellipsometry and time-of-flight secondary ion mass spectrometry. A solution containing an acrylated or methacrylated poly(ethylene glycol) derivative and a photoinitiator (2,2-dimethoxy-2-phenylacetophenone) was spin-coated onto the treated substrate, exposed to 365 nm ultraviolet light through a photomask, and developed with either toluene, water, or supercritical CO2. As a result of this process, three-dimensional, cross-linked PEG hydrogel microstructures were immobilized on the surface. Diameters of cylindrical array members were varied from 600 to 7 micrometers by the use of different photomasks, while height varied from 3 to 12 micrometers, depending on the molecular weight of the PEG macromer. In the case of 7 micrometers diameter elements, as many as 400 elements were reproducibly generated in a 1 mm2 square pattern. The resultant hydrogel patterns were hydrated for as long as 3 weeks without delamination from the substrate. In addition, micropatterning of different molecular weights of PEG was demonstrated. Arrays of hydrogel disks containing an immobilized protein conjugated to a pH sensitive fluorophore were also prepared. The pH sensitivity of the gel-immobilized dye was similar to that in an aqueous buffer, and no leaching of the dye-labeled protein from the hydrogel microstructure was observed over a 1 week period. Changes in fluorescence were also observed for immobilized fluorophore labeled acetylcholine esterase upon the addition of acetyl acholine.

  13. Poly(ethylene glycol) methacrylate hydrolyzable microspheres for transient vascular embolization.

    PubMed

    Louguet, Stéphanie; Verret, Valentin; Bédouet, Laurent; Servais, Emeline; Pascale, Florentina; Wassef, Michel; Labarre, Denis; Laurent, Alexandre; Moine, Laurence

    2014-03-01

    Poly(ethylene glycol) methacrylate (PEGMA) hydrolyzable microspheres intended for biomedical applications were readily prepared from poly(lactide-co-glycolide) (PLGA)-poly(ethylene glycol) (PEG)-PLGA crosslinker and PEGMA as a monomer using a suspension polymerization process. Additional co-monomers, methacrylic acid and 2-methylene-1,3-dioxepane (MDO), were incorporated into the initial formulation to improve the properties of the microspheres. All synthesized microspheres were spherical in shape, calibrated in the 300-500 μm range, swelled in phosphate-buffered saline (PBS) and easily injectable through a microcatheter. Hydrolytic degradation experiments performed in PBS at 37 °C showed that all of the formulations tested were totally degraded in less than 2 days. The resulting degradation products were a mixture of low-molecular-weight compounds (PEG, lactic and glycolic acids) and water-soluble polymethacrylate chains having molecular weights below the threshold for renal filtration of 50 kg mol(-1) for the microspheres containing MDO. Both the microspheres and the degradation products were determined to exhibit minimal cytotoxicity against L929 fibroblasts. Additionally, in vivo implantation in a subcutaneous rabbit model supported the in vitro results of a rapid degradation rate of microspheres and provided only a mild and transient inflammatory reaction comparable to that of the control group. PMID:24321348

  14. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether...

  15. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether...

  16. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether...

  17. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether...

  18. Ethylene glycol-assisted coating of titania on nanoparticles.

    PubMed

    Dahl, Michael; Castaneda, Fernando; Joo, Ji Bong; Reyes, Victor; Goebl, James; Yin, Yadong

    2016-06-14

    Coating titania shells onto sub-micron sized particles has been widely studied recently, with success mainly limited to objects with sizes above 50 nm. Direct coating on particles below this size has been difficult to attain especially with good control over properties such as thickness and crystallinity. Here we demonstrate that titanium-glycolate formed by reacting titanium alkoxide and ethylene glycol is an excellent precursor for coating titania on aqueous nanoparticles. The new coating method is particularly useful for its ability to coat materials lacking strong polymers or ligands which are frequently needed to facilitate typical titania coatings. We demonstrate the effectiveness of the process of coating titania on metal nanoparticles ranging from citrate-stabilized gold and silver spheres to gold nanorods and silver nanoplates, and larger particles such as SiO2 microspheres and polymer spheres. Further the thickness of these coatings can be tuned from a few nanometers to ∼40 nm through sequential coatings. These coatings can subsequently be crystallized into TiO2 through refluxing in water or by calcination to obtain crystalline shells. This procedure can be very useful for the production of TiO2 coatings with tunable thickness and crystallinity as well as for further study on the effect of TiO2 coatings on nanoparticles.

  19. Anaerobic Biodegradation of Ethylene Glycol within Hydraulic Fracturing Fluid

    NASA Astrophysics Data System (ADS)

    Heyob, K. M.; Mouser, P. J.

    2014-12-01

    Ethylene glycol (EG) is a commonly used organic additive in hydraulic fracturing fluids used for shale gas recovery. Under aerobic conditions, this compound readily biodegrades to acetate and CO2 or is oxidized through the glycerate pathway. In the absence of oxygen, organisms within genera Desulfovibrio, Acetobacterium, and others can transform EG to acetaldehyde, a flammable and suspected carcinogenic compound. Acetaldehyde can then be enzymatically degraded to ethanol or acetate and CO2. However, little is known on how EG degrades in the presence of other organic additives, particularly under anaerobic conditions representative of deep groundwater aquifers. To better understand the fate and attenuation of glycols within hydraulic fracturing fluids we are assessing their biodegradation potential and pathways in batch anaerobic microcosm treatments. Crushed Berea sandstone was inoculated with groundwater and incubated with either EG or a synthetic fracturing fluid (SFF) containing EG formulations. We tracked changes in dissolved organic carbon (DOC), EG, and its transformation products over several months. Approximately 41% of bulk DOC in SFF is degraded within 21 days, with 58% DOC still remaining after 63 days. By comparison, this same SFF degrades by 70% within 25 days when inoculated with sediment-groundwater microbial communities, suggesting that bulk DOC degradation occurs at a slower rate and to a lesser extent with bedrock. Aerobic biodegradation of EG occurs rapidly (3-7 days); however anaerobic degradation of EG is much slower, requiring several weeks for substantial DOC loss to be observed. Ongoing experiments are tracking the degradation pathways of EG alone and in the presence of SFF, with preliminary data showing incomplete glycol transformation within the complex hydraulic fracturing fluid mixture. This research will help to elucidate rates, processes, and pathways for EG biodegradation and identify key microbial taxa involved in its degradation.

  20. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    PubMed

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation.

  1. The effect of ethylene glycol on the phytovolatilization of 1,4-dioxane.

    PubMed

    Edwards, Maureen R A; Hetu, Marie-France; Columbus, Melanie; Silva, Anthony; Lefebvre, Daniel D

    2011-08-01

    Phytoremediation at contaminated sites is often complicated by the presence of more than one chemical However, the effects of common co-contaminants such as ethylene glycol on the phytoremediation of other chemicals, e.g., 1,4-dioxane, is not well understood. Field studies with DN34 poplar trees revealed a 28% decline in growth rate in response to 10 g/L ethylene glycol in the groundwater, thus indicating a significant and deleterious effect on tree viability, and likely, the plants' utility for phytoremediation. Thorough investigations using Arabidopsis thaliana, with its small size and rapid life cycle, indicated significant growth reduction at 10 g/L and complete inhibition of germination at 40 g/L ethylene glycol Ethylene glycol was almost as severe a stressor as the well characterized osmotic inhibitor, sorbitoL Watering potted trees with 10 g/L ethylene glycol reduced their growth by more than 50%, and similar results were observed in hydroponically grown poplar and willow trees. Under hydroponic conditions, 60 g/L ethylene glycol inhibited the phytovolatilization of l,4-dioxane by more than 80%, and all trees evapo-transpired 1,4-dioxane less efficiently than water. In fact, this efficiency differed between trees and the difference became more pronounced in the presence of ethylene glycol.

  2. Synthesis of nano-sized stereoselective imprinted polymer by copolymerization of (S)-2-(acrylamido) propanoic acid and ethylene glycol dimethacrylate in the presence of racemic propranolol and copper ion.

    PubMed

    Alizadeh, Taher; Bagherzadeh, Azam; Shamkhali, Amir Nasser

    2016-06-01

    A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was obtained by reaction of (l)-alanine with acryloyl chloride. The resulting monomer was characterized by FT-IR and HNMR and then utilized for the preparation of chiral imprinted polymer (CIP). This was carried out by copolymerization of (l)-alanine-derived chiral monomer and ethylene glycol dimethacrylate, in the presence of racemic propranolol and copper nitrate, via precipitation polymerization technique, resulting in nano-sized networked polymer particles. The polymer obtained was characterized by scanning electron microscopy and FT-IR. The non-imprinted polymer was also synthesized and used as blank polymer. Density functional theory (DFT) was also employed to optimize the structures of two diasterometric ternary complexes, suspected to be created in the pre-polymerization step, by reaction of optically active isomers of propranolol, copper ion and (S)-2-(acrylamido) propanoic acid. Relative energies and other characteristics of the described complexes, calculated by the DFT, predicted the higher stability of (S)-propranolol involved complex, compared to (R)-propranolol participated complex. Practical batch extraction test which employed CIP as solid phase adsorbent, indicated that the CIP recognized selectively (S)-propranolol in the racemic mixture of propranolol; whereas, the non-imprinted polymer (NIP) showed no differentiation capability between two optically active isomers of propranolol. PMID:27040217

  3. Recent progress in alkaline direct ethylene glycol fuel cells for sustainable energy production

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-10-01

    Alkaline direct ethylene glycol fuel cells are one of the most promising power sources for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a sustainable fuel and the key materials that constitute the fuel cell are relatively inexpensive. This review article summarizes and discusses the past investigations on the development of alkaline direct ethylene glycol fuel cells, including the physical and chemical processes through the fuel cell structure, the electrocatalytic oxidation and electrocatalysts of ethylene glycol, the singe-cell performance, and innovative system designs.

  4. A detailed chemical kinetic model of high-temperature ethylene glycol gasification

    NASA Astrophysics Data System (ADS)

    Hafner, Simon; Rashidi, Arash; Baldea, Georgiana; Riedel, Uwe

    2011-08-01

    In recent experimental investigations, ethylene glycol is used as a model substance for biomass-based pyrolysis oil in an entrained flow gasifier. In order to gain a deeper insight into process sequences and to conduct parametric analysis, this study describes the development and validation of a detailed chemical kinetic model of high-temperature ethylene glycol gasification. A detailed reaction mechanism based on elementary reactions has been developed considering 80 species and 1243 reactions for application in CFD software. In addition to mechanism validation based on ignition delay times, laminar flame speeds and concentration profiles, simulation results are compared to experimental data of ethylene glycol gasification under complex turbulent reactive flow conditions.

  5. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.

    PubMed

    Sun, Xuefei; Li, Dan; Lee, Milton L

    2009-08-01

    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips. PMID:19572700

  6. Poly(ethylene glycol)-functionalized polymeric microchips for capillary electrophoresis.

    PubMed

    Sun, Xuefei; Li, Dan; Lee, Milton L

    2009-08-01

    Recently, we reported the synthesis, fabrication, and preliminary evaluation of poly(ethylene glycol) (PEG)-functionalized polymeric microchips that are inherently resistant to protein adsorption without surface modification in capillary electrophoresis (CE). In this study, we investigated the impact of cross-linker purity and addition of methyl methacrylate (MMA) as a comonomer on CE performance. Impure poly(ethylene glycol) diacrylate (PEGDA) induced electroosmotic flow (EOF) and increased the separation time, while the addition of MMA decreased the separation efficiency to approximately 25% of that obtained using microchips fabricated without MMA. Resultant improved microchips were evaluated for the separation of fluorescent dyes, amino acids, peptides, and proteins. A CE efficiency of 4.2 x 10(4) plates for aspartic acid in a 3.5 cm long microchannel was obtained. Chiral separation of 10 different D,L-amino acid pairs was obtained with addition of a chiral selector (i.e., beta-cyclodextrin) in the running buffer. Selectivity (alpha) and resolution (R(s)) for D,L-leucine were 1.16 and 1.64, respectively. Good reproducibility was an added advantage of these PEG-functionalized microchips.

  7. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (External Review Draft)

    EPA Science Inventory

    EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database.

  8. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD.... Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when used in foliar applications to peanut plants....

  9. Partitioning of differently sized poly(ethylene glycol)s into OmpF porin.

    PubMed Central

    Rostovtseva, Tatiana K; Nestorovich, Ekaterina M; Bezrukov, Sergey M

    2002-01-01

    To understand the physics of polymer equilibrium and dynamics in the confines of ion channel pores, we study partitioning of poly(ethylene glycol)s (PEGs) of different molecular weights into the bacterial porin, OmpF. Thermodynamic and kinetic parameters of partitioning are deduced from the effects of polymer addition on ion currents through single OmpF channels reconstituted into planar lipid bilayer membranes. The equilibrium partition coefficient is inferred from the average reduction of channel conductance in the presence of PEG; rates of polymer exchange between the pore and the bulk are estimated from PEG-induced conductance noise. Partition coefficient as a function of polymer weight is best fitted by a "compressed exponential" with the compression factor of 1.65. This finding demonstrates that PEG partitioning into the OmpF channel pore has sharper dependence on polymer molecular weight than predictions of hard-sphere, random-flight, or scaling models. A 1360-Da polymer separates regimes of partitioning and exclusion. Comparison of its characteristic size with the size of a 2200-Da polymer previously found to separate these regimes for the alpha-toxin shows good agreement with the x-ray structural data for these channels. The PEG-induced conductance noise is compatible with the polymer mobility reduced inside the OmpF pore by an order of magnitude relatively to its value in bulk solution. PMID:11751305

  10. Theoretical studies on the unimolecular decomposition of ethylene glycol.

    PubMed

    Ye, Lili; Zhao, Long; Zhang, Lidong; Qi, Fei

    2012-01-12

    The unimolecular decomposition processes of ethylene glycol have been investigated with the QCISD(T) method with geometries optimized at the B3LYP/6-311++G(d,p) level. Among the decomposition channels identified, the H(2)O-elimination channels have the lowest barriers, and the C-C bond dissociation is the lowest-energy dissociation channel among the barrierless reactions (the direct bond cleavage reactions). The temperature and pressure dependent rate constant calculations show that the H(2)O-elimination reactions are predominant at low temperature, whereas at high temperature, the direct C-C bond dissociation reaction is dominant. At 1 atm, in the temperature range 500-2000 K, the calculated rate constant is expressed to be 7.63 × 10(47)T(-10.38) exp(-42262/T) for the channel CH(2)OHCH(2)OH → CH(2)CHOH + H(2)O, and 2.48 × 10(51)T(-11.58) exp(-43593/T) for the channel CH(2)OHCH(2)OH → CH(3)CHO + H(2)O, whereas for the direct bond dissociation reaction CH(2)OHCH(2)OH → CH(2)OH + CH(2)OH the rate constant expression is 1.04 × 10(71)T(-16.16) exp(-52414/T).

  11. Ethylene glycol ethers induce oxidative stress in the rat brain.

    PubMed

    Pomierny, Bartosz; Krzyżanowska, Weronika; Smaga, Irena; Pomierny-Chamioło, Lucyna; Stankowicz, Piotr; Budziszewska, Bogusława

    2014-11-01

    Ethylene glycol ethers (EGEs) are components of many industrial and household products. Their hemolytic and gonadotoxic effects are relatively well known while their potential adverse effects on the central nervous system have not yet been clearly demonstrated. The aim of the present study was to examine the effects of 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE) and 2-ethoxyethanol (EE) on the total antioxidant capacity, activity of some antioxidant enzymes, such as the superoxide dismutase (SOD), catalase, glutathione peroxidase (GPX) and glutathione reductase and lipid peroxidation in the frontal cortex and hippocampus in the rat. These studies showed that BE and PHE decreased the total antioxidant activity, SOD and GPX activity, while increased lipid peroxidation in the frontal cortex. Like in the frontal cortex, also in the hippocampus BE and PHE attenuated the total antioxidant activity, however, lipid peroxidation was increased only in animals which received BE while reduction in GPX activity was present in rats administered PHE. The obtained data indicated that 4-week administration of BE and PHE, but not EE, reduced the total antioxidant activity and enhanced lipid peroxidation in the brain. In the frontal cortex, adverse effects of PHE and BE on lipid peroxidation probably depended on reduction in SOD and GPX activity, however, in the hippocampus the changes in the total antioxidant activity and lipid peroxidation were not connected with reduction of the investigated antioxidant enzyme activity.

  12. Improvement of thermal properties of water and ethylene glycol by metallic and ceramic dispersion

    NASA Astrophysics Data System (ADS)

    Mishra, Sripooja; Chinara, Manaswini; Nuthalapati, Mohan; Basu, A.

    2016-02-01

    Owing to rising need for more energy efficient coolant systems, the current work focuses on synthesis of Alumina-water, Alumina-Ethylene Glycol (EG), Zirconium-water, Zirconium-Ethylene Glycol particle dispersion systems for use as quenchants, with varying volume of particles obtained using a top-down approach of 10h ball milling. Characterisation of the particles was performed using XRD analysis, also measuring the crystallite size. Particle size measurement was also undertaken by using particle size analyzer, further corroborated by SEM analysis. A zeta-potential study was carried out to obtain the iso electric point for maintaining stability. Synthesis of the dispersions at different volume % of powders were followed by thermal conductivity measurements with water and EG base fluids, with and without addition of oleic acid as a surfactant. The stability studies were performed by visual observation. From the results it was observed that Al2O3 and Zr can increase conductivity of EG more prominently than water and stability of Zr based suspensions are better than Al2O3. Oleic acid did not play any positive role in these systems.

  13. Antiurolithiatic Effects of Solanum xanthocarpum Fruit Extract on Ethylene-Glycol-Induced Nephrolithiasis in Rats

    PubMed Central

    Patel, PK; Patel, MA; Saralai, MG; Gandhi, TR

    2012-01-01

    This study was designed to evaluate the effects of Solanum xanthocarpum fruit extract in ethylene-glycol-induced urolithiasis in the male Wistar rats. Nephrolithiasis was induced in male Wistar rats by adding ethylene glycol (0.75%) in drinking water for 28 days. Animals were divided into six groups, each containing six viz. Vehicle control, model control, S. xanthocarpum methanol extract in different doses of 100, 200, and 400 mg/kg p.o., Cystone (750 mg/kg, p.o.) served as a standard. Hyperoxaluria as well as an increase in the excretion of calcium, phosphate, uric acid and decrease in citrate and magnesium in urine, impairment of renal function and oxidative imbalance in kidney were observed in the calculi-induced group. Treatment with S. xanthocarpum decreases hyperoxaluria, calcium, and uric acid, improves renal function, and also produces antioxidant effects. Crystalluria was characterized by excretion calcium oxalate (CaOX) crystals, which were enormous in the lithogenic group but smaller in the drug-treated group. The histology showed that the calculi-induced group had a large deposition of CaOX crystals in kidney while the treated group had trivial and fewer deposits. The result indicates the antiurolithiatic activity of S. xanthocarpum mediated possibly by CaOX crystal inhibition, diuretic, antioxidant and maintaining balance between stone promoter and inhibitor constituents, and this study rationalized its medicinal use in urolithiasis. PMID:23112535

  14. Antiurolithiatic and antioxidant activity of Hordeum vulgare seeds on ethylene glycol-induced urolithiasis in rats

    PubMed Central

    Shah, Jignesh G.; Patel, Bharat G.; Patel, Sandip B.; Patel, Ravindra K.

    2012-01-01

    Objective: The objective was to investigate the antiurolithiatic and antioxidant activity of ethanolic extract of Hordeum vulgare seeds (EHV) on ethylene glycol-induced urolithiasis in Wistar albino rats. Materials and Methods: Urolithiasis was produced in Wistar albino rats by adding 0.75% v/v ethylene glycol (EG) to drinking water for 28 days. The ethanolic extract of Hordeum vulgare seeds (EHV) was assessed for its curative and preventive action in urolithiasis. In preventive treatment, the EHV given from 1st day to 28th day, while in the curative regimen, the EHV was given from 15th day to 28th day. Various renal functional and injury markers such as urine volume, calcium, phosphate, uric acid, magnesium, urea, and oxalate were evaluated using urine, serum, and kidney homogenate. Antioxidant parameters such as lipid peroxidation, superoxide dismutase, and catalase were also determined. Results: The EHV treatment (both preventive and curative) increased the urine output significantly compared to the control. The EHV treatment significantly reduced the urinary excretion of the calcium, phosphate, uric acid, magnesium, urea, and oxalate and increased the excretion of citrate compared to EG control. The increased deposition of stone forming constituents in the kidneys of calculogenic rats were significantly lowered by curative and preventive treatment with EHV. It was also observed that the treatment with EHV produced significant decrease in lipid peroxidation, and increased levels of superoxide dismutase and catalase. Conclusion: These results suggest the usefulness of ethanolic extract of Hordeum vulgare seeds as an antiurolithiatic and antioxidant agent. PMID:23248392

  15. Subchronic toxicity of ethylene glycol in Wistar and F-344 rats is related to metabolism and clearance of metabolites.

    SciTech Connect

    Cruzan, G; Corley, Rick A.; Hard, G; Mertens, J W.; McMartin, K. E.; Snellings, W; Gingell, Ralph; Deyo, J A.

    2004-10-01

    Ethylene Glycol (CAS RN 107-21-1) can to cause kidney toxicity via the formation of calcium oxalate crystals in a variety of species including humans. Numerous repeated dose studies conducted in rats have indicated that male rats are more susceptible than female rats. Furthermore, subchronic and chronic studies using different dietary exposure regimens have indicated that male Wistar rats may be more sensitive to renal toxicity than male F344 rats. This study was, therefore, conducted to compare the toxicity of ethylene glycol in the two strains of rats under identical exposure conditions and to evaluate the potential contribution of toxicokinetic differences to strain sensitivity. Ethylene glycol was mixed in the diet at concentrations to deliver constant target dosage levels of 0, 50, 150, 500, or 1000 mg/kg/day for 16 weeks to groups of 10 male Wistar and 10 male F-344 rats based upon weekly group mean body weights and feed consumption. Kidneys were examined histologically for calcium oxalate crystals and pathology. Samples of blood, urine and kidneys from satellite animals exposed to 0, 150, 500, or 1000 mg/kg/day for 1 or 16 weeks were analyzed for ethylene glycol, glycolic acid and oxalic acid. Treatment of Wistar rats at 1000 mg/kg/day resulted in the death of 2 rats; in addition, at 500 and 1000 mg/kg/day, group mean body weights were decreased compared to control throughout the 16 weeks. In F-344 rats exposed at 1000 mg/kg/day and in Wistar rats at 500 and 1000 mg/kg/day, there were lower urine specific gravities, higher urine volumes, and increased absolute and relative kidney weights. In both strains of rats treated at 500 and 1000 mg/kg/day, some or all treated animals had increased calcium oxalate crystals in the kidney tubules and crystal nephropathy. The effect was more severe in Wistar rats than in F-344 rats. Accumulation of oxalic acid in the kidneys of both strains of rats were consistent with the dose- and strain-dependent toxicity. As the

  16. Clinical Features of Reported Ethylene Glycol Exposures in the United States

    PubMed Central

    Jobson, Meghan A.; Hogan, Susan L.; Maxwell, Colin S.; Hu, Yichun; Hladik, Gerald A.; Falk, Ronald J.; Beuhler, Michael C.; Pendergraft, William F.

    2015-01-01

    Background Ethylene glycol is highly toxic and represents an important cause of poisonings worldwide. Toxicity can result in central nervous system dysfunction, cardiovascular compromise, elevated anion gap metabolic acidosis and acute kidney injury. Many states have passed laws requiring addition of the bittering agent, denatonium benzoate, to ethylene glycol solutions to reduce severity of exposures. The objectives of this study were to identify differences between unintentional and intentional exposures and to evaluate the utility of denatonium benzoate as a deterrent. Methods and Findings Using the National Poison Data System, we performed a retrospective analysis of reported cases of ethylene glycol exposures from January 2006 to December 2013. Outcome classification was summed for intentionality and used as a basis for comparison of effect groups. There were 45,097 cases of ethylene glycol exposures resulting in 154 deaths. Individuals more likely to experience major effects or death were older, male, and presented with more severe symptoms requiring higher levels of care. Latitude and season did not correlate with increased exposures; however, there were more exposures in rural areas. Denatonium benzoate use appeared to have no effect on exposure severity or number. Conclusion Deaths due to ethylene glycol exposure were uncommon; however, there were major clinical effects and more exposures in rural areas. Addition of denatonium benzoate was not associated with a reduction in exposures. Alternative means to deter ingestion are needed. These findings suggest the need to consider replacing ethylene glycol with alternative and less toxic agents. PMID:26566024

  17. Versatile and selective synthesis of "click chemistry" compatible heterobifunctional poly(ethylene glycol)s possessing azide and alkyne functionalities.

    PubMed

    Hiki, Shigehiro; Kataoka, Kazunori

    2010-02-17

    Versatile route for "click chemistry" compatible heterobifunctional PEGs was established through preparation of alpha-tetrahydropyranyloxy-omega-hydroxyl poly(ethylene glycol) (THP-PEG-OH) via ring-opening polymerization of ethylene oxide using 2-(tetrahydro-2H-pyran-2-yloxy)ethanol as an initiator, followed by the functionalization of omega-OH group to either the azido or alkyne group. Quantitative azidation of THP-PEG-OH was confirmed from the analysis of molecular functionality of the derivatives. While the conversion efficiency of omega-alkynation was appropriately 70%, the unreacted THP-PEG-OH fraction was successfully removed by ion-exchange chromatography after the carboxylation of the hydroxyl group with succinic anhydride. Then, the protecting group of the alpha-end, THP, was removed in mild acidic media, followed by two- or three-step modification of the resulting alpha-hydroxyl group to primary amino or thiol groups. Consequently, "click chemistry" compatible heterobifunctional PEG derivatives (X-PEG-Y; X = NH(2) and SH, Y =Azide and Alkyne) were synthesized with high efficiency and controlled molecular weight.

  18. Green polymer chemistry VIII: synthesis of halo-ester-functionalized poly(ethylene glycol)s via enzymatic catalysis.

    PubMed

    Castano, Marcela; Seo, Kwang Su; Kim, Eun Hye; Becker, Matthew L; Puskas, Judit E

    2013-09-01

    Halo-ester-functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo-esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo-esters with PEGs are complete in 4 h. (1) H and (13) C NMR spectroscopy with MALDI-ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and "green" process to effectively produce halo-ester PEGs.

  19. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  20. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels

    PubMed Central

    Lin, Chien-Chi

    2015-01-01

    The design and application of biomimetic hydrogels have become an important and integral part of modern tissue engineering and regenerative medicine. Many of these hydrogels are prepared from synthetic macromers (e.g., poly(ethylene glycol) or PEG) as they provide high degrees of tunability for matrix crosslinking, degradation, and modification. For a hydrogel to be considered biomimetic, it has to recapitulate key features that are found in the native extracellular matrix, such as the appropriate matrix mechanics and permeability, the ability to sequester and deliver drugs, proteins, and or nucleic acids, as well as the ability to provide receptor-mediated cell-matrix interactions and protease-mediated matrix cleavage. A variety of chemistries have been employed to impart these biomimetic features into hydrogel crosslinking. These chemistries, such as radical-mediated polymerizations, enzyme-mediated crosslinking, bio-orthogonal click reactions, and supramolecular assembly, may be different in their crosslinking mechanisms but are required to be efficient for gel crosslinking and ligand bioconjugation under aqueous reaction conditions. The prepared biomimetic hydrogels should display a diverse array of functionalities and should also be cytocompatible for in vitro cell culture and/or in situ cell encapsulation. The focus of this article is to review recent progress in the crosslinking chemistries of biomimetic hydrogels with a special emphasis on hydrogels crosslinked from poly(ethylene glycol)-based macromers. PMID:26029357

  1. Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube

    NASA Technical Reports Server (NTRS)

    Bernardo, Everett; Eian, Carroll S

    1945-01-01

    As part of an investigation of the cooling characteristics of liquid-cooled engines, tests were conducted with an electrically heated single-tube heat exchanger to determine the heat-transfer characteristics of an-e-2 ethylene glycol and other ethylene glycol-water mixtures. Similar tests were conducted with water and commercial butanol (n-butyl alcohol) for check purposes. The results of tests conducted at an approximately constant liquid-flow rate of 0.67 pound per second (Reynolds number, 14,500 to 112,500) indicate that at an average liquid temperature 200 degrees f, the heat-transfer coefficients obtained using water, nominal (by volume) 30 percent-70 percent and 70 percent-30 percent glycol-water mixtures are approximately 3.8, 2.8, and 1.4 times higher, respectively, than the heat-transfer coefficients obtained using an-e-2 ethylene glycol.

  2. Detection of poly(ethylene glycol) residues from nonionic surfactants in surface water by1h and13c nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, P.A.; Noyes, T.I.

    1991-01-01

    ??? Poly(ethylene glycol) (PEG) residues were detected in organic solute isolates from surface water by 1H nuclear magnetic resonance spectrometry (NMR), 13C NMR spectrometry, and colorimetric assay. PEG residues were separated from natural organic solutes in Clear Creek, CO, by a combination of methylation and chromatographic procedures. The isolated PEG residues, characterized by NMR spectrometry, were found to consist of neutral and acidic residues that also contained poly(propylene glycol) moieties. The 1H NMR and the colorimetric assays for poly(ethylene glycol) residues were done on samples collected in the lower Mississippi River and tributaries between St. Louis, MO, and New Orleans, LA, in July-August and November-December 1987. Aqueous concentrations for poly(ethylene glycol) residues based on colorimetric assay ranged from undetectable to ???28 ??g/L. Concentrations based on 1H NMR spectrometry ranged from undetectable to 145 ??g/L.

  3. Differential trace labeling of calmodulin: investigation of binding sites and conformational states by individual lysine reactivities. Effects of beta-endorphin, trifluoperazine, and ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    SciTech Connect

    Giedroc, D.P.; Sinha, S.K.; Brew, K.; Puett, D.

    1985-11-05

    The CaS -dependent association of beta-endorphin and trifluoperazine with porcine testis calmodulin, as well as the effects of removing CaS by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) treatment, were investigated by the procedure of differential kinetic labeling. This technique permitted determination of the relative rates of acylation of each of the epsilon-amino groups of the seven lysyl residues on calmodulin by (TH)acetic anhydride under the different conditions. In all cases, less than 0.52 mol of lysyl residue/mol of calmodulin was modified, thus ensuring that the labeling pattern reflects the microenvironments of these groups in the native protein. Lysines 75 and 94 were found to be the most reactive amino groups in CaS -saturated calmodulin. In the presence of CaS and under conditions where beta-endorphin and calmodulin were present at a molar ratio of 2.5:1, the amino groups of lysines 75 and 148 were significantly reduced in reactivity compared to calmodulin alone. At equimolar concentrations of peptides and proteins, essentially the same result was obtained except that the magnitudes of the perturbation of these two lysines were less pronounced. With trifluoperazine, at a molar ratio to calmodulin of 2.5:1, significant perturbations of lysines 75 and 148, as well as Lys 77, were also found. These results further substantiate previous observations of a commonality between phenothiazine and peptide binding sites on calmodulin. Lastly, an intriguing difference in CaS -mediated reactivities between lysines 75 and 77 of calmodulin is demonstrated. In the CaS -saturated form of the protein, both lysines are part of the long connecting helix between the two homologous halves of the protein.

  4. Biodegradable tri-block copolymer poly(lactic acid)-poly(ethylene glycol)-poly(l-lysine)(PLA-PEG-PLL) as a non-viral vector to enhance gene transfection.

    PubMed

    Fu, Chunhua; Sun, Xiaoli; Liu, Donghua; Chen, Zhijing; Lu, Zaijun; Zhang, Na

    2011-02-23

    Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH(2)-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.

  5. Ribonucleic acid-protein cross-linking within the intact Escherichia coli ribosome, utilizing ethylene glycol bis[3-(2-ketobutyraldehyde) ether], a reversible, bifunctional reagent: identification of 30S proteins.

    PubMed

    Brewer, L A; Noller, H F

    1983-08-30

    To obtain detailed topographical information concerning the spatial arrangement of the multitude of ribosomal proteins with respect to specific sequences in the three RNA chains of intact ribosomes, a reagent capable of covalently and reversibly joining RNA to protein has been synthesized [Brewer, L.A., Goelz, S., & Noller, H. F. (1983) Biochemistry (preceding paper in this issue)]. This compound, ethylene glycol bis[3-(2-ketobutyraldehyde) ether] which we term "bikethoxal", possesses two reactive ends similar to kethoxal. Accordingly, it reacts selectively with guanine in single-stranded regions of nucleic acid and with arginine in protein. The cross-linking is reversible in that the arginine- and guanine-bikethoxal linkage can be disrupted by treatment with mild base, allowing identification of the linked RNA and protein components by standard techniques. Further, since the sites of kethoxal modification within the RNA sequences of intact subunits are known, the task of identifying the components of individual ribonucleoprotein complexes should be considerably simplified. About 15% of the ribosomal protein was covalently cross-linked to 16S RNA by bikethoxal under our standard reaction conditions, as monitored by comigration of 35S-labeled protein with RNA on Sepharose 4B in urea. Cross-linked 30S proteins were subsequently removed from 16S RNA by treatment with T1 ribonuclease and/or mild base cleavage of the reagent and were identified by two-dimensional polyacrylamide gel electrophoresis. The major 30S proteins found in cross-linked complexes are S4, S5, S6, S7, S8, S9 (S11), S16, and S18. The minor ones are S2, S3, S12, S13, S14, S15, and S17.

  6. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy.

    PubMed

    Li, Tony Shing Chau; Yawata, Toshio; Honke, Koichi

    2014-02-14

    For effective ovarian cancer gene therapy, systemic administrated tumor-targeting siRNA/folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate (FA-PEG-COL) nanoparticles is vital for delivery to cancer site(s). siRNA/FA-PEG-COL nanoparticles were prepared by ionic gelation for effective FA receptor-expressing ovarian cancer cells transfection and in vivo accumulation. The chemical structure of FA-PEG-COL conjugate was characterized by MALDI-TOF-MS, FT-IR and (1)H NMR. The average size of siRNA/FA-PEG-COL nanoparticles was approximately 200 nm, and the surface charge was +8.4 mV compared to +30.5 mV with siRNA/COL nanoparticles. FA-PEG-COL nanoparticles demonstrated superior compatibility with erythrocytes in terms of degree of aggregation and haemolytic activity and also effects on cell viability was lower when compared with COL nanoparticles. FA grafting significantly facilitated the uptake of nanoparticles via receptor mediated endocytosis as demonstrated by flow cytometry. The in vitro transfection and gene knockdown efficiency of HIF-1α were superior to COL nanoparticles (76-62%, respectively) and was comparable to Lipofectamine 2000 (79%) as demonstrated by RT-qPCR and Western blot. Gene knockdown at the molecular level translated into effective inhibition of proliferation in vitro. Accumulation efficiency of FA-PEG-COL nanoparticles was investigated in BALB/c mice bearing OVK18 #2 tumor xenograft using in vivo imaging. The active targeting FA-PEG-COL nanoparticles showed significantly greater accumulation than the passive targeting COL nanoparticles. Based on the results obtained, siRNA/FA-PEG-COL nanoparticles show much potential for effective ovarian cancer treatment via gene therapy.

  7. Potentiation of aquatic pollution by ethylene glycol with regard to the aquatic angiosperm, Lemna gibba

    SciTech Connect

    Thomas, D.A.; Barber, J.T.; Yatsu, L.Y.; Ensley, H.E.

    1995-12-31

    Ethylene glycol is usually thought of as a benign component of urban runoff. Thus, its EC50 value, with regard to the vegetative growth of axenically grown Lemna gibba, is relatively high, viz. 164 mM. Ethylene glycol is not metabolized by Lemna but growth is demonstrably stimulated at concentrations below 75 mM. In the presence of ethylene glycol, the fronds of duckweed are dark green, translucent and the growth medium contains gas bubbles of carbon dioxide which result from an enhanced uptake of sucrose from the growth medium and its subsequent respiration. The uptake is a non-specific effect since the uptake of various other compounds, including water, is enhanced when duckweed is grown in the presence of ethylene glycol. The increased uptake of water, sucrose, inorganic ions and organic compounds results from an increased permeability due to the creation of intercellular holes in the aerenchymatous tissues of the ethylene glycol-treated plants. The mechanism by which ethylene glycol causes the holes is unknown but may involve a disruption in lipid metabolism since the hydrophobicity of the fronds is altered and their lipid composition is changed. The significance of this phenomenon is that toxicants, just like innocuous substances, are taken up in increased amounts by treated plants and as a result their toxicities are increased with regard to duckweed as evidenced by a decrease in their effective concentrations, often of more than 3-fold. These results suggest that although ethylene glycol itself may be benign, its presence in polluted waters containing other toxicants may potentiate the effects of those pollutants.

  8. Glycolic acid modulates the mechanical property and degradation of poly(glycerol, sebacate, glycolic acid).

    PubMed

    Sun, Zhi-Jie; Wu, Lan; Huang, Wei; Chen, Chang; Chen, Yan; Lu, Xi-Li; Zhang, Xiao-Lan; Yang, Bao-Feng; Dong, De-Li

    2010-01-01

    The development of biodegradable materials with controllable degradation properties is beneficial for a variety of applications. Poly(glycerol-sebacate) (PGS) is a promising candidate of biomaterials; so we synthesize a series of poly(glycerol, sebacate, glycolic acid) (PGSG) with 1:2:0, 1:2:0.2, 1:2:0.4, 1:2:0.6, 1:2:1 mole ratio of glycerol, sebacate, and glycolic acid to elucidate the relation of doped glycolic acid to the degradation rate and mechanical properties. The microstructures of the polymers with different doping of glycolic acid were dissimilar. PGSG with glycolic acid in the ratio of 0.2 displayed an integral degree of ordering, different to those with glycolic acid in the ratio of 0, 0.4, 0.6, and 1, which showed mild phase separation structure. The number, DeltaH(m), and temperature of the PGSG melting peaks tended to decrease with the increasing ratio of doped glycolic acid. In vitro and in vivo degradation tests showed that the degradation rate of PGSG with glycolic acid in the ratio of 0.2 was slowest, but in the ratio range of 0, 0.4, and 0.6, the degradation rate increased with the increase of glycolic acid. All PGSG samples displayed good tissue response and anticoagulant effects. Our data suggest that doping glycolic acid can modulate the microstructure and degree of crosslinking of PGS, thereby control the degradation rate of PGS.

  9. Engineering Poly(ethylene glycol) Materials to Promote Cardiogenesis

    NASA Astrophysics Data System (ADS)

    Smith, Amanda Walker

    Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles. Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture. In the third chapter of the

  10. Transport properties of carbon dioxide and ammonia in water - ethylene glycol mixtures from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Iskrenova, Eugeniya; Patnaik, Soumya S.

    2015-03-01

    The endothermic decomposition of ammonium carbamate has been proposed as a novel heat sink mechanism for aircraft thermal management (Johnson et al. SAE Technical Paper 2012-01-2190, 2012, doi:10.4271/2012-01-2190]). The products of this decomposition are carbon dioxide and ammonia which need to be efficiently removed in order to better control the decomposition reaction. Molecular dynamics simulations can provide insight into the transport properties of carbon dioxide and ammonia in the carrier fluid. In this work, an extensive set of molecular dynamics simulations was performed to better quantify the concentration dependence of solubility and diffusivity of carbon dioxide and ammonia in water, ethylene glycol, and their mixtures at standard temperature and pressure and at elevated temperature. The simulation results confirm the experimental observations that ammonia is more soluble than carbon dioxide in either water or ethylene glycol and that both carbon dioxide and ammonia are more soluble in ethylene glycol than in water. The simulations of water - ethylene glycol mixtures show that increasing the molar fraction of ethylene glycol leads to increased solubility of carbon dioxide and ammonia in the mixture. The authors gratefully acknowledge the DoD High Performance Computing Centers for computational resources.

  11. Photocatalytic current on a mercury electrode in acidified ethylene glycol solutions of tribenzylamine

    SciTech Connect

    Kokilashvili, R.G.; Dzhaparidze, Dzh.I.; Pleskov, Yu.V.

    1986-01-01

    In ethylene glycol solutions of acid on a mercury cathode in the presence of tribenzylamine (TrBA), catalytic currents of the liberation of hydrogen are observed. Under the same conditions, with illumination of the electrode, the authors detected photocurrents that can be interpreted as the light-stimulated catalytic liberation of hydrogen. In both cases the determining role, in all probability, is played by the tribenzylammonium cation adsorbed on mercury, according to the authors. Photocurrent was measured on an electrode in the form of a hanging mercury drop. An OSL-1 illuminator with DRSh-250 mercury lamp, with interface filters, was used to illuminate the electrode and in individual measurements an LPM-11 laser was used. The light intensity was varied with the aid of neutral glasses NG. The investigated process consists of photoreduction of adsorbed TrBAH/sup +/.

  12. Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release.

    PubMed

    Wei, Rongran; Cheng, Liang; Zheng, Meng; Cheng, Ru; Meng, Fenghua; Deng, Chao; Zhong, Zhiyuan

    2012-08-13

    Reduction-sensitive reversibly core-cross-linked micelles were developed based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid (PEG-b-PHPMA-LA) conjugates and investigated for triggered doxorubicin (DOX) release. Water-soluble PEG-b-PHPMA block copolymers were obtained with M(n,PEG) of 5.0 kg/mol and M(n,HPMA) varying from 1.7 and 4.1 to 7.0 kg/mol by reversible addition-fragmentation chain transfer (RAFT) polymerization. The esterification of the hydroxyl groups in the PEG-b-PHPMA copolymers with lipoic acid (LA) gave amphiphilic PEG-b-PHPMA-LA conjugates with degrees of substitution (DS) of 71-86%, which formed monodispersed micelles with average sizes ranging from 85.3 to 142.5 nm, depending on PHPMA molecular weights, in phosphate buffer (PB, 10 mM, pH 7.4). These micelles were readily cross-linked with a catalytic amount of dithiothreitol (DTT). Notably, PEG-b-PHPMA(7.0k)-LA micelles displayed superior DOX loading content (21.3 wt %) and loading efficiency (90%). The in vitro release studies showed that only about 23.0% of DOX was released in 12 h from cross-linked micelles at 37 °C at a low micelle concentration of 40 μg/mL, whereas about 87.0% of DOX was released in the presence of 10 mM DTT under otherwise the same conditions. MTT assays showed that DOX-loaded core-cross-linked PEG-b-PHPMA-LA micelles exhibited high antitumor activity in HeLa and HepG2 cells with low IC(50) (half inhibitory concentration) of 6.7 and 12.8 μg DOX equiv/mL, respectively, following 48 h incubation, while blank micelles were practically nontoxic up to a tested concentration of 1.0 mg/mL. Confocal laser scanning microscope (CLSM) studies showed that DOX-loaded core-cross-linked micelles released DOX into the cell nuclei of HeLa cells in 12 h. These reduction-sensitive disassemblable core-cross-linked micelles with excellent biocompatibility, superior drug loading, high extracellular stability, and triggered intracellular drug release are promising

  13. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    PubMed Central

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  14. Microgels of polyaspartamide and poly(ethylene glycol) derivatives obtained by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Pitarresi, Giovanna; Licciardi, Mariano; Craparo, Emanuela Fabiola; Calderaro, Elio; Spadaro, Giuseppe; Giammona, Gaetano

    2002-09-01

    The copolymer PHG based on α, β-poly( N-2-hydroxyethyl)- DL-aspartamide (PHEA) functionalized with glycidyl methacrylate has been exposed in aqueous solution to a γ-ray source at different irradiation doses (2, 2.5 and 3.5 kGy), alone or in combination with poly(ethylene glycol)dimethacrylate (PEGDMA) or poly(ethylene glycol)diacrylate (PEGDA). The irradiation produces microgel systems that have been characterized by viscosity measurements. Lyophilization of microgels gives rise to samples able to swell instantaneously in water whereas their treatment with acetone produces swellable microparticles that have been characterized.

  15. Synthesis, Characterization, and Size Control of Zinc Sulfide Nanoparticles Capped by Poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Allehyani, S. H. A.; Seoudi, R.; Said, D. A.; Lashin, A. R.; Abouelsayed, A.

    2015-11-01

    Zinc sulfide nanoparticles with controllable size were synthesized by chemical precipitation. Results from transmission electron microscopy and x-ray powder diffraction showed the samples were grown with the cubic phase. Particle size was varied by varying the molar ratio of zinc chloride to sodium sulfide in the presence of poly(ethylene glycol). The optical band gap was calculated on the basis of ultraviolet-visible spectroscopy and ranged from 4.13 to 4.31 eV depending on particle size. Surface passivation and adsorption of poly (ethylene glycol) on the nanoparticles was explained on the basis of Fourier-transform infrared measurements.

  16. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    SciTech Connect

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  17. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    SciTech Connect

    Mullins, David R; Chen, Tsung-Liang

    2011-01-01

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  18. Biodegradable Tri-Block Copolymer Poly(lactic acid)-poly(ethylene glycol)-poly(l-lysine)(PLA-PEG-PLL) as a Non-Viral Vector to Enhance Gene Transfection

    PubMed Central

    Fu, Chunhua; Sun, Xiaoli; Liu, Donghua; Chen, Zhijing; Lu, Zaijun; Zhang, Na

    2011-01-01

    Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH2-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo. PMID:21541064

  19. Supramolecular interactions between beta-cyclodextrin and hydrophobically end-capped poly(ethylene glycol)s: a quartz crystal microbalance study.

    PubMed

    Kham, Khémara; Guerrouache, Mohamed; Carbonnier, Benjamin; Lazerges, Mathieu; Perrot, Hubert; Millot, Marie-Claude

    2007-11-15

    In this study, the supramolecular interactions occurring between beta-cyclodextrin-based surfaces and macromolecular chains modified at one end with naphthyl, adamantyl, or phenyladamantyl hydrophobic groups were investigated by means of a quartz crystal microbalance. beta-Cyclodextrin-functionalized gold electrodes were obtained through the amide-coupling reaction between mono-6-deoxy-6-amino-beta-cyclodextrin and 11-mercaptoundecanoic acid self-assembled monolayer allowing the reproducible preparation of densely grafted surfaces with host properties. The interaction data obtained for the three different modified poly(ethylene glycol)s are in good agreement with our previous studies performed by high performance liquid chromatography and surface plasmon resonance. This evidences that the driving force for the supramolecular interaction is based on the inclusion of the hydrophobic terminal group of the chains within the cyclodextrin cavities. The reversibility of the inclusion process was proven through the regeneration of the original host properties of the sensing surfaces using sodium dodecylsulfate as a competitor for the desorption of the poly(ethylene glycol) chains.

  20. Green polymer chemistry VIII: synthesis of halo-ester-functionalized poly(ethylene glycol)s via enzymatic catalysis.

    PubMed

    Castano, Marcela; Seo, Kwang Su; Kim, Eun Hye; Becker, Matthew L; Puskas, Judit E

    2013-09-01

    Halo-ester-functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo-esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo-esters with PEGs are complete in 4 h. (1) H and (13) C NMR spectroscopy with MALDI-ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and "green" process to effectively produce halo-ester PEGs. PMID:23877930

  1. Determination of ethanolamine, ethylene glycol and triethylene glycol by ion chromatography for laboratory and field biodegradation studies.

    PubMed

    Mrklas, Ole; Chu, Angus; Lunn, Stuart

    2003-04-01

    The determination of alkanolamines and glycols in groundwater and subsurface environments is essential for environmental assessment, remediation and monitoring for selected industrial sites. Monoethanolamine (MEA), ammonium, sodium, magnesium and calcium detection was performed using cation exchange chromatography (IC) with suppressed conductivity detection. Acetate, chloride, nitrite, nitrate, phosphate, sulfate and oxalate were monitored employing anion exchange chromatography with suppressed conductivity. Detection of ethylene glycol (MEG) and triethylene glycol (TEG) and ethanol was carried out using ion exclusion chromatography with pulsed amperometric detection. Effective determination of MEA, MEG and TEG in complex groundwater matrices without compound transformation offered improved monitoring capabilities. This study presents robust analytical tools for MEA, MEG and TEG determination in biodegradation studies. Using ion chromatography offered significant advantages for the analyses of groundwater samples and laboratory bioreactor monitoring.

  2. Highly efficient conversion of biomass-derived glycolide to ethylene glycol over CuO in water.

    PubMed

    Xu, Lingli; Huo, Zhibao; Fu, Jun; Jin, Fangming

    2014-06-01

    The efficient conversion of biomass-derived glycolide into ethylene glycol over CuO in water was investigated. The reaction of glycolide was carried out with 25 mmol Zn and 6 mmol CuO with 25% water filling at 250 °C for 150 min, which yielded the desired ethylene glycol in 94% yield. PMID:24769741

  3. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ether from the list of hazardous air pollutants. 63.63 Section 63.63 Protection of Environment... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether...

  4. Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy.

    PubMed

    Synatschke, Christopher V; Nomoto, Takahiro; Cabral, Horacio; Förtsch, Melanie; Toh, Kazuko; Matsumoto, Yu; Miyazaki, Kozo; Hanisch, Andreas; Schacher, Felix H; Kishimura, Akihiro; Nishiyama, Nobuhiro; Müller, Axel H E; Kataoka, Kazunori

    2014-02-25

    We describe the preparation of well-defined multicompartment micelles from polybutadiene-block-poly(1-methyl-2-vinyl pyridinium methyl sulfate)-block-poly(methacrylic acid) (BVqMAA) triblock terpolymers and their use as advanced drug delivery systems for photodynamic therapy (PDT). A porphyrazine derivative was incorporated into the hydrophobic core during self-assembly and served as a model drug and fluorescent probe at the same time. The initial micellar corona is formed by negatively charged PMAA and could be gradually changed to poly(ethylene glycol) (PEG) in a controlled fashion through interpolyelectrolyte complex formation of PMAA with positively charged poly(ethylene glycol)-block-poly(L-lysine) (PLL-b-PEG) diblock copolymers. At high degrees of PEGylation, a compartmentalized micellar corona was observed, with a stable bottlebrush-on-sphere morphology as demonstrated by cryo-TEM measurements. By in vitro cellular experiments, we confirmed that the porphyrazine-loaded micelles were PDT-active against A549 cells. The corona composition strongly influenced their in vitro PDT activity, which decreased with increasing PEGylation, correlating with the cellular uptake of the micelles. Also, a PEGylation-dependent influence on the in vivo blood circulation and tumor accumulation was found. Fully PEGylated micelles were detected for up to 24 h in the bloodstream and accumulated in solid subcutaneous A549 tumors, while non- or only partially PEGylated micelles were rapidly cleared and did not accumulate in tumor tissue. Efficient tumor growth suppression was shown for fully PEGylated micelles up to 20 days, demonstrating PDT efficacy in vivo. PMID:24386876

  5. The significance of water quality guidelines in environmental decision making: Ethylene glycol -- A case example

    SciTech Connect

    Craig, G.R.; Gilron, G.L.; Bishop, J.; Cerf, J.; Williams, J.

    1995-12-31

    Ethylene glycol is a principal component of deicing and anti-icing products commonly applied to aircraft in winter prior to take-off. Many airports do not have efficient collection systems in place surrounding aquatic environments and biota are often exposed to ethylene glycol contained in direct runoff and snowmelt. This study was designed to fulfill the minimum ecotoxicity data requirements for the development of a water quality guideline for ethylene glycol. Ecotoxicity testing was conducted using reagent-grade ethylene glycol and exposure concentrations were confirmed by GC/FID direct aqueous injection, or based on spectrophotometric measurement of the purpene-glycol reaction. The highest ethylene glycol NOEC values for the organisms tested included rainbow trout fry growth 14,692 mg/L, fathead minnow fry growth 12,531 mg/l, Ceriodaphnia dubia reproduction 3,469 mg/L, the ciliate Colpidium campylum 28,090 mg/L, and the rotifer Brachionus calyciflorus 12,800 mg/L. The highest non-lethal level for rainbow trout and the for the frog Xenopus laevis was 12,500 mg/L. Results indicated that the 48-hr LC50 for Xenopus laevis reported in an earlier study (and which was used in the derivation of some interim guidelines) could not be reproduced. However, results of the fish and invertebrate tests compared favorably with other literature values for similar species and with QSAR estimates. A number of water quality derivation protocols (CCME, Ontario MOE, and US EPA) were applied to the data set for the comparison of generated guideline values. Differences in values demonstrate the economic need for using a common approach in developing guidelines that are used to assess hazard to similar ecosystems in different jurisdictions within a global marketplace.

  6. Detection of ethylene glycol - toward W51/e2 and G34.3+0.02

    NASA Astrophysics Data System (ADS)

    Lykke, Julie M.; Favre, Cécile

    2014-07-01

    Ethylene glycol (HOCH2CH2OH), also commenly known as antifreeze, is the reduced alcohol version of glycolaldehyde (CH2OHCHO). Glycoladehyde - the simplest possible aldehyde sugar (Marstokk and Møllendal 1973) - is the first intermediate step in the path toward forming more complex and biologically relevant molecules through the the formose reaction, which begins with formaldehyde (H2CO) and ends with the formation of sugars and ultimately ribose, the backbone of RNA (e.g., Larralde et al. 1995). The presence of glycolaldehyde is therefore an important indication that processes leading to biologically relevant molecules are taking place. It is however, still unclear as to how glycolaldehyde and ethylene glycol are formed in the ISM. It has been proposed that they share a common formation pathway through UV-irradiation of methanol (CH3OH) ices mixed with CO (Öberg et al. 2009). So far, ethylene glycol, in its lower energy con-former (g’Ga(CH2OH)2), has been detected toward SgrB2 (N) by Hollis et al. (2002), tentatively toward IRAS 16293-2422 (Jørgensen et al. 2012) and marginally by Kalenskii and Johansson (2010) toward W51 e1/e2. Here we present a firm detection of ethylene glycol toward W51/e2 as well as a first detection toward G34.3+0.02 at 1mm and 3mm using the IRAM 30m telescope.

  7. BULK SYNTHESIS OF SILVER NANORODS IN POLY(ETHYLENE GLYCOL) USING MICROWAVE IRRADIATION

    EPA Science Inventory

    Microwave-assisted (MW), surfactantless, greener approach to bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) is described. An aqueous solution of silver nitrate (AgNO-3,- 0.1 M, 4 mL) and 4 mL of PEG (molecular weight 300) were mixed at room temperature t...

  8. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  9. Insights on cryoprotectant toxicity from gene expression profiling of endothelial cells exposed to ethylene glycol.

    PubMed

    Cordeiro, Rui Martins; Stirling, Soren; Fahy, Gregory M; de Magalhães, João Pedro

    2015-12-01

    Cryopreservation consists of preserving living cells or tissues generally at -80 °C or below and has many current applications in cell and tissue banking, and future potential for organ banking. Cryoprotective agents such as ethylene glycol (EG) are required for successful cryopreservation of most living systems, but have toxic side effects whose mechanisms remain largely unknown. In this work, we investigated the mechanisms of toxicity of ethylene glycol in human umbilical vein endothelial cells (HUVECs) as a model of the vascular endothelium in perfused organs. Exposing cells to 60% v/v EG for 2 h at 4 °C resulted in only a slight decrease in subsequent cell growth, suggesting only modest toxicity of EG for this cell type. Gene expression analysis with whole genome microarrays revealed signatures indicative of a generalized stress response at 24 h after EG exposure and a trend toward partial recovery at 72 h. The observed changes involved signalling pathways, glycoproteins, and genes involved in extracellular and transmembrane functions, the latter suggesting potential effects of ethylene glycol on membranes. These results continue to develop a new paradigm for understanding cryoprotectant toxicity and reveal molecular signatures helpful for future experiments in more completely elucidating the toxic effects of ethylene glycol in vascular endothelial cells and other cell types. PMID:26471925

  10. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (EGBE) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessme...

  11. AN EVALUATION OF THE HUMAN CARCINOGENIC POTENTIAL OF ETHYLENE GLYCOL BUTYL ETHER (EGBE)

    EPA Science Inventory

    Background

    The position paper, An Evaluation of the Human Carcinogenic Potential of Ethylene Glycol Butyl Ether, was developed in support of the Agency's evaluation of a petition from the...

  12. 76 FR 31471 - Ethylene Glycol; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... ethylene glycol. In the Federal Register of July 9, 2008 (73 FR 39291) (FRL-8371-2), EPA issued a notice..., Illinois 60527; BASF, 26 Davis Drive, Research Triangle Park, NC 27709; Stepan Company, 22 W. Frontage Road... comment in response to the notice of filing. Also, in the Federal Register of August 4, 2004 (69 FR...

  13. Reaction Kinetics of Ethylene Glycol Reforming over Platinum in the Vapor versus Aqueous Phases

    SciTech Connect

    Kandoi, Shampa; Greeley, Jeffrey P.; Simonetti, Dante A.; Shabaker, John; Dumesic, James A.; Mavrikakis, Manos

    2010-08-12

    First-principles, periodic, density functional theory (DFT) calculations are carried out on Pt(111) to investigate the structure and energetics of dehydrogenated ethylene glycol species and transition states for the cleavage of C-H/O-H and C-C bonds. Additionally, reaction kinetics studies are carried out for the vapor phase reforming of ethylene glycol (C2H6O2) over Pt/Al2O3 at various temperatures, pressures, and feed concentrations. These results are compared to data for aqueous phase reforming of ethylene glycol on this Pt catalyst, as reported in a previous publication (Shabaker, J. W.; et al. J. Catal. 2003, 215, 344). Microkinetic models were developed to describe the reaction kinetics data obtained for both the vapor-phase and aqueous-phase reforming processes. The results suggest that C-C bond scission in ethylene glycol occurs at an intermediate value of x (3 or 4) in C2HxO2. It is also found that similar values of kinetic parameters can be used to describe the vapor and aqueous phase reforming data, suggesting that the vapor phase chemistry of this reaction over platinum is similar to that in the aqueous phase over platinum.

  14. Reaction kinetics of ethylene glycol reforming over platinum in the vapor versus aqueous phases

    SciTech Connect

    Kandoi, Shampa; Greeley, Jeff; Simonetti, Dante; Shabaker, John; Dumesic, James A.; Mavrikakis, Manos

    2010-08-12

    First-principles, periodic, density functional theory (DFT) calculations are carried out on Pt(111) to investigate the structure and energetics of dehydrogenated ethylene glycol species and transition states for the cleavage of C–H/O–H and C–C bonds. Additionally, reaction kinetics studies are carried out for the vapor phase reforming of ethylene glycol (C₂H₆O₂) over Pt/Al₂O₃ at various temperatures, pressures, and feed concentrations. These results are compared to data for aqueous phase reforming of ethylene glycol on this Pt catalyst, as reported in a previous publication (Shabaker, J. W.; et al. J. Catal. 2003, 215, 344). Microkinetic models were developed to describe the reaction kinetics data obtained for both the vapor-phase and aqueous-phase reforming processes. The results suggest that C–C bond scission in ethylene glycol occurs at an intermediate value of x (3 or 4) in C₂HxO₂. It is also found that similar values of kinetic parameters can be used to describe the vapor and aqueous phase reforming data, suggesting that the vapor phase chemistry of this reaction over platinum is similar to that in the aqueous phase over platinum.

  15. Human Oocyte Vitrification: The permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification

    PubMed Central

    Mullen, Steven F.; Li, Mei; Li, Yuan; Chen, Zi-Jiang; Critser, John K.

    2008-01-01

    Objectives To determine the permeability of human metaphase II oocytes to ethylene glycol and water in the presence of ethylene glycol, and to use this information to develop a method to vitrify human oocytes. Design An incomplete randomized block design was used for this study. Setting A University-affiliated assisted reproductive center. Patients Women undergoing assisted reproduction in the Center for Reproductive Medicine at Shandong University. Interventions Oocytes were exposed to 1.0 molar ethylene glycol in a single step, and photographed during subsequent volume excursions. Main outcome measures A 2-parameter model was employed to estimate the permeability to water and EG. Results Water permeability ranged from 0.15 to 1.17 µm/(min·atm), and ethylene glycol permeability ranged from 1.5 to 30 µm/min between 7 °C at 36 °C. The activation energies for water and ethylene glycol permeability were 14.42 Kcal/mol and 21.20 Kcal/mol, respectively. Conclusions Despite the lower permeability of human MII oocytes to ethylene glycol compared to previously published values for propylene glycol and dimethylsulfoxide, methods to add and remove human oocytes with a vitrifiable concentration of ethylene glycol can be designed which prevent excessive osmotic stress and minimize exposure to high concentrations of this compound. PMID:17681308

  16. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Ethylene Glycol.

    PubMed

    2004-01-01

    The National Toxicology Program (NTP) Center for the Evaluation of Risks to Human Reproduction (CERHR) conducted an evaluation of the potential for ethylene glycol (EG) to cause adverse effects on reproduction and development in humans. EG was selected for evaluation due to recent toxicity and occupational exposure information and widespread exposure in the general public. EG is a small, hydroxy-substituted hydrocarbon used as a chemical intermediate in the production of polyester compounds. It is also found in automotive anti-freeze, industrial coolants, hydraulic fluids, and windshield deicer fluids. The results of this evaluation on EG are published in a NTP-CERHR monograph which includes: 1) the Expert Panel Report on the Reproductive and Developmental Toxicity of Ethylene Glycol, 2) the NTP Brief, and 3) public comments received on the Expert Panel Report. As stated in the NTP Brief, the NTP reached the following conclusions regarding the possible effects of exposure to EG on human development and reproduction based on the conclusions of the NTP-CERHR Expert Panel Report and the public comments received on that report. These conclusions concurred with those of the expert panel. First, although EG could possibly affect human development if exposures are sufficiently high, there is negligible concern for developmental effects in humans at current proposed/estimated exposure levels. There is no direct evidence that exposure of people to EG adversely affects reproduction or development, but studies reviewed by the expert panel show that oral exposure to high doses of EG can adversely affect development in mice and rats. These studies indicate doses that exceed saturation of the glycolic acid metabolism are needed to produce developmental toxicity. Proposed exposure scenarios constructed by the expert panel and current proposed/estimated exposure levels suggest that human exposures are at least 100- to 1000-fold lower than the dose expected to result in metabolic

  17. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    NASA Astrophysics Data System (ADS)

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and

  18. Development of biodegradable and injectable macromers based on poly(ethylene glycol) and diacid monomers.

    PubMed

    Kim, Jinku; Yaszemski, Michael J; Lu, Lichun

    2009-09-15

    Novel biodegradable injectable poly(ethylene glycol)-(PEG) based macromers were synthesized by reacting low-molecular weight PEG (MW: 200) and dicarboxylic acids such as sebacic acid or terephthalic acid. Chemical structures of the resulting polymers were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy characterizations. Differential scanning calorimetry (DSC) showed that these polymers were completely amorphous above room temperature. After photopolymerization, dynamic elastic shear modulus of the crosslinked polymers was up to 1.5 MPa and compressive modulus was up to 2.2 MPa depending on the polymer composition. The in vitro degradation study showed that mass losses of these polymers were gradually decreased over 23 weeks of period in simulated body fluid. By incorporating up to 30 wt % of 2-hydroxyethyl methylmethacrylate (HEMA) into the crosslinking network, the dynamic elastic modulus and compressive modulus was significantly increased up to 7.2 and 3.2 MPa, respectively. HEMA incorporation also accelerated the degradation as indicated by substantially higher mass loss of up to 27% after 20 weeks of incubation. Cytocompatability studies using osteoblasts and neural cells revealed that cell metabolic activity on these polymers with or without HEMA was close to the control tissue culture polystyrene. The PEG-based macromers developed in this study may be useful as scaffolds or cell carriers for tissue engineering applications. PMID:18655146

  19. Targeted gene delivery mediated by folate-polyethylenimine-block-poly(ethylene glycol) with receptor selectivity.

    PubMed

    Cheng, Han; Zhu, Jing-Ling; Zeng, Xuan; Jing, Yue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2009-03-18

    The folate receptor (FR) is a tumor marker overexpressed in large numbers of cancer cells. Folic acid has high affinity to the FR and retains its binding affinity upon derivatization via its gamma-carboxyl. Therefore, in this article, folate-polyethylenimine-block-poly(ethylene glycol) (FOL-PEI-b-PEG) was designed for specific receptor targeted gene delivery. Physicochemical characterizations of resulting FOL-PEI-b-PEG/DNA complexes in terms of agarose gel electrophoresis, particle size, and zeta potential measurements were investigated. The results indicated that FOL-PEI-b-PEG was able to condense plasmid DNA tightly with a suitable particle size. The cytotoxicity study indicated that the copolymer exhibited less toxicity in comparison with that of 25 kDa PEI. Luciferase assay and green fluorescent protein (GFP) detections were also used to confirm that FOL-PEI-b-PEG could be an effective gene vector. Importantly, transfection efficiency of FOL-PEI-b-PEG with free folic acid was much lower than that of the copolymer without free folic acid on FR-positive HeLa cells, suggesting that FOL-PEI-b-PEG has great potential as a targeting gene vector.

  20. Development of Biodegradable and Injectable Macromers Based on Poly(Ethylene Glycol) and Diacid Monomers

    PubMed Central

    Kim, Jinku; Yaszemski, Michael J.; Lu, Lichun

    2010-01-01

    Novel biodegradable injectable poly(ethylene glycol) (PEG) based macromers were synthesized by reacting low molecular weight PEG (MW: 200) and dicarboxylic acids such as sebacic acid or terephthalic acid. Chemical structures of the resulting polymers were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy characterizations. Differential scanning calorimetry (DSC) showed that these polymers were completely amorphous above room temperature. After photopolymerization, dynamic elastic shear modulus of the crosslinked polymers was up to 1.5 MPa and compressive modulus was up to 2.2 MPa depending on the polymer composition. The in vitro degradation study showed that mass losses of these polymers were gradually decreased over 23 weeks of period in simulated body fluid. By incorporating up to 30 wt% of 2-hydroxyethyl methylmethacrylate (HEMA) into the crosslinking network, the dynamic elastic modulus and compressive modulus was significantly increased up to 7.2 MPa and 3.2 MPa, respectively. HEMA incorporation also accelerated degradation as indicated by significantly higher mass loss of up to 27% after 20 weeks of incubation. Cytocompatability studies using osteoblasts and neural cells revealed that cell metabolic activity on these polymers with or without HEMA was close to the control tissue culture polystyrene. The PEG based macromers developed in this study may be useful as scaffolds or cell carriers for tissue engineering applications. PMID:18655146

  1. Ethylene glycol (antifreeze) poisoning in a free-ranging polar bear

    SciTech Connect

    Amstrup, S.C.; Gardner, C.; Myers, K.C.; Oehme, F.W. )

    1989-08-01

    The bright, fluorescent pink-colored remains of a polar bear were found on an Alaskan island with the gravel and snow adjacent to the bear colored bright purple. Traces of fox urine and feces found nearby were also pink. The pink and purple colors were due to rhodamine B, and ethylene glycol (EG) was present in the soil under the carcass. Evidence is given to suggest the bear consumed a mixture of rhodamine B and EG commonly used to mark roads and runways during snow and ice periods. Such wildlife losses could be prevented by substituting propylene glycol for the EG in such mixtures.

  2. Toxicity of formulated glycol deicers and ethylene and propylene glycol to lactuca sativa, lolium perenne, selenastrum capricornutum, and lemna minor

    PubMed

    Pillard; DuFresne

    1999-07-01

    Laboratory studies were conducted to determine the toxicity of ethylene glycol (EG) and propylene glycol (PG) as well as two formulated glycol aircraft deicing/anti-icing fluids (ADAFs) to lettuce (Lactuca sativa), perennial ryegrass (Lolium perenne), a green alga (Selenastrum capricornutum), and duckweed (Lemna minor). Seedling emergence, root length, and shoot length were measured in lettuce and ryegrass; cell growth of the alga and frond growth, chlorophyll a, and pheophytin a of the duckweed were measured. While both the ADAFs and pure glycols were toxic to the test species, there were substantial differences in how the organisms responded to the test materials. ADAFs affected emergence in ryegrass more than in lettuce. However, when considering the sublethal endpoints of root and shoot length, the ADAFs were significantly more toxic to lettuce. The root length 120-h IC25s for lettuce were 2,710 and 21, 270 mg EG/L for the ADAF and pure EG compound, respectively; the root length 120-h IC25s for ryegrass were 4,150 and 3,620 mg EG/L for the ADAF and pure EG compound, respectively. EG and PG ADAFs were more toxic than pure EG or PG to L. minor. To S. capricornutum, EG ADAF toxicity was similar to EG toxicity, however, PG ADAF was substantially more toxic to the alga than pure PG. The greater toxicity of ADAFs is reflective of other studies using animals and suggests that although glycols no doubt contribute to toxicity in deicer formulations, other compounds in the mixtures also contribute to the toxicity of the deicers. However, differences in responses between the four plant species suggest differences in modes of action and/or how the plants metabolize the compounds.http://link. springer-ny.com/link/service/journals/00244/bibs/37n1p29.html

  3. Glycolic acid peel therapy - a current review.

    PubMed

    Sharad, Jaishree

    2013-01-01

    Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, postinflammatory hyperpigmentation, photoaging, and seborrhea. Combination therapies and treatment procedure are also discussed. Careful review of medical history, examination of the skin, and pre-peel priming of skin are important before every peel. Proper patient selection, peel timing, and neutralization on-time will ensure good results, with no side effects. Depth of the glycolic acid peel depends on the concentration of the acid used, the number of coats applied, and the time for which it is applied. Hence, it can be used as a very superficial peel, or even a medium depth peel. It has been found to be very safe with Fitzpatrick skin types I-IV. All in all, it is a peel that is here to stay. PMID:24399880

  4. Antilithiatic effect of Asparagus racemosus Willd on ethylene glycol-induced lithiasis in male albino Wistar rats.

    PubMed

    Christina, A J M; Ashok, K; Packialakshmi, M; Tobin, G C; Preethi, J; Murugesh, N

    2005-11-01

    The ethanolic extract of Asparagus racemosus Willd. was evaluated for its inhibitory potential on lithiasis (stone formation), induced by oral administration of 0.75% ethylene glycolated water to adult male albino Wistar rats for 28 days. The ionic chemistry of urine was altered by ethylene glycol, which elevated the urinary concentration of crucial ions viz. calcium, oxalate, and phosphate, thereby contributing to renal stone formation. The ethanolic extract, however, significantly (p < 0.05) reduced the elevated level of these ions in urine. Also, it elevated the urinary concentration of magnesium, which is considered as one of the inhibitors of crystallization. The high serum creatinine level observed in ethylene glycol-treated rats was also reduced, following treatment with the extract. The histopathological findings also showed signs of improvement after treatment with the extract. All these observations provided the basis for the conclusion that this plant extract inhibits stone formation induced by ethylene glycol treatment.

  5. Antilithiatic effect of Asparagus racemosus Willd on ethylene glycol-induced lithiasis in male albino Wistar rats.

    PubMed

    Christina, A J M; Ashok, K; Packialakshmi, M; Tobin, G C; Preethi, J; Murugesh, N

    2005-11-01

    The ethanolic extract of Asparagus racemosus Willd. was evaluated for its inhibitory potential on lithiasis (stone formation), induced by oral administration of 0.75% ethylene glycolated water to adult male albino Wistar rats for 28 days. The ionic chemistry of urine was altered by ethylene glycol, which elevated the urinary concentration of crucial ions viz. calcium, oxalate, and phosphate, thereby contributing to renal stone formation. The ethanolic extract, however, significantly (p < 0.05) reduced the elevated level of these ions in urine. Also, it elevated the urinary concentration of magnesium, which is considered as one of the inhibitors of crystallization. The high serum creatinine level observed in ethylene glycol-treated rats was also reduced, following treatment with the extract. The histopathological findings also showed signs of improvement after treatment with the extract. All these observations provided the basis for the conclusion that this plant extract inhibits stone formation induced by ethylene glycol treatment. PMID:16357948

  6. Antiurolithiatic effect of lithocare against ethylene glycol-induced urolithiasis in Wistar rats

    PubMed Central

    Lulat, Sumaiya I.; Yadav, Yogesh Chand; Balaraman, R.; Maheshwari, Rajesh

    2016-01-01

    Aim: This study is aimed to investigate the protective effect of Lithocare (LC) (a polyherbal formulation) against ethylene glycol (EG) induced urolithiasis in Wistar rats. Materials and Methods: The protective effect of LC (400 and 800 mg/kg) was evaluated using EG-induced urolithiasis in rats. Results: Administration of EG in drinking water resulted in hyperoxaluria, hypocalcemia as well as an increased renal excretion of phosphate. Supplementation with LC significantly reduced the urinary calcium, oxalate, and phosphate excretion dose-dependently. There was a significant reduction in the levels of calcium, oxalate as well as a number of calcium oxalate crystals deposits in the kidney tissue of rats administered with LC in EG-treated rats. There was a significant reduction in creatinine, urea, uric acid, and blood urea nitrogen when LC was administered in EG-treated rats. Conclusions: From this study, it was concluded that the supplementation of LC protected EG-induced urolithiasis as it reduced the growth of urinary stones. The mechanism underlying this effect might be due to its antioxidant, diuretic, and reduction in stone-forming constituents. PMID:26997728

  7. Reproductive toxicity of ethylene glycol monoethyl ether in Aldh2 knockout mice.

    PubMed

    Wang, Rui-Sheng; Ohtani, Katsumi; Suda, Megumi; Kitagawa, Kyoko; Nakayama, Keiichi; Kawamoto, Toshihiro; Nakajima, Tamie

    2007-08-01

    Ethylene glycol monoethyl ether (EGEE) can cause damage to testes and sperm, and its metabolites are believed to play an important role in its toxicity. Aldehyde dehydrogenase 2 (ALDH2) is involved in the metabolism of this chemical. To investigate whether and how the enzyme affects the toxicity of EGEE, we conducted experiments comparing Aldh2 knockout mice with wild-type mice. Administration of EGEE at 100 and 600 mg/kg/day for one week did not induce any significant change in the weight and body weight ratios of testes, prostate and epididymides in either Aldh2 knockout or wild-type mice. However, motion of sperm from the spermaduct, as analyzed with a Hamilton-Thorne Sperm analyzer, was slightly decreased in the low dose group, and significantly lower in the high dose group; and the percentage of progressive sperm was also reduced in the two EGEE groups. This effect of EGEE treatment was observed in the wild-type, but not in the Aldh2 knockout mice. Sperm motion from the cauda epididymides was not affected. On the other hand, the concentration of ethoxyacetic acid, a metabolite of EGEE, in 24 h pooled urine of EGEE-treated Aldh2 knockout mice was not significantly lower than that of the wild-type mice on most days of urine sampling. These results suggest that inactivation of the ALDH2 enzyme due to gene mutation may be linked to differences in the susceptibility to EGEE-induced sperm toxicity. PMID:17878629

  8. Interaction of Hyaluronan Binding Peptides with Glycosaminoglycans in Poly(ethylene glycol) Hydrogels

    PubMed Central

    2015-01-01

    This study investigates the incorporation of hyaluronan (HA) binding peptides into poly(ethylene glycol) (PEG) hydrogels as a mechanism to bind and retain hyaluronan for applications in tissue engineering. The specificity of the peptide sequence (native RYPISRPRKRC vs non-native RPSRPRIRYKC), the role of basic amino acids, and specificity to hyaluronan over other GAGs in contributing to the peptide–hyaluronan interaction were probed through experiments and simulations. Hydrogels containing the native or non-native peptide retained hyaluronan in a dose-dependent manner. Ionic interactions were the dominating mechanism. In diH2O the peptides interacted strongly with HA and chondroitin sulfate, but in phosphate buffered saline the peptides interacted more strongly with HA. For cartilage tissue engineering, chondrocyte-laden PEG hydrogels containing increasing amounts of HA binding peptide and exogenous HA had increased retention and decreased loss of cell-secreted proteoglycans in and from the hydrogel at 28 days. This new matrix-interactive hydrogel platform holds promise for tissue regeneration. PMID:24597474

  9. ROLE OF TUNGSTEN IN THE AQUEOUS PHASE HYDRODEOXYGENATION OF ETHYLENE GLYCOL ON TUNGSTATED ZIRCONIA SUPPORTED PALLADIUM

    SciTech Connect

    Marin-Flores, Oscar G.; Karim, Ayman M.; Wang, Yong

    2014-11-15

    The focus of the present work was specifically on the elucidation of the role played by tungsten on the catalytic activity and selectivity of tungstated zirconia supported palladium (Pd-mWZ) for the aqueous phase hydrodeoxygenation (APHDO) of ethylene glycol (EG). Zirconia supported palladium (Pd-mZ) was used as reference. The catalysts were prepared via incipient wet impregnation and characterized using X-ray diffraction (XRD), temperature-programmed reduction (TPR), CO pulse chemisorption, CO-DRIFTS, ammonia temperature-programmed desorption (NH3-TPD) and pyridine adsorption. The presence of W results in larger Pd particles on supported Pd catalysts, i.e., 0.9 and 6.1 nm Pd particles are for Pd-mZ and Pd-mWZ, respectively. For comparison purposes, the activity of the catalytic materials used in this work was obtained using a well-defined set of operating conditions. The catalytic activity measurements show that the overall intrinsic activity of Pd particles on mWZ is 1.9 times higher than on mZ. APHDO process appears to be highly favored on Pd-mWZ whereas Pd-mZ exhibits a higher selectivity for reforming. This difference in terms of selectivity seems to be related to the high concentration of Brønsted acid sites and electron-deficient Pd species present on Pd-mWZ.

  10. Interaction of hyaluronan binding peptides with glycosaminoglycans in poly(ethylene glycol) hydrogels.

    PubMed

    Roberts, Justine J; Elder, Robert M; Neumann, Alexander J; Jayaraman, Arthi; Bryant, Stephanie J

    2014-04-14

    This study investigates the incorporation of hyaluronan (HA) binding peptides into poly(ethylene glycol) (PEG) hydrogels as a mechanism to bind and retain hyaluronan for applications in tissue engineering. The specificity of the peptide sequence (native RYPISRPRKRC vs non-native RPSRPRIRYKC), the role of basic amino acids, and specificity to hyaluronan over other GAGs in contributing to the peptide-hyaluronan interaction were probed through experiments and simulations. Hydrogels containing the native or non-native peptide retained hyaluronan in a dose-dependent manner. Ionic interactions were the dominating mechanism. In diH2O the peptides interacted strongly with HA and chondroitin sulfate, but in phosphate buffered saline the peptides interacted more strongly with HA. For cartilage tissue engineering, chondrocyte-laden PEG hydrogels containing increasing amounts of HA binding peptide and exogenous HA had increased retention and decreased loss of cell-secreted proteoglycans in and from the hydrogel at 28 days. This new matrix-interactive hydrogel platform holds promise for tissue regeneration. PMID:24597474

  11. Steric stabilization of "charge-free" cellulose nanowhiskers by grafting of poly(ethylene glycol).

    PubMed

    Araki, Jun; Mishima, Shiho

    2015-01-01

    A sterically stabilized aqueous suspension of "charge-free" cellulose nanowhiskers was prepared by hydrochloric acid hydrolysis of cotton powders and subsequent surface grafting of monomethoxy poly(ethylene glycol) (mPEG). The preparation scheme included carboxylation of the terminal hydroxyl groups in mPEG via oxidation with silica gel particles carrying 2,2,6,6-tetramethyl-1-pyperidinyloxyl (TEMPO) moieties and subsequent esterification between terminal carboxyls in mPEG and surface hydroxyl groups of cellulose nanowhiskers, mediated by 1,1'-carbonyldiimidazole (CDI) in dimethyl sulfoxide or dimethylacetamide. Some of the prepared PEG-grafted samples showed remarkable flow birefringence and enhanced stability after 24 h, even in 0.1 M NaCl, suggesting successful steric stabilization by efficient mPEG grafting. Actual PEG grafting via ester linkages was confirmed by attenuated total reflectance-Fourier transform infrared spectrometry. In a typical example, the amount of grafted mPEG was estimated as ca. 0.3 g/g cellulose by two measurements, i.e., weight increase after grafting and weight loss after alkali cleavage of ester linkages. Transmission electron microscopy indicated unchanged nanowhisker morphology after mPEG grafting. PMID:25547722

  12. Dendritic polyglycerol-poly(ethylene glycol)-based polymer networks for biosensing application.

    PubMed

    Dey, Pradip; Adamovski, Miriam; Friebe, Simon; Badalyan, Artavazd; Mutihac, Radu-Cristian; Paulus, Florian; Leimkühler, Silke; Wollenberger, Ulla; Haag, Rainer

    2014-06-25

    This work describes the formation of a new dendritic polyglycerol-poly(ethylene glycol)-based 3D polymer network as a matrix for immobilization of the redox enzyme periplasmatic aldehyde oxidoreductase to create an electrochemical biosensor. The novel network is built directly on the gold surface, where it simultaneously stabilizes the enzyme for up to 4 days. The prepared biosensors can be used for amperometric detection of benzaldehyde in the range of 0.8-400 μM. PMID:24882361

  13. Ethylene Glycol Assisted Synthesis of Fluorine Doped Tin Oxide Nanorods Using Improved Spray Pyrolysis Deposition Method

    NASA Astrophysics Data System (ADS)

    Liyanage, Devinda; Mudiyanselage Navaratne Bandara, Herath; Jayaweera, Viraj; Murakami, Kenji

    2013-08-01

    Fluorine-doped tin oxide nanorod transparent thin films were fabricated with SnCl4·5H2O, NH4F, and ethylene glycol (EG) using an improved spray pyrolysis deposition technique. The fabricated nanorods showed a low resistance of 15.3 Ω/sq and a good transparency of 70.8%. The nanorods have a higher surface area than the conventionally used thin films.

  14. Radiation-grafting of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) onto silicone rubber

    NASA Astrophysics Data System (ADS)

    Flores-Rojas, G. G.; Bucio, E.

    2016-10-01

    Silicone rubber (SR) was modified with a graft of ethylene glycol dimethacrylate (EGDMA) and glycidyl methacrylate (GMA) using either gamma-radiation or azobisisobutyronitrile (AIBN). The graft efficiency was evaluated as a function of monomer concentration, absorbed dose, reaction temperature, and concentration of AIBN. The hydrophilicity of the grafted films was measured by contact angle and their equilibrium swelling time in ethanol. Additional characterization by infrared (FTIR-ATR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) is also reported.

  15. A Symmetric Recognition Motif between Vicinal Diols: The Fourfold Grip in Ethylene Glycol Dimer

    PubMed Central

    Kollipost, Franz; Otto, Katharina E.

    2016-01-01

    Abstract Ethylene glycol has a transiently chiral, asymmetric global minimum structure, but it favors a highly symmetric, achiral dimer arrangement which has not been considered or found in previous quantum‐chemical studies. Complementary FTIR and Raman spectroscopy in supersonic jets allows for the detection and straightforward assignment of this four‐fold hydrogen‐bonded dimer, which introduces an interesting supramolecular binding motif for vicinal diols and provides a strong case for transient chirality synchronization. PMID:26929113

  16. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  17. Catalytic activity of non-cross-linked microcrystals of aspartate aminotransferase in poly(ethylene glycol).

    PubMed Central

    Kirsten, H; Christen, P

    1983-01-01

    The molar activity of crystalline mitochondrial aspartate aminotransferase is decreased to 10% of that of the enzyme in solution. The activity was measured in suspensions of non-cross-linked microcrystals (average dimensions 22 microns X 5 microns X 0.8 microns) in 30% (w/v) poly(ethylene glycol). Kinetic tests ruled out the possibility that diffusion of the substrate in the crystals is rate-limiting. The observed decrease in catalytic efficiency can be attributed exclusively to crystal-packing effects. A direct inhibition by poly(ethylene glycol) is excluded because poly(ethylene glycol), with average Mr 6000, cannot penetrate the liquid channels of the crystals, owing to its large Stokes radius. The crystals examined were triclinic and of the same habit as those used for high-resolution X-ray-crystallographic analysis [Ford, Eichele & Jansonius (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2559-2563]. The catalytic competence of crystalline aspartate aminotransferase confirms the relevance of the spatial model of this protein for the elucidation of its mechanism of action. Images Fig. 1. PMID:6870840

  18. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.

    PubMed

    Selvakumar, P; Suresh, S

    2014-03-01

    Heat transfer in electronic devices such as micro processors and power converters is much essential to keep these devices cool for the better functioning of the systems. Air cooled heat sinks are not able to remove the high heat flux produced by the today's electronic components. Liquids work better than air in removing heat. Thermal conductivity which is the most essential property of any heat transfer fluid can be enhanced by adding nano scale solid particles which possess higher thermal conductivity than the liquids. In this work the convective heat transfer and pressure drop characteristics of the water/ethylene glycol mixture based nanofluids consisting of Al2O3, CuO nanoparticles with a volume concentration of 0.1% are studied experimentally in a rectangular channel heat sink. The nano particles are characterized using Scanning Electron Microscope and the nannofluids are prepared by using an ultrasonic vibrator and Sodium Lauryl Salt surfactant. The experimental results showed that nanofluids of 0.1% volume concentration give higher convective heat transfer coefficient values than the plain water/ethylene glycol mixture which is prepared in the volume ratio of 70:30. There is no much penalty in the pressure drop values due to the inclusion of nano particles in the water/ethylene glycol mixture. PMID:24745228

  19. Use of ethylene glycol to evaluate gradient performance in gradient-intensive diffusion MR sequences.

    PubMed

    Spees, William M; Song, Sheng-Kwei; Garbow, Joel R; Neil, Jeffrey J; Ackerman, Joseph J H

    2012-07-01

    Imaging a phantom of known dimensions is a widely used and simple method for calibrating MRI gradient strength. However, full-range characterization of gradient response is not achievable using this approach. Measurement of the apparent diffusion coefficient of a liquid with known diffusivity allows for calibration of gradient amplitudes across a wider dynamic range. An important caveat is that the temperature dependence of the liquid's diffusion characteristics must be known, and the temperature of the calibration phantom must be recorded. In this report, we demonstrate that the diffusion coefficient of ethylene glycol is well described by Arrhenius-type behavior across the typical range of ambient MRI magnet temperatures. Because of ethylene glycol's utility as an NMR chemical-shift thermometer, the same (1)H MR spectroscopy measurements that are used for gradient calibration also simultaneously "report" the sample temperature. The high viscosity of ethylene glycol makes it well-suited for assessing gradient performance in demanding diffusion-weighted imaging and spectroscopy sequences.

  20. Relative toxicities of pure propylene and ethylene glycol and formulated deicers on plant species

    SciTech Connect

    DuFresne, D.L.; Pillard, D.A.

    1994-12-31

    Propylene and ethylene glycol deicers are commonly used at airports in the US and other countries to remove and retard the accumulation of snow and ice on aircraft. Deicers may not only enter water bodies without treatment, due to excessive storm-related flow, but also may expose terrestrial organisms to high concentrations through surface runoff. Most available toxicity data are for aquatic vertebrates and invertebrate species; this study examined effects on terrestrial and aquatic plants. Terrestrial plant species included both a monocot (rye grass, Lolium perenne) and a dicot (lettuce, Lactuca saliva). Aquatic species included a single cell alga (Selenastrum capricomutum), and an aquatic macrophyte (duckweed, Lemna minor). Glycol deicers were obtained in the formulated mixtures used on aircraft. Pure ethylene and propylene glycol were obtained from Sigma{reg_sign}. Parameters measured included germination, root and shoot length, survival, and growth. Formulated deicers, like those used at airports, were generally more toxic than pure chemicals, based on glycol concentration. This greater toxicity of formulated deicers is consistent with results of tests using animal species.

  1. Difference of carboxybetaine and oligo(ethylene glycol) moieties in altering hydrophobic interactions: a molecular simulation study.

    PubMed

    Shao, Qing; White, Andrew D; Jiang, Shaoyi

    2014-01-01

    Polycarboxybetaine and poly(ethylene glycol) materials resist nonspecific protein adsorption but differ in influencing biological functions such as enzymatic activity. To investigate this difference, we studied the influence of carboxybetaine and oligo(ethylene glycol) moieties on hydrophobic interactions using molecular simulations. We employed a model system composed of two non-polar plates and studied the potential of mean force of plate-plate association in carboxybetaine, (ethylene glycol)4, and (ethylene glycol)2 solutions using well-tempered metadynamics simulations. Water, trimethylamine N-oxide, and urea solutions were used as reference systems. We analyzed the variation of the potential of mean force in various solutions to study how carboxybetaine and oligo(ethylene glycol) moieties influence the hydrophobic interactions. To study the origin of their influence, we analyzed the normalized distributions of moieties and water molecules using molecular dynamics simulations. The simulation results showed that oligo(ethylene glycol) moieties repel water molecules away from the non-polar plates and weaken the hydrophobic interactions. Carboxybetaine moieties do not repel water molecules away from the plates and therefore do not influence the hydrophobic interactions.

  2. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering

    PubMed Central

    Ni, PeiYan; Fu, ShaoZhi; Fan, Min; Guo, Gang; Shi, Shuai; Peng, JinRong; Luo, Feng; Qian, ZhiYong

    2011-01-01

    Polylactide (PLA) electrospun fibers have been reported as a scaffold for bone tissue engineering application, however, the great hydrophobicity limits its broad application. In this study, the hybrid amphiphilic poly(ethylene glycol) (PEG)/hydrophobic PLA fibrous scaffolds exhibited improved morphology with regular and continuous fibers compared to corresponding blank PLA fiber mats. The prepared PEG/PLA fibrous scaffolds favored mesenchymal stem cell (MSC) attachment and proliferation by providing an interconnected porous extracellular environment. Meanwhile, MSCs can penetrate into the fibrous scaffold through the interstitial pores and integrate well with the surrounding fibers, which is very important for favorable application in tissue engineering. More importantly, the electrospun hybrid PEG/PLA fibrous scaffolds can enhance MSCs to differentiate into bone-associated cells by comprehensively evaluating the representative markers of the osteogenic procedure with messenger ribonucleic acid quantitation and protein analysis. MSCs on the PEG/PLA fibrous scaffolds presented better differentiation potential with higher messenger ribonucleic acid expression of the earliest osteogenic marker Cbfa-1 and mid-stage osteogenic marker Col I. The significantly higher alkaline phosphatase activity of the PEG/PLA fibrous scaffolds indicated that these can enhance the differentiation of MSCs into osteoblast-like cells. Furthermore, the higher messenger ribonucleic acid level of the late osteogenic differentiation markers OCN (osteocalcin) and OPN (osteopontin), accompanied by the positive Alizarin red S staining, showed better maturation of osteogenic induction on the PEG/PLA fibrous scaffolds at the mineralization stage of differentiation. After transplantation into the thigh muscle pouches of rats, and evaluating the inflammatory cells surrounding the scaffolds and the physiological characteristics of the surrounding tissues, the PEG/PLA scaffolds presented good

  3. Comparative toxicity of formulated glycol deicers and pure ethylene and propylene glycol to Ceriodaphnia dubia and Pimephales promelas

    SciTech Connect

    Pillard, D.A. )

    1995-02-01

    Airlines use deicers to remove ice and snow from aircraft before flights, and to retard the inflight buildup of these materials. Many of the deicers are formulated mixtures of ethylene glycol (EG) or propylene glycol (PG) and a variety of additives. Because these deicers may be intentionally or accidentally released into aquatic ecosystems, the possibility exists for direct and indirect adverse effects on aquatic organisms. Laboratory studies evaluated the comparative toxicity of formulated glycol deicers and pure materials on the water flea, Ceriodaphnia dubia, and fathead minnow, Pimephales promelas. Acute and short-term chronic tests were performed according to US Environmental Protection Agency (EPA) guidelines. The formulated mixtures were found to be substantially more toxic than either of the pure glycol materials. The 48-h LC50s for C. dubia were 13,140 mg/L and 1,020 mg/L using formulated EG and PG, and 34,400 mg/L and 18,340 mg/L using pure EG and PG, respectively. The 96-h LC50s for P. promelas were 8,050 mg/L and 710 mg/L using formulated EG and PG, and 72,860 mg/L and 55,770 mg/L using pure EG and PG, respectively. Chronic IC25s for C. dubia were 3,960 mg/L and 640 mg/L using formulated EG and PG; 12,310 mg/L and 13,470 mg/L using pure EG and PG. Chronic IC25s for P. promelas were 3,660 mg/L and 110 mg/L using formulated EG and PG; 22,520 mg/L and 6,940 mg/L using pure EG and PG. For airports that have stormwater discharge permits, numerical limits for EG and PG are generally listed; potential toxicity is assumed to be due to the glycol materials. However, other compounds in the mixtures may either contribute substantially to, or in some cases overshadow, the toxicity of the glycol materials.

  4. The use of ethylene glycol solution as the running buffer for highly efficient microchip-based electrophoresis in unmodified cyclic olefin copolymer microchips.

    PubMed

    Wang, Qin; Zhang, Yuan; Ding, Hui; Wu, Jing; Wang, Lili; Zhou, Lei; Pu, Qiaosheng

    2011-12-30

    An ethylene glycol solution was used as the electrophoretic running buffer in unmodified cyclic olefin copolymer (COC) microchips to minimize the interactions between the analytes and the hydrophobic walls of the plastic microchannels, enhance the resolution of the analytes and eliminate the uncontrollable dispersion caused by uneven liquid levels and non-uniform surfaces of the separation channels. Five amino acids that were labeled with fluorescein isothiocyanate (FITC) were used as model analytes to examine the separation efficiency. The effects of ethylene glycol concentration, pH and sodium tetraborate concentration were systematically investigated. The five FITC-labeled amino acids were effectively resolved using a COC microchip with an effective length of 2.5 cm under optimum conditions, which included using a running buffer of 20 mmol/L sodium tetraborate in ethylene glycol:water (80:20, v/v), pH 6.7. A theoretical plate number of 4.8 × 10(5)/m was obtained for aspartic acid. The system exhibited good repeatability, and the relative standard deviations (n=5) of the peak areas and migration times were no more than 3.4% and 0.7%, respectively. Furthermore, the system was successfully applied to elucidate these five amino acids in human saliva.

  5. A facile synthesis of azido-terminated heterobifunctional poly(ethylene glycol)s for "click" conjugation.

    PubMed

    Hiki, Shigehiro; Kataoka, Kazunori

    2007-01-01

    New azido-terminated heterobifunctional poly(ethylene glycol) (PEG) derivatives having primary amine and carboxyl end groups, (Azide-PEG-NH 2 and Azide-PEG-COOH, respectively) were synthesized with high efficiency. An alpha-allyl-omega-hydroxyl PEG was prepared as the first step to Azide-PEG-X (X = NH 2 and COOH) through the ring-opening polymerization of ethylene oxide (EO) with allyl alcohol as an initiator, followed by two-step modification of the hydroxyl end to an azido group. To introduce primary amino or carboxyl functional groups, amination and carboxylation reactions of the allyl terminal ends was then conducted by a radical addition of thiol compounds. Molecular functionalities of both ends of the PEG derivatives thus prepared were characterized by (1)H, (13)C NMR, and MALDI-TOF MS spectra, validating that the reaction proceeded quantitatively. The terminal azido functionality is available to conjugate various ligands with an alkyne group through the 1,3-dipolar cycloaddition reaction condition ("click chemistry").

  6. Hemolytic activity of ethylene glycol phenyl ether (EGPE) in rabbits.

    PubMed

    Breslin, W J; Phillips, J E; Lomax, L G; Bartels, M J; Dittenber, D A; Calhoun, L L; Miller, R R

    1991-10-01

    Studies were conducted to characterize the hemolytic effects of EGPE in rabbits following oral and dermal exposure, and to evaluate the in vitro hemolytic potential of EGPE and its major metabolite using rabbit red blood cells (RBC). Gavage administration of EGPE to female New Zealand White rabbits at 100, 300, 600, or 1000 mg/kg/day for up to 10 consecutive days (one dose/day) resulted in a dose-related intravascular hemolytic anemia. The hemolytic anemia was characterized by decreased RBC count, hemoglobin concentration, packed cell volume, hemoglobinuria, splenic congestion, renal tubule damage, and a regenerative erythroid response in the bone marrow. The hemolytic anemia was observed without alterations in RBC glutathione or methemoglobin. Phenoxyacetic acid (PAA) was identified as a major blood metabolite of EGPE. In vitro exposure of female rabbit erythrocytes indicated EGPE to be considerably more hemolytic than PAA. In a 90-day dermal study in which EGPE was applied to the skin of male and female New Zealand White rabbits 6 hr/day, 5 days/week, at doses up to 500 mg/kg/day, there was no indication of a hemolytic response. The only treatment-related effects were sporadic occurrences of slight erythema and scaling of skin at the site of test material application in high dose group male and female rabbits. However, erythema and scaling were not associated with gross or histopathologic changes and were not considered toxicologically significant.

  7. Surface modification of gadolinium oxide thin films and nanoparticles using poly(ethylene glycol)-phosphate.

    PubMed

    Guay-Bégin, Andrée-Anne; Chevallier, Pascale; Faucher, Luc; Turgeon, Stéphane; Fortin, Marc-André

    2012-01-10

    The performance of nanomaterials for biomedical applications is highly dependent on the nature and the quality of surface coatings. In particular, the development of functionalized nanoparticles for magnetic resonance imaging (MRI) requires the grafting of hydrophilic, nonimmunogenic, and biocompatible polymers such as poly(ethylene glycol) (PEG). Attached at the surface of nanoparticles, this polymer enhances the steric repulsion and therefore the stability of the colloids. In this study, phosphate molecules were used as an alternative to silanes or carboxylic acids, to graft PEG at the surface of ultrasmall gadolinium oxide nanoparticles (US-Gd(2)O(3), 2-3 nm diameter). This emerging, high-sensitivity "positive" contrast agent is used for signal enhancement in T(1)-weighted molecular and cellular MRI. Comparative grafting assays were performed on Gd(2)O(3) thin films, which demonstrated the strong reaction of phosphate with Gd(2)O(3) compared to silane and carboxyl groups. Therefore, PEG-phosphate was preferentially used to coat US-Gd(2)O(3) nanoparticles. The grafting of this polymer on the particles was confirmed by XPS and FTIR. These analyses also demonstrated the strong attachment of PEG-phosphate at the surface of Gd(2)O(3), forming a protective layer on the nanoparticles. The stability in aqueous solution, the relaxometric properties, and the MRI signal of PEG-phosphate-covered Gd(2)O(3) particles were also better than those from non-PEGylated nanoparticles. As a result, reacting PEG-phosphate with Gd(2)O(3) particles is a promising, rapid, one-step procedure to PEGylate US-Gd(2)O(3) nanoparticles, an emerging "positive" contrast agent for preclinical molecular and cellular applications.

  8. Design and synthesis of multifunctional poly(ethylene glycol)s using enzymatic catalysis for multivalent cancer drug delivery

    NASA Astrophysics Data System (ADS)

    Seo, Kwang Su

    The objective of this research was to design and synthesize multifunctional poly(ethylene glycol)s (PEG)s using enzyme-catalyzed reactions for multivalent targeted drug delivery. Based on computer simulation for optimum folate binding, a four-arm PEG star topology with Mn = 1000 g/mol was proposed. First, a four-functional core based on tetraethylene glycol (TEG) was designed and synthesized using transesterification and Michael addition reactions in the presence of Candida antarctica lipase B (CALB) as a biocatalyst. The four-functional core (HO)2-TEG-(OH)2 core was successfully prepared by the CALB-catalyzed transesterification of vinyl acrylate (VA) with TEG and then Michael addition of diethanolamine to the resulting TEG diacrylate with/without the use of solvent. The functional PEG arms with fluorescein isothiocyanate (FITC) and folic acid (FA) were prepared using both traditional organic chemistry and enzyme-catalyzed reactions. FITC was reacted with the amine group of H2N-PEG-OH in the presence of triethylamine via nucleophilic addition onto the isothiocyanate group. Then, divinyl adipate (DVA) was transesterified with the FITC-PEG-OH product in the presence of CALB to produce the FITC-PEG vinyl ester that will be attached to the four-functional core via CALC-catalyzed transesterification. For the synthesis of FA-PEG vinyl ester arm, DVA was first reacted with PEG-monobenzyl ether (BzPEG-OH) in bulk in the presence of CALB. The BzPEG vinyl ester was then transesterified with 12-bromo-1-dodecanol in the presence of CALB. Finally, BzPEG-Br was attached to FA exclusively in the gamma position using a new method. The thesis also discusses fundamental studies that were carried out in order to get better understanding of enzyme catalyzed transesterification and Michael addition reactions. First, in an effort to investigate the effects of reagent and enzyme concentrations in transesterification, vinyl methacrylate (VMA) was reacted with 2-(hydroxyethyl) acrylate (2

  9. Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols.

    PubMed

    Manaenkov, Oleg V; Mann, Joshua J; Kislitza, Olga V; Losovyj, Yaroslav; Stein, Barry D; Morgan, David Gene; Pink, Maren; Lependina, Olga L; Shifrina, Zinaida B; Matveeva, Valentina G; Sulman, Esther M; Bronstein, Lyudmila M

    2016-08-24

    Biomass processing to value-added chemicals and biofuels received considerable attention due to the renewable nature of the precursors. Here, we report the development of Ru-containing magnetically recoverable catalysts for cellulose hydrogenolysis to low alcohols, ethylene glycol (EG) and propylene glycol (PG). The catalysts are synthesized by incorporation of magnetite nanoparticles (NPs) in mesoporous silica pores followed by formation of 2 nm Ru NPs. The latter are obtained by thermal decomposition of ruthenium acetylacetonate in the pores. The catalysts showed excellent activities and selectivities at 100% cellulose conversion, exceeding those for the commercial Ru/C. High selectivities as well as activities are attributed to the influence of Fe3O4 on the Ru(0)/Ru(4+) NPs. A facile synthetic protocol, easy magnetic separation, and stability of the catalyst performance after magnetic recovery make these catalysts promising for industrial applications.

  10. Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols.

    PubMed

    Manaenkov, Oleg V; Mann, Joshua J; Kislitza, Olga V; Losovyj, Yaroslav; Stein, Barry D; Morgan, David Gene; Pink, Maren; Lependina, Olga L; Shifrina, Zinaida B; Matveeva, Valentina G; Sulman, Esther M; Bronstein, Lyudmila M

    2016-08-24

    Biomass processing to value-added chemicals and biofuels received considerable attention due to the renewable nature of the precursors. Here, we report the development of Ru-containing magnetically recoverable catalysts for cellulose hydrogenolysis to low alcohols, ethylene glycol (EG) and propylene glycol (PG). The catalysts are synthesized by incorporation of magnetite nanoparticles (NPs) in mesoporous silica pores followed by formation of 2 nm Ru NPs. The latter are obtained by thermal decomposition of ruthenium acetylacetonate in the pores. The catalysts showed excellent activities and selectivities at 100% cellulose conversion, exceeding those for the commercial Ru/C. High selectivities as well as activities are attributed to the influence of Fe3O4 on the Ru(0)/Ru(4+) NPs. A facile synthetic protocol, easy magnetic separation, and stability of the catalyst performance after magnetic recovery make these catalysts promising for industrial applications. PMID:27484222

  11. Investigation on thermo physical characteristics of ethylene glycol based Al:ZnO nanofluids

    NASA Astrophysics Data System (ADS)

    R, Kiruba.; George, Ritty; M, Gopalakrishnan.; A, Kingson Solomon Jeevaraj.

    2015-06-01

    The present work describes the experimental aspects of viscosity and thermal conductivity characteristics of nanofluids. Aluminium doped zinc oxide nanostructures were synthesized by chemical precipitation method. Ultrasonic technique is used to disperse the nanostructures in ethylene glycol. Structural and morphological properties of Al doped ZnO nanostructures are characterized using X-ray diffractometer and scanning electron microscopic technique. The effect of concentration and temperature on thermo-physical properties of Al/ZnO nanofluids is also investigated. The experimental results showed there is enhancement in thermal conductivity with rise in temperature which can be utilized for coolant application.

  12. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids

    NASA Astrophysics Data System (ADS)

    Pastoriza-Gallego, María Jose; Lugo, Luis; Legido, José Luis; Piñeiro, Manuel M.

    2011-10-01

    The rheological behaviour of ethylene glycol-based nanofluids containing hexagonal scalenohedral-shaped α-Fe2O3 (hematite) nanoparticles at 303.15 K and particle weight concentrations up to 25% has been carried out using a cone-plate Physica MCR rheometer. The tests performed show that the studied nanofluids present non-Newtonian shear-thinning behaviour. In addition, the viscosity at a given shear rate is time dependent, i.e. the fluid is thixotropic. Finally, using strain sweep and frequency sweep tests, the storage modulus G', loss modulus G″ and damping factor were determined as a function of the frequency showing viscoelastic behaviour for all samples.

  13. Intra- and intermolecular hydrogen bonds in ethylene glycol, monoethanolamine, and ethylenediamine

    NASA Astrophysics Data System (ADS)

    Krest'yaninov, M. A.; Titova, A. G.; Zaichikov, A. M.

    2014-12-01

    The structures of ethylene glycol, aminoethanol, ethylenediamine, and their dimers with the formation of hydrogen bonds of different types are optimized by density functional theory (DFT) using hybrid functional B3LYP in the basis of 6-31++G( d,p), 6-311++G(2 d,2 p) and aug-CC-pVTZ. Energies of interactions, hydrogen bond parameters, and oscillation frequency are calculated, and NBO analysis is performed. The types of hydrogen bonds formed in dimers of 1,2-disubstituted ethanes X-CH2-CH2-Y (X, Y = OH, NH2) are established.

  14. On the structures of ethylene glycol, monoethanolamine, and ethylenediamine in the liquid phase

    NASA Astrophysics Data System (ADS)

    Balabaev, N. K.; Kraevskii, S. V.; Rodnikova, M. N.; Solonina, I. A.

    2016-05-01

    Characteristics of instant (I) and frozen (F) structures of ethylene glycol (EG), monoethanolamine (MEA), and ethylenediamine (ED) are determined by means of molecular dynamics in the temperature range of 268-443 K. Radial distribution functions are obtained and compared for the I- and F-structures of fluids. Coordination numbers of molecules are calculated and the energies of intermolecular hydrogen bonds are estimated for the studied compounds. The greatest difference between the I- and F-structures is observed in ED, and the least difference is observed in EG. The F-structures are compared to the crystal structures of the studied compounds.

  15. Reversible subacute ethylene glycol monomethyl ether toxicity associated with microfilm production: a case report

    SciTech Connect

    Cohen, R.

    1984-01-01

    The first reported case of a possible toxic effect of ethylene glycol monomethyl ether (EGME) exposure in the microfilm manufacturing industry is described. Reversible subjective central nervous system complaints and asymptomatic hematopoietic effects occurred following inhalation and skin exposure to EGME. Hematopoietic changes occurred at airborne levels which have been associated with reproductive and teratogenic effects in other studies. This finding leads to a recommendation for further research to determine whether or not hematopoietic medical surveillance can provide an indication of not only EGME hematopoietic effects but also an indication of sufficient EGME exposure to affect human reproduction and fetal development.

  16. Investigation on thermo physical characteristics of ethylene glycol based Al:ZnO nanofluids

    SciTech Connect

    Kiruba, R. E-mail: drkingson@karunya.edu; George, Ritty; Gopalakrishnan, M.; Kingson Solomon Jeevaraj, A.

    2015-06-24

    The present work describes the experimental aspects of viscosity and thermal conductivity characteristics of nanofluids. Aluminium doped zinc oxide nanostructures were synthesized by chemical precipitation method. Ultrasonic technique is used to disperse the nanostructures in ethylene glycol. Structural and morphological properties of Al doped ZnO nanostructures are characterized using X-ray diffractometer and scanning electron microscopic technique. The effect of concentration and temperature on thermo-physical properties of Al/ZnO nanofluids is also investigated. The experimental results showed there is enhancement in thermal conductivity with rise in temperature which can be utilized for coolant application.

  17. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture

    SciTech Connect

    Namburu, Praveen K.; Kulkarni, Devdatta P.; Das, Debendra K.; Misra, Debasmita

    2007-11-15

    Nanofluids are new kinds of fluids engineered by dispersing nanoparticles in base fluids. This paper presents an experimental investigation of rheological properties of copper oxide nanoparticles suspended in 60:40 (by weight) ethylene glycol and water mixture. Nanofluids of particle volume percentage ranging from 0% to 6.12% were tested. The experiments were carried over temperatures ranging from -35 C to 50 C to demonstrate their applicability in cold regions. For the particle volume concentrations tested, nanofluids exhibited Newtonian behavior. An experimental correlation was developed based on the data, which relates viscosity with particle volume percent and the nanofluid temperature. (author)

  18. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  19. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  20. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  1. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  2. Synthesis and photophysicochemical studies of poly(ethylene glycol) conjugated symmetrical and asymmetrical zinc phthalocyanines

    NASA Astrophysics Data System (ADS)

    Dinçer, Hatice; Mert, Humeyra; Çalışkan, Emel; Atmaca, Göknur Yaşa; Erdoğmuş, Ali

    2015-12-01

    Synthesis and characterization of poly(ethylene glycol) conjugated symmetrical and asymmetrical zinc phthalocyanines (ZnPcs) is described. Copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) click reaction between azide functional methoxypoly(ethylene glycol) (mPEG-N3) and tetra terminal alkynyl substituted ZnPc yields star polymer with ZnPc core. Furthermore, CuAAC click reaction between asymmetrically terminal alkynyl substituted zinc phthalocyanine (aZnPc) and mPEG-N3 yields aZnPc end functionalized PEG. Spectral, photophysical (fluorescence quantum yield), photochemical (singlet oxygen (ΦΔ), and photodegradation quantum yield (Φd) properties of the symmetrically, and asymmetrically PEGylated ZnPcs are investigated to be used as sensitizers in photodynamic therapy (PDT). The quantum yield values of fluorescence (ΦF) and singlet oxygen generation (ΦΔ) for water soluble symmetrically PEGylated ZnPc in aqueous solution are calculated as 0.01 and 0.14 respectively, suggesting its potential as photosensitizer in PDT treatment.

  3. Rapeseed oil monoester of ethylene glycol monomethyl ether as a new biodiesel.

    PubMed

    Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo

    2011-01-01

    A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P(1P)H NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%-75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%-20.4% when fueled with the biodiesel compared with diesel fuel.

  4. Interaction Forces and Morphology of a Protein-Resistant Poly(ethylene glycol) Layer

    PubMed Central

    Heuberger, M.; Drobek, T.; Spencer, N. D.

    2005-01-01

    The molecular interactions on a protein-resistant surface coated with low-molecular-weight poly(ethylene glycol) (PEG) copolymer brushes are investigated using the extended surface forces apparatus. The observed interaction force is predominantly repulsive and nearly elastic. The chains are extended with respect to the Flory radius, which is in agreement with qualitative predictions of scaling theory. Comparison with theory allows the determination of relevant quantities such as brush length and adsorbed mass. Based on these results, we propose a molecular model for the adsorbed copolymer morphology. Surface-force isotherms measured at high resolution allow distinctive structural forces to be detected, suggesting the existence of a weak equilibrium network between poly(ethylene glycol) and water—a finding in accordance with the remarkable solution properties of PEG. The occurrence of a fine structure is interpreted as a water-induced restriction of the polymer's conformational space. This restriction is highly relevant for the phenomenon of PEG protein resistance. Protein adsorption requires conformational transitions, both in the protein as well as in the PEG layer, which are energetically and kinetically unfavorable. PMID:15501935

  5. Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a New Biodiesel

    PubMed Central

    Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo

    2011-01-01

    A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P1PH NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%–75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%–20.4% when fueled with the biodiesel compared with diesel fuel. PMID:21403894

  6. Interrelation of ethylene glycol, urea and water transport in the red cell.

    PubMed

    Toon, M R; Solomon, A K

    1987-04-23

    The reflection coefficient, sigma j, which measures the coupling between the jth solute and water transport across a semipermeable membrane, varies between 0 and 1.0. Values of sigma j significantly less than 1.0 provide irreversible thermodynamic proof that there is coupling between the transport of solute and solvent and thus that they share a common pathway. We have developed an improved method for measuring sigma and have used it to determine that sigma ethylene glycol = 0.71 +/- 0.03 and sigma urea = 0.65 +/- 0.03, in agreement with many, but not all, previous determinations. Since both of these values are significantly lower than 1.0, they show that there is a common ethylene glycol/water pathway and a common urea/water pathway. Addition of first one and then two methyl groups to urea increases sigma to 0.89 +/- 0.04 for methylurea and 0.98 +/- 0.4 for 1,3-dimethylurea, consistent with passage through an aqueous pore with a sharp cutoff in the 6-7 A region. PMID:3567182

  7. Melting point equations for the ternary system water/sodium chloride/ethylene glycol revisited.

    PubMed

    Benson, James D; Bagchi, Aniruddha; Han, Xu; Critser, John K; Woods, Erik J

    2010-12-01

    Partial phase diagrams are of considerable utility in the development of optimized cryobiological procedures. Recent theoretical predictions of the melting points of ternary solutions of interest to cryobiology have caused us to re-examine measurements that our group made for the ethylene-glycol-sodium chloride-water phase diagram. Here we revisit our previous experiments by measuring melting points at five ethylene-glycol to sodium chloride ratios (R values; R=5, 10, 15, 30, and 45) and five levels of concentration for each ratio. Melting points were averaged from three measurements and plotted as a function of total solute concentration for each R value studied. The new measurements differed from our original experimental values and agreed with predicted values from both theoretical models. Additionally, the data were fit to the polynomial described in our previous report and the resulting equation was obtained: T(m) = (38.3-2.145 x 10⁻¹ R)w + (81.19 - 2.909×10⁻¹ R)w², where w is the total solute mass fraction. This new equation provided good fits to the experimental data as well as published values and relates the determined polynomial constants to the R value of the corresponding isopleths of the three dimensional phase diagram, allowing the liquids curve for any R value to be obtained. PMID:20955693

  8. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.

    PubMed

    D'Angelo, M Fernanda Neira; Ordomsky, Vitaly; Paunovic, Violeta; van der Schaaf, John; Schouten, Jaap C; Nijhuis, T Alexander

    2013-09-01

    Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating method to deposit a Pt-based catalyst on the microchannel walls is selected and optimized. APR reactivity tests are performed by using ethylene glycol as the model compound. Optimum results are achieved with a static washcoating technique; a highly uniform and well adhered 5 μm layer is deposited on the walls of a 320 μm internal diameter (ID) microchannel in one single step. During APR of ethylene glycol, the catalyst layer exhibits high stability over 10 days after limited initial deactivation. The microchannel presents higher conversion and selectivity to hydrogen than a fixed-bed reactor. The benefits of using a microreactor for APR can be further enhanced by utilizing increased Pt loadings, higher reaction temperatures, and larger carbohydrates (e.g., glucose). The use of microtechnology for aqueous-phase reforming will allow for a great reduction in the reformer size, thus rendering it promising for distributed hydrogen production. PMID:23592593

  9. [Study on the absorption and fluorescence spectra of ethylene glycol and glycerol].

    PubMed

    Xu, Hui; Zhu, Tuo; Yu, Rui-Peng

    2007-07-01

    The absorption and fluorescence spectra of ethylene glycol and glycerol solution induced by UV light were studied respectively in the present paper. The most intense absorption wavelength for both of them was located at 198 nm. Moreover, fluorescence was detected when induced by suitable UV light, and the corresponding fluorescence spectra were listed. But there is no obvious relationship found between the fluorescence intensity and the excited wavelength, and a further research should be done. From the first derivative fluorescence spectra of ethylene glycol, it was concluded that under the UV light of 210 nm, the variation speed for relative intensity proved to be the fastest. In contrast, when excited by 225 nm, the speed proved to be the slowest. In addition, based on the quantum calculation and the transition from HOMO to LUMO of electronics in one-dimensional quantum well, the authors attempted to give out the value of absorption wavelength. In consideration of the bond-length variety brought out by the chain processing, the error between the experimental and calculation values should be apprehensible, and the latter can serve as some reference value in theory.

  10. Synthesis and Characterization of Ethylene Glycol Substituted Poly(phenylene Vinylene) Derivatives

    SciTech Connect

    Wang, H.L.; Cotlet, M.; Wang C.-C.; Tsai, H.; Shih, H.-H.; Jeon, S.; Xu, Z.; Williams, D.; Iyer, S.; Sanchez, T.C.; Wang, L.

    2010-03-04

    We report the synthesis of a series of water-soluble, fluorescent, conjugated polymers via the Gilch reaction with an overall yield greater than 40%. The yield for the Gilch reaction decreases with the increase in the length of the side chain (ethylene glycol), presumably due to the steric effects inhibiting the linking of monomeric units. The hydrophilic side chain enhances the solubility of the polymer in water and concomitantly leads to a side-chain-dependent conformation and solvent-dependent quantum efficiency. An increase in the ethylene glycol repeat units on the polymer side chain structure results in changes in chain packing, hence the crystallinity evolves from semicrystalline to liquid crystalline to completely amorphous. An increased in the length of the side chain also leads to changes in the polymer-solvent interaction that changes the electronic structure as manifested in the photophysical properties of these polymers. These novel polymers exhibit two glass transition temperatures, which can be readily rationalized by differences in microstructure when casted from hydrophobic and hydrophilic solvents. Cyclic voltammograms of polymer 1d-3d suggests two-electron transfer, as compare to P1 which has one complete redox pair. The potential of having a nanoscaled domain structure and stabilizing two electrons on a polymer chains signifies the potential of these polymers in fabricating electronic and photovoltaic devices.

  11. Melting point equations for the ternary system water/sodium chloride/ethylene glycol revisited.

    PubMed

    Benson, James D; Bagchi, Aniruddha; Han, Xu; Critser, John K; Woods, Erik J

    2010-12-01

    Partial phase diagrams are of considerable utility in the development of optimized cryobiological procedures. Recent theoretical predictions of the melting points of ternary solutions of interest to cryobiology have caused us to re-examine measurements that our group made for the ethylene-glycol-sodium chloride-water phase diagram. Here we revisit our previous experiments by measuring melting points at five ethylene-glycol to sodium chloride ratios (R values; R=5, 10, 15, 30, and 45) and five levels of concentration for each ratio. Melting points were averaged from three measurements and plotted as a function of total solute concentration for each R value studied. The new measurements differed from our original experimental values and agreed with predicted values from both theoretical models. Additionally, the data were fit to the polynomial described in our previous report and the resulting equation was obtained: T(m) = (38.3-2.145 x 10⁻¹ R)w + (81.19 - 2.909×10⁻¹ R)w², where w is the total solute mass fraction. This new equation provided good fits to the experimental data as well as published values and relates the determined polynomial constants to the R value of the corresponding isopleths of the three dimensional phase diagram, allowing the liquids curve for any R value to be obtained.

  12. Rapeseed oil monoester of ethylene glycol monomethyl ether as a new biodiesel.

    PubMed

    Dayong, Jiang; Xuanjun, Wang; Shuguang, Liu; Hejun, Guo

    2011-01-01

    A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P(1P)H NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0# diesel fuel, engine-out smoke emissions can be decreased by 25.0%-75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1°CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%-20.4% when fueled with the biodiesel compared with diesel fuel. PMID:21403894

  13. Comparison of methanol and ethylene glycol oxidation by alloy and Core-Shell platinum based catalysts

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Burstein, L.; Rosenberg, Yu.; Peled, E.

    2011-10-01

    Two Core-Shell, RuCore-PtShell and IrNiCore-PtRuShell, XC72-supported catalyst were synthesized in a two-step deposition process with NaBH4 as reducing agent. The structure and composition of the Core-Shell catalysts were determined by EDS, XPS and XRD. Electrochemical characterization was performed with the use of cyclic voltammetry. Methanol and ethylene glycol oxidation activities of the Core-Shell catalysts (in terms of surface and mass activities) were studied at 80 °C and compared to those of a commercial Pt-Ru alloy catalyst. The surface activity of the alloy based catalyst, in the case of methanol oxidation, was found to be superior as a result of optimized surface Pt:Ru composition. However, the mass activity of the PtRu/IrNi/XC72 was higher than that of the alloy based catalyst by ∼50%. Regarding ethylene glycol oxidation, while the surface activity of the alloy based catalyst was slightly higher than that of the Pt/Ru/XC72 catalyst, the latter showed ∼66% higher activities in terms of A g-1 of Pt. These results show the potential of Core-Shell catalysts for reducing the cost of catalysts for DMFC and DEGFC.

  14. Influence of ethylene glycol and propylene glycol on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films.

    PubMed

    Schroeder, Walter F; Liu, Yuanqin; Tomba, J Pablo; Soleimani, Mohsen; Lau, Willie; Winnik, Mitchell A

    2010-03-11

    We describe fluorescence resonance energy transfer (FRET) experiments carried out to examine the effect of ethylene glycol and propylene glycol on the early stages of polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films. In our approach, we temporarily arrest the drying process of a wet latex film by sealing the film in a previously cooled airtight sample chamber. This arrests propagation of the drying front and suppresses polymer diffusion during the measurements. We then measure donor fluorescence decays from 0.5 mm diameter spots at various locations on the film. From our analysis, we obtain information about the earliest stages of polymer diffusion as the film is still drying. We also investigate the effect of these glycols on polymer diffusion at longer aging times on predried latex films. Ethylene glycol and propylene glycol retard polymer diffusion at early times immediately after the passing of the drying front but enhance the rate of polymer diffusion at later aging times. This behavior is described quantitatively in terms of free-volume theory and the partitioning of the glycols between the aqueous and polymer phases in the film.

  15. Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats

    PubMed Central

    Ahmadi, Marzieh; Rad, Abolfazl Khajavi; Rajaei, Ziba; Hadjzadeh, Mousa-Al-Reza; Mohammadian, Nema; Tabasi, Nafiseh Sadat

    2012-01-01

    Introduction: Alcea rosea L. is used in Asian folk medicine as a remedy for a wide range of ailments. The aim of the present study was to investigate the effect of hydroalcoholic extract of Alcea rosea roots on ethylene glycol-induced kidney calculi in rats. Materials and Methods: Male Wistar rats were randomly divided into control, ethylene glycol (EG), curative and preventive groups. Control group received tap drinking water for 28 days. Ethylene glycol (EG), curative and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation; preventive and curative subjects also received the hydroalcoholic extract of Alcea rosea roots in drinking water at dose of 170 mg/kg, since day 0 or day 14, respectively. Urinary oxalate concentration was measured by spectrophotometer on days 0, 14 and 28. On day 28, the kidneys were removed and examined histopathologically under light microscopy for counting the calcium oxalate deposits in 50 microscopic fields. Results: In both preventive and curative protocols, treatment of rats with hydroalcoholic extract of Alcea rosea roots significantly reduced the number of kidney calcium oxalate deposits compared to ethylene glycol group. Administration of Alcea rosea extract also reduced the elevated urinary oxalate due to ethylene glycol. Conclusion: Alcea rosea showed a beneficial effect in preventing and eliminating calcium oxalate deposition in the rat kidney. This effect is possibly due to diuretic and anti-inflammatory effects or presence of mucilaginous polysaccharides in the plant. It may also be related to lowering of urinary concentration of stone-forming constituents. PMID:22701236

  16. Nano-structured Platinum-based Catalysts for the Complete Oxidation of Ethylene Glycol and Glycerol

    NASA Astrophysics Data System (ADS)

    Falase, Akinbayowa

    Direct alcohol fuel cells are a viable alternative to the traditional hydrogen PEM fuel cell. Fuel versatility, integration with existing distribution networks, and increased safety when handling these fuels increases their appeal for portable power applications. In order to maximize their utility, the liquid fuel must be fully oxidized to CO2 so as to harvest the full amount of energy. Methanol and ethanol are widely researched as potential fuels to power these devices, but methanol is a toxic substance, and ethanol has a much lower energy density than other liquids such as gasoline or glucose. Oxidation of complex fuels is difficult to realize, due to difficulty in breaking carbon-carbon bonding and poisoning of the catalysts by oxidative byproducts. In order to achieve the highest efficiency, an anode needs to be engineered in such a way as to maximize activity while minimizing poisoning effects of reaction byproducts. We have engineered an anode that uses platinum-based catalysts that is capable of completely oxidizing ethylene glycol and glycerol in neutral and alkaline media with little evidence of CO poisoning. We have constructed a hybrid anode consisting of a nano-structured PtRu electrocatayst with an NAD-dependent alcohol dehydrogenase for improved oxidation of complex molecules. A nano-structured PtRu catalyst was used to oxidize ethylene glycol and glycerol in neutral media. In situ infrared spectroscopy was used to verify complete oxidation via CO2 generation. There was no evidence of poisoning by CO species. A pH study was performed to determine the effect of pH on oxidative current. The peak currents did not trend at 60 mV/pH unit as would be expected from the Nernst equation, suggesting that adsorption of fuel to the surface of the electrode is not an electron-transfer step. We synthesized nano-structured PtRu, PtSn, and PtRuSn catalysts for oxidation of ethylene glycol and glycerol in alkaline media. The PtRu electrocatalyst the highest oxidative

  17. Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs.

    PubMed

    Grishkewich, Nathan; Akhlaghi, Seyedeh Parinaz; Zhaoling, Yao; Berry, Richard; Tam, Kam C

    2016-06-25

    This paper reports on the synthesis of poly(oligoethylene glycol) methyl ether acrylate (POEGMA) grafted cellulose nanocrystals (CNCs) via surface initiated atom transfer radical polymerization (ATRP). An ATRP initiator (α-Bromoisobutyryl bromide) was covalently bonded to the surface of CNCs, followed by copolymerizing di(ethylene glycol) methyl ether methacrylate (MEO2MA) and oligoethylene glycol methyl ether methacrylate (OEGMA300) monomers from the surface using Cu(I)Br/2,2-dipyridal. Multiple POEGMA-g-CNC systems with varying MEO2MA/OEGMA300 content were synthesized, and they displayed a range of lower critical solution temperatures (LCSTs) in aqueous medium. μDSC endotherms and microstructural analysis indicated the collapse of POEGMA chains, followed by the aggregation of nanoparticles above their LCSTs. Cloud point measurements demonstrated a hysteresis in the heating and cooling of the POEGMA-g-CNC systems. It was found that the LCST of the nanoparticles could be tuned to between 23.8 to 63.8°C by adjusting the OEGMA300 content of the POEGMA brushes. PMID:27083811

  18. Atmospheric chemistry of toxic contaminants 2. Saturated aliphatics: Acetaldehyde, dioxane, ethylene glycol ethers, propylene oxide

    SciTech Connect

    Grosjean, D. )

    1990-11-01

    Detailed mechanisms are outlined for the chemical reactions that contribute to in-situ formation and atmospheric removal of the saturated aliphatic contaminants acetaldehyde, dioxane, ethylene glycol ethers (methyl, ethyl, n-butyl) and propylene oxide. In-situ formation is of major importance for acetaldehyde. In-situ removal involves reaction with OH (all compounds) and, for acetaldehyde, photolysis and reaction with NO{sub 3}. Acetaldehyde, dioxane, and the ethers are rapidly removed (half-lives of less than one day), leading to PAN (acetaldehyde) and to 2-oxodioxane and formaldehyde (dioxane). Reaction products of the glycol ethers include a large number of hydroxyesters, hydroxyacids, and hydroxycarbonyls. Propylene oxide reacts only slowly with OH, with an atmospheric half-life of 3 - 10 days, to yeild formaldehyde, acetaldehyde, and PAN. Uncertainties in the reaction mechanisms for dioxane, the glycol ethers, and propylene oxide are discussed and include C-C vs C-O bond scission in alkoxy radicals as well as alkoxy radical unimolecular decomposition vs reaction with oxygen.

  19. Millimetre wave rotational spectrum of glycolic acid

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Pszczółkowski, Lech; Białkowska-Jaworska, Ewa; Charnley, Steven B.

    2016-03-01

    The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm-1 have been measured and their analysis is reported. The data sets for the ground state, v21 = 1 , and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the ν21 mode is close to 100 cm-1. The existence of the less stable AAT conformer in the near 50 °C sample used in our experiment was also confirmed and additional transitions have been measured.

  20. Dehydration and Dehydrogenation of Ethylene Glycol on Rutile TiO2(110)

    SciTech Connect

    Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek

    2013-08-07

    The interactions of ethylene glycol (EG) with partially reduced rutile TiO2(110) surface have been studied using temperature programmed desorption (TPD). The saturation coverage on the surface Ti rows is determined to be 0.43 monolayer (ML), slightly less than one EG per two Ti sites. Most of the adsorbed ethanol (~80%) undergoes further reactions to other products. Two major channels are observed, dehydration yielding ethylene and water and dehydrogenation yielding acetaldehyde and hydrogen. Hydrogen formation is rather surprising as it has not been observed previously on TiO2(110) from simple organic molecules. The coverage dependent yields of ethylene and acetaldehyde correlate well with that of water and hydrogen, respectively. Dehydration dominates at lower EG coverages (< 0.2 ML) and plateaus as the coverage is increased to saturation. Dehydrogenation is observed primarily at higher EG coverages (>0.2 ML). Our results suggest that the observed dehydration and dehydrogenation reactions proceed via different surface intermediates.

  1. Dosimetry considerations in the enhanced sensitivity of male Wistar rats to chronic ethylene glycol-induced nephrotoxicity

    SciTech Connect

    Corley, R.A. Wilson, D.M.; Hard, G.C.; Stebbins, K.E.; Bartels, M.J.; Soelberg, J.J.; Dryzga, M.D.; Gingell, R.; McMartin, K.E.; Snellings, W.M.

    2008-04-15

    Male Wistar rats have been shown to be the most sensitive sex, strain and species to ethylene glycol-induced nephrotoxicity in subchronic studies. A chronic toxicity and dosimetry study was therefore conducted in male Wistar rats administered ethylene glycol via the diet at 0, 50, 150, 300, or 400 mg/kg/day for up to twelve months. Subgroups of animals were included for metabolite analysis and renal clearance studies to provide a quantitative basis for extrapolating dose-response relationships from this sensitive animal model in human health risk assessments. Mortality occurred in 5 of 20 rats at 300 mg/kg/day (days 111-221) and 4 of 20 rats at 400 mg/kg/day (days 43-193), with remaining rats at this dose euthanized early (day 203) due to excessive weight loss. Increased water consumption and urine volume with decreased specific gravity occurred at 300 mg/kg/day presumably due to osmotic diuresis. Calculi (calcium oxalate crystals) occurred in the bladder or renal pelvis at {>=} 300 mg/kg/day. Rats dying early at {>=} 300 mg/kg/day had transitional cell hyperplasia with inflammation and hemorrhage of the bladder wall. Crystal nephropathy (basophilic foci, tubule or pelvic dilatation, birefringent crystals in the pelvic fornix, or transitional cell hyperplasia) affected most rats at 300 mg/kg/day, all at 400 mg/kg/day, but none at {<=} 150 mg/kg/day. No significant differences in kidney oxalate levels, the metabolite responsible for renal toxicity, were observed among control, 50 and 150 mg/kg/day groups. At 300 and 400 mg/kg/day, oxalate levels increased proportionally with the nephrotoxicity score supporting the oxalate crystal-induced nephrotoxicity mode of action. No treatment-related effects on the renal clearance of intravenously infused {sup 3}H-inulin, a marker for glomerular filtration, and {sup 14}C-oxalic acid were observed in rats surviving 12 months of exposure to ethylene glycol up to 300 mg/kg/day. In studies with naive male Wistar and F344 rats (a

  2. Triggered release of siRNA from poly(ethylene glycol)-protected, pH-dependent liposomes

    PubMed Central

    Auguste, Debra T.; Furman, Kay; Wong, Andrew; Fuller, Jason; Armes, Steven P.; Deming, Timothy J.; Langer, Robert

    2008-01-01

    The ability of small interfering RNA (siRNA) to regulate gene expression has potential therapeutic applications, but its use is limited by inefficient delivery. Triggered release of adsorbed poly(ethylene glycol) (PEG)-b-polycation polymers from pH-dependent (PD) liposomes enables protection from immune recognition during circulation (pH 7.4) and subsequent intracellular delivery of siRNA within the endosome (pH ~5.5). Polycationic blocks, based on either poly[2-(dimethylamino)ethyl methacrylate] (31 or 62 DMA repeat units) or polylysine (21 K repeat units), act as anchors for a PEG (113 ethylene glycol repeat units) protective block. Incorporation of 1,2-dioleoyl-3-dimethylammonium-propane (DAP), a titratable lipid, increases the liposome’s net cationic character within acidic environments, resulting in polymer desorption and membrane fusion. Liposomes encapsulating siRNA demonstrate green fluorescent protein (GFP) silencing in genetically-modified, GFP-expressing HeLa cells and glyceraldehyde-3-phosphate dehydrogenase (GAPD) knockdown in human umbilical vein endothelial cells (HUVEC). Bare and PD liposomes coated with PEG113-DMA31 exhibit a 0.16±0.2 and 0.32±0.3 fraction of GFP knockdown, respectively. In contrast, direct siRNA administration and Oligofectamine complexed siRNA reduce GFP expression by 0.06±0.02 and 0.14±0.02 fractions, respectively. Our in vitro data indicates that polymer desorption from PD liposomes enhances siRNA-mediated gene knockdown. PMID:18601962

  3. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B

    PubMed Central

    2013-01-01

    Background The improvement of biomedical properties, e.g. biocompatibility, of poly(3-hydroxyalkanoates) (PHAs) by copolymerization is a promising trend in bioengineering. We used strain Azotobacter chroococcum 7B, an effective producer of PHAs, for biosynthesis of not only poly(3-hydroxybutyrate) (PHB) and its main copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV), but also alternative copolymer, poly(3-hydroxybutyrate)-poly(ethylene glycol) (PHB-PEG). Results In biosynthesis we used sucrose as the primary carbon source and valeric acid or poly(ethylene glycol) 300 (PEG 300) as additional carbon sources. The chemical structure of PHB-PEG and PHB-HV was confirmed by 1H nuclear-magnetic resonance (1H NMR) analysis. The physico-chemical properties (molecular weight, crystallinity, hydrophilicity, surface energy) and surface morphology of films from PHB copolymers were studied. To study copolymers biocompatibility in vitro the protein adsorption and COS-1 fibroblasts growth on biopolymer films by XTT assay were analyzed. Both copolymers had changed physico-chemical properties compared to PHB homopolymer: PHB-HV and PHB-PEG had less crystallinity than PHB; PHB-HV was more hydrophobic than PHB in contrast to PHB-PEG appeared to have greater hydrophilicity than PHB; whereas the morphology of polymer films did not differ significantly. The protein adsorption to PHB-PEG was greater and more uniform than to PHB and PHB-PEG copolymer promoted better growth of COS-1 fibroblasts compared with PHB homopolymer. Conclusions Thus, despite low EG-monomers content in bacterial origin PHB-PEG copolymer, this polymer demonstrated significant improvement in biocompatibility in contrast to PHB and PHB-HV copolymers, which may be coupled with increased protein adsorption and hydrophilicity of PEG-containing copolymer. PMID:23692611

  4. Effect of hydro-alcoholic extract of Vernonia cinerea Less. against ethylene glycol-induced urolithiasis in rats

    PubMed Central

    Hiremath, Ravindra D.; Jalalpure, Sunil S.

    2016-01-01

    Objective: Aim of this study is to evaluate antiurolithiatic potential of whole plant hydro-alcoholic (30:70) extract of Vernonia cinerea Less. in accordance to its claims made in ancient literature and also being one of the ingredients of cystone, a marketed formulation widely used in the management of urolithiasis. Materials and Methods: To induce urolithiasis, 0.75% v/v ethylene glycol was administered orally for 14 days. The curative dose of 400 mg/kg b.w. and preventive doses of 100, 200, and 400 mg/kg b.w. were administered from 15th to 28th and 1st to 28 days, respectively. Cystone 750 mg/kg b.w. was selected as the reference standard for both curative and preventive doses. On 28th day, urinate of 24 h was collected and subjected for estimation of calcium, oxalate, and phosphates. Serum biochemical and kidney homogenate analysis was done for determination of renal oxalate contents. Results: The diseased Group II showed marked increase (P < 0.001 vs. normal Group I) in levels of urine calcium, oxalate, and phosphate. Serum creatinine, urea, and uric acid levels were also increased. Histopathological studies of kidney sections revealed significant changes. Treatment with hydro-alcoholic extract of V. cinerea showed significant (P < 0.01 vs. calculi-induced Group II) dose-dependent activity. A progressive increase in urine output, body weight, and decline in concentrations of stone-forming components such as calcium, oxalates, and phosphates was observed. Conclusion: It can be inferred that V. cinerea Less. is effective in ethylene glycol-induced urolithiasis and may have a potential in preventing and curing urolithiasis. PMID:27756957

  5. Alkyne- and 1,6-elimination- succinimidyl carbonate – terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation

    PubMed Central

    Xie, Yumei; Duan, Shaofeng; Forrest, M. Laird

    2011-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker. PMID:21949558

  6. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Pickenheim, B.; Bibler, N.

    2010-06-08

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be

  7. Evaluation of exposure to ethylene glycol monoethyl ether acetates and their possible haematological effects on shipyard painters

    PubMed Central

    Kim, Y.; Lee, N.; Sakai, T.; Kim, K. S.; Yang, J. S.; Park, S.; Lee, C. R.; Cheong, H. K.; Moon, Y.

    1999-01-01

    OBJECTIVES: To evaluate exposure to mixed solvents containing ethylene glycol monoethyl ether acetate (EGEEA) in shipyard painters, to determine if EGEEA is toxic to the bone marrow. METHODS: An industrial hygiene survey was performed to identify exposure to EGEEA of two groups of shipyard painters, a low exposure group (n = 30) and a high exposure group (n = 27). Urinary ethoxyacetic acid and methyl hippuric acid as well as haemoglobin, packed cell volume, red cell indices, total and differential white blood cell counts (WBCs), and platelet count for the shipyard painters and the control subjects were measured. RESULTS: The mean (range) exposure concentration (ppm) to EGEEA in the high and low exposure groups were 3.03 (not detectable to 18.27), 1.76 (not detectable to 8.12), respectively. The concentrations of methyl hippuric acid and ethoxyacetic acid in the high exposure group were significantly higher than those in the control group. The mean WBCs in the high exposure group were significantly lower than in the control group, and a significant proportion, six (11%) of the 57 painters, were leucopenic; none of the controls were affected. CONCLUSION: The high rate of possible haematological effects among shipyard painters and a hygienic evaluation of their working environment in the present study suggests that EGEEA might be toxic to bone marrow.   PMID:10474532

  8. MICROWAVE-ASSISTED SHAPE CONTROLLED BULK SYNTHESIS OF AG AND FE NANORODS IN POLY (ETHYLENE GLYCOL) SOLUTIONS

    EPA Science Inventory

    Bulk syntheses of silver (Ag) and iron (Fe) nanorods using poly (ethylene glycol), PEG, under microwave irradiation (MW) conditions are reported. Favorable conditions to make Ag nanorods were established and can be extended to make Fe nanorods with uniform size and shape. The nan...

  9. AuPd/polyaniline as the anode in an ethylene glycol microfluidic fuel cell operated at room temperature.

    PubMed

    Arjona, N; Palacios, A; Moreno-Zuria, A; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G

    2014-08-01

    AuPd/polyaniline was used for the first time, for ethylene glycol (EG) electrooxidation in a novel microfluidic fuel cell (MFC) operated at room temperature. The device exhibits high electrocatalytic performance and stability for the conversion of cheap and fully available EG as fuel. PMID:24923468

  10. Poly(ethylene glycol)-Prodrug Conjugates: Concept, Design, and Applications

    PubMed Central

    Banerjee, Shashwat S.; Aher, Naval; Patil, Rajesh; Khandare, Jayant

    2012-01-01

    Poly(ethylene glycol) (PEG) is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e., the covalent attachment of PEG) of peptides proteins, drugs, and bioactives is known to enhance the aqueous solubility of hydrophobic drugs, prolong circulation time, minimize nonspecific uptake, and achieve specific tumor targetability through the enhanced permeability and retention effect. Numerous PEG-based therapeutics have been developed, and several have received market approval. A vast amount of clinical experience has been gained which has helped to design PEG prodrug conjugates with improved therapeutic efficacy and reduced systemic toxicity. However, more efforts in designing PEG-based prodrug conjugates are anticipated. In light of this, the current paper highlights the synthetic advances in PEG prodrug conjugation methodologies with varied bioactive components of clinical relevance. In addition, this paper discusses FDA-approved PEGylated delivery systems, their intended clinical applications, and formulations under clinical trials. PMID:22645686

  11. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids

    PubMed Central

    2013-01-01

    Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed. PMID:23763850

  12. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness.

  13. Spectral Reflectance of Duckweed (Lemna Gibba L.) Fronds Exposed to Ethylene Glycol

    NASA Technical Reports Server (NTRS)

    Dong, Weijin; Carter, Gregory A.; Barber, John T.

    2001-01-01

    When duckweed (Lemna Gibba L.) fronds are exposed to ethylene glycol (EG) anatomy is altered, allowing an increase in water uptake that causes a darkening of frond appearance. Spectroradiometry was used to quantify changes in frond reflectance that occurred throughout the 400-850 nm spectrum under various EG concentrations and exposure times. The threshold concentration of EG at which a reflectance change could be detected was between 35 and 40 mM, approximately the same as by visual observation. EG-induced changes in frond reflectance were maximum at concentrations of 50 mM or greater. Reflectance changes were detectable within 24h of exposure to 100 mM EG,2-3 days prior to changes in frond appearance. The spectroradiometry of duckweed may serve as a rapid and sensitive technique for detection of ecosystem exposure to EG and perhaps other stress agents.

  14. Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels

    PubMed Central

    Wacker, Bradley K.; Scott, Evan A.; Kaneda, Megan M.; Alford, Shannon K.; Elbert, Donald L.

    2008-01-01

    While protein growth factors promote therapeutic angiogenesis, delivery of lipid factors such as sphingosine 1-phosphate (S1P) may provide better stabilization of newly formed vessels. We developed a biomaterial for the controlled delivery of S1P, a bioactive lipid released from activated platelets. Multi-arm poly(ethylene glycol)-vinyl sulfone was crosslinked with albumin, a lipid-transporting protein, to form hydrogels. The rate of S1P release from the materials followed Fickian kinetics and was dependent upon the presence of lipid carriers in the release solution. Delivery of S1P from RGD-modified hydrogels increased the cell migration speed of endothelial cells growing on the materials. The materials also induced angiogenesis in the chorioallantoic membrane assay. Our data demonstrate that the storage and release of lipid factors provides a new route for the induction of angiogenesis by artificial materials. PMID:16602758

  15. Study on thermodynamics and oxidation mechanism of ethylene glycol in the preparation of nanometer nickel powders

    SciTech Connect

    Jin Shengming . E-mail: shmjin@mail.csu.edu.cn; Yuan Liangsheng; Zhou Ying; Qiu Guanzhou; Wan Cuifeng

    2006-11-09

    Nanometer nickel powders have been prepared using the polyol method with NaOH, Ni(NO{sub 3}){sub 2}.6H{sub 2}O, ethylene glycol (EG), and polyvinylpyrrolidone (PVP) as raw materials. The thermodynamics of the reaction system was studied, and the E-pH diagram of Ni-EG-H{sub 2}O was plotted. The oxidation products of EG were predicted from the E-pH diagram, and CO{sub 3} {sup 2-} in alkaline solutions was identified as the product through the IR spectrum and CaCO{sub 3} sediment. Field-emission scanning electron micrograph (FE-SEM) showed that spherical nanometer nickel powders were obtained.

  16. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells.

    PubMed

    Arcaute, Karina; Mann, Brenda K; Wicker, Ryan B

    2006-09-01

    Stereolithography (SL) was used to fabricate complex 3-D poly(ethylene glycol) (PEG) hydrogels. Photopolymerization experiments were performed to characterize the solutions for use in SL, where the crosslinked depth (or hydrogel thickness) was measured at different laser energies and photoinitiator (PI) concentrations for two concentrations of PEG-dimethacrylate in solution (20% and 30% (w/v)). Hydrogel thickness was a strong function of PEG concentration, PI type and concentration, and energy dosage, and these results were utilized to successfully fabricate complex hydrogel structures using SL, including structures with internal channels of various orientations and multi-material structures. Additionally, human dermal fibroblasts were encapsulated in bioactive PEG photocrosslinked in SL. Cell viability was at least 87% at 2 and 24 h following fabrication. The results presented here indicate that the use of SL and photocrosslinkable biomaterials, such as photocrosslinkable PEG, appears feasible for fabricating complex bioactive scaffolds with living cells for a variety of important tissue engineering applications.

  17. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids

    NASA Astrophysics Data System (ADS)

    Cabaleiro, David; Pastoriza-Gallego, María J.; Gracia-Fernández, Carlos; Piñeiro, Manuel M.; Lugo, Luis

    2013-06-01

    Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed.

  18. Sizing the Bacillus anthracis PA63 Channel with Nonelectrolyte Poly(Ethylene Glycols)

    PubMed Central

    Nablo, Brian J.; Halverson, Kelly M.; Robertson, Joseph W. F.; Nguyen, Tam L.; Panchal, Rekha G.; Gussio, Rick; Bavari, Sina; Krasilnikov, Oleg V.; Kasianowicz, John J.

    2008-01-01

    Nonelectrolyte polymers of poly(ethylene glycol) (PEG) were used to estimate the diameter of the ion channel formed by the Bacillus anthracis protective antigen 63 (PA63). Based on the ability of different molecular weight PEGs to partition into the pore and reduce channel conductance, the pore appears to be narrower than the one formed by Staphylococcus aureus α-hemolysin. Numerical integration of the PEG sample mass spectra and the channel conductance data were used to refine the estimate of the pore's PEG molecular mass cutoff (∼1400 g/mol). The results suggest that the limiting diameter of the PA63 pore is <2 nm, which is consistent with an all-atom model of the PA63 channel and previous experiments using large ions. PMID:18645196

  19. Cellulose nanocrystal and poly[di(ethylene glycol) adipate] blend for tunable lens

    NASA Astrophysics Data System (ADS)

    Ko, Hyun-U.; Kim, Hyun Chan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan

    2016-04-01

    In these days, consumer electronics and medical device for optical diagnosis are minimalized and mobilized. The focusing part is one of crucial parts of optical diagnosis systems to reduce the size and weight. Thus, demand for tunable lens that change the focus itself is increased. To meet the demand, many tunable lens has been studied by utilizing smart materials that responded under mechanical, magnetic, optical, thermal, chemical, electrical or electrochemical stimuli. This paper reports a cellulose nanocrystal (CNC) and poly[di(ethylene glycol) adipate] (PDEGA) blend that is able to respond under electromechanical stimulus. The preparation of CNC/PDEGA and its characterization are illustrated and its actuation behavior is tested . Because the material has high dielectric constant and high reflection index, it is good candidate material for tunable lens.

  20. Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass.

    PubMed

    Pang, Jifeng; Zheng, Mingyuan; Sun, Ruiyan; Song, Lei; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-01-01

    The effects of typical inorganic impurities on the catalytic conversion of cellulose to ethylene glycol (EG) were investigated, and the mechanism of catalyst deactivation by certain impurities were clarified. It was found that most impurities did not affect the EG yield, but some non-neutral impurities or Ca and Fe ions greatly decreased the EG yield. Conditional experiments and catalyst characterization showed that some impurities changed the pH of the reaction solution and affected the cellulose hydrolysis rate; Ca and Fe cations reacted with tungstate ions and suppressed the retro-aldol condensation. To obtain a high EG yield, the pH of the reaction solution and the concentration of tungstate ions should be respectively adjusted to 5.0-6.0 and higher than 187ppm. For raw biomass conversion, negative effects were eliminated by suitable pretreatments, and high EG yields comparable to those from pure cellulose were obtained. PMID:25459851

  1. Radiation grafting of oligo(ethylene glycol) ethyl ether methacrylate on polypropylene

    NASA Astrophysics Data System (ADS)

    Komasa, Justyna; Miłek, Andrzej; Ulański, Piotr; Rosiak, Janusz M.

    2014-01-01

    Oligo(ethylene glycol) ethyl ether methacrylate (OEGMA) can be grafted onto polypropylene (PP) films by post-irradiation grafting, forming a thermosensitive polymer layer, as indicated by FT-IR and contact angle measurements. In the first step, PP foils are irradiated by electron beam (5.5 kGy/min, up to 300 kGy) in the presence of air. Subsequently, the irradiated foils react with the monomer in oxygen-free solutions in isopropanol (up to 2 M of monomer) at 70 °C. Degree of grafting of OEGMA can be controlled by proper selection of absorbed dose, monomer concentration and reaction time. This work is a part of a broader project on thermosensitive materials facilitating cell growth and detachment for optimizing cell layer engineering techniques in the treatment of burn wounds.

  2. Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface

    SciTech Connect

    Majewski, J.; Smith, G.S.; Kuhl, T.L.; Israelachvili, J.N.; Gerstenberg, M.C.

    1997-04-17

    The density distribution of a lipid monolayer at the air-water interface mixed with varying amounts of lipid with poly(ethylene glycol)polymer headgroups (polymer-lipid or PEG-lipid) was measured using neutron reflectometry. The structure of the monolayer at the interface was greatly perturbed by the presence of the bulky polymer-lipid headgroups resulting in a large increase in the thickness of the headgroup region normal to the interface and a systematic roughening of the interface with increasing polymer-lipid content. These results show how bulky hydrophilic moieties cause significant deformations and out-of-place protrusions of phospholipid monolayers and presumably bilayers, vesicles and biological membranes. In terms of polymer physics, very short polymer chains tethered to the air-water interface follow scaling behavior with a mushroom to brush transition with increasing polymer grafting density. 34 refs., 9 figs., 1 tab.

  3. Controllable growth of dendrite-like CuO nanostructures by ethylene glycol assisted hydrothermal process

    SciTech Connect

    Zhang Hui; Li Shenzhong; Ma Xiangyang; Yang Deren

    2008-05-06

    The dendrite-like CuO nanostructures, consisting of a rod-like main stem and some rod-like sub-branches, have been synthesized by a simple ethylene glycol (EG) assisted hydrothermal method. The X-ray diffraction (XRD) and the selected area electron diffraction (SAED) patterns indicate that the dendrite-like CuO nanostructures are of monoclinic phase and the individual branch of CuO is single crystalline in nature. The effects of the growth conditions such as temperature and pH value on the morphology and structures of CuO have also been investigated. It is indicated that different temperature and pH value result in the morphology and structure evolution of CuO. Moreover, a possible mechanism for the morphology and structures evolution of CuO has been primarily presented.

  4. Antifreeze in the hot core of Orion. First detection of ethylene glycol in Orion-KL

    NASA Astrophysics Data System (ADS)

    Brouillet, N.; Despois, D.; Lu, X.-H.; Baudry, A.; Cernicharo, J.; Bockelée-Morvan, D.; Crovisier, J.; Biver, N.

    2015-04-01

    Context. Ices are present in comets and in the mantles of interstellar grains. Their chemical composition has been indirectly derived by observing molecules released in the gas phase, when comets approach the sun and when ice mantles are sublimated or destroyed, e.g. in the hot cores present in high-mass, star-forming regions. Comparison of these chemical compositions sheds light on the formation of comets and on the evolution of interstellar matter from the molecular cloud to a protoplanetary disk, and it shows, to first order, a good agreement between the cometary and interstellar abundances. However, a complex O-bearing organic molecule, ethylene glycol (CH2OH)2, seems to depart from this correlation because it was not easily detected in the interstellar medium (Sgr B2) although it proved to be rather abundant with respect to other O-bearing species in comet C/1995 O1 (Hale-Bopp). Ethylene glycol thus appears, together with the closely related molecules glycolaldehyde CH2OHCHO and ethanol CH3CH2OH, as a key species in the comparison of interstellar and cometary ices as well as in any discussion on the formation of cometary matter. Aims: It is important to measure the molecular abundances in various hot cores to see if the observed differences between the interstellar medium and the comets are general. We focus here on the analysis of ethylene glycol in the nearest and best studied hot core-like region, Orion-KL. Methods: We use ALMA interferometric data because high spatial resolution observations allow us to reduce the line confusion problem with respect to single-dish observations since different molecules are expected to exhibit different spatial distributions. Furthermore, a large spectral bandwidth is needed because many individual transitions are required to securely detect large organic molecules. Confusion and continuum subtraction are major issues and have been handled with care. Results: We have detected the aGg' conformer of ethylene glycol in Orion

  5. Fabrication of anti-protein-fouling poly(ethylene glycol) microfluidic chip electrophoresis by sandwich photolithography.

    PubMed

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Liu, Huwei; Yuan, Hua

    2016-07-01

    Microfluidic chip electrophoresis (MCE) is a powerful separation tool for biomacromolecule analysis. However, adsorption of biomacromolecules, particularly proteins onto microfluidic channels severely degrades the separation performance of MCE. In this paper, an anti-protein-fouling MCE was fabricated using a novel sandwich photolithography of poly(ethylene glycol) (PEG) prepolymers. Photopatterned microchannel with a minimum resolution of 10 μm was achieved. After equipped with a conventional online electrochemical detector, the device enabled baseline separation of bovine serum albumin, lysozyme (Lys), and cytochrome c (Cyt-c) in 53 s under a voltage of 200 V. Compared with a traditional polydimethylsiloxane MCE made by soft lithography, the PEG MCE made by the sandwich photolithography not only eliminated the need of a master mold and the additional modification process of the microchannel but also showed excellent anti-protein-fouling properties for protein separation.

  6. Engineering a novel biosynthetic pathway in Escherichia coli for production of renewable ethylene glycol.

    PubMed

    Pereira, Brian; Zhang, Haoran; De Mey, Marjan; Lim, Chin Giaw; Li, Zheng-Jun; Stephanopoulos, Gregory

    2016-02-01

    Ethylene glycol (EG) is an important commodity chemical with broad industrial applications. It is presently produced from petroleum or natural gas feedstocks in processes requiring consumption of significant quantities of non-renewable resources. Here, we report a novel pathway for biosynthesis of EG from the renewable sugar glucose in metabolically engineered Escherichia coli. Serine-to-EG conversion was first achieved through a pathway comprising serine decarboxylase, ethanolamine oxidase, and glycolaldehyde reductase. Serine provision in E. coli was then enhanced by overexpression of the serine-biosynthesis pathway. The integration of these two parts into the complete EG-biosynthesis pathway in E. coli allowed for production of 4.1 g/L EG at a cumulative yield of 0.14 g-EG/g-glucose, establishing a foundation for a promising biotechnology.

  7. Sustained release of protein from poly(ethylene glycol) incorporated amphiphilic comb like polymers.

    PubMed

    Srividhya, M; Preethi, S; Gnanamani, A; Reddy, B S R

    2006-12-01

    Amphiphilic comb like macromonomer containing hydrophilic poly(ethylene glycol) groups covalently linked to poly(hydromethyl siloxane) (PHMS) were prepared by hydrosilylation reaction. The epoxy reacting sites were introduced to this amphiphilic system by the reaction with allyl epoxy propyl ether (AEPE). Bovine serum albumin (BSA), a model protein drug was loaded to the PEG-PDMS system and very thin membranes were made from this macromonomer adopting solution casting technique. The in vitro protein release studies at various pH conditions showed a controlled release profile without exhibiting any initial burst. The control of the initial burst might be due to the strong linkages of the protein with the membrane and the aggregation of the protein at the surface. The morphology of the membrane before and after the protein release, and the mechanical strength were evaluated. The surface properties of the membrane were studied using the contact angle measurements. PMID:16930885

  8. Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids

    PubMed Central

    2011-01-01

    The rheological behaviour of ethylene glycol-based nanofluids containing hexagonal scalenohedral-shaped α-Fe2O3 (hematite) nanoparticles at 303.15 K and particle weight concentrations up to 25% has been carried out using a cone-plate Physica MCR rheometer. The tests performed show that the studied nanofluids present non-Newtonian shear-thinning behaviour. In addition, the viscosity at a given shear rate is time dependent, i.e. the fluid is thixotropic. Finally, using strain sweep and frequency sweep tests, the storage modulus G', loss modulus G″ and damping factor were determined as a function of the frequency showing viscoelastic behaviour for all samples. PMID:22027018

  9. [Three-fold ethylene glycol poisoning over 3 years--a case report].

    PubMed

    Gardias, Waldemar; Szponar, Jarosław; Kujawa, Anna; Majewska, Magdalena; Drelich, Grzegorz; Lewandowska-Stanek, Hanna

    2012-01-01

    This paper describes a case of now 49-year-old patient with alcohol dependence syndrome, hospitalized three times in the Center of Clinical Toxicology in 2009-2012 due to ethylene glycol poisoning. Twice, the course of poisoning was defined as severe. It was complicated by respiratory failure, severe metabolic acidosis, renal failure, disorders of the central nervous system; once referred to it as a medium, complicated by renal failure. He was treated with ethyl alcohol as an inhibitor of alcohol dehydrogenase, hemodialysess and intensive symptomatic and supportive therapy. This paper shows the great effectiveness of early hemodialysis and intensive therapy even in case of multiple and severe intoxication with toxic alcohols. PMID:23243938

  10. Development of Macroporous Poly(ethylene glycol) Hydrogel Arrays Within Microfluidic Channels

    PubMed Central

    Lee, Andrew G.; Arena, Christopher P.; Beebe, David J.; Palecek, Sean P.

    2010-01-01

    The mass transport of solutes through hydrogels is an important design consideration in materials used for tissue engineering, drug delivery, and protein arrays used to quantify protein concentration and activity. We investigated the use of poly(ethylene glycol) (PEG) as a porogen to enhance diffusion of macromolecules into the interior of polyacrylamide and PEG hydrogel posts photopatterned within microfluidic channels. The diffusion of GST–GFP and dextran–FITC into hydrogels was monitored and effective diffusion coefficients were determined by fitting to the Fickian diffusion equations. PEG-diacrylate (Mr 700) with porogen formed a macroporous structure and permitted significant penetration of 250 kDa dextran. Proteins copolymerized in these macroporous hydrogels retained activity and were more accessible to antibody binding than proteins copolymerized in nonporous gels. These results suggest that hydrogel macroporosity can be tuned to regulate macromolecular transport in applications such as tissue engineering and protein arrays. PMID:21028794

  11. Reproductive toxicity of ethylene glycol monoethyl ether tested by continuous breeding of CD-1 mice

    SciTech Connect

    Lamb, J.C. IV; Gulati, D.K.; Russell, V.S.; Hommel, L.; Sabharwal, P.S.

    1984-08-01

    The reproductive toxicity of ethylene glycol monoethyl ether (EGEE) was evaluated in the Fertility Assessment by Continuous Breeding protocol. Both male and female CD-1 mice were given 0, 0.5, 1.0 or 2% EGEE in the drinking water and were housed as breeding pairs continuously for 14 weeks. Significant adverse effects on fertility were seen at 1 and 2% but not at 0.5%. After the continuous breeding phase of this test was completed, treated males were housed with control females and treated females with control males and fertility and reproduction were compared to the corresponding pairs of control male and control female mice. Both males and females from the 1 and 2% groups were affected. Testicular atrophy decreased sperm motility and increased abnormal sperm were noted in the treated males, but no specific anomalies were detected in the females. 7 references, 1 figure, 7 tables.

  12. Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids

    SciTech Connect

    Jha, Neetu; Ramaprabhu, S.

    2009-10-15

    High thermal conducting metal nanoparticles have been dispersed on the multiwalled carbon nanotubes (MWNTs) outer surface. Structural and morphological characterizations of metal dispersed MWNTs have been carried out using x-ray diffraction analysis, high resolution transmission electron microscopy, energy dispersive x-ray analysis, and Fourier transform infrared spectroscopy. Nanofluids have been synthesized using metal-MWNTs in de-ionized water (DI water) and ethylene glycol (EG) base fluids. It has been observed that nanofluids maintain the same sequence of thermal conductivity as that of metal nanoparticles Ag-MWNTs>Au-MWNTs>Pd-MWNTs. A maximum enhancement of 37.3% and 11.3% in thermal conductivity has been obtained in Ag-MWNTs nanofluid with DI water and EG as base fluids, respectively, at a volume fraction of 0.03%. Temperature dependence study also shows enhancement of thermal conductivity with temperature.

  13. Poly(ethylene glycol) diacrylate-supported ionogels with consistent capacitive behavior and tunable elastic response.

    PubMed

    Visentin, Adam F; Panzer, Matthew J

    2012-06-27

    Harnessing the many favorable properties of ionic liquids in a solid electrolyte thin film form is desirable for a host of electrical energy storage applications, including electrochemical double layer capacitors. Using a cross-linked polymer matrix to provide structural support, freestanding ionogel materials can be achieved with a wide range of polymer weight fractions. Compression testing and impedance spectroscopy have been used to characterize the mechanical and electrical responses of ionogels containing between 4.9 and 44.7 wt % poly(ethylene glycol) diacrylate. Although the elastic modulus of these solid electrolyte materials is observed to vary by more than 4 orders of magnitude within the composition range studied, concomitant changes in gel ionic conductivity and double layer capacitance were much less dramatic.

  14. Fate, effects and potential environmental risks of ethylene glycol: a review.

    PubMed

    Staples, C A; Williams, J B; Craig, G R; Roberts, K M

    2001-04-01

    The fate, effects, and potential environmental risks of ethylene glycol (EG) in the environment were examined. EG undergoes rapid biodegradation in aerobic and anaerobic environments (approximately 100% removal of EG within 24 h to 28 days). In air, EG reacts with photo-chemically produced hydroxyl radicals with a resulting atmospheric half-life of 2 days. Acute toxicity values (LC(50)s and EC(50)s) were generally >10,000 mg/l for fish and aquatic invertebrates. The data collectively show that EG is not persistent in air, surface water, soil, or groundwater, is practically non-toxic to aquatic organisms, and does not bioaccumulate in aquatic organisms. Potential long-term, quasi-steady state regional concentrations of EG estimated with a multi-media model for air, water, soil, and sediment were all less than predicted no effect concentrations (PNECs).

  15. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.

    PubMed

    Arcaute, Karina; Mann, Brenda; Wicker, Ryan

    2010-03-01

    Challenges remain in tissue engineering to control the spatial, mechanical, temporal and biochemical architectures of scaffolds. Unique capabilities of stereolithography (SL) for fabricating multi-material spatially controlled bioactive scaffolds were explored in this work. To accomplish multi-material builds, a mini-vat setup was designed allowing for self-aligning X-Y registration during fabrication. The mini-vat setup allowed the part to be easily removed and rinsed, and different photocrosslinkable solutions to be easily removed and added to the vat. Two photocrosslinkable hydrogel biopolymers, poly(ethylene glycol) dimethacrylate (PEG-dma, MW 1000) and poly(ethylene glycol) diacrylate (PEG-da, MW 3400), were used as the primary scaffold materials. Multi-material scaffolds were fabricated by including controlled concentrations of fluorescently labeled dextran, fluorescently labeled bioactive PEG or bioactive PEG in different regions of the scaffold. The presence of the fluorescent component in specific regions of the scaffold was analyzed with fluorescent microscopy, while human dermal fibroblast cells were seeded on top of the fabricated scaffolds with selective bioactivity and phase contrast microscopy images were used to show specific localization of cells in the regions patterned with bioactive PEG. Multi-material spatial control was successfully demonstrated in features down to 500 microm. In addition, the equilibrium swelling behavior of the two biopolymers after SL fabrication was determined and used to design constructs with the specified dimensions at the swollen state. The use of multi-material SL and the relative ease of conjugating different bioactive ligands or growth factors to PEG allows for the fabrication of tailored three-dimensional constructs with specified spatially controlled bioactivity.

  16. Weak intramolecular interaction effects on the torsional spectra of ethylene glycol, an astrophysical species

    NASA Astrophysics Data System (ADS)

    Boussessi, R.; Senent, M. L.; Jaïdane, N.

    2016-04-01

    An elaborate variational procedure of reduced dimensionality based on explicitly correlated coupled clusters calculations is applied to understand the far infrared spectrum of ethylene-glycol, an astrophysical species. This molecule can be classified in the double molecular symmetry group G8 and displays nine stable conformers, gauche and trans. In the gauche region, the effect of the potential energy surface anisotropy due to the formation of intramolecular hydrogen bonds is relevant. For the primary conformer, stabilized by a hydrogen bond, the ground vibrational state rotational constants are computed to be A0 = 15 369.57 MHz, B0 = 5579.87 MHz, and C0 = 4610.02 MHz corresponding to differences of 6.3 MHz, 7.2 MHz, and 3.5 MHz from the experimental parameters. Ethylene glycol displays very low torsional energy levels whose classification is not straightforward and requires a detailed analysis of the torsional wavefunctions. Tunneling splittings are significant and unpredictable due to the anisotropy of the potential energy surface PES. The ground vibrational state splits into 16 sublevels separated ˜142 cm-1. The splitting of the "G1 sublevels" was calculated to be ˜0.26 cm-1 in very good agreement with the experimental data (0.2 cm-1 = 6.95 MHz). Transitions corresponding to the three internal rotation modes allow assignment of previously observed Q branches. Band patterns, calculated between 362.3 cm-1 and 375.2 cm-1, 504 cm-1 and 517 cm-1, and 223.3 cm-1 and 224.1 cm-1, that correspond to the tunnelling components of the v21 fundamental (v21 = OH-torsional mode), are assigned to the prominent experimental Q branches.

  17. Conformation and Phase Separation of Oligo (ethylene glycol) Grafted Polystyrene in Dilute Aqueous Solutions

    SciTech Connect

    Cheng, Gang; Melnichenko, Yuri B; Wignall, George D; Hua, Fengjun; Hong, Kunlun; Mays, Jimmy

    2007-01-01

    Temperature induced conformational changes of poly(p-oligo(ethylene glycol) styrene) (POEGS) in aqueous solutions were investigated by small angle neutron scattering (SANS), neutron transmission and dynamic light scattering (DLS). The molecular weight of the polymer studied was 9400 g/mol with a polydispersity index of 1.18 and each repeat unit of the polymer had four ethylene glycol monomer segments. The polymer was water soluble due to the hydrophilicity of the OEG side chains and these solutions showed lower critical solution temperature (LCST) depending on the concentration of the polymer. Measurements of solution behavior were made as a function of temperature in the range of 25-55 C for three polymer concentrations (0.1 wt%, 0.3 wt%, and 1.8 wt%). Neutron transmission measurements were used to monitor the amount of polymer which precipitated or remained in solution above the cloud point temperature (T{sub CP}). DLS revealed the presence of large clusters in all solutions both below and above T{sub CP} while SANS provided information on the structure and interactions between individual chains. It was found that in the homogeneous region below T{sub CP} the shape of individual polymers in solution was close to ellipsoidal with the dimensions R{sub a} = 37 Angstroms and R{sub b} = 14 Angstroms and was virtually independent of temperature. The SANS data taken for the most concentrated solution studied (1.8 wt%) were fit to the ellipsoidal model with attractive interactions which were approximated by the Ornstein-Zernike function with a temperature-dependent correlation length in the range of 24-49 Angstroms. The collapse of individual polymers to spherical globules with the radius of 15 Angstroms above TCP was observed.

  18. Intentional Ethylene Glycol Poisoning Increase after Media Coverage of Antifreeze Murders

    PubMed Central

    Morgan, Brent W.; Geller, Robert J.; Kazzi, Ziad N.

    2011-01-01

    Background: The media can have a profound impact on human behavior. A sensational murder by ethylene glycol (EG) poisoning occurred in our state. The regional media provided extensive coverage of the murder. We undertook this investigation to evaluate our incidence of EG poisoning during the timeframe of before the first report linking a death to ethylene glycol to shortly after the first murder trial. Methods: Descriptive statistics and linear regression were used to describe and analyze the number of EG cases over time. A search of the leading regional newspaper’s archives established the media coverage timeline. Result: Between 2000 and 2004, our poison center (PC) handled a steady volume of unintentional exposures to EG [range: 105–123 per year, standard deviation (SD)=7.22]. EG exposures thought to be suicidal in intent increased from 12 cases in 2000 to 121 cases in 2004. In the 19 months prior to the first media report of this story, our PC handled a mean of 1 EG case with suicidal intent per month [range: 0–2, SD=.69]. In the month after the first media report, our PC handled 5 EG cases with suicidal intent. When media coverage was most intense (2004), our PC received a mean of 10 EG suicidal-intent calls per month [range: 5–17, SD=3.55]. Although uncommon, reports of malicious EG poisonings also increased during this same period from 2 in 2000 to 14 in 2004. Conclusion: Media coverage of stories involving poisonings may result in copycat events, applicable to both self-poisonings and concern for malicious poisonings. Poison centers should be aware of this phenomenon, pay attention to local media and plan accordingly if a poisoning event receives significant media coverage. The media should be more sensitive to the content of their coverage and avoid providing “how to” poisoning information. PMID:21731785

  19. Quick freezing of unfertilized mouse oocytes using ethylene glycol with sucrose or trehalose.

    PubMed

    Rayos, A A; Takahashi, Y; Hishinuma, M; Kanagawa, H

    1994-01-01

    Unfertilized mouse oocytes were frozen by directly plunging them into liquid nitrogen vapour after equilibration in a freezing medium containing 3 mol ethylene glycol l-1 with 0.25 mol sucrose or trehalose l-1 for 5-40 min. After thawing and dilution of the cryoprotectant, oocytes of normal morphology were inseminated in vitro and the effect of equilibration period on the rates of fertilization and development in vitro was examined. Regardless of the equilibration in the freezing medium, no significant difference was observed on the fertilization rate of frozen-thawed oocytes. However, higher fertilization and higher normal fertilization rates were obtained with equilibration in 3 mol ethylene glycol l-1 with either 0.25 mol sucrose l-1 or trehalose for 20 and 40 min than with 5 and 10 min equilibration. Development rates to two-cell embryos and expanded blastocysts of in vitro fertilized frozen-thawed oocytes that were equilibrated in the freezing medium for 20 and 40 min were significantly higher (P < 0.05 or P < 0.01) than with 5 min equilibration. Development in vivo was assessed by transferring blastocysts derived from unfertilized oocytes frozen by the optimum treatment (20 min equilibration in the freezing medium before freezing) into the uterine horns of day 3 pseudopregnant female recipients. The development rate of frozen-thawed oocytes to the blastocyst stage after insemination in vitro was significantly lower than that of the non-frozen control (P < 0.001). However, transfer of the blastocysts derived from frozen-thawed oocytes to the uterine horns of the recipients in fetal development and implantation rates similar to those of the control.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Antilithiatic effects of crocin on ethylene glycol-induced lithiasis in rats.

    PubMed

    Ghaeni, Fatemeh Abbasi; Amin, Bahareh; Hariri, Alireza Timcheh; Meybodi, Naser Tayyebi; Hosseinzadeh, Hossein

    2014-12-01

    In this study, the antilithiatic potential of crocin, a pharmacologically active constituent of Crocus sativus L. (saffron), was evaluated against ethylene glycol (EG)-induced nephrolithiasis in rats. Negative control rats were provided with EG (1 %) in drinking water for 30 days. crocin (10, 20 and 40 mg/kg, i.p.) was administered simultaneously once daily for 30 days (prophylactic regimen) or 14 days after stone induction (therapeutic study). For biochemical analysis, 24-h urine was collected from all experimental animals at the beginning (day 0) and end of the experiment (day 30). The urine output was evaluated during the first 24 h (day 1). Ethylene glycol feeding resulted in decreased hyperoxaluria (P < 0.01) and total protein loss (P < 0.001), along with decreased excretion of citrate and magnesium (P < 0.01) compared with the intact animals. Treatment with prophylactic regimen of crocin (20 and 40 mg/kg) significantly reduced the elevated oxalate, and increased the citrate and magnesium levels of urine. The attenuation of protein loss was only seen with a high dose of crocin in a prophylactic study. Urine volume was not significantly altered after EG or crocin administration. The increased number of calcium deposits in the kidney tissue of lithiatic rats was decreased after prophylactic treatment with 20 and 40 mg/kg of crocin. The urinary ionic parameters and crystal count were not significantly altered after the therapeutic study. A marked increase in malondialdehyde (MDA, a lipid peroxidation product) level was observed in the EG-given group. Treatment with crocin (20 and 40 mg/kg) reduced the elevated levels of MDA. Results indicate that crocin can be effective in preventing urine calculi formation and recurrence of the disease. The mechanism underlying this effect is mediated possibly through balancing promoter and inhibitor factors and an antioxidant effect.

  1. CO2 Fixation into Novel CO2 Storage Materials Composed of 1,2-Ethanediamine and Ethylene Glycol Derivatives.

    PubMed

    Zhao, Tianxiang; Guo, Bo; Han, Limin; Zhu, Ning; Gao, Fei; Li, Qiang; Li, Lihua; Zhang, Jianbin

    2015-07-20

    A new CO2 fixation process into solid CO2 -storage materials (CO2 SMs) under mild conditions has been developed. The novel application of amine-glycol systems to the capture, storage, and utilization of CO2 with readily available 1,2-ethanediamine (EDA) and ethylene glycol derivatives (EGs) was demonstrated. Typically, the CO2 SMs were isolated in 28.9-47.5 % yields, followed by extensive characterization using (13) C NMR, XRD, and FTIR. We found that especially the resulting poly-ethylene-glycol-300-based CO2 SM (PCO2 SM) product could be processed into stable tablets for CO2 storage; the aqueous PCO2 SM solution exhibited remarkable CO2 capturing and releasing capabilities after multiple cycles. Most importantly, the EDA and PEG 300 released from PCO2 SM were found to act as facilitative surfactants for the multiple preparation of CaCO3 microparticles with nano-layer structure.

  2. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.

    PubMed

    Wang, Aiqin; Zhang, Tao

    2013-07-16

    With diminishing fossil resources and increasing concerns about environmental issues, searching for alternative fuels has gained interest in recent years. Cellulose, as the most abundant nonfood biomass on earth, is a promising renewable feedstock for production of fuels and chemicals. In principle, the ample hydroxyl groups in the structure of cellulose make it an ideal feedstock for the production of industrially important polyols such as ethylene glycol (EG), according to the atom economy rule. However, effectively depolymerizing cellulose under mild conditions presents a challenge, due to the intra- and intermolecular hydrogen bonding network. In addition, control of product selectivity is complicated by the thermal instabilities of cellulose-derived sugars. A one-pot catalytic process that combines hydrolysis of cellulose and hydrogenation/hydrogenolysis of cellulose-derived sugars proves to be an efficient way toward the selective production of polyols from cellulose. In this Account, we describe our efforts toward the one-pot catalytic conversion of cellulose to EG, a typical petroleum-dependent bulk chemical widely applied in the polyester industry whose annual consumption reaches about 20 million metric tons. This reaction opens a novel route for the sustainable production of bulk chemicals from biomass and will greatly decrease the dependence on petroleum resources and the associated CO₂ emission. It has attracted much attention from both industrial and academic societies since we first described the reaction in 2008. The mechanism involves a cascade reaction. First, acid catalyzes the hydrolysis of cellulose to water-soluble oligosaccharides and glucose (R1). Then, oligosaccharides and glucose undergo C-C bond cleavage to form glycolaldehyde with catalysis of tungsten species (R2). Finally, hydrogenation of glycolaldehyde by a transition metal catalyst produces the end product EG (R3). Due to the instabilities of glycolaldehyde and cellulose

  3. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.

    PubMed

    Wang, Aiqin; Zhang, Tao

    2013-07-16

    With diminishing fossil resources and increasing concerns about environmental issues, searching for alternative fuels has gained interest in recent years. Cellulose, as the most abundant nonfood biomass on earth, is a promising renewable feedstock for production of fuels and chemicals. In principle, the ample hydroxyl groups in the structure of cellulose make it an ideal feedstock for the production of industrially important polyols such as ethylene glycol (EG), according to the atom economy rule. However, effectively depolymerizing cellulose under mild conditions presents a challenge, due to the intra- and intermolecular hydrogen bonding network. In addition, control of product selectivity is complicated by the thermal instabilities of cellulose-derived sugars. A one-pot catalytic process that combines hydrolysis of cellulose and hydrogenation/hydrogenolysis of cellulose-derived sugars proves to be an efficient way toward the selective production of polyols from cellulose. In this Account, we describe our efforts toward the one-pot catalytic conversion of cellulose to EG, a typical petroleum-dependent bulk chemical widely applied in the polyester industry whose annual consumption reaches about 20 million metric tons. This reaction opens a novel route for the sustainable production of bulk chemicals from biomass and will greatly decrease the dependence on petroleum resources and the associated CO₂ emission. It has attracted much attention from both industrial and academic societies since we first described the reaction in 2008. The mechanism involves a cascade reaction. First, acid catalyzes the hydrolysis of cellulose to water-soluble oligosaccharides and glucose (R1). Then, oligosaccharides and glucose undergo C-C bond cleavage to form glycolaldehyde with catalysis of tungsten species (R2). Finally, hydrogenation of glycolaldehyde by a transition metal catalyst produces the end product EG (R3). Due to the instabilities of glycolaldehyde and cellulose

  4. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    SciTech Connect

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-07-15

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  5. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Li, Xiaomeng; Luan, Shifang; Yang, Huawei; Shi, Hengchong; Zhao, Jie; Jin, Jing; Yin, Jinghua; Stagnaro, Paola

    2012-01-01

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  6. Nonfouling hydrophilic poly(ethylene glycol) engraftment strategy for PDMS/SU-8 heterogeneous microfluidic devices.

    PubMed

    Yeh, Po Ying; Zhang, Zhiyi; Lin, Min; Cao, Xudong

    2012-11-20

    We report a novel nonfouling passivation method using poly(ethylene glycol) (PEG) engraftment on the surfaces of poly(dimethylsiloxane) (PDMS) microfluidic devices sealed with SU-8. To achieve bonding between the PDMS and SU-8 surfaces, the PDMS surface was first functionalized with amines by treatment with 3-aminopropyltrimethoxysilane (APTMS) for subsequent reaction with epoxide functional groups on SU-8 surfaces. To modify the heterogeneous surfaces of the resulting PDMS/SU-8 microfluidic device further, the remaining SU-8 surfaces were amino functionalized using ethylene diamine (EDA), followed by treating both amino-functionalized PDMS and SU-8 surfaces with mPEG-NHS (N-hydroxysuccinimide) through an amine-NHS reaction for facile PEG immobilizations, thus simultaneously modifying both PDMS and SU-8 surfaces in one reaction. Detailed surface analyses such as the water contact angle, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were conducted to confirm the chemical reactions and characterize the resulting surface properties. To test the efficacy of this surface-modification strategy, we conducted nonspecific protein and particle binding tests using microfluidic devices with and without modifications. The PEG-modified PDMS/SU-8 device surfaces showed a 64.5% reduction in nonspecific bovine serum albumin (BSA) adsorption in comparison to that of the unmodified surfaces and 92.0 and 95.8% reductions in microbead adhesion under both stagnant and flowing conditions, respectively.

  7. A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents

    SciTech Connect

    Kohler, Nathan J.; Fryxell, Glen E.; Zhang, Miqin

    2004-06-16

    A trifluoroethylester-terminal poly (ethylene glycol) (PEG) silane was synthesized and self-assembled on iron oxide nanoparticles. The nanoparticle system thus prepared has the flexibility to conjugate with cell targeting agents having either carboxylic and amine terminal groups for a number of biomedical applications, including magnetic resonance imaging (MRI) and controlled drug delivery. The trifluoroethylester silane was synthesized by modifying a PEG diacid to form the corresponding bistrifluoroethylester (TFEE), followed by a reaction with 3-aminopropyltriethoxysilane (APS). The APS coupled with PEG chains confers the stability of PEG self-assembled monolayers (SAMs) and increases the PEG packing density on nanoparticles by establishing hydrogen bonding between the carbonyl and amine groups present within the monolayer structure. The success of the synthesis of the PEG TEFE silane was confirmed with 1H NMR and Fourier transform infrared spectroscopy (FTIR). The conjugating flexibility of the PEG TEFE was demonstrated with folic acid having carboxylic acid groups and amine terminal groups respectively and confirmed by FTIR. TEM analysis showed the dispersion of nanoparticles before and after they were coated with PEG and folic acid.

  8. Unusual solvatochromic absorbance probe behaviour within mixtures of poly(ethylene glycol)-400 + ionic liquid, [bmim][Tf2N

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Ali, Maroof; Malik, Nisar Ahmad; Uzair, Sahar

    2014-03-01

    The potentially green solvents made up of ionic liquids (ILs) and poly(ethylene glycols) may have wide range of the applications in many chemical and biochemical fields. In the present work, solvatochromic absorbance probe behaviour is used to assess the physicochemical properties of the mixtures composed of PEG-400 + IL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][Tf2N]. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., ETN , indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][Tf2N] + PEG-400 mixtures to be even higher than that of neat [bmim][Tf2N], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (π∗) obtained separately from the electronic absorbance response of probe N,N-diethyl-4-nitroaniline, and the HBD acidity (α) of PEG-400 + [bmim][Tf2N] mixtures are also observed to be anomalously high. A comparative study of the PEG + IL mixtures has also been done with PEG-400 + molecular organic solvents (protic polar [methanol], aprotic polar [N,N-dimethylformamide], and non polar, [benzene]) mixtures, but these mixtures do not show this type of unusual behaviour. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within PEG-400 + different solvent mixtures.

  9. Welded tuff porosity characterization using mercury intrusion, nitrogen and ethylene glycol monoethyl ether sorption and epifluorescence microscopy

    USGS Publications Warehouse

    Reddy, M.M.; Claassen, H.C.; Rutherford, D.W.; Chiou, C.T.

    1994-01-01

    Porosity of welded tuff from Snowshoe Mountain, Colorado, was characterized by mercury intrusion porosimetry (MIP), nitrogen sorption porosimetry, ethylene glycol monoethyl ether (EGME) gas phase sorption and epifluorescence optical microscopy. Crushed tuff of two particle-size fractions (1-0.3 mm and less than 0.212 mm), sawed sections of whole rock and crushed tuff that had been reacted with 0.1 N hydrochloric acid were examined. Average MIP pore diameter values were in the range of 0.01-0.02??m. Intrusion volume was greatest for tuff reacted with 0.1 N hydrochloric acid and least for sawed tuff. Cut rock had the smallest porosity (4.72%) and crushed tuff reacted in hydrochloric acid had the largest porosity (6.56%). Mean pore diameters from nitrogen sorption measurements were 0.0075-0.0187 ??m. Nitrogen adsorption pore volumes (from 0.005 to 0.013 cm3/g) and porosity values (from 1.34 to 3.21%) were less than the corresponding values obtained by MIP. More than half of the total tuff pore volume was associated with pore diameters < 0.05??m. Vapor sorption of EGME demonstrated that tuff pores contain a clay-like material. Epifluorescence microscopy indicated that connected porosity is heterogeneously distributed within the tuff matix; mineral grains had little porosity. Tuff porosity may have important consequences for contaminant disposal in this host rock. ?? 1994.

  10. GLYCOLIC ACID PHYSICAL PROPERTIES, IMPURITIES, AND RADIATION EFFECTS ASSESSMENT

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Hay, M.

    2011-06-20

    The Defense Waste Processing Facility (DWPF) is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H{sub 2} and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O{sub 2} when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and

  11. Determination of trace amounts of ethylene glycol and its analogs in water matrixes by liquid chromatography/tandem mass spectrometry.

    PubMed

    Tran, Buu N; Okoniewski, Richard; Bucciferro, Anthony; Jansing, Robert; Aldous, Kenneth M

    2014-01-01

    Contamination of drinking water by ethylene glycol (EG) is a public health concern. EG causes adverse health effects in humans and animals, including cardiopulmonary and acute renal failure. EG and other glycols, such as propylene glycol (PG) are major components in antifreeze liquids, which may be the main source of contamination of ground water. A sensitive LC/electrospray ionization (ESI)-MS/MS method was developed to measure trace amounts of EG, diethylene glycol, and 1,2- and 1,3-PG in several water sources, including municipal tap, lake, river, and salinated water. In this method, glycols in water samples were derivatized with benzoyl chloride by the Schotten-Baumann reaction, followed by liquid-liquid extraction using pentane as the organic solvent prior to the LC/ESI-MS/MS determination. QC included analysis of a method blank and samples fortified at low and high levels. Analytical data showed excellent linear calibration for all observed glycols, with good precision and accuracy. The method detection limits for the studied glycols ranged from 1.9 to 6.1 ng/mL across the water matrixes tested. This method is suitable to help assess water quality in areas that may be prone to glycol contamination.

  12. Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multi‐walled carbon nanotubes

    PubMed Central

    Thomas, Laurent; Zheng, Yu; Steinhart, Martin; Werner, Carsten; Wang, Wenxin

    2016-01-01

    Abstract Despite concerns over toxicity, carbon nanotubes have been extensively investigated for potential applications in nanomedicine because of their small size, unique properties, and ability to carry cargo such as small molecules and nucleic acids. Herein, we show that polymer nanotubes can be synthesized quickly and easily from a homopolymer of ethylene glycol dimethacrylate (EGDMA). The nanotubes formed via photo‐initiated polymerization of the highly functional prepolymer, inside an anodized aluminium oxide template, have a regular structure and large internal pore and can be loaded with a fluorescent dye within minutes representing a simple alternative to multi‐walled carbon nanotubes for biomedical applications. PMID:27512602

  13. Oxygen nano-bubble water reduces calcium oxalate deposits and tubular cell injury in ethylene glycol-treated rat kidney.

    PubMed

    Hirose, Yasuhiko; Yasui, Takahiro; Taguchi, Kazumi; Fujii, Yasuhiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Okada, Atsushi; Kubota, Yasue; Kawai, Noriyasu; Itoh, Yasunori; Tozawa, Keiichi; Sasaki, Shoichi; Kohri, Kenjiro

    2013-08-01

    Renal tubular cell injury induced by oxalate plays an important role in kidney stone formation. Water containing oxygen nano-bubbles (nanometer-sized bubbles generated from oxygen micro-bubbles; ONB) has anti-inflammatory effects. Therefore, we investigated the inhibitory effects of ONB water on kidney stone formation in ethylene glycol (EG)-treated rats. We divided 60 rats, aged 4 weeks, into 5 groups: control, the water-fed group; 100 % ONB, the 100 % ONB water-fed group; EG, the EG treated water-fed group; EG + 50 % ONB and EG + 100 % ONB, water containing EG and 50 % or 100 % ONB, respectively. Renal calcium oxalate (CaOx) deposition, urinary excretion of N-acetyl-β-D-glucosaminidase (NAG), and renal expression of inflammation-related proteins, oxidative stress biomarkers, and the crystal-binding molecule hyaluronic acid were compared among the 5 groups. In the control and 100 % ONB groups, no renal CaOx deposits were detected. In the EG + 50 % ONB and EG + 100 % ONB groups, ONB water significantly decreased renal CaOx deposits, urinary NAG excretion, and renal monocyte chemoattractant protein-1, osteopontin, and hyaluronic acid expression and increased renal superoxide dismutase-1 expression compared with the EG group. ONB water substantially affected kidney stone formation in the rat kidney by reducing renal tubular cell injury. ONB water is a potential prophylactic agent for kidney stones.

  14. Structural effects in photopolymerized sodium AMPS hydrogels crosslinked with poly(ethylene glycol) diacrylate for use as burn dressings.

    PubMed

    Nalampang, Kanarat; Panjakha, Rachanida; Molloy, Robert; Tighe, Brian J

    2013-01-01

    Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from [Formula: see text] = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application. PMID:23796031

  15. Engineering oligo(ethylene glycol) based nonfouling surfaces and microstructures for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ma, Hongwei

    This thesis presents the initial development of oligo(ethylene glycol) (OEG) based "nonfouling"---protein and cell resistant---coatings that can be applied to a wide range of biomedical applications. The hypothesis underlying this work is that a high density of OEG will eliminate nonspecific protein adsorption thus reduce or eradicate undesired surface phenomena, such as poor biocompatibility, which are direct consequences of the nonspecific protein adsorption. A generalized method for creating functionalized nonfouling surfaces was developed by combining two strategies, namely "Surface-Initiated Atom Transfer Radical Polymerization of Oligo(ethylene glycol) methyl methacrylate (SI-ATRP of OEGMA)" and "Modular design of initiator", demonstrated on gold (metallic materials), glass and silicon oxide (hydroxylated substrates). SI-ATRP was able to achieve an OEG coating with a density higher than all the pre-existing techniques could achieve. It also provided control over the coating thickness and architecture that are not easily controlled by other techniques. Thickness-density profile of poly(OEGMA) was constructed based on SI-ATRP from mixed SAMs on gold. For the first time, we constructed a map of protein resistance of PEG coated surfaces, which reveals the relationship between the poly(OEGMA) coatings and their protein adsorption. Besides its scientific implications, the practical use (from an engineering point of view) of these results is that the information shall be instructive in designing nonfouling surfaces by providing critical structural parameters. This thesis also demonstrates integration of SI-ATRP with micro and nano scale pattern fabrication, which further expands the applications of this technology. In vitro cell culturing on patterned surfaces confirmed that high-density OEG coatings were exceptionally nonfouling even in physiological milieu, which shows great promise for the in vivo study of OEG coatings. A prototype protein microarray was

  16. Steam Reforming of Ethylene Glycol over MgAl₂O₄ Supported Rh, Ni, and Co Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Xing, Rong; Albrecht, Karl O.; Dagle, Robert A.

    2015-11-25

    Steam reforming of ethylene glycol (EG) over MgAl₂O₄ supported metal (15 wt.% Ni, 5 wt.% Rh, and 15 wt.% Co) catalysts were investigated using combined experimental and theoretical methods. Compared to highly active Rh and Ni catalysts with 100% conversion, the steam reforming activity of EG over the Co catalyst is comparatively lower with only 42% conversion under the same reaction conditions (500°C, 1 atm, 119,000 h⁻¹, S/C=3.3 mol). However, CH₄ selectivity over the Co catalyst is remarkably lower. For example, by varying the gas hour space velocity (GHSV) such that complete conversion is achieved for all the catalysts, CH₄ selectivity for the Co catalyst is only 8%, which is much lower than the equilibrium CH₄ selectivity of ~ 24% obtained for both the Rh and Ni catalysts. Further studies show that varying H₂O concentration over the Co catalyst has a negligible effect on activity, thus indicating zero-order dependence on H₂O. These experimental results suggest that the supported Co catalyst is a promising EG steam reforming catalyst for high hydrogen production. To gain mechanistic insight for rationalizing the lower CH₃ selectivity observed for the Co catalyst, the initial decomposition reaction steps of ethylene glycol via C-O, O-H, C-H, and C-C bond scissions on the Rh(111), Ni(111) and Co(0001) surfaces were investigated using density functional theory (DFT) calculations. Despite the fact that the bond scission sequence in the EG decomposition on the three metal surfaces varies, which leads to different reaction intermediates, the lower CH₄ selectivity over the Co catalyst, as compared to the Rh and Ni catalysts, is primarily due to the higher barrier for CH₄ formation. The higher S/C ratio enhances the Co catalyst stability, which can be elucidated by the facile water dissociation and an alternative reaction path to remove the CH species as a coking precursor via the HCOH formation. This work was financially supported by the United

  17. Insulin Particle Formation in Supersaturated Aqueous Solutions of Poly(Ethylene Glycol)

    PubMed Central

    Bromberg, Lev; Rashba-Step, Julia; Scott, Terrence

    2005-01-01

    Protein microspheres are of particular utility in the field of drug delivery. A novel, completely aqueous, process of microsphere fabrication has been devised based on controlled phase separation of protein from water-soluble polymers such as polyethylene glycols. The fabrication process results in the formation of spherical microparticles with narrow particle size distributions. Cooling of preheated human insulin-poly(ethylene glycol)-water solutions results in the facile formation of insulin particles. To map out the supersaturation conditions conducive to particle nucleation and growth, we determined the temperature- and concentration-dependent boundaries of an equilibrium liquid-solid phase separation. The kinetics of formation of microspheres were followed by dynamic and continuous-angle static light scattering techniques. The presence of PEG at a pH that was close to the protein's isoelectric point resulted in rapid nucleation and growth. The time elapsed from the moment of creation of a supersaturated solution and the detection of a solid phase in the system (the induction period, tind) ranged from tens to several hundreds of seconds. The dependence of tind on supersaturation could be described within the framework of classical nucleation theory, with the time needed for the formation of a critical nucleus (size <10 nm) being much longer than the time of the onset of particle growth. The growth was limited by cluster diffusion kinetics. The interfacial energies of the insulin particles were determined to be 3.2–3.4 and 2.2 mJ/m2 at equilibrium temperatures of 25 and 37°C, respectively. The insulin particles formed as a result of the process were monodisperse and uniformly spherical, in clear distinction to previously reported processes of microcrystalline insulin particle formation. PMID:16254391

  18. Oligo(ethylene glycol)-functionalized disiloxanes as electrolytes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengcheng; Dong, Jian; West, Robert; Amine, Khalil

    Functionalized disiloxane compounds were synthesized by attaching oligo(ethylene glycol) chains, -(CH 2CH 2O)- n, n = 2-7, via hydrosilation, dehydrocoupling, and nucleophilic substitution reactions and were examined as non-aqueous electrolyte solvents in lithium-ion cells. The compounds were fully characterized by 1H, 13C, and 29Si nuclear magnetic resonance (NMR) spectroscopy. Upon doping with lithium bis(oxalato)borate (LiBOB) or LiPF 6, the disiloxane electrolytes showed conductivities up to 6.2 × 10 -4 S cm -1 at room temperature. The thermal behavior of the electrolytes was studied by differential scanning calorimetry, which revealed very low glass transition temperatures before and after LiBOB doping and much higher thermal stability compared to organic carbonate electrolytes. Cyclic voltammetry measurements showed that disiloxane-based electrolytes with 0.8 M LiBOB salt concentration are stable to 4.7 V. The LiBOB/disiloxane combinations were found to be good electrolytes for lithium-ion cells; unlike LiPF 6, LiBOB can provide a good passivation film on the graphite anode. The LiPF 6/disiloxane electrolyte was enabled in lithium-ion cells by adding 1 wt% vinyl ethylene carbonate (VEC). Full cell performance tests with LiNi 0.80Co 0.15Al 0.05O 2 as the cathode and mesocarbon microbead (MCMB) graphite as the anode show stable cyclability. The results demonstrate that disiloxane-based electrolytes have considerable potential as electrolytes for use in lithium-ion batteries.

  19. [Decontamination of some spices by ethylene oxide. Development of 2-chloroethanol and ethylene glycol during the preservation].

    PubMed

    Chaigneau, M; Muraz, B

    1993-01-01

    After the disinfection by ethylene oxide and storage by ethylene oxide in definite conditions of 16 spices (parsley, chervil, tarragone, chive, thyme, rosemary, coriander, nutmeg, mace, cinnamon, allspices, clove, pepper), the authors observed the fast loss of residual ethylene oxide and ethyleneglycol. On the contrary, the persistence of 2-chloroethanol was followed up for 6 months. They turn their attention to the toxicity of this compound to ensure the protection of customers.

  20. Ethylene glycol poisoning in three dogs: Importance of early diagnosis and role of hemodialysis as a treatment option.

    PubMed

    Schweighauser, A; Francey, T

    2016-02-01

    Poisoning with ethylene glycol as contained in antifreeze can rapidly lead to irreversible acute renal failure and other organ damage. It carries a grave prognosis unless diagnosed early and adequate treatment is initiated within 8 hours of ingestion. Toxicity of ethylene glycol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), leading to early signs of severe polyuria (PU) and polydipsia (PD), gastritis, ataxia and central nervous depression, followed by progressive dehydration, and ultimately oligoanuric renal failure. In addition to general supportive care, therapeutic interventions must include either antidotes blocking ADH-mediated metabolism or blood purification techniques to remove both the parent compound and the toxic metabolites. The goal of this case report is to describe three cases of acute antifreeze intoxication in dogs, and to discuss treatment options available for this poisoning. PMID:27145686

  1. BODIPY-based oligo(ethylene glycol) dendrons as fluorescence thermometers: when thermoresponsiveness meets intramolecular electron/charge transfer.

    PubMed

    Wang, Hua; Wu, Yongquan; Tao, Pan; Fan, Xing; Kuang, Gui-Chao

    2014-12-01

    The temperature-dependent photophysical properties of a series of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives with different oligo(ethylene glycol) (OEG) dendrons were investigated. Weak fluorescence emission was observed for these BODIPY derivatives in dilute solution with low viscosity. BDP-G0 and BDP-G1-TEG exhibit a high quantum yield in viscous glycerol solutions, contrary to the moderate and little fluorescence enhancement for BDP-G1 and BDP-G2 under the same conditions. The photoinduced electron transfer (PET) may have quenched the fluorescence, as supported by calculation. Interestingly, the thermoresponsive BODIPY derivatives show heat-induced luminescence enhancement with a high signal-to-noise ratio and their emission maxima are dependent on the structures of branched tri(ethylene glycol) moieties. Finally, preliminary studies on the BODIPY derivatives as intracellular fluorescence indicators in living HeLa cells were carried out.

  2. Ethylene glycol poisoning in three dogs: Importance of early diagnosis and role of hemodialysis as a treatment option.

    PubMed

    Schweighauser, A; Francey, T

    2016-02-01

    Poisoning with ethylene glycol as contained in antifreeze can rapidly lead to irreversible acute renal failure and other organ damage. It carries a grave prognosis unless diagnosed early and adequate treatment is initiated within 8 hours of ingestion. Toxicity of ethylene glycol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), leading to early signs of severe polyuria (PU) and polydipsia (PD), gastritis, ataxia and central nervous depression, followed by progressive dehydration, and ultimately oligoanuric renal failure. In addition to general supportive care, therapeutic interventions must include either antidotes blocking ADH-mediated metabolism or blood purification techniques to remove both the parent compound and the toxic metabolites. The goal of this case report is to describe three cases of acute antifreeze intoxication in dogs, and to discuss treatment options available for this poisoning.

  3. Microwave-assisted synthesis of spheroidal vaterite CaCO 3 in ethylene glycol-water mixed solvents without surfactants

    NASA Astrophysics Data System (ADS)

    Chen, Yinxia; Ji, Xianbing; Wang, Xiaobo

    2010-10-01

    Spheroidal vaterite CaCO 3 composed of irregular nanoparticals have been synthesized by a fast microwave-assisted method. The structures are fabricated by the reaction of Ca(CH 3COO) 2 with (NH 4) 2CO 3 at 90 °C in ethylene glycol-water mixed solvents without any surfactants. The diameters of the spheroidal vaterite CaCO 3 range from 1 to 2 μm, and the average size of the nanoparticals is about 70 nm. Bundle-shaped aragonite and rhombohedral calcite are also obtained by adjusting the experimental parameters. Our experiments show that the ratio of ethylene glycol to water, microwave power, reaction time, and two sources of ammonium ions and acetate anions are key parameters for the fabrication of spheroidal vaterite CaCO 3. A possible growth mechanism for the spheroidal structures has been proposed, which suggests that the spheroidal vaterite CaCO 3 is formed by an aggregation mechanism.

  4. Cytocompatible Poly(ethylene glycol)-co-polycarbonate Hydrogels Crosslinked by Copper-free, Strain-promoted “Click” Chemistry

    PubMed Central

    Xu, Jianwen; Filion, Tera M.; Prifti, Fioleda

    2013-01-01

    Strategies to encapsulate cells in cytocompatible 3-dimensional hydrogels with tunable mechanical properties and degradability without harmful gelling conditions are highly desired for regenerative medicine applications. Here we reported a method for preparing poly(ethylene glycol)-co-polycarbonate hydrogels through copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) “Click” chemistry. Hydrogels with varying mechanical properties were formed by “clicking” azido-functionalized poly(ethylene glycol)-co-polycarbonate macromers with dibenzocyclooctyne functionalized poly(ethylene glycol) under physiological conditions within minutes. Bone marrow stromal cells encapsulated in these gels exhibited higher cellular viability than those encapsulated in photo-crosslinked poly(ethylene glycol) dimethacrylate. The precise control over the macromer compositions, the cytocompatible SPAAC crosslinking, and the degradability of the polycarbonate segments combined make these hydrogels promising candidates for scaffold- and stem cell-assisted tissue repair and regeneration. PMID:21954076

  5. Coat Protein-Dependent Behavior of Poly(ethylene glycol) Tails in Iron Oxide Core Virus-like Nanoparticles.

    PubMed

    Malyutin, Andrey G; Cheng, Hu; Sanchez-Felix, Olivia R; Carlson, Kenneth; Stein, Barry D; Konarev, Petr V; Svergun, Dmitri I; Dragnea, Bogdan; Bronstein, Lyudmila M

    2015-06-10

    Here we explore the formation of virus-like nanoparticles (VNPs) utilizing 22-24 nm iron oxide nanoparticles (NPs) as cores and proteins derived from viral capsids of brome mosaic virus (BMV) or hepatitis B virus (HBV) as shells. To accomplish that, hydrophobic FeO/Fe3O4 NPs prepared by thermal decomposition of iron oleate were coated with poly(maleic acid-alt-octadecene) modified with poly(ethylene glycol) (PEG) tails of different lengths and grafting densities. MRI studies show high r2/r1 relaxivity ratios of these NPs that are practically independent of the polymer coating type. The versatility and flexibility of the viral capsid protein are on display as they readily form shells that exceed their native size. The location of the long PEG tails upon shell formation was investigated by electron microscopy and small-angle X-ray scattering. PEG tails were located differently in the BMV and HBV VNPs, with the BMV VNPs preferentially entrapping the tails in the interior and the HBV VNPs allowing the tails to extend through the capsid, which highlights the differences between intersubunit interactions in these two icosahedral viruses. The robustness of the assembly reaction and the protruding PEG tails, potentially useful in modulating the immune response, make the systems introduced here a promising platform for biomedical applications. PMID:25989427

  6. Development and in vitro assessment of enzymatically-responsive poly(ethylene glycol) hydrogels for the delivery of therapeutic peptides

    PubMed Central

    Van Hove, Amy H.; Beltejar, Michael-John; Benoit, Danielle S. W.

    2015-01-01

    Despite the recent expansion of peptide drugs, delivery remains a challenge due to poor localization and rapid clearance. Therefore, a hydrogel-based platform technology was developed to control and sustain peptide drug release via matrix metalloproteinase (MMP) activity. Specifically, hydrogels were composed of poly(ethylene glycol) and peptide drugs flanked by MMP substrates and terminal cysteine residues as crosslinkers. First, peptide drug bioactivity was investigated in expected released forms (e.g., with MMP substrate residues) in vitro prior to incorporation into hydrogels. Three peptides (Qk (from Vascular Endothelial Growth Factor), SPARC113, and SPARC118 (from Secreted Protein Acidic and Rich in Cysteine)) retained bioactivity and were used as hydrogel crosslinkers in full MMP degradable forms. Upon treatment with MMP2, hydrogels containing Qk, SPARC113, and SPARC118 degraded in 6.7, 6 and 1 days, and released 5, 8 and, 19% of peptide, respectively. Further investigation revealed peptide drug size controlled hydrogel swelling and degradation rate, while hydrophobicity impacted peptide release. Additionally, degraded Qk, SPARC113, and SPARC118 releasing hydrogels increased endothelial cell tube formation 3.1, 1.7, and 2.8-fold, respectively. While pro-angiogenic peptides were the focus of this study, the design parameters detailed allow for adaptation of hydrogels to control peptide release for a variety of therapeutic applications. PMID:25178558

  7. Constructing polyamidoamine dendrons from poly(poly(ethylene glycol) monomethacrylate) brushes grafted from planar silicon hydride surfaces for biomedical applications

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zheng, Hong-Ning; Yan, Qin; Wang, Cuie; Ma, Yin-Zhou; Tang, Yan-Chun; Xiao, Shou-Jun

    2011-06-01

    A facile approach was established to construct polyamidoamine (PAMAM) dendrons from polymer brushes of poly(poly(ethylene glycol) monomethacrylate) (Si-g-P(PEGMA-OH)) grafted from a planar silicon hydride surface. First the Si-g-P(PEGMA-OH) brushes were grown via surface-initiated atom transfer radical polymerization with robust Si-C links on silicon surfaces. The side-chain hydroxyl groups of Si-g-P(PEGMA-OH) were chlorinated with thionyl chloride and further chlorines were substituted with amino groups of ethylenediamine, giving terminal primary amines. Borrowing the solution synthesis approach, we constructed second and third generations of PAMAM dendrons on-chip by surface-initiated alternative growth of two monomers, methyl acrylate and ethylenediamine. Two applications of silicon-based PAMAM dendrons were shown: the dense amino groups were activated via a cross-linker, N-succinimidyl-6-maleimidylhexanoate, to capture a free-thiol-carrying peptide of oxytocin and the third generation of PAMAM dendrons was used as a platform to on-chip synthesize a three amino acid peptide of Arg-Gly-Asp (RGD). The above conclusions were mainly derived from a home-built multiple transmission-reflection infrared spectroscopy, and complemented by X-ray photoelectron spectroscopy, UV-Vis spectroscopy and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry.

  8. pH-Responsive Poly(ethylene glycol)/Poly(L-lactide) Supramolecular Micelles Based on Host-Guest Interaction.

    PubMed

    Zhang, Zhe; Lv, Qiang; Gao, Xiaoye; Chen, Li; Cao, Yue; Yu, Shuangjiang; He, Chaoliang; Chen, Xuesi

    2015-04-29

    pH-responsive supramolecular amphiphilic micelles based on benzimidazole-terminated poly(ethylene glycol) (PEG-BM) and β-cyclodextrin-modified poly(L-lactide) (CD-PLLA) were developed by exploiting the host-guest interaction between benzimidazole (BM) and β-cyclodextrin (β-CD). The dissociation of the supramolecular micelles was triggered in acidic environments. An antineoplastic drug, doxorubicin (DOX), was loaded into the supramolecular micelles as a model drug. The release of DOX from the supramolecular micelles was clearly accelerated as the pH was reduced from 7.4 to 5.5. The DOX-loaded PEG-BM/CD-PLLA supramolecular micelles displayed an enhanced intracellular drug-release rate in HepG2 cells compared to the pH-insensitive DOX-loaded PEG-b-PLLA counterpart. After intravenous injection into nude mice bearing HepG2 xenografts by the tail vein, the DOX-loaded supramolecular micelles exhibited significantly higher tumor inhibition efficacy and reduced systemic toxicity compared to free DOX. Furthermore, the DOX-loaded supramolecular micelles showed a blood clearance rate markedly lower than that of free DOX and comparable to that of the DOX-loaded PEG-b-PLLA micelles after intravenous injection into rats. Therefore, the pH-responsive PEG-BM/CD-PLLA supramolecular micelles hold potential as a smart nanocarrier for anticancer drug delivery. PMID:25856564

  9. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo.

    PubMed

    Van Hove, Amy H; Burke, Kathleen; Antonienko, Erin; Brown, Edward; Benoit, Danielle S W

    2015-11-10

    Therapeutic angiogenesis holds great potential for a myriad of tissue engineering and regenerative medicine approaches. While a number of peptides have been identified with pro-angiogenic behaviors, therapeutic efficacy is limited by poor tissue localization and persistence. Therefore, poly(ethylene glycol) hydrogels providing sustained, enzymatically-responsive peptide release were exploited for peptide delivery. Two pro-angiogenic peptide drugs, SPARC113 and SPARC118, from the Secreted Protein Acidic and Rich in Cysteine, were incorporated into hydrogels as crosslinking peptides flanked by matrix metalloproteinase (MMP) degradable substrates. In vitro testing confirmed peptide drug bioactivity requires sustained delivery. Furthermore, peptides retain bioactivity with residual MMP substrates present after hydrogel release. Incorporation into hydrogels achieved enzymatically-responsive bulk degradation, with peptide release in close agreement with hydrogel mass loss and released peptides retaining bioactivity. Interestingly, SPARC113 and SPARC118-releasing hydrogels had significantly different degradation time constants in vitro (1.16 and 8.77×10(-2) h(-1), respectively), despite identical MMP degradable substrates. However, upon subcutaneous implantation, both SPARC113 and SPARC118 hydrogels exhibited similar degradation constants of ~1.45×10(-2) h(-1), and resulted in significant ~1.65-fold increases in angiogenesis in vivo compared to controls. Thus, these hydrogels represent a promising pro-angiogenic approach for applications such as tissue engineering and ischemic tissue disorders.

  10. Chemoprotective effects of kolaviron on ethylene glycol monoethyl ether-induced pituitary-thyroid axis toxicity in male rats.

    PubMed

    Adedara, I A; Farombi, E O

    2013-04-01

    Endocrine disrupting chemicals cause reproductive dysfunction by interacting with intricate regulation and cellular processes involve in spermatogenesis. This study investigated the probable mechanism of action of ethylene glycol monoethyl ether (EGEE) as an antiandrogenic compound as well as the effects of kolaviron upon co-administration with EGEE in rats. Adult male rats were exposed to EGEE (200 mg kg(-1) bw) separately or in combination with either kolaviron [100 (KV1) and 200 (KV2) mg kg(-1) bw] or vitamin E (50 mg kg(-1) bw) for 14 days. Western blot analysis revealed that the administration of EGEE adversely affected steroidogenesis in experimental rats by decreasing the expression of steroid acute regulatory (StAR) protein and androgen-binding protein (ABP). EGEE significantly decreased the activities of 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-hydroxysteroid dehydrogenase (17β-HSD) but markedly increased sialic acid concentration in rat testes. EGEE-treated rats showed significant decreases in plasma levels of luteinising hormone (31%), testosterone (57.1%), prolactin (80.9%), triiodothyronine (65.3%) and thyroxine (41.4%), whereas follicle-stimulating hormone was significantly elevated by 76.9% compared to the control. However, co-administration of kolaviron or vitamin E significantly reversed the EGEE-induced steroidogenic dysfunction in rats. This study suggests that kolaviron may prove promising as a chemoprotective agent against endocrine pathology resulting from EGEE exposure. PMID:22708737

  11. Probing cell-matrix interactions in RGD-decorated macroporous poly (ethylene glycol) hydrogels for 3D chondrocyte culture.

    PubMed

    Zhang, Jingjing; Mujeeb, Ayeesha; Du, Yanan; Lin, Jianhao; Ge, Zigang

    2015-06-01

    Macroporous hydrogels have shown great promise as scaffolds for cartilage engineering by facilitating nutrition transport and tissue in growth. Cell-matrix adhesion-a fundamental process in tissue engineering-has shown a profound effect on subsequent cell phenotype, extracellular matrix (ECM) accumulation, and tissue reorganization. In this study, arginine-glycine-aspartic acid (RGD) was introduced to macroporous hydrogels of poly (ethylene glycol) (PEG) to fabricate PEG-G400 (with 0.4mM RGD) and PEG-G2000 (2mM RGD) to probe the cell-matrix interactions within hydrogels. Primary chondrocytes demonstrated a slightly stretched morphology with increasing RGD concentration and PEG-G2000 hydrogels boosted cell viability, proliferation, and deposition of collagen II and GAG, in comparison to the PEG-G400 and PEG-RED groups. Results also revealed chondrocytes within the cell aggregates underwent dedifferentiation and hypertrophy within RGD incorporated hydrogels, as evidenced by the high level of gene expression of collagen I on day 14 and strong immunohistological staining of collagen X and collagen I on day 35. Evidently, a high concentration of RGD (2mM RGD) enhanced cell-matrix interactions through elevating the expression of integrin β1 and vinculin. Thus, the integration of RGD in macroporous hydrogels with a concentration of 2 mM may be sufficient for improving cell functionality, with a slight probability of dedifferentiation and hypertrophy of chondrocytes. PMID:26107534

  12. Argpyrimidine-tagged rutin-encapsulated biocompatible (ethylene glycol dimers) nanoparticles: Synthesis, characterization and evaluation for targeted drug delivery.

    PubMed

    Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar

    2016-07-25

    Diabetes mellitus represents a major metabolic disorder affecting millions of people all over the world. Currently available therapeutic treatments are not good enough to control the long-term complications of diabetes. Active targeting via inclusion of a specific ligand on the nanoparticles provides effective therapeutic approach in different diseases. However, such specific drug delivery systems have not been explored much in diabetes due to lack of suitable biological targets in this disorder. Our objective is to synthesize a ligand-tagged drug-loaded nanoparticle for delivery of the drug at specific sites to enhance its therapeutic efficiency in diabetic condition. The nanoparticles have been prepared by using biocompatible ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester) dimers. Although advanced glycation end products (AGEs) are the root causes of diabetic complications, argpyrimidine, an AGE, possesses antioxidant and reducing activities. AGE interacts selectively with its cell surface receptors (RAGE), which are significantly increased in diabetic condition. We have selected RAGE as the target of argpyrimidine, which is tagged on the nanoparticles as a ligand. Rutin, having anti-hyperglycemic and anti-glycating activities, has been used for nanoencapsulation. Rutin-loaded argpyrimidine-tagged nanoparticles have been synthesized and characterized. We have demonstrated the drug releasing capacity and target specificity of the synthesised drug delivery system under ex vivo and in vivo conditions. PMID:27234699

  13. Immobilization of Quantum Dots in the Photo-Cross-Linked Poly(ethylene glycol)-Based Hydrogel

    SciTech Connect

    Gattas-Asfura, Kerim M.; Zheng, Yujun; Micic, Miodrag ); Snedaker, Michael J.; Ji, Xiaojun; Sui, Guodong; Orbulescu, Jhony; Andreopoulos, Fotios M.; Pham, Si M.; Wang, Chong M. )

    2003-09-25

    An inorganic/organic composite hybrid nano-system has been successfully synthesized in which nanocrystalline quantum dots (QDs) were effectively immobilized within a photo-cross-linked poly(ethylene glycol) hydrogel. Organometallic synthesis of CdTe and CdSe QDs was accomplished with a trioctylphosphine oxide (TOPO) cap. Replacing the TOPO cap with mercaptoacetic acid groups further yielded modified water-soluble nanocrystals. The immobilization of these functionalized CdTe and CdSe QDs within PEG hydrogel network has been shown to be effective through utilization of physical trapping. The CdTe and CdSe QDs had a particle diameter of 4.5 and 2.5-6.0 nm, respectively. The most efficiently trapped QDs had a size of 4.5 nm or larger. Particle size determination was derived from spectroscopic (absorption and photoluminescence) and high-resolution transmission electron microscopic techniques. These QD-immobilized gel systems demonstrated photoluminescence characteristics unique to semiconductor QD nanocrystals. The authors have envisioned the utilization of the unique photophysical properties of this material as a convenient signal transducer for in vivo biosensing. The most promising application of the described QD/PEG-NC hybrid system is in the fields of in vivo fluorescence microscopy and as a monitoring system for drug delivery and wound healing.

  14. Synthesis and characterization of CdSe/ZnS quantum dots conjugated with poly (ethylene glycol) diamine

    SciTech Connect

    Bharti, Shivani; Tripathi, S. K.; Kaur, Gurvir; Gupta, Shikha

    2015-08-28

    Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of M{sub w} 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.

  15. Tandem mass spectrometric study of ciprofloxacin-poly(ethylene glycol) conjugate in the presence of alkali metal ions

    NASA Astrophysics Data System (ADS)

    Kéki, Sándor; Nagy, Lajos; Kuki, Ákos; Pintér, Gábor; Herczegh, Pál; Zsuga, Miklós

    2008-08-01

    The fragmentation and fragmentation behaviors of singly, doubly, and triply charged adducts of ciprofloxacin-poly(ethylene glycol) conjugate (P_Cf) with alkali metal ions, including Li+, Na+ and K+ ions, generated by electrospray (ESI) were studied as a function of collision energy. The product ion spectra of adducts with charge states +1, +2, and +3 are dominated by product ions arising from the loss-neutral moiety (ciprofloxacin) and CO2, and ions formed by dissociation of the precursor ion ([P_Cf + xM]x+) into product ions [P + (x - 1)M](x-1)+ and [Cf + M]+ (where P_Cf, P and Cf represent the ciprofloxacin-poly(ethylene glycol) conjugate, the poly(ethylene glycol) backbone without the endgroups, and the ciprofloxacin moiety, respectively; M is the alkali metal ion and x is the charge). It was found that the metal ions do not significantly alter the fragmentation pattern of ciprofloxacin-poly(ethylene glycol) conjugate. It is also interesting that the run and the shape of the survival yield curves for the singly and doubly charged adduct ions are independent of the cation. However, in the case of triply charged adducts, survival yield curves follow each other in the order K+, Na+, and Li+. Based on the experimental results, a fragmentation mechanism for the singly and multiply charged adducts of P_Cf with alkali metal ions is given. In addition, a tentative description of the signal intensity variations of the product ions with the lab frame collision energy is also reported.

  16. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    SciTech Connect

    Mickalonis, J.; Skidmore, E.

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  17. Beyond poly(ethylene glycol): linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications.

    PubMed

    Thomas, Anja; Müller, Sophie S; Frey, Holger

    2014-06-01

    Polyglycerols (sometimes also called "polyglycidols") represent a class of highly biocompatible and multihydroxy-functional polymers that may be considered as a multifunctional analogue of poly(ethylene glycol) (PEG). Various architectures based on a polyglycerol scaffold are feasible depending on the monomer employed. While polymerization of glycidol leads to hyperbranched polyglycerols, the precisely defined linear analogue is obtained by using suitably protected glycidol as a monomer, followed by removal of the protective group in a postpolymerization step. This review summarizes the properties and synthetic approaches toward linear polyglycerols (linPG), which are at present mainly based on the application of ethoxyethyl glycidyl ether (EEGE) as an acetal-protected glycidol derivative. Particular emphasis is placed on the manifold functionalization strategies including, e.g., the synthesis of end-functional linPGs or multiheterofunctional modifications at the polyether backbone. Potential applications like bioconjugation and utilization as a component in degradable biomaterials or for diagnostics, in which polyglycerol acts as a promising PEG substitute are discussed. In the last section, the important role of linear polyglycerol as a macroinitiator or as a highly hydrophilic segment in block co- or terpolymers is highlighted.

  18. An in situ infrared spectroscopic investigation of the pyrolysis of ethylene glycol encapsulated in silica sodalite.

    SciTech Connect

    Maroni, V. A.; Epperson, S. J.; Chemical Engineering; Univ. of Tulsa

    2001-11-29

    The thermal stability and pyrolysis of ethylene glycol (EG) encapsulated in the sodalite cages of all-silica sodalite were studied by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and transmission infrared spectroscopy. Evidence for the presence of encapsulated CO2 formed as a result of partial decomposition of EG molecules was observed starting at about 600 K. Complete, irreversible pyrolysis of the EG occurred between 675 and 775 K. After treatment at 775 K, the CO2 remained encapsulated in the sodalite framework, even though there were spectroscopic indications that the pyrolysis caused a disordering of the sodalite framework. There appeared to be a temperature dependence of the conformational interactions of the EG O---H groups up to 600 K, which was mainly manifested as a weakening of intramolecular hydrogen bonding. The only detectable encapsulated products of the EG decomposition in an inert (N2 or Ar) environment were CO2 and a carbonaceous (coke- or soot-like) residue. There was no evidence of other encapsulated products, such as CO, H2, H2O, or light hydrocarbons.

  19. Polyhedral oligomeric silsesquioxane (POSS)-poly(ethylene glycol) (PEG) hybrids as injectable biomaterials.

    PubMed

    Engstrand, Johanna; López, Alejandro; Engqvist, Håkan; Persson, Cecilia

    2012-06-01

    One of the major issues with the currently available injectable biomaterials for hard tissue replacement is the mismatch between their mechanical properties and those of the surrounding bone. Hybrid bone cements that combine the benefits of tough polymeric and bioactive ceramic materials could become a good alternative. In this work, polyhedral oligomeric silsesquioxane (POSS) was copolymerized with poly(ethylene glycol) (PEG) to form injectable in situ cross-linkable hybrid cements. The hybrids were characterized in terms of their mechanical, rheological, handling and in vitro bioactive properties. The results indicated that hybridization improves the mechanical and bioactive properties of POSS and PEG. The Young moduli of the hybrids were lower than those of commercial cements and more similar to those of cancellous bone. Furthermore, the strength of the hybrids was similar to that of commercial cements. Calcium deficient hydroxyapatite grew on the surface of the hybrids after 28 days in PBS, indicating bioactivity. The study showed that PEG-POSS-based hybrid materials are a promising alternative to commercial bone cements.

  20. Insulin/poly(ethylene glycol)-block-poly(L-lysine) Complexes: Physicochemical Properties and Protein Encapsulation.

    PubMed

    Pippa, Natassa; Kalinova, Radostina; Dimitrov, Ivaylo; Pispas, Stergios; Demetzos, Costas

    2015-06-01

    Insulin (INS) was encapsulated into complexes with poly(ethylene glycol)-block-poly(L-lysine) (PEG-b-PLys), which is a polypeptide-based block copolymer (a neutral-cationic block polyelectrolyte). The particular cationic-neutral block copolymer can complex INS molecules in aqueous media via electrostatic interactions. Light-scattering techniques are used to study the complexation process and structure of the hybrid nanoparticles in a series of buffers, as a function of protein concentration. The physicochemical and structural characteristics of the complexes depend on the ionic strength of the aqueous medium, while the concentration of PEG-b-PLys was constant through the series of solutions. As INS concentration increased the size distribution of the complexes decreased, especially at the highest ionic strength. The size/structure of complexes diluted in biological medium indicated that the copolymer imparts stealth properties and colloidal and biological stability to the complexes, features that could in turn affect the clearance properties in vivo. Therefore, these studies could be a rational roadmap for designing the optimum complexes/effective nanocarriers for proteins and peptides. PMID:25974620

  1. An analysis of ethylene glycol-aqueous based electrolyte system for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Ramasamy, Chandrasekaran; Palma del Val, Jesús; Anderson, Marc

    2014-02-01

    In order to improve energy density of a capacitor, an operative potential limit extension is a simple way. Based on this concept, we have studied 2-electrode symmetric electrical double layer capacitor (EDLC) of PICACIFF-activated carbon electrodes in 4 mol dm-3of sodium nitrate using ethylene glycol (EG)-aqueous solution as an electrolyte media. Infrared spectroscopy was used to characterize the interactions of the electrolyte components. The electrochemical performance of the capacitor was experimented using cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy techniques at 0 °C, 25 °C and 60 °C through the aqueous and EG-aqueous electrolytes. The electrochemical performances of the aqueous cells were significantly enhanced by the EG addition. In such cases, a 1.5-2.0 V potential window and a range of 12-16 Wh kg-1 energy density were obtainable. This energy density value is two times higher than a usual aqueous cell. Moreover, a little percentile of aqueous to EG electrolyte changes the conductivity and its power density drastically. We conclude that this kind of electrolyte might be a suitable solution in between the aqueous and organic electrolytes. Also, it can achieve much higher energy density than the aqueous just a partial substitution of an organic medium.

  2. Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity.

    PubMed

    Liu, Yuan; Meng, Hao; Konst, Shari; Sarmiento, Ryan; Rajachar, Rupak; Lee, Bruce P

    2014-10-01

    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na(0.7+)(Mg5.5Li0.3Si8)O20(OH)4)(0.7-)), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290

  3. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation.

    PubMed

    Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-10-01

    Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation.

  4. Bioactive Modification of Poly(ethylene glycol) Hydrogels for Tissue Engineering

    PubMed Central

    Zhu, Junmin

    2010-01-01

    In this review, we explore different approaches for introducing bioactivity into poly(ethylene glycol) (PEG) hydrogels. Hydrogels are excellent scaffolding materials for repairing and regenerating a variety of tissues because they can provide a highly swollen three-dimensional (3D) environment similar to soft tissues. Synthetic hydrogels like PEG-based hydrogels have advantages over natural hydrogels, such as the ability for photopolymerization, adjustable mechanical properties, and easy control of scaffold architecture and chemical compositions. However, PEG hydrogels alone cannot provide an ideal environment to support cell adhesion and tissue formation due to their bio-inert nature. The natural extracellular matrix (ECM) has been an attractive model for the design and fabrication of bioactive scaffolds for tissue engineering. ECM-mimetic modification of PEG hydrogels has emerged as an important strategy to modulate specific cellular responses. To tether ECM-derived bioactive molecules (BMs) to PEG hydrogels, various strategies have been developed for the incorporation of key ECM biofunctions, such as specific cell adhesion, proteolytic degradation, and signal molecule-binding. A number of cell types have been immobilized on bioactive PEG hydrogels to provide fundamental knowledge of cell/scaffold interactions. This review addresses the recent progress in material designs and fabrication approaches leading to the development of bioactive hydrogels as tissue engineering scaffolds. PMID:20303169

  5. Bioactive Nanocomposite Poly (Ethylene Glycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers.

    PubMed

    Huang, Heqin; Xu, Jianbin; Wei, Kongchang; Xu, Yang J; Choi, Chun Kit K; Zhu, Meiling; Bian, Liming

    2016-07-01

    Poly (ethylene glycol) (PEG) based hydrogels have been widely used in many biomedical applications such as regenerative medicine due to their good biocompatibility and negligible immunogenicity. However, bioactivation of PEG hydrogels, such as conjugation of bioactive biomolecules, is usually necessary for cell-related applications. Such biofunctionalization of PEG hydrogels generally involves complicated and time-consuming bioconjugation procedures. Herein, we describe the facile preparation of bioactive nanocomposite PEG hydrogel crosslinked by the novel multifunctional nanocrosslinkers, namely polydopamine-coated layered double hydroxides (PD-LDHs). The catechol-rich PD-LDH nanosheets not only act as effective nanocrosslinkers reinforcing the mechanical strength of the hydrogel, but also afford the hydrogels with robust bioactivity and bioadhesion via the cortical-mediated couplings. The obtained nanocomposite PEG hydrogels with the multifunctional PD-LDH crosslinking domains show tunable mechanical properties, self-healing ability, and bioadhesion to biological tissues. Furthermore, these hydrogels also promote the sequestration of proteins and support the osteogenic differentiation of human mesenchymal stem cells without any further bio-functionalization. Such facile preparation of bioactive and bioadhesive PEG hydrogels have rarely been achieved and may open up a new avenue for the design of nanocomposite PEG hydrogels for biomedical applications. PMID:27061462

  6. Docetaxel and curcumin-containing poly(ethylene glycol)-block-poly(ɛ-caprolactone) polymer micelles

    NASA Astrophysics Data System (ADS)

    Thuy Duong Le, Thi; Huyen La, Thi; Phuc Le, Thi Minh; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-06-01

    Polymeric nanoparticles (NPs) prepared from poly(ethylene glycol)-block-poly (ɛ-caprolactone) (PEG-PCL) were fabricated by the modified nanoprecipitation method with and without sonication to entrap docetaxel (Doc) and curcumin (Cur). NPs were characterized in terms of morphology, size distribution, zeta potential, encapsulation efficiency and cytotoxicity. The particles have a ˜45-80 nm mean diameter with a spherical shape. The cellular uptake of the NPs was observed after 2 and 4 h of incubation by fluorescence of curcumin loaded with docetaxel. The cell viability was evaluated by an [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay on the Hela cell line. Doc and Doc-Cur NPs had higher cytotoxicity and a much lower IC50 value compared with free Doc or Cur after 24 and 48 h of incubation. Doc and Cur incorporated into the PEG-PCL NPs had the highest cytotoxicity in comparison with all other NPs and may be considered as an attractive and promising drug delivery system for cancer treatment.

  7. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-11-26

    The boundary slip condition is an important property, and its existence can reduce fluid drag in micro/nanofluidic systems. The boundary slip on various surfaces immersed in water and various electrolytes has been widely studied. For the surfaces immersed in oil, the boundary slip on superoleophilic and oleophilic surfaces has been studied, but there is no data on oleophobic and superoleophobic surfaces. In this paper, experiments are carried out to study electrostatic force and boundary slip on superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized (DI) water, hexadecane, and ethylene glycol. In addition, the surface charge density of the samples immersed in DI water is quantified. Results show that the electrostatic force and the absolute value of the surface charge density of an octadecyltrichlorosilane surface are larger than that of a polystyrene surface, and the electrostatic force and the absolute value of surface charge density of a superoleophilic surface are larger than that of oleophobic and superoleophobic surfaces. For the same liquid, the larger contact angle leads to a larger slip length at the solid-liquid interface. For the same surface, the larger liquid viscosity leads to a larger slip length. The relevant mechanisms are discussed in this paper. PMID:24168076

  8. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    NASA Astrophysics Data System (ADS)

    Pastoriza-Gallego, María José; Lugo, Luis; Legido, José Luis; Piñeiro, Manuel M.

    2011-12-01

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.

  9. Use of Cross-Linked Poly(ethylene glycol)-Based Hydrogels for Protein Crystallization

    PubMed Central

    2015-01-01

    Poly(ethylene glycol) (PEG) hydrogels are highly biocompatible materials extensively used for biomedical and pharmaceutical applications, controlled drug release, and tissue engineering. In this work, PEG cross-linked hydrogels, synthesized under various conditions, were used to grow lysozyme crystals by the counterdiffusion technique. Crystallization experiments were conducted using a three-layer arrangement. Results demonstrated that PEG fibers were incorporated within lysozyme crystals controlling the final crystal shape. PEG hydrogels also induced the nucleation of lysozyme crystals to a higher extent than agarose. PEG hydrogels can also be used at higher concentrations (20–50% w/w) as a separation chamber (plug) in counterdiffusion experiments. In this case, PEG hydrogels control the diffusion of the crystallization agent and therefore may be used to tailor the supersaturation to fine-tune crystal size. As an example, insulin crystals were grown in 10% (w/w) PEG hydrogel. The resulting crystals were of an approximate size of 500 μm. PMID:25383049

  10. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids

    PubMed Central

    2011-01-01

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity. PMID:21711737

  11. Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase.

    PubMed

    Vandertol-Vanier, H A; Vazquez-Duhalt, R; Tinoco, R; Pickard, M A

    2002-11-01

    We are studying the enzymatic modification of polycyclic aromatic hydrocarbons (PAHs) by the laccase from Coriolopsis gallica UAMH 8260. The enzyme was produced during growth in a stirred tank reactor to 15 units ml(-1), among the highest levels described for a wild-type fungus; the enzyme was the major protein produced under these conditions. After purification, it exhibited characteristics typical of a white rot fungal laccase. Fifteen azo and phenolic compounds at 1 mM concentration were tested as mediators in the laccase oxidation of anthracene. Higher anthracene oxidation was obtained with the mediator combination of ABTS and HBT, showing a correlation between the oxidation rate and the mediator concentration. Reactions with substituted phenols and anilines, conventional laccase substrates, and PAHs were compared using the native laccase and enzyme preparations chemically modified with 5000 MW-poly(ethylene glycol). Chemically modified laccase oxidized a similar range of substituted phenols as the native enzyme but with a higher catalytic efficiency. The k(cat) increase by the chemical modification may be as great as 1300 times for syringaldazine oxidation. No effect was found of chemical modification on mediated PAH oxidation. Both unmodified and PEG-modified laccases increased PAH oxidation up to 1000 times in the presence of radical mediators. Thus, a change of the protein surface improves the mediator oxidation efficiency, but does not affect non-enzymatic PAH oxidation by oxidized mediators.

  12. Effect of incorporation of ethylene glycol into PEDOT:PSS on electron phonon coupling and conductivity

    SciTech Connect

    Lin, Yow-Jon Ni, Wei-Shih; Lee, Jhe-You

    2015-06-07

    The effect of incorporation of ethylene glycol (EG) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on electron phonon coupling and conductivity is investigated. It is shown that the carrier density (N{sub C}) increases significantly and the carrier mobility (μ) increases slightly at 300 K. The increased intensity of the Raman spectrum between 1400 and 1450 cm{sup −1}, following EG treatment (that is, the quinoid-dominated structures of the PEDOT chain), leads to an increase in the number of polarons (bipolarons), which leads to an increase in N{sub C}. In addition, μ in PEDOT:PSS samples with or without EG addition exhibits a strong temperature dependence, which demonstrates the dominance of tunneling (hopping) at low (high) temperatures. The high conductivity of PEDOT:PSS samples with the addition of EG is attributed to the combined effect of the modification of the electron-phonon coupling and the increase in N{sub C} (μ)

  13. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems. PMID:26541212

  14. Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose.

    PubMed

    Chen, Zhen; Huang, Jinhai; Wu, Yao; Liu, Dehua

    2016-01-01

    Development of sustainable biological process for the production of bulk chemicals from renewable feedstock is an important goal of white biotechnology. Ethylene glycol (EG) is a large-volume commodity chemical with an annual production of over 20 million tons, and it is currently produced exclusively by petrochemical route. Herein, we report a novel biosynthetic route to produce EG from glucose by the extension of serine synthesis pathway of Corynebacterium glutamicum. The EG synthesis is achieved by the reduction of glycoaldehyde derived from serine. The transformation of serine to glycoaldehyde is catalyzed either by the sequential enzymatic deamination and decarboxylation or by the enzymatic decarboxylation and oxidation. We screened the corresponding enzymes and optimized the production strain by combinatorial optimization and metabolic engineering. The best engineered C. glutamicum strain is able to accumulate 3.5 g/L of EG with the yield of 0.25 mol/mol glucose in batch cultivation. This study lays the basis for developing an efficient biological process for EG production.

  15. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels.

    PubMed

    Fu, Yao; Xu, Kedi; Zheng, Xiaoxiang; Giacomin, Alan J; Mix, Adam W; Kao, Weiyuan J

    2012-01-01

    The combined use of natural ECM components and synthetic materials offers an attractive alternative to fabricate hydrogel-based tissue engineering scaffolds to study cell-matrix interactions in three-dimensions (3D). A facile method was developed to modify gelatin with cysteine via a bifunctional PEG linker, thus introducing free thiol groups to gelatin chains. A covalently crosslinked gelatin hydrogel was fabricated using thiolated gelatin and poly(ethylene glycol) diacrylate (PEGdA) via thiol-ene reaction. Unmodified gelatin was physically incorporated in a PEGdA-only matrix for comparison. We sought to understand the effect of crosslinking modality on hydrogel physicochemical properties and the impact on 3D cell entrapment. Compared to physically incorporated gelatin hydrogels, covalently crosslinked gelatin hydrogels displayed higher maximum weight swelling ratio (Q(max)), higher water content, significantly lower cumulative gelatin dissolution up to 7 days, and lower gel stiffness. Furthermore, fibroblasts encapsulated within covalently crosslinked gelatin hydrogels showed extensive cytoplasmic spreading and the formation of cellular networks over 28 days. In contrast, fibroblasts encapsulated in the physically incorporated gelatin hydrogels remained spheroidal. Hence, crosslinking ECM protein with synthetic matrix creates a stable scaffold with tunable mechanical properties and with long-term cell anchorage points, thus supporting cell attachment and growth in the 3D environment.

  16. Polymerization-induced spinodal decomposition of ethylene glycol/phenolic resin solutions under electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Qiao, Guanjun

    2013-10-01

    Temporal evolution of polymerization-induced spinodal decomposition (PISD) under electric fields was investigated numerically in ethylene glycol/phenolic resin solutions with different initial composition. A model composed of the nonlinear Cahn-Hilliard-Cook equation for spinodal decomposition and a rate equation for curing reaction was utilized to describe the PISD phenomenon. As initial composition varied, deformed droplet-like and aligned bi-continuous structures were observed in the presence of an electric field. Moreover, the anisotropic parameter (D), determined from the 2D-FFT power spectrum, was employed to quantitatively characterize the degree of morphology anisotropy. The value of D increased quickly in the early stage and then decreased in the intermediate stage of spinodal decomposition, which was attributed to the resistance of coarsening process to morphology deformation and the decline of electric stress caused by polymerization reaction. The results can also provide a guidance on how to control the morphology of monolithic porous polymer and carbon materials with anisotropic structures.

  17. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems.

  18. Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer

    PubMed Central

    Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.

    2014-01-01

    Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653

  19. Selective catalytic two-step process for ethylene glycol from carbon monoxide

    PubMed Central

    Dong, Kaiwu; Elangovan, Saravanakumar; Sang, Rui; Spannenberg, Anke; Jackstell, Ralf; Junge, Kathrin; Li, Yuehui; Beller, Matthias

    2016-01-01

    Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C–C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals. PMID:27377550

  20. Thermal contraction of aqueous glycerol and ethylene glycol solutions for optimized protein-crystal cryoprotection.

    PubMed

    Shen, Chen; Julius, Ethan F; Tyree, Timothy J; Moreau, David W; Atakisi, Hakan; Thorne, Robert E

    2016-06-01

    The thermal contraction of aqueous cryoprotectant solutions on cooling to cryogenic temperatures is of practical importance in protein cryocrystallography and in biological cryopreservation. In the former case, differential contraction on cooling of protein molecules and their lattice relative to that of the internal and surrounding solvent may lead to crystal damage and the degradation of crystal diffraction properties. Here, the amorphous phase densities of aqueous solutions of glycerol and ethylene glycol at T = 77 K have been determined. Densities with accuracies of <0.5% to concentrations as low as 30%(w/v) were determined by rapidly cooling drops with volumes as small as 70 pl, assessing their optical clarity and measuring their buoyancy in liquid nitrogen-argon solutions. The use of these densities in contraction matching of internal solvent to the available solvent spaces is complicated by several factors, most notably the exclusion of cryoprotectants from protein hydration shells and the expected deviation of the contraction behavior of hydration water from bulk water. The present methods and results will assist in developing rational approaches to cryoprotection and an understanding of solvent behavior in protein crystals. PMID:27303794

  1. Real-time monitoring of molecular dynamics of ethylene glycol dimethacrylate glass former.

    PubMed

    Viciosa, M T; Correia, N T; Salmerón Sanchez, M; Carvalho, A L; Romão, M J; Gómez Ribelles, J L; Dionísio, M

    2009-10-29

    The isothermal cold-crystallization of the glass-former low-molecular-weight compound, ethylene glycol dimethacrylate (EGDMA), was monitored by real-time dielectric relaxation spectroscopy (DRS) and differential scanning calorimetry (DSC). The alpha-relaxation associated with the dynamic glass transition as detected by DRS was followed at different crystallization temperatures, T(cr), nearly above the glass transition temperature, 176 K (1.06 < or = T(cr)/T(g) < or = 1.12). It was found that the alpha-process depletes upon cold-crystallization with no significant changes in either shape or location. At advanced crystallization states, a new relaxation, alpha'-process, evolves that was assigned to the mobility of molecules lying adjacent to crystalline surfaces. From the time evolution of the normalized permittivity, it was possible to get kinetic information that was complemented with the calorimetric data. From DSC measurements that were also carried out under melt-crystallization, an enlarged temperature range was covered (up to T(cr)/T(g) = 1.24), allowing us to draw a diagram of time-temperature crystallization for this system. Dielectric relaxation spectroscopy proved to be a sensitive tool to probe the mobility in the remaining amorphous regions even at high crystallinities. PMID:19803485

  2. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels.

    PubMed

    Hutson, Che B; Nichol, Jason W; Aubin, Hug; Bae, Hojae; Yamanlar, Seda; Al-Haque, Shahed; Koshy, Sandeep T; Khademhosseini, Ali

    2011-07-01

    Poly(ethylene glycol) (PEG) hydrogels are popular for cell culture and tissue-engineering applications because they are nontoxic and exhibit favorable hydration and nutrient transport properties. However, cells cannot adhere to, remodel, proliferate within, or degrade PEG hydrogels. Methacrylated gelatin (GelMA), derived from denatured collagen, yields an enzymatically degradable, photocrosslinkable hydrogel that cells can degrade, adhere to and spread within. To combine the desirable features of each of these materials we synthesized PEG-GelMA composite hydrogels, hypothesizing that copolymerization would enable adjustable cell binding, mechanical, and degradation properties. The addition of GelMA to PEG resulted in a composite hydrogel that exhibited tunable mechanical and biological profiles. Adding GelMA (5%-15% w/v) to PEG (5% and 10% w/v) proportionally increased fibroblast surface binding and spreading as compared to PEG hydrogels (p<0.05). Encapsulated fibroblasts were also able to form 3D cellular networks 7 days after photoencapsulation only within composite hydrogels as compared to PEG alone. Additionally, PEG-GelMA hydrogels displayed tunable enzymatic degradation and stiffness profiles. PEG-GelMA composite hydrogels show great promise as tunable, cell-responsive hydrogels for 3D cell culture and regenerative medicine applications.

  3. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.

    PubMed

    Hsu, Shan-Hui; Tang, Cheng-Ming; Lin, Chu-Chieh

    2004-11-01

    In this study, we prepared diblock copolymers of poly(epsilon-caprolactone) (PCL) and poly(ethylene glycol) (PEG) by aluminum alkoxide catalysts. The biological responses to the spin cast surface of different PCL/PEG diblock copolymers were investigated in vitro. Our results showed that surface hydrophilicity improved with the increased PEG segments in diblock copolymers and that bacteria adhesion was inhibited by increased PEG contents. PCL-PEG 23:77 showed nanotopography on the surface. The number of adhered endothelial cells, platelets and monocytes on diblock copolymer surfaces was inhibited in PCL-PEG 77:23 and enhanced in PCL-PEG 23:77. Nevertheless, the platelet and monocyte activation on PCL-PEG 23:77 was reduced. PCL-PEG 23:77 had better cellular response as well as lower degree of platelet and monocyte activation. The current study was the first one to demonstrate that surface nanotopography could influence not only cell adhesion and growth but also platelet and monocyte activation.

  4. Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids

    NASA Astrophysics Data System (ADS)

    Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ

    2016-10-01

    This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' } ) and imaginary (ɛ ^' ' } ) parts of the complex permittivity (ɛ ^* ) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.

  5. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold

    PubMed Central

    Musumeci, G.; Loreto, C.; Carnazza, M.L.; Coppolino, F.; Cardile, V.; Leonardi, R.

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. PMID:22073377

  6. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold.

    PubMed

    Musumeci, G; Loreto, C; Carnazza, M L; Coppolino, F; Cardile, V; Leonardi, R

    2011-01-01

    Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease.

  7. Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition.

    PubMed

    Zareie, Hadi M; Boyer, Cyrille; Bulmus, Volga; Nateghi, Ebrahim; Davis, Thomas P

    2008-04-01

    Self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG)-tethered molecules on gold are important for various biorelevant applications ranging from biomaterials to bioanalytical devices, where surface resistance to nonspecific protein adsorption is needed. Incorporation of a stimuli-responsive character to the OEG SAMs enables the creation of nonfouling surfaces with switchable functionality. Here we present an OEG-derived structure that is highly responsive to temperature changes in the vicinity of the physiological temperature, 37 degrees C. The temperature-responsive solution behavior of this new compound was demonstrated by UV-vis and nuclear magnetic resonance spectroscopy. Its chemisorption onto gold(111), and the retention of responsive behavior after chemisorption have been demonstrated by surface plasmon resonance (SPR), X-ray photoelectron spectroscopy (XPS), and atomic force and scanning tunneling microscopy. The OEG-derived SAMs have been shown to reversibly switch the wettability of the surface, as determined by contact angle measurements. More importantly, SPR and AFM studies showed that the OEG SAMs can be utilized to control the affinity binding of streptavidin to the biotin-tethered surface in a temperature-dependent manner while still offering the nonspecific protein-resistance to the surface.

  8. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery.

    PubMed

    Kar, Mrityunjoy; Vernon Shih, Yu-Ru; Velez, Daniel Ortiz; Cabrales, Pedro; Varghese, Shyni

    2016-01-01

    Cell-responsive hydrogels hold tremendous potential as cell delivery devices in regenerative medicine. In this study, we developed a hydrogel-based cell delivery vehicle, in which the encapsulated cell cargo control its own release from the vehicle in a protease-independent manner. Specifically, we have synthesized a modified poly(ethylene glycol) (PEG) hydrogel that undergoes degradation responding to cell-secreted molecules by incorporating disulfide moieties onto the backbone of the hydrogel precursor. Our results show the disulfide-modified PEG hydrogels disintegrate seamlessly into solution in presence of cells without any external stimuli. The rate of hydrogel degradation, which ranges from hours to months, is found to be dependent upon the type of encapsulated cells, cell number, and fraction of disulfide moieties present in the hydrogel backbone. The differentiation potential of human mesenchymal stem cells released from the hydrogels is maintained in vitro. The in vivo analysis of these cell-laden hydrogels, through a dorsal window chamber and intramuscular implantation, demonstrated autonomous release of cells to the host environment. The hydrogel-mediated implantation of cells resulted in higher cell retention within the host tissue when compared to that without a biomaterial support. Biomaterials that function as a shield to protect cell cargos and assist their delivery in response to signals from the encapsulated cells could have a wide utility in cell transplantation and could improve the therapeutic outcomes of cell-based therapies. PMID:26606444

  9. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen.

    PubMed

    Koichumanova, Kamila; Vikla, Anna Kaisa K; de Vlieger, Dennis J M; Seshan, K; Mojet, Barbara L; Lefferts, Leon

    2013-09-01

    Aqueous-phase reforming of ethylene glycol over alumina-supported Pt-based catalysts is reported. Performance of the catalysts is investigated by conducting kinetics and in situ attenuated total reflectance (ATR)-IR spectroscopic analysis. Pt/γ-Al2 O3 is unstable under APR conditions (270 °C, 90 bar) and undergoes phase transformation to boehmite [AlO(OH)]. This conversion of alumina is studied in situ by using ATR-IR spectroscopy; transition into boehmite proceeds even at milder conditions (210 °C, 40 bar). Pt/γ-Al2 O3 deactivates irreversibly because the Pt surface area decreases owing to an increasing metal particle size and coverage with boehmite. However, Pt supported on boehmite itself shows stable activity. Surprisingly, the rate of formation of hydrogen per Pt surface atom is significantly higher on boehmite compared to an alumina-supported catalyst. This observation seems correlated to both increased concentration of surface OH groups as well as to enhanced oxidation of Pt when comparing Pt/γ-Al2 O3 with Pt/AlO(OH).

  10. Surface modification of PDMS microchips with poly(ethylene glycol) derivatives for μTAS applications.

    PubMed

    de Campos, Richard Piffer Soares; Yoshida, Inez Valeria Pagotto; da Silva, José Alberto Fracassi

    2014-08-01

    In this work is presented a method for the modification of native PDMS surface in order to improve its applicability as a substrate for microfluidic devices, especially in the analysis of nonpolar analytes. Therefore, poly(ethylene glycol) divinyl ether modified PDMS substrate was obtained by surface modification of native PDMS. The modified substrate was characterized by attenuated total reflectance infrared spectroscopy, water contact angle measurements, and by evaluating the adsorption of rhodamine B and the magnitude of the EOF mobility. The reaction was confirmed by the spectroscopic evaluation. The formation of a well-spread water film over the surface immediately after the modification was an indicative of the modified surface hydrophilicity. This characteristic was maintained for approximately ten days, with a gradual return to a hydrophobic state. Fluorescence assays showed that the nonpolar adsorption property of PDMS was significantly decreased. The EOF mobility obtained was 3.6 × 10(-4) cm(2) V(-1) s(-1) , higher than the typical values found for native PDMS. Due to the better wettability promoted by the modification, the filling of the microchannels with aqueous solutions was facilitated and trapping of air bubbles was not observed. PMID:24723304

  11. Mid-infrared spectroscopic investigation of the perfect vitrification of poly(ethylene glycol) aqueous solutions.

    PubMed

    Gemmei-Ide, Makoto; Miyashita, Takashi; Kagaya, Shigehiro; Kitano, Hiromi

    2015-10-01

    Crystallization/recrystallization behaviors of poly(ethylene glycol) (PEG) aqueous solutions with water contents (WC's) of ∼36-51 wt % were investigated by temperature-variable mid-infrared spectroscopy. At a WC of 43.2 wt %, crystallization and recrystallization of water and PEG were not observed. At this specific WC value (WCPV), perfect vitrification occurred. Below and above the WCPV value, crystallization/recrystallization behaviors changed drastically. The crystallization temperature below WCPV (237 K) was ∼10 K greater than that above WCPV (226 K). Recrystallization above and below WCPV occurred in one (213 K) and two (198 and 210 K) steps, respectively. These findings resulted from the difference in the (re)crystallization behaviors of water molecules associated with PEG chains with helical and random-coil conformations. These two types of water molecules might have limiting concentrations for their (re)crystallization, indicating that perfect vitrification might have occurred when the concentrations of the two types of water molecules were less than the limiting concentrations of their (re)crystallization.

  12. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels.

    PubMed

    Yang, Jun; Han, Chun-Rui; Duan, Jiu-Fang; Xu, Feng; Sun, Run-Cang

    2013-04-24

    The preparation and mechanical properties of elastomeric nanocomposite hydrogels consisting of cellulose nanocrystals (CNCs) and poly(ethylene glycol) (PEG) are reported. The aqueous nanocomposite CNC/PEG precursor solutions covalently cross-linked through a one-stage photocross-linking process. The mechanical properties of nanocomposite hydrogels, including Young's modulus (E), fracture stress (σ), and fracture strain (ε), were measured as a function of CNC volume fraction (φCNC, 0.2-1.8%, v/v) within polymeric matrix. It was found that the homogeneously dispersed nanocomposite hydrogels can be prepared with φCNC being less than 1.5%, whereas the heterogeneous nanocomposite hydrogels were obtained with φCNC being higher than 1.5%. The nanocomposite hydrogels exhibited higher strengths and flexibilities when compared with neat PEG hydrogels, where the modulus, fracture stress, and fracture strain enhanced by a factor of 3.48, 5, and 3.28, respectively, over the matrix material alone at 1.2% v/v CNC loading. Oscillatory shear data indicated the CNC-PEG nanocomposite hydrogels were more viscous than the neat PEG hydrogels and were efficient at energy dissipation due to the reversible interactions between CNC and PEG polymer chains. It was proposed that the strong gel viscoelastic behavior and the mechanical reinforcement were related to "filler network", where the temporary interactions between CNC and PEG interfered with the covalent cross-links of PEG. PMID:23534336

  13. Cyclodextrin/poly(ethylene glycol) polypseudorotaxane hydrogels as a promising sustained-release system for lysozyme.

    PubMed

    Higashi, Taishi; Tajima, Anna; Motoyama, Keiichi; Arima, Hidetoshi

    2012-08-01

    In this study, to clarify the utility of polypseudorotaxane (PPRX) hydrogels composed of poly(ethylene glycol) (PEG) and α- or γ-cyclodextrin (α- or γ-CyD) as a sustained-release system for protein drugs, we prepared CyD PPRX hydrogels including lysozyme, and then the release profiles of lysozyme from these hydrogels and the release mechanisms were investigated. The α- and γ-CyD formed PPRX hydrogels by threading onto one PEG chain and two PEG chains, respectively. The formation of α- and γ-CyD PPRX hydrogels including lysozyme was based on physical cross-linking arisen from their columnar structures. The in vitro release rates of lysozyme were markedly decreased by the encapsulation into CyD PPRX hydrogels. In addition, when release data were plotted according to Korsmeyer-Peppas model, the exponent values (n) in the α- and γ-CyD systems had no statistically significant difference, suggesting that these release mechanisms were almost same. In conclusion, these results suggest that α- and γ-CyD PPRX hydrogels possess the potential as a sustained-release system for lysozyme.

  14. Spatially controlled bacterial adhesion using surface-patterned poly(ethylene glycol) hydrogels.

    PubMed

    Krsko, Peter; Kaplan, Jeffrey B; Libera, Matthew

    2009-02-01

    We constructed surface-patterned hydrogels using low-energy focused electron beams to locally crosslink poly(ethylene glycol) (PEG) thin films on silanized glass substrates. Derived from electron-beam lithography, this technique was used to create patterned hydrogels with well-defined spatial positions and degrees of swelling. We found that cells of the bacterium Staphylococcus epidermidis adhered to and grew on the silanized glass substrates. These cells did not, however, adhere to surfaces covered by high-swelling lightly crosslinked PEG hydrogels. This finding is consistent with the cell-repulsiveness generally attributed to PEGylated surfaces. In contrast, S. epidermidis cells did adhere to surfaces covered by low-swelling highly crosslinked hydrogels. By creating precise patterns of repulsive hydrogels combined with adhesive hydrogels or with exposed glass substrate, we were able to spatially control the adhesion of S. epidermidis. Significantly, adhesive areas small enough to trap single bacterial cells could be fabricated. The results suggest that the lateral confinement imposed by cell-repulsive hydrogels hindered the cell proliferation and development into larger bacterial colonies.

  15. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties

    PubMed Central

    Zustiak, Silviya P.

    2011-01-01

    The objective of this work was to create three-dimensional (3D) hydrogel matrices with defined mechanical properties, as well as tunable degradability for use in applications involving protein delivery and cell encapsulation. Thus, we report the synthesis and characterization of a novel hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel composed of PEG vinyl sulfone (PEG-VS) cross-linked with PEG-diester-dithiol. Unlike previously reported degradable PEG-based hydrogels, these materials are homogeneous in structure, fully hydrophilic and have highly specific cross-linking chemistry. We characterized hydrogel degradation and associated trends in mechanical properties, i.e., storage modulus (G′), swelling ratio (QM), and mesh size (ξ). Degradation time and the monitored mechanical properties of the hydrogel correlated with cross-linker molecular weight, cross-linker functionality, and total polymer density; these properties changed predictably as degradation proceeded (G′ decreased, whereas QM and ξ increased) until the gels reached complete degradation. Balb/3T3 fibroblast adhesion and proliferation within the 3D hydrogel matrices were also verified. In sum, these unique properties indicate that the reported degradable PEG hydrogels are well poised for specific applications in protein and cell delivery to repair soft tissue. PMID:20355705

  16. Selective catalytic two-step process for ethylene glycol from carbon monoxide.

    PubMed

    Dong, Kaiwu; Elangovan, Saravanakumar; Sang, Rui; Spannenberg, Anke; Jackstell, Ralf; Junge, Kathrin; Li, Yuehui; Beller, Matthias

    2016-07-05

    Upgrading C1 chemicals (for example, CO, CO/H2, MeOH and CO2) with C-C bond formation is essential for the synthesis of bulk chemicals. In general, these industrially important processes (for example, Fischer Tropsch) proceed at drastic reaction conditions (>250 °C; high pressure) and suffer from low selectivity, which makes high capital investment necessary and requires additional purifications. Here, a different strategy for the preparation of ethylene glycol (EG) via initial oxidative coupling and subsequent reduction is presented. Separating coupling and reduction steps allows for a completely selective formation of EG (99%) from CO. This two-step catalytic procedure makes use of a Pd-catalysed oxycarbonylation of amines to oxamides at room temperature (RT) and subsequent Ru- or Fe-catalysed hydrogenation to EG. Notably, in the first step the required amines can be efficiently reused. The presented stepwise oxamide-mediated coupling provides the basis for a new strategy for selective upgrading of C1 chemicals.

  17. Drying and Storage Effects on Poly(ethylene glycol) Hydrogel Mechanical Properties and Bioactivity

    PubMed Central

    Luong, P.T.; Browning, M.B.; Bixler, R.S.; Cosgriff-Hernandez, E.

    2014-01-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications due to the ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions and hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying) and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. PMID:24123725

  18. Differential morphological effects in rat corpora lutea among ethylene glycol monomethyl ether, atrazine, and bromocriptine.

    PubMed

    Taketa, Yoshikazu; Inoue, Kaoru; Takahashi, Miwa; Yamate, Jyoji; Yoshida, Midori

    2013-07-01

    Ethylene glycol monomethyl ether (EGME) or atrazine induces luteal cell hypertrophy in rats. Our previous study suggested that EGME stimulates both new and old corpora lutea (CL), while atrazine stimulates new CL. Bromocriptine (BRC) is known to suppress the luteolysis in rats. This study investigated the light- and electron-microscopic luteal changes induced by EGME, atrazine, or BRC. Female rats were treated with EGME (300 mg/kg/day), BRC (2 mg/kg/day), EGME and BRC (EGME + BRC), or atrazine (300 mg/kg/day) for 7 days. Luteal cell hypertrophy induced by EGME, EGME + BRC, and atrazine was subclassified into the following two types: CL hypertrophy, vacuolated type (CL-V) characterized by intracytoplasmic fine vacuoles, and CL hypertrophy, eosinophilic type (CL-E) characterized by eosinophilic and abundant cytoplasm. The proportions of CL-V and CL-E were different among the treatments. BRC-treated old CL showed lower proportion of endothelial cells and fibroblasts than normal old CL. Ultrastructural observation revealed that the luteal cells of CL-V contained abundant lipid droplets, whereas those of CL-E in EGME and EGME + BRC groups showed uniformly well-developed smooth endoplasmic reticulum. No clear ultrastructural difference was observed between the control CL and atrazine-treated CL-E. These results indicate that EGME, atrazine, and BRC have differential luteal morphological effects.

  19. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids.

    PubMed

    Pastoriza-Gallego, María José; Lugo, Luis; Legido, José Luis; Piñeiro, Manuel M

    2011-03-15

    The dispersion and stability of nanofluids obtained by dispersing Al2O3 nanoparticles in ethylene glycol have been analyzed at several concentrations up to 25% in mass fraction. The thermal conductivity and viscosity were experimentally determined at temperatures ranging from 283.15 K to 323.15 K using an apparatus based on the hot-wire method and a rotational viscometer, respectively. It has been found that both thermal conductivity and viscosity increase with the concentration of nanoparticles, whereas when the temperature increases the viscosity diminishes and the thermal conductivity rises. Measured enhancements on thermal conductivity (up to 19%) compare well with literature values when available. New viscosity experimental data yield values more than twice larger than the base fluid. The influence of particle size on viscosity has been also studied, finding large differences that must be taken into account for any practical application. These experimental results were compared with some theoretical models, as those of Maxwell-Hamilton and Crosser for thermal conductivity and Krieger and Dougherty for viscosity.

  20. A molecular dynamics simulations study on ethylene glycol-water mixtures in mesoporous silica.

    PubMed

    Schmitz, Rebecca; Müller, Niels; Ullmann, Svenja; Vogel, Michael

    2016-09-14

    We perform molecular dynamics simulations to investigate structural and dynamical properties of ethylene glycol-water (EG-WA) mixtures in mesoporous silica. To obtain comprehensive insights into the dependence of liquid behaviors on the confinement features, we exploit that straightforward modification of the force field parameters allows us to vary the properties of the hydrogen-bond network of the confined liquid, we alter the polarity of the silica surface, and we consider amorphous as well as crystalline matrices. It is observed that the confinement induces a micro-phase separation in the liquid, which qualitatively depends on the properties of both liquid and matrix so that EG or WA molecules may be preferentially adsorbed at the silica surface. Furthermore, it is found that the confinement strongly affects the liquid dynamics. Largely independent of the polarity and structure of the matrix, structural relaxation is about a factor of 10(4) slower at the pore wall than in the pore center. Moreover, the non-Arrhenius temperature dependence of the bulk mixture turns into an Arrhenius behavior of the confined mixture so that the spatial restriction can slow down or speed up the structural relaxation, depending on temperature. PMID:27634271

  1. A molecular dynamics simulations study on ethylene glycol-water mixtures in mesoporous silica

    NASA Astrophysics Data System (ADS)

    Schmitz, Rebecca; Müller, Niels; Ullmann, Svenja; Vogel, Michael

    2016-09-01

    We perform molecular dynamics simulations to investigate structural and dynamical properties of ethylene glycol-water (EG-WA) mixtures in mesoporous silica. To obtain comprehensive insights into the dependence of liquid behaviors on the confinement features, we exploit that straightforward modification of the force field parameters allows us to vary the properties of the hydrogen-bond network of the confined liquid, we alter the polarity of the silica surface, and we consider amorphous as well as crystalline matrices. It is observed that the confinement induces a micro-phase separation in the liquid, which qualitatively depends on the properties of both liquid and matrix so that EG or WA molecules may be preferentially adsorbed at the silica surface. Furthermore, it is found that the confinement strongly affects the liquid dynamics. Largely independent of the polarity and structure of the matrix, structural relaxation is about a factor of 104 slower at the pore wall than in the pore center. Moreover, the non-Arrhenius temperature dependence of the bulk mixture turns into an Arrhenius behavior of the confined mixture so that the spatial restriction can slow down or speed up the structural relaxation, depending on temperature.

  2. Passive nutrient addition for the biodegradation of ethylene glycol in storm water.

    PubMed

    Safferman, Steven I; Azar, Roger A; Sigler, Stephanie

    2002-01-01

    This laboratory proof-of-concept research examined the feasibility of adding solid, slow-release macronutrients to a biofilm reactor system to achieve the effective biodegradation of a predominately organic polluted storm water. The target scenario was treating ethylene glycol in storm water, representing the runoff of airport deicing and anti-icing fluids. However, the results can also be generalized for any water polluted with a predominately carbonaceous material. The use of a solid, slow-release nutrient source, compared to amending with a soluble solution in proportion to influent flow, would be ideal for storm water applications and other specialized wastewater flows when maintenance requirements and operational support must be minimized. Several commercially available fertilizers were preliminarily examined to determine which had the best potential to provide the required amount of nutrients. A time-released, polymer-coated granular fertilizer was ultimately selected. Based on laboratory studies, it was found that this fertilizer could provide a controllable source of macronutrients that enabled treatment to a similar degree as if the macronutrients had been dissolved in the influent. The only major operational problem was reduced nutrient delivery from the fertilizer after it became coated with a thick biofilm. However, the inherent intermittent nature of storm water production resulting in wet/dry cycles may minimize the development of a thick biofilm.

  3. Surface modification of PDMS microchips with poly(ethylene glycol) derivatives for μTAS applications.

    PubMed

    de Campos, Richard Piffer Soares; Yoshida, Inez Valeria Pagotto; da Silva, José Alberto Fracassi

    2014-08-01

    In this work is presented a method for the modification of native PDMS surface in order to improve its applicability as a substrate for microfluidic devices, especially in the analysis of nonpolar analytes. Therefore, poly(ethylene glycol) divinyl ether modified PDMS substrate was obtained by surface modification of native PDMS. The modified substrate was characterized by attenuated total reflectance infrared spectroscopy, water contact angle measurements, and by evaluating the adsorption of rhodamine B and the magnitude of the EOF mobility. The reaction was confirmed by the spectroscopic evaluation. The formation of a well-spread water film over the surface immediately after the modification was an indicative of the modified surface hydrophilicity. This characteristic was maintained for approximately ten days, with a gradual return to a hydrophobic state. Fluorescence assays showed that the nonpolar adsorption property of PDMS was significantly decreased. The EOF mobility obtained was 3.6 × 10(-4) cm(2) V(-1) s(-1) , higher than the typical values found for native PDMS. Due to the better wettability promoted by the modification, the filling of the microchannels with aqueous solutions was facilitated and trapping of air bubbles was not observed.

  4. Exchange of monooleoylphosphatidylcholine as monomer and micelle with membranes containing poly(ethylene glycol)-lipid.

    PubMed Central

    Needham, D; Stoicheva, N; Zhelev, D V

    1997-01-01

    Surface-grafted polymers, such as poly(ethylene glycol) (PEG), provide an effective steric barrier against surface-surface and surface-macromolecule interactions. In the present work, we have studied the exchange of monooleoylphosphatidylcholine (MOPC) with vesicle membranes containing 750 mol wt surface-grafted PEG (incorporated as PEG-lipid) from 0 to 20 mol % and have analyzed the experimental results in terms of thermodynamic and stationary equilibrium models. Micropipette manipulation was used to expose a single lipid vesicle to a flow of MOPC solution (0.025 microM to 500 microM). MOPC uptake was measured by a direct measure of the vesicle area change. The presence of PEG(750) lipid in the vesicle membrane inhibited the partitioning of MOPC micelles (and to some extent microaggregates) into the membrane, while even up to 20 mol % PEG-lipid, it did not affect the exchange of MOPC monomers both into and out of the membrane. The experimental data and theoretical models show that grafted PEG acts as a very effective molecular scale "filter" and prevents micelle-membrane contact, substantially decreasing the apparent rate and amount of MOPC taken up by the membrane, thereby stabilizing the membrane in a solution of MOPC that would otherwise dissolve it. Images FIGURE 1 PMID:9370456

  5. Direct force measurement of the stability of poly(ethylene glycol)-polyethylenimine graft films.

    PubMed

    Nnebe, Ijeoma M; Tilton, Robert D; Schneider, James W

    2004-08-15

    The stability and passivity of poly(ethylene glycol)-polyethylenimine (PEG-PEI) graft films are important for their use as antifouling coatings in a variety of biotechnology applications. We have used AFM colloidal-probe force measurements combined with optical reflectometry to characterize the surface properties and stability of PEI and dense PEG-PEI graft films on silica. Initial contact between bare silica probes and PEI-modified surfaces yields force curves that exhibit a long-range electrostatic repulsion and short-range attraction between the surfaces, indicating spontaneous desorption of PEI in the aqueous medium. Further transfer of PEI molecules to the probe occurs with subsequent application of forces between FR = 300 and 500 microN/m. The presence of PEG reduces the adhesive properties of the PEI surface and prevents transfer of PEI molecules to the probe with continuous contact, though an initial desorption of PEI still occurs. Glutaraldehyde crosslinking of the graft films prevents both the initial desorption and subsequent transfer of the PEI, resulting in sustained attractive interaction forces of electrostatic origin between the negatively charged probe and the positively charged copolymer graft films.

  6. Photosensitive diazotized poly(ethylene glycol) covalent capillary coatings for analysis of proteins by capillary electrophoresis.

    PubMed

    Yu, Bing; Chen, Xin; Cong, Hailin; Shu, Xi; Peng, Qiaohong

    2016-09-01

    A new method for the fabrication of covalently cross-linked capillary coatings of poly(ethylene glycol) (PEG) is described using diazotized PEG (diazo-PEG) as a new photosensitive coating agent. The film of diazo-PEG depends on ionic bonding and was first prepared on the inner surface of capillary by self-assembly, and ionic bonding was converted into covalent bonding after reaction of ultraviolet light with diazo groups through unique photochemical reaction. The covalently bonded coating impedance adsorption of protein on the central surface of capillary and hence the four proteins ribonuclease A, cytochrome c, bovine serum albumin, and lysosome can be baseline separated by using capillary electrophoresis (CE). The covalently cross-linked diazo-PEG capillary column coatings not only improved the CE separation performance for proteins compared to non-covalently cross-linked coatings or bare capillary but also showed a remarkable chemical solidity and repeatability. Because photosensitive diazo-PEG took the place of the highly noxious and silane moisture-sensitive coating reagents in the fabrication of covalent coating, this technique shows the advantage of being environment-friendly and having a high efficiency for CE to make the covalently bonded capillaries. PMID:27475442

  7. Quick freezing of one-cell mouse embryos using ethylene glycol with sucrose.

    PubMed

    Rayos, A A; Takahashi, Y; Hishinuma, M; Kanagawa, H

    1992-03-01

    One-cell mouse embryos were frozen by direct plunging into liquid nitrogen (LN(2)) vapor after equilibration in 3 M ethylene glycol with 0.25 M sucrose (freezing medium) for 5 to 40 minutes. After thawing, the embryos were cultured in vitro and the effects of the equilibration period and dilution method were examined. No significant difference was observed in the in vitro survival of embryos when 0.5 or 1.0 M sucrose was used for the dilution of the cryoprotectant for each equilibration period. The highest survival rate (67.2%) was obtained when the embryos were equilibrated for 10 minutes, and the cryoprotectant diluted with either 0.5 or 1.0 M sucrose after thawing. Shorter (5 minutes) or prolonged (40 minutes) equilibration of embryos in the freezing medium yielded significantly lower survival rates. Dilution by direct transfer of the frozen-thawed embryos into PB1 resulted in lower survival rates than when 0.5 or 1.0 M sucrose was used. The in vitro development to the blastocyst stage of one-cell mouse embryos frozen after 10 minutes equilibration in the freezing medium and diluted after thawing in 0.5 M sucrose was significantly lower than the control (68.0 vs 92.7%). However, transfer of the blastocysts developing from frozen-thawed one-cell mouse embryos into the uterine horns of the recipients resulted in fetal development and implantation rates similar to the control.

  8. Improving the Dielectric Properties of Ethylene-Glycol Alkanethiol Self-Assembled Monolayers

    PubMed Central

    2014-01-01

    Self-assembled monolayers (SAMs) can be formed at the interface between solids and fluids, and are often used to modify the surface properties of the solid. One of the most widely employed SAM systems is exploiting thiol-gold chemistry, which, together with alkane-chain-based molecules, provides a reliable way of SAM formation to modify the surface properties of electrodes. Oligo ethylene-glycol (OEG) terminated alkanethiol monolayers have shown excellent antifouling properties and have been used extensively for the coating of biosensor electrodes to minimize nonspecific binding. Here, we report the investigation of the dielectric properties of COOH-capped OEG monolayers and demonstrate a strategy to improve the dielectric properties significantly by mixing the OEG SAM with small concentrations of 11-mercaptoundecanol (MUD). The monolayer properties and composition were characterized by means of impedance spectroscopy, water contact angle, ellipsometry and X-ray photoelectron spectroscopy. An equivalent circuit model is proposed to interpret the EIS data and to determine the conductivity of the monolayer. We find that for increasing MUD concentrations up to about 5% the resistivity of the SAM steadily increases, which together with a considerable decrease of the phase of the impedance, demonstrates significantly improved dielectric properties of the monolayer. Such monolayers will find widespread use in applications which depend critically on good dielectric properties such as capacitive biosensor. PMID:24447311

  9. Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-11-26

    The boundary slip condition is an important property, and its existence can reduce fluid drag in micro/nanofluidic systems. The boundary slip on various surfaces immersed in water and various electrolytes has been widely studied. For the surfaces immersed in oil, the boundary slip on superoleophilic and oleophilic surfaces has been studied, but there is no data on oleophobic and superoleophobic surfaces. In this paper, experiments are carried out to study electrostatic force and boundary slip on superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized (DI) water, hexadecane, and ethylene glycol. In addition, the surface charge density of the samples immersed in DI water is quantified. Results show that the electrostatic force and the absolute value of the surface charge density of an octadecyltrichlorosilane surface are larger than that of a polystyrene surface, and the electrostatic force and the absolute value of surface charge density of a superoleophilic surface are larger than that of oleophobic and superoleophobic surfaces. For the same liquid, the larger contact angle leads to a larger slip length at the solid-liquid interface. For the same surface, the larger liquid viscosity leads to a larger slip length. The relevant mechanisms are discussed in this paper.

  10. Synthesis of zerovalent nanophase metal particles stabilized with poly(ethylene glycol).

    PubMed

    Khalil, Hanaa; Mahajan, Devinder; Rafailovich, Miriam; Gelfer, Mikhail; Pandya, Kaumudi

    2004-08-01

    Concurrent sonolysis of iron pentacarbonyl and poly(ethylene glycol)-400 (PEG-400) in hexadecane solvent proceeds via zero-order kinetics and results in Fe nanoparticles encapsulated in PEG-400 (Fe-PEG). The transmission electron microscopy images show Fe-PEG consisting of <3 nm Fe particles that are evenly dispersed in the PEG matrix. Mössbauer and X-ray absorption fine structure/X-ray absorption near-edge structure data reveal an ordered PEG assembly that helps protect the zerovalent Fe core. The Fe nanoparticles in Fe-PEG are superparamagnetic with a magnetization value of 45 emu/g-Fe at 10 KOe. The rheology of the synthesized material shows an unusual increase in viscosity with temperature that is likely due to lower critical saturation temperature phase segregation over 40 degrees C. The low-temperature mobility of the PEG-400 moiety in Fe-PEG would allow facile ligation of the Fe0 core with biologically and chemically active groups.

  11. Injectable Dopamine-Modified Poly(ethylene glycol) Nanocomposite Hydrogel with Enhanced Adhesive Property and Bioactivity

    PubMed Central

    2015-01-01

    A synthetic mimic of mussel adhesive protein, dopamine-modified four-armed poly(ethylene glycol) (PEG-D4), was combined with a synthetic nanosilicate, Laponite (Na0.7+(Mg5.5Li0.3Si8)O20(OH)4)0.7–), to form an injectable naoncomposite tissue adhesive hydrogel. Incorporation of up to 2 wt % Laponite significantly reduced the cure time while enhancing the bulk mechanical and adhesive properties of the adhesive due to strong interfacial binding between dopamine and Laponite. The addition of Laponite did not alter the degradation rate and cytocompatibility of PEG-D4 adhesive. On the basis of subcutaneous implantation in rat, PEG-D4 nanocomposite hydrogels elicited minimal inflammatory response and exhibited an enhanced level of cellular infiltration as compared to Laponite-free samples. The addition of Laponite is potentially a simple and effective method for promoting bioactivity in a bioinert, synthetic PEG-based adhesive while simultaneously enhancing its mechanical and adhesive properties. PMID:25222290

  12. Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics.

    PubMed

    Mougin, K; Ham, A S; Lawrence, M B; Fernandez, E J; Hillier, A C

    2005-05-24

    Surface gradients can be used to perform a wide range of functions and represent a novel experimental platform for combinatorial discovery and analysis. In this work, a gradient in the coverage of a surface-immobilized poly(ethylene glycol) (PEG) layer is constructed to interrogate cell adhesion on a solid surface. Variation of surface coverage is achieved by controlled transport of a reactive PEG precursor from a point source through a hydrated gel. Immobilization of PEG is achieved by covalent attachment of the PEG molecule via direct coupling chemistry to a cystamine self-assembled monolayer on gold. This represents a simple method for creating spatial gradients in surface chemistry that does not require special instrumentation or microfabrication procedures. The structure and spatial distribution of the PEG gradient are evaluated via ellipsometry and atomic force microscopy. A cell adhesion assay using bovine arteriole endothelium cells is used to study the influence of PEG thickness and chain density on biocompatibility. The kinetics of cell adhesion are quantified as a function of the thickness of the PEG layer. Results depict a surface in which the variation in layer thickness along the PEG gradient strongly modifies the biological response.

  13. Physical properties of poly(lactic-co-glycolic) and poly(ethylene glycol) nanoparticles for drug delivery using atomic force microscopy (AFM) and electrostatic nanolithography

    NASA Astrophysics Data System (ADS)

    Lyuksyutov, Sergei; Fedin, Igor; Nedashkivska, Victoria; Lyuksyutova, Caterina; Geldenhuys, Werner; Sutariya, Vijay

    2010-03-01

    Nanoparticles (NP) of biodegradable polymers poly(lactic-co-glycolic)(PLGA) and poly(ethylene glycol) (PEG) are potential drug delivery components for biomedical applications. The NP based on PLGA or PEG can be directed to accumulate in cancer tumor cells with the use of anti-bodies which are conjugated to the NP. The NP's size distribution is the critical property for biochemical affinity and therefore delivery to the specific target organs. We used an atomic force microscopy (AFM) to characterize the NP size and AFM electrostatic nanolithography (AFMEN) to study the behavior of PEG-PLGA NP under the extreme electric fields exceeding 10^9 V m-1. AFMEN allows the displacement of molecules along the lines of the electric field due to electrostatic polarization. This study has an important practical application for the optimum design of NP with the correct characteristics for drug delivery.

  14. GLYCOLIC-FORMIC ACID FLOWSHEET FINAL REPORT FOR DOWNSELECTION DECISION

    SciTech Connect

    Lambert, D.; Pickenheim, B.; Stone, M.; Newell, J.; Best, D.

    2011-03-10

    Flowsheet testing was performed to develop the nitric-glycolic-formic acid flowsheet (referred to as the glycolic-formic flowsheet throughout the rest of the report) as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Forty-six runs were performed in total, including the baseline run and the melter feed preparation runs. Significant results are summarized. The baseline nitric/formic flowsheet run, using the SB6 simulant produced by Harrell was extremely difficult to process successfully under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF SRAT limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. Mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. The glycolic-formic flowsheet has a very wide processing window. Testing was completed from 100% to 200% of acid stoichiometry and using a glycolic-formic mixture from 40% to 100% glycolic acid. The testing met all processing requirements throughout these processing windows. This should allow processing at an acid stoichiometry of 100% and a glycolic-formic mixture of 80% glycolic acid with minimal hydrogen generation. It should also allow processing endpoints in the SRAT and SME at significantly higher

  15. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.

    PubMed

    Sugiura, Shinji; Edahiro, Jun-ichi; Sumaru, Kimio; Kanamori, Toshiyuki

    2008-06-01

    In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. PMID:18242961

  16. Ethylene glycol-assisted hydrothermal synthesis and characterization of bow-tie-like lithium iron phosphate nanocrystals for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ghafarian-Zahmatkesh, Hossein; Javanbakht, Mehran; Ghaemi, Mehdi

    2015-06-01

    In this work, we present a novel binary solvent of ethylene glycol/water medium (W/EG 50:50) that play an important role in the formation of the hierarchical meso-structures of bow-tie-like composition units composed of self-assembly lithium iron phosphate (LFP) nano-sheets. Citric acid uses as inorganic carbon source and no other surfactant or template agent is applied. Results show that the crystallinity and the size of the particles depend on the nature of the solvent used. TEM results show that the sample prepared in ethylene glycol (EG-LFP/C) consists of well-distributed nanoparticles of size approximately 50 nm in diameter, which is uniformly embedded in thin carbon layers. The EG-LFP/C composite delivers the first discharge capacity of 166 mAh g-1, i.e. 97.6% of the theoretical capacity, when tested under a discharge rate of 0.1C. This material shows specific discharge capacities as high as 114 mAh g-1 at 10C rates and exhibits a long-term cycling stability with a capacity loss of only 1.4% after 100 cycles. The high rate performance could be attributed to the amount and/or the quality of the thin carbon coating, improved crystallinity as well as high specific surface area and porosity induced by the special bow-tie-like mesostructures.

  17. Therapeutic efficiency of folated poly(ethylene glycol)-chitosan-graft-polyethylenimine-Pdcd4 complexes in H-ras12V mice with liver cancer

    PubMed Central

    Kim, You-Kyoung; Minai-Tehrani, Arash; Lee, Jae-Ho; Cho, Chong-Su; Cho, Myung-Haing; Jiang, Hu-Lin

    2013-01-01

    Background Chitosan and chitosan derivatives have been proposed as alternative and biocompatible cationic polymers for nonviral gene delivery. However, the low transfection efficiency and low specificity of chitosan is an aspect of this approach that must be addressed prior to any clinical application. In the present study, folated poly(ethylene glycol)-chitosan-graft-polyethylenimine (FPCP) was investigated as a potential folate receptor-overexpressed cancer cell targeting gene carrier. Methods The FPCP copolymer was synthesized in two steps. In the first step, folate-PEG was synthesized by an amide formation reaction between the activated carboxyl groups of folic acid and the amine groups of bifunctional poly(ethylene glycol) (PEG). In the second step, FPCP was synthesized by an amide formation reaction between the activated carboxyl groups of folate-PEG and amine groups of CHI-g-polyethyleneimine (PEI). The composition of FPCP was characterized by 1H nuclear magnetic resonance. Results: FPCP showed low cytotoxicity in various cell lines, and FPCP-DNA complexes showed good cancer cell specificity as well as good transfection efficiency in the presence of serum. Further, FPCP-Pdcd4 complexes reduced tumor numbers and progression more effectively than PEI 25 kDa in H-ras12V liver cancer mice after intravenous administration. Conclusion Our data suggest that FPCP, which has improved transfection efficiency and cancer cell specificity, may be useful in gene therapy for liver cancer. PMID:23620665

  18. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    NASA Astrophysics Data System (ADS)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  19. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets.

    PubMed

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-21

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments. PMID:25796249

  20. Performance improvement of injectable poly(ethylene glycol) dimethacrylate-based hydrogels with finely dispersed hydroxyapatite.

    PubMed

    Zhou, Ziyou; Ren, Yongjuan; Yang, Dongzhi; Nie, Jun

    2009-06-01

    Injectable hydrogels are attractive materials for biomedical application. In this work, a chemical mixing technique was developed to promote the dispersion of hydroxyapatite (HA) in injectable poly(ethylene glycol) dimethacrylate (PEGDMA)-based hydrogels. Nano-sized HA particles were distributed homogenously within the organic network, whereby HA crystals were formed in the presence of PEGDMA macromers. In addition, hydrogels were also prepared by physical mixing of dry HA particles with PEGDMA, as a comparison. Transmission electron microscopy was used to evaluate the morphology and crystal structure of HA formed in the PEGDMA aqueous solution before polymerization. According to Fourier transform infrared spectra and x-ray diffraction results, hydrogels prepared by different methods have similar components and crystal structures. Scanning electron microscopy was used to observe the hydrogels' morphology, which showed that HA in hydrogels made by chemical mixing was well dispersed and nano sized. Mechanical evaluation indicated that the mean value of the compressive strength and modulus of hydrogels prepared by physical mixing were 0.137 MPa and 0.518 MPa, respectively, while those of hydrogels prepared by chemical mixing were 0.290 MPa and 0.696 MPa, respectively. Furthermore, temperature measurement showed that the mean value of the maximum temperature in the crosslinking process of hydrogels made by chemical mixing was 38.0 degrees C, which was significantly lower than that of for hydrogels made by physical mixing (38.6 degrees C). The results indicated that the performance of composite hydrogels could be promoted by chemical mixing of the inorganic network into a polymer network.

  1. Quantifying the Coverage Density of Poly(ethylene glycol) Chains on the Surface of Gold Nanostructures

    PubMed Central

    Xia, Xiaohu; Yang, Miaoxin; Wang, Yucai; Zheng, Yiqun; Li, Qingge; Chen, Jingyi; Xia, Younan

    2011-01-01

    The coverage density of poly(ethylene glycol) (PEG) is a key parameter in determining the efficiency of PEGylation, a process pivotal to in vivo delivery and targeting of nanomaterials. Here we report four complementary methods for quantifying the coverage density of PEG chains on various types of Au nanostructures by using a model system based on HS-PEG-NH2 with different molecular weights. Specifically, the methods involve reactions with fluorescamine and ninhydrin, as well as labeling with fluorescein isothiocyanate (FITC) and Cu2+ ions. The first two methods use conventional amine assays to measure the number of unreacted HS-PEG-NH2 molecules left behind in the solution after incubation with the Au nanostructures. The other two methods involve coupling between the terminal –NH2 groups of adsorbed -S-PEG-NH2 chains and FITC or a ligand for Cu2+ ion, and thus pertain to the “active” –NH2 groups on the surface of a Au nanostructure. We found that the coverage density decreased as the length of PEG chains increased. A stronger binding affinity of the initial capping ligand to the Au surface tended to reduce the PEGylation efficiency by slowing down the ligand exchange process. For the Au nanostructures and capping ligands we have tested, the PEGylation efficiency decreased in the order of citrate-capped nanoparticles > PVP-capped nanocages ≈ CTAC-capped nanoparticles ≫ CTAB-capped nanorods, where PVP, CTAC, and CTAB stand for poly(vinyl pyrrolidone), cetyltrimethylammonium chloride, and cetyltrimethylammonium bromide, respectively. PMID:22148912

  2. Fabrication of Off-the-Shelf Multilumen Poly(Ethylene Glycol) Nerve Guidance Conduits Using Stereolithography.

    PubMed

    Arcaute, Karina; Mann, Brenda K; Wicker, Ryan B

    2011-01-01

    A manufacturing process for fabricating off-the-shelf multilumen poly(ethylene glycol) (PEG)-based nerve guidance conduits (NGCs) was developed that included the use of stereolithography (SL). A rapid fabrication strategy for complex 3D scaffolds incorporated postprocessing with lyophilization and sterilization to preserve the scaffold, creating an implantable product with improved suturability. SL is easily adaptable to changes in scaffold design, is compatible with various materials and cells, and can be expanded for mass manufacture. The fabricated conduits were characterized using optical and scanning electron microscopy, and measurements of swelling ratio, dimensional swelling factor, resistance to compression, and coefficient of friction were performed. Water absorption curves showed that the conduits after lyophilization and sterilization return easily and rapidly to a swollen state when placed in an aqueous solution, successfully maintaining their original overall structure as required for implantation. Postprocessed conduits at the swollen state were less slippery and therefore easier to handle than those without postprocessing. Suture pullout experiments showed that NGCs fabricated with a higher concentration of PEG were better able to resist suture pullout. NGCs having a multilumen design demonstrated a better resistance to compression than a single-lumen design with an equivalent surface area, as well as a greater force required to collapse the design. Conduits fabricated with a higher PEG concentration were shown to have compressive resistances comparable to those of commercially available NGCs. The use of SL with PEG and the manufacturing process developed here shows promise for improving the current state of the art in peripheral nerve repair strategies.

  3. Growth kinetics of hexagonal sub-micrometric β-tricalcium phosphate particles in ethylene glycol.

    PubMed

    Galea, Laetitia; Bohner, Marc; Thuering, Juerg; Doebelin, Nicola; Ring, Terry A; Aneziris, Christos G; Graule, Thomas

    2014-09-01

    Recently, uniform, non-agglomerated, hexagonal β-tricalcium phosphate (β-TCP) platelets (diameter≈400-1700nm, h≈100-200nm) were obtained at fairly moderate temperatures (90-170°C) by precipitation in ethylene glycol. Unfortunately, the platelet aspect ratios (diameter/thickness) obtained in the latter study were too small to optimize the strength of polymer-β-TCP composites. Therefore, the aim of the present study was to investigate β-TCP platelet crystallization kinetics, and based on this, to find ways to better control the β-TCP aspect ratio. For that purpose, precipitations were performed at different temperatures (90-170°C) and precursor concentrations (4, 16 and 32mM). Solution aliquots were retrieved at regular intervals (10s-24h), and the size of the particles was measured on scanning electron microscopy images, hence allowing the determination of the particle growth rates. The β-TCP platelets were observed to nucleate and grow very rapidly. For example, the first crystals were observed after 30s at 150°C, and crystallization was complete within 2min. The crystal growth curves could be well-fitted with both diffusion- and reaction-controlled equations, but the high activation energies (∼100kJmol(-1)) pointed towards a reaction-controlled mechanism. The results revealed that the best way to increase the diameter and aspect ratio of the platelets was to increase the precursor concentration. Aspect ratios as high as 14 were obtained, but the synthesis of such particles was always associated with the presence of large fractions of monetite impurities. PMID:24632361

  4. Development of Poly(Ethylene Glycol) Hydrogels for Salivary Gland Tissue Engineering Applications

    PubMed Central

    Shubin, Andrew D.; Felong, Timothy J.; Graunke, Dean; Ovitt, Catherine E.

    2015-01-01

    More than 40,000 patients are diagnosed with head and neck cancers annually in the United States with the vast majority receiving radiation therapy. Salivary glands are irreparably damaged by radiation therapy resulting in xerostomia, which severely affects patient quality of life. Cell-based therapies have shown some promise in mouse models of radiation-induced xerostomia, but they suffer from insufficient and inconsistent gland regeneration and accompanying secretory function. To aid in the development of regenerative therapies, poly(ethylene glycol) hydrogels were investigated for the encapsulation of primary submandibular gland (SMG) cells for tissue engineering applications. Different methods of hydrogel formation and cell preparation were examined to identify cytocompatible encapsulation conditions for SMG cells. Cell viability was much higher after thiol-ene polymerizations compared with conventional methacrylate polymerizations due to reduced membrane peroxidation and intracellular reactive oxygen species formation. In addition, the formation of multicellular microspheres before encapsulation maximized cell–cell contacts and increased viability of SMG cells over 14-day culture periods. Thiol-ene hydrogel-encapsulated microspheres also promoted SMG proliferation. Lineage tracing was employed to determine the cellular composition of hydrogel-encapsulated microspheres using markers for acinar (Mist1) and duct (Keratin5) cells. Our findings indicate that both acinar and duct cell phenotypes are present throughout the 14 day culture period. However, the acinar:duct cell ratios are reduced over time, likely due to duct cell proliferation. Altogether, permissive encapsulation methods for primary SMG cells have been identified that promote cell viability, proliferation, and maintenance of differentiated salivary gland cell phenotypes, which allows for translation of this approach for salivary gland tissue engineering applications. PMID:25762214

  5. Design of Biomolecular Interfaces using Liquid Crystals Containing Oligomeric Ethylene Glycol

    PubMed Central

    Yang, Zhongqiang; Gupta, Jugal K.; Kishimoto, Kenji; Shoji, Yoshiko; Kato, Takashi; Abbott, Nicholas L.

    2011-01-01

    We report an investigation of nematic LCs formed from miscible mixtures of 4-cyano-4’-pentylbiphenyl (5CB) and 2-(2-[2-{2-(2,3-difluoro-4-{4-(4-trans-pentylcyclohexyl)-phenyl-phenoxy)ethoxy}ethoxy]ethoxy)ethanol (EG4-LC), the latter being a mesogen with a tetra(ethylene glycol) tail. Quantitative characterization of the ordering of this LC mixture at biologically-relevant aqueous interfaces revealed that addition of EG4-LC (1–5% by weight) to 5CB causes a continuous transition in the ordering of the LC from a planar (pure 5CB) to a perpendicular (homeotropic) orientation. The homeotropic ordering is also seen in aqueous dispersions of micrometer-sized droplets of the LC mixture, which exhibit enhanced stability against coalescence. These observations and others, all of which suggest partitioning of the EG4-LC from the bulk of the LC to its aqueous interface, were complemented by measurements of the adsorption of bovine serum albumin (BSA) to the aqueous-LC interface. Whereas adsorption of BSA to the interface of a LC mixture containing 1% wt/wt of EG4-LC triggered an ordering transition, higher concentrations of EG4-LC (>2% wt/wt) prevented this ordering transition, consistent with a decrease in adsorption of BSA. This conclusion is supported by epifluorescence measurements using fluorescently labeled BSA and comparisons to LC interfaces at which EG4-containing lipids are adsorbed. Overall, these results demonstrate a general and facile approach to the design of LCs with interfaces that present biologically relevant chemical functional groups, assume well-defined orientations at aqueous interfaces, and lower non-specific protein adsorption. The bulk of the LC serves as a reservoir of EG4-LC, thus permitting easy preparation of these interfaces and the potential for spontaneous repair of the EG4-decorated interfaces during contact with biological systems. PMID:22199989

  6. Development of poly(ethylene glycol) hydrogels for salivary gland tissue engineering applications.

    PubMed

    Shubin, Andrew D; Felong, Timothy J; Graunke, Dean; Ovitt, Catherine E; Benoit, Danielle S W

    2015-06-01

    More than 40,000 patients are diagnosed with head and neck cancers annually in the United States with the vast majority receiving radiation therapy. Salivary glands are irreparably damaged by radiation therapy resulting in xerostomia, which severely affects patient quality of life. Cell-based therapies have shown some promise in mouse models of radiation-induced xerostomia, but they suffer from insufficient and inconsistent gland regeneration and accompanying secretory function. To aid in the development of regenerative therapies, poly(ethylene glycol) hydrogels were investigated for the encapsulation of primary submandibular gland (SMG) cells for tissue engineering applications. Different methods of hydrogel formation and cell preparation were examined to identify cytocompatible encapsulation conditions for SMG cells. Cell viability was much higher after thiol-ene polymerizations compared with conventional methacrylate polymerizations due to reduced membrane peroxidation and intracellular reactive oxygen species formation. In addition, the formation of multicellular microspheres before encapsulation maximized cell-cell contacts and increased viability of SMG cells over 14-day culture periods. Thiol-ene hydrogel-encapsulated microspheres also promoted SMG proliferation. Lineage tracing was employed to determine the cellular composition of hydrogel-encapsulated microspheres using markers for acinar (Mist1) and duct (Keratin5) cells. Our findings indicate that both acinar and duct cell phenotypes are present throughout the 14 day culture period. However, the acinar:duct cell ratios are reduced over time, likely due to duct cell proliferation. Altogether, permissive encapsulation methods for primary SMG cells have been identified that promote cell viability, proliferation, and maintenance of differentiated salivary gland cell phenotypes, which allows for translation of this approach for salivary gland tissue engineering applications.

  7. Two-step recrystallization of water in concentrated aqueous solution of poly(ethylene glycol).

    PubMed

    Gemmei-Ide, Makoto; Motonaga, Tetsuya; Kasai, Ryosuke; Kitano, Hiromi

    2013-02-21

    Crystallization behavior of water in a concentrated aqueous solution of poly(ethylene glycol) (PEG) with a water content of 37.5 wt % was investigated by temperature variable mid-infrared (mid-IR) spectroscopy in a temperature range of 298-170 K. The mid-IR spectrum of water at 298 K showed that a large water cluster was not formed and that most of the water molecules were associated with the PEG chain. Ice formation, however, occurred as found in previous studies by differential scanning calorimetory. Ice formations were grouped into three types: crystallization at 231 K during cooling, that at 198 K during heating, and that at 210 K during heating. The latter two were just recrystallization. These ice formations were the direct transition from hydration species to ice without condensation regardless of crystallization or recrystallization. This means that the recrystallized water in the present system was not generated from low-density amorphous solid water. At a low cooling rate, nearly complete crystallization at 231 K during cooling and no recrystallization were observed. At a high cooling rate, no crystallization and two-step recrystallization at 198 and 210 K were observed. The former and latter recrystallizations were found to be generated from water associated with the PEG chains with ttg (the sequence -O-CH(2)-CH(2)-O- having a trans (t) conformation about the -C-O- bond and a gauche (g) conformation about the -C-C- bond) and random conformations, respectively. These results indicate that recrystallizable water does not have a single specific water structure.

  8. Photoresponsive elastic properties of azobenzene-containing poly(ethylene-glycol)-based hydrogels

    PubMed Central

    Rosales, Adrianne M.; Mabry, Kelly M.; Nehls, Eric Michael; Anseth, Kristi S.

    2015-01-01

    The elastic modulus of the extracellular matrix is a dynamic property that changes during various biological processes, such as disease progression or wound healing. Most cell culture platforms, however, have traditionally exhibited static properties, making it necessary to replate cells to study the effects of different elastic moduli on cell phenotype. Recently, much progress has been made in the development of substrates with mechanisms for either increasing or decreasing stiffness in situ, but there are fewer examples of substrates that can both stiffen and soften, which may be important for simulating the effects of repeated ECM injury and resolution. In the work presented here, poly(ethylene glycol)-based hydrogels reversibly stiffen and soften with multiple light stimuli via photoisomerization of an azobenzene-containing crosslinker. Upon irradiation with cytocompatible doses of 365 nm light (10 mW/cm2, 5 min), isomerization to the azobenzene cis configuration leads to a softening of the hydrogel up to 100-200 Pa (shear storage modulus, G’). This change in gel properties is maintained over a timescale of several hours due to the long half-life of the cis isomer. The initial modulus of the gel can be recovered upon irradiation with similar doses of visible light. With applications in mechanobiology in mind, cytocompatibility with a mechanoresponsive primary cell type is demonstrated. Porcine aortic valvular interstitial cells were encapsulated in the developed hydrogels and shown to exhibit high levels of survival, as well as a spread morphology. The developed hydrogels enable a route to the noninvasive control of substrate modulus independent of changes in the chemical composition or network connectivity, allowing for investigations of the effect of dynamic matrix stiffness on adhered cell behavior. PMID:25629423

  9. Hierarchically Designed Agarose and Poly(Ethylene Glycol) Interpenetrating Network Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    DeKosky, Brandon J.; Dormer, Nathan H.; Ingavle, Ganesh C.; Roatch, Christopher H.; Lomakin, Joseph; Detamore, Michael S.

    2010-01-01

    A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials—agarose and poly(ethylene glycol) (PEG) diacrylate—were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance. PMID:20626274

  10. Polysaccharide–Poly(ethylene glycol) Star Copolymer as a Scaffold for the Production of Bioactive Hydrogels

    PubMed Central

    Yamaguchi, Nori; Kiick, Kristi L.

    2010-01-01

    The production of polysaccharide-derivatized surfaces, polymers, and biomaterials has been shown to be a useful strategy for mediating the biological properties of materials, owing to the importance of polysaccharides for the sequestration and protection of bioactive proteins in vivo. We have therefore sought to combine the benefits of polysaccharide derivatization of polymers with unique opportunities to use these polymers for the production of bioactive, noncovalently assembled hydrogels. Accordingly, we report the synthesis of a heparin-modified poly(ethylene glycol) (PEG) star copolymer that can be used in the assembly of bioactive hydrogel networks via multiple strategies and that is also competent for the delivery of bioactive growth factors. A heparin-decorated polymer, synthesized by the reaction of thiol end-terminated four-arm star PEG (Mn = 10 000) with maleimide functionalized low molecular weight heparin (LMWH, Mr = 3000), has been characterized via 1H NMR spectroscopy and size-exclusion chromatography; results indicate attachment of the LMWH with at least 73% efficiency. Both covalently and noncovalently assembled hydrogels can be produced from the PEG–LMWH conjugate. Viscoelastic noncovalently assembled hydrogels have been formed on the basis of the interaction of the PEG–LMWH with a PEG polymer bearing multiple heparin-binding peptide motifs. The binding and release of therapeutically important proteins from the assembled hydrogels have also been demonstrated via immunochemical assays, which demonstrate the slow release of basic fibroblast growth factor (bFGF) as a function of matrix erosion. The combination of these results suggests the opportunities for producing polymer–polysaccharide conjugates that can assemble into novel hydrogel networks on the basis of peptide–saccharide interactions and for employing these materials in delivery applications. PMID:16004429

  11. Subchronic inhalation toxicology of ethylene glycol monoethyl ether in the rat and rabbit.

    PubMed Central

    Barbee, S J; Terrill, J B; DeSousa, D J; Conaway, C C

    1984-01-01

    The subchronic inhalation toxicology of ethylene glycol monoethyl ether (EGEE) was evaluated in rats and rabbits using a 13-week exposure regimen. Groups of 20 rabbits (10 M, 10 F) and 30 rats (15 M, 15 F) were exposed to a vapor of 25 ppm, 100 ppm, or 400 ppm, 6 hr/day, 5 days/week. The control groups received air only. Physical examinations and body weight measurements were conducted on all animals pretest and weekly throughout the study. Ophthalmoscopic examination was performed pretest and at termination. Evaluation of hematology and clinical chemistry was conducted on 10 animals per sex per group from each species after 13 weeks of study. Histopathological changes were assessed for all animals from the high-dose and control groups. In addition, selected tissues were examined from all animals from the mid- and low-dose groups. Both species exhibited an increased incidence of lacrimation and mucoid nasal discharge, but the response was not consistently dose-related. Rats exposed to EGEE showed no compound-related effects except for a decrease in pituitary to body weight ratio for high-dose males and a decrease in absolute spleen weight for all female animals. The spleen to body weight ratio was also less than controls for the females in the low- and high-dose groups. Pathological changes supportive of these organ weight changes were not observed. The rabbit is the more sensitive species to the subchronic toxicological effects from EGEE. Mean body weight values for low- and high-dose animals were decreased; the mid-dose animals, however, showed no change.(ABSTRACT TRUNCATED AT 250 WORDS) Images FIGURE 1. A FIGURE 1. B PMID:6499800

  12. Protein patterning by UV-induced photodegradation of poly(oligo(ethylene glycol) methacrylate) brushes.

    PubMed

    Alang Ahmad, Shahrul; Hucknall, Angus; Chilkoti, Ashutosh; Leggett, Graham J

    2010-06-15

    The UV photodegradation of protein-resistant poly(oligo(ethylene glycol) methacrylate) (POEGMA) bottle-brush films, grown on silicon oxide by surface-initiated atom radical transfer polymerization, was studied using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Exposure to light with a wavelength of 244 nm caused a loss of polyether units from the brush structure and the creation of aldehyde groups that could be derivatized with amines. An increase was measured in the coefficient of friction of the photodegraded polymer brush compared to the native brush, attributed to the creation of a heterogeneous surface film, leading to increased energy dissipation through film deformation and the creation of new polar functional groups at the surface. Exposure of the films through a photomask yielded sharp, well-defined patterns. Analysis of topographical images showed that physical removal of material occurred during exposure, at a rate of 1.35 nm J(-1) cm(2). Using fluorescence microscopy, the adsorption of labeled proteins onto the exposed surfaces was studied. It was found that protein strongly adsorbed to exposed areas, while the masked regions retained their protein resistance. Exposure of the film to UV light from a scanning near-field optical microscope yielded submicrometer-scale patterns. These data indicate that a simple, rapid, one-step photoconversion of the poly(OEGMA) brush occurs that transforms it from a highly protein-resistant material to one that adsorbs protein and can covalently bind amine-containing molecules and that this photoconversion can be spatially addressed with high spatial resolution.

  13. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue

    PubMed Central

    Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin

    2013-01-01

    Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224

  14. MicroRNAs expression in the ethylene glycol monomethyl ether-induced testicular lesion.

    PubMed

    Fukushima, Tamio; Taki, Kenji; Ise, Ryota; Horii, Ikuo; Yoshida, Takemi

    2011-10-01

    Ethylene glycol monomethyl ether (EGME) induces testicular lesion in rats and human. To investigate miRNAs expression in EGME testicular lesion, miRNA array assay and real-time RT-PCR analysis were conducted by using testis in rats treated with 50 and 2,000 mg/kg EGME for 6 and 24 hr. The expression of corresponding target gene for miRNAs was also examined. At 50 mg/kg, there were no changes in the gene expression and histopathological examination. At 2,000 mg/kg, slight decrease of phacytene spermatocytes with cell shrinkage and nucleus pyknosis at 6 hr and remarkable decrease (or cell death) of phacytene spermatocytes with Sertoli cell vacuolation at 24 hr were observed. After 24 hr, miR-449a and miR-92a decreased obviously and, miR-320, miR-134 and miR-188 increased, while only miR-760-5p increased after 6 hr. Above these miRNAs are reported to have an important role for spermatogenesis. The gene expression of Bcl-2, target for miR-449a, increased and therefore it is considered anti-apoptotic reaction has started in this stage. The expression of high mobility group AT-hook 2 (target of miR-92a) which regulates histone structure, was increased. Furthermore, histone deacethylase 4, targets for miR-320, was also affected. Above prohibiting apoptosis or activating epigenetic genes might be protective reaction to spermatocytes death under the miRNAs regulation in EGME testicular lesion.

  15. Anisotropic Poly(Ethylene Glycol)/Polycaprolactone Hydrogel–Fiber Composites for Heart Valve Tissue Engineering

    PubMed Central

    Tseng, Hubert; Puperi, Daniel S.; Kim, Eric J.; Ayoub, Salma; Shah, Jay V.; Cuchiara, Maude L.; West, Jennifer L.

    2014-01-01

    The recapitulation of the material properties and structure of the native aortic valve leaflet, specifically its anisotropy and laminate structure, is a major design goal for scaffolds for heart valve tissue engineering. Poly(ethylene glycol) (PEG) hydrogels are attractive scaffolds for this purpose as they are biocompatible, can be modified for their mechanical and biofunctional properties, and can be laminated. This study investigated augmenting PEG hydrogels with polycaprolactone (PCL) as an analog to the fibrosa to improve strength and introduce anisotropic mechanical behavior. However, due to its hydrophobicity, PCL must be modified prior to embedding within PEG hydrogels. In this study, PCL was electrospun (ePCL) and modified in three different ways, by protein adsorption (pPCL), alkali digestion (hPCL), and acrylation (aPCL). Modified PCL of all types maintained the anisotropic elastic moduli and yield strain of unmodified anisotropic ePCL. Composites of PEG and PCL (PPCs) maintained anisotropic elastic moduli, but aPCL and pPCL had isotropic yield strains. Overall, PPCs of all modifications had elastic moduli of 3.79±0.90 MPa and 0.46±0.21 MPa in the parallel and perpendicular directions, respectively. Valvular interstitial cells seeded atop anisotropic aPCL displayed an actin distribution aligned in the direction of the underlying fibers. The resulting scaffold combines the biocompatibility and tunable fabrication of PEG with the strength and anisotropy of ePCL to form a foundation for future engineered valve scaffolds. PMID:24712446

  16. Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles.

    PubMed

    Chen, Cherry C; Borden, Mark A

    2010-08-17

    Using microbubbles as model systems, we examined molecular diffusion and binding to colloidal surfaces in bimodal poly(ethylene glycol) (PEG) brush layers. A microbubble is a gaseous colloidal particle with a diameter of less than 10 mum, of which the surface comprises amphiphilic phospholipids self-assembled to form a lipid monolayer shell. Due to the compressible gas core, microbubbles provide a sensitive acoustic response and are currently used as ultrasound contrast agents. Similar to the design of long circulating liposomes, PEG chains are typically incorporated into the shell of microbubbles to form a steric barrier against coalescence and adsorption of macromolecules to the microbubble surface. We introduced a buried-ligand architecture (BLA) design where the microbubble surface was coated with a bimodal PEG brush. After microbubbles were generated, fluorescent ligands with different molecular weights were conjugated to the tethered functional groups on the shorter PEG chains, while the longer PEG chains served as a shield to protect these ligands from exposure to the surrounding environment. BLA microbubbles reduced the binding of macromolecules (>10 kDa) to the tethers due to the steric hindrance of the PEG overbrush while allowing the uninhibited attachment of small molecules (<1 kDa). Roughly 40% less fluorescein-conjugated streptavidin (SA-FITC) bound to BLA microbubbles compared to exposed-ligand architecture (ELA) microbubbles. The binding of SA-FITC to BLA microbubbles suggested a possible phase separation between the lipid species on the surface leading to populations of revealed and concealed ligands. Ligand conjugation kinetics was independent of microbubble size, regardless of ligand size or microbubble architecture. We observed, for the first time, streptavidin-induced surface structure formation for ELA microbubbles and proposed that this phenomenon may be correlated to flow cytometry scattering measurements. We therefore demonstrated the

  17. Amphiphilic copolymer of poly(ethylene glycol)-block-polypyridine; synthesis, physicochemical characterization, and adsorption onto silica nanoparticle.

    PubMed

    Matsukuma, Daisuke; Maejima, Yukie; Ikenaga, Yusuke; Sanbai, Taketomo; Ueno, Koji; Otsuka, Hidenori

    2014-09-01

    In this study, we newly synthesized amphiphilic block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic pyridine segments (PEG-b-Py). Chain transfer agent terminated PEG was subsequently chain-extended with 3-(4-pyridyl)-propyl acrylate to obtain PEG-b-Py by reversible additional-fragmentation chain transfer (RAFT) polymerization. Particularly, the effect of varying PEG molecular weight (M(n)) of the block copolymers (M(n) = 2000 (2k), and 5000 (5k)) was investigated in terms of critical micelle concentration (cmc), pyrene solubilization, micelle size distribution, and association number per micelle. Based on the amphiphilic balance, PEG-b-Pys formed core-shell type polymer micelle. The cmc value of PEG2k-b-Py was lower than that of PEG5k-b-Py, suggesting the degree of phase separation was strongly depended on PEG M(n). Furthermore, the adsorption of PEG-b-Py copolymer onto silica nanoparticles as dispersant was studied to estimate the effect of PEG M(n) in the copolymers and their solubility in the medium on the adsorption. Adsorbed density of PEG2k-b-Py copolymer onto silica nanoparticle was higher than that of PEG5k-b-Py, which was significantly correlated with the degree of phase-separation based on the amphiphilic balance. The adsorbed amount of copolymer was further changed as a function of solvent polarity, phase separation predicting the presence of the acid-base interaction between Py and silanol group existed on silica nanoparticles. The resultant dispersion stability was highly correlated with the graft density of copolymer onto silica surface. As a result, PEG2k-b-Py coated silica nanoparticles in aqueous media (with high solvent polarity) showed high dispersion stability. These fundamental investigations for the surface modification of the nanoparticle provide the insight into the highly stable colloidal dispersion as well as the design of dispersant molecular structure.

  18. Antiurolithiatic activity of ethanol leaf extract of Ipomoea eriocarpa against ethylene glycol-induced urolithiasis in male Wistar rats

    PubMed Central

    Das, Moonjit; Malipeddi, Himaja

    2016-01-01

    Objective: The objective of this study was to investigate the prophylactic and curative effect of the ethanol leaf extract of Ipomoea eriocarpa (Convolvulaceae) (IEE) in ethylene glycol-induced urolithiasis in rats. Materials and Methods: Thirty male Wistar rats were divided into five groups (n = 6). All the groups received stone-inducing treatment till 28th day, comprising 1% ethylene glycol (v/v) with 1% ammonium chloride (w/v) for 4 days, followed by 1% ethylene glycol alone in water, except Group I (Control). Group II received only stone-inducing treatment till 28th day. Group III (Standard) received cystone (500 mg/kg) from 15th day till 28th day. Group IV (Prophylactic) received IEE (200 mg/kg) from 1st day till 28th day and Group V (Curative) received IEE (200 mg/kg) from 15th day till 28th day. Various biochemical parameters such as phosphorus, calcium, magnesium, urea, and creatinine levels were evaluated using urine, serum, and kidney homogenate. The kidneys were also sectioned and examined histopathologically under light microscope to study the kidney architecture and calcium oxalate deposits. Results: The IEE treatment (prophylactic and curative) significantly (P < 0.001) restored the parameters in urine, serum, and kidney homogenate to near-normal level. The histopathological examinations revealed that calcium oxalate crystal deposits in the renal tubules and congestion and dilation of the parenchymal blood vessels were significantly reverted after IEE treatment. Conclusions: The leaf extract of I. eriocarpa reduces and inhibits the growth of urinary stones showing its effect as an antiurolithiatic agent. PMID:27298496

  19. Grafting poly(ethylene glycol) monomethacrylate onto Fe 3O 4 nanoparticles to resist nonspecific protein adsorption

    NASA Astrophysics Data System (ADS)

    Qin, Shaoxiong; Wang, Linlin; Zhang, Xu; Su, Gaosheng

    2010-11-01

    Magnetic nanoparticles grafted with poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) were prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. In this approach, S-benzyl S'-trimethoxysilylpropyltrithiocarbonate, used as a chain transfer agent for RAFT, was first immobilized onto the magnetic nanoparticle surface, and then PEGMA was grafted onto the surface of magnetic nanoparticle via RAFT polymerization. The results showed that P(PEGMA) chains grew from magnetic nanoparticles by surface-induced RAFT polymerization. The grafted P(PEGMA) chains can decrease the nonspecific adsorption of proteins on the surface of Fe 3O 4 nanoparticles.

  20. Efficient and chemoselective N-acylation of 10-amino-7-ethyl camptothecin with poly(ethylene glycol).

    PubMed

    Guiotto, Andrea; Canevari, Mirta; Orsolini, Piero; Lavanchy, Olivier; Deuschel, Christine; Kaneda, Norimasa; Kurita, Akinobu; Matsuzaki, Takeshi; Yaegashi, Takeshi; Sawada, Seigo; Veronese, Francesco M

    2004-04-01

    A new poly(ethylene glycol) (PEG) conjugate of 10-amino-7-ethyl camptothecin, a potent antitumor analogue of camptothecin, has been synthesized and preliminary in vivo tests have been performed. Successful chemoselective N-acylation of 10-amino-7-ethyl camptothecin was accomplished using phenyl dichlorophosphate, a coupling reagent used in esterification of alcohols, while other coupling methods failed, due to the low nucleophilicity of the amino group in position 10. The conjugate was tested against P388 murine leukemia cell lines and resulted equipotent to CPT-11, a camptothecin analogue already in clinical use.

  1. Nano-Aggregates of Doxorubicin-Conjugated Methoxy Poly(ethylene glycol)-b-Carboxymethyl Dextran Copolymer.

    PubMed

    Lee, Sang Joon; Kang, Mi-Sun; Oh, Jong-Suk; Jeong, Young-Il; Park, In-Kyu; Lee, Hyun Chul

    2015-08-01

    Block copolymer composed of carboxymethyl dextran (CMDex) and methoxy poly(ethylene glycol) (MPEG) (abbreviated as CMDexPEG) was synthesized and doxorubicin (DOX) was conjugated with carboxyl groups of CMDexPEG. DOX-conjugated CMDexPEG block copolymer formed nanoparticles in water with sizes less than 100 nm. DOX-conjugated nanoparticles enhanced DOX delivery to the DOX-resistant CT26 cells and showed higher anticancer activity in vitro. DOX-conjugated nanoparticles inhibited growth of CT26 solid tumor at tumor-bearing mouse model study. In near infrared (NIR)-dye study, nanoparticles were retained in the tumor tissues for a longer period. PMID:26369118

  2. Oxidation of methanol, ethylene glycol, and isopropanol with human alcohol dehydrogenases and the inhibition by ethanol and 4-methylpyrazole.

    PubMed

    Lee, Shou-Lun; Shih, Hsuan-Ting; Chi, Yu-Chou; Li, Yeung-Pin; Yin, Shih-Jiun

    2011-05-30

    Human alcohol dehydrogenases (ADHs) include multiple isozymes with broad substrate specificity and ethnic distinct allozymes. ADH catalyzes the rate-limiting step in metabolism of various primary and secondary aliphatic alcohols. The oxidation of common toxic alcohols, that is, methanol, ethylene glycol, and isopropanol by the human ADHs remains poorly understood. Kinetic studies were performed in 0.1M sodium phosphate buffer, at pH 7.5 and 25°C, containing 0.5 mM NAD(+) and varied concentrations of substrate. K(M) values for ethanol with recombinant human class I ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, and ADH1C2, and class II ADH2 and class IV ADH4 were determined to be in the range of 0.12-57 mM, for methanol to be 2.0-3500 mM, for ethylene glycol to be 4.3-2600mM, and for isopropanol to be 0.73-3400 mM. ADH1B3 appeared to be inactive toward ethylene glycol, and ADH2 and ADH4, inactive with methanol. The variations for V(max) for the toxic alcohols were much less than that of the K(M) across the ADH family. 4-Methylpyrazole (4MP) was a competitive inhibitor with respect to ethanol for ADH1A, ADH1B1, ADH1B2, ADH1C1 and ADH1C2, and a noncompetitive inhibitor for ADH1B3, ADH2 and ADH4, with the slope inhibition constants (K(is)) for the whole family being 0.062-960 μM and the intercept inhibition constants (K(ii)), 33-3000 μM. Computer simulation studies using inhibition equations in the presence of alternate substrate ethanol and of dead-end inhibitor 4MP with the determined corresponding kinetic parameters for ADH family, indicate that the oxidation of the toxic alcohols up to 50mM are largely inhibited by 20 mM ethanol or by 50 μM 4MP with some exceptions. The above findings provide an enzymological basis for clinical treatment of methanol and ethylene glycol poisoning by 4MP or ethanol with pharmacogenetic perspectives.

  3. Immobilization of Antibody on a Cyclic Olefin Copolymer Surface with Functionalizable, Non-Biofouling Poly[Oligo(Ethylene Glycol) Methacrylate].

    PubMed

    Jeong, Seung Pyo; Kang, Sung Min; Hong, Daewha; Lee, Hee-Yoon; Choi, Insung S; Ko, Sangwon; Lee, Jungkyu K

    2015-02-01

    We report a perfluoroaryl azide-based photoreaction for synthesizing functionalizable and nonbiofouling poly[oligo(ethylene glycol) methacrylate] (pOEGMA) films on a chemically inert COC substrate, and an estimation of a surface coverage of the antibody immobilized onto the surface with the immuno-gold nanoparticles. The processes were confirmed by water contact angle measurement, FT-IR spectroscopy, and FE-SEM. The strategy demonstrated in this work could be applied to functionalizations of other polymeric materials and determination of the binding capacity of analytes in biosensors and microfluidic devices.

  4. Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis.

    PubMed

    Luo, Xingju; Chen, Zhizhong; Gao, Junping; Gong, Zhizhong

    2014-07-01

    When first discovered in 1963, abscisic acid (ABA) was called abscisin II because it promotes abscission. Later, researchers found that ABA accelerates abscission via ethylene. In Arabidopsis, previous studies have shown that high concentrations of ABA inhibit root growth through ethylene signaling but not ethylene production. In the present study in Arabidopsis, we found that ABA inhibits root growth by promoting ethylene biosynthesis. The ethylene biosynthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine reduces ABA inhibition of root growth, and multiple mutants of ACS (1-aminocyclopropane-1-carboxylate synthase) are more resistant to ABA in terms of root growth than the wild-type is. Two ABA-activated calcium-dependent protein kinases, CPK4 and CPK11, phosphorylate the C-terminus of ACS6 and increase the stability of ACS6 in ethylene biosynthesis. Plants expressing an ACS6 mutant that mimics the phosphorylated form of ACS6 produce more ethylene than the wild-type. Our results reveal an important mechanism by which ABA promotes ethylene production. This mechanism may be highly conserved among higher plants.

  5. XPS and wettability characterization of modified poly(lactic acid) and poly(lactic/glycolic acid) films.

    PubMed

    Kiss, E; Bertóti, I; Vargha-Butler, E I

    2002-01-01

    Poly(lactic acid) (PLA) and poly(lactic/glycolic acid) copolymers (PLGA) are biodegradable drug carriers of great importance, although successful pharmaceutical application requires adjustment of the surface properties of the polymeric drug delivery system to be compatible with the biological environment. For that reason, reduction of the original hydrophobicity of the PLA or PLGA surfaces was performed by applying a hydrophilic polymer poly(ethylene oxide) (PEO) with the aim to improve biocompatibility of the original polymer. PEO-containing surfaces were prepared by incorporation of block copolymeric surfactants, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic), into the hydrophobic surface. Films of polymer blends from PLA or PLGA (with lactic/glycolic acid ratios of 75/25 and 50/50) and from Pluronics (PE6800, PE6400, and PE6100) were obtained by the solvent casting method, applying the Pluronics at different concentrations between 1 and 9.1% w/w. Wettability was measured to monitor the change in surface hydrophobicity, while X-ray photoelectron spectroscopy (XPS) was applied to determine the composition and chemical structure of the polymer surface and its change with surface modification. Substantial reduction of surface hydrophobicity was achieved on both the PLA homopolymer and the PLGA copolymers by applying the Pluronics at various concentrations. In accordance with the wettability changes the accumulation of Pluronics in the surface layer was greatly affected by the initial hydrophobicity of the polymer, namely, by the lactide content of the copolymer. The extent of surface modification was also found to be dependent on the type of blended Pluronics. Surface activity of the modifying Pluronic component was interpreted by using the solubility parameters. PMID:16290340

  6. Evaluation of the matrix effect on gas chromatography--mass spectrometry with carrier gas containing ethylene glycol as an analyte protectant.

    PubMed

    Fujiyoshi, Tomoharu; Ikami, Takahito; Sato, Takashi; Kikukawa, Koji; Kobayashi, Masato; Ito, Hiroshi; Yamamoto, Atsushi

    2016-02-19

    The consequences of matrix effects in GC are a major issue of concern in pesticide residue analysis. The aim of this study was to evaluate the applicability of an analyte protectant generator in pesticide residue analysis using a GC-MS system. The technique is based on continuous introduction of ethylene glycol into the carrier gas. Ethylene glycol as an analyte protectant effectively compensated the matrix effects in agricultural product extracts. All peak intensities were increased by this technique without affecting the GC-MS performance. Calibration curves for ethylene glycol in the GC-MS system with various degrees of pollution were compared and similar response enhancements were observed. This result suggests a convenient multi-residue GC-MS method using an analyte protectant generator instead of the conventional compensation method for matrix-induced response enhancement adding the mixture of analyte protectants into both neat and sample solutions.

  7. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol)-polylactide conjugate

    PubMed Central

    Chen, Wei-Lin; Peng, Yun-Fen; Chiang, Sheng-Kuo; Huang, Ming-Hsi

    2015-01-01

    A fluorescence-labeled bioresorbable polymer was prepared by a coupling reaction of poly(ethylene glycol)-polylactide (PEG-PLA) with carboxyl pyrene, using N,N’-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole (DIC/HOAt) as a coupling agent and 4-dimethylaminopyridine (DMAP) as a catalyst. The obtained copolymer, termed PEG-PLA-pyrene, was characterized using various analytical techniques, such as gel permeation chromatography (GPC), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), proton nuclear magnetic resonance (1H-NMR), infrared spectroscopy (IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), to identify the molecular structure and to monitor the thermal property changes before and after the reaction. The presence of a pyrene moiety at the end of polylactide (PLA) did not alter the crystallization ability of the poly(ethylene glycol) (PEG) blocks, indicating that the conjugate preserved the inherent thermal properties of PEG-PLA. However, the presence of PEG-PLA blocks strongly reduced the melting of pyrene, indicating that the thermal characteristics were sensitive to PEG-PLA incorporation. Regarding the physicochemical behavior in aqueous solution, a higher concentration of PEG-PLA-pyrene resulted in a higher ultraviolet-visible (UV-vis) absorbance and fluorescence emission intensity. This is of great interest for the use of this conjugate as a fluorescence probe to study the in vivo distribution as well as the internalization and intracellular localization of polymeric micelles. PMID:25914532

  8. Sugar-mediated chitosan/poly(ethylene glycol)-beta-dicalcium pyrophosphate composite: mechanical and microstructural properties.

    PubMed

    Wang, Jian-Wen; Hon, Min-Hsiung

    2003-02-01

    The microstructural and mechanical properties of sugar-mediated chitosan/poly(ethylene glycol)-based scaffolds and composites, which are composed of beta-dicalcium pyrophosphate (beta-DCP) and sugar-mediated scaffolds, were investigated. All of the scaffolds were prepared by various freeze-drying protocols. The differences in the freeze-drying process of the sugar-mediated chitosan/poly(ethylene glycol) scaffold for three types of sugar (sucrose, glucose, and D-fructose) were determined by scanning electron microscopic observation, water retention, density, and porosity analyses. The sugar-mediated scaffolds prepared by scheme I of the freeze-drying process show large pores, poorly connective interlayers, and disintegrated inner structures, different from the small pores and well-connective channel structures as shown in the scheme II freeze-drying process. The key factors for controlling pore structure and size in the scheme I freeze-drying process were formulation and composition, but for the scheme II freeze-drying process, the key factor was freeze protocol. The composite scaffolds were macroporous, and the microstructure changed considerably with added beta-DCP content. The incorporation of beta-DCP granules caused a significant enhancement of compressive modulus and yield strength. The increased mechanical strength may be attributable not only to the physical complexation between the sugar-mediated scaffold and beta-DCP, but also the chemical reaction to apatite formed on the cell wall.

  9. Thermoreversible Poly(ethylene glycol)-g-Chitosan Hydrogel as a Therapeutic T Lymphocyte Depot for Localized Glioblastoma Immunotherapy

    PubMed Central

    2015-01-01

    The outcome for glioblastoma patients remains dismal for its invariably recrudesces within 2 cm of the resection cavity. Local immunotherapy has the potential to eradicate the residual infiltrative component of these tumors. Here, we report the development of a biodegradable hydrogel containing therapeutic T lymphocytes for localized delivery to glioblastoma cells for brain tumor immunotherapy. Thermoreversible poly(ethylene glycol)-g-chitosan hydrogels (PCgels) were optimized for steady T lymphocyte release. Nuclear magnetic resonance spectroscopy confirmed the chemical structure of poly(ethylene glycol)-g-chitosan, and rheological studies revealed that the sol-to-gel transition of the PCgel occurred around ≥32 °C. T lymphocyte invasion through the PCgel and subsequent cytotoxicity to glioblastoma were assessed in vitro. The PCgel was shown to be cellular compatible with T lymphocytes, and the T lymphocytes retain their anti-glioblastoma activity after being encapsulated in the PCgel. T lymphocytes in the PCgel were shown to be more effective in killing glioblastoma than those in the Matrigel control. This may be attributed to the optimal pore size of the PCgel allowing better invasion of T lymphocytes. Our study suggests that this unique PCgel depot may offer a viable approach for localized immunotherapy for glioblastoma. PMID:24890220

  10. Radiation-induced graft copolymerization of poly(ethylene glycol) monomethacrylate onto deoxycholate-chitosan nanoparticles as a drug carrier

    NASA Astrophysics Data System (ADS)

    Pasanphan, Wanvimol; Rattanawongwiboon, Thitirat; Rimdusit, Pakjira; Piroonpan, Thananchai

    2014-01-01

    Poly(ethylene glycol) monomethacrylate-grafted-deoxycholate chitosan nanoparticles (PEGMA-g-DCCSNPs) were successfully prepared by radiation-induced graft copolymerization. The hydrophilic poly(ethylene glycol) monomethacrylate was grafted onto deoxycholate-chitosan in an aqueous system. The radiation-absorbed dose is an important parameter on degree of grafting, shell thickness and particle size of PEGMA-g-DCCSNPs. Owing to their amphiphilic architecture, PEGMA-g-DCCSNPs self-assembled into spherical core-shell nanoparticles in aqueous media. The particle size of PEGMA-g-DCCSNPs measured by TEM varied in the range of 70-130 nm depending on the degree of grafting as well as the irradiation dose. Berberine (BBR) as a model drug was encapsulated into the PEGMA-g-DCCSNPs. Drug release study revealed that the BBR drug was slowly released from PEGMA-g-DCCSNPs at a mostly constant rate of 10-20% in PBS buffer (pH 7.4) at 37 °C over a period of 23 days.

  11. Ethylene glycol revisited: Molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network.

    PubMed

    Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael

    2014-01-01

    Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions.

  12. Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity.

    PubMed

    Torchilin, V P; Omelyanenko, V G; Papisov, M I; Bogdanov, A A; Trubetskoy, V S; Herron, J N; Gentry, C A

    1994-10-12

    The hypothetical model is built explaining the molecular mechanism of protective action of poly(ethylene glycol) on liposomes in vivo. The protective layer of the polymer on the liposome surface is considered as a statistical 'cloud' of polymer possible conformations in solution. Computer simulation was used to demonstrate that relatively a small number of liposome-grafted molecules of hydrophilic and flexible polymer can create a dense protective conformational cloud over the liposome surface preventing opsonizing protein molecules from contacting liposome. A more rigid polymer fails to form this dense protective cloud, even when hydrophilic. Computer simulation was also used to reveal possible heterogeneity of reactive sites on a polymer-coated liposome surface, and to estimate the optimal polymer-to-lipid ratio for efficient liposome protection. Experiments have been performed with the quenching of liposome-associated fluorescent label (nitrobenzoxadiazole or fluorescein) with protein (rhodamine-ovalbumin or anti-fluorescein antibody) from solution. It was shown that poly(ethylene glycol) grafting to liposomes hinders protein interaction with the liposome surface, whereas liposome-grafted dextran (more rigid polymer) in similar quantities does not affect protein-liposome interaction. Highly-reactive and low-reactive populations of chemically identical reactive sites have been found on polymer-coated liposomes. Experimental data satisfactory confirm the suggested mechanism for the longevity of polymer-modified liposome.

  13. Conformation of Oligo(Ethylene Glycol) grafted Poly(Norbornene) in solutions: A Small Angle Neutron Scattering Study

    SciTech Connect

    Cheng, Gang; Melnichenko, Yuri B; Hua, Fengjun; Hong, Kunlun; Wignall, George D; Hammouda, B.; Mays, Jimmy

    2008-01-01

    The structure of thermo sensitive poly(methoxyoligo(ethylene glycol) norbornenyl esters) homopolymers in dilute solution was investigated by Small Angle Neutron Scattering (SANS). The homopolymers consist of a polynorbornene (PNB) backbone with a degree of polymerization (DP) of 50, and each backbone monomer has a grafted Ethylene Glycol (EG) side chain with an average DP of 6.6. The hydrophobic backbone and hydrophilic side chains interact differently with solvents depending on their polarity, which makes the conformation very sensitive to the solvent quality. The polymer conformation was studied in two solvents, d-toluene and D2O, with the aim of understanding the influence of solvent/polymer interactions on the resulting structures. It was found that in a 0.5 wt. % solution in d-toluene the polymers assume wormlike chains and gradually contract with increasing polymer concentration. In a 0.5 wt. % solution in D2O, the polymers are partially contracted at room temperature and their conformation can be described by the form factor of a rigid cylinder. The volume of the cylinder shows no concentration dependence. Furthermore, the polymers in D2O collapse at higher temperatures due to decreasing solubility of the side chains in water.

  14. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    SciTech Connect

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-11-15

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag{sup +} to Ag{sup 0}. A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO{sub 2}. Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  15. Oxidation-Responsive and "Clickable" Poly(ethylene glycol) via Copolymerization of 2-(Methylthio)ethyl Glycidyl Ether.

    PubMed

    Herzberger, Jana; Fischer, Karl; Leibig, Daniel; Bros, Matthias; Thiermann, Raphael; Frey, Holger

    2016-07-27

    Poly(ethylene glycol) (PEG) is a widely used biocompatible polymer. We describe a novel epoxide monomer with methyl-thioether moiety, 2-(methylthio)ethyl glycidyl ether (MTEGE), which enables the synthesis of well-defined thioether-functional poly(ethylene glycol). Random and block mPEG-b-PMTEGE copolymers (Mw/Mn = 1.05-1.17) were obtained via anionic ring opening polymerization (AROP) with molecular weights ranging from 5 600 to 12 000 g·mol(-1). The statistical copolymerization of MTEGE with ethylene oxide results in a random microstructure (rEO = 0.92 ± 0.02 and rMTEG E = 1.06 ± 0.02), which was confirmed by in situ (1)H NMR kinetic studies. The random copolymers are thermoresponsive in aqueous solution, with a wide range of tunable transition temperatures of 88 to 28 °C. In contrast, mPEG-b-PMTEGE block copolymers formed well-defined micelles (Rh ≈ 9-15 nm) in water, studied by detailed light scattering (DLS and SLS). Intriguingly, the thioether moieties of MTEGE can be selectively oxidized into sulfoxide units, leading to full disassembly of the micelles, as confirmed by detection of pure unimers (DLS and SLS). Oxidation-responsive release of encapsulated Nile Red demonstrates the potential of these micelles as redox-responsive nanocarriers. MTT assays showed only minor effects of the thioethers and their oxidized derivatives on the cellular metabolism of WEHI-164 and HEK-293T cell lines (1-1000 μg·mL(-1)). Further, sulfonium PEG polyelectrolytes can be obtained via alkylation or alkoxylation of MTEGE, providing access to a large variety of functional groups at the charged sulfur atom. PMID:27375132

  16. Star poly(ethylene glycol) as a tunable scaffold for neural tissue engineering

    NASA Astrophysics Data System (ADS)

    Zustiak, Silviya Petrova

    The primary focus of this work was to develop a novel synthetic hydrogel scaffold as an in vitro model to enable future detailed studies of how neurons grow in environments with controllable diffusion profiles of soluble cues and tunable neuronmatrix interactions. The development of in vitro models that enable elucidation of the mechanisms of system performance is a recently emerging goal of tissue engineering. The design of three-dimensional (3D) scaffolds in particular, is motivated by the need to develop model systems that better mimic native tissue as compared to conventional two-dimensional (2D) cell culture substrates. An ideal scaffold is degradable, porous, biocompatible, with mechanical properties to match those of the tissues of interest and with a suitable surface chemistry for cell attachment, proliferation, and differentiation. Although naturally derived materials are more versatile in providing complex biological cues, synthetic polymers are preferable for the design of in vitro models as they provide wider range of properties, controllable degradation rates, and easier processing. Most importantly, their mechanical properties can be decoupled from their biological properties, a crucial issue in interpreting cell responses. The synthetic material provides the structural backbone of the scaffold while biochemical function is added via incorporation of ligands or proteins aimed at triggering specific cell behaviors. As presented in this dissertation, we have developed and characterized a new synthetic 3D hydrogel scaffold from cross-linked poly(ethylene glycol) (PEG). PEG was selected because it is hydrophilic, non-toxic, biocompatible, and inert to protein adhesion. The chosen cross-linking chemistry was a highly specific reaction that occurred under physiological conditions so that cells could be embedded within the gel prior to cross-linking. Controllable degradability was imparted via series of hydrolytically degradable PEG cross-linkers. Thorough

  17. 40 CFR 721.10111 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and diethylene glycol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesters with benzoic acid and diethylene glycol. 721.10111 Section 721.10111 Protection of Environment... diesters with benzoic acid and diethylene glycol. (a) Chemical substance and significant new uses subject... benzoic acid and diethylene glycol (PMN P-04-510; CAS No. 610787-78-5) is subject to reporting under...

  18. 40 CFR 721.10110 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and neopentlyl glycol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesters with benzoic acid and neopentlyl glycol. 721.10110 Section 721.10110 Protection of Environment... diesters with benzoic acid and neopentlyl glycol. (a) Chemical substance and significant new uses subject... benzoic acid and neopentlyl glycol (PMN P-04-509; CAS No. 610787-77-4) is subject to reporting under...

  19. 40 CFR 721.10111 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and diethylene glycol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesters with benzoic acid and diethylene glycol. 721.10111 Section 721.10111 Protection of Environment... diesters with benzoic acid and diethylene glycol. (a) Chemical substance and significant new uses subject... benzoic acid and diethylene glycol (PMN P-04-510; CAS No. 610787-78-5) is subject to reporting under...

  20. 40 CFR 721.10110 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and neopentlyl glycol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesters with benzoic acid and neopentlyl glycol. 721.10110 Section 721.10110 Protection of Environment... diesters with benzoic acid and neopentlyl glycol. (a) Chemical substance and significant new uses subject... benzoic acid and neopentlyl glycol (PMN P-04-509; CAS No. 610787-77-4) is subject to reporting under...

  1. 40 CFR 721.10111 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and diethylene glycol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesters with benzoic acid and diethylene glycol. 721.10111 Section 721.10111 Protection of Environment... diesters with benzoic acid and diethylene glycol. (a) Chemical substance and significant new uses subject... benzoic acid and diethylene glycol (PMN P-04-510; CAS No. 610787-78-5) is subject to reporting under...

  2. 40 CFR 721.10111 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and diethylene glycol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesters with benzoic acid and diethylene glycol. 721.10111 Section 721.10111 Protection of Environment... diesters with benzoic acid and diethylene glycol. (a) Chemical substance and significant new uses subject... benzoic acid and diethylene glycol (PMN P-04-510; CAS No. 610787-78-5) is subject to reporting under...

  3. 40 CFR 721.10110 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and neopentlyl glycol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesters with benzoic acid and neopentlyl glycol. 721.10110 Section 721.10110 Protection of Environment... diesters with benzoic acid and neopentlyl glycol. (a) Chemical substance and significant new uses subject... benzoic acid and neopentlyl glycol (PMN P-04-509; CAS No. 610787-77-4) is subject to reporting under...

  4. 40 CFR 721.10110 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and neopentlyl glycol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesters with benzoic acid and neopentlyl glycol. 721.10110 Section 721.10110 Protection of Environment... diesters with benzoic acid and neopentlyl glycol. (a) Chemical substance and significant new uses subject... benzoic acid and neopentlyl glycol (PMN P-04-509; CAS No. 610787-77-4) is subject to reporting under...

  5. 40 CFR 721.10110 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and neopentlyl glycol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesters with benzoic acid and neopentlyl glycol. 721.10110 Section 721.10110 Protection of Environment... diesters with benzoic acid and neopentlyl glycol. (a) Chemical substance and significant new uses subject... benzoic acid and neopentlyl glycol (PMN P-04-509; CAS No. 610787-77-4) is subject to reporting under...

  6. 40 CFR 721.10111 - Hexanoic acid, 2-ethyl-, mixed diesters with benzoic acid and diethylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesters with benzoic acid and diethylene glycol. 721.10111 Section 721.10111 Protection of Environment... diesters with benzoic acid and diethylene glycol. (a) Chemical substance and significant new uses subject... benzoic acid and diethylene glycol (PMN P-04-510; CAS No. 610787-78-5) is subject to reporting under...

  7. Fabrication and Anti-Fouling Properties of Photochemically and Thermally Immobilized Poly(Ethylene Oxide) and Low Molecular Weight Poly(Ethylene Glycol) Thin Films

    PubMed Central

    Wang, Hui; Ren, Jin; Hlaing, Aye; Yan, Mingdi

    2010-01-01

    Poly(ethylene oxide) (PEO) and low molecular weight poly(ethylene glycol) (PEG) were covalently immobilized on silicon wafers and gold films by way of the CH insertion reaction of perfluorophenyl azides (PFPAs) by either photolysis or thermolysis. The immobilization does not require chemical derivatization of PEO or PEG, and polymers of different molecular weights were successfully attached to the substrate to give uniform films. Microarrays were also generated by printing polymer solutions on PFPA-functionalized wafer or Au slides followed by light activation. For low molecular weight PEG, the immobilization was highly dependent on the quality of the film deposited on the substrate. While the spin-coated and printed PEG showed poor immobilization efficiency, thermal treatment of the PEG melt on PFPA-functionalized surfaces resulted in excellent film quality, giving, for example, a grafting density of 9.2 × 10−4/Å2 and an average distance between grafted chains of 33 Å for PEG 20,000. The anti-fouling property of the films was evaluated by fluorescence microscopy and surface plasmon resonance imaging (SPRi). Low protein adsorption was observed on thermally-immobilized PEG whereas the photoimmobilized PEG showed increased protein adsorption. In addition, protein arrays were created using polystyrene (PS) and PEG based on the differential protein adsorption of the two polymers. PMID:21044787

  8. Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan.

    PubMed

    Zhang, Luzhong; Dou, Sufeng; Li, Yan; Yuan, Ying; Ji, Yawei; Wang, Yaling; Yang, Yumin

    2013-07-01

    The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields.

  9. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Propylene glycol mono- and diesters of fats and... CONSUMPTION Multipurpose Additives § 172.856 Propylene glycol mono- and diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely used in food, subject to...

  10. Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer micelles loading curcumin: preparation, characterization, and in vitro evaluation.

    PubMed

    Lv, Li; Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Mingna; Guo, Shengrong; Huang, Shengtang

    2013-01-01

    A novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer (4-arm PEG-b-PAE) was synthesized by esterization of 4-arm poly(ethylene glycol) and poly(anhydride-esters) which was obtained by melt polycondensation of α -, ω -acetic anhydride terminated poly(L-lactic acid). The obtained 4-arm PEG-b-PAE was characterized by (1)H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL). The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells.

  11. Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation

    PubMed Central

    Van Hove, Amy H.; Wilson, Brandon D.; Benoit, Danielle S. W.

    2013-01-01

    One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the

  12. GLYCOLIC-FORMIC ACID FLOWSHEET SLUDGE MATRIX STUDY

    SciTech Connect

    Lambert, D.; Koopman, D.

    2011-06-30

    Testing was completed to demonstrate the viability of the newly developed glycolic acid/formic acid flowsheet on processing in the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in DWPF. Four sludge simulants were prepared to cover two compositional ranges in the waste. The first was high iron/low aluminum versus low iron/high aluminum (referred to as HiFe or LoFe in this report). The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium (referred to as HiMn or LoMn in this report). These two options can be combined to form four distinct sludge compositions. The sludge matrix study called for testing each of these four simulants near the minimum acid required for nitrite destruction (100% acid stoichiometry) and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid (150% acid stoichiometry). Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants were used for high and low acid testing. Eight planned experiments (GF26 to GF33) were completed to demonstrate the viability of the glycolic-formic flowsheet. Composition and physical property measurements were made on the SRAT product. Composition measurements were made on the condensate from the Mercury Water Wash Tank (MWWT), Formic Acid Vent Condenser (FAVC), ammonia scrubber and on SRAT samples pulled throughout the SRAT cycle. Updated values for formate loss and nitrite-tonitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations with the glycolic acid/formic acid flowsheet

  13. Ferulic Acid-Based Polymers with Glycol Functionality as a Versatile Platform for Topical Applications.

    PubMed

    Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E

    2015-09-14

    Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products. PMID:26258440

  14. Disposition of glycolic acid into rat and rabbit embryos in vitro.

    PubMed

    Ellis-Hutchings, Robert G; Moore, Nigel P; Marshall, Valerie A; Rasoulpour, Reza J; Carney, Edward W

    2014-07-01

    High dose gavage administration of ethylene glycol (EG) induces teratogenicity in rodents, but not in rabbits, resulting from saturation of intermediate EG metabolism and glycolic acid (GA) accumulation. In vivo, rat embryos sequester GA 2-4-fold higher than maternal blood, a phenomenon absent in rabbits and proposed not to occur in humans. This research explored the mechanisms of GA disposition into rat and rabbit conceptuses using whole embryo culture (WEC). Rat and rabbit embryos concentrated GA from the culture medium. In vitro to in vivo discordance in the rabbit plausibly stemmed from anatomical differences between these models. GA sequestration was attenuated at 4°C in both species. Rat embryos further demonstrated pH-dependence of GA sequestration and inhibition by D-lactic acid. These data suggest GA disposition into rat and rabbit embryos is energy- and pH-dependent, and carrier-mediated. Anatomical and maternal-to-conceptal pH gradient differences likely underlie the lack of enhanced GA disposition in non-rodent species.

  15. Ethylene glycol monomethyl ether (EGME) and propylene glycol monomethyl ether (PGME): inhalation fertility and teratogenicity studies in rats, mice and rabbits.

    PubMed

    Hanley, T R; Young, J T; John, J A; Rao, K S

    1984-08-01

    A combined dominant lethal-fertility study was conducted in which male and female Sprague-Dawley (CD) rats were exposed to 0, 30, 100 or 300 ppm of ethylene glycol monomethyl ether (EGME) vapor for 6 hr/day, 5 days/week for 13 weeks and then mated to untreated counterparts. Among males, fertility was completely suppressed after exposure to 300 ppm. A partial restoration of reproductive function was evident following 13 weeks of recovery. No treatment-related reproductive effects were observed among males exposed subchronically to 100 ppm, or among females exposed to 300 ppm or below of EGME. Studies to assess the effects of inhaled EGME on embryonal and fetal development were also conducted in Fischer 344 rats, CF-1 mice, and New Zealand White rabbits. Rats and rabbits were exposed to concentrations of 0, 3, 10 or 50 ppm for 6 hr/day on days 6-15 or 6-18 of gestation, respectively. Exposure of rabbits to 50 ppm resulted in significant teratologic effects, an increased resorption rate, and decreased fetal body weight. Slight fetotoxicity in the form of skeletal variations were observed among rats exposed to 50 ppm. Exposure of pregnant mice to 0, 10, or 50 ppm for 6 hr/day on days 6-15 of gestation resulted in slight fetotoxicity at 50 ppm. No significant treatment-related effects were observed at 10 ppm of EGME or below in any of the species tested. Separate groups of pregnant rats and rabbits were exposed to 0, 500, 1500 or 3000 ppm of propylene glycol monomethyl ether (PGME) during organogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Sol–gel auto combustion synthesis of CoFe{sub 2}O{sub 4}/1-methyl-2-pyrrolidone nanocomposite with ethylene glycol: Its magnetic characterization

    SciTech Connect

    Topkaya, R.; Kurtan, U.; Junejo, Y.; Baykal, A.

    2013-09-01

    Graphical abstract: - Highlights: • CoFe{sub 2}O{sub 4} was generated by sol–gel autocombustion using 1-methyl-2-pyrrolidone and ethylene glycol. • The presence of spin-disordered surface layer on magnetic core was established. • A linear dependence of the coercivity on temperature was fitted to Kneller's law. - Abstract: Magnetic nanoparticles were generated by sol–gel auto combustion synthesis of metal salts in the presence of 1-methyl-2-pyrrolidone, a functional solvent and ethylene glycol as usual solvent. The average crystallite size was obtained by using line profile fitting as 11 ± 5 nm. The saturation magnetization value decreases with usage of the ethylene glycol in synthesis. The observed exchange bias effect further confirms the existence of the magnetically ordered core surrounded by spin-disordered surface layer and the ethylene glycol. Square-root temperature dependence of coercivity can be fitted to Kneller's law in the temperature range of 10–400 K. The reduced remanent magnetization values lower than the theoretical value of 0.5 for non-interacting single domain particles indicate the CoFe{sub 2}O{sub 4}-1-methyl-2-pyrrolidone nanocomposite to have uniaxial anisotropy instead of the expected cubic anisotropy according to the Stoner–Wohlfarth model.

  17. Ethylene glycol assisted spray pyrolysis for the synthesis of hollow BaFe12O19 spheres

    SciTech Connect

    Xu, X; Park, J; Hong, YK; Lane, AM

    2015-04-01

    Hollow spherical BaFe12O19 particles were synthesized by spray pyrolysis from a solution containing ethylene glycol (EG) and precursors at 1000 degrees C. The effects of EG concentration on particle morphology, crystallinity and magnetic properties were investigated. The hollow spherical particles were found to consist of primary particles, and higher EG concentration led to a bigger primary particle size. EG concentration did not show much effect on the hollow particle size. Better crystallinity and higher magnetic coercivity were obtained with higher EG concentration, which is attributed to further crystallization with the heat produced from EG combustion. Saturation magnetization (emu/g) decreased with increasing EG concentration due to residual carbon from EG incomplete combustion, contributing as a non-magnetic phase to the particles. Published by Elsevier B.V.

  18. Stability of ZnO quantum dots tuned by controlled addition of ethylene glycol during their growth

    NASA Astrophysics Data System (ADS)

    Zimmermann, Lizandra M.; Baldissera, Paulo V.; Bechtold, Ivan H.

    2016-07-01

    ZnO quantum dots were prepared via a sol–gel route from zinc acetate and sodium hydroxide. The influence of ethylene glycol addition during the first stages of reaction (1–5 min) as a stabilizer, as well as the influence of its concentration in 2-propanol were investigated. The optimization led to particles with enough stability and homogeneity around 3.7 nm of diameter to allow for quantum confinement effect. Spectroscopic UV–vis absorption measurements allowed to explore the underlying mechanism of nucleation and growth and to have the control of it. The emission of the ZnO nanoparticles was explored under experimental perturbations with addition of small amounts of water to investigate the interplay between surface defects and the excitonic effect. The results suggest that the water interferes directly on the defects first and later on the excitonic recombination. Their morphology was determined with transmission electron microscopy.

  19. Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture

    NASA Astrophysics Data System (ADS)

    Syam Sundar, L.; Venkata Ramana, E.; Singh, M. K.; De Sousa, A. C. M.

    2012-12-01

    This Letter reveals an experimental investigation of rheological properties of Fe3O4 nanoparticles dispersed in 60:40%, 40:60% and 20:80% (by weight) ethylene glycol and water mixture. Magnetic nanoparticles were synthesized by chemical coprecipitation method. The experiments were carried out in the particle volume concentration range from 0.0% to 1.0% and temperature range from 0 °C to 50 °C. Viscosity of nanofluid increases with increase of volume concentration and decreases with increase of temperature. The results indicate that the 60:40% EG/W based nanofluid is 2.94 times more viscous compared to the other base fluids. Einstein model was under predicting the experimental viscosity for all the base fluids.

  20. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins.

    PubMed

    Seck, Tetsu M; Melchels, Ferry P W; Feijen, Jan; Grijpma, Dirk W

    2010-11-20

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.

  1. Asymmetric swelling and self-assembly of poly( N-isopropyl-acrylamide)- block-poly(ethylene glycol) in water

    NASA Astrophysics Data System (ADS)

    Motokawa, R.; Morishita, K.; Koizumi, S.; Yoshimoto, E.; Annaka, M.

    2006-11-01

    This investigation focused on the self-assembly of poly( N-isopropylacrylamide)- block-poly(ethylene glycol) (PNIPA- b-PEG) in water. We distinguish four regions in the phase diagram: a transparent sol, opaque sol, opaque gel, and syneresis. Small-angle neutron scattering measurements revealed that microphase separation occurs above 17C to form disordered micelles, which includes a range of states from (i) asymmetric swelling to (ii) micelle formation with only short-range liquid-like order. This result may be attributed to the action of water, which starts to behave as a selective solvent for PEG blocks; the PEG chains are more swollen with water than are the PNIPA chains.

  2. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing.

    PubMed

    Kweon, Haeyong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-09-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing.

  3. Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): Preparation, molecular dynamics, and adsorption of anionic dyes.

    PubMed

    Kono, Hiroyuki; Ogasawara, Kota; Kusumoto, Ryo; Oshima, Kazuhiro; Hashimoto, Hisaho; Shimizu, Yuuichi

    2016-11-01

    Cationic cellulose hydrogels (CCGs) were prepared from quaternized celluloses with degrees of substitution (DS) of 0.56, 0.84, and 1.33, by the cross-linking reaction with poly(ethylene glycol) diglycidyl ether as a cross-linker. The CCGs exhibited swelling behavior in aqueous solutions, which was not affected by pH and temperature of the solution because of the presence of quaternary ammonium groups in their structures. The CCGs showed adsorption ability toward anionic dyes in aqueous solution, which increased with increasing DS. The dye adsorption was found to follow the pseudo-second order kinetic model and the equilibrium isotherm data can be described by the Langmuir adsorption model. In addition, the CCGs could be regenerated and proved to be recyclable adsorbents for wastewater treatment. PMID:27516262

  4. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation.

    PubMed

    Tong, Xinming; Lee, Soah; Bararpour, Layla; Yang, Fan

    2015-12-01

    Poly(ethylene glycol) (PEG)-based hydrogels are popular biomaterials for protein delivery to guide desirable cellular fates and tissue repair. However, long-term protein release from PEG-based hydrogels remains challenging. Here, we report a PEG-based hydrogel platform for long term protein release, which allows efficient loading of proteins via physical entrapment. Tuning hydrogel degradation led to increase in hydrogel mesh size and gradual release of protein over 60 days of with retained bioactivity. Importantly, this platform does not require the chemical modification of loaded proteins, and may serve as a versatile tool for long-term delivery of a wide range of proteins for drug-delivery and tissue-engineering applications.

  5. Enhancing the in vivo transdermal delivery of gold nanoparticles using poly(ethylene glycol) and its oleylamine conjugate.

    PubMed

    Hsiao, Pa Fan; Peng, Sydney; Tang, Ting-Cheng; Lin, Shuian-Yin; Tsai, Hsieh-Chih

    2016-01-01

    In this study, we investigated the effect of (ethylene glycol) (PEG) and PEG-oleylamine (OAm) functionalization on the skin permeation property of gold nanoparticles (GNS) in vivo. Chemisorption of polymers onto GNS was verified by a red shift in the ultraviolet-visible spectrum as well as by a change in the nanoparticle surface charge. The physicochemical properties of pristine and functionalized nanoparticles were analyzed by ultraviolet-visible spectroscopy, zeta potential analyzer, and transmission electron microscopy. Transmission electron microscopy revealed that the interparticle distance between nanoparticles increased after GNS functionalization. Comparing the skin permeation profile of pristine and functionalized GNS, the follicular deposition of GNS increased twofold after PEG-OAm functionalization. Moreover, PEG- and PEG-OAm-functionalized nanoparticles were able to overcome the skin barrier and deposit in the deeper subcutaneous adipose tissue. These findings demonstrate the potential of PEG- and PEG-OAm-functionalized GNS in serving a multitude of applications in transdermal pharmaceuticals. PMID:27194910

  6. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    PubMed

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. PMID:27155914

  7. Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): Preparation, molecular dynamics, and adsorption of anionic dyes.

    PubMed

    Kono, Hiroyuki; Ogasawara, Kota; Kusumoto, Ryo; Oshima, Kazuhiro; Hashimoto, Hisaho; Shimizu, Yuuichi

    2016-11-01

    Cationic cellulose hydrogels (CCGs) were prepared from quaternized celluloses with degrees of substitution (DS) of 0.56, 0.84, and 1.33, by the cross-linking reaction with poly(ethylene glycol) diglycidyl ether as a cross-linker. The CCGs exhibited swelling behavior in aqueous solutions, which was not affected by pH and temperature of the solution because of the presence of quaternary ammonium groups in their structures. The CCGs showed adsorption ability toward anionic dyes in aqueous solution, which increased with increasing DS. The dye adsorption was found to follow the pseudo-second order kinetic model and the equilibrium isotherm data can be described by the Langmuir adsorption model. In addition, the CCGs could be regenerated and proved to be recyclable adsorbents for wastewater treatment.

  8. Utilization of moving bed biofilm reactor for industrial wastewater treatment containing ethylene glycol: kinetic and performance study.

    PubMed

    Hassani, Amir Hessam; Borghei, Seyed Mehdi; Samadyar, Hassan; Ghanbari, Bastam

    2014-01-01

    One of the requirements for environmental engineering, which is currently being considered, is the removal of ethylene glycol (EG) as a hazardous environmental pollutant from industrial wastewater. Therefore, in a recent study, a moving bed biofilm reactor (MBBR) was applied at pilot scale to treat industrial effluents containing different concentrations of EG (600, 800, 1200, and 1800 mg L-1 ). The removal efficiency and kinetic analysis of the system were examined at different hydraulic retention times of 6, 8, 10, and 12 h as well as influent chemical oxygen demand (COD) ranged between values of 1000 and 3000mg L-1. In minimum and maximum COD Loadings, the MBBR showed 95.1% and 60.7% removal efficiencies, while 95.9% and 66.2% EG removal efficiencies were achieved in the lowest and highest EG concentrations. The results of the reactor modelling suggested compliance of the well-known modified Stover-Kincannon model with the system. PMID:24600890

  9. Thermal performance of Al2O3 in water - ethylene glycol nanofluid mixture as cooling medium in mini channel

    NASA Astrophysics Data System (ADS)

    Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu

    2015-08-01

    Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al2O3 in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.

  10. Effect of KOH added to ethylene glycol electrolyte on the self-organization of anodic ZrO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Rozana, Monna; Soaid, Nurul Izza; Kawamura, Go; Kian, Tan Wai; Matsuda, Atsunori; Lockman, Zainovia

    2016-07-01

    ZrO2 nanotube arrays were formed by anodizing zirconium sheet in ethylene glycol (EG) and EG added to it KOH (EG/KOH) electrolytes. The effect of KOH addition into EG electrolyte to the morphology of nanotubes and their crystallinity was investigated. It was observed that the tubes with diameter of ˜80 nm were formed in EG electrolyte with <0.1 vol % water, but the wall smoothness is rather poor. When KOH was added into EG, the wall smoothness of the nanotubes improve, but the diameter of tubes is smaller (˜40 nm). Despite smoother wall and small tube diameter, the degradation of methyl orange (MO) on the tubes made in EG/KOH is less compared to the tubes made in EG only. This could be due to the less tetragonal ZrO2 presence in the tubes made in EG/KOH.

  11. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine a.

    PubMed

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-01-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug. PMID:20671795

  12. Preparation and Evaluation of Poly(Ethylene Glycol)-Poly(Lactide) Micelles as Nanocarriers for Oral Delivery of Cyclosporine A

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-06-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  13. Enhancing the in vivo transdermal delivery of gold nanoparticles using poly(ethylene glycol) and its oleylamine conjugate

    PubMed Central

    Hsiao, Pa Fan; Peng, Sydney; Tang, Ting-Cheng; Lin, Shuian-Yin; Tsai, Hsieh-Chih

    2016-01-01

    In this study, we investigated the effect of (ethylene glycol) (PEG) and PEG–oleylamine (OAm) functionalization on the skin permeation property of gold nanoparticles (GNS) in vivo. Chemisorption of polymers onto GNS was verified by a red shift in the ultraviolet–visible spectrum as well as by a change in the nanoparticle surface charge. The physicochemical properties of pristine and functionalized nanoparticles were analyzed by ultraviolet–visible spectroscopy, zeta potential analyzer, and transmission electron microscopy. Transmission electron microscopy revealed that the interparticle distance between nanoparticles increased after GNS functionalization. Comparing the skin permeation profile of pristine and functionalized GNS, the follicular deposition of GNS increased twofold after PEG–OAm functionalization. Moreover, PEG- and PEG–OAm-functionalized nanoparticles were able to overcome the skin barrier and deposit in the deeper subcutaneous adipose tissue. These findings demonstrate the potential of PEG- and PEG–OAm-functionalized GNS in serving a multitude of applications in transdermal pharmaceuticals. PMID:27194910

  14. Stability of ZnO quantum dots tuned by controlled addition of ethylene glycol during their growth

    NASA Astrophysics Data System (ADS)

    Zimmermann, Lizandra M.; Baldissera, Paulo V.; Bechtold, Ivan H.

    2016-07-01

    ZnO quantum dots were prepared via a sol-gel route from zinc acetate and sodium hydroxide. The influence of ethylene glycol addition during the first stages of reaction (1-5 min) as a stabilizer, as well as the influence of its concentration in 2-propanol were investigated. The optimization led to particles with enough stability and homogeneity around 3.7 nm of diameter to allow for quantum confinement effect. Spectroscopic UV-vis absorption measurements allowed to explore the underlying mechanism of nucleation and growth and to have the control of it. The emission of the ZnO nanoparticles was explored under experimental perturbations with addition of small amounts of water to investigate the interplay between surface defects and the excitonic effect. The results suggest that the water interferes directly on the defects first and later on the excitonic recombination. Their morphology was determined with transmission electron microscopy.

  15. Evaluation of biofilm formation in the presence of saliva on poly(ethylene glycol)deposited titanium.

    PubMed

    Kawabe, Ayako; Nakagawa, Ichiro; Kanno, Zuisei; Tsutsumi, Yusuke; Hanawa, Takao; Ono, Takashi

    2014-01-01

    Titanium (Ti) is widely used for oral cavity biomedical devices. However, because it penetrates the mucosa and exists partially external to the tissue, it sometimes induces tissue inflammation, minor infection, or peri-implantitis due to oral bacteria after implantation and causes serious consequences. We have previously shown that poly(ethylene glycol) (PEG)- electrodeposited Ti inhibits bacterial adhesion and biofilm formation. However, the effect of the PEG coating in body fluid is still unclear. In this study, we investigated bacterial colony morphology and biofilm formation on PEG-electrodeposited Ti in comparison with untreated Ti in the presence of saliva. After 48 h incubation, Streptococcus mutans biofilms adhered on the untreated Ti were rigid and cohesive, while those on the PEG-electrodeposited were loose and were easily washed off. These results indicate electrodeposited-PEG layers inhibit the biofilm formation on Ti in the presence of saliva.

  16. Capillary isoelectric focusing and fluorometric detection of proteins and microorganisms dynamically modified by poly(ethylene glycol) pyrenebutanoate.

    PubMed

    Horka, Marie; Ruzicka, Filip; Horký, Jaroslav; Holá, Veronika; Slais, Karel

    2006-12-15

    The nonionogenic pyrene-based tenside, poly(ethylene glycol) pyrenebutanoate, was prepared and applied in capillary isoelectric focusing with fluorometric detection. This dye was used here as a buffer additive in capillary isoelectric focusing for a dynamic modification of the sample of proteins and microorganisms. The values of the isoelectric points of the labeled bioanalytes were calculated with use of the fluorescent pI markers and were found comparable with pI of the native compounds. The mixed cultures of proteins and microorganisms, Escherichia coli CCM 3954, Staphylococcus epidermidis CCM 4418, Proteus vulgaris, Enterococcus faecalis CCM 4224, and Stenotrophomonas maltophilia, the strains of the yeast cells, Candida albicans CCM 8180, Candida krusei, Candida parapsilosis, Candida glabrata, Candida tropicalis, and Saccharomyces cerevisiae were reproducibly focused and separated by the suggested technique. Using UV excitation for the on-column fluorometric detection, the minimum detectable amount was down to 10 cells injected on the separation capillary.

  17. Utilization of moving bed biofilm reactor for industrial wastewater treatment containing ethylene glycol: kinetic and performance study.

    PubMed

    Hassani, Amir Hessam; Borghei, Seyed Mehdi; Samadyar, Hassan; Ghanbari, Bastam

    2014-01-01

    One of the requirements for environmental engineering, which is currently being considered, is the removal of ethylene glycol (EG) as a hazardous environmental pollutant from industrial wastewater. Therefore, in a recent study, a moving bed biofilm reactor (MBBR) was applied at pilot scale to treat industrial effluents containing different concentrations of EG (600, 800, 1200, and 1800 mg L-1 ). The removal efficiency and kinetic analysis of the system were examined at different hydraulic retention times of 6, 8, 10, and 12 h as well as influent chemical oxygen demand (COD) ranged between values of 1000 and 3000mg L-1. In minimum and maximum COD Loadings, the MBBR showed 95.1% and 60.7% removal efficiencies, while 95.9% and 66.2% EG removal efficiencies were achieved in the lowest and highest EG concentrations. The results of the reactor modelling suggested compliance of the well-known modified Stover-Kincannon model with the system.

  18. Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses.

    PubMed

    Sipos, Bálint; Szilágyi, Mátyás; Sebestyén, Zoltán; Perazzini, Raffaella; Dienes, Dóra; Jakab, Emma; Crestini, Claudia; Réczey, Kati

    2011-11-01

    The efficiency of enzymatic hydrolysis of lignocellulses can be increased by addition of surfactants and polymers, such as poly(ethylene glycol) (PEG). The effect of PEG addition on the cellulase adsorption was tested on various steam pretreated lignocellulose substrates (spruce, willow, hemp, corn stover, wheat straw, sweet sorghum bagasse). A positive effect of PEG addition was observed, as protein adsorption has decreased and free enzyme activities (FP, β-glucosidase) have increased due to the additive. However, the degree of enhancement differed among the substrates, being highest on steam pretreated spruce. Results of lignin analysis (pyrolysis-GC/MS, (31)P NMR) suggest that the effect of PEG addition is in connection with the amount of unsubstituted phenolic hydroxyl groups of lignin in the substrate. Adsorption experiments using two commercial enzyme preparations, Celluclast 1.5L (Trichoderma reesei cellulase) and Novozym 188 (Aspergillus niger β-glucosidase) suggested that enzyme origins affected on the adsorptivity of β-glucosidases.

  19. Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels.

    PubMed

    Pollock, Jacob F; Healy, Kevin E

    2010-04-01

    The dimensional stability and rheological properties of a series of comb-like copolymers of N-isopropyl acrylamide (NIPAAm) and methoxy poly(ethylene glycol) methacrylate (mPEGMA), poly(NIPAAm-co-mPEGMA), with varying poly(ethylene glycol) (PEG) graft densities and molecular weights were studied. The thermoresponsive character of the copolymer solutions was investigated by kinetic and equilibrium swelling, as well as by static and dynamic mechanical analysis. Surface response mapping was employed to target particular compositions and concentrations with excellent dimensional stability and a relatively large change in dynamic mechanical properties upon thermoreversible gelation. The mechanical characteristics of the gels depended strongly upon concentration of total polymer and less so upon copolymer ratio. Increased PEG graft density was shown to slow the deswelling rate and increase the equilibrium water content of the gels. Upon gelation at sol concentrations of 1-20 wt.% the materials underwent no deswelling or syneresis and maintained stable gels with a large elastic regime and high yield strain (i.e. elastic and soft but tough), even within the Pascal range of complex shear moduli. These materials are unique in that they maintained a physiologically useful lower critical solution temperature (approximately 33 degrees C), despite having a high PEG content. Copolymers with a high PEG content and low polymer fraction were conveniently transparent in the gel phase, allowing visualization of cellular activity without disrupting the microenvironment. Mesenchymal stem cells showed good viability and proliferation in three-dimensional culture within the gels, despite the lack of ligand incorporation to promote cellular interaction. Multi-component matrices can be created through simple mixing of copolymer solutions and peptide-conjugated linear polymers and proteins to produce combinatorial microenvironments with the potential for use in cell biology, tissue

  20. Gelation mechanism of tetra-armed poly(ethylene glycol) in aprotic ionic liquid containing nonvolatile proton source, protic ionic liquid.

    PubMed

    Hashimoto, Kei; Fujii, Kenta; Nishi, Kengo; Sakai, Takamasa; Yoshimoto, Nobuko; Morita, Masayuki; Shibayama, Mitsuhiro

    2015-04-01

    We report the gelation mechanism of tetra-armed prepolymer chains in typical aprotic ionic liquid (aIL), i.e., A-B type cross-end coupling reaction of tetra-armed poly(ethylene glycol)s with amine and activated ester terminals (TetraPEG-NH2 and TetraPEG-NHS, respectively) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mIm][TFSA]). In the ion gel system, we focused on the pH (or H(+) concentration) dependence of the gelation reaction. We thus applied the protic ionic liquid (pIL), 1-ethylimidazolium TFSA ([C2ImH][TFSA]), as a nonvolatile H(+) source, and added it into the solvent aIL. It was found that the gelation time of TetraPEG ion gel can be successfully controlled from 1 min to 3 h depending on the concentration of pIL (cpIL = 0-3 mM). This suggests that the acid-base properties of TetraPEG-NH2 showing acid-base equilibrium (-NH2 + H(+) ⇆ -NH3(+)) in the solutions play a key role in the gelation process. The acid dissociation constants, pKa's of TetraPEG-NH3(+) and C2ImH(+) (cation of pIL) in aIL were directly determined by potentiometric titration to be 16.4 and 13.7, respectively. This indicates that most of the H(+) ions bind to TetraPEG-NH2 and then C2ImH(+) exists as neutral C2Im. The reaction efficiency of amide bond (cross-linked point) systematically decreased with increasing cpIL, which was reflected to the mechanical strength of the ion gels. From these results, we discuss the gelation mechanism of TetraPEG in aIL to point out the relationship between polymer network structure and [H(+)] in the solutions. PMID:25768427

  1. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Wang, Yao; Huang, Xiao-Dan; Xu, Zhi-Kang; Yao, Ke

    2010-10-01

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  2. Formation of alloys upon the simultaneous electrochemical deposition of gold and tin from ethylene glycol and aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Vorobyova, T. N.; Maltanova, H. M.; Vrublevskaya, O. N.

    2016-05-01

    An ethylene glycol (EG) solution containing Au(III) and Sn(IV) compounds, and conditions for the electrochemical deposition of Au-Sn alloy based on AuSn and Au5Sn intermetallics with total tin content of 30-55 at % are proposed. Fundamental difficulties of the deposition of alloys with high tin content, (including eutectic Au-Sn alloy) from aqueous electrolytes are revealed. It is determined via voltammetry that the simultaneous deposition of gold and tin from aqueous and EG electrolytes proceeds with the depolarization effect of both Au(III) and Sn(IV) as a result of the formation of the alloy, the increase in the rate of tin cathodic reduction being more noticeable in case of EG solution. Formation of SnCl2EG(H2O) 2 + complex upon the dissolution of SnCl4 · 5H2O in glycol, the stability of the composition of tetracyanoaurate ions upon the dissolution of K[Au(CN)4], and the weakening of intermolecular interactions in EG with small amounts of water were revealed via IR spectroscopy. It is suggested that the depolarization effect is due not only to alloy formation, but also to the formation of SnCl2EG(H2O) 2 + cations, their association with Au(CN) 4 - anions, and a change in the mechanism of Au(III) and Sn(IV) reduction.

  3. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    PubMed Central

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with <≈100 nm thickness. Gelation of PEG-octavinylsulfone with amines in either bovine serum albumin (BSA) or PEG-octaamine was monitored by dynamic light scattering (DLS), revealing the presence of microgels before macrogelation. NMR also revealed extremely high end group conversions prior to macrogelation, consistent with the formation of highly crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  4. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers.

    PubMed

    Schöttler, Susanne; Becker, Greta; Winzen, Svenja; Steinbach, Tobias; Mohr, Kristin; Landfester, Katharina; Mailänder, Volker; Wurm, Frederik R

    2016-04-01

    The current gold standard to reduce non-specific cellular uptake of drug delivery vehicles is by covalent attachment of poly(ethylene glycol) (PEG). It is thought that PEG can reduce protein adsorption and thereby confer a stealth effect. Here, we show that polystyrene nanocarriers that have been modified with PEG or poly(ethyl ethylene phosphate) (PEEP) and exposed to plasma proteins exhibit a low cellular uptake, whereas those not exposed to plasma proteins show high non-specific uptake. Mass spectrometric analysis revealed that exposed nanocarriers formed a protein corona that contains an abundance of clusterin proteins (also known as apolipoprotein J). When the polymer-modified nanocarriers were incubated with clusterin, non-specific cellular uptake could be reduced. Our results show that in addition to reducing protein adsorption, PEG, and now PEEPs, can affect the composition of the protein corona that forms around nanocarriers, and the presence of distinct proteins is necessary to prevent non-specific cellular uptake.

  5. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers

    NASA Astrophysics Data System (ADS)

    Schöttler, Susanne; Becker, Greta; Winzen, Svenja; Steinbach, Tobias; Mohr, Kristin; Landfester, Katharina; Mailänder, Volker; Wurm, Frederik R.

    2016-04-01

    The current gold standard to reduce non-specific cellular uptake of drug delivery vehicles is by covalent attachment of poly(ethylene glycol) (PEG). It is thought that PEG can reduce protein adsorption and thereby confer a stealth effect. Here, we show that polystyrene nanocarriers that have been modified with PEG or poly(ethyl ethylene phosphate) (PEEP) and exposed to plasma proteins exhibit a low cellular uptake, whereas those not exposed to plasma proteins show high non-specific uptake. Mass spectrometric analysis revealed that exposed nanocarriers formed a protein corona that contains an abundance of clusterin proteins (also known as apolipoprotein J). When the polymer-modified nanocarriers were incubated with clusterin, non-specific cellular uptake could be reduced. Our results show that in addition to reducing protein adsorption, PEG, and now PEEPs, can affect the composition of the protein corona that forms around nanocarriers, and the presence of distinct proteins is necessary to prevent non-specific cellular uptake.

  6. Grafting Poly(ethylene glycol) Onto Single-Walled Carbon Nanotubes by Living Anionic Ring-Opening Polymerization.

    PubMed

    Li, Wei; Zhang, Guoxiang; Sheng, Wenbo; Liu, Zhiyong; Jia, Xin

    2016-01-01

    Recent years, many methods have been developed to widen the practical application of single-walled carbon nanotubes (SWCNTs). Among them, PEGylation is a general strategy to endow functionality, biocompatibility as well as its good solubility. In this paper, poly(ethylene glycol) (PEG) is successfully grafted onto SWCNTs through living anionic ring-opening polymerization of ethylene oxide (EO). By controlling the amount of monomer and initiator, a series of PEGylated SWCNTs with different PEG molecular weight and density are prepared. Then, the as-prepared SWCNTs have been verified by thermogravimetric analyses (TGA), Raman spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS). Finally, the protein resistance property of the PEGylated SWCNTs is investigated. It is found that these PEGylated SWCNTs have a good protein resistance property and the higher the content of PEG grafted on the SWCNTs, the less adsorption amount of BSA and the larger capacity to resist protein absorption. This work provides a novel method to prepare PEGylated SWCNTs. PMID:27398490

  7. Surface-grafted polystyrene beads with comb-like poly(ethylene glycol) chains: preparation and biological application.

    PubMed

    Byun, Jang-Woong; Kim, Jong-Uk; Chung, Woo-Jae; Lee, Yoon-Sik

    2004-05-17

    We prepared surface-grafted polystyrene (PS) beads with comb-like poly(ethylene glycol) (PEG) chains. To accomplish this, conventional gel-type PS beads (35-75 microm) were treated with ozone gas to introduce hydroperoxide groups onto the surface. Using these hydroperoxide groups, poly(methyl methacrylate) (PMMA, Mn= 22,000-25,000) was grafted onto the surface of the PS beads. The ester groups of the grafted PMMA were reduced to hydroxyl groups with lithium aluminum hydride (LAH). After adding ethylene oxide (EO) to the hydroxyl groups, we obtained the PS-sg-PEG beads, which had a rugged surface and a diameter of 80-150 microm. We could obtain several kinds of the PS-sg-PEG beads by controlling the chain lengths of the grafted PMMA and the molecular weights of the PEG chains. The grafted PEG layer was about 30-50 microm thick, which was verified from the cross-sectioned views of the fluorescamine-labeled beads. These fluorescence images proved that the beads possessed a pellicular structure. Furthermore, we found that the surface-grafted PEG chains had the characteristic property of reducing non-specific protein adsorption on the beads.

  8. The Mm-Wave Rotational Spectrum of Glycolic Acid

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Pszczółkowski, Lech; Białkowska-Jaworska, Ewa; Charnley, Steven B.

    2014-06-01

    Glycolic acid, HOCH_2COOH is the simplest α-hydroxy acid. It is as yet undetected in the interstellar medium, but is known to be present in carbonaceous meteorites and in residues from UV-photolysed interstellar ice analogue mixtures. Prior rotational spectroscopy has been carried out up to 40 GHz for the main, SSC conformer, Presently we report the analysis of the rotational spectrum of glycolic acid on the basis of broadband measurements performed up to 318 GHz, and updated spectroscopic constants for the ground state and the first two excited states of the low-frequency ν21 torsional mode. We have used the AABS package to assign multiple further excited vibrational states of the SSC conformer. In particular, we have been able to assign the highly perturbed triad of ν14, ν20 and 3ν21 states. The triad has been fitted down to experimental accuracy with a coupled fit, which allowed us to pin down the hitherto elusive frequency of the ν21 mode. The experimental results make an interesting comparison with those of anharmonic force field calculations. We have also been able to extend the measurements for the AAT conformer. C.E.Blom, A.Bauder, Chem. Phys. Lett., 82, 492 (1981), J. Am. Chem. Soc., 104, 2993 (1982). H.Hasegawa, O.Ohashi, I.Yamaguchi, J. Mol. Spectrosc., 82, 205 (1982). P.D.Godfrey, F.M.Rodgers, R.D.Brown, J. Am. Chem. Soc., 119, 2232 (1997).

  9. Synthesis and In Vivo Pharmacokinetic Evaluation of Degradable Shell Crosslinked Polymer Nanoparticles with Poly(carboxybetaine) vs. Poly(ethylene glycol) Surface-grafted Coatings

    PubMed Central

    Li, Ang; Luehmann, Hannah P.; Sun, Guorong; Samarajeewa, Sandani; Zou, Jiong; Zhang, Shiyi; Zhang, Fuwu; Welch, Michael J.; Liu, Yongjian; Wooley, Karen L.

    2012-01-01

    Nanoparticles with tunable pharmacokinetics are desirable for various biomedical applications. Poly(ethylene glycol) (PEG) is well known to create “stealth” effects to stabilize and extend the blood circulation of nanoparticles. In this work, poly(carboxybetaine) (PCB), a new non-fouling polymer material, was incorporated as surface-grafted coatings, conjugated onto degradable shell crosslinked knedel-like nanoparticles (dSCKs) composed of poly(acrylic acid)- based shells and poly(lactic acid) (PLA) cores, to compare the in vivo pharmacokinetics to their PEG-functionalized analogs. A series of five dSCKs was prepared from amphiphilic block copolymers, having different numbers and lengths of either PEG or PCB grafts, by supramolecular assembly in water followed by shell crosslinking, and then studied by a lactate assay to confirm their core hydrolytic degradabilities. Each dSCK was also conjugated with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) macrocyclic chelators and tyramine moieties to provide for 64Cu and/or radiohalogen labeling. The high specific activity of 64Cu radiolabeling ensured nanogram administration of dSCKs for in vivo evaluation of their pharmacokinetics. Biodistribution studies demonstrated comparable in vivo pharmacokinetic profiles of PCB-grafted dSCKs to their PEG-conjugated counterparts. These results indicated that PCB-functionalized dSCKs have great potential as a theranostic platform for translational research. PMID:23043240

  10. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  11. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  12. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  13. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  14. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  15. Catalytic biofilms on structured packing for the production of glycolic acid.

    PubMed

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability. PMID:23412062

  16. 21 CFR 172.850 - Lactylated fatty acid esters of glycerol and propylene glycol.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Lactylated fatty acid esters of glycerol and... CONSUMPTION Multipurpose Additives § 172.850 Lactylated fatty acid esters of glycerol and propylene glycol. The food additive lactylated fatty acid esters of glycerol and propylene glycol may be safely used...

  17. Direct deposition of gold nanoplates and porous platinum on substrates through solvent-free chemical reduction of metal precursors with ethylene glycol vapor.

    PubMed

    Cho, Swee Jen; Mei, Xiaoguang; Ouyang, Jianyong

    2012-12-01

    Deposition of nanostructured metals on substrates is important for the fundamental study and practical application, such as in optics and catalysis. In this paper, we report the deposition of gold (Au) nanoplates and porous platinum (Pt) structures on substrates through solvent-free chemical reductions of chloroauric acid (HAuCl(4)) and chloroplatinic acid (H(2)PtCl(6)) with ethylene glycol (EG) vapor at temperatures below 200 °C. The process includes two steps. The first step is the formation of a thin layer of a metal precursor on substrates by coating solution of a metal precursor. The thin metal precursor layer is subsequently dried by annealing. The second step is the chemical reduction of the metal precursor with EG vapor at 160 or 180 °C in the absence of solvent. Both the Au and Pt nanostructures deposited by this method have good adhesion to substrates, but they have different morphologies. The Au nanostructures appear as separate two-dimensional islands on the substrates, and up to 70% of them can be triangular nanoplates with the (111) crystal plane as the basal plane. In contrast, the reduction of H(2)PtCl(6) gives rise to a 3-dimensional porous Pt structure on substrates. The different morphologies of nanostructured Au and Pt are tentatively related to the different surface energies of Au and Pt.

  18. Enhanced ALP activity of MG63 cells cultured on hydroxyapatite-poly(ethylene glycol) hydrogel composites prepared using EDTA-OH.

    PubMed

    Ito, Temmei; Sasaki, Makoto; Taguchi, Tetsushi

    2015-03-02

    In order to obtain a hydroxyapatite (HAp)-poly(ethylene glycol) (PEG) composite, tetra amine-terminated PEG was crosslinked using disuccinimidyl tartrate to obtain a PEG hydrogel. Using two kinds of chelators with different stability constants for Ca ion (N-(2-hydroxyethyl) ethylenediamine-N,N',N'-triacetic acid (EDTA-OH, 8.14), and ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA, 10.96)), calcium phosphate was deposited within PEG hydrogels by heating the chelator-containing calcium phosphate solution at 90 °C. X-ray diffraction analysis showed that the deposited calcium phosphate was HAp. The crystallinity of the HAp deposited using EDTA-OH was low compared with that obtained using EDTA, but the amount of HAp deposited within the PEG hydrogel using EDTA-OH was higher than that deposited using EDTA. Significantly more human osteoblast-like MG-63 cells adhered on the HAp-PEG composite prepared using EDTA-OH than on the HAp-PEG composites prepared using EDTA. Furthermore, the alkaline phosphatase activity of MG-63 cultured on the HAp-PEG composite prepared using EDTA-OH was four times higher than that on the HAp-PEG composite prepared using EDTA. Therefore, the HAp-PEG composite prepared using EDTA-OH has potential as a bone substitute material.

  19. The effects of an alpha hydroxy acid (glycolic acid) on hairless guinea pig skin permeability.

    PubMed

    Hood, H L; Kraeling, M E; Robl, M G; Bronaugh, R L

    1999-11-01

    The barrier integrity of hairless guinea pig skin after treatment with an alpha hydroxy acid was assessed through in vivo topical application of an oil-in-water emulsion containing 5 or 10% glycolic acid at pH 3.0. The control was a commercial moisturizing lotion, pH 7.8. A dosing regimen for the glycolic acid formulations that was tolerated by the hairless guinea pigs and significantly decreased stratum corneum turnover time was determined using the dansyl chloride staining technique. Once-daily dosing of hairless guinea pig skin for 3 weeks with the glycolic acid formulations resulted in approximately a 36-39% decrease in stratum corneum turnover time compared with the control lotion. After this treatment, hairless guinea pigs were sacrificed for the in vitro measurement of the percutaneous absorption of [14C]hydroquinone and [14C]musk xylol. No significant differences in the 24-hour absorption of either test compound were found for skin treated with the control lotion or the glycolic acid formulations. There were also no significant differences found in the absorption of [3H]water through skin from the different treatment groups. Although no increase in skin penetration occurred after treatment with the glycolic acid formulations, histology revealed approximately a twofold increase in epidermal thickness. Also the number of nucleated cell layers nearly doubled in skin treated with 5% and 10% glycolic acid compared with the control lotion and untreated skin. These studies demonstrate that substantial changes in the structure of hairless guinea pig epidermis can occur without significant effect on skin permeability of two model compounds.

  20. Polyethylene glycol plus ascorbic acid for bowel preparation in chronic kidney disease

    PubMed Central

    Lee, Jae Min; Keum, Bora; Yoo, In Kyung; Kim, Seung Han; Choi, Hyuk Soon; Kim, Eun Sun; Seo, Yeon Seok; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Kim, Myung Gyu; Jo, Sang Kyung

    2016-01-01

    Abstract The safety of polyethylene glycol plus ascorbic acid has not been fully investigated in patients with renal insufficiency. High-dose ascorbic acid could induce hyperoxaluria, thereby causing tubule-interstitial nephritis and renal failure. This study aims to evaluate the safety and efficacy of polyethylene glycol plus ascorbic acid in patients with chronic kidney disease. We retrospectively reviewed prospectively collected data on colonoscopy in patients with impaired renal function. Patients were divided into 2 groups: 2 L polyethylene glycol plus ascorbic acid (n = 61) and 4 L polyethylene glycol (n = 80). The safety of the 2 groups was compared by assessing the differences in laboratory findings before and after bowel cleansing. The laboratory findings were not significantly different before and after the administration of 2 L polyethylene glycol plus ascorbic acid or 4 L polyethylene glycol. In both groups, the estimated glomerular filtration rate was not influenced by the administration of the bowel-cleansing agent. Patients’ reports on tolerance and acceptability were better in the 2 L polyethylene glycol plus ascorbic acid group than in the 4 L polyethylene glycol group. The 2 L polyethylene glycol plus ascorbic acid solution is a safe choice for bowel preparation before colonoscopy in patients with impaired renal function. PMID:27603372

  1. Polyethylene glycol plus ascorbic acid for bowel preparation in chronic kidney disease.

    PubMed

    Lee, Jae Min; Keum, Bora; Yoo, In Kyung; Kim, Seung Han; Choi, Hyuk Soon; Kim, Eun Sun; Seo, Yeon Seok; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Kim, Myung Gyu; Jo, Sang Kyung

    2016-09-01

    The safety of polyethylene glycol plus ascorbic acid has not been fully investigated in patients with renal insufficiency. High-dose ascorbic acid could induce hyperoxaluria, thereby causing tubule-interstitial nephritis and renal failure. This study aims to evaluate the safety and efficacy of polyethylene glycol plus ascorbic acid in patients with chronic kidney disease.We retrospectively reviewed prospectively collected data on colonoscopy in patients with impaired renal function. Patients were divided into 2 groups: 2 L polyethylene glycol plus ascorbic acid (n = 61) and 4 L polyethylene glycol (n = 80). The safety of the 2 groups was compared by assessing the differences in laboratory findings before and after bowel cleansing.The laboratory findings were not significantly different before and after the administration of 2 L polyethylene glycol plus ascorbic acid or 4 L polyethylene glycol. In both groups, the estimated glomerular filtration rate was not influenced by the administration of the bowel-cleansing agent. Patients' reports on tolerance and acceptability were better in the 2 L polyethylene glycol plus ascorbic acid group than in the 4 L polyethylene glycol group.The 2 L polyethylene glycol plus ascorbic acid solution is a safe choice for bowel preparation before colonoscopy in patients with impaired renal function. PMID:27603372

  2. Polyethylene glycol plus ascorbic acid for bowel preparation in chronic kidney disease.

    PubMed

    Lee, Jae Min; Keum, Bora; Yoo, In Kyung; Kim, Seung Han; Choi, Hyuk Soon; Kim, Eun Sun; Seo, Yeon Seok; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Kim, Myung Gyu; Jo, Sang Kyung

    2016-09-01

    The safety of polyethylene glycol plus ascorbic acid has not been fully investigated in patients with renal insufficiency. High-dose ascorbic acid could induce hyperoxaluria, thereby causing tubule-interstitial nephritis and renal failure. This study aims to evaluate the safety and efficacy of polyethylene glycol plus ascorbic acid in patients with chronic kidney disease.We retrospectively reviewed prospectively collected data on colonoscopy in patients with impaired renal function. Patients were divided into 2 groups: 2 L polyethylene glycol plus ascorbic acid (n = 61) and 4 L polyethylene glycol (n = 80). The safety of the 2 groups was compared by assessing the differences in laboratory findings before and after bowel cleansing.The laboratory findings were not significantly different before and after the administration of 2 L polyethylene glycol plus ascorbic acid or 4 L polyethylene glycol. In both groups, the estimated glomerular filtration rate was not influenced by the administration of the bowel-cleansing agent. Patients' reports on tolerance and acceptability were better in the 2 L polyethylene glycol plus ascorbic acid group than in the 4 L polyethylene glycol group.The 2 L polyethylene glycol plus ascorbic acid solution is a safe choice for bowel preparation before colonoscopy in patients with impaired renal function.

  3. Complexes of poly(ethylene glycol)-based cationic random copolymer and calf thymus DNA: a complete biophysical characterization.

    PubMed

    Nisha, C K; Manorama, Sunkara V; Ganguli, Munia; Maiti, Souvik; Kizhakkedathu, Jayachandran N

    2004-03-16

    Complete biophysical characterization of complexes (polyplexes) of cationic polymers and DNA is needed to understand the mechanism underlying nonviral therapeutic gene transfer. In this article, we propose a new series of synthesized random cationic polymers (RCPs) from methoxy poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride with different mole ratios (32:68, 11:89, and 6:94) which could be used as a model system to address and answer the basic questions relating to the mechanism of the interaction of calf thymus DNA (CT-DNA) and cationic polymers. The solubility of the complexes of CT-DNA and RCP was followed by turbidity measurements. It has been observed that complexes of RCP with 68 mol % MePEGMA precipitate near the charge neutralization point, whereas complexes of the other two polymers are water-soluble and stable at all compositions. Dnase 1 digestion experiments show that DNA is inaccessible when it forms complexes with RCP. Ethidium bromide exclusion and gel electrophoretic mobility show that both polymers are capable of binding with CT-DNA. Atomic force microscopy images in conjunction with light scattering experiments showed that the complexes are spherical in nature and 75-100 nm in diameter. Circular dichroism spectroscopy studies indicated that the secondary structure of DNA in the complexes is not perturbed due to the presence of poly(ethylene glycol) segments in the polymer. Furthermore, we used a combination of spectroscopic and calorimetric techniques to determine complete thermodynamic profiles accompanying the helix-coil transition of CT-DNA in the complexes. UV and differential scanning calorimetry melting experiments revealed that DNA in the complexes is more stable than in the free state and the extent of stability depends on the polymer composition. Isothermal titration calorimetry experiments showed that the binding of these RCPs to CT-DNA is associated with small exothermic

  4. Assessment of ethylene glycol monobutyl and monophenyl ether reproductive toxicity using a continuous breeding protocol in Swiss CD-1 mice.

    PubMed

    Heindel, J J; Gulati, D K; Russell, V S; Reel, J R; Lawton, A D; Lamb, J C

    1990-11-01

    A continuous breeding reproduction study design was utilized to examine the reproductive toxicity of ethylene glycol monobutyl ether (EGBE) and ethylene glycol monophenyl ether (EGPE). Swiss CD-1 mice were administered EGBE in drinking water (0, 0.5, 1.0, and 2.0%, i.e., 0.7, 1.3, and 2.1 g/kg body wt/day) and EGPE was administered via the feed (0, 0.25, 1.25, and 2.5%, i.e., 0, 0.4, 2.0, and 4 g/kg body wt/day). Both male and female mice were dosed for 7 days prior to and during a 98-day cohabitation period. EGBE was toxic at the high (2%) and mid dose (1%) to adult F0 female mice: 13 out of 22 females at the high dose and 6 out of 20 at the mid dose died during the cohabitation period. Both the high- and mid-dose animals produced fewer litters/pair, fewer pups/litter, with decreased pup weight. These effects occurred in the presence of decreased body weight, decreased water consumption, and increased kidney weight. A crossover mating trial indicated that the reproductive effects could be attributed primarily to an effect on the female. This was substantiated at necropsy where testes and epididymis weights were normal as were sperm number and motility. Fertility of the offspring of the 0.5% group was normal in the presence of increased liver weights. With respect to EGPE, there was no change in the ability to produce five litters during the continuous breeding period. There was, however, a significant but small (10-15%) decrease in the number of pups/litter and in pup weight in the high-dose group. A crossover mating trial suggested a female component of the reproductive toxicity of EGPE. While fertility was only minimally compromised, severe neonatal toxicity was observed. By Day 21 there were only 8 out of 40 litters in the mid- and high-dose groups which had at least one male and female/litter. Second generation reproductive performance of the mid-dose group (1.25%) was unaffected except for a small decrease in live pup weight. In summary the reproductive

  5. Poly(ethylene glycol) conjugated enzyme with enhanced hydrophobic compatibility for self-cleaning coatings.

    PubMed

    Zhang, Liting; Wu, Songtao; Buthe, Andreas; Zhao, Xueyan; Jia, Hongfei; Zhang, Songping; Wang, Ping

    2012-11-01

    Enzyme-based smart materials constitute a rapidly growing group of functional materials. Often the natively evolved enzymes are not compatible with hydrophobic synthetic materials, thus significantly limiting the performance of enzymes. This work investigates the use of a polyethylene glycol (PEG)-conjugated detergent enzyme for self-cleaning coatings. As a result, PEG conjugated α-amylase demonstrated a much more homogeneous distribution in polyurethane coatings than the parent native enzyme as detected by both fluorescent microscopy and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). Additionally, the conjugated enzyme showed enhanced retention in the coating and much improved thermal stability with a halflife of 20 days detected at 80 °C and over 350 days under room temperature. Such coating-incorporated enzyme afforded interesting self-cleaning functionality against starch-based stains as examined through a slipping drop test.

  6. Preparation and characterization of poly (ethylene glycol)-coated Stoeber silica nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kopelman, Raoul; Xu, Hao; Yan, Fei; Monson, Eric E.; Tang, Wei; Schneider, Randy; Philbert, Martin A.

    2002-06-01

    Monodisperse, spherical, polyethylene glycol (PEG)-coated silica nanoparticles have been prepared in the size range of 50-350 nm, and their size distribution were characterized by SEM and multi-angle static light scattering experiments. The chemical binding of PEG to the silica nanoparticles was confirmed by IR spectroscopy. The biocompatibility of these PEGylated nanoparticles was also studied by non-specific protein binding tests and in-vivo toxicology studies in live animals. These silica nanoparticles, as a matrix for encapsulation of certain reagents, have been used for the fabrication of intracellular sensors and have potential for applications to in vivo diagnosis, analysis and measurements, due to their small physical size and their biocompatibility, both stemming from the specialized PEG coating.

  7. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion

    NASA Astrophysics Data System (ADS)

    Stroh, Mark; Zipfel, Warren R.; Williams, Rebecca M.; Ma, Shu Chin; Webb, Watt W.; Saltzman, W. Mark

    2004-07-01

    Brain-derived neurotrophic factor (BDNF) is a promising therapeutic agent for the treatment of neurodegenerative diseases. However, the limited distribution of this molecule after administration into the brain tissue considerably hampers its efficacy. Here, we show how multiphoton microscopy of fluorescently tagged BDNF in brain-tissue slices provides a useful and rapid screening method for examining the diffusion of large molecules in tissues, and for studying the effects of chemical modifications-for example, conjugating with polyethylene glycol (PEG)-on the diffusion constant. This single variable, obtained by monitoring short-term diffusion in real time, can be effectively used for rational drug design. In this study on fluorescently tagged BDNF and BDNF-PEG, we identify slow diffusion as a major contributing factor to the limited penetration of BDNF, and demonstrate how chemical modification can be used to overcome this barrier.

  8. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Propylene glycol mono- and diesters of fats and... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely used in food, subject to the following prescribed conditions: (a) They are produced from edible...

  9. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Propylene glycol mono- and diesters of fats and... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely used in food, subject to the following prescribed conditions: (a) They are produced from edible...

  10. 21 CFR 172.856 - Propylene glycol mono- and diesters of fats and fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Propylene glycol mono- and diesters of fats and... diesters of fats and fatty acids. Propylene glycol mono- and diesters of fats and fatty acids may be safely used in food, subject to the following prescribed conditions: (a) They are produced from edible...

  11. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties.

    PubMed

    Yin, Ruixue; Zhang, Nan; Wu, Wentao; Wang, Kemin

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. PMID:26952407

  12. Enhanced antitumor efficacy of 5-fluorouracil loaded methoxy poly(ethylene glycol)-poly(lactide) nanoparticles for efficient therapy against breast cancer.

    PubMed

    Yuan, Zhu; Qu, Xiang; Wang, Yu; Zhang, Dao-Yun; Luo, Jian-Cheng; Jia, Ning; Zhang, Zhong-Tao

    2015-04-01

    In the present study, a novel nanocarrier was developed for the delivery of anticancer drug to the cancer tissues. For this purpose, 5-FU loaded methoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) (5-FU NP) based polymeric nanoparticles was designed to increase the chemotherapeutic efficacy against breast cancers. Nanoprecipitation method was used to prepare the drug-loaded nanoparticles. The nanoparticle was evaluated in terms of DLS, TEM, in vitro release kinetics, and in vivo parameters. The average particle diameter of drug loaded NP was ∼110 nm and exhibited a sustained drug release pattern for up to 120 h. The NP exhibited a pH-response drug release pattern with accelerated release at acidic media. The in vitro cytotoxicity assay showed the enhanced cytotoxicity effect of NP formulations in comparison to free drug. The NP system showed remarkable G2/M phase cell cycle arrest with significant amount of apoptosis cells in late and early phase of flow cytometer analysis. Consistently, NP formulation greatly decreased the tumor burden of mice with no sign of adverse effect. TUNEL assay further confirmed the superior anticancer effect of NP formulations which showed a high number of apoptotic cells. The favorable results obtained from this study highlights the potential application of encapsulated 5-FU NP in the treatment of breast cancers. The remarkable anticancer therapeutic efficacy with negligible toxicity profile of 5-FU NP makes it one of the possible alternative for the successful breast cancer therapy.

  13. Association behaviors of dodecyltrimethylammonium bromide with double hydrophilic block co-polymer poly(ethylene glycol)-block-poly(glutamate sodium).

    PubMed

    Han, Yuchun; Xia, Lin; Zhu, Linyi; Zhang, Shusheng; Li, Zhibo; Wang, Yilin

    2012-10-30

    The association behaviors of single-chain surfactant dodecyltrimethylammonium bromide (DTAB) with double hydrophilic block co-polymers poly(ethylene glycol)-b-poly(sodium glutamate) (PEG(113)-PGlu(50) or PEG(113)-PGlu(100)) were investigated using isothermal titration microcalorimetry, cryogenic transmission electron microscopy, circular dichroism, ζ potential, and particle size measurements. The electrostatic interaction between DTAB and the oppositely charged carboxylate groups of PEG-PGlu induces the formation of super-amphiphiles, which further self-assemble into ordered aggregates. Dependent upon the charge ratios between DTAB and the glutamic acid residue of the co-polymer, the mixture solutions can change from transparent to opalescent without precipitation. Dependent upon the chain length of the PGlu block, the mixture of DTAB and PEG-PGlu diblocks can form two different aggregates at their corresponding electroneutral point. Spherical and rod-like aggregates are formed in the PEG(113)-PGlu(50)/DTAB mixture, while the vesicular aggregates are observed in the PEG(113)-PGlu(100)/DTAB mixture solution. Because the PEG(113)-PGlu(100)/DTAB super-amphiphile has more hydrophobic components than that of the PEG(113)-PGlu(50)/DTAB super-amphiphile, the former prefers forming the ordered aggregates with higher curvature, such as spherical and rod aggregates, but the latter prefers forming vesicular aggregates with lower curvature.

  14. Participation of protein kinases in cytotoxic and proapoptotic effects of ethylene glycol ethers and their metabolites in SH-SY5Y cells.

    PubMed

    Pomierny, Bartosz; Fuxe, Kjell; Krzyżanowska, Weronika; Regulska, Magdalena; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-10-01

    Ethylene glycol ethers (EGEs) are compounds widely used in many branches of industry. Their toxicological profile in the peripheral tissues is relatively well described, but little is known about their action on the central nervous system (CNS). In this study, we evaluated the effect of 2-ethoxyethanol (EE), 2-butoxyethanol (BE), 2-phenoxyethanol (PHE) and their metabolites on necrotic (estimated by cell viability and lactate dehydrogenase release) and apoptotic (caspase-3 activity and mitochondrial membrane potential) processes and reactive oxygen species' (ROS) production in human neuroblastoma (SH-SY5Y) cells. We have shown that, similar to the peripheral tissues, EGE metabolites in most of the performed assays revealed greater potential to damage than the parent compounds in the CNS cells. Subsequently, we investigated the participation of some selected protein kinases in the degenerative activity of PHE and its main metabolite, phenoxyacetic acid (PHA). It has been found that a GSK3β inhibitor weakened the damaging effects of PHE and PHA in each of the performed assays. Furthermore, the kinases, p38-MAPK, JNK-MAPK and PKC, had a significant role in the cytotoxic and proapoptotic effects of PHA. These results indicate that the neurotoxic effect of EGEs may stem from their impact on many intracellular signal transduction pathways.

  15. Cancer Treatment: Superporous Poly(ethylene glycol) Diacrylate Cryogel with a Defined Elastic Modulus for Prostate Cancer Cell Research (Small 29/2016).

    PubMed

    Göppert, Bettina; Sollich, Thomas; Abaffy, Paul; Cecilia, Angelica; Heckmann, Jan; Neeb, Antje; Bäcker, Anne; Baumbach, Tilo; Gruhl, Friederike J; Cato, Andrew C B

    2016-08-01

    On page 3985, F. J. Gruhl, A. C. B. Cato engineer superporous poly(ethylene glycol) diacrylate cryogels that mimic the stiffness of malignant prostate tissues for studies of prostate cancer cell growth and function. Cells grow in an anchorage-dependent manner in this scaffold for three weeks and respond to androgen and antiandrogen treatment. Compared to 2D cell culture system, androgen-dependent prostate target gene expression is highly regulated in this system. PMID:27477259

  16. BODIPY-based fluorescent thermometer as a lysosome-targetable probe: how the oligo(ethylene glycols) compete photoinduced electron transfer.

    PubMed

    Wang, Hua; Wu, Yongquan; Shi, Yanlin; Tao, Pan; Fan, Xing; Su, Xinyan; Kuang, Gui-Chao

    2015-02-16

    A novel BODIPY-based fluorescent thermometer, which shows a lysosome-targeting property, was successfully prepared. Due to the electron-donating ability of the oligo(ethylene glycols), the photoinduced electron-transfer pathway from morpholine to BODIPY dye is blocked. The fluorescence of the thermometer quenched by intramolecular rotation at room temperature was progressively enhanced during heating due to the increased microviscosity around the fluorophore.

  17. l-Isoleucine in a Choline Chloride/Ethylene Glycol Deep Eutectic Solvent: A Reusable Reaction Kit for the Asymmetric Cross-Aldol Carboligation.

    PubMed

    Fanjul-Mosteirín, Noé; Concellón, Carmen; Del Amo, Vicente

    2016-09-01

    l-Isoleucine is able to catalyze the cross-aldol reaction between cyclohexanone and aromatic aldehydes in a deep eutectic solvent consisting in choline chloride and ethylene glycol, rendering products with high diatereo- and enantioselectivity. This protocol is straightforward and green: the organocatalyst and the reaction medium can be recycled up to five times, allowing the preparation of different substrates with a single load of solvent and catalyst.

  18. l-Isoleucine in a Choline Chloride/Ethylene Glycol Deep Eutectic Solvent: A Reusable Reaction Kit for the Asymmetric Cross-Aldol Carboligation.

    PubMed

    Fanjul-Mosteirín, Noé; Concellón, Carmen; Del Amo, Vicente

    2016-09-01

    l-Isoleucine is able to catalyze the cross-aldol reaction between cyclohexanone and aromatic aldehydes in a deep eutectic solvent consisting in choline chloride and ethylene glycol, rendering products with high diatereo- and enantioselectivity. This protocol is straightforward and green: the organocatalyst and the reaction medium can be recycled up to five times, allowing the preparation of different substrates with a single load of solvent and catalyst. PMID:27526718

  19. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.

    PubMed

    Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming

    2016-05-01

    The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future. PMID:27093304

  20. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate)

    PubMed Central

    2014-01-01

    Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a 1H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes and their particle sizes were less than 100 nm. In a 1H-NMR study in D2O, specific peaks of PEG solely appeared while peaks of PHO disappeared, indicating that nanoparticles have core-shell structures. The higher M.W. of PEG decreased loading efficiency and particle size. The higher drug feeding increased drug contents and average size of nanoparticles. In the drug release study, the higher M.W. of PEG block induced the acceleration of drug release rate. The increase in drug contents induced the slow release rate of drug. In an antitumor activity study in vitro, paclitaxel nanoparticles have practically similar anti-proliferation activity against HCT116 human colon carcinoma cells. In an in vivo animal study using HCT116 colon carcinoma cell-bearing mice, paclitaxel nanoparticles have enhanced antitumor activity compared to paclitaxel itself. Therefore, paclitaxel-incorporated nanoparticles of PHO/PEG block copolymer are a promising vehicle for antitumor drug delivery. PMID:25288916