Science.gov

Sample records for acid ferulic acid

  1. Amylose inclusion complexation of ferulic acid via lipophilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferulic acid is an interesting phytochemical that exhibits antioxidant, anti-inflammatory, antimicrobial, UV-absorber, and anticarcinogenic activities. These properties make it of interest in food formulations, cosmetics, polymer, and pharmaceutical applications. However, delivery of ferulic acid in...

  2. Stability of lipid encapsulated ferulic acid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...

  3. Physicochemical interactions of maize starch with ferulic acid.

    PubMed

    Karunaratne, Rusiru; Zhu, Fan

    2016-05-15

    Ferulic acid is widely present in diverse foods and has great health benefits. Starch is a major food component and can be flexibly employed to formulate various products. In this study, the effect of ferulic acid addition on various physicochemical properties of normal maize starch was explored. The properties including swelling, pasting, steady shear and dynamic oscillation rheology, gelatinization, retrogradation, and gel texture were affected by ferulic acid to various extents, depending on the addition level. Enzyme susceptibility of granular starch to α-amylase was not affected. These influences may be explained by the functions of solubilized as well as insoluble ferulic acid which was in the form of crystals in starch matrix. On the molecular level, V-type amylose-ferulic acid inclusion complex formation was not observed by both co-precipitation and acidification methods. The results of this study may inspire further studies on the interactions of phenolics with other food ingredients and their role in food quality.

  4. [Allelopathy effects of ferulic acid and coumarin on Microcystis aeruginosa].

    PubMed

    Guo, Ya-Li; Fu, Hai-Yan; Huang, Guo-He; Gao, Pan-Feng; Chai, Tian; Yan, Bin; Liao, Huan

    2013-04-01

    The inhibitory effects and allelopathy mechanism of ferulic acid and coumarin on Microcystis aeruginosa were investigated by measuring the D680 value, the content of chlorophyll-a, the electrical conductivity (EC) and superoxide anion radical O*- value. Ferulic acid and coumarin had allelopathic effects on the growth of M. aeruginosa and promoted the physiological metabolism at low concentrations while inhibited the metabolism at high concentrations. Obvious inhibitory effects were observed when the concentration of ferulic acid or coumarin was over 100 mg x L(-1). The average inhibitory rates reached 80.3% and 58.0% after six days when the concentration of ferulic acid or coumarin was 200 mg x L(-1). The content of chlorophyll-a was decreased while the EC value and O2*- concentration were promoted by higher concentrations of ferulic acid or coumarin, suggesting that the growth of algae was inhibited probably by the damage of cell membrane, increase in the content of O2*- and decrease in the content of chlorophyll-a. In addition, seed germination test elucidated that Ferulic acid was safer than Coumarin.

  5. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  6. Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria

    PubMed Central

    Kaur, Baljinder; Kumar, Balvir

    2013-01-01

    Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives. PMID:24066293

  7. Ferulic acid, a dietary phenolic acid, modulates radiation effects in Swiss albino mice.

    PubMed

    Shanthakumar, Janakiraman; Karthikeyan, Arumugam; Bandugula, Venkata Reddy; Rajendra Prasad, Nagarajan

    2012-09-15

    The radioprotective efficacy of Ferulic acid (FA) against whole body gamma radiation was studied in Swiss albino mice. To study the radiation protection, mice were administered with ferulic acid intraperitoneally (i.p) (50 mg/kg body weight.), once daily for five consecutive days. One hour after the last administration of ferulic acid on the sixth day, animals were whole body exposed to 8 Gy gamma radiations. Effect of ferulic acid pretreatment on radiation-induced changes in antioxidant enzymes and lipid peroxidation status in spleen, liver and intestine was analyzed. A significant increase in the antioxidant enzymatic status and decreased lipid peroxidation marker levels were observed in ferulic acid pretreated group, when compared to the irradiated animals. Our study also shows increased % tail DNA, tail length, tail moment and Olive tail moment in irradiated mice blood lymphocytes. Ferulic acid (50 mg/kg body weight) pretreatment significantly decreased the % tail DNA, tail length, tail moment and Olive tail moment in irradiated mice lymphocytes. The histological observations indicated a decline in the villus height and crypt number with an increase in goblet and dead cell population in the irradiated group, which was normalized by ferulic acid pretreatment. In conclusion, present study indicated ferulic acid treatment prevents radiation-induced lipid peroxidation, DNA damage and restored antioxidant status and histopathological changes in experimental animals.

  8. Skin delivery of ferulic acid from different vesicular systems.

    PubMed

    Chen, Ming; Liu, Xiangli; Fahr, Alfred

    2010-10-01

    The aim of the present research is to evaluate the skin delivery capabilities of different vesicular systems, including conventional liposomes (CL), Tween 80-based deformable liposomes (DL), invasomes (INS) and ethosomes bearing ferulic acid (FA) being an antioxidant exhibiting a wide range of therapeutic effects against various diseases. All of the test formulations were characterized for particle size distribution, zeta-potential, vesicular shape and surface morphology, in vitro human skin permeation and skin deposition. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) defined that all of liposomal vesicles were almost spherical, displaying unilamellar structures with low polydispersity (PDI < 0.2) and nanometric size range (z-average no more than 150 nm). In addition, all the vesicular systems except conventional liposomes were negatively charged to a certain extent. In vitro skin permeation and skin deposition experiments demonstrated that the permeation profile of ferulic acid through human stratum corneum epidermis membrane (SCE) and the drug deposition in skin were both improved significantly using these vesicular liposomal systems. Permeation and skin deposition enhancing effect was highlighted by the ethosomal system containing 18.0 mg/ml of ferulic acid with an significantly (P < 0.01) enhanced skin flux (267.8 +/- 16.77 microg/cm2/h) and skin drug deposition (51.67 +/- 1.94 microg/cm2), which was 75 times and 7.3 times higher than those of ferulic acid from saturated PBS (pH 7.4) solution, respectively. This study demonstrated that ethosomes are promising vesicular carriers for delivering ferulic acid into or across the skin.

  9. Biotransformation of ferulic acid to 4-vinylguaiacol by Enterobacter soli and E. aerogenes.

    PubMed

    Hunter, William J; Manter, Daniel K; van der Lelie, Daniel

    2012-12-01

    We investigated the conversion of ferulic acid to 4-vinylguaiacol (4-VG), vanillin, vanillyl alcohol, and vanillic acid by five Enterobacter strains. These high-value chemicals are usually synthesized by chemical methods but biological synthesis adds market value. Ferulic acid, a relatively inexpensive component of agricultural crops, is plentiful in corn hulls, cereal bran, and sugar-beet pulp. Two Enterobacter strains, E. soli, and E. aerogenes, accumulated 550-600 ppm amounts of 4-VG when grown in media containing 1,000 ppm ferulic acid; no accumulations were observed with the other strains. Decreasing the amount of ferulic acid present in the media increased the conversion efficiency. When ferulic acid was supplied in 500, 250, or 125 ppm amounts E. aerogenes converted ~72 % of the ferulic acid present to 4-VG while E. soli converted ~100 % of the ferulic acid to 4-VG when supplied with 250 or 125 ppm amounts of ferulic acid. Also, lowering the pH improved the conversion efficiency. At pH 5.0 E. aerogenes converted ~84 % and E. soli converted ~100 % of 1,000 ppm ferulic acid to 4-VG. Only small, 1-5 ppm, accumulations of vanillin, vanillyl alcohol, and vanillic acid were observed. E. soli has a putative phenolic acid decarboxylase (PAD) that is 168 amino acids long and is similar to PADs in other enterobacteriales; this protein is likely involved in the bioconversion of ferulic acid to 4-VG. E. soli or E. aerogenes might be useful as a means of biotransforming ferulic acid to 4-VG.

  10. Biotransformation of Ferulic acid to 4-Vinylguaiacol by Enterobacter soli and E. aerogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the conversion of ferulic acid to 4-vinylguaiacol (4-VG), vanillin, vanillyl alcohol and vanillic acid by five Enterobacter strains. These high-value chemicals are usually synthesized using chemical methods but biological synthesis adds value. Ferulic acid, a relatively inexpensive...

  11. Ferulic acid destabilizes preformed {beta}-amyloid fibrils in vitro

    SciTech Connect

    Ono, Kenjiro; Hirohata, Mie; Yamada, Masahito . E-mail: m-yamada@med.kanazawa-u.ac.jp

    2005-10-21

    Inhibition of the formation of {beta}-amyloid fibrils (fA{beta}), as well as the destabilization of preformed fA{beta} in the CNS, would be attractive therapeutic targets for the treatment of Alzheimer's disease (AD). We reported previously that curcumin (Cur) inhibits fA{beta} formation from A{beta} and destabilizes preformed fA{beta} in vitro. Using fluorescence spectroscopic analysis with thioflavin T and electron microscopic studies, we examined the effects of ferulic acid (FA) on the formation, extension, and destabilization of fA{beta} at pH 7.5 at 37 deg C in vitro. We next compared the anti-amyloidogenic activities of FA with Cur, rifampicin, and tetracycline. Ferulic acid dose-dependently inhibited fA{beta} formation from amyloid {beta}-peptide, as well as their extension. Moreover, it destabilized preformed fA{beta}s. The overall activity of the molecules examined was in the order of: Cur > FA > rifampicin = tetracycline. FA could be a key molecule for the development of therapeutics for AD.

  12. Vine Trimming Shoots as Substrate for Ferulic Acid Esterases Production.

    PubMed

    Pérez-Rodríguez, N; Outeiriño, D; Torrado Agrasar, A; Domínguez, J M

    2017-02-01

    Ferulic acid esterases (FAE) possess a large variety of biotechnological applications mainly based on their ability to release ferulic acid from lignocellulosic matrixes. The use of vine trimming shoots (VTS), an agricultural waste, as substrate for the generation of this kind of esterases represents an attractive alternative to change the consideration of VTS from residue to resource. Furthermore, xylanase, cellobiase, and cellulase activities were quantified. Six microorganisms were screened for FAE production by solid-state fermentation, and the effects of the additional supplementation and substrate size were also tested. Finally, the process was scaled-up to a horizontal bioreactor where the influence of aeration in enzymatic activities was evaluated. Thus, the optimal FAE activity (0.44 U/g dry VTS) was attained by Aspergillus terreus CECT 2808, in non-additional supplementation media, using the larger particles size of substrate (≤ 5 mm) and at a flow rate of 0.7 L/min.

  13. Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae.

    PubMed

    Ferreira, P; Diez, N; Faulds, C B; Soliveri, J; Copa-Patiño, J L

    2007-05-01

    Given several promising industrial applications of ferulic acid, this study was designed to identify actinomycete strains able to release high levels of this acid from sugar beet pulp (SBP). Out of 47 strains tested, 37% were found to release free ferulic acid from the growth substrate. One strain, identified as Streptomyces tendae by 16S RNA gene sequencing, was capable of releasing 80% of the ferulic acid ester-linked to the pectin in SBP after 5 days of growth. These data suggest that some actinomycetes are able to release ferulic acid and feruloylated oligosaccharides from SBP. During growth on SBP, it seems that Streptomyces species solubilize and release feruloylated oligosaccharides by specific carbohydrase activities before de-esterification and release of free ferulic acid.

  14. Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.

    PubMed

    Chen, Can; Pan, Junfeng; Yang, Xiaobing; Xiao, He; Zhang, Yaoling; Si, Meiru; Shen, Xihui; Wang, Yao

    2017-03-01

    Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.

  15. Ferulic acid esters of glucosylglucose from Allium macrostemon Bunge.

    PubMed

    Usui, Ayaka; Matsuo, Yosuke; Tanaka, Takashi; Ohshima, Kazusato; Fukuda, Shinji; Mine, Takara; Yakashiro, Ichiro; Ishimaru, Kanji

    2017-03-01

    Three new ferulic acid esters of glucosylglucose, 1-O-(E)-feruloyl-β-d-glucopyranosyl (1-2)-[β- d-glucopyranosyl (1-6)]-β-d-glucopyranose (allimacronoid A, 1), 1-O-(E)-feruloyl-{β-d-glucopyranosyl (1-4)-[β-d-glucopyranosyl (1-2)]}-[β- d-glucopyranosyl (1-6)]-β-d-glucopyranose (allimacronoid B, 2), and 1-O-(E)-feruloyl-{β-d-glucopyranosyl (1-6)-[β-d-glucopyranosyl (1-2)]}-[β- d-glucopyranosyl (1-6)]-β-d-glucopyranose (allimacronoid C, 3) were isolated together with tuberonoid A (4), from the leaves of Allium macrostemon Bunge. The chemical structures were elucidated based on the analyses of the spectroscopic and chemical data.

  16. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium funiculosum

    NASA Astrophysics Data System (ADS)

    Knoshaug, Eric P.; Selig, Michael J.; Baker, John O.; Decker, Stephen R.; Himmel, Michael E.; Adney, William S.

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  17. Heterologous Expression of Two Ferulic Acid Esterases from Penicillium Funiculosum

    SciTech Connect

    Knoshaug, E. P.; Selig, M. J.; Baker, J. O.; Decker, S. R.; Himmel, M. E.; Adney, W. S.

    2008-01-01

    Two recombinant ferulic acid esterases from Penicillium funiculosum produced in Aspergillus awamori were evaluated for their ability to improve the digestibility of pretreated corn stover. The genes, faeA and faeB, were cloned from P. funiculosum and expressed in A. awamori using their native signal sequences. Both enzymes contain a catalytic domain connected to a family 1 carbohydrate-binding module by a threonine-rich linker peptide. Interestingly, the carbohydrate binding-module is N-terminal in FaeA and C-terminal in FaeB. The enzymes were purified to homogeneity using column chromatography, and their thermal stability was characterized by differential scanning microcalorimetry. We evaluated both enzymes for their potential to enhance the cellulolytic activity of purified Trichoderma reesei Cel7A on pretreated corn stover.

  18. Ferulic acid promoting apoptosis in human osteosarcoma cell lines

    PubMed Central

    Zhang, Xu-dong; Wu, Qiang; Yang, Shu-hua

    2017-01-01

    Objective: To explore the promoting apoptosis and antitumor activities of ferulic acid (FA) in human osteosarcoma and its potential mechanism. Methods: The SaOS-2 and MG63 osteosarcoma cell lines were opted to experiment and these cells were, respectively, cultured with various concentrations of FA (0 μM, 10 μM, 20 μM, 40 μM) for 72 hours at 37°C. The viabilities of the FA treated cells were monitored by MTT. Apoptosis cells were evaluated using annexin V/PI by flow cytometry. Apoptosis proteins caspase-3, procaspase-3, Bcl-2 and Bax were detected by western blot. Expressions of apoptotic genes Bcl-2 and Bax were quantified by qPCR. Results: The cell viabilities were critically declined in the concentration-dependent manner in FA groups (P < 0.01). The apoptosis cells were increased proportionately with the concentration of FA (P < 0.05). The procaspase-3 protein contents, and Bcl-2 mRNA and protein contents were significantly decreased while caspase-3 protein contents, and Bax mRNA and protein contents were concomitantly increased in the concentration-dependent manner in FA groups (P < 0.05). The response to FA by the SaOS-2 osteosarcoma cell was similar with the MG63 osteosarcoma cell (P > 0.05). Conclusion: Ferulic acid could significantly descend osteosarcoma cell viability through the promoting apoptosis pathway in which FA activates both caspase-3 and Bax and inactivates Bcl-2. PMID:28367185

  19. Chemiluminescence determination of ferulic acid by flow-injection analysis using cerium(IV) sensitized by rhodamine 6G.

    PubMed

    Wang, Ju Peng; Li, Nian Bing; Luo, Hong Qun

    2008-11-01

    A simple, sensitive and rapid flow-injection chemiluminescence method has been developed for the determination of ferulic acid based on the chemiluminescence reaction of ferulic acid with rhodamine 6G and ceric sulfate in sulphuric acid medium. Strong chemiluminescence signal was observed when ferulic acid was injected into the acidic ceric sulfate solution in a flow-cell. The present method allowed the determination of ferulic acid in the concentration range of 8.0 x 10(-6) to 1.0 x 10(-4) mol l(-1) and the detection limit for ferulic acid was 8.7 x 10(-9) mol l(-1). The relative standard deviation was 2.4% for 10 replicate analyses of 1.0 x 10(-5) mol l(-1) ferulic acid. The proposed method was applied to the determination of ferulic acid in Taita Beauty Essence samples with satisfactory results.

  20. Effect of ferulic acid from Hibiscus mutabilis on filarial parasite Setaria cervi: molecular and biochemical approaches.

    PubMed

    Saini, Prasanta; Gayen, Prajna; Nayak, Ananya; Kumar, Deepak; Mukherjee, Niladri; Pal, Bikas C; Sinha Babu, Santi P

    2012-12-01

    In the reported work the in vitro activity of a methanolic extract of leaves of Hibiscus mutabilis (Malvaceae) against bovine Setaria cervi worms has been investigated. Bioassay-guided fractionation led to isolation of ferulic acid from ethyl acetate fraction. The crude extract and ferulic acid, the active molecule, showed significant microfilaricidal as well as macrofilaricidal activities against the microfilaria (L(1)) and adult of S. cervi by both a worm motility and MTT reduction assay. The findings thus provide a new lead for development of a filaricidal drug from natural products. To examine the possible mechanism of action of ferulic acid, the involvement of apoptosis in adult worms of S. cervi was investigated. We found extreme cellular disturbances in ferulic acid-treated adult worms characterized by chromatin condensation, in situ DNA fragmentation and nucleosomal DNA laddering. In this work we are reporting for the first time that ferulic acid exerts its antifilarial effect through induction of apoptosis and by downregulating and altering the level of some key antioxidants (GSH, GST and SOD) of the filarial nematode S. cervi. Our results have provided experimental evidence supporting that ferulic acid causes an increased proapoptotic gene expression and decreased expression of anti-apoptotic genes simultaneously with an elevated level of ROS and gradual dose dependent decline of parasitic GSH level. We also observed a gradual dose dependent elevation of GST and SOD activity in the ferulic acid treated worms.

  1. Ferulic Acid-Based Polymers with Glycol Functionality as a Versatile Platform for Topical Applications.

    PubMed

    Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E

    2015-09-14

    Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products.

  2. Butanol production by a Clostridium beijerinckii mutant with high ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Wang, Dong; Xu, Jiahui; Ying, Hanjie

    2016-09-01

    A mutant strain of Clostridium beijerinckii, with high tolerance to ferulic acid, was generated using atmospheric pressure glow discharge and high-throughput screening of C. beijerinckii NCIMB 8052. The mutant strain M11 produced 7.24 g/L of butanol when grown in P2 medium containing 30 g/L of glucose and 0.5 g/L of ferulic acid, which is comparable to the production from non-ferulic acid cultures (8.11 g/L of butanol). When 0.8 g/L of ferulic acid was introduced into the P2 medium, C. beijerinckii M11 grew well and produced 4.91 g/L of butanol. Both cell growth and butanol production of C. beijerinckii M11 were seriously inhibited when 0.9 g/L of ferulic acid was added into the P2 medium. Furthermore, C. beijerinckii M11 could produce 6.13 g/L of butanol using non-detoxified hemicellulosic hydrolysate from diluted sulfuric acid-treated corn fiber (SAHHC) as the carbon source. These results demonstrate that C. beijerinckii M11 has a high ferulic acid tolerance and is able to use non-detoxified SAHHC for butanol production.

  3. Preventive effect of ferulic acid on bone loss in ovariectomized rats.

    PubMed

    Sassa, Shuji; Kikuchi, Takashi; Shinoda, Hisashi; Suzuki, Satoe; Kudo, Hideki; Sakamoto, Shinobu

    2003-01-01

    An extract from corn germ induced a positive response in the pigeon crop sack test, used for the detection of prolactin-like substances. One of the substances extracted was identified as ferulic acid, which was reported to affect serum gonadotropin levels in ovariectomized male rats. To evaluate the effects of ferulic acid on bone loss, ovariectomized female rats of the Sprague-Dawley strain at age 35 weeks were given ferulic acid and/or 17a-ethynylestradiol daily for 8 weeks, and serum hormone levels and tibial bone mineral density were measured. In metaphysis of the tibia, which was abundant in cancellous bone and more reflective of BMD than whole tibia, the BMD was markedly reduced by ovariectomy and enhanced by the treatment with estrogen or ferulic acid in the ovariectomized rats. The treatment slightly increased the serum levels of estrogen and progesterone and alkaline phosphatase activity, which was reduced by estrogentreatment, i.e. the mechanism of bone formation by ferulic acid was suggested to be different from that by estrogens. These results indicate that ferulic acid promotes bone remodeling, leading to a predominantly osteoblastic phase, besides bone resorption by osteoclasts.

  4. Chronic effect of ferulic acid from Pseudosasa japonica leaves on enhancing exercise activity in mice.

    PubMed

    You, Yanghee; Kim, Kyungmi; Yoon, Ho-Geun; Lee, Kwang-Won; Lee, Jeongmin; Chun, Jiyeon; Shin, Dong-Hoon; Park, Jeongjin; Jun, Woojin

    2010-10-01

    Ferulic acid derived from Pseudosasa japonica leaves, which possessed antioxidative potentials with DPPH- (54%) and ABTs- (65%) radical scavenging activities, and lipid-peroxidation inhibitory activity (71%), was orally administered to mice for 12 days in order to investigate its effects on exercise endurance capacity and alterations of antioxidant defense systems. Exhaustive swimming time was increased in the ferulic acid-supplemented group compared with the control group on days 6 and 12 (1.7- and 1.8-fold, respectively). When the mice were exhaustively exercised for 2 consecutive days, a high decrease (53%) was shown in the control group, but no change was found in the ferulic acid-treated group. The administration of ferulic acid significantly protected the depletion of enzymatic- and non enzymatic-antioxidants due to exhaustive exercise. Also, lipid-peroxidation levels decreased in the ferulic acid-treated group compared with the non exercised- and control-groups. These results suggest that ferulic acid from Pseudosasa japonica leaves has a chronic effect on endurance exercise capacity, which is attributed to its ability to ameliorate oxidative stress by improving antioxidant potentials.

  5. Heterogeneous kinetics, products, and mechanisms of ferulic acid particles in the reaction with NO3 radicals

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin

    2017-03-01

    Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.

  6. Transcriptional Analysis of Lactobacillus brevis to N-Butanol and Ferulic Acid Stress Responses

    PubMed Central

    Winkler, James; Kao, Katy C.

    2011-01-01

    Background The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates pose significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. Simultaneously, product toxicity must also be overcome to allow for efficient production of next generation biofuels such as n-butanol, isopropanol, and others from these low cost feedstocks. Methodology and Principal Findings This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis, a lactic acid bacterium often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis reveals that the presence of ferulic acid triggers the expression of currently uncharacterized membrane proteins, possibly in an effort to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, n-butanol challenges to growing cultures primarily induce genes within the fatty acid synthesis pathway and reduced the proportion of 19∶1 cyclopropane fatty acid within the L. brevis membrane. Both inhibitors also triggered generalized stress responses. Separate attempts to alter flux through the Escherichia coli fatty acid synthesis by overexpressing acetyl-CoA carboxylase subunits and deleting cyclopropane fatty acid synthase (cfa) both failed to improve n-butanol tolerance in E. coli, indicating that additional components of the stress response are required to confer n-butanol resistance. Conclusions Several promising routes for understanding both ferulic acid and n-butanol tolerance have been identified from L. brevis gene expression data. These insights may be used to guide further engineering of

  7. Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens.

    PubMed Central

    Huang, Z; Dostal, L; Rosazza, J P

    1993-01-01

    Saccharomyces cerevisiae (dry baker's yeast) and Pseudomonas fluorescens were used to convert trans-ferulic acid into 4-hydroxy-3-methoxystyrene in 96 and 89% yields, respectively. The metabolites were isolated by solid-phase extraction and analyzed by thin-layer chromatography and high-performance liquid chromatography. The identities of the metabolites were determined by 1H- and 13C-nuclear magnetic resonance spectroscopy and by mass spectrometry. The mechanism of the decarboxylation of ferulic acid was investigated by measuring the degree and position of deuterium incorporated into the styrene derivative from D2O by mass spectrometry and by both proton and deuterium nuclear magnetic resonance spectroscopies. Resting cells of baker's yeast reduced ferulic acid to 4-hydroxy-3-methoxyphenylpropionic acid in 54% yield when incubations were under an argon atmosphere. PMID:8395165

  8. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    PubMed

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  9. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid

    PubMed Central

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV–vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid. PMID:26841717

  10. Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes.

    PubMed Central

    Rüttimann-Johnson, C; Lamar, R T

    1996-01-01

    High-molecular-weight polymers were produced by a crude concentrated supernatant from ligninolytic Phanerochaete chrysosporium cultures in a reaction mixture containing pentachlorophenol and a humic acid precursor (ferulic acid) in the presence of a detergent and H2O2. Pure manganese peroxidase, lignin peroxidase, and laccase were also shown to catalyze the reaction. PMID:8967777

  11. Lignification and related enzymes in Glycine max root growth-inhibition by ferulic acid.

    PubMed

    dos Santos, Wanderley Dantas; Ferrarese, Maria de Lourdes L; Finger, Aline; Teixeira, Aline C N; Ferrarese-Filho, Osvaldo

    2004-06-01

    Changes in soluble and cell wall bound peroxidase (POD, EC 1.11.1.7) activity, phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) activity, and lignin content in roots of ferulic acid-stressed soybean (Glycine max (L.) Merr.) seedlings and their relationships with root growth were investigated. Three-day-old soybean seedlings were cultivated in half-strength Hoagland nutrient solution containing 1.0 mM ferulic acid for 24-72 hr. Length, fresh weight, and dry weight of roots decreased, while soluble and cell wall bound POD activity, PAL activity, and lignin content increased after ferulic acid treatment. These enzymes probably participate in root growth reduction in association with cell wall stiffening related to the formation of cross-linking among cell wall polymers and lignin production.

  12. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Huang, Kelong; Zhong, Ming; Guo, Jun; Wang, Wei-zheng; Zhu, Ronghua

    2010-10-01

    The substitution of the hydrogen on aromatic and esterification of carboxyl group of the phenol compounds plays an important role in their bio-activities. In this paper, caffeic acid (CaA), chlorogenic acid (ChA) and ferulic acid (FA) were selected to investigate the binding to bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy and synchronous fluorescence spectroscopy. It was found that the methoxyl group substituting for the 3-hydroxyl group of CaA decreased the affinity for BSA and the esterification of carboxyl group of CaA with quinic acid increased the affinities. The affinities of ChA and FA with BSA were more sensitive to the temperature than that of CaA with BSA. Synchronous fluorescence spectroscopy and time-resolved fluorescence indicated that the Stern-Volmer plots largely deviated from linearity at high concentrations and were caused by complete quenching of the tyrosine fluorescence of BSA.

  13. Novel Halomonas sp. B15 isolated from Larnaca Salt Lake in Cyprus that generates vanillin and vanillic acid from ferulic acid.

    PubMed

    Vyrides, Ioannis; Agathangelou, Maria; Dimitriou, Rodothea; Souroullas, Konstantinos; Salamex, Anastasia; Ioannou, Aristostodimos; Koutinas, Michalis

    2015-08-01

    Vanillin is a high value added product with many applications in the food, fragrance and pharmaceutical industries. A natural and low-cost method to produce vanillin is by microbial bioconversions through ferulic acid. Until now, limited microorganisms have been found capable of bioconverting ferulic acid to vanillin at high yield. This study aimed to screen halotolerant strains of bacteria from Larnaca Salt Lake which generate vanillin and vanillic acid from ferulic acid. From a total of 50 halotolenant/halophilic strains 8 grew in 1 g/L ferulic acid and only 1 Halomonas sp. B15 and 3 Halomonas elognata strains were capable of bioconverting ferulic acid to vanillic acid at 100 g NaCl/L. The highest vanillic acid (365 mg/L) at these conditions generated by Halomonas sp. B15 which corresponds to ferulic acid bioconversion yield of 36.5%. Using the resting cell technique with an initial ferulic acid concentration of 0.5 g/L at low salinity, the highest production of vanillin (245 mg/L) took place after 48 h, corresponding to a bioconversion yield of 49%. This is the first reported Halomonas sp. with high yield of vanillin production from ferulic acid at low salinity.

  14. Active food packaging based on molecularly imprinted polymers: study of the release kinetics of ferulic acid.

    PubMed

    Otero-Pazos, Pablo; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Benito-Peña, Elena; González-Vallejo, Victoria; Moreno-Bondi, M Cruz; Angulo, Immaculada; Paseiro-Losada, Perfecto

    2014-11-19

    A novel active packaging based on molecularly imprinted polymer (MIP) was developed for the controlled release of ferulic acid. The release kinetics of ferulic acid from the active system to food simulants (10, 20, and 50% ethanol (v/v), 3% acetic acid (w/v), and vegetable oil), substitutes (95% ethanol (v/v) and isooctane), and real food samples at different temperatures were studied. The key parameters of the diffusion process were calculated by using a mathematical modeling based on Fick's second law. The ferulic acid release was affected by the temperature as well as the percentage of ethanol of the simulant. The fastest release occurred in 95% ethanol (v/v) at 20 °C. The diffusion coefficients (D) obtained ranged between 1.8 × 10(-11) and 4.2 × 10(-9) cm(2)/s. A very good correlation between experimental and estimated data was obtained, and consequently the model could be used to predict the release of ferulic acid into food simulants and real food samples.

  15. Voltammetric determination of ferulic acid by didodecyldimethylammonium bromide/nafion composite film-modified carbon paste electrode.

    PubMed

    Luo, Liqiang; Wang, Xia; Li, Qiuxia; Ding, Yaping; Jia, Jianbo; Deng, Dongmei

    2010-01-01

    A simple and rapid method for the determination of ferulic acid in pharmaceutical formulations by didodecyldimethylammonium bromide (DDAB)/Nafion composite film-modified carbon paste electrode is presented. The electrochemical behavior of ferulic acid at the proposed electrode was investigated by cyclic voltammetry and a well-defined oxidation peak was observed at +0.44 V versus saturated calomel electrode in 0.1 M acetate buffer (pH 5.5) solutions. Some experimental parameters affecting the electrochemical response of the modified electrode were optimized. Under optimal conditions, the oxidation peak currents of ferulic acid increase linearly with the concentration of ferulic acid in the range from 2.0 x 10(-6) to 1.2 x 10(-4) M with a detection limit of 3.9 x 10(-7) M (S/N = 3). The proposed method was successfully applied to the determination of ferulic acid in pharmaceutical tablets.

  16. Overexpression of Aspergillus tubingensis faeA in protease-deficient Aspergillus niger enables ferulic acid production from plant material.

    PubMed

    Zwane, Eunice N; Rose, Shaunita H; van Zyl, Willem H; Rumbold, Karl; Viljoen-Bloom, Marinda

    2014-06-01

    The production of ferulic acid esterase involved in the release of ferulic acid side groups from xylan was investigated in strains of Aspergillus tubingensis, Aspergillus carneus, Aspergillus niger and Rhizopus oryzae. The highest activity on triticale bran as sole carbon source was observed with the A. tubingensis T8.4 strain, which produced a type A ferulic acid esterase active against methyl p-coumarate, methyl ferulate and methyl sinapate. The activity of the A. tubingensis ferulic acid esterase (AtFAEA) was inhibited twofold by glucose and induced twofold in the presence of maize bran. An initial accumulation of endoglucanase was followed by the production of endoxylanase, suggesting a combined action with ferulic acid esterase on maize bran. A genomic copy of the A. tubingensis faeA gene was cloned and expressed in A. niger D15#26 under the control of the A. niger gpd promoter. The recombinant strain has reduced protease activity and does not acidify the media, therefore promoting high-level expression of recombinant enzymes. It produced 13.5 U/ml FAEA after 5 days on autoclaved maize bran as sole carbon source, which was threefold higher than for the A. tubingensis donor strain. The recombinant AtFAEA was able to extract 50 % of the available ferulic acid from non-pretreated maize bran, making this enzyme suitable for the biological production of ferulic acid from lignocellulosic plant material.

  17. Synthesis and characteristics of (Hydrogenated) ferulic acid derivatives as potential antiviral agents with insecticidal activity

    PubMed Central

    2013-01-01

    Background Plant viruses cause many serious plant diseases and are currently suppressed with the simultaneous use of virucides and insecticides. The use of such materials, however, increases the amounts of pollutants in the environment. To reduce environmental contaminants, virucides with insecticidal activity is an attractive option. Results A series of substituted ferulic acid amide derivatives 7 and the corresponding hydrogenated ferulic acid amide derivatives 13 were synthesized and evaluated for their antiviral and insecticidal activities. The majority of the synthesized compounds exhibited good levels of antiviral activity against the tobacco mosaic virus (TMW), with compounds 7a, 7b and 7d in particular providing higher levels of protective and curative activities against TMV at 500 μg/mL than the control compound ribavirin. Furthermore, these compounds displayed good insecticidal activities against insects with piercing-sucking mouthparts, which can spread plant viruses between and within crops. Conclusions Two series of ferulic acid derivatives have been synthesized efficiently. The bioassay showed title compounds not only inhibit the plant viral infection, but also prevented the spread of plant virus by insect vectors. These findings therefore demonstrate that the ferulic acid amides represent a new template for future antiviral studies. PMID:23409923

  18. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds at high concentrations are known to form insoluble complexes with proteins. We hypothesized that this complex formation could interfere with Western blot and ELISA assays for peanut allergens. To verify this, three simple phenolic compounds (ferulic, caffeic, and chlorogenic acids...

  19. Ferulic acid enhances IgE binding to peanut allergens in western blots.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because phenolic compounds can precipitate or complex with proteins, we postulated that interactions of phenolics with IgE antibodies help enhance IgE binding to peanut allergens in Western blots. Three different phenolics, such as, ferulic, caffeic and chlorogenic acids were examined. Each was mixe...

  20. Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aspergillus niger ferulic acid esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interactio...

  1. Cold water fish gelatin modification by a natural phenolic cross-linker (ferulic acid and caffeic acid)

    PubMed Central

    Araghi, Maryam; Moslehi, Zeinab; Mohammadi Nafchi, Abdorreza; Mostahsan, Amir; Salamat, Nima; Daraei Garmakhany, Amir

    2015-01-01

    Nowadays use of edible films and coatings is increasing due to their biodegradability and environment friendly properties. Fish gelatin obtained from fish skin wastage can be used as an appropriate protein compound for replacing pork gelatin to produce edible film. In this study films were prepared by combination of fish gelatin and different concentration (0%, 1%, 3%, and 5%) of two phenolic compounds (caffeic acid and ferulic acid). The film was prepared at pH > 10 and temperature of 60˚c under continuous injection of O2 and addition of the plasticizer sorbitol/glycerol. Results showed that solubility, oxygen permeability, and water vapor permeability were decreased for caffeic acid and the highest effect was observed at concentration of 5%. Solubility had a linear relationship with concentration of phenolic compound in film containing ferulic acid, however, no significant change was observed in vapor and O2 permeability. A comparison between two phenolic compounds showed that caffeic acid had the highest effect in decreasing solubility, water vapor permeability, and oxygen permeability. Caffeic acid is more effective phenolic compound compared with Ferulic acid that can increase safety of biodegradable packaging by improving their barrier and physicochemical properties. PMID:26405523

  2. Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms.

    PubMed

    Tee-ngam, Prinjaporn; Nunant, Namthip; Rattanarat, Poomrat; Siangproh, Weena; Chailapakul, Orawon

    2013-09-26

    Ferulic acid is an important phenolic antioxidant found in or added to diet supplements, beverages, and cosmetic creams. Two designs of paper-based platforms for the fast, simple and inexpensive evaluation of ferulic acid contents in food and pharmaceutical cosmetics were evaluated. The first, a paper-based electrochemical device, was developed for ferulic acid detection in uncomplicated matrix samples and was created by the photolithographic method. The second, a paper-based colorimetric device was preceded by thin layer chromatography (TLC) for the separation and detection of ferulic acid in complex samples using a silica plate stationary phase and an 85:15:1 (v/v/v) chloroform: methanol: formic acid mobile phase. After separation, ferulic acid containing section of the TLC plate was attached onto the patterned paper containing the colorimetric reagent and eluted with ethanol. The resulting color change was photographed and quantitatively converted to intensity. Under the optimal conditions, the limit of detection of ferulic acid was found to be 1 ppm and 7 ppm (S/N = 3) for first and second designs, respectively, with good agreement with the standard HPLC-UV detection method. Therefore, these methods can be used for the simple, rapid, inexpensive and sensitive quantification of ferulic acid in a variety of samples.

  3. Laccase-catalysed functionalisation of chitosan by ferulic acid and ethyl ferulate: evaluation of physicochemical and biofunctional properties.

    PubMed

    Aljawish, Abdulhadi; Chevalot, Isabelle; Jasniewski, Jordane; Revol-Junelles, Anne-Marie; Scher, Joël; Muniglia, Lionel

    2014-10-15

    Chitosan and its derivatives functionalized by laccase-catalyzed oxidation of ferulic acid (FA) and ethyl ferulate (EF) were characterised for their physico-chemical, antioxidant and antibacterial properties. The enzymatic grafting of oxidised phenols led to FA-coloured and EF-colourless chitosan derivatives with good stability of colour and grafted phenols towards the chemical treatment by organic solvents. The efficiency of FA-products grafting onto chitosan was higher than that of EF-products. Moreover, the enzymatic grafting of phenols onto chitosan changed its morphological surface, increased its molecular weight and its viscosity. Furthermore, the chitosan derivatives presented improved antioxidant properties especially for FA-chitosan derivative when compared with chitosan with good antioxidant stability towards thermal treatment (100°C/1h). Chitosan and its derivatives showed also similar antibacterial activities and more precisely bactericidal activities. This enzymatic procedure provided chitosan derivatives with improved properties such as antioxidant activity, thermal antioxidant stability as well as the preservation of initial antibacterial activity of chitosan.

  4. Analytical characterization of a ferulic acid/gamma-cyclodextrin inclusion complex.

    PubMed

    Anselmi, Cecilia; Centini, Marisanna; Ricci, Maurizio; Buonocore, Anna; Granata, Paola; Tsuno, Takuo; Facino, Roberto Maffei

    2006-03-03

    Ferulic acid (FA) is a well-known antioxidant of natural source with promising properties as photoprotective agent (approved in Japan as sunscreen) and its derivatives (alkyl ferulates) are under screening for the prevention of photoinduced skin tumours. In the present work we describe the preparation of a solid inclusion complex between ferulic acid and gamma-cyclodextrin (gamma-CD) and its characterization by different analytical techniques: differential scanning calorimetry (DSC), X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (1H NMR) and by supporting information of molecular modelling. All these approaches indicate that ferulic acid is able to form an association complex with gamma-CD but only 1H NMR and molecular modelling studies give an unequivocal evidence that the antioxidant molecule is embedded into the gamma-CD cavity to form an inclusion complex. In detail it is entrapped inside the hydrophobic core of gamma-CD with the lipophilic aromatic ring and the ethylenic moieties, leaving the more polar functional groups close to wider rim or outside the cavity.

  5. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.

    PubMed

    Coghe, Stefan; Benoot, Koen; Delvaux, Filip; Vanderhaegen, Bart; Delvaux, Freddy R

    2004-02-11

    The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.

  6. Butyric acid increases transepithelial transport of ferulic acid through upregulation of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4).

    PubMed

    Ziegler, Kerstin; Kerimi, Asimina; Poquet, Laure; Williamson, Gary

    2016-06-01

    Ferulic acid is released by microbial hydrolysis in the colon, where butyric acid, a major by-product of fermentation, constitutes the main energy source for colonic enterocytes. We investigated how varying concentrations of this short chain fatty acid may influence the absorption of the phenolic acid. Chronic treatment of Caco-2 cells with butyric acid resulted in increased mRNA and protein abundance of the monocarboxylate transporters SLC16A1 (MCT1) and SLC16A3 (MCT4), previously proposed to facilitate ferulic acid absorption in addition to passive diffusion. Short term incubation with butyric acid only led to upregulation of MCT4 while both conditions increased transepithelial transport of ferulic acid in the apical to basolateral, but not basolateral to apical, direction. Chronic treatment also elevated intracellular concentrations of ferulic acid, which in turn gave rise to increased concentrations of ferulic acid metabolites. Immunofluorescence staining of cells revealed uniform distribution of MCT1 protein in the cell membrane, whereas MCT4 was only detected in the lateral plasma membrane sections of Caco-2 cells. We therefore propose that MCT1 may be acting as an uptake transporter and MCT4 as an efflux system across the basolateral membrane for ferulic acid, and that this process is stimulated by butyric acid.

  7. [Preparation of ferulic acid, senkyunolide I and senkyunolide H from Ligusticum chuanxiong by preparative HPLC].

    PubMed

    Xiong, Yao-Kun; Liang, Shuang; Hong, Yan-Long; Yang, Xiu-Juan; Shen, Lan; Du, Yan; Feng, Yi

    2013-06-01

    Preparative HPLC was used to prepare ferulic acid, senkyunolide I and senkyunolide H from Ligusticum chuanxiong. The separation was conducted on a Shim-Pack Prep-ODS (20.0 mm x 250 mm, 5 microm) column with the mobile phase of methanol-0.2% glacial acetic acid (50:50)at the flow rate of 5 mL x min(-1). The detection wavelength was 278 nm, and the purity of each compound was detected by HPLC analysis. Spectral data analyses including UV, ESI-MS and NMR were used to identify their structures. This method is simple, fast, which is suitable for preparation of standard reference of ferulic acid, senkyunolide I and senkyunolide H from L. chuanxiong and can meet the requirement of new drug research and development.

  8. Voltammetric Determination of Ferulic Acid Using Polypyrrole-Multiwalled Carbon Nanotubes Modified Electrode with Sample Application

    PubMed Central

    Abdel-Hamid, Refat; Newair, Emad F.

    2015-01-01

    A polypyrrole-multiwalled carbon nanotubes modified glassy carbon electrode-based sensor was devised for determination of ferulic acid (FA). The fabricated sensor was prepared electrochemically using cyclic voltammetry (CV) and characterized using CV and scanning electron microscope (SEM). The electrode shows an excellent electrochemical catalytic activity towards FA oxidation. Under optimal conditions, the anodic peak current correlates linearly to the FA concentration throughout the range of 3.32 × 10−6 to 2.59 × 10−5 M with a detection limit of 1.17 × 10−6 M (S/N = 3). The prepared sensor is highly selective towards ferulic acid without the interference of ascorbic acid. The sensor applicability was tested for total content determination of FA in a commercial popcorn sample and showed a robust functionality.

  9. Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay

    PubMed Central

    Hariono, Maywan; Abdullah, Nurshariza; Damodaran, K.V.; Kamarulzaman, Ezatul E.; Mohamed, Nornisah; Hassan, Sharifah Syed; Shamsuddin, Shaharum; Wahab, Habibah A.

    2016-01-01

    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors. PMID:27995961

  10. Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt.

    PubMed

    Inns, Elizabeth L; Buggey, Lesley A; Booer, Christopher; Nursten, Harry E; Ames, Jennifer M

    2011-09-14

    Barley phenolic antioxidants change in response to the kilning regimen used to prepare malt. Green malt was kilned using four different regimens. There were no major differences among the finished malts in parameters routinely used by the malting industry, including, moisture, color, and diastatic activity. Ferulic acid esterase activity and free ferulic acid were higher in malts subjected to the coolest kilning regimen, but malt ethyl acetate extracts (containing ferulic acid) contributed only ∼5% of the total malt antioxidant activity. Finished malt from the hottest kilning regimen possessed the highest antioxidant activity, attributed to higher levels of Maillard reaction products. Modifying kilning conditions leads to changes in release of bound ferulic acid and antioxidant activity with potential beneficial effects on flavor stability in malt and beer.

  11. Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay.

    PubMed

    Hariono, Maywan; Abdullah, Nurshariza; Damodaran, K V; Kamarulzaman, Ezatul E; Mohamed, Nornisah; Hassan, Sharifah Syed; Shamsuddin, Shaharum; Wahab, Habibah A

    2016-12-20

    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors.

  12. Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay

    NASA Astrophysics Data System (ADS)

    Hariono, Maywan; Abdullah, Nurshariza; Damodaran, K. V.; Kamarulzaman, Ezatul E.; Mohamed, Nornisah; Hassan, Sharifah Syed; Shamsuddin, Shaharum; Wahab, Habibah A.

    2016-12-01

    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors.

  13. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis

    PubMed Central

    Nair, Ramesh B.; Bastress, Kristen L.; Ruegger, Max O.; Denault, Jeff W.; Chapple, Clint

    2004-01-01

    Recent research has significantly advanced our understanding of the phenylpropanoid pathway but has left in doubt the pathway by which sinapic acid is synthesized in plants. The reduced epidermal fluorescence1 (ref1) mutant of Arabidopsis thaliana accumulates only 10 to 30% of the sinapate esters found in wild-type plants. Positional cloning of the REF1 gene revealed that it encodes an aldehyde dehydrogenase, a member of a large class of NADP+-dependent enzymes that catalyze the oxidation of aldehydes to their corresponding carboxylic acids. Consistent with this finding, extracts of ref1 leaves exhibit low sinapaldehyde dehydrogenase activity. These data indicate that REF1 encodes a sinapaldehyde dehydrogenase required for sinapic acid and sinapate ester biosynthesis. When expressed in Escherichia coli, REF1 was found to exhibit both sinapaldehyde and coniferaldehyde dehydrogenase activity, and further phenotypic analysis of ref1 mutant plants showed that they contain less cell wall–esterified ferulic acid. These findings suggest that both ferulic acid and sinapic acid are derived, at least in part, through oxidation of coniferaldehyde and sinapaldehyde. This route is directly opposite to the traditional representation of phenylpropanoid metabolism in which hydroxycinnamic acids are instead precursors of their corresponding aldehydes. PMID:14729911

  14. Pretreatment of Ferulic Acid Protects Human Dermal Fibroblasts against Ultraviolet A Irradiation

    PubMed Central

    Hahn, Hyung Jin; Kim, Ki Bbeum; Bae, Seunghee; Choi, Byung Gon; An, Sungkwan

    2016-01-01

    Background Approximately 90%~99% of ultraviolet A (UVA) ray reaches the Earth's surface. The deeply penetrating UVA rays induce the formation of reactive oxygen species (ROS), which results in oxidative stress such as photoproducts, senescence, and cell death. Thus, UVA is considered a primary factor that promotes skin aging. Objective Researchers investigated whether pretreatment with ferulic acid protects human dermal fibroblasts (HDFs) against UVA-induced cell damages. Methods HDF proliferation was analyzed using the water-soluble tetrazolium salt assay. Cell cycle distribution and intracellular ROS levels were assessed by flow cytometric analysis. Senescence was evaluated using a senescence-associated β-galactosidase assay, while Gadd45α promoter activity was analyzed through a luciferase assay. The expression levels of superoxide dismutase 1 (SOD1), catalase (CAT), xeroderma pigmentosum complementation group A and C, matrix metalloproteinase 1 and 3, as well as p21 and p16 were measured using quantitative real-time polymerase chain reaction. Results Inhibition of proliferation and cell cycle arrest were detected in cells that were irradiated with UVA only. Pretreatment with ferulic acid significantly increased the proliferation and cell cycle progression in HDFs. Moreover, ferulic acid pretreatment produced antioxidant effects such as reduced DCF intensity, and affected SOD1 and CAT mRNA expression. These effects were also demonstrated in the analysis of cell senescence, promoter activity, expression of senescent markers, and DNA repair. Conclusion These results demonstrate that ferulic acid exerts protective effects on UVA-induced cell damages via anti-oxidant and stress-inducible cellular mechanisms in HDFs. PMID:27904274

  15. A Novel, Stable, Aqueous Glucagon Formulation Using Ferulic Acid as an Excipient

    PubMed Central

    Bakhtiani, Parkash A.; Caputo, Nicholas; Castle, Jessica R.; Carroll, Julie M.; David, Larry L.; Roberts, Charles T.; Ward, W. Kenneth

    2014-01-01

    Background: Commercial glucagon is unstable due to aggregation and degradation. In closed-loop studies, it must be reconstituted frequently. For use in a portable pump for 3 days, a more stable preparation is required. At alkaline pH, curcumin inhibited glucagon aggregation. However, curcumin is not sufficiently stable for long-term use. Here, we evaluated ferulic acid, a stable breakdown product of curcumin, for its ability to stabilize glucagon. Methods: Ferulic acid-formulated glucagon (FAFG), composed of ferulic acid, glucagon, L-methionine, polysorbate-80, and human serum albumin in glycine buffer at pH 9, was aged for 7 days at 37°C. Glucagon aggregation was assessed by transmission electron microscopy (TEM) and degradation by high-performance liquid chromatography (HPLC). A cell-based protein kinase A (PKA) assay was used to assess in vitro bioactivity. Pharmacodynamics (PD) of unaged FAFG, 7-day aged FAFG, and unaged synthetic glucagon was determined in octreotide-treated swine. Results: No fibrils were observed in TEM images of fresh or aged FAFG. Aged FAFG was 94% intact based on HPLC analysis and there was no loss of bioactivity. In the PD swine analysis, the rise over baseline of glucose with unaged FAFG, aged FAFG, and synthetic native glucagon (unmodified human sequence) was similar. Conclusions: After 7 days of aging at 37°C, an alkaline ferulic acid formulation of glucagon exhibited significantly less aggregation and degradation than that seen with native glucagon and was bioactive in vitro and in vivo. Thus, this formulation may be stable for 3-7 days in a portable pump for bihormonal closed-loop treatment of T1D. PMID:25253164

  16. [Study on compatibility of Salviae Miltiorrhizae Radix et Rhizoma and Chuanxiong Rhizoma based on pharmacokinetics of effective components salvianolic acid B and ferulic acid in rat plasma].

    PubMed

    Zhang, Cui-ying; Zhang, Hong; Dong, Yu; Ren, Wei-guang; Chen, Heng-wen

    2015-04-01

    A study was made on the pharmacokinetic regularity of effective components salvianolic acid B and ferulic acid in Salviae Miltiorrhizae Radix et Rhizoma (SMRR) and Chuanxiong Rhizoma(CR) in rats, so as to discuss the compatibility mechanism of Salviae Miltiorrhizae Radix et Rhizoma and Chuanxiong Rhizoma. Rats were randomly divided into three groups and intravenously injected with 50 mg x kg(-1) salvianolic acid B for the single SMRR extracts group, 0.5 mg x kg(-1) ferulic acid for the single CR extracts group and 50 mg x kg(-1) salvianolic acid B + 0.5 mg x kg(-1) ferulic acid for the SMRR and CR combination group. The blood samples were collected at different time points and purified by liquid-liquid extraction with ethyl acetate. With chloramphenicol as internal standard (IS), UPLC was adopted to determine concentrations of salvianolic acid B and ferulic acid. The pharmacokinetic parameters of salvianolic acid B and ferulic acid were calculated with WinNonlin 6.2 software and analyzed by SPSS 19.0 statistical software. The UPLC analysis method was adopted to determine salvianolic acid B and ferulic acid in rat plasma, including linear equation, stability, repeatability, precision and recovery. The established sample processing and analysis methods were stable and reliable, with significant differences in major pharmacokinetic parameters, e.g., area under the curve (AUC), mean residence time (MRT) and terminal half-life (t(1/2)). According to the experimental results, the combined application of SMRR and CR can significantly impact the pharmacokinetic process of their effective components in rats and promote the wide distribution, shorten the action time and prolong the in vivo action time of salvianolic acid B and increase the blood drug concentration and accelerate the clearance of ferulic acid in vivo.

  17. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.

    PubMed

    Di Gioia, Diana; Luziatelli, Francesca; Negroni, Andrea; Ficca, Anna Grazia; Fava, Fabio; Ruzzi, Maurizio

    2011-12-20

    Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid.

  18. Ferulic Acid Suppresses Amyloid β Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide

    PubMed Central

    Nagai, Noriaki; Kotani, Sachiyo; Mano, Yu; Ueno, Akina; Ito, Yoshimasa; Kitaba, Toshio; Takata, Takumi

    2017-01-01

    It is well known that oxidative stresses induce the production of amyloid β (Aβ) in the brain, lens, and retina, leading to age-related diseases. In the present study, we investigated the effects of ferulic acid on the Aβ levels in H2O2-stimulated human lens epithelial (HLE) SRA 01/04 cells. Three types of Aβ peptides (Aβ1-40, Aβ1-42, and Aβ1-43) were measured by ELISA, and the levels of mRNA for the expressed proteins related to Aβ production (APP, BACE1, and PS proteins) and degradation (ADAM10, NEP, and ECE1 proteins) were determined by quantitative real-time RT-PCR. H2O2 stimulation augmented gene expression of the proteins related to Aβ production, resulting in the production of three types of Aβ peptides. Treatment with 0.1 μM ferulic acid attenuated the augmentations of gene expression and production of the proteins related to the secretion of three types of Aβ peptides in the H2O2-stimulated HLE cells. These results provided evidence of antioxidative functions of ferulic acid for lens epithelial cells.

  19. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  20. Antioxidant activity of ferulic acid alkyl esters in a heterophasic system: a mechanistic insight.

    PubMed

    Anselmi, Cecilia; Centini, Marisanna; Granata, Paola; Sega, Alessandro; Buonocore, Anna; Bernini, Andrea; Facino, Roberto Maffei

    2004-10-20

    The antioxidant activity of some esters of ferulic acid with the linear fatty alcohols C7, C8 (branched and linear), C9, C11, C12, C13, C15, C16, and C18 has been studied in homogeneous and heterogeneous phases. Whereas in homogeneous phase all of the alkyl ferulates possessed similar radical-scavenging abilities, in rat liver microsomes they showed striking differences, the more effective being C12 (7) (IC50 = 11.03 M), linear C8 (3) (IC50 = 12.40 microM), C13 (8) (IC50 = 18.60 microM), and C9 (5) (IC50 = 19.74 microM), followed by C7 (2), C15 (9), C11 (6), branched C8 (4), C16 (10), and C18 (11) (ferulic acid was the less active, IC50 = 243.84 microM). All of the molecules showed similar partition coefficients in an octanol-buffer system. Three-dimensional studies (NMR in solution, modeling in vacuo) indicate that this behavior might be due to a different anchorage of the molecules with the ester side chain to the microsomal phospholipid bilayer and to a consequent different orientation/positioning of the scavenging phenoxy group outside the membrane surface against the flux of oxy radicals.

  1. Research on the adsorption property of supported ionic liquids for ferulic acid, caffeic acid and salicylic acid.

    PubMed

    Du, Ni; Cao, Shuwen; Yu, Yanying

    2011-06-01

    In this paper, the preparation of new supported ionic liquids (SILs) composed of the N-methylimidazolium cation and the quinoline cation is described. They have been confirmed and evaluated by infrared spectroscopy, elemental analysis and thermogravimetric analysis. Six kinds of different SILs included SiO(2)·Im(+)·Cl(-), SiO(2)·Im(+)·BF(4)(-), SiO(2)·Im(+)·PF(6)(-), SiO(2)·Qu(+)·Cl(-), SiO(2)·Qu(+)·BF(4)(-) and SiO(2)·Qu(+)·PF(6)(-). The adsorption characteristics of ferulic acid (FA), caffeic acid (CA) and salicylic acid (SA) on SILs were investigated by static adsorption experiments. It was found that SiO(2)·Qu(+)·Cl(-) had excellent adsorption and desorption capacity to three tested phenolic compounds. The dynamic adsorption characteristics of FA, CA and SA on SiO(2)·Qu(+)·Cl(-) were also studied. The saturated adsorption capacity of FA, CA and SA using SiO(2)·Qu(+)·Cl(-) as adsorbent was 64.6 mg/g, 53.2 mg/g and 72.2 mg/g respectively. Using 70% ethanol as eluent, the saturated desorption efficiencies of FA, CA and SA were 97.2%, 90.3% and 96.5% respectively. Thus, SiO(2)·Qu(+)·Cl(-) had strong adsorption and separation capacity for FA, CA and SA.

  2. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    PubMed Central

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  3. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.

    PubMed

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-06-19

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco.

  4. Isolation and Identification of Ferulic Acid From Aerial Parts of Kelussia odoratissima Mozaff.

    PubMed Central

    Sajjadi, Seyed Ebrahim; Shokoohinia, Yalda; Moayedi, Narjess-Sadat

    2012-01-01

    Background Kelussia odoratissima Mozaff. is one of the newest genera of Umbelliferae which is represented by only one species. This sweet-smelling, self-growing monotypic medicinal plant is endemic to a restricted area in west of Iran and is locally called Karafse-koohi. The aerial parts of the plant are commonly used as a popular garnish and a sedative medicinal plant. There are several reports concerning antioxidant, anti-inflammatory, anxiolytic and hypolipidemic activities of aerial parts of K. odoratissima. Objectives The current research aimed to evaluate some phenolic contents of the plant for the first time .It is confirmed that secondary metabolites and especially phenolic compounds have important role in the biological activities of the plant. Available information indicates that phenolic contents of K. odoratissima have not been the subject of any investigation Material and Methods Aerial parts of K. odoratissima were extracted with acetone by maceration method. Normal and reversed phase vacuum liquid chromatography used to fractionate the extract. 1H-NMR, 13CNMR, EI-Mass and IR spectra were used to elucidate isolated compound. Results The phenolic acid isolated compound was identified as 4-hydroxy-3-methoxycinnamic acid (ferulic acid). Conclusions Compared with previous reported antioxidant and anti-inflammatory properties of ferulic acid, a chemical-biological relation can be postulated. PMID:24624175

  5. Kinetics of enzyme inhibition by active molluscicidal agents ferulic acid, umbelliferone, eugenol and limonene in the nervous tissue of snail Lymnaea acuminata.

    PubMed

    Kumar, Pradeep; Singh, V K; Singh, D K

    2009-02-01

    Ferulic acid, umbelliferone (Ferula asafoetida), eugenol (Syzygium aromaticum) and limonene (Carum carvi) are active molluscicidal components that inhibited the activity of alkaline phosphatase and acetylcholinesterase in in vivo and in vitro exposure of Lymnaea acuminata. It was observed that ferulic acid, umbelliferone and eugenol are competitive and limonene is a competitive-non-competitive inhibitor of alkaline phosphatase. Ferulic acid and umbelliferone are competitive, whereas eugenol and limonene are competitive-non-competitive and uncompetitive inhibitors of acetylcholinesterase, respectively.

  6. [Studies on transdermal delivery of ferulic acid through rat skin treated by microneedle arrays].

    PubMed

    Yang, Bing; Du, Shou-ying; Bai, Jie; Shang, Ke-xin; Lu, Yang; Li, Peng-yue

    2014-12-01

    In order to investigate the characteristics of transdermal delivery of ferulic acid under the treated of microneedle arrays and the influence on permeability of rat skin capillaries, improved Franz-cells were used in the transdermal delivery experiment with the rat skin of abdominal wall and the length of microneedle arrays, different insertion forces, retention time were studied in the influence of characteristics of transdermal delivery of FA. The amount of FA was determined by HPLC system. Intravenous injection Evans blue and FA was added after microneedle arrays treated. Established inflammation model was built by daubing dimethylbenzene. The amount of Evans blue in the rat skin was read at 590 nm wavelength with a Multiskan Go microplate reader. Compared with passive diffusion group the skin pretreated with microneedle arrays had a remarkable enhancement of FA transport (P <0.01). The accumulation of FA increased with the enhancement of insertion force as to as the increase of retention time. Microneedle arrays with different length had a remarkable enhancement of FA transport, but was not related to the increase of the length. The research of FA on the reduce of permeability of rat skin capillaries indicated that the skin pretreated with microneedle arrays could reduce the content of Evans blue in the skins of rat significantly compared with the untreated group. The permeation rate of ferulic acid transdermal delivery had remarkable increase under the treated of microneedle arrays and the length of microneedle arrays ,the retention time so as to the insertion force were important to the transdermal delivery of ferulic acid.

  7. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm.

    PubMed

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J; Madrid, Susan M; Brinch-Pedersen, Henrik; Holm, Preben B; Scheller, Henrik V

    2010-04-01

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm-specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal (Lys-Asp-Glu-Leu) KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and threefold relative to wild type. The grains were shrivelled and had a 25%-33% decrease in mass. Extensive analysis of the cell walls showed a 10%-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water-extractable arabinoxylan, and a shift in the MW of the water-extractable arabinoxylan from being mainly larger than 85 kD to being between 2 and 85 kD. Ferulic acid esterase-expressing grains were also shrivelled, and the seed weight was decreased by 20%-50%. No ferulic acid esterase activity could be detected in wild-type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15%-40% increase in water-unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13% and 34%. In all the plants, the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  8. Generation of transgenic wheat (Triticum aestivum L.) accumulating heterologous endo-xylanase or ferulic acid esterase in the endosperm

    SciTech Connect

    Harholt, Jesper; Bach, Inga C; Lind-Bouquin, Solveig; Nunan, Kylie J.; Madrid, Susan M.; Brinch-Pedersen, Henrik; Holm, Preben B.; Scheller, Henrik V.

    2009-12-08

    Endo-xylanase (from Bacillus subtilis) or ferulic acid esterase (from Aspergillus niger) were expressed in wheat under the control of the endosperm specific 1DX5 glutenin promoter. Constructs both with and without the endoplasmic reticulum retention signal KDEL were used. Transgenic plants were recovered in all four cases but no qualitative differences could be observed whether KDEL was added or not. Endo-xylanase activity in transgenic grains was increased between two and three fold relative to wild type. The grains were shriveled and had a 25-33% decrease in mass. Extensive analysis of the cell walls showed a 10-15% increase in arabinose to xylose ratio, a 50% increase in the proportion of water extractable arabinoxylan, and a shift in the MW of the water extractable arabinoxylan from being mainly larger than 85 kD to being between 2 kD and 85 kD. Ferulic acid esterase expressing grains were also shriveled and the seed weight was decreased by 20-50%. No ferulic acid esterase activity could be detected in wild type grains whereas ferulic acid esterase activity was detected in transgenic lines. The grain cell walls had 15-40% increase in water unextractable arabinoxylan and a decrease in monomeric ferulic acid between 13 and 34%. In all the plants the observed changes are consistent with a plant response that serves to minimize the effect of the heterologously expressed enzymes by increasing arabinoxylan biosynthesis and cross-linking.

  9. Synergistic inhibition of cancer cell proliferation with a combination of δ-tocotrienol and ferulic acid

    SciTech Connect

    Eitsuka, Takahiro; Tatewaki, Naoto; Nishida, Hiroshi; Kurata, Tadao; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-24

    Highlights: • δ-Tocotrienol (δ-T3) and ferulic acid (FA) synergistically inhibit cancer cell growth. • The combination of δ-T3 and FA induces G1 arrest by up-regulating p21. • The synergy is attributed to an increase in the cellular concentration of δ-T3 by FA. - Abstract: Rice bran consists of many functional compounds and thus much attention has been focused on the health benefits of its components. Here, we investigated the synergistic inhibitory effects of its components, particularly δ-tocotrienol (δ-T3) and ferulic acid (FA), against the proliferation of an array of cancer cells, including DU-145 (prostate cancer), MCF-7 (breast cancer), and PANC-1 (pancreatic cancer) cells. The combination of δ-T3 and FA markedly reduced cell proliferation relative to δ-T3 alone, and FA had no effect when used alone. Although δ-T3 induced G1 arrest by up-regulating p21 in PANC-1 cells, more cells accumulated in G1 phase with the combination of δ-T3 and FA. This synergistic effect was attributed to an increase in the cellular concentration of δ-T3 by FA. Our results suggest that the combination of δ-T3 and FA may present a new strategy for cancer prevention and therapy.

  10. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors

    PubMed Central

    Yan, Lei; Chen, Peng; Zhang, Shuang; Li, Suyue; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-01-01

    We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin. PMID:27708366

  11. A spectrophotometric study of the copigmentation of malvin with caffeic and ferulic acids.

    PubMed

    Marković, J M; Petranović, N A; Baranac, J M

    2000-11-01

    The process of copigmentation of the anthocyanin molecule malvidin 3, 5-diglucoside with two organic monocarboxylic phenolic acids, caffeic and ferulic acids, was studied via their absorption electronic spectra. The dependence of the copigmentation process on the pH of the medium, molecular concentration, and temperature was established. The process of copigmentation was observed at two pH values: 2.50 and 3.65. The stoichiometric ratio was 1:1 at both pH values. The copigmentation was characterized by approximately equal values of the equilibrium constant, K, within each of the pH values. The temperature was found to be a significant factor that determines the thermodynamic conditions of the copigmentation process, because the process is spontaneous (DeltaG degrees < 0), and results in entropy loss (DeltaS degrees < 0) at both pH values.

  12. Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo.

    PubMed

    Qin, Jing; Chen, DaWei; Lu, WeiGen; Xu, Huan; Yan, ChenYun; Hu, HaiYang; Chen, BaoYu; Qiao, MingXi; Zhao, XiuLi

    2008-06-01

    In the present study, various gradients were evaluated for efficient loading of weak acid into liposomes. Several salt gradients showed efficient loading of ferulic acid (FA) into liposomes and the optimized conditions were established in calcium acetate gradient method to obtain 80.2 +/- 5.2% entrapment efficiency (EE). Unilamellar vesicles were observed in micrographs and liposomal FA showed good stability. 80% of FA was released from liposomes within 5 h in vitro. There is a novel finding in this study: that drugs could be entrapped with a high solubility in the intraliposomal buffer in contrast to the low solubility in the extraliposomal buffer. The results of body distribution in rats indicated that liposomes could improve the body distribution of FA. For FA liposome, the concentration of FA in brain was two-fold higher than that of free FA. Liposomal FA was a promising approach to improve the body distribution of FA.

  13. Development of a new ferulic acid certified reference material for use in clinical chemistry and pharmaceutical analysis

    PubMed Central

    Yang, Dezhi; Wang, Fengfeng; Zhang, Li; Gong, Ningbo; Lv, Yang

    2015-01-01

    This study compares the results of three certified methods, namely differential scanning calorimetry (DSC), the mass balance (MB) method and coulometric titrimetry (CT), in the purity assessment of ferulic acid certified reference material (CRM). Purity and expanded uncertainty as determined by the three methods were respectively 99.81%, 0.16%; 99.79%, 0.16%; and 99.81%, 0.26% with, in all cases, a coverage factor (k) of 2 (P=95%). The purity results are consistent indicating that the combination of DSC, the MB method and CT provides a confident assessment of the purity of suitable CRMs like ferulic acid. PMID:26579451

  14. Development of a new ferulic acid certified reference material for use in clinical chemistry and pharmaceutical analysis.

    PubMed

    Yang, Dezhi; Wang, Fengfeng; Zhang, Li; Gong, Ningbo; Lv, Yang

    2015-05-01

    This study compares the results of three certified methods, namely differential scanning calorimetry (DSC), the mass balance (MB) method and coulometric titrimetry (CT), in the purity assessment of ferulic acid certified reference material (CRM). Purity and expanded uncertainty as determined by the three methods were respectively 99.81%, 0.16%; 99.79%, 0.16%; and 99.81%, 0.26% with, in all cases, a coverage factor (k) of 2 (P=95%). The purity results are consistent indicating that the combination of DSC, the MB method and CT provides a confident assessment of the purity of suitable CRMs like ferulic acid.

  15. Conformational analysis: a tool for the elucidation of the antioxidant properties of ferulic acid derivatives in membrane models.

    PubMed

    Anselmi, Cecilia; Centini, Marisanna; Andreassi, Marco; Buonocore, Anna; La Rosa, Caterina; Facino, Roberto Maffei; Sega, Alessandro; Tsuno, Fumi

    2004-09-03

    With the aim to search and design more effective and safe antioxidant molecules to be used as functional ingredients in cosmetic formulations for UV protection, we evaluated the antioxidant/radical scavenging activities of ferulic acid and of some alkyl ferulates in both acellular and cellular systems. Ferulic acid esters, equipotent as antioxidant in homogeneous phase, showed when tested in membranous systems (rat liver microsomes, rat erythrocytes) marked differences in antioxidant potency. The n-C(12) derivative was the most potent, followed by n-C(8), n-C(16) and branched C(8), and then by ferulic acid. A conformational study carried out by NMR and modelling, indicates that the different antioxidant activity of ferulates in membrane models is due to the different spatial conformation and arrangement of the side chain of the molecule, which governs the access and binding to the phospholipid bilayer, the modality of orientation of the scavenging/quenching nucleus (phenol moiety), and hence the overall antioxidant potency of the derivative. These results emphasize the need of analytical studies (NMR and molecular modelling) addressed to the knowledge of the conformational parameters in combination with conventional antioxidant testings for understanding the antioxidant behaviour of a molecule in a biological membrane/system.

  16. Arabidopsis Deficient in Cutin Ferulate encodes a transferase required for feruloylation of ω-hydroxy fatty acids in cutin polyester.

    PubMed

    Rautengarten, Carsten; Ebert, Berit; Ouellet, Mario; Nafisi, Majse; Baidoo, Edward E K; Benke, Peter; Stranne, Maria; Mukhopadhyay, Aindrila; Keasling, Jay D; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2012-02-01

    The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C(16) and C(18) unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm.

  17. Ferulic acid dehydrodimers from wheat bran: isolation, purification and antioxidant properties of 8-O-4-diferulic acid.

    PubMed

    Garcia-Conesa, M T; Plumb, G W; Waldron, K W; Ralph, J; Williamson, G

    1997-01-01

    Wheat bran contains several ester-linked dehydrodimers of ferulic acid, which were detected and quantified after sequential alkaline hydrolysis. The major dimers released were: trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-2, 3- dihydrobenzofuran-3-carboxylic acid (5-8-BendiFA), (Z)-beta-[4-[(E)-2-carboxyvinyl]-2-methoxyphenoxy]-4-hydroxy-3-methox ycinnamic acid (8-O-4-diFA) and (E,E)-4,4'-dihydroxy-5,5'-dimethoxy-3,3'-bicinnamic acid (5-5-diFA). trans-7-hydroxy-1-(4-hydroxy-3methoxyphenyl)-6-methoxy-1,2-dihydro - naphthalene-2,3-dicarboxylic acid (8-8-diFA cyclic form) and 4,4'-dihydroxy-3,3'-dimethoxy-beta,beta'-bicinnamic acid (8-8-diFA non cyclic form) were not detected. One of the most abundant dimers, 8-O-4-diFA, was purified from de-starched wheat bran after alkaline hydrolysis and preparative HPLC. The resultant product was identical to the chemically synthesised 8-O-4-dimer by TLC and HPLC as confirmed by 1H-NMR and mass spectrometry. The absorption maxima and absorption coefficients for the synthetic compound in ethanol were: lambda max: 323 nm, lambda min: 258 nm, epsilon lambda max (M-1 cm-1): 24,800 +/- 2100 and epsilon 280 (M-1 cm-1): 19,700 +/- 1100. The antioxidant properties of 8-O-4-diFA were assessed using: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes and; (b) scavenging of the radical cation of 2,2'-azinobis (3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue, Trolox C. The 8-O-4-diFA was a better antioxidant than ferulic acid in both lipid and aqueous phases. This is the first report of the antioxidant activity of a natural diferulate obtained from a plant.

  18. Thioacidolysis Marker Compound for Ferulic Acid Incorporation into Angiosperm Lignins (and an Indicator for Cinnamoyl-coenzyme-A Reductase Deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A molecular marker compound, derived from lignin by the thioacidolysis degradative method, for structures produced when ferulic acid is incorporated into lignification in angiosperms (poplar, Arabidopsis, tobacco) has been structurally identified as 1,2,2-trithioethyl ethylguaiacol [1-(4-hydroxy-3-m...

  19. Laccase-catalysed oxidation of ferulic acid and ethyl ferulate in aqueous medium: a green procedure for the synthesis of new compounds.

    PubMed

    Aljawish, Abdulhadi; Chevalot, Isabelle; Jasniewski, Jordane; Paris, Cédric; Scher, Joël; Muniglia, Lionel

    2014-02-15

    The enzymatic oxidation of ferulic acid (FA) and ethyl ferulate (EF) with Myceliophthora thermophila laccase, as biocatalyst, was performed in aqueous medium using an eco-friendly procedure to synthesize new active molecules. First, the commercial laccase was ultrafiltrated allowing for the elimination of phenolic contaminants and increasing the specific activity by a factor of 2. Then, kinetic parameters of this laccase were determined for both substrates (FA, EF), indicating a higher substrate affinity for ethyl ferulate. Additionally, enzymatic oxidation led to the synthesis of a FA-major product, exhibiting a molecular mass of 386 g/mol and a EF-major product with a molecular mass of 442 g/mol. Structural analyses by mass spectrometry allowed the identification of dimeric derivatives. The optical properties of the oxidation products showed the increase of red and yellow colours, with FA-products compared to EF-products. Additionally, enzymatic oxidation led to a decrease of antioxidant and cytotoxic activities compared to initial substrates. Consequently, this enzymatic procedure in aqueous medium could provide new compounds presenting optical, antioxidant and cytotoxic interest.

  20. Impact of wheat bran derived arabinoxylanoligosaccharides and associated ferulic acid on dough and bread properties.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Delcour, Jan A; Courtin, Christophe M

    2014-07-23

    The impact of arabinoxylanoligosaccharides (AXOS) with varying bound or free ferulic acid (FA) content on dough and bread properties was studied in view of their prebiotic and antioxidant properties. AXOS with an FA content of 0.1-1.7% caused an increase in dough firmness with increasing AXOS concentration. AXOS with a high FA content (7.2%), on the contrary, resulted in an increase in dough extensibility and a decrease in resistance to extension, similar to that for free FA, when added in levels up to 2%. Higher levels resulted in unmanageable dough. A limited impact on dough gluten network formation was observed. These results suggest that for highly feruloylated AXOS, the FA-mediated dough softening supersedes the firming effect displayed by the carbohydrate moiety of AXOS. The impact of the different AXOS on bread volume, however, was minimal. Furthermore, AXOS in bread were not engaged in covalent cross-linking and significantly increased its antioxidant capacity.

  1. A new ferulic acid ester and other constituents from Tamarix nilotica leaves.

    PubMed

    Abouzid, Sameh Fekry; Ali, Sajjad Ahmed; Choudhary, Muhammad Iqbal

    2009-07-01

    Phytochemical investigation of the leaves of Tamarix nilotica (Tamaricaceae) has led to isolation of methyl ferulate 3-O-sulphate (1) for the first time from natural sources. In addition, coniferyl alcohol 4-O-sulphate (2), kaempferol 4'-methyl ether (3), tamarixetin (4) and quercetin 3-O-beta-D-glucupyranuronide (5) were isolated from the n-butanol soluble fraction of the extract. The pentacyclic triterpenoid, 3alpha-(3'',4''-dihydroxy-trans-cinnamoyloxy)-D-friedoolean-14-en-28-oic acid (6) was isolated from the n-hexane soluble fraction of the extract. The structures of these compounds were determined on the basis of spectroscopic analyses including 2 dimensional NMR. Compounds 3, 4 and 6 exhibited 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity with IC(50) values of 35.2, 37.0 and 21.2 muM, respectively.

  2. Factors affecting ferulic acid release from Brewer's spent grain by Fusarium oxysporum enzymatic system.

    PubMed

    Xiros, Charilaos; Moukouli, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2009-12-01

    In this study, the factors affecting ferulic acid (FA) release from Brewer's spent grain (BSG), by the crude enzyme extract of Fusarium oxysporum were investigated. In order to evaluate the importance of the multienzyme preparation on FA release, the synergistic action of feruloyl esterase (FAE, FoFaeC-12213) and xylanase (Trichoderma longibrachiatum M3) monoenzymes was studied. More than double amount of FA release (1 mg g(-1) dry BSG) was observed during hydrolytic reactions by the crude enzyme extract compared to hydrolysis by the monoenzymes (0.37 mg g(-1) dry BSG). The protease content of the crude extract and the inhibitory effect of FA as an end-product were also evaluated concerning their effect on FA release. The protease treatment prior to hydrolysis by monoenzymes enhanced FA release about 100%, while, for the first time in literature, FA in solution found to have a significant inhibitory effect on FAE activity and on total FA release.

  3. Evaluation of wound healing activity of ferulic acid in diabetic rats.

    PubMed

    Ghaisas, Mahesh M; Kshirsagar, Shashank B; Sahane, Rajkumari S

    2014-10-01

    In diabetic patients, there is impairment in angiogenesis, neovascularisation and failure in matrix metalloproteineases (MMPs), keratinocyte and fibroblast functions, which affects wound healing mechanism. Hence, diabetic patients are more prone to infections and ulcers, which finally result in gangrene. Ferulic acid (FA) is a natural antioxidant found in fruits and vegetables, such as tomatoes, rice bran and sweet corn. In this study, wound healing activity of FA was evaluated in streptozotocin-induced diabetic rats using excision wound model. FA-treated wounds were found to epithelise faster as compared with diabetic wound control group. The hydroxyproline and hexosamine content increased significantly when compared with diabetic wound control. FA effectively inhibited the lipid peroxidation and elevated the catalase, superoxide dismutase, glutathione and nitric oxide levels along with the increase in the serum zinc and copper levels probably aiding the wound healing process. Hence, the results indicate that FA significantly promotes wound healing in diabetic rats.

  4. Physicochemical characteristics, hydroxycinnamic acids (ferulic acid, P-coumaric acid) and their ratio, and in situ biodegradability: comparison of genotypic differences among six barley varieties.

    PubMed

    Du, Liqin; Yu, Peiqiang; Rossnagel, Brian G; Christensen, David A; McKinnon, John J

    2009-06-10

    Barley contains hydroxycinnamic acids, mainly ferulic acid (FA; 3-methoxy-4-hydroxycinnamic acid) and p-coumaric acid (PCA; 4-hydroxycinnamic acid). Ferulic acid is produced via the phenylpropanoid biosynthetic pathway and covalently cross-linked to polysaccharides by ester bonds and to components of lignin mainly by ether bonds. Various studies have consistently indicated that FA is among the factors most inhibitory to the biodegradability of cell wall polysaccharides. p-Coumaric acid is also covalently linked to polysaccharides (minor) and lignin (major), but does not form the inhibitory cross-linkages as FA does and is considered to represent cell wall lignification. The objectives in this study were to (1) determine genotypic differences in physicochemical characteristics in terms of (a) two major low molecular weight hydroxycinnamic acid profiles (FA, PCA, PCA-to-FA ratio, which are associated with digestion and lignification), (b) particle size distributions (mean, median), (c) hull content, and (d) digestion-resistant fiber fractions and (2) determine genotypic differences in in situ solubilization kinetics of FA and PCA. The barley varieties grown during three consecutive years (2003, 2004, and 2005) included AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, and CDC Cowboy. These barleys were grown at the Kernen Crop Research Farm (KCRF, University of Saskatchewan) and managed using standard agronomic production practices. Results showed that there were significant differences in hull content (P < 0.05) among the barley varieties, with Mcleod having the highest (11% DM) and CDC Dolly and CDC Helgason the lowest hull content (9% DM). Ferulic acid ranged from 555 to 663 microg/g of DM (P < 0.05). p-Coumaric acid ranged (P < 0.05) from 283 to 345 microg/g of DM. PCA-to-FA ratios ranged (P < 0.05) from 0.49 to 0.56. Mean particle size ranged (P < 0.05) from 3.06 to 3.66 mm, and median particle size ranged (P < 0.05) from 2.71 to 3.04 mm. In situ DM

  5. Lipase-catalyzed esterification of ferulic Acid with oleyl alcohol in ionic liquid/isooctane binary systems.

    PubMed

    Chen, Bilian; Liu, Huanzhen; Guo, Zheng; Huang, Jian; Wang, Minzi; Xu, Xuebing; Zheng, Lifei

    2011-02-23

    Lipase-catalyzed synthesis of ferulic acid oleyl alcohol ester in an ionic liquid (IL)/isooctane system was investigated. Considerable bioconversion and volumetric productivity were achieved in inexpensive 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF(6)]) and 1-methyl-3-octylimidazolium hexafluorophosphate ([Omim][PF(6)]) mediated systems, and thus, the two types of ILs were selected for further optimization of variables. The results showed that, before reaching a maximum, the increase of ferulic acid concentration, temperature, or enzyme dosage led to an increase in volumetric productivity. Variations of the ratios of IL/isooctane and concentrations of oleyl alcohol also profoundly affected the volumetric productivity. To a higher extent, [Hmim][PF(6)]/isooctane and [Omim][PF(6)]/isooctane show similar reaction behaviors. Under the optimized reaction conditions (60 °C, 150 mg of Novozym 435 and 100 mg of molecular sieves), up to 48.50 mg/mL productivity of oleyl feruleate could be achieved for the [Hmim][PF(6)]/isooctane (0.5 mL/1.5 mL) system with a substrate concentration of ferulic acid of 0.08 mmol/mL and oleyl alcohol of 0.32 mmol; while an optimum volumetric productivity of 26.92 mg/mL was obtained for the [Omim][PF(6)]/ isooctane (0.5 mL/1.5 mL) system under a similar reaction condition other than the substrate concentrations of ferulic acid at 0.05 mmol/mL and oleyl alcohol at 0.20 mmol.

  6. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes.

    PubMed

    Maruf, Abdullah Al; Lip, HoYin; Wong, Horace; O'Brien, Peter J

    2015-06-05

    Glyoxal (GO) and methylglyoxal (MGO) cause protein and nucleic acid carbonylation and oxidative stress by forming reactive oxygen and carbonyl species which have been associated with toxic effects that may contribute to cardiovascular disease, complications associated with diabetes mellitus, Alzheimer's and Parkinson's disease. GO and MGO can be formed through oxidation of commonly used reducing sugars e.g., fructose under chronic hyperglycemic conditions. GO and MGO form advanced glycation end products which lead to an increased potential for developing inflammatory diseases. In the current study, we have investigated the protective effects of ferulic acid and related polyphenols e.g., caffeic acid, p-coumaric acid, methyl ferulate, ethyl ferulate, and ferulaldehyde on GO- or MGO-induced cytotoxicity and oxidative stress (ROS formation, protein carbonylation and mitochondrial membrane potential maintenance) in freshly isolated rat hepatocytes. To investigate and compare the protective effects of ferulic acid and related polyphenols against GO- or MGO-induced toxicity, five hepatocyte models were used: (a) control hepatocytes, (b) GSH-depleted hepatocytes, (c) catalase-inhibited hepatocytes, (d) aldehyde dehydrogenase (ALDH2)-inhibited hepatocytes, and (e) hepatocyte inflammation system (a non-toxic H2O2-generating system). All of the polyphenols tested significantly decreased GO- or MGO-induced cytotoxicity, ROS formation and improved mitochondrial membrane potential in these models. The rank order of their effectiveness was caffeic acid∼ferulaldehyde>ferulic acid>ethyl ferulate>methyl ferulate>p-coumaric acid. Ferulic acid was found to decrease protein carbonylation in GSH-depleted hepatocytes. This study suggests that ferulic acid and related polyphenols can be used therapeutically to inhibit or decrease GO- or MGO-induced hepatotoxicity.

  7. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae

    PubMed Central

    Adeboye, Peter Temitope; Bettiga, Maurizio; Olsson, Lisbeth

    2017-01-01

    The ability of Saccharomyces cerevisiae to catabolize phenolic compounds remains to be fully elucidated. Conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae under aerobic conditions was previously reported. A conversion pathway was also proposed. In the present study, possible enzymes involved in the reported conversion were investigated. Aldehyde dehydrogenase Ald5, phenylacrylic acid decarboxylase Pad1, and alcohol acetyltransferases Atf1 and Atf2, were hypothesised to be involved. Corresponding genes for the four enzymes were overexpressed in a S. cerevisiae strain named APT_1. The ability of APT_1 to tolerate and convert the three phenolic compounds was tested. APT_1 was also compared to strains B_CALD heterologously expressing coniferyl aldehyde dehydrogenase from Pseudomonas, and an ald5Δ strain, all previously reported. APT_1 exhibited the fastest conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid. Using the intermediates and conversion products of each compound, the catabolic route of coniferyl aldehyde, ferulic acid and p-coumaric acid in S. cerevisiae was studied in greater detail. PMID:28205618

  8. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria.

    PubMed

    Borges, Anabela; Saavedra, Maria J; Simões, Manuel

    2012-01-01

    The activity of two phenolic acids, gallic acid (GA) and ferulic acid (FA) at 1000 μg ml(-1), was evaluated on the prevention and control of biofilms formed by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. In addition, the effect of the two phenolic acids was tested on planktonic cell susceptibility, bacterial motility and adhesion. Biofilm prevention and control were tested using a microtiter plate assay and the effect of the phenolic acids was assessed on biofilm mass (crystal violet staining) and on the quantification of metabolic activity (alamar blue assay). The minimum bactericidal concentration for P. aeruginosa was 500 μg ml(-1) (for both phenolic acids), whilst for E. coli it was 2500 μg ml(-1) (FA) and 5000 μg ml(-1) (GA), for L. monocytogenes it was >5000 μg ml(-1) (for both phenolic acids), and for S. aureus it was 5000 μg ml(-1) (FA) and >5000 μg ml(-1) (GA). GA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. FA caused total inhibition of swimming (L. monocytogenes) and swarming (L. monocytogenes and E. coli) motilities. Colony spreading of S. aureus was completely inhibited by FA. The interference of GA and FA with bacterial adhesion was evaluated by the determination of the free energy of adhesion. Adhesion was less favorable when the bacteria were exposed to GA (P. aeruginosa, S. aureus and L. monocytogenes) and FA (P. aeruginosa and S. aureus). Both phenolics had preventive action on biofilm formation and showed a higher potential to reduce the mass of biofilms formed by the Gram-negative bacteria. GA and FA promoted reductions in biofilm activity >70% for all the biofilms tested. The two phenolic acids demonstrated the potential to inhibit bacterial motility and to prevent and control biofilms of four important human pathogenic bacteria. This study also emphasizes the potential of phytochemicals as an emergent source of biofilm

  9. Ferulic acid chronic treatment exerts antidepressant-like effect: role of antioxidant defense system.

    PubMed

    Lenzi, Juliana; Rodrigues, Andre Felipe; Rós, Adriana de Sousa; de Castro, Amanda Blanski; de Castro, Bianca Blanski; de Lima, Daniela Delwing; Magro, Débora Delwing Dal; Zeni, Ana Lúcia Bertarello

    2015-12-01

    Oxidative stress has been claimed a place in pathophysiology of depression; however, the details of the neurobiology of this condition remains incompletely understood. Recently, treatments employing antioxidants have been thoroughly researched. Ferulic acid (FA) is a phenolic compound with antioxidant and antidepressant-like effects. Herein, we investigated the involvement of the antioxidant activity of chronic oral FA treatment in its antidepressant-like effect using the tail suspension test (TST) and the forced swimming test (FST) in mice. The modulation of antioxidant system in blood, hippocampus and cerebral cortex was assessed after stress induction through TST and FST. Our results show that FA at the dose of 1 mg/kg has antidepressant-like effect without affecting locomotor activity. The stress induced by despair tests was able to decrease significantly the activities of superoxide dismutase (SOD) in the blood, catalase (CAT) in the blood and cerebral cortex and glutathione peroxidase (GSH-Px) in the cerebral cortex. Thiobarbituric acid-reactive substances (TBA-RS) levels were increased significantly in the cerebral cortex. Furthermore, the results show that FA was capable to increase SOD, CAT and GSH-Px activities and decrease TBA-RS levels in the blood, hippocampus and cerebral cortex. These findings demonstrated that FA treatment in low doses is capable to exert antidepressant-like effect with the involvement of the antioxidant defense system modulation.

  10. Protective Effects of Ferulic Acid against Chronic Cerebral Hypoperfusion-Induced Swallowing Dysfunction in Rats

    PubMed Central

    Asano, Takashi; Matsuzaki, Hirokazu; Iwata, Naohiro; Xuan, Meiyan; Kamiuchi, Shinya; Hibino, Yasuhide; Sakamoto, Takeshi; Okazaki, Mari

    2017-01-01

    Ferulic acid (FA), a phenolic phytochemical, has been reported to exert antioxidative and neuroprotective effects. In this study, we investigated the protective effects of FA against the dysfunction of the swallowing reflex induced by ligation of bilateral common carotid arteries (2VO) in rats. In 2VO rats, topical administration of water or citric acid to the pharyngolaryngeal region evoked a diminished number of swallowing events with prolonged latency compared to sham-operated control rats. 2VO rats had an increased level of superoxide anion radical, and decreased dopamine and tyrosine hydroxylase enzyme levels in the striatum, suggesting that 2VO augmented cerebral oxidative stress and impaired the striatal dopaminergic system. Furthermore, substance P (SP) expression in the laryngopharyngeal mucosa, which is believed to be positively regulated by dopaminergic signaling in the basal ganglia, was decreased in 2VO rats. Oral treatment with FA (30 mg/kg) for 3 weeks (from one week before 2VO to two weeks after) improved the swallowing reflex and maintained levels of striatal dopamine and laryngopharyngeal SP expression in 2VO rats. These results suggest that FA maintains the swallowing reflex by protecting the dopamine-SP system against ischemia-induced oxidative damage in 2VO rats. PMID:28273833

  11. Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles.

    PubMed

    Yang, Jian-Mao; Zha, Liu-sheng; Yu, Deng-Guang; Liu, Jianyun

    2013-02-01

    This study investigated drug/zein composite fibers prepared using a modified coaxial electrospinning process. With unspinnable acetic acid as sheath liquid and an electrospinnable co-dissolving solution of zein and ferulic acid (FA) as core fluid, the modified coaxial process could run smoothly and continuously without any clogging. Compared with those from the single-fluid electrospinning process, the FA-loaded zein fibers from the modified process were rounder and possessed higher quality in terms of diameter and distribution, as verified by scanning electron microscopic observations of their surface and cross-section. Differential scanning calorimetry and X-ray diffraction showed that fibers from both processes similarly formed a composite with the FA present in the zein matrix in an amorphous state. The driving force of encapsulation of FA into zein fibers was hydrogen bonding, as evidenced by the attenuated total reflectance Fourier transform infrared spectra. However, in vitro dissolution tests demonstrated that the fibers from the coaxial process exhibited better sustained-release profiles with a smaller initial burst effect and less tailing-off release compared with those from the single process. The modified coaxial electrospinning process is a useful tool for generating nanofibers with higher quality and improved functional performance.

  12. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system.

    PubMed

    Dhamole, Pradip B; Demanna, Dhanashree; Desai, S A

    2014-09-01

    Ferulic acid (FA) and p-coumaric acid (pCA) are high-value products that can be obtained by alkaline hydrolysis of lignocellulose. Present work explores the potential of surfactant-based cloud-point extraction (CPE) for FA and pCA extraction from corn cob hydrolysate. More than 90 % (w/w) extraction of both FA and pCA was achieved from model system with L92. The partition coefficient of FA and pCA in L92 aqueous phase system was 35 and 55, respectively. A significant enrichment (8-10-fold) of both FA and pCA was achieved in surfactant-rich phase. Furthermore, the downstream process volume was reduced by 10 to 13 times. Optimized conditions (5 % v/v L92 and pH 3.0) resulted into 85 and 89 % extraction of FA and p-CA, respectively, from alkaline corn cob hydrolysate. Biocompatibility tests were carried out for L92 for ethanol fermentation and found to be biocompatible. Thus, the new surfactant-based CPE system not only concentrated FA and pCA but also reduced the process volume significantly. Further, aqueous phase containing sugars can be used for ethanol fermentation.

  13. Wheat bran promotes enrichment within the human colonic microbiota of butyrate‐producing bacteria that release ferulic acid

    PubMed Central

    Duncan, Sylvia H.; Russell, Wendy R.; Quartieri, Andrea; Rossi, Maddalena; Parkhill, Julian; Flint, Harry J.

    2016-01-01

    Summary Cereal fibres such as wheat bran are considered to offer human health benefits via their impact on the intestinal microbiota. We show here by 16S rRNA gene‐based community analysis that providing amylase‐pretreated wheat bran as the sole added energy source to human intestinal microbial communities in anaerobic fermentors leads to the selective and progressive enrichment of a small number of bacterial species. In particular, OTUs corresponding to uncultured Lachnospiraceae (Firmicutes) related to E ubacterium xylanophilum and B utyrivibrio spp. were strongly enriched (by five to 160 fold) over 48 h in four independent experiments performed with different faecal inocula, while nine other Firmicutes OTUs showed > 5‐fold enrichment in at least one experiment. Ferulic acid was released from the wheat bran during degradation but was rapidly converted to phenylpropionic acid derivatives via hydrogenation, demethylation and dehydroxylation to give metabolites that are detected in human faecal samples. Pure culture work using bacterial isolates related to the enriched OTUs, including several butyrate‐producers, demonstrated that the strains caused substrate weight loss and released ferulic acid, but with limited further conversion. We conclude that breakdown of wheat bran involves specialist primary degraders while the conversion of released ferulic acid is likely to involve a multi‐species pathway. PMID:26636660

  14. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice.

    PubMed

    Naowaboot, Jarinyaporn; Piyabhan, Pritsana; Munkong, Narongsuk; Parklak, Wason; Pannangpetch, Patchareewan

    2016-02-01

    Ferulic acid (FA) is a plant phenolic acid that has several pharmacological effects including antihyperglycaemic activity. Thus, the objective of this study is to investigate the effect of FA on glucose and lipid metabolism in high-fat diet (HFD)-induced obese mice. Institute for Cancer Research (ICR) mice were fed a HFD (45 kcal% fat) for 16 weeks. At the ninth week of induction, the obese mice were orally administered with daily FA doses of 25 and 50 mg/kg for the next eight weeks. The results show that FA significantly reduced the elevated blood glucose and serum leptin levels, lowered the insulin resistance, and increased the serum adiponectin level. Moreover, serum lipid level, and liver cholesterol and triglyceride accumulations were also reduced. The histological examination showed clear evidence of a decrease in the lipid droplets in liver tissues and smaller size of fat cells in the adipose tissue in the obese mice treated with FA. Interestingly, FA reduced the expression of hepatic lipogenic genes such as sterol regulatory element-binding protein 1c (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). It could also up-regulate hepatic carnitine palmitoyltransferase 1a (CPT1a) gene and peroxisome proliferator-activated receptor alpha (PPARα) proteins. The FA treatment was also found to suppress the protein expressions of hepatic gluconeogenic enzymes, phosphoenolpyruvate carboxylase (PEPCK) and glucose-6-phosphatase (G6Pase). In conclusion, the findings of this study demonstrate that FA improves the glucose and lipid homeostasis in HFD-induced obese mice probably via modulating the expression of lipogenic and gluconeogenic genes in liver tissues.

  15. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach

    PubMed Central

    Gong, Amy G. W.; Huang, Vincent Y.; Wang, Huai Y.; Lin, Huang Q.; Dong, Tina T. X.; Tsim, Karl W. K.

    2016-01-01

    Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR), was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT), a herbal decoction composing of Astragali Radix (AR) and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i) decreasing the reactive oxygen species (ROS) formation, detected by laser confocal; (ii) increasing of the activation of Akt; (iii) increasing the transcriptional activity of anti-oxidant response element (ARE); and (iv) increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions. PMID:27824860

  16. An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (Xy1D) release a 5-5' ferulic dehydrodimer (diferulic acid) from barley and wheat cell walls.

    PubMed Central

    Bartolomé, B; Faulds, C B; Kroon, P A; Waldron, K; Gilbert, H J; Hazlewood, G; Williamson, G

    1997-01-01

    Diferulate esters strengthen and cross-link primary plant cell walls and help to defend the plant from invading microbes. Phenolics also limit the degradation of plant cell walls by saprophytic microbes and by anaerobic microorganisms in the rumen. We show that incubation of wheat and barley cell walls with ferulic acid esterase from Aspergillus niger (FAE-III) or Pseudomonas fluorescens (Xy1D), together with either xylanase I from Aspergillus niger, Trichoderma viride xylanase, or xylanase from Pseudomonas fluorescens (XylA), leads to release of the ferulate dimer 5-5' diFA [(E,E)-4,4'-dihydroxy-5,5'-dimethoxy-3,3'-bicinnamic acid]. Direct saponification of the cell walls without enzyme treatment released the following five identifiable ferulate dimers (in order of abundance): (Z)-beta-(4-[(E)-2-carboxyvinyl]-2-methoxyphenoxy)-4-hydroxy-3-methoxycinnamic acid, trans-5-[(E)-2-carboxyvinyl]-2-(4-hydroxy-3-methoxy-phenyl) -7-methoxy-2, 3-dihydrobenzofuran-3-carboxylic acid, 5-5' diFA, (E,E)-4, 4'-dihydroxy-3, 5'-dimethoxy-beta, 3'-bicinnamic acid, and trans-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl) -6-methoxy-1, 2-dihydronaphthalene-2, 3-dicarboxylic acid. Incubation of the wheat or barley cell walls with xylanase, followed by saponification of the solubilized fraction, yielded 5-5'diFA and, in some cases, certain of the above dimers, depending on the xylanase used. These experiments demonstrate that FAE-III and XYLD specifically release only esters of 5-5'diFA from either xylanase-treated or insoluble fractions of cell walls, even though other esterified dimers were solubilized by preincubation with xylanase. It is also concluded that the esterified dimer content of the xylanase-solubilized fraction depends on the source of the xylanase. PMID:8979352

  17. Ferulic acid inhibits gamma radiation-induced DNA strand breaks and enhances the survival of mice.

    PubMed

    Maurya, Dharmendra Kumar; Devasagayam, Thomas Paul Asir

    2013-02-01

    Ferulic acid (FA) is a monophenolic phenylpropanoid occurring in plant products such as rice bran, green tea, and coffee beans. It has been shown to have significant antioxidant effects in many studies. In the present study, we show that intraperitoneal administration of FA at a dose of 50 mg/kg body weight 1 hour prior to or immediately after whole-body γ-irradiation of mice with 4 Gy results in considerable reduction in the micronuclei formation in peripheral blood reticulocytes. Administration of the same amount of FA immediately after 4 Gy γ-irradiation showed significant decrease in the amount of DNA strand breaks in murine peripheral blood leukocytes and bone marrow cells as examined by comet assay. Further, immunostaining of mouse splenic lymphocytes for phspho-γH2AX was carried out, and it was observed that FA inhibits the γH2AX foci formation. Finally, the survival of mice upon 6, 8, and 10 Gy γ-ray exposure was monitored. FA enhances the survival of mice by a factor of 2.5 at a dose of 6 Gy γ-radiation but not at higher doses. In conclusion, FA has protective potential in both pre- and postirradiation exposure scenarios and enhances the survival of mice possibly by decreasing DNA damage as examined by γH2AX foci, micronuclei formation, and comet assay.

  18. Ultrasensitive Detection of Ferulic Acid Using Poly(diallyldimethylammonium chloride) Functionalized Graphene-Based Electrochemical Sensor

    PubMed Central

    Liu, Lin-jie; Gao, Xia; Zhang, Pei; Feng, Shi-lan; Hu, Fang-di; Li, Ying-dong; Wang, Chun-ming

    2014-01-01

    The electrochemical redox of ferulic acid (FA) was investigated systematically by cyclic voltammetry (CV) with a poly(diallyldimethylammonium chloride) functionalized graphene-modified glassy carbon electrode (PDDA-G/GCE) as a working electrode. A simple and sensitive differential pulse voltammetry (DPV) technique was proposed for the direct quantitative determination of FA in Angelica sinensis and spiked human urine samples for the first time. The dependence of the intensities of currents and potentials on nature of the supporting electrolyte, pH, scan rate, and concentration was investigated. Under optimal conditions, the proposed sensor exhibited excellent electrochemical sensitivity to FA, and the oxidation peak current was proportional to FA concentration in the range of 8.95 × 10−8 M ~5.29 × 10−5 M, with a relatively low detection limit of 4.42 × 10−8 M. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. Besides, it was applied to detect FA in Angelica sinensis and biological samples with satisfactory results, making it a potential alternative tool for the quantitative detection of FA in pharmaceutical analysis. PMID:24900937

  19. Blood compatibility of a ferulic acid (FA)-eluting PHBHHx system for biodegradable magnesium stent application.

    PubMed

    Zhang, Erlin; Shen, Feng

    2015-01-01

    Magnesium stent has shown potential application as a new biodegradable stent. However, the fast degradation of magnesium stent limited its clinic application. Recently, a biodegradable and drug-eluting coating system was designed to prevent magnesium from fast degradation by adding ferulic acid (FA) in poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by a physical method. In vitro study has demonstrated that the FA-eluting system exhibited strong promotion to the endothelialization, which might be a choice for the stent application. In this paper, the hemolysis rate, the plasma recalcification time (PRT), the plasma prothrombin time (PT) and the kinetic clotting time of the FA-eluting films were investigated and the platelet adhesion was observed in order to assess the blood compatibility of the FA-eluting PHBHHx films in comparison with PHBHHx film. The results have shown that the addition of FA had no influence on the hemolysis, but prolonged PRT, PT and the clotting time and reduced the platelet adhesion and activation, displaying that the FA-eluting PHBHHx exhibited better blood compatibility than PHBHHx. In addition, the effect of alkali treatment on the blood compatibility of FA-eluting PHBHHx was also studied. It was indicated that alkali treatment had no effect on the hemolysis and the coagulation time, but enhanced slightly the platelet adhesion. All these demonstrated that FA-eluting PHBHHx film had good blood compatibility and might be a candidate surface coating for the biodegradable magnesium stent.

  20. Ferulic Acid: A Hope for Alzheimer’s Disease Therapy from Plants

    PubMed Central

    Sgarbossa, Antonella; Giacomazza, Daniela; di Carlo, Marta

    2015-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the deposition of extracellular amyloid-beta peptide (Aβ) and intracellular neurofibrillar tangles, associated with loss of neurons in the brain and consequent learning and memory deficits. Aβ is the major component of the senile plaques and is believed to play a central role in the development and progress of AD both in oligomer and fibril forms. Inhibition of the formation of Aβ fibrils as well as the destabilization of preformed Aβ in the Central Nervous System (CNS) would be an attractive therapeutic target for the treatment of AD. Moreover, a large number of studies indicate that oxidative stress and mitochondrial dysfunction may play an important role in AD and their suppression or reduction via antioxidant use could be a promising preventive or therapeutic intervention for AD patients. Many antioxidant compounds have been demonstrated to protect the brain from Aβ neurotoxicity. Ferulic acid (FA) is an antioxidant naturally present in plant cell walls with anti-inflammatory activities and it is able to act as a free radical scavenger. Here we present the role of FA as inhibitor or disaggregating agent of amyloid structures as well as its effects on biological models. PMID:26184304

  1. Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate.

    PubMed

    Cheng, Yung-Hsin; Yang, Shu-Hua; Liu, Chia-Ching; Gefen, Amit; Lin, Feng-Huei

    2013-02-15

    Reactive oxygen species-induced oxidative stress is involved in apoptosis of nucleus pulposus (NP) cells that can alter cellular phenotype and accelerate disc degeneration. Ferulic acid (FA) possesses an excellent antioxidant and anti-inflammatory properties. In the study, we developed the thermosensitive FA-gelatin/chitosan/glycerol phosphate (FA-G/C/GP) hydrogel which was applied as a sustained release system of FA to treat NP cells from the damage caused by oxidative stress. The gelation temperature of the FA-G/C/GP hydrogel was 32.17 °C. NP cells submitted to oxidative stress promoted by H(2)O(2), and post-treated with FA-G/C/GP exhibited down-regulation of MMP-3 and up-regulation aggrecan and type II collagen in mRNA level. The sulfated-glycosaminoglycan production was increased and the apoptosis was inhibited in the post-treatment group. The results suggest that the thermosensitive FA-G/C/GP hydrogel can treat NP cells from the damage caused by oxidative stress and may apply in minimally invasive surgery for NP regeneration.

  2. Ferulic acid-coupled chitosan: thermal stability and utilization as an antioxidant for biodegradable active packaging film.

    PubMed

    Woranuch, Sarekha; Yoksan, Rangrong; Akashi, Mitsuru

    2015-01-22

    The aim of the present research was to study the thermal stability of ferulic acid after coupling onto chitosan, and the possibility of using ferulic acid-coupled chitosan (FA-CTS) as an antioxidant for biodegradable active packaging film. FA-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperatures up to 150°C followed by blown film extrusion at temperatures up to 175°C. Although incorporation of FA-CTS with a content of 0.02-0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the biodegradable films possessed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of film containing FA-CTS were higher than those of film containing naked ferulic acid, by about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by the addition of FA-CTS with a content of 0.02-0.08% (w/w). The above results suggested that FA-CTS could potentially be used as an antioxidant for active packaging film.

  3. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro.

    PubMed

    Nasr Bouzaiene, Nouha; Kilani Jaziri, Soumaya; Kovacic, Hervé; Chekir-Ghedira, Leila; Ghedira, Kamel; Luis, José

    2015-11-05

    Reactive oxygen species are well-known mediators of various biological responses. In this study, we examined the effect of three phenolic acids, caffeic, coumaric and ferulic acids, on superoxide anion production, adhesion and migration of human lung (A549) and colon adenocarcinoma (HT29-D4) cancer cell lines. Proliferation of both tumor cells was inhibited by phenolic acids. Caffeic, coumaric and ferulic acids also significantly inhibited superoxide production in A549 and HT29-D4 cells. Superoxide anion production decreased by 92% and 77% at the highest tested concentration (200 µM) of caffeic acid in A549 and HT29-D4 cell lines respectively. Furthermore, A549 and HT29-D4 cell adhesion was reduced by 77.9% and 79.8% respectively at the higher tested concentration of ferulic acid (200 µM). Migration assay performed towards A549 cell line, revealed that tested compounds reduced significantly cell migration. At the highest concentration tested (200 µM), the covered surface was 7.7%, 9.5% and 35% for caffeic, coumaric or ferulic acids, respectively. These results demonstrate that caffeic, coumaric and ferulic acids may participate as active ingredients in anticancer agents against lung and colon cancer development, at adhesion and migration steps of tumor progression.

  4. Identification of two feruloyl esterases in Dickeya dadantii 3937 and induction of the major feruloyl esterase and of pectate lyases by ferulic acid.

    PubMed

    Hassan, Susan; Hugouvieux-Cotte-Pattat, Nicole

    2011-02-01

    The plant-pathogenic bacterium Dickeya dadantii (formerly Erwinia chrysanthemi) produces a large array of plant cell wall-degrading enzymes. Using an in situ detection test, we showed that it produces two feruloyl esterases, FaeD and FaeT. These enzymes cleave the ester link between ferulate and the pectic or xylan chains. FaeD and FaeT belong to the carbohydrate esterase family CE10, and they are the first two feruloyl esterases to be identified in this family. Cleavage of synthetic substrates revealed strong activation of FaeD and FaeT by ferulic acid. The gene faeT appeared to be weakly expressed, and its product, FaeT, is a cytoplasmic protein. In contrast, the gene faeD is strongly induced in the presence of ferulic acid, and FaeD is an extracellular protein secreted by the Out system, responsible for pectinase secretion. The product of the adjacent gene faeR is involved in the positive control of faeD in response to ferulic acid. Moreover, ferulic acid acts in synergy with polygalacturonate to induce pectate lyases, the main virulence determinant of soft rot disease. Feruloyl esterases dissociate internal cross-links in the polysaccharide network of the plant cell wall, suppress the polysaccharide esterifications, and liberate ferulic acid, which contributes to the induction of pectate lyases. Together, these effects of feruloyl esterases could facilitate soft rot disease caused by pectinolytic bacteria.

  5. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.

    PubMed

    Borges, Anabela; Ferreira, Carla; Saavedra, Maria J; Simões, Manuel

    2013-08-01

    The increased resistance of pathogenic microorganisms is frequently attributed to the extreme and inadequate use of antibiotics and transmission of resistance within and between individuals. To counter the emergence of resistant microorganisms, considerable resources have been invested in the search for new antimicrobials. Plants synthesize a diverse array of secondary metabolites (phytochemicals) known to be involved in defense mechanisms, and in the last few years it is recognized that some of these molecules have health beneficial effects, including antimicrobial properties. In this study, the mechanism of action of gallic (GA) and ferulic (FA) acids, a hydroxybenzoic acid and a hydroxycinnamic acid, was assessed on Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Listeria monocytogenes. The targets of antimicrobial action were studied using different bacterial physiological indices: minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), membrane permeabilization, intracellular potassium release, physicochemical surface properties, and surface charge. It was found that FA and GA had antimicrobial activity against the bacteria tested with MIC of 500 μg/mL for P. aeruginosa, 1500 μg/mL for E. coli, 1750 μg/mL for S. aureus, and 2000 μg/mL for L. monocytogenes with GA; 100 μg/mL for E. coli and P. aeruginosa, 1100 μg/mL and 1250 μg/mL for S. aureus and L. monocytogenes, respectively, with FA. The MBC for E. coli was 2500 μg/mL (FA) and 5000 (GA), for S. aureus was 5000 μg/mL (FA) and 5250 μg/mL (GA), for L. monocytogenes was 5300 μg/mL (FA) and 5500 μg/mL (GA), and 500 μg/mL for P. aeruginosa, with both phytochemicals. GA and FA led to irreversible changes in membrane properties (charge, intra and extracellular permeability, and physicochemical properties) through hydrophobicity changes, decrease of negative surface charge, and occurrence of local rupture or pore formation in the cell membranes with

  6. Rice bran oil and oryzanol reduce plasma lipid and lipoprotein cholesterol concentrations and aortic cholesterol ester accumulation to a greater extent than ferulic acid in hypercholesterolemic hamsters.

    PubMed

    Wilson, Thomas A; Nicolosi, Robert J; Woolfrey, Benjamin; Kritchevsky, David

    2007-02-01

    Our laboratory has reported that the hypolipidemic effect of rice bran oil (RBO) is not entirely explained by its fatty acid composition. Because RBO has a greater content of the unsaponifiables, which also lower cholesterol compared to most vegetable oils, we wanted to know whether oryzanol or ferulic acid, two major unsaponifiables in RBO, has a greater cholesterol-lowering activity. Forty-eight F(1)B Golden Syrian hamsters (Mesocricetus auratus) (BioBreeders, Watertown, MA) were group housed (three per cage) in cages with bedding in an air-conditioned facility maintained on a 12-h light/dark cycle. The hamsters were fed a chow-based hypercholesterolemic diet (HCD) containing 10% coconut oil and 0.1% cholesterol for 2 weeks, at which time they were bled after an overnight fast (16 h) and segregated into 4 groups of 12 with similar plasma cholesterol concentrations. Group 1 (control) continued on the HCD, group 2 was fed the HCD containing 10% RBO in place of coconut oil, group 3 was fed the HCD plus 0.5% ferulic acid and group 4 was fed the HCD plus 0.5% oryzanol for an additional 10 weeks. After 10 weeks on the diets, plasma total cholesterol (TC) and non-high-density lipoprotein cholesterol (HDL-C) (very low- and low-density lipoprotein) concentrations were significantly lower in the RBO (-64% and -70%, respectively), the ferulic acid (-22% and -24%, respectively) and the oryzanol (-70% and -77%, respectively) diets compared to control. Plasma TC and non-HDL-C concentrations were also significantly lower in the RBO (-53% and -61%, respectively) and oryzanol (-61% and -70%, respectively) diets compared to the ferulic acid. Compared to control and ferulic acid, plasma HDL-C concentrations were significantly higher in the RBO (10% and 20%, respectively) and oryzanol (13% and 24%, respectively) diets. The ferulic acid diet had significantly lower plasma HDL-C concentrations compared to the control (-9%). The RBO and oryzanol diets were significantly lower for

  7. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.

    PubMed

    Mukai, Nobuhiko; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2014-07-01

    Among industrial yeasts used for alcoholic beverage production, most wine and weizen beer yeasts decarboxylate ferulic acid to 4-vinylguaiacol, which has a smoke-like flavor, whereas sake, shochu, top-fermenting, and bottom-fermenting yeast strains lack this ability. However, the factors underlying this difference among industrial yeasts are not clear. We previously confirmed that both PAD1 (phenylacrylic acid decarboxylase gene, YDR538W) and FDC1 (ferulic acid decarboxylase gene, YDR539W) are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. In the present study, single nucleotide polymorphisms (SNPs) of PAD1 and FDC1 in sake, shochu, wine, weizen, top-fermenting, bottom-fermenting, and laboratory yeast strains were examined to clarify the differences in ferulic acid decarboxylation ability between these types of yeast. For PAD1, a nonsense mutation was observed in the gene sequence of standard top-fermenting yeast. Gene sequence analysis of FDC1 revealed that sake, shochu, and standard top-fermenting yeasts contained a nonsense mutation, whereas a frameshift mutation was identified in the FDC1 gene of bottom-fermenting yeast. No nonsense or frameshift mutations were detected in laboratory, wine, or weizen beer yeast strains. When FDC1 was introduced into sake and shochu yeast strains, the transformants exhibited ferulic acid decarboxylation activity. Our findings indicate that a positive relationship exists between SNPs in PAD1 and FDC1 genes and the ferulic acid decarboxylation ability of industrial yeast strains.

  8. The effects of ferulic acid on the pharmacokinetics of warfarin in rats after biliary drainage

    PubMed Central

    Li, Haigang; Wang, Yang; Fan, Rong; Lv, Huiying; Sun, Hua; Xie, Haitang; Tang, Tao; Luo, Jiekun; Xia, Zian

    2016-01-01

    According to previous research studies, warfarin can be detected in human bile after oral administration. Ferulic acid (FA) is the main bioactive component of many Chinese herbs for the treatment of cardiovascular disease. To elucidate the effects of FA on the pharmacokinetics of warfarin in rats after biliary drainage is necessary. Twenty rats were randomly divided into four groups: Group 1 (WN): healthy rats after the administration of warfarin sodium, Group 2 (WO): a rat model of biliary drainage after the administration of warfarin sodium, Group 3 (WFN): healthy rats after the administration of warfarin sodium and FA, and Group 4 (WFO): a rat model of biliary drainage after the administration of warfarin sodium and FA. Blood samples were collected at different time points after administration. The concentrations of blood samples were determined by ultraperformance liquid chromatography–tandem mass spectrometry. Comparisons between groups were performed according to the main pharmacokinetic parameters calculated by the DAS 2.1.1 software. The pharmacokinetic parameters showed a significant difference between the WN and WO groups, the WO group showed a decrease of 51% and 41.6% in area under the curve from 0 to time (AUC0–t) and peak plasma concentration (Cmax), respectively, whereas time to Cmax (Tmax) was delayed 3.27 folds. There were significant differences between the WFO and WFN groups, the WFO group showed a decrease of 63.8% and 70% in AUC0–t and Cmax, respectively; the delay in Tmax between the WN and WFN groups (mean, from 132–432 minutes) was significantly different; the mean retention time from 0 to time (MRT0–t) between the WO and WFO groups (mean, from 718.31–606.13 minutes) also showed a significant difference. Enterohepatic circulation markedly influences the disposition of warfarin in rats, and FA significantly affected the warfarin disposition in rat plasma. PMID:27462142

  9. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility

    PubMed Central

    2014-01-01

    Background Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. Results In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. Conclusion Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines. PMID:24650274

  10. A novel dextran hydrogel linking trans-ferulic acid for the stabilization and transdermal delivery of vitamin E.

    PubMed

    Cassano, Roberta; Trombino, Sonia; Muzzalupo, Rita; Tavano, Lorena; Picci, Nevio

    2009-05-01

    Long-term exposure of the skin to UV light causes degenerative effects, which can be minimized by using antioxidant formulations. The major challenge in this regard is that a significant amount of antioxidant should reach at the site for effective photoprotection. However, barrier properties of the skin limit their use. In the present study, vitamin E (alpha-tocopherol) was loaded into a dextran hydrogel containing ferulic moieties, covalently linked, to improve its topical delivery, and also to increase its relative poor stability, which is due to direct exposure to UV light. Methacrylic groups were first introduced onto the dextran polymer backbones, then the obtained methacrylated dextran was copolymerized with aminoethyl methacrylate, and subsequently esterificated with trans-ferulic acid. The new biopolymer was characterized by Fourier transform infrared spectroscopy. The values of content of phenolic groups were determined. Its ability in inhibiting lipid peroxidation in rat liver microsomal membranes induced in vitro by a source of free radicals, that is tert-butyl hydroperoxide, was studied. Hydrogel was also characterized for swelling behaviour, vitamin E loading efficiency, release, and deposition on the rabbit skin. Additionally, vitamin E deposition was compared through hydrogels, respectively, containing and not containing trans-ferulic acid. The results showed that ferulate hydrogel was a more effective carrier in protecting vitamin E from photodegradation than hydrogel without antioxidant moieties. Then antioxidant hydrogel could be of potential use for cosmetic and pharmaceutical purposes as carrier of vitamin E that is an antioxidant that reduces erythema, photoaging, photocarcinogenesis, edema, and skin hypersensitivity associated with exposure to ultraviolet B (UVB) radiation, because of its protective effects.

  11. Evaluation of thermo sensitivity of curcumin and quantification of ferulic acid and vanillin as degradation products by a validated HPTLC method.

    PubMed

    Siddiqui, Nasir Ali

    2015-01-01

    Charismatic therapeutic potential of curcumin in biological research have triggered an interest to explore the thermal degradation pattern of curcumin, formation of ferulic acid and vanillin as degraded metabolites at different temperatures in methanol and corn oil. The results revealed 47% w/w loss of curcumin along with formation of 17% w/w vanillin and 9% w/w ferulic acid at boiling temperature of methanol while oil samples show 38.9% w/w loss of curcumin but not confirming the formation of ferulic acid and vanillin. Findings of this study revealed that formation of vanillin in methanol starts around 50°C and its concentration goes on increasing up to 70°C and then further degraded at boiling temperature of methanol. Formation of ferulic acid begins around 60°C and initially increases with rise of temperature and then decreases approaching boiling point of methanol. Vanillin as well as ferulic acid was absent in corn oil samples though degradation of curcumin was observed by reduction in peak area of curcumin. The present study was done by applying a validated high-performance thin-layer chromatography method. The method involved glass-backed HPTLC plates precoated with silica gel 60F254 as the stationary phase and toluene: ethyl acetate: methanol (8:1:1, v/v/v) as mobile phase.

  12. Ferulic acid ethyl ester diminished Complete Freund's Adjuvant-induced incapacitation through antioxidant and anti-inflammatory activity.

    PubMed

    Cunha, Francisco Valmor Macedo; Gomes, Bruno de Sousa; Neto, Benedito de Sousa; Ferreira, Alana Rodrigues; de Sousa, Damião Pergentino; de Carvalho e Martins, Maria do Carmo; Oliveira, Francisco de Assis

    2016-01-01

    Ferulic acid ethyl ester (FAEE) is a derivate from ferulic acid which reportedly has antioxidant effect; however, its role on inflammation was unknown. In this study, we investigated the orally administered FAEE anti-inflammatory activity on experimental inflammation models and Complete Freund's Adjuvant (CFA)-induced arthritis in rats. CFA-induced arthritis has been evaluated by incapacitation model and radiographic knee joint records at different observation time. FAEE (po) reduced carrageenan-induced paw edema (p < 0.001) within the 1st to 5th hours at 50 and 100 mg/kg doses. FAEE 50 and 100 mg/kg, po inhibited leukocyte migration into air pouch model (p < 0.001), and myeloperoxidase, superoxide dismutase, and catalase activities (p < 0.001) increased total thiol concentration and decreased the TNF-α and IL-1β concentrations, NO, and thiobarbituric acid reactive species. In the CFA-induced arthritis, FAEE 50 and 100 mg/kg significantly reduced the edema and the elevation paw time, a joint disability parameter, since second hour after arthritis induction (p < 0.001). FAEE presented rat joint protective activity in radiographic records (p < 0.001). The data suggest that the FAEE exerts anti-inflammatory activity by inhibiting leukocyte migration, oxidative stress reduction, and pro-inflammatory cytokines.

  13. Ferulic acid inhibits UVB-radiation induced photocarcinogenesis through modulating inflammatory and apoptotic signaling in Swiss albino mice.

    PubMed

    Ambothi, Kanagalakshmi; Prasad, N Rajendra; Balupillai, Agilan

    2015-08-01

    The aim of this study was to evaluate the photochemopreventive effects of ferulic acid (FA) against chronic ultraviolet-B (290-320 nm) induced oxidative stress, inflammation and angiogenesis in the skin of Swiss albino mice. Chronic UVB exposure (180 mJ/cm(2) for 30 weeks; thrice in a week) induced tumor formation in the mice skin that showed increased expression of carcinogenic and inflammatory markers when compared with the control animals. The intraperitoneal (FAIP) and topical (FAT) administration of FA significantly reduced the incidence of UVB-induced tumor volume and tumor weight in the mice skin. Histopathological studies revealed that both FAIP and FAT administration prevented the UVB-induced hyperplasia, squamous cell carcinoma (SCC) and dysplastic feature in the mice skin. Further, it has been observed that FA treatment reverted chronic UVB-induced oxidative damage (thiobarbituric acid reactive substances, superoxide dismutase, catalase, glutathione peroxidase) accompanied with modulation of vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), TNF-α and IL-6 in the mice skin tumor. FA treatment also modulates mutated p53, Bcl-2 and Bax expressions in the UVB-induced mice skin tumor. Thus, the results of the present study indicate ferulic acid has potential against UVB-induced carcinogenesis in the Swiss albino mice.

  14. Peroxidase-active cell free extract from onion solid wastes: biocatalytic properties and putative pathway of ferulic acid oxidation.

    PubMed

    El Agha, Ayman; Makris, Dimitris P; Kefalas, Panagiotis

    2008-09-01

    The exploitation of food residuals can be a major contribution in reducing the polluting load of food industry waste and in developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bioorganic molecules, and thus they may have potential uses in several biocatalytic processes, including green organic synthesis, modification of food physicochemical properties, bioremediation, etc. Although the use of bacterial and fungal enzymes has gained attention in studies pertaining to biocatalytic applications, plant enzymes have been given less consideration or even disregarded. Therefore, we investigated the use of a crude peroxidase preparation from solid onion by-products for oxidizing ferulic acid, a widespread phenolic acid, various derivatives of which may occur in food wastes. The highest enzyme activity was observed at a pH value of 4, but considerable activity was retained up to a pH value of 6. Favorable temperatures for increased activity varied between 20-40 degrees C, 30 degrees C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H(2)O(2)-treated ferulic acid solution showed the formation of a dimer as a major oxidation product.

  15. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.

    PubMed

    Graf, Nadja; Altenbuchner, Josef

    2014-01-01

    Vanillin is one of the most important flavoring agents used today. That is why many efforts have been made on biotechnological production from natural abundant substrates. In this work, the nonpathogenic Pseudomonas putida strain KT2440 was genetically optimized to convert ferulic acid to vanillin. Deletion of the vanillin dehydrogenase gene (vdh) was not sufficient to prevent vanillin degradation. Additional inactivation of a molybdate transporter, identified by transposon mutagenesis, led to a strain incapable to grow on vanillin as sole carbon source. The bioconversion was optimized by enhanced chromosomal expression of the structural genes for feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech) by introduction of the strong tac promoter system. Further genetic engineering led to high initial conversion rates and molar vanillin yields up to 86% within just 3 h accompanied with very low by-product levels. To our knowledge, this represents the highest productivity and molar vanillin yield gained with a Pseudomonas strain so far. Together with its high tolerance for ferulic acid, the developed, plasmid-free P. putida strain represents a promising candidate for the biotechnological production of vanillin.

  16. Ferulic acid prevents methylglyoxal-induced protein glycation, DNA damage, and apoptosis in pancreatic β-cells.

    PubMed

    Sompong, Weerachat; Cheng, Henrique; Adisakwattana, Sirichai

    2017-02-01

    Methylglyoxal (MG) can react with amino acids of proteins to induce protein glycation and consequently the formation of advanced glycation end-products (AGEs). Previous studies reported that ferulic acid (FA) prevented glucose-, fructose-, and ribose-induced protein glycation. In this study, FA (0.1-1 mM) inhibited MG-induced protein glycation and oxidative protein damage in bovine serum albumin (BSA). Furthermore, FA (0.0125-0.2 mM) protected against lysine/MG-mediated oxidative DNA damage, thereby inhibiting superoxide anion and hydroxyl radical generation during lysine and MG reaction. In addition, FA did not have the ability to trap MG. Finally, FA (0.1 mM) pretreatment attenuated MG-induced decrease in cell viability and prevented MG-induced cell apoptosis in pancreatic β-cells. The results suggest that FA is capable of protecting β-cells from MG-induced cell damage during diabetes.

  17. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  18. Arabidopsis Deficient in Cutin Ferulate Encodes a Transferase Required for Feruloylation of ω-Hydroxy Fatty Acids in Cutin Polyester1[W][OA

    PubMed Central

    Rautengarten, Carsten; Ebert, Berit; Ouellet, Mario; Nafisi, Majse; Baidoo, Edward E.K.; Benke, Peter; Stranne, Maria; Mukhopadhyay, Aindrila; Keasling, Jay D.; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2012-01-01

    The cuticle is a complex aliphatic polymeric layer connected to the cell wall and covers surfaces of all aerial plant organs. The cuticle prevents nonstomatal water loss, regulates gas exchange, and acts as a barrier against pathogen infection. The cuticle is synthesized by epidermal cells and predominantly consists of an aliphatic polymer matrix (cutin) and intracuticular and epicuticular waxes. Cutin monomers are primarily C16 and C18 unsubstituted, ω-hydroxy, and α,ω-dicarboxylic fatty acids. Phenolics such as ferulate and p-coumarate esters also contribute to a minor extent to the cutin polymer. Here, we present the characterization of a novel acyl-coenzyme A (CoA)-dependent acyl-transferase that is encoded by a gene designated Deficient in Cutin Ferulate (DCF). The DCF protein is responsible for the feruloylation of ω-hydroxy fatty acids incorporated into the cutin polymer of aerial Arabidopsis (Arabidopsis thaliana) organs. The enzyme specifically transfers hydroxycinnamic acids using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs, preferentially feruloyl-CoA and sinapoyl-CoA, as acyl donors in vitro. Arabidopsis mutant lines carrying DCF loss-of-function alleles are devoid of rosette leaf cutin ferulate and exhibit a 50% reduction in ferulic acid content in stem insoluble residues. DCF is specifically expressed in the epidermis throughout all green Arabidopsis organs. The DCF protein localizes to the cytosol, suggesting that the feruloylation of cutin monomers takes place in the cytoplasm. PMID:22158675

  19. Role of exogenously supplied ferulic and p-coumaric acids in mimicking the mode of action of acetolactate synthase inhibiting herbicides.

    PubMed

    Orcaray, Luis; Igal, María; Zabalza, Ana; Royuela, Mercedes

    2011-09-28

    Chlorsulfuron and imazethapyr (herbicides that inhibit acetolactate synthase; ALS, EC 4.1.3.18) produced a strong accumulation of hydroxycinnamic acids that was related to the induction of the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (EC 2.5.2.54). The exogenous application of two hydroxycinnamic acids, ferulic and p-coumaric acids, to pea plants resulted in their internal accumulation, arrested growth, carbohydrate and quinate accumulation in the leaves, and the induction of ethanolic fermentation. These effects resemble some of the physiological effects detected after acetolactate synthase inhibition and suggest important roles for ferulic and p-coumaric acids in the mode of action of herbicides inhibiting the biosynthesis of branched chain amino acids.

  20. Natural product-inspired esters and amides of ferulic and caffeic acid as dual inhibitors of HIV-1 reverse transcriptase.

    PubMed

    Sonar, Vijay P; Corona, Angela; Distinto, Simona; Maccioni, Elias; Meleddu, Rita; Fois, Benedetta; Floris, Costantino; Malpure, Nilesh V; Alcaro, Stefano; Tramontano, Enzo; Cottiglia, Filippo

    2017-04-21

    Using an HIV-1 Reverse Transcriptase (RT)-associated RNase H inhibition assay as lead, bioguided fractionation of the dichloromethane extract of the Ocimum sanctum leaves led to the isolation of five triterpenes (1-5) along with three 3-methoxy-4-hydroxy phenyl derivatives (6-8). The structure of this isolates were determined by 1D and 2D NMR experiments as well as ESI-MS. Tetradecyl ferulate (8) showed an interesting RNase H IC50 value of 12.4 μM and due to the synthetic accessibility of this secondary metabolite, a structure-activity relationship study was carried out. A series of esters and amides of ferulic and caffeic acids were synthesized and, among all, the most active was N-oleylcaffeamide displaying a strong inhibitory activity towards both RT-associated functions, ribonuclease H and DNA polymerase. Molecular modeling studies together with Yonetani-Theorell analysis, demonstrated that N-oleylcaffeamide is able to bind both two allosteric site located one close to the NNRTI binding pocket and the other close to RNase H catalytic site.

  1. Host-guest inclusion system of ferulic acid with p-Sulfonatocalix[n]arenes: Preparation, characterization and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Chao, Jianbin; Wang, Huijuan; Song, Kailun; Wang, Yongzhao; Zuo, Ying; Zhang, Liwei; Zhang, Bingtai

    2017-02-01

    The inclusion complexes of ferulic acid (FA) with p-Sulfonatocalix[n]arenes (SCXn, n = 4, 6, 8) were prepared and characterized both in the solid state and in solution using fluorescence spectroscopy, 1H nuclear magnetic resonance (1H NMR), attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and differential scanning calorimetry (DSC). The results show that FA is able to form inclusion complexes with SCXn in a molar ratio of 1:1, causing a significant decrease in the fluorescence intensity of FA. The association constant of the inclusion complexes was calculated from the fluorescence titration data. 1H NMR spectroscopy analysis demonstrates that the aromatic ring and methoxy group of FA are partially covered by SCXn.

  2. Use of an amorphous iron oxide hydrated as catalyst for hydrogen peroxide oxidation of ferulic acid in water.

    PubMed

    Andreozzi, Roberto; Canterino, Marisa; Caprio, Vincenzo; Di Somma, Ilaria; Marotta, Raffaele

    2008-04-01

    The abatement of ferulic acid (FA), a polyphenolic constituent of olive mill wastewater, is studied in the pH range 5.0-7.0 by using hydrogen peroxide and an amorphous iron oxide as catalyst. The effect of pH, catalyst load, hydrogen peroxide and substrate starting concentrations is assessed during the investigation. A suitable reaction scheme is developed and used to build a mathematical model which satisfactorily describes the system's behavior. Kinetic constants for the proposed scheme as well as the total active site concentration of the catalyst in the studied pH range are estimated. The occurrence of internal mass-transfer limitation for the adopted granulometric fraction of the catalyst is demonstrated.

  3. Data on cell cycle in breast cancer cell line, MDA-MB-231 with ferulic acid treatment.

    PubMed

    Park, Eunmi

    2016-06-01

    Inhibition to repair DNA metabolism to respond to damaged DNA can lead to genetic instability, resulting in cancer cell death (Audeh et al., 2010; Bryant et al., 2005; Farmer et al., 2005; Lukas et al., 2003; Tutt et al., 2010) [1], [2], [6], [8], [11]. Despite of various studies demonstrating efficiency of combination therapy through down-regulation of DNA repair pathway, the suppression effects of DNA repair pathway by chemotherapeutic agents from natural bioactive compounds are less understood (Eitsuka et al., 2014; Kastan et al., 2004; Kawabata et al., 2000; Mancuso et al., 2014) [5], [7], [9]. Here, the data shows that ferulic acid reduced the S-phases post to UV treatment in breast cancer cells and was hypersensitive in breast cancer cells, MDA-MB-231.

  4. Biodegradable Ferulic Acid-containing Poly(anhydride-ester): Degradation Products with Controlled Release and Sustained Antioxidant Activity

    PubMed Central

    Ouimet, Michelle A.; Griffin, Jeremy; Carbone-Howell, Ashley L.; Wu, Wen-Hsuan; Stebbins, Nicholas D.; Di, Rong; Uhrich, Kathryn E.

    2013-01-01

    Ferulic acid (FA) is an antioxidant and photoprotective agent used in biomedical and cosmetic formulations to prevent skin cancer and senescence. Although FA exhibits numerous health benefits, physicochemical instability leading to decomposition hinders its efficacy. To minimize inherent decomposition, a FA-containing biodegradable polymer was prepared via solution polymerization to chemically incorporate FA into a poly(anhydride-ester). The polymer was characterized using nuclear magnetic resonance and infrared spectroscopies. The molecular weight and thermal properties were also determined. In vitro studies demonstrated that the polymer was hydrolytically degradable, thus providing controlled release of the chemically incorporated bioactive with no detectable decomposition. The polymer degradation products were found to exhibit antioxidant and antibacterial activity comparable to free FA and in vitro cell viability studies demonstrated that the polymer is non-cytotoxic towards fibroblasts. This renders the polymer a potential candidate for use as a controlled release system for skin care formulations. PMID:23327626

  5. Biodegradable ferulic acid-containing poly(anhydride-ester): degradation products with controlled release and sustained antioxidant activity.

    PubMed

    Ouimet, Michelle A; Griffin, Jeremy; Carbone-Howell, Ashley L; Wu, Wen-Hsuan; Stebbins, Nicholas D; Di, Rong; Uhrich, Kathryn E

    2013-03-11

    Ferulic acid (FA) is an antioxidant and photoprotective agent used in biomedical and cosmetic formulations to prevent skin cancer and senescence. Although FA exhibits numerous health benefits, physicochemical instability leading to decomposition hinders its efficacy. To minimize inherent decomposition, a FA-containing biodegradable polymer was prepared via solution polymerization to chemically incorporate FA into a poly(anhydride-ester). The polymer was characterized using nuclear magnetic resonance and infrared spectroscopies. The molecular weight and thermal properties were also determined. In vitro studies demonstrated that the polymer was hydrolytically degradable, thus providing controlled release of the chemically incorporated bioactive with no detectable decomposition. The polymer degradation products were found to exhibit antioxidant and antibacterial activity comparable to that of free FA, and in vitro cell viability studies demonstrated that the polymer is noncytotoxic toward fibroblasts. This renders the polymer a potential candidate for use as a controlled release system for skin care formulations.

  6. Isolation, characterization and hypolipidemic activity of ferulic acid in high-fat-diet-induced hyperlipidemia in laboratory rats

    PubMed Central

    Jain, Pankaj G.; Surana, Sanjay J.

    2016-01-01

    Prosopis cineraria (L.) Druce (Leguminosae) (syn. Prosopis spicigera L.) has antidiabetic and antioxidant potential. Earlier we reported its hypolipidemic activity obtained from ethanol extract (ET-PCF). Object of this work was to isolate ferulic acid (FA) from ET-PCF and evaluate hypolipidemic activity against high-fat diet (HFD)-induced hyperlipidemic laboratory rats. ET-PCF was subjected to flash column chromatography to isolate FA. The chemical structure of the isolated compound was elucidated by UV, IR, 1H NMR,13C NMR and LC-MS. Further, the antihyperlipidemic effect of FA (10, 20 and 40 mg/kg, p.o.) in HFD-induced hyperlipidemic rats was investigated. Hyperlipidemia was induced in male Sprague-Dawley rats by feeding with HFD for 60 days. Lipid parameters such as total cholesterol (TC), Low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) levels were measured in serum and hepatic tissue. Hepatic oxido-nitrosative stress (SOD, GSH, MDA and NO) were also determined. Histological evaluation of liver tissue was carried out. The structure of the isolated compound was characterized based on spectral data and confirmed as FA. HFD induced an alteration in serum, and hepatic lipid profile (triglyceride, cholesterol, HDL, and LDL) was significantly restored (p < 0.001) by administration of FA (20 and 40 mg/kg, p.o.). The elevated level of oxido-nitrosative stress in liver was significantly reduced (p < 0.001) by FA (20 and 40 mg/kg, p.o.). Histological aberration induced in the liver after HFD ingestion were restored by FA administration. Ferulic acid isolated from ET-PCF showed hypolipidemic effects in HFD-induced hyperlipidemic rats via modulation of elevated oxido-nitrosative stress. PMID:28096790

  7. Permeation and distribution of ferulic acid and its α-cyclodextrin complex from different formulations in hairless rat skin.

    PubMed

    Monti, Daniela; Tampucci, Silvia; Chetoni, Patrizia; Burgalassi, Susi; Saino, Veronica; Centini, Marisanna; Staltari, Lucia; Anselmi, Cecilia

    2011-06-01

    Ferulic acid (FA) is a natural product that occurs in seeds of many plants where it is generally located in the bran. This compound is a multifunctional ingredient endowed with antioxidative, radical scavenging, sunscreening and antibacterial actions. The aim of this study was to analyse the ferulic acid cutaneous permeation and distribution, through and into the skin layers, from different cosmetic vehicles, an O/W emulsion (pH 6.0) and two gel-type formulations at different pH levels (6.0 and 7.4), containing FA alone or an inclusion complex with α-cyclodextrin (CD-FA). In vitro permeation studies were performed in vertical diffusion cells using hairless rat excised skin. At appropriate intervals of time, the amount of permeated sunscreen/radical scavenger was evaluated by high-performance liquid chromatography (HPLC). At the end of experiments, treated skin samples were sectioned with a cryomicrotome and the FA content of the individual slices was analysed by HPLC. FA-containing formulations, O/W emulsion, gels A and B, originated FA fluxes of 8.48 ± 2.31, 8.38 ± 0.89 and 5.72 ± 0.50 μg/cm(2) h, respectively, thus suggesting the pH influence on FA percutaneous permeation. The use of the inclusion complex, CD-FA, determined in all cases a decrease of FA transdermal permeation while no influence of pH was observed. Gel-type formulations containing FA ensured higher sunscreen storage in the superficial layers if compared with O/W emulsion. When FA was included in α-cyclodextrin, FA amount retained into skin layers decreased markedly.

  8. Poly(carbonate–amide)s Derived from Bio-Based Resources: Poly(ferulic acid-co-tyrosine)

    PubMed Central

    2015-01-01

    Ferulic acid (FA), a bio-based resource found in fruits and vegetables, was coupled with a hydroxyl-amino acid to generate a new class of monomers to afford poly(carbonate–amide)s with potential to degrade into natural products. l-Serine was first selected as the hydroxyl-amino partner for FA, from which the activated p-nitrophenyl carbonate monomer was synthesized. Unfortunately, polymerizations were unsuccessful, and the elimination product was systematically obtained. To avoid elimination, we revised our strategy and used l-tyrosine ethyl ester, which lacks an acidic proton on the α position of the ethyl ester. Four new monomers were synthesized and converted into the corresponding poly(carbonate–amide)s with specific regioselectivities. The polymers were fully characterized through thermal and spectroscopic analyses. Preliminary fluorescent studies revealed interesting photophysical properties for the monomers and their corresponding poly(carbonate–amide)s, beyond the fluorescence characteristics of l-tyrosine and FA, making these materials potentially viable for sensing and/or imaging applications, in addition to their attractiveness as engineering materials derived from renewable resources. PMID:24839309

  9. Seasonal variation in abiotic factors and ferulic acid toxicity in snail-attractant pellets against the intermediate host snail Lymnaea acuminata.

    PubMed

    Agrahari, P; Singh, D K

    2013-11-01

    Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline + ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12 months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid + starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September.

  10. Transformation of ferulic acid to vanillin using a fed-batch solid-liquid two-phase partitioning bioreactor.

    PubMed

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-01-01

    Amycolatopsis sp. ATCC 39116 (formerly Streptomyces setonii) has shown promising results in converting ferulic acid (trans-4-hydroxy-3-methoxycinnamic acid; substrate), which can be derived from natural plant wastes, to vanillin (4-hydroxy-3-methoxybenzaldehyde). After exploring the influence of adding vanillin at different times during the growth cycle on cell growth and transformation performance of this strain and demonstrating the inhibitory effect of vanillin, a solid-liquid two-phase partitioning bioreactor (TPPB) system was used as an in situ product removal technique to enhance transformation productivity by this strain. The thermoplastic polymer Hytrel(®) G4078W was found to have superior partitioning capacity for vanillin with a partition coefficient of 12 and a low affinity for the substrate. A 3-L working volume solid-liquid fed-batch TPPB mode, using 300 g Hytrel G4078W as the sequestering phase, produced a final vanillin concentration of 19.5 g/L. The overall productivity of this reactor system was 450 mg/L. h, among the highest reported in literature. Vanillin was easily and quantitatively recovered from the polymers mostly by single stage extraction into methanol or other organic solvents used in food industry, simultaneously regenerating polymer beads for reuse. A polymer-liquid two phase bioreactor was again confirmed to easily outperform single phase systems that feature inhibitory or easily further degraded substrates/products. This enhancement strategy might reasonably be expected in the production of other flavor and fragrance compounds obtained by biotransformations.

  11. Ameliorative potential of ferulic acid in vincristine-induced painful neuropathy in rats: An evidence of behavioral and biochemical examination.

    PubMed

    Vashistha, Bharat; Sharma, Abhisheak; Jain, Vivek

    2017-01-01

    The present study was designed to investigate the effect of ferulic acid (FA) in vincristine-induced neuropathic pain in rats. Vincristine (50 µg/kg, i.p. for 10 consecutive days) was administered to induce painful neuropathy in rats. Various pain sensitive tests, viz., pinprick, hot plate, paint-brush, and acetone test were performed on different days (1, 6, 14, and 21) to assess the degree of mechanical hyperalgesia, heat hyperalgesia, mechanical dynamic allodynia, and cold allodynia, respectively. The electrophysiological and histopathological evaluations were also investigated. The tissue thiobarbituric acid reactive species (TBARS), reduced glutathione (GSH), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-10 (IL-10), and total calcium were measured as the markers of inflammation and oxidative stress. FA (50 and 100 mg/kg, i.p.) and gabapentin (10 mg/kg, p.o.) were administered for 11 days. Administration of FA attenuated the vincristine-induced behavioral alteration along with electrophysiological and histopathological changes significantly (P < 0.05). FA also attenuated the vincristine-induced oxidative stress (TBARS, GSH, and total calcium levels) and inflammation (MPO, TNF-alpha, IL-6, and IL-10). It may be concluded that FA has ameliorative potential in mitigation of the painful states associated with vincristine-induced painful neuropathy that may further be attributed to anti-inflammatory actions with subsequent reduction in oxidative stress.

  12. The chain length of lignan macromolecule from flaxseed hulls is determined by the incorporation of coumaric acid glucosides and ferulic acid glucosides.

    PubMed

    Struijs, Karin; Vincken, Jean-Paul; Doeswijk, Timo G; Voragen, Alphons G J; Gruppen, Harry

    2009-01-01

    Lignan macromolecule from flaxseed hulls is composed of secoisolariciresinol diglucoside (SDG) and herbacetin diglucoside (HDG) moieties ester-linked by 3-hydroxy-3-methylglutaric acid (HMGA), and of p-coumaric acid glucoside (CouAG) and ferulic acid glucoside (FeAG) moieties ester-linked directly to SDG. The linker molecule HMGA was found to account for 11% (w/w) of the lignan macromolecule. Based on the extinction coefficients and RP-HPLC data, it was determined that SDG contributes for 62.0% (w/w) to the lignan macromolecule, while CouAG, FeAG, and HDG contribute for 12.2, 9.0, and 5.7% (w/w), respectively. Analysis of fractions of lignan macromolecule showed that the higher the molecular mass, the higher the proportion of SDG was. An inverse relation between the molecular mass and the proportion (%) CouAG+FeAG was found. Together with the structural information of oligomers of lignan macromolecule obtained after partial saponification, it is hypothesized that the amount of CouAG+FeAG present during biosynthesis determines the chain length of lignan macromolecule. Furthermore, the chain length was estimated from a model describing lignan macromolecule based on structural and compositional data. The average chain length of the lignan macromolceule was calculated to be three SDG moieties with CouAG or FeAG at each of the terminal positions, with a variation between one and seven SDG moieties.

  13. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice.

    PubMed

    Jung, Eun Hee; Kim, Sung Ran; Hwang, In Kyeong; Ha, Tae Youl

    2007-11-28

    Rice bran contains many phenolic acids, the most abundant of which is the antioxidant, ferulic acid (FA). We evaluated the hypoglycemic effects of a phenolic acid fraction (the ethyl acetate fraction, EAE) of rice bran and of FA in C57BL/KsJ db/db mice. Type 2 diabetic mice were allocated to a control group, an EAE group, or an FA group. Animals were fed a modified AIN-76 diet, and EAE or FA was administered orally for 17 days. There was no significant difference in body weight gain between groups. Administration of EAE and FA significantly decreased blood glucose levels and increased plasma insulin levels. EAE or FA groups had significantly elevated hepatic glycogen synthesis and glucokinase activity compared with the control group. Plasma total cholesterol and low density lipoprotein (LDL) cholesterol concentrations were significantly decreased by EAE and FA administration. These findings suggest that EAE and FA may be beneficial for treatment of type 2 diabetes because they regulate blood glucose levels by elevating glucokinase activity and production of glycogen in the liver.

  14. The antiproliferative effect of dietary fiber phenolic compounds ferulic acid and p-coumaric acid on the cell cycle of Caco-2 cells.

    PubMed

    Janicke, Birgit; Hegardt, Cecilia; Krogh, Morten; Onning, Gunilla; Akesson, Björn; Cirenajwis, Helena M; Oredsson, Stina M

    2011-01-01

    Epidemiological and animal studies have shown that dietary fiber is protective against the development of colon cancer. Dietary fiber is a rich source of the hydroxycinnamic acids ferulic acid (FA) and p-coumaric acid (p-CA), which both may contribute to the protective effect. We have investigated the effects of FA and p-CA treatment on global gene expression in Caco-2 colon cancer cells. The Caco-2 cells were treated with 150 μM FA or p-CA for 24 h, and gene expression was analyzed with cDNA microarray technique. A total of 517 genes were significantly affected by FA and 901 by p-CA. As we previously have found that FA or p-CA treatment delayed cell cycle progression, we focused on genes involved in proliferation and cell cycle regulation. The expressions of a number of genes involved in centrosome assembly, such as RABGAP1 and CEP2, were upregulated by FA treatment as well as the gene for the S phase checkpoint protein SMC1L1. p-CA treatment upregulated CDKN1A expression and downregulated CCNA2, CCNB1, MYC, and ODC1. Some proteins corresponding to the affected genes were also studied. Taken together, the changes found can partly explain the effects of FA or p-CA treatment on cell cycle progression, specifically in the S phase by FA and G(2)/M phase by p-CA treatment.

  15. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.

    PubMed

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2014-10-01

    Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs (+)/ech (+)).

  16. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca(II), Mn(II), Cu(II), Zn(II) and Cd(II) complexes of ferulic acid

    NASA Astrophysics Data System (ADS)

    Kalinowska, M.; Piekut, J.; Bruss, A.; Follet, C.; Sienkiewicz-Gromiuk, J.; Świsłocka, R.; Rzączyńska, Z.; Lewandowski, W.

    2014-03-01

    The molecular structure of Mn(II), Cu(II), Zn(II), Cd(II) and Ca(II) ferulates (4-hydroxy-3-methoxycinnamates) was studied. The selected metal ferulates were synthesized. Their composition was established by means of elementary and thermogravimetric analysis. The following spectroscopic methods were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance (13C, 1H NMR) and ultraviolet-visible (UV/VIS). On the basis of obtained results the electronic charge distribution in studied metal complexes in comparison with ferulic acid molecule was discussed. The microbiological study of ferulic acid and ferulates toward Escherichia coli, Bacillus subtilis, Candida albicans, Pseudomonas aeruginosa, Staphylococcus aureus and Proteus vulgaris was done.

  17. Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch

    PubMed Central

    Li, Zhen Fang; He, Chen Ling; Wang, Ying; Li, Ming Jie; Dai, Ya Jing; Wang, Tong; Lin, Wenxiong

    2016-01-01

    Rehmannia glutinosa is an important medicinal herb that cannot be replanted in the same field due to the effects of autotoxic substances. The effects of these substances on R. glutinosa in continuous cropping systems are unknown. In the present study, bioassays revealed that R. glutinosa exhibited severe growth restriction and higher disease indices in the FO+FA (F.oxysporum pretreated with ferulic acid) treatment. The increases in the contents of MDA and H2O2 were greater in the FA+FO treatment than in the FA or FO only treatments, respectively. Consistent with this result, the enzyme activities in the seedlings increased with treatment time. To identify the main factor underlying the increased pathogenicity of FO, macroconidia and trichothecene mycotoxins coproduced by FO were separated and used to treat R. glutinosa seedlings. The MDA and H2O2 contents were similar in the seedlings treated with deoxynivalenol and in the FA+FO treatment. Quantification of the relative expression of certain genes involved in Ca2+ signal transduction pathways suggested that trichothecene mycotoxins play an important role in the increased pathogenicity of FO. In conclusion, FA not only directly enhances oxidative damage in R. glutinosa but also increases wilting symptom outbreaks by promoting the secretion of trichothecene mycotoxins by FO. PMID:27667444

  18. Inactivation of foodborne pathogenic and spoilage micro-organisms using ultraviolet-A light in combination with ferulic acid.

    PubMed

    Shirai, A; Watanabe, T; Matsuki, H

    2017-02-01

    The low energy of UV-A (315-400 nm) is insufficient for disinfection. To improve UV-A disinfection technology, we evaluated the effect of ferulic acid (FA) addition on disinfection by UV-A light-emitting diode (LED) (350-385 nm) against various food spoilers and pathogens (seven bacteria and four fungi species). Photoantimicrobial assays were performed at FA concentrations below the MIC. The MIC of the isomerized FA, consisting of 93% cis-form and 7% trans-form, was very similar to that of the commercially available FA (trans-form). Irradiation with UV-A (1·0 J cm(-2) ) in the presence of 100 mg l(-1) FA resulted in enhanced reducing of all of the tested bacterial strains. A combination of UV-A (10 J cm(-2) ) and 1000 mg l(-1) FA resulted in enhanced reducing of Saccharomyces cerevisiae and one of the tested filamentous fungi. These results demonstrated that the combination of a short-term application of UV-A and FA at a low concentration yielded synergistic enhancement of antimicrobial activity, especially against bacteria.

  19. Ferulic Acid against Cyclophosphamide-Induced Heart Toxicity in Mice by Inhibiting NF-κB Pathway

    PubMed Central

    Song, Yafan; Zhang, Chunyan; Wang, Congxia; Zhao, Ling; Wang, Zheng; Dai, Zhijun; Lin, Shuai; Kang, Huafeng; Ma, Xiaobin

    2016-01-01

    The purpose of the present study was to elucidate the protective effects of ferulic acid (FA) against cyclophosphamide- (CTX-) induced changes in mice. Forty-eight male ICR mice were divided into four groups. Control group was intraperitoneally (i.p.) injected with 200 μL of phosphate buffer saline (PBS). Model group was intraperitoneally injected with a single dose of CTX (200 mg/kg). FA (50 mg/kg) and FA (100 mg/kg) groups were intraperitoneally injected with a single dose of CTX (200 mg/kg) followed by the intragastric treatment with FA (50, 100 mg/kg) for 7 consecutive days. After 12 d, the mice were sacrificed to analyze the hematological, biochemical, histological parameters and mechanism research. The results indicated that FA significantly decreased the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) in CTX-injected mice. In addition, FA effectively reduced the total numbers of white blood cells (WBCs), red blood cells, platelets, and hemoglobin content. FA also obviously attenuated the histological changes of the heart tissues caused by CTX. Moreover, Western blot demonstrated that FA inhibited the phosphorylations of NF-κB signaling pathway in CTX-stimulated cardiac tissues. In conclusion, FA might be considered as an effective agent in the amelioration of the heart toxicity resulting from CTX treatment. PMID:26881001

  20. Interaction of ferulic acid derivatives with human erythrocytes monitored by pulse field gradient NMR diffusion and NMR relaxation studies.

    PubMed

    Anselmi, Cecilia; Bernardi, Francesca; Centini, Marisanna; Gaggelli, Elena; Gaggelli, Nicola; Valensin, Daniela; Valensin, Gianni

    2005-04-01

    Ferulic acid (Fer), a natural anti-oxidant and chemo-protector, is able to suppress experimental carcinogenesis in the forestomach, lungs, skin, tongue and colon. Several Fer derivatives have been suggested as promising candidates for cancer prevention, being the biological activity related also to the capacity of partitioning between aqueous and lipid phases. In the present work, pulsed field gradient (PFG) NMR diffusion measurement and NMR relaxation rates have been adopted for investigating the interaction of three Fer derivatives (Fer-C11, Fer-C12 and Fer-C13) with human erythrocytes. Binding to the erythrocyte membrane has been shown for all derivatives, which displayed a similar interaction mode such that the aromatic moiety and the terminal part of the alkyl chain were the most affected. Quantitative analysis of the diffusion coefficients was used to show that Fer-C12 and Fer-C13 display higher affinity for the cell membrane when compared with Fer-C11. These findings agree with the higher anti-oxidant activity of the two derivatives.

  1. Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet.

    PubMed

    Senaphan, Ketmanee; Kukongviriyapan, Upa; Sangartit, Weerapon; Pakdeechote, Poungrat; Pannangpetch, Patchareewan; Prachaney, Parichat; Greenwald, Stephen E; Kukongviriyapan, Veerapol

    2015-08-04

    Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms.

  2. Probiotic Ferulic Acid Esterase Active Lactobacillus fermentum NCIMB 5221 APA Microcapsules for Oral Delivery: Preparation and in Vitro Characterization.

    PubMed

    Tomaro-Duchesneau, Catherine; Saha, Shyamali; Malhotra, Meenakshi; Coussa-Charley, Michael; Kahouli, Imen; Jones, Mitchell L; Labbé, Alain; Prakash, Satya

    2012-02-16

    Probiotics possess potential therapeutic and preventative effects for various diseases and metabolic disorders. One important limitation for the oral delivery of probiotics is the harsh conditions of the upper gastrointestinal tract (GIT) which challenge bacterial viability and activity. One proposed method to surpass this obstacle is the use of microencapsulation to improve the delivery of bacterial cells to the lower GIT. The aim of this study is to use alginate-poly-L-lysine-alginate (APA) microcapsules to encapsulate Lactobacillus fermentum NCIMB 5221 and characterize its enzymatic activity and viability through a simulated GIT. This specific strain, in previous research, was characterized for its inherent ferulic acid esterase (FAE) activity which could prove beneficial in the development of a therapeutic for the treatment and prevention of cancers and metabolic disorders. Our findings demonstrate that the APA microcapsule does not slow the mass transfer of substrate into and that of the FA product out of the microcapsule, while also not impairing bacterial cell viability. The use of simulated gastrointestinal conditions led to a significant 2.5 log difference in viability between the free (1.10 × 104 ± 1.00 × 103 cfu/mL) and the microencapsulated (5.50 × 106 ± 1.00 × 105 cfu/mL) L. fermentum NCIMB 5221 following exposure. The work presented here suggests that APA microencapsulation can be used as an effective oral delivery method for L. fermentum NCIMB 5221, a FAE-active probiotic strain.

  3. Aqueous Extract of Tomato (Solanum lycopersicum L.) and Ferulic Acid Reduce the Expression of TNF-α and IL-1β in LPS-Activated Macrophages.

    PubMed

    Navarrete, Simón; Alarcón, Marcelo; Palomo, Iván

    2015-08-21

    Acute inflammation is essential for defending the body against pathogens; however, when inflammation becomes chronic, it is harmful to the body and is part of the pathophysiology of various diseases such as Diabetes Mellitus type 2 (DM2) and Cardiovascular Disease (CVD) among others. In chronic inflammation macrophages play an important role, mainly through the secretion of proinflammatory cytokines such as Tumor necrosis factor (TNF)-α and Interleukin (IL)-1β, explained in part by activation of the Toll-like receptor 4 (TLR4), a signaling pathway which culminates in the activation of Nuclear factor (NF)-κB, an important transcription factor in the expression of these proinflammatory genes. On the other hand, the benefits on health of a diet rich in fruit and vegetables are well described. In this work, the effects of aqueous extract of tomato and ferulic acid on the expression of proinflammatory cytokines in LPS activated monocyte-derived THP-1 macrophages were investigated. In addition, using Western blot, we investigated whether the inhibition was due to the interference on activation of NF-κB. We found that both the tomato extract and ferulic acid presented inhibitory activity on the expression of TNF-α and IL-1β cytokine by inhibiting the activation of NF-κB. The current results suggest that tomatoes and ferulic acid may contribute to prevention of chronic inflammatory diseases.

  4. Synergistic Effect of Ferulic Acid and Z-Ligustilide, Major Components of A. sinensis, on Regulating Cold-Sensing Protein TRPM8 and TPRA1 In Vitro

    PubMed Central

    Pan, Yuwei; Zhao, Guoping; Cai, Zejian; Chen, Fengguo; Xu, Dandan; Huang, Si; Lan, Hai; Tong, Yi

    2016-01-01

    Angelica sinensis has been used to attenuate cold-induced cutaneous vasospasm syndrome, such as Raynaud's disease and frostbite, in China for many years. Ferulic acid (PubChem CID: 445858) and Z-ligustilide (PubChem CID: 529865), two major components extracted from Angelica sinensis, had been reported to inhibit vasoconstriction induced by vasoconstrictors. In this study, the pharmacological interaction in regulating cold-induced vascular smooth muscle cell contraction via cold-sensing protein TRPM8 and TRPA1 was analyzed between ferulic acid and Z-ligustilide. Pharmacological interaction on inhibiting [Ca2+]i influx evoked by TRPM8 agonist WS-12 or TRPA1 agonist ASP 7663 as well as cold-induced upregulation of TRPM8 was determined using isobolographic analysis. The isobolograms demonstrated that the combinations investigated in this study produced a synergistic interaction. Combination effect of two components in inhibiting RhoA activation and phosphorylation of MLC20 induced by WS-12 or ASP 7663 was also being quantified. These findings suggest that the therapeutic effect of Angelica sinensis on cold-induced vasospasm may be partially attributed to combinational effect, via TRPM8 and TPRA1 way, between ferulic acid and Z-ligustilide. PMID:27413384

  5. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo.

    PubMed

    He, Shasha; Liu, Fenghua; Xu, Lei; Yin, Peng; Li, Deyin; Mei, Chen; Jiang, Linshu; Ma, Yunfei; Xu, Jianqin

    2016-01-01

    Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague-Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction.

  6. Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines

    NASA Astrophysics Data System (ADS)

    Panwar, Richa; Sharma, Asvene K.; Kaloti, Mandeep; Dutt, Dharm; Pruthi, Vikas

    2016-08-01

    Ferulic acid (FA) is a widely distributed hydroxycinnamic acid found in various cereals and fruits exhibiting potent antioxidant and anticancer activities. However, due to low solubility and permeability, its availability to biological systems is limited. Non-toxic chitosan-tripolyphosphate pentasodium (CS-TPP) nanoparticles (NPs) are used to load sparingly soluble molecules and drugs, increasing their bioavailability. In the present work, we have encapsulated FA into the CS-TPP NPs to increase its potential as a therapeutic agent. Different concentrations of FA were tested to obtain optimum sized FA-loaded CS-TPP nanoparticles (FA/CS-TPP NPs) by ionic gelation method. Nanoparticles were characterized by scanning electron microscopy, Fourier transformation infrared spectroscopy (FTIR), thermogravimetric analyses and evaluated for their anticancer activity against ME-180 human cervical cancer cell lines. The FTIR spectra confirmed the encapsulation of FA and thermal analysis depicted its degradation profile. A concentration-dependent relationship between FA encapsulation efficiency and FA/CS-TPP NPs diameter was observed. Smooth and spherical FA-loaded cytocompatible nanoparticles with an average diameter of 125 nm were obtained at 40 µM FA conc. The cytotoxicity of 40 µM FA/CS-TPP NPs against ME-180 cervical cancer cell lines was found to be higher as compared to 40 µM native FA. Apoptotic morphological changes as cytoplasmic remnants and damaged wrinkled cells in ME-180 cells were visualized using scanning electron microscopic and fluorescent microscopic techniques. Data concluded that chitosan enveloped FA nanoparticles could be exploited as an excellent therapeutic drug against cancer cells proliferation.

  7. Protective effect of ferulic acid on gamma-radiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes.

    PubMed

    Prasad, N Rajendra; Srinivasan, M; Pugalendi, K V; Menon, Venugopal P

    2006-02-28

    In this study we examined radioprotective effect of ferulic acid (FA) on gamma radiation-induced dicentric aberration and lipid peroxidation with reference to alterations in cellular antioxidant status in cultured lymphocytes. To establish most effective protective support we used three different concentrations of FA (1, 5 and 10 microg/ml) and three different doses of gamma-radiation (1, 2 and 4 Gy). Treatment of lymphocytes with FA alone (at 10 microg/ml) gave no significant change in micronuclei (MN), dicentric aberration (DC), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) or glutathione peroxidase (GPx) activities when compared with normal lymphocytes; irradiation at 1, 2 and 4 Gy increased the MN and DC frequencies in a dose-dependent manner. Treatment with FA for 30 min before radiation exposure resulted in a significant decline of MN and DC yields as FA concentration increased. Compared to 1 Gy exposure alone, the extent to which FA (1 microg/ml) reduced the MN and DC yields was 75% and 50%, respectively. With 4 Gy irradiation, FA (10 microg/ml) decreased 45% MN and 25% DC frequencies. FA-pretreated lymphocytes (1, 5 and 10 microg/ml) showed progressively decreased TBARS levels after irradiation. Irradiation (1, 2 and 4 Gy) significantly decreased GSH levels, SOD, CAT and GPx activities in a dose-dependent manner. Pretreatment with 10 microg/ml of FA significantly (p<0.05) prevented the decreases in the radiation-induced GSH, SOD, CAT and GPx activities. These findings suggest potential use and benefit of FA as a radioprotector.

  8. Synergistic salubrious effect of ferulic acid and ascorbic acid on membrane-bound phosphatases and lysosomal hydrolases during experimental myocardial infarction in rats.

    PubMed

    Yogeeta, Surinder Kumar; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-12-23

    Altered membrane integrity has been suggested as a major factor in the development of cellular injury during myocardial necrosis. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on lysosomal hydrolases and membrane-bound phosphatases during isoproterenol (ISO) induced myocardial necrosis in rats. Induction of rats with 1SO (150 mg/kg b.wt, i.p.) for 2 days resulted in a significant increase in the activities of lysosomal hydrolases (beta-D-glucuronidase, beta-D-galactosidase, beta-D-N-acetylglucosaminidase, acid phosphatase and cathepsin-D) in the heart and serum. A significant increase in plasma lactate level, cardiac levels of sodium, calcium and a decrease in cardiac level of potassium was also observed, which was paralleled by abnormal activities of membrane-bound phosphatases (Na(+)-K(+) ATPase, Ca(2+) ATPase and Mg(2+) ATPase) in the heart of ISO-administered rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt) and AA (80 mg/kg b.wt) orally for 6 days significantly attenuated these abnormalities and restored the levels to near normalcy when compared to individual drug treated groups. The combination of FA and AA preserved the membrane integrity by mitigating the oxidative stress and associated cellular damage more effectively when compared to individual treatment groups. In our study, the protection conferred by FA and AA might be through the nitric oxide pathway and by their ability of quenching free radicals. In conclusion, these findings indicate the synergistic modulation of lysosomal hydrolases and membrane phosphatases by the combination of FA and AA.

  9. 1,3-Diferuloyl-sn-glycerol from the biocatalytic transesterification of ethyl 4-hydroxy-3-methoxy cinnamic acid (ethyl ferulate) and soybean oil.

    PubMed

    Compton, David L; Laszlo, Joseph A

    2009-06-01

    1,3-Diferuloyl-sn-glycerol is found ubiquitously throughout the plant kingdom, possessing ultraviolet adsorbing and antioxidant properties. Diferuloyl glycerol was synthesized and isolated as a byproduct in up to 5% yield from a pilot plant scale packed-bed, biocatalytic transesterification of ethyl ferulate with soybean oil or mono- and diacylglycerols from soybean oil. The yield of the diferuloyl glycerol byproduct was directly proportional to the overall water concentration of the bioreactor. The isolated diferuloyl glycerol exhibited good ultraviolet adsorbing properties, 280-360 nm with a lambda(max) 322 nm, and compared well to the efficacy of commercial sunscreen active ingredients. The antioxidant capacity of diferuloyl glycerol (0.25-2.5 mM) was determined by its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl radicals and was comparable to that of ferulic acid. At current pilot plant scale production capacity, 120 kg diferuloyl glycerol byproduct could be isolated per year.

  10. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors

    PubMed Central

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-01-01

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially. PMID:26967251

  11. Effects of free ferulic acid on productive performance, blood metabolites, and carcass characteristics of feedlot finishing ewe lambs.

    PubMed

    Macías-Cruz, U; Perard, S; Vicente, R; Álvarez, F D; Torrentera-Olivera, N G; González-Ríos, H; Soto-Navarro, S A; Rojo, R; Meza-Herrera, C A; Avendaño-Reyes, L

    2014-12-01

    The aim of this study was to evaluate effects of free ferulic acid (FA) supplementation on productive performance, some blood metabolite concentrations, and carcass characteristics of ewe lambs finished in a feedlot. Dorper×Pelibuey ewe lambs (n=20; BW=28.5±0.5 kg; age=5 mo) were individually housed in pens and assigned under a randomized complete block design to the following dietary treatments (n=10): daily feeding without (control) or with 300 mg of FA/animal. The feedlot feeding period lasted 34 d and then all ewe lambs were slaughtered. Free FA did not affect (P≥0.16) BW gain, ADG, DMI, and G:F during the first 17 d, but BW gain (P=0.10) and ADG (P=0.10) tended to decrease for FA from d 17 to 34 and from d 1 to 34 without affecting (P≥0.16) DMI and G:F in ewe lambs. Serum concentrations of glucose, cholesterol, triglyceride, total protein, and urea were not affected (P>0.05) by FA at d 1, 17, and 34 of the feeding period. Carcass characteristics were not affected (P>0.05) by FA. Stomach percentage tended (P=0.08) to decrease and leg yields increased (P=0.02) for FA. Other noncarcass components and wholesale cut yields were not affected (P>0.10) by FA. In conclusion, FA supplementation did not improve productive performance, metabolic status, and carcass characteristics of ewe lambs receiving a feedlot finishing diet.

  12. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors.

    PubMed

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-04-12

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially.

  13. Identification of the human UDP-glucuronosyltransferase isoforms involved in the glucuronidation of the phytochemical ferulic acid.

    PubMed

    Li, Xiaojun; Shang, Liang; Wu, Yaohua; Abbas, Suzanne; Li, Dong; Netter, Patrick; Ouzzine, Mohamed; Wang, Hui; Magdalou, Jacques

    2011-01-01

    Ferulic acid (FA), a member of the hydroxycinnamate family, is an abundant dietary antioxidant that may offer beneficial effects against cancer, cardiovascular disease, diabetes, osteoarthritis and Alzheimer's disease. In this study, evidence for sulfation and glucuronidation of FA was investigated upon incubation with human liver microsomes and cytosol. Two main glucuronides, M1 (ether O-glucuronide) and M2 (ester acylglucuronide), were formed with a similar affinity (apparent K(m) 3.53 and 5.15 mM, respectively). A phenol sulfoconjugate was also formed with a higher affinity (K(m) 0.53 mM). Identification of the UDP-glucuronosyltransferase (UGT) isoforms involved in FA glucuronidation was investigated with 12 human recombinant enzymes. FA was mainly glucuronidated by UGT1A isoforms and by UGT2B7. UGT1A4, 2B4, 2B15 and 2B17 failed to glucuronidate the substance. Examination of the kinetic constants revealed that FA was mainly glucuronidated by UGT1A1 at the two nucleophilic groups. UGT1A3 was able to glucuronidate these two positions with the same, but low, efficiency. UGT1A6 and 1A8 were involved in the formation of the ether glucuronide only, whereas UGT1A7, 1A10 and 2B7 preferentially glucuronidated the carboxyl group. Moreover, octyl gallate, a marker substrate of UGT1A1, competitively inhibited FA glucuronidation mediated by this isoform. Altogether, the results suggest that FA glucuronidation is primarily mediated by UGT1A1.

  14. Novel ferulate esterase from Gram-positive lactic acid bacteria and analyses of the recombinant enzyme produced in E. coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a plate containing ethyl ferulate as sole carbon source, various bacteria cultures were screened for ferulate esterase (FAE). Among a dozen of species showing positive FAE, one Lactobacillus fermentum strain NRRL 1932 demonstrated the strongest activity. Using a published sequence of ferulate ...

  15. Simultaneous determination of oleanolic acid, p-coumaric acid, ferulic acid, kaemperol and quercetin in rat plasma by LC-MS-MS and application to a pharmacokinetic study of Oldenlandia diffusa extract in rats.

    PubMed

    Li, Neng; Liu, Changhui; Mi, Suiqing; Wang, Ningsheng; Zheng, Xia; Li, Yingyi; Huang, Xiaotao; He, Shaoling; Chen, Hao; Xu, Xinhua

    2012-01-01

    A simple, rapid and sensitive liquid chromatography tandem mass spectrometry method is presented for the simultaneous determination of oleanolic acid, p-coumaric acid, ferulic acid, kaemperol and quercetin in rat plasma. Glycyrrhetinic acid was used as an internal standard, and sample pretreatment consisted of a liquid-liquid extraction. Chromatographic separation was achieved on a Gemini 110A C18 column (50 × 2.0 mm i.d., 5 µm) by gradient elution with a mobile phase consisting of methanol, acetonitrile and 0.01% formic acid in water. Tandem mass spectrometric detection was conducted using multiple reaction monitoring under negative ionization mode. Calibration curves offered linear ranges of two orders of magnitude with r > 0.99. The method was validated in terms of matrix effect, intra-day and inter-day precision, accuracy, linearity, specificity and stability. The relative standard deviation of intra-day and inter-day variations ranged from 2.66 to 14.74% and 1.9 to 14.55%. No substantial endogenous interference from blank plasma was observed. The method has been successfully applied to a pharmacokinetic study of Oldenlandia diffusa extract after oral administration in rats.

  16. High-yield production of vanillin from ferulic acid by a coenzyme-independent decarboxylase/oxygenase two-stage process.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kuroiwa, Mari; Kino, Kuniki

    2015-05-25

    Vanillin is one of the world's most important flavor and fragrance compounds in foods and cosmetics. Recently, we demonstrated that vanillin could be produced from ferulic acid via 4-vinylguaiacol in a coenzyme-independent manner using the decarboxylase Fdc and the oxygenase Cso2. In this study, we investigated a new two-pot bioprocess for vanillin production using the whole-cell catalyst of Escherichia coli expressing Fdc in the first stage and that of E. coli expressing Cso2 in the second stage. We first optimized the second-step Cso2 reaction from 4-vinylguaiacol to vanillin, a rate-determining step for the production of vanillin. Addition of FeCl2 to the cultivation medium enhanced the activity of the resulting E. coli cells expressing Cso2, an iron protein belonging to the carotenoid cleavage oxygenase family. Furthermore, a butyl acetate-water biphasic system was effective in improving the production of vanillin. Under the optimized conditions, we attempted to produce vanillin from ferulic acid by a two-pot bioprocess on a flask scale. In the first stage, E. coli cells expressing Fdc rapidly decarboxylated ferulic acid and completely converted 75 mM of this substrate to 4-vinylguaiacol within 2 h at pH 9.0. After the first-stage reaction, cells were removed from the reaction mixture by centrifugation, and the pH of the resulting supernatant was adjusted to 10.5, the optimal pH for Cso2. This solution was subjected to the second-stage reaction. In the second stage, E. coli cells expressing Cso2 efficiently oxidized 4-vinylguaiacol to vanillin. The concentration of vanillin reached 52 mM (7.8 g L(-1)) in 24 h, which is the highest level attained to date for the biotechnological production of vanillin using recombinant cells.

  17. [Simultaneous determination of paeoniflorin, ferulic acid, prim-O-glucosylcimifugin and 4'-O-beta-glucopyranosyl-5-O-methylvisamminol in zhengtian pills by HPLC].

    PubMed

    Huang, Lan; Chen, Hui-Ling; Li, Ling-Ling

    2013-07-01

    To simultaneously determine paeoniflorin, ferulic acid, prim-O-glucosylcimifugin and 4'-O-beta-glucopyranosyl-5-O-methylvisamminol in Zhengtian pills. In the test, Insertil ODS-C18 column (4.6 mm x 250 mm, 5 microm) was adopted, with acetonitrile-0.05% phosphoric acid solution as the mobile phase for gradient elution. The flow rate was 1.0 mL x min(-1), the column temperature was 30 degrees C and the detection wavelength was 230 nm. According to the results of the test, paeoniflorin, ferulic acid, prim-O-glucosylcimifugin and 4'-O-beta-glucopyranosyl-5-O-methylvisamminol showed good linear relations between peak areas and sample sizes in 11.37-170.5, 2.188-32.82, 2.896-43.44, and 3.000-45.00 mg x L(-1) (r = 0.999 9, 0.999 9, 1.000 0, 1.000 0), respectively. The average recoveries (n = 6) were 102.3% (RSD 1.2%), 99.71% (RSD 1.9%), 101.2% (RSD 1.2%), and 99.40% (RSD 2.4%), respectively. The above four components were determined in five batches of samples by using the established method, with satisfactory results. The method was so simple, accurate and highly reproducible that it could be used for quality control of the four components in Zhengtian pills.

  18. Systemic effects of Heterobasidion annosum on ferulic acid glucoside and lignin of presymptomatic ponderosa pine phloem, and potential effects on bark-beetle-associated fungi.

    PubMed

    Bonello, Pierluigi; Storer, Andrew J; Gordon, Thomas R; Wood, David L; Heller, Werner

    2003-05-01

    Concentrations of soluble phenolics and lignin in the phloem of ponderosa pines inoculated with the pathogen Heterobasidion annosum were assessed over a period of 2 years in a 35-year-old plantation in northern California, USA. The major effect of the pathogen on phloem-soluble phenolics consisted of a significant accumulation of ferulic acid glucoside: 503 +/- 27 microg/g fresh weight (FW), compared with 366 +/- 26 microg/g FW for mock-treated and 386 +/- 27 microg/g FW for control trees. Lignin content was negatively correlated with ferulic acid glucoside concentration, and there was an indication of lignin reduction in the cell walls of inoculated trees. Lignin had a negative effect on the in vitro growth of two common bark beetle fungal associates. Ceratocystiopsis brevicomi and Ophiostoma minus. For this reason it, is hypothesized that lower lignification may facilitate the growth of beetle-associated fungi, resulting in greater susceptibility of the presymptomatic host to bark beetle colonization.

  19. Tacrine-6-Ferulic Acid, a Novel Multifunctional Dimer, Inhibits Amyloid-β-Mediated Alzheimer's Disease-Associated Pathogenesis In Vitro and In Vivo

    PubMed Central

    Pi, Rongbiao; Mao, Xuexuan; Chao, Xiaojuan; Cheng, Zhiyi; Liu, Mengfei; Duan, Xiaolu; Ye, Mingzhong; Chen, Xiaohong; Mei, Zhengrong; Liu, Peiqing; Li, Wenming; Han, Yifan

    2012-01-01

    We have previously synthesized a series of hybrid compounds by linking ferulic acid to tacrine as multifunctional agents based on the hypotheses that Alzheimer's disease (AD) generates cholinergic deficiency and oxidative stress. Interestingly, we found that they may have potential pharmacological activities for treating AD. Here we report for the first time that tacrine-6-ferulic acid (T6FA), one of these compounds, can prevent amyloid-β peptide (Aβ)-induced AD-associated pathological changes in vitro and in vivo. Our results showed that T6FA significantly inhibited auto- and acetylcholinesterase (AChE)-induced aggregation of Aβ1–40 in vitro and blocked the cell death induced by Aβ1–40 in PC12 cells. In an AD mouse model by the intracerebroventricular injection of Aβ1–40, T6FA significantly improved the cognitive ability along with increasing choline acetyltransferase and superoxide dismutase activity, decreasing AChE activity and malondialdehyde level. Based on our findings, we conclude that T6FA may be a promising multifunctional drug candidate for AD. PMID:22384101

  20. Octadecyl ferulate behavior in 1,2-dioleoylphosphocholine liposomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Octadecyl ferulate, a lipophilic derivative of ferulic acid having antioxidant properties, is found throughout the plant and fungi kingdoms. Octadecyl ferulate was prepared using solid acid catalyst, monitored using supercritical fluid chromatograph and purified to a 42% yield. Differential scanning...

  1. Lipase-catalyzed esterification of ferulic acid with lauryl alcohol in ionic liquids and antibacterial properties in vitro against three food-related bacteria.

    PubMed

    Shi, Yu-Gang; Wu, Yu; Lu, Xu-Yang; Ren, Yue-Ping; Wang, Qi; Zhu, Chen-Min; Yu, Di; Wang, He

    2017-04-01

    Lauryl ferulate (LF) was synthesized through lipase-catalyzed esterification of ferulic acid (FA) with lauryl alcohol in a novel ionic liquid ([(EO)-3C-im][NTf2]), and its antibacterial activities was evaluated in vitro against three food-related bacteria. [(EO)-3C-im][NTf2] was first synthesized through incorporating alkyl ether moiety into the double imidazolium ring. [(EO)-3C-im][NTf2] containing hexane was found to be the most suitable for this reaction. The effects of various parameters were studied, and the maximum yield of LF (90.1%) was obtained in the optimum reaction conditions, in [(EO)-3C-im][NTf2]/hexane (VILs:Vhexane=1:1) system, 0.08mmol/mL of FA concentration, 50mg/mL Novozym 435, 60°C. LF exhibited a stronger antibacterial activity against Gram-negative (25 mm) than Gram-positive (21.5-23.2 mm) bacteria. The lowest MIC value was seen for E. coli (1.25mM), followed by L. Monocytogenes (2.5mM) and S.aureus (5mM). The MBCs for L. Monocytogenes, S.aureus and E. coli were 10, 20 and 5mM.

  2. Protective effect of ferulic acid against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidative stress in PC12 cells.

    PubMed

    Shen, Y; Zhang, H; Wang, L; Qian, H; Qi, Y; Miao, X; Cheng, L; Qi, X

    2016-01-31

    Oxidative stress is closely related to the pathogenesis of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. However, the underlying antioxidant mechanisms of ferulic acid (FA) aganist oxidantive stress are poorly understood. We evaluated the potential protective effects of FA against 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced damage in PC12 cells. Our results indicated that pretreatment with FA prior to AAPH exposure significantly increased PC12 cell survival, and also increased catalase and superoxide dismutase activity. Furthermore, FA treatment reduced cellular lactate dehydrogenase release and malondialdehyde levels. It attenuated AAPH-induced apoptosis in PC12 cells, as determined by flow cytometric detection of annexin V. Reductions in mitochondrial membrane potential and accumulation of intracellular Ca2+ were also inhibited by FA treatment. These findings suggested that FA protected PC12 cells against AAPH-induced oxidative stress, and may be a neuroprotective agent.

  3. A Stability-Indicating HPLC-DAD Method for Determination of Ferulic Acid into Microparticles: Development, Validation, Forced Degradation, and Encapsulation Efficiency

    PubMed Central

    Toledo, Maria da Graça; Pupo, Yasmine Mendes; Padilha de Paula, Josiane; Zanin, Sandra Maria Warumby

    2015-01-01

    A simple stability-indicating HPLC-DAD method was validated for the determination of ferulic acid (FA) in polymeric microparticles. Chromatographic conditions consisted of a RP C18 column (250 mm × 4.60 mm, 5 μm, 110 Å) using a mixture of methanol and water pH 3.0 (48 : 52 v/v) as mobile phase at a flow rate of 1.0 mL/min with UV detection at 320 nm. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of quantification, limit of detection, accuracy, precision, and robustness provided suitable results regarding all parameters investigated. The calibration curve was linear in the concentration range of 10.0–70.0 μg/mL with a correlation coefficient >0.999. Precision (intraday and interday) was demonstrated by a relative standard deviation lower than 2.0%. Accuracy was assessed by the recovery test of FA from polymeric microparticles (99.02% to 100.73%). Specificity showed no interference from the components of polymeric microparticles or from the degradation products derived from acidic, basic, and photolytic conditions. In conclusion, the method is suitable to be applied to assay FA as bulk drug and into polymeric microparticles and can be used for studying its stability and degradation kinetics. PMID:26075139

  4. Therapeutic effect of ferulic acid, an ethereal fraction of ethanolic extract of seed of Syzygium cumini against streptozotocin-induced diabetes in male rat.

    PubMed

    Mandal, S; Barik, B; Mallick, C; De, D; Ghosh, D

    2008-03-01

    Diabetic therapeutic and antioxidative effects of an ethereal fraction of the ethanolic extract of the seed of Syzygium cumini was studied in streptozotocin (STZ)-induced diabetic rats. Diabetes resulted in a significant elevation in the fasting blood glucose level and in the activity of hepatic glucose-6-phosphatase. There was diminution in the levels of glycogen in the liver and skeletal muscle along with diminution in the activities of hepatic glucose-6-phosphate dehydrogenase, catalase and peroxidase in diabetic rats when compared with controls. Hepatic levels of thiobarbituric acid reactive substance (TBARS) and conjugated dienes (CD) were elevated in respect to control. Oral coadministration of the above fraction to diabetic rats resulted in significant protection in all these parameters. Histological studies of the pancreas showed a qualitative diminution in the area and volume of the islet's of Langerhans, but coadministration of the specific fraction resulted in a significant recovery of the islet's of Langerhans. Chromatography study revealed that the used fraction was ferulic acid (FA). Treatment with FA in normoglycemic rats did not show any significant change in the levels of the selected biosensors. The possible hypothesis for the therapeutic effect of FA against diabetes may be due to its pancreatic beta-cell regenerative effect and/or due to its antioxidant properties.

  5. A Stability-Indicating HPLC-DAD Method for Determination of Ferulic Acid into Microparticles: Development, Validation, Forced Degradation, and Encapsulation Efficiency.

    PubMed

    Nadal, Jessica Mendes; Toledo, Maria da Graça; Pupo, Yasmine Mendes; Padilha de Paula, Josiane; Farago, Paulo Vitor; Zanin, Sandra Maria Warumby

    2015-01-01

    A simple stability-indicating HPLC-DAD method was validated for the determination of ferulic acid (FA) in polymeric microparticles. Chromatographic conditions consisted of a RP C18 column (250 mm × 4.60 mm, 5 μm, 110 Å) using a mixture of methanol and water pH 3.0 (48 : 52 v/v) as mobile phase at a flow rate of 1.0 mL/min with UV detection at 320 nm. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of quantification, limit of detection, accuracy, precision, and robustness provided suitable results regarding all parameters investigated. The calibration curve was linear in the concentration range of 10.0-70.0 μg/mL with a correlation coefficient >0.999. Precision (intraday and interday) was demonstrated by a relative standard deviation lower than 2.0%. Accuracy was assessed by the recovery test of FA from polymeric microparticles (99.02% to 100.73%). Specificity showed no interference from the components of polymeric microparticles or from the degradation products derived from acidic, basic, and photolytic conditions. In conclusion, the method is suitable to be applied to assay FA as bulk drug and into polymeric microparticles and can be used for studying its stability and degradation kinetics.

  6. The Antioxidant Additive Approach for Alzheimer's Disease Therapy: New Ferulic (Lipoic) Acid Plus Melatonin Modified Tacrines as Cholinesterases Inhibitors, Direct Antioxidants, and Nuclear Factor (Erythroid-Derived 2)-Like 2 Activators.

    PubMed

    Benchekroun, Mohamed; Romero, Alejandro; Egea, Javier; León, Rafael; Michalska, Patrycja; Buendía, Izaskun; Jimeno, María Luisa; Jun, Daniel; Janockova, Jana; Sepsova, Vendula; Soukup, Ondrej; Bautista-Aguilera, Oscar M; Refouvelet, Bernard; Ouari, Olivier; Marco-Contelles, José; Ismaili, Lhassane

    2016-11-10

    Novel multifunctional tacrines for Alzheimer's disease were obtained by Ugi-reaction between ferulic (or lipoic acid), a melatonin-like isocyanide, formaldehyde, and tacrine derivatives, according to the antioxidant additive approach in order to modulate the oxidative stress as therapeutic strategy. Compound 5c has been identified as a promising permeable agent showing excellent antioxidant properties, strong cholinesterase inhibitory activity, less hepatotoxicity than tacrine, and the best neuroprotective capacity, being able to significantly activate the Nrf2 transcriptional pathway.

  7. Ferulic acid (FA) abrogates γ-radiation induced oxidative stress and DNA damage by up-regulating nuclear translocation of Nrf2 and activation of NHEJ pathway.

    PubMed

    Das, Ujjal; Manna, Krishnendu; Khan, Amitava; Sinha, Mahuya; Biswas, Sushobhan; Sengupta, Aaveri; Chakraborty, Anindita; Dey, Sanjit

    2017-01-01

    The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.

  8. Effects of Dietary Supplementation with Ferulic Acid or Vitamin E Individually or in Combination on Meat Quality and Antioxidant Capacity of Finishing Pigs

    PubMed Central

    Li, Y. J.; Li, L. Y.; Li, J. L.; Zhang, L.; Gao, F.; Zhou, G. H.

    2015-01-01

    This study aimed to evaluate the effects of vitamin E (VE), ferulic acid (FA) and their combination supplementation on meat quality and antioxidant capacities of finishing pigs. Sixty barrows were randomly allocated to four experimental diets using a 2×2 factorial arrangement with 2 VE supplemental levels (0 or 400 mg/kg) and 2 FA supplemental levels (0 or 100 mg/kg) in basal diets. After 28 days, six pigs per treatment were slaughtered. The results showed that VE supplementation increased loin eye area of pigs (p<0.05) and FA supplementation increased pH45min value (p<0.05). The interaction of FA×VE was observed in shear force of longissimus dorsi muscle (p<0.05). Moreover, supplementation with VE decreased hepatic and sarcous malondialdehyde (MDA) content, increased hepatic glutathione (GSH) content and sarcous glutathione peroxidase (GSH-Px) activity (p<0.05). Additionally, supplementation with FA increased hepatic GSH-Px activity and decreased sarcous MDA content (p<0.05). However, dietary treatment did not affect the expression of genes related to nuclear factor, erythroid 2-like 2 (NFE2L2) pathway. These results suggest that dietary FA and VE could partially improve meat quality and antioxidant capacity of finishing pigs, but not by activating NFE2L2 pathway under the normal conditions of farming. PMID:25656211

  9. Ferulic acid reverses the cognitive dysfunction caused by amyloid β peptide 1-40 through anti-oxidant activity and cholinergic activation in rats.

    PubMed

    Tsai, Fan-Shiu; Wu, Lung-Yuan; Yang, Shu-Er; Cheng, Hao-Yuan; Tsai, Chin-Chuan; Wu, Chi-Rei; Lin, Li-Wei

    2015-01-01

    Cholinergic dysfunction and oxidation stress are the dominant mechanisms of memory deficit in Alzheimer's disease (AD). This study describes how ferulic acid (FA) ameliorates cognitive deficits induced by mecamylamine (MECA), scopolamine (SCOP), central acetylcholinergic neurotoxin ethylcholine mustard aziridinium ion (AF64A) and amyloid β peptide (Aβ1-40). This study also elucidates the role of anti-oxidant enzymes and cholinergic marker acetylcholinesterase (AChE) in the reversal of FA from Aβ1-40-induced cognitive deficits in rats. At 100 mg/kg, FA attenuated impairment induced by MECA and SCOP plus MECA; however, this improvement was not blocked by the peripheral muscarinic receptor antagonist scopolamine methylbromide (M-SCOP). At 100 and 300 mg/kg, FA also attenuated the impairment of inhibitory passive avoidance induced by AF64A. Further, FA attenuated the performance impairment and memory deficit induced by Aβ1-40 in rats, as did vitamin E/C. FA reversed the deterioration of superoxide dismutase (SOD) and AChE activities, and the glutathione disulfide (GSSG) and glutathione (GSH) levels in the cortex and hippocampus. Vitamin E/C only selectively reversed deterioration in the hippocampus. We suggest that FA reduced the progression of cognitive deficits by activating central muscarinic and nicotinic receptors and anti-oxidant enzymes.

  10. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples.

    PubMed

    Liu, Linjie; Gou, Yuqiang; Gao, Xia; Zhang, Pei; Chen, Wenxia; Feng, Shilan; Hu, Fangdi; Li, Yingdong

    2014-09-01

    An electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE) was used as a new voltammetric sensor for the determination of ferulic acid (FA). The morphology and microstructure of the modified electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy analysis, and the electrochemical effective surface areas of the modified electrodes were also calculated by chronocoulometry method. Sensing properties of the electrochemical sensor were investigated by means of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that ERGO was electrodeposited on the surface of GCE by using potentiostatic method. The proposed electrode exhibited electrocatalytic activity to the redox of FA because of excellent electrochemical properties of ERGO. The transfer electron number (n), electrode reaction rate constant (ks) and electron-transfer coefficient (α) were calculated as 1.12, 1.24s(-1), and 0.40, respectively. Under the optimized conditions, the oxidation peak current was proportional to FA concentration at 8.49 × 10(-8)mol L(-1) to 3.89 × 10(-5)mol L(-1) with detection limit of 2.06 × 10(-8)mol L(-1). This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. The voltammetric sensor was successfully applied to detect FA in A. sinensis and biological samples with recovery values in the range of 99.91%-101.91%.

  11. Non-covalent inclusion of ferulic acid with alpha-cyclodextrin improves photo-stability and delivery: NMR and modeling studies.

    PubMed

    Anselmi, Cecilia; Centini, Marisanna; Maggiore, Maria; Gaggelli, Nicola; Andreassi, Marco; Buonocore, Anna; Beretta, Giangiacomo; Facino, Roberto Maffei

    2008-03-13

    Ferulic acid (FA) is a highly effective antioxidant and photo-protective agent, already approved in Japan as a sunscreen, but it is poorly suited for cosmetic application because of its low physicochemical stability. We prepared the inclusion complex of FA with alpha-cyclodextrin by co-precipitation from an aqueous solution, and used (1)H NMR and molecular dynamics to investigate the most probable structure of the inclusion complex. In rotating frame nuclear Overhouser effect spectroscopy (ROESY) experiments FA penetrated the alpha-CD hydrophobic cavity with the alpha,beta-unsaturated part of the molecule and some of its aromatic skeleton. In proton chemical shift measurements of FA and alpha-cyclodextrins we determined the stoichiometry of the association complex (1:1) by Job's method, and its stability constant (K(1:1) 1162+/-140 M(-1)) and described the molecular dynamics of the complex on the basis of theoretical studies. Encapsulation with alpha-cyclodextrin improves (i) the chemical stability of FA against UVB stress (10 MED [Minimal Erythemal Dose: 1 MED=25 mJ/cm(2) for skin phototype II: 30]), since no degradation products are formed after irradiation, and (ii) the bioavailability of FA on the skin, slowing its delivery (Strainer cell model).

  12. Schwann cell proliferation and differentiation that is induced by ferulic acid through MEK1/ERK1/2 signalling promotes peripheral nerve remyelination following crush injury in rats

    PubMed Central

    Zhu, Xiaoyan; Li, Kun; Guo, Xin; Wang, Jian; Xiang, Yang

    2016-01-01

    Schwann cell proliferation and differentiation is critical for the remyelination of injured peripheral nerves. Ferulic acid (FA) is a widely used antioxidant agent with neuroprotective properties. However, the potentially beneficial effects of FA on Schwann cells are unknown. Therefore, the present study was designed to examine the effects of FA on Schwann cell proliferation and differentiation. By using the cultured primary Schwann cells and proliferation assay, the results identified that FA was capable of increasing Schwann cell proliferation and expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) in vitro. It was also observed that the beneficial effect of FA treatment on Schwann cells was mainly dependent on the activation of MEK1/ERK1/2 signalling. Furthermore, FA was intraperitoneally administered to rats with sciatic nerve crush injury, and the results revealed an increase in Schwann cell proliferation and differentiation, while the MAG and MBP expression levels in sciatic nerves were markedly upregulated following FA administration. In conclusion, the current results demonstrate that Schwann cell proliferation and differentiation is induced by FA through MEK1/ERK1/2 signalling and that FA may accelerate injured peripheral nerve remyelination. PMID:27588110

  13. Anti-Inflammatory Effects of the Bioactive Compound Ferulic Acid Contained in Oldenlandia diffusa on Collagen-Induced Arthritis in Rats

    PubMed Central

    Zhu, Hao; Liang, Qing-Hua; Xiong, Xin-Gui; Chen, Jiang; Wu, Dan; Yang, Bo; Zhang, Yang; Zhang, Yong; Huang, Xi

    2014-01-01

    Objectives. This study aimed to identify the active compounds in Oldenlandia diffusa (OD) decoction and the compounds absorbed into plasma, and to determine whether the absorbed compounds derived from OD exerted any anti-inflammatory effects in rats with collagen induced arthritis (CIA). Methods. The UPLC-PDA (Ultra Performance Liquid Chromatography Photo-Diode Array) method was applied to identify the active compounds both in the decoction and rat plasma. The absorbable compound was administered to the CIA rats, and the effects were dynamically observed. X-ray films of the joints and HE stain of synovial tissues were analyzed. The levels of IL-1β and TNF-α in the rats from each group were measured by means of ELISA. The absorbed compound in the plasma of CIA rats was identified as ferulic acid (FA), following OD decoction administration. Two weeks after the administration of FA solution or OD decoction, the general conditions improved compared to the model group. The anti-inflammatory effect of FA was inferior to that of the OD decoction (P < 0.05), based on a comparison of IL-1β TNF-α levels. FA from the OD decoction was absorbed into the body of CIA rats, where it elicited anti-inflammatory responses in rats with CIA. Conclusions. These results suggest that FA is the bioactive compound in OD decoction, and FA exerts its effects through anti-inflammatory pathways. PMID:24883069

  14. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  15. Effects of Ferulic Acid on Oxidative Stress, Heat Shock Protein 70, Connexin 43 and Monoamines in Hippocampus of Pentylenetetrazole-Kindled Rats.

    PubMed

    Hussein, Abdelaziz M; Abbas, Khalid M; Abulseoud, Osama A; Elhussainy, Elhussainy Mohamed Abouelez

    2017-02-03

    The present study investigated the effects of ferulic acid on pentylenetetrazole (PTZ)-induced seizures, oxidative stress markers (malondialdhyde (MDA), catalase (CAT) and reduced glutathione (GSH)), connexin (Cx) 43, heat shock protein (Hsp) 70 and monoamines (serotonin (5HT) and norepinephrine (NE) levels in a rat model of PTZ-induced kindling. Sixty Sprague Dawley rats were divided into 5 equal groups, a) normal group, b) FA group: normal rats received FA at a dose of 40 mg/kg daily, c) PTZ group: rats received PTZ at a dose of 50 mg/kg i.p. on alternate day for 15 days, d) FA before group, as PTZ group and rats received FA and e) FA after group, rats received FA from 6th dose of PTZ. PTZ caused significant increase in MDA, Cx43 and Hsp70 with significant decrease in GSH, 5HT and NE levels and CAT activity in hippocampus (p<0.05).Pre- and post-treatment with FA caused significant improvement in behavioral parameters, MDA, CAT, GSH, 5HT,NE, Cx43 expression and Hsp70 expression in hippocampal region (p<0.05). We concluded that FA has a neuroprotective effects in PTZ induced epilepsy which might be due to attenuation of oxidative stress and Cx43 expression, upregulation of neuroprotective HSP70 and neurotransmitters (5HT and NE) levels.

  16. Pharmacokinetic comparison of the vasorelaxant compound ferulic acid following the administration of Guanxin II to healthy volunteers and patients with angina pectoris.

    PubMed

    Li, Yun-Hui; Huang, Xi; Wang, Yang; Fan, Rong; Zhang, Hong-Min; Ren, Ping; Chen, Yao; Zhou, Hong-Hao; Liu, Zhao-Qian; Liang, Yi-Zeng; Lu, Hong-Mei

    2013-11-01

    Coronary heart disease (CHD) is the leading cause of mortality worldwide. The Chinese medicinal formula Guanxin II has been shown to have a favorable effect in the attenuation of angina. The aim of this study was to compare the pharmacokinetics of ferulic acid (FA), which is a vasorelaxant compound present in Guanxin II, in healthy volunteers and patients with angina pectoris following the administration of Guanxin II. Ex vivo experiments were performed in order to investigate the vasorelaxant effect of FA on the human internal mammary artery (IMA) to provide evidence that it is a bioactive component of Guanxin II. Following the oral administration of Guanxin II, the FA levels in the serum were quantified by a simple and rapid high-performance liquid chromatography (HPLC) method. Treatment with FA (10(-8)-10(-3) M) caused a concentration-dependent relaxation of endothelial IMA rings following precontraction with KCl. Statistically significant differences were identified between the pharmaco-kinetic parameters Cmax, t1/2α, t1/2β and t1/2Ka of the healthy volunteers and the patients with angina pectoris following the oral administration of Guanxin II. FA is a bioactive compound absorbed from Guanxin II that attenuates angina pectoris, a condition that may modify the pharmacokinetics of FA. Not only do the pharmacokinetic parameters direct the clinical use of Guanxin II, but they may also be useful for exploring the pathology of angina pectoris.

  17. Preparative isolation and purification of senkyunolide-I, senkyunolide-H and ferulic acid from Rhizoma Chuanxiong using counter-current chromatography.

    PubMed

    Wei, Yun; Hu, Jia; Li, Hao; Liu, Jiangang

    2011-12-01

    Three active compounds, senkyunolide-I, senkyunolide-H and ferulic acid (FA), were successfully isolated and purified from the extracts of Rhizoma Chuanxiong by counter-current chromatography (CCC). Based on the principle of the partition coefficient values (k) for target compounds and the separation factor (α) between target compounds, the two-phase solvent system that contains n-hexane-ethyl acetate-methanol-water at an optimized volume ratio of 3:7:4:6 v/v was selected for the CCC separation, and the lower phase was employed as the mobile phase in the head-to-tail elution mode. In a single run, 400 mg of the crude extract yielded pure senkyunolide-I (6.4 mg), senkyunolide-H (1.7 mg) and FA (4.4 mg) with the purities of 98, 93 and 99%, respectively. The CCC fractions were analyzed by high-performance liquid chromatography, and the structures of the three active compounds were identified by MS and (1)H NMR.

  18. A mass transfer model for the fixed-bed adsorption of ferulic acid onto a polymeric resin: axial dispersion and intraparticle diffusion.

    PubMed

    Davila-Guzman, Nancy E; Cerino-Córdova, Felipe J; Soto-Regalado, Eduardo; Loredo-Cancino, Margarita; Loredo-Medrano, José A; García-Reyes, Refugio B

    2016-08-01

    In this study, amberlite XAD-16 (XAD-16) bed column system was used to remove ferulic acid (FA) from aqueous solutions. Laboratory-scale column experiments were conducted in downflow fixed bed at initial FA concentration of 1 g/L, initial pH 3, and 25°C. The performance of the adsorbent bed under different flow rates (1.3-7.7 mL/min) was studied. The bed utilization efficiency was in the range of 64.64-72.21% at the studied flow rates. A mass transfer model considering both axial dispersion and intraparticle diffusion was developed to predict the breakthrough curves of FA adsorption on XAD-16. This model predicted the experimental data better than Bohart-Adams model and Thomas model, based on the low deviation between predicted and experimental data. The axial dispersion coefficient value varied from 6.45 × 10(-6) to 1.10 × 10(-6) m(2)/s at flow rate from 1.3 to 7.7 mL/min, whereas the intraparticle diffusion coefficient was 1.04 × 10(-10) m(2)/s, being this last resistance the rate-limiting step. In conclusion, axial dispersion and intraparticle diffusion phenomena play the major role in predicting the adsorption of FA onto XAD-16 in fixed-bed columns.

  19. Spray-dried solid dispersions containing ferulic acid: comparative analysis of three carriers, in vitro dissolution, antioxidant potential and in vivo anti-platelet effect.

    PubMed

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto; Borsato, Débora Maria; Almeida, Martinha Antunes; Barboza, Fernanda Malaquias; Zawadzki, Sônia Faria; Farago, Paulo Vitor; Zanin, Sandra Maria Warumby

    2016-11-01

    This article aimed to improve the relative solubility and dissolution rate of ferulic acid (FA) by the use of spray-dried solid dispersions (SDs) in order to ensure its in vitro antioxidant potential and to enhance its in vivo anti-platelet effect. These SDs were prepared by spray-drying at 10 and 20% of drug concentration using polyvinylpyrrolidone K30 (PVP-K30), polyethylene glycol 6000 (PEG 6000) and poloxamer-188 (PLX-188) as carriers. SDs and physical mixtures (PM) were characterized by SEM, XRPD, FTIR spectroscopy and TGA analysis. Spray-dried SDs containing FA were successfully obtained. Relative solubility of FA was improved with increasing carrier concentration. PVP-K30 and PEG 6000 formulations showed suitable drug content values close to 100%, whereas PLX-188 presented mean values between 70 and 90%. Agglomerates were observed depending on the carrier used. XRPD patterns and thermograms indicated that spray-drying led to drug amorphization and provided appropriate thermal stability, respectively. FTIR spectra demonstrated no remarkable interaction between carrier and drug for PEG 6000 and PLX-188 SDs. PVP-K30 formulations had changes in FTIR spectra, which denoted intermolecular O-H•••O = C bonds. Spray-dried SDs played an important role in enhancing dissolution rate of FA when compared to pure drug. The free radical-scavenging assay confirmed that the antioxidant activity of PEG 6000 10% SDs was kept. This formulation also provided a statistically increased in vivo anti-platelet effect compared to pure drug. In summary, these formulations enhanced relative solubility and dissolution rate of FA and chosen formulation demonstrated suitable in vitro antioxidant activity and improved in vivo anti-platelet effect.

  20. Poly(ferulic acid-co-tyrosine): Effect of the Regiochemistry on the Photophysical and Physical Properties en Route to Biomedical Applications

    PubMed Central

    2015-01-01

    The photophysical and mechanical properties of novel poly(carbonate-amide)s derived from two biorenewable resources, ferulic acid (FA) and l-tyrosine ethyl ester, were evaluated in detail. From these two bio-based precursors, a series of four monomers were generated (having amide and/or carbonate coupling units with remaining functionalities to allow for carbonate formation) and transformed to a series of four poly(carbonate-amide)s. The simplest monomer, which was biphenolic and was obtained in a single amidation synthetic step, displayed bright, visible fluorescence that was twice brighter than FA. Multidimensional fluorescence spectroscopy of the polymers in solution highlighted the strong influence that regioselectivity and the degree of polymerization have on their photophysical properties. The regiochemistry of the system had little effect on the wettability, surface free energy, and Young’s modulus (ca. 2.5 GPa) in the solid state. Confocal imaging of solvent-cast films of each polymer revealed microscopically flat surfaces with fluorescent emission deep into the visible region. Fortuitously, one of the two regiorandom polymers (obtainable from the biphenolic monomer in only an overall two synthetic steps from FA and l-tyrosine ethyl ester) displayed the most promising fluorescent properties both in the solid state and in solution, allowing for the possibility of translating this system as a self-reporting or imaging agent in future applications. To further evaluate the potential of this polymer as a biodegradable material, hydrolytic degradation studies at different pH values and temperatures were investigated. Additionally, the antioxidant properties of the degradation products of this polymer were compared with its biphenolic monomer and FA. PMID:25364040

  1. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats

    PubMed Central

    Sadar, Smeeta S.; Vyawahare, Niraj S.; Bodhankar, Subhash L.

    2016-01-01

    Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis. Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune

  2. Ferulic acid ameliorates TNBS-induced ulcerative colitis through modulation of cytokines, oxidative stress, iNOs, COX-2, and apoptosis in laboratory rats.

    PubMed

    Sadar, Smeeta S; Vyawahare, Niraj S; Bodhankar, Subhash L

    2016-01-01

    Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis.Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune

  3. Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases.

    PubMed

    Bonnina; Brunel; Gouy; Lesage-Meessen; Asther; Thibault

    2001-01-02

    The filamentous fungal strains Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, previously selected for the bioconversion of ferulic acid to vanillic acid and vanillin respectively, were grown on sugar beet pulp. A large spectrum of polysaccharide-degrading enzymes was produced by A. niger and very few levels of feruloyl esterases were found. In contrast, P. cinnabarinus culture filtrate contained low amount of polysaccharide-degrading enzymes and no feruloyl esterases. In order to enhance feruloyl esterases in A. niger cultures, feruloylated oligosaccharide-rich fractions were prepared from sugar beet pulp or cereal bran and used as carbon sources. Number of polysaccharide-degrading enzymes were induced. Feruloyl esterases were much higher in maize bran-based medium than in sugar beet pulp-based medium, demonstrating the ability of carbon sources originating from maize to induce the synthesis of feruloyl esterases. Thus, A. niger I-1472 could be interesting to release ferulic acid from sugar beet pulp or maize bran.

  4. Simultaneous determination of paeoniflorin, albiflorin, ferulic acid, tetrahydropalmatine, protopine, typhaneoside, senkyunolide I in Beagle dogs plasma by UPLC-MS/MS and its application to a pharmacokinetic study after Oral Administration of Shaofu Zhuyu Decoction.

    PubMed

    Huang, Xiaochen; Su, Shulan; Cui, Wenxia; Liu, Pei; Duan, Jin-ao; Guo, Jianming; Li, Zhenhao; Shang, Erxin; Qian, Dawei; Huang, Zhijun

    2014-07-01

    In this present study, a sensitive and rapid UPLC-MS/MS method was developed for simultaneous quantification of paeoniflorin, albiflorin, ferulic acid, tetrahydropalmatine, protopine, typhaneoside and senkyunolide I in Beagle dog plasma after oral administration of the Shao-Fu-Zhu-Yu Decoction. Chloramphenicol and clarithromycin were used as internal standards. Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100mm×2.1mm, 1.7μm) at a flow-rate of 0.4mL/min, using 0.1% formic acid-acetonitrile as mobile phase. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. After validation, this method was successfully applied to a pharmacokinetic study. The results showed that the apparent plasma clearance of paeoniflorin, albiflorin, typhaneoside and senkyunolide I were significantly higher than others. Double peak was observed in plasma concentration curves of tetrahydropalmatine, the ferulic acid had a good absorption in Beagle dog plasma, and senkyunolide I was detected in plasma from the first blood sampling time (15min) and rapidly reached Tmax. The compound of typhaneoside has a low bioavailability according to the results.

  5. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    PubMed Central

    Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare

    2016-01-01

    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023

  6. Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro.

    PubMed

    Fahrioğlu, Umut; Dodurga, Yavuz; Elmas, Levent; Seçme, Mücahit

    2016-01-15

    Novel and combinatorial treatment methods are becoming sought after entities in cancer treatment and these treatments are even more valuable for pancreatic cancer. The scientists are always on the lookout for new chemicals to help them in their fight against cancer. In this study, we examine the effects of ferulic acid (FA), a phenolic compound, on gene expression, viability, colony formation and migration/invasion in the cultured MIA PaCa-2 human pancreatic cancer cell. Cytotoxic effects of FA were determined by using trypan blue dye exclusion test and Cell TiterGlo (CTG) assay. IC50 dose in MIA PaCa-2 cells was detected as 500μM/ml at the 72nd hour. Expression profiles of certain cell cycle and apoptosis genes such as CCND1 (cyclin D1),CDK4, CDK6, RB, p21, p16, p53, caspase-3, caspase-9, caspase-8, caspase-10, Bcl-2, BCL-XL,BID, DR4,DR5,FADD,TRADD,PARP, APAF, Bax, Akt, PTEN, PUMA, NOXA, MMP2, MMP9, TIMP1 and TIMP2 were determined by real-time PCR. The effect of FA on cell viability was determined by CellTiter-Glo® Luminescent Cell Viability Assay. Additionally, effects of FA on colony formation and invasion were also investigated. It was observed that FA caused a significant decrease in the expression of CCND1, CDK 4/6, Bcl2 and caspase 8 and 10 in the MIA PaCa-2 cells while causing an increase in the expression of p53, Bax, PTEN caspase 3 and 9. FA was observed to decrease colony formation while inhibiting cell invasion and migration as observed by the BioCoat Matrigel Invasion Chamber guide and colony formation assays. In conclusion, FA is thought to behave as an anti-cancer agent by affecting cell cycle, apoptotic, invasion and colony formation behavior of MIA PaCa-2 cells. Therefore, FA is placed as a strong candidate for further studies aimed at finding a better, more effective treatment approach for pancreatic cancer.

  7. Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells

    PubMed Central

    Huang, Hao; Hong, Qian; Tan, Hong-ling; Xiao, Cheng-rong; Gao, Yue

    2016-01-01

    Aim: Phosphodiesterase 4 (PDE4) isozymes are involved in different functions, depending on their patterns of distribution in the brain. The PDE4 subtypes are distributed in different inflammatory cells, and appear to be important regulators of inflammatory processes. In this study we examined the effects of ferulic acid (FA), a plant component with strong anti-oxidant and anti-inflammatory activities, on lipopolysaccharide (LPS)-induced up-regulation of phosphodiesterase 4B (PDE4B) in PC12 cells, which in turn regulated cellular cAMP levels and the cAMP/cAMP response element binding protein (CREB) pathway in the cells. Methods: PC12 cells were treated with LPS (1 μg/mL) for 8 h, and the changes of F-actin were detected using laser scanning confocal microscopy. The levels of pro-inflammatory cytokines were measured suing ELISA kits, and PDE4B-specific enzymatic activity was assessed with a PDE4B assay kit. The mRNA levels of PDE4B were analyzed with Q-PCR, and the protein levels of CREB and phosphorylated CREB (pCREB) were determined using immunoblotting. Furthermore, molecular docking was used to identify the interaction between PDE4B2 and FA. Results: Treatment of PC12 cells with LPS induced thick bundles of actin filaments appearing in the F-actin cytoskeleton, which were ameliorated by pretreatment with FA (10–40 μmol/L) or with a PDE4B inhibitor rolipram (30 μmol/L). Pretreatment with FA dose-dependently inhibited the LPS-induced production of TNF-α and IL-1β in PC12 cells. Furthermore, pretreatment with FA dose-dependently attenuated the LPS-induced up-regulation of PDE4 activity in PC12 cells. Moreover, pretreatment with FA decreased LPS-induced up-regulation of the PDE4B mRNA, and reversed LPS-induced down-regulation of CREB and pCREB in PC12 cells. The molecular docking results revealed electrostatic and hydrophobic interactions between FA and PDE4B2. Conclusion: The beneficial effects of FA in PC12 cells might be conferred through inhibition of LPS

  8. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat.

    PubMed

    Narasimhan, Akilavalli; Chinnaiyan, Mayilvanan; Karundevi, Balasubramanian

    2015-08-01

    Ferulic acid (FA) is a phenolic phytochemical known for its antidiabetic property The present study is designed to evaluate the mechanism behind its antidiabetic property in high-fat and fructose-induced type 2 diabetic adult male rats. Animals were divided into 5 groups: (i) control, (ii) diabetic control, (iii) diabetic animals treated with FA (50 mg/(kg body weight · day)(-1), orally) for 30 days, (iv) diabetic animals treated with metformin (50 mg/(kg body weight · day)(-1), orally) for 30 days, and (v) control rats treated with FA. FA treatment to diabetic animals restored blood glucose, serum insulin, glucose tolerance, and insulin tolerance to normal range. Hepatic glycogen concentration, activity of glycogen synthase, and glucokinase were significantly decreased, whereas activity of glycogen phosphorylase and enzymes of gluconeogenesis (phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase)) were increased in diabetic animals and FA restored these to normal levels similar to that of metformin. FA improved the insulin signalling molecules and reduced the negative regulators of insulin signalling. The messenger RNA of gluconeogenic enzyme genes (PEPCK and G6Pase) and the interaction between forkhead transcription factor-O1 and promoters of gluconeogenic enzyme genes (PEPCK and G6Pase) was reduced significantly by ferulic acid. It is concluded from the present study that FA treatment to type 2 diabetic rats improves insulin sensitivity and hepatic glycogenesis but inhibits gluconeogenesis and negative regulators of insulin signalling to maintain normal glucose homeostasis.

  9. Ferulic acid attenuated acetaminophen-induced hepatotoxicity though down-regulating the cytochrome P 2E1 and inhibiting toll-like receptor 4 signaling-mediated inflammation in mice

    PubMed Central

    Yuan, Junhui; Ge, Kuang; Mu, Junhuan; Rong, Jiang; Zhang, Li; Wang, Bin; Wan, Jingyuan; Xia, Gong

    2016-01-01

    Ferulic acid (FA), a phenolic acid which is abundant in vegetables and fruits, has been reported to exert anti-oxidative and anti-inflammatory activities. In the present study, the pharmacological effects and the underlying mechanisms of FA in mice with acetaminophen-induced hepatotoxicity were investigated. Our results revealed that FA pretreatment inhibited the augments of serum aminotransferases in a dose-dependent manner and attenuated the hepatic histopathological abnormalities and hepatocellular apoptosis in acetaminophen (APAP) exposed mice. Moreover, FA inhibited the expression of cytochrome P450 2E1 (CYP2E1), enhanced the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the contents of glutathione (GSH). Furthermore, FA markedly attenuated acetaminophen-induced serum tumor necrosis factor (TNF)-α and interleukin (IL)-1β production, suppressed Toll-like receptor (TLR) 4 expression and dampened p38 mitogen-activated (MAPK) and nuclear factor kappa (NF-κB) activation. These data suggested that FA could effectively protect against APAP-induced liver injury by down-regulated expression of CYP 2E1 and the suppression of TLR4-mediated inflammatory responses. PMID:27830004

  10. Involvement of PKA, CaMKII, PKC, MAPK/ERK and PI3K in the acute antidepressant-like effect of ferulic acid in the tail suspension test.

    PubMed

    Zeni, Ana Lúcia Bertarello; Zomkowski, Andréa Dias Elpo; Maraschin, Marcelo; Rodrigues, Ana Lúcia Severo; Tasca, Carla Inês

    2012-12-01

    Ferulic acid (FA, 4-hydroxy-3-methoxycinnamic acid) is a phytochemical compound naturally present in several plants and foods that is approved as an antioxidant additive and food preservative. It exerts a beneficial action in chronic mild stress-induced depressive-like behavior and produces an acute antidepressant-like effect in the tail suspension test (TST) through the activation of the serotonergic system. This study was aimed at investigating the possible involvement of signaling pathways in the antidepressant-like effect of acute and oral administration of FA, in the TST in mice. The anti-immobility effect of orally administered FA (0.01mg/kg, p.o.) was prevented by pretreatment of mice with H-89 (1μg/site, i.c.v., an inhibitor of PKA), KN-62 (1μg/site, i.c.v., an inhibitor of CaMKII), GF109203X (5ng/site, i.c.v., an inhibitor of PKC), U0126 (5μg/site, i.c.v., an inhibitor of MAPK/ERK) or LY294002 (10nmol/site, i.c.v., an inhibitor of PI3K), all involved with neurotrophic signaling pathways. The results demonstrated that FA exerts antidepressant-like effect in the TST in mice, through the activation of signaling pathways related to neuroplasticity, neurogenesis and cell survival.

  11. A green ultrasonic-assisted liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil.

    PubMed

    Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza

    2016-04-01

    A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%.

  12. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amylose can form inclusion complexes with guest molecules and represents an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose. To overcome this problem a ferulic acid ester, octadecyl ferulate, posses...

  13. Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity

    PubMed Central

    de Melo, T.S.; Lima, P.R.; Carvalho, K.M.M.B.; Fontenele, T.M.; Solon, F.R.N.; Tomé, A.R.; de Lemos, T.L.G.; da Cruz Fonseca, S.G.; Santos, F.A.; Rao, V.S.; de Queiroz, M.G.R.

    2017-01-01

    Previous studies have reported on the glucose and lipid-lowering effects of ferulic acid (FA) but its anti-obesity potential has not yet been firmly established. This study investigated the possible anti-obesitogenic effects of FA in mice fed a high-fat diet (HFD) for 15 weeks. To assess the antiobesity potential of FA, 32 male Swiss mice, weighing 20–25 g (n=6–8 per group) were fed a normal diet (ND) or HFD, treated orally or not with either FA (10 mg/kg) or sibutramine (10 mg/kg) for 15 weeks and at the end of this period, the body weights of animals, visceral fat accumulation, plasma levels of glucose and insulin hormone, amylase and lipase activities, the satiety hormones ghrelin and leptin, and tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCH-1) were analyzed. Results revealed that FA could effectively suppress the HFD-associated increase in visceral fat accumulation, adipocyte size and body weight gain, similar to sibutramine, the positive control. FA also significantly (P<0.05) decreased the HFD-induced elevations in serum lipid profiles, amylase and lipase activities, and the levels of blood glucose and insulin hormone. The markedly elevated leptin and decreased ghrelin levels seen in HFD-fed control mice were significantly (P<0.05) reversed by FA treatment, almost reaching the values seen in ND-fed mice. Furthermore, FA demonstrated significant (P<0.05) inhibition of serum levels of inflammatory mediators TNF-α, and MCH-1. These results suggest that FA could be beneficial in lowering the risk of HFD-induced obesity via modulation of enzymatic, hormonal and inflammatory responses. PMID:28076453

  14. Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity.

    PubMed

    de Melo, T S; Lima, P R; Carvalho, K M M B; Fontenele, T M; Solon, F R N; Tomé, A R; de Lemos, T L G; da Cruz Fonseca, S G; Santos, F A; Rao, V S; de Queiroz, M G R

    2017-01-05

    Previous studies have reported on the glucose and lipid-lowering effects of ferulic acid (FA) but its anti-obesity potential has not yet been firmly established. This study investigated the possible anti-obesitogenic effects of FA in mice fed a high-fat diet (HFD) for 15 weeks. To assess the antiobesity potential of FA, 32 male Swiss mice, weighing 20-25 g (n=6-8 per group) were fed a normal diet (ND) or HFD, treated orally or not with either FA (10 mg/kg) or sibutramine (10 mg/kg) for 15 weeks and at the end of this period, the body weights of animals, visceral fat accumulation, plasma levels of glucose and insulin hormone, amylase and lipase activities, the satiety hormones ghrelin and leptin, and tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCH-1) were analyzed. Results revealed that FA could effectively suppress the HFD-associated increase in visceral fat accumulation, adipocyte size and body weight gain, similar to sibutramine, the positive control. FA also significantly (P<0.05) decreased the HFD-induced elevations in serum lipid profiles, amylase and lipase activities, and the levels of blood glucose and insulin hormone. The markedly elevated leptin and decreased ghrelin levels seen in HFD-fed control mice were significantly (P<0.05) reversed by FA treatment, almost reaching the values seen in ND-fed mice. Furthermore, FA demonstrated significant (P<0.05) inhibition of serum levels of inflammatory mediators TNF-α, and MCH-1. These results suggest that FA could be beneficial in lowering the risk of HFD-induced obesity via modulation of enzymatic, hormonal and inflammatory responses.

  15. Alkyl ferulates in wound healing potato tubers.

    PubMed

    Bernards, M A; Lewis, N G

    1992-10-01

    Seven ferulic acid esters of 1-alkanols ranging in carbon length from C16 to C28 were synthesized and an HPLC protocol for their separation developed. Extracts prepared from wound healing potato (Solanum tuberosum) tubers and analysed by HPLC indicated that alkyl ferulate esters begin to accumulate 3-7 days after wound treatment. Of the nine esters identified by EIMS, (including two esters of odd chain length alkanols) hexadecyl and octadecyl ferulates were predominant. Alkyl ferulate esters were restricted to the wound periderm.

  16. Ferulic Acid Administered at Various Time Points Protects against Cerebral Infarction by Activating p38 MAPK/p90RSK/CREB/Bcl-2 Anti-Apoptotic Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion Injury in Rats

    PubMed Central

    Cheng, Chin-Yi; Tang, Nou-Ying; Kao, Shung-Te; Hsieh, Ching-Liang

    2016-01-01

    Objectives This study aimed to evaluate the effects of ferulic acid (FA) administered at various time points before or after 30 min of middle cerebral artery occlusion (MCAo) followed by 7 d of reperfusion and to examine the involvement of mitogen-activated protein kinase (MAPK) signaling pathways in the cortical penumbra. Methods FA was intravenously administered to rats at a dose of 100 mg/kg 24 h before ischemia (B-FA), 2 h before ischemia (P-FA), immediately after ischemic insult (I-FA), 2 h after reperfusion (R-FA), or 24 h after reperfusion (D-FA). Results Our study results indicated that P-FA, I-FA, and R-FA effectively reduced cerebral infarct areas and neurological deficits. P-FA, I-FA, and R-FA significantly downregulated glial fibrillary acidic protein (GFAP), mitochondrial Bax, cytochrome c, and cleaved caspase-3 expression, and effectively restored the phospho-p38 MAPK (p-p38 MAPK)/p38 MAPK ratio, phospho-90 kDa ribosomal S6 kinase (p-p90RSK) expression, phospho-Bad (p-Bad) expression, the phospho-cAMP response element-binding protein (p-CREB)/CREB ratio, the cytosolic and mitochondrial Bcl-2/Bax ratios, and the cytosolic Bcl-xL/Bax ratio in the cortical penumbra 7 d after reperfusion. SB203580, a specific inhibitor of p38 MAPK, administered 30 min prior to ischemia abrogated the downregulating effects of I-FA on cerebral infarction, and mitochondrial Bax and cleaved caspase-3 expression, and the upregulating effects of I-FA on the p-p38 MAPK/p38 MAPK ratio, p-p90RSK expression, p-Bad expression, and the p-CREB/CREB, and cytosolic and mitochondrial Bcl-2/Bax ratios. Conclusions Our study results thus indicate that P-FA, I-FA, and R-FA effectively suppress reactive astrocytosis and exert neuroprotective effects against cerebral infarction by activating p38 MAPK signaling. The regulating effects of P-FA, I-FA, and R-FA on Bax-induced apoptosis result from activation of the p38 MAPK/p90RSK/CREB/Bcl-2 signaling pathway, and eventually contribute to

  17. Production and applications of ferulate-modified vegetable oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns have been raised about the potential adverse health and ecological effects of the commonly used sunscreen active ingredients. A sunscreen active ingredient can be derived from two natural plant components, ferulic acid and vegetable oil triglycerides. Transesterification of ferulic acid e...

  18. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    PubMed

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  19. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  20. Octadecyl ferulate behavior in 1,2-Dioleoylphosphocholine liposomes

    NASA Astrophysics Data System (ADS)

    Evans, Kervin O.; Compton, David L.; Whitman, Nathan A.; Laszlo, Joseph A.; Appell, Michael; Vermillion, Karl E.; Kim, Sanghoon

    2016-01-01

    Octadecyl ferulate was prepared using solid acid catalyst, monitored using Supercritical Fluid Chromatography and purified to a 42% yield. Differential scanning calorimetry measurements determined octadecyl ferulate to have melting/solidification phase transitions at 67 and 39 °C, respectively. AFM imaging shows that 5-mol% present in a lipid bilayer induced domains to form. Phase behavior measurements confirmed that octadecyl ferulate increased transition temperature of phospholipids. Fluorescence measurements demonstrated that octadecyl ferulate stabilized liposomes against leakage, maintained antioxidant capacity within liposomes, and oriented such that the feruloyl moiety remained in the hydrophilic region of the bilayer. Molecular modeling calculation indicated that antioxidant activity was mostly influenced by interactions within the bilayer.

  1. Effect of tocopherols on the anti-polymerization activity of oryzanol and corn steryl ferulates in soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steryl ferulates (SF) are ferulic acid esters of phytosterols and/or triterpene alcohols which have potential as frying oil antioxidants. The objective of this study was to evaluate the anti-polymerization and antioxidant activity at frying temperatures of corn steryl ferulates (CSF), rice steryl f...

  2. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  3. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  4. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  5. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  6. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  7. Enzymatic synthesis of cinnamic acid derivatives.

    PubMed

    Lee, Gia-Sheu; Widjaja, Arief; Ju, Yi-Hsu

    2006-04-01

    Using Novozym 435 as catalyst, the syntheses of ethyl ferulate (EF) from ferulic acid (4-hydroxy 3-methoxy cinnamic acid) and ethanol, and octyl methoxycinnamate (OMC) from p-methoxycinnamic acid and 2-ethyl hexanol were successfully carried out in this study. A conversion of 87% was obtained within 2 days at 75 degrees C for the synthesis of EF. For the synthesis of OMC at 80 degrees C, 90% conversion can be obtained within 1 day. The use of solvent and high reaction temperature resulted in better conversion for the synthesis of cinnamic acid derivatives. Some cinnamic acid esters could also be obtained with higher conversion and shorter reaction times in comparison to other methods reported in the literature. The enzyme can be reused several times before significant activity loss was observed.

  8. Anti-inflammatory effects of hydroxycinnamic acid derivatives

    SciTech Connect

    Nagasaka, Reiko; Chotimarkorn, Chatchawan; Shafiqul, Islam Md.; Hori, Masatoshi; Ozaki, Hiroshi; Ushio, Hideki . E-mail: hushio@kaiyodai.ac.jp

    2007-06-29

    NF-{kappa}B family of transcription factors are involved in numerous cellular processes, including differentiation, proliferation, and inflammation. It was reported that hydroxycinnamic acid derivatives (HADs) are inhibitors of NF-{kappa}B activation. Rice bran oil contains a lot of phytosteryl ferulates, one of HADs. We have investigated effects of phytosteryl ferulates on NF-{kappa}B activation in macrophage. Cycloartenyl ferulate (CAF), one of phytosteryl ferulates, significantly reduced lipopolysaccharide (LPS)-induced NO production and mRNA expression of inducible NO synthase and cyclooxygenese-2 but upregulated SOD activity. Electrophoresis mobility shift assay revealed that CAF inhibited DNA-binding of NF-{kappa}B. CAF and phytosteryl ferulates probably have potentially anti-inflammatory properties.

  9. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  10. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  11. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  12. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  13. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  14. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  15. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  16. Amino acids

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  17. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  18. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  19. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  20. Differential metabolism of hydroxycinnamic acids by two Brettanomyces bruxellensis strains grown in red wines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acids, respectively) are found in red wines in varying concentrations depending on cultivars and other factors. While some Brettanomyces form volatile phenols...

  1. Influence of phytosterol structure on antioxidant activity of steryl ferulates in frying oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Steryl ferulates (SFs) occur in rice, corn, wheat, and rye, and are composed of plant sterols (phytosterols) esterified to ferulic acid. The structures of SFs from each cereal source differ due to differences in the phytosterol head group and these structural differences have been demonstrated to i...

  2. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  3. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  4. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  5. Chemoattraction of anaerobic ruminal fungi zoospores to selected phenolic acids.

    PubMed

    Wubah, D A; Kim, D S

    1996-08-01

    Three phenolic acids, p-coumaric acid, ferulic acid and syringic acid, were evaluated as chemoattractants for zoospores of two monocentric and two polycentric isolates of anaerobic, zoosporic ruminal fungi. Attraction of fungal zoospores to the acids was determined by a modification of the Palleroni method and fungal thallus forming units were counted after incubating capillary tubes in a chemotaxis chamber. Chemotactic response was expressed as relative taxis response (RTR), which is the ratio of accumulation of zoospores in test capillaries to that in control capillaries. Monocentric isolates had greater RTR values then did the polycentric isolates. The order of chemoattraction for the uniflagellate isolates was p-coumaric acid > ferulic acid > syringic acid. The order of attraction was different between the two isolates with multiflagellate zoospores. Ferulic acid and p-coumaric acid were better chemoattractants than syringic acid. Peak response for the monocentric isolates was 1.0 mumol l-1 while that for the polycentric isolates was 0.1 mmol l-1.

  6. Surface reactions of iron - enriched smectites: adsorption and transformation of hydroxy fatty acids and phenolic acids

    NASA Astrophysics Data System (ADS)

    Polubesova, Tamara; Olshansky, Yaniv; Eldad, Shay; Chefetz, Benny

    2014-05-01

    Iron-enriched smectites play an important role in adsorption and transformation of soil organic components. Soil organo-clay complexes, and in particular humin contain hydroxy fatty acids, which are derived from plant biopolymer cutin. Phenolic acids belong to another major group of organic acids detected in soil. They participate in various soil processes, and are of concern due to their allelopathic activity. We studied the reactivity of iron-enriched smectites (Fe(III)-montmorillonite and nontronite) toward both groups of acids. We used fatty acids- 9(10),16-dihydroxypalmitic acid (diHPA), isolated from curtin, and 9,10,16-trihydroxypalmitic acid (triHPA); the following phenolic acids were used: ferulic, p-coumaric, syringic, and vanillic. Adsorption of both groups of acids was measured. The FTIR spectra of fatty acid-mineral complexes indicated inner-sphere complexation of fatty acids with iron-enriched smectites (versus outer-sphere complexation with Ca(II)-montmorillonite). The LC-MS results demonstrated enhanced esterification of fatty acids on the iron-enriched smectite surfaces (as compared to Ca(II)-montmorillonite). This study suggests that fatty acids can be esterified on the iron-enriched smectite surfaces, which results in the formation of stable organo-mineral complexes. These complexes may serve as a model for the study of natural soil organo-clay complexes and humin. The reaction of phenolic acids with Fe(III)-montmorillonite demonstrated their oxidative transformation by the mineral surfaces, which was affected by molecular structure of acids. The following order of their transformation was obtained: ferulic >syringic >p-coumaric >vanillic. The LC-MS analysis demonstrated the presence of dimers, trimers, and tetramers of ferulic acid on the surface of Fe(III)-montmorillonite. Oxidation and transformation of ferulic acid were more intense on the surface of Fe(III)-montmorillonite as compared to Fe(III) in solution due to stronger complexation on

  7. New multifunctional surfactants from natural phenolic acids.

    PubMed

    Centini, Marisanna; Rossato, Maria Sole; Sega, Alessandro; Buonocore, Anna; Stefanoni, Sara; Anselmi, Cecilia

    2012-01-11

    Several new multifunctional molecules derived from natural sources such as amino acids and hydroxycinnamic acids were synthesized. They exhibit various activities such as emulsifying, UV-protecting, and radical scavenging, thereby conforming to the latest requirements for cosmetic ingredients. The synthesis comprises only a few steps: (i) the amino acid, the acid groups of which are protected by esterification, is coupled with ferulic or caffeic acid; (ii) the p-hydroxyl group of the cinnamic derivative reacts with dodecyl bromide in the presence of potassium carbonate (the resulting compounds are highly lipophilic and tested as water/oil (W/O) emulsifiers); (iii) these molecules, by deprotonating the acid groups of the amino acids, with successive salification, are more hydrophilic, with stronger O/W emulsifying properties. The new multifunctional surfactants might prove useful for the treatment of multiple skin conditions, including loss of cellular antioxidants, damage from free radicals, damage from UV, and others.

  8. Decarboxylation of Substituted Cinnamic Acids by Lactic Acid Bacteria Isolated during Malt Whisky Fermentation

    PubMed Central

    van Beek, Sylvie; Priest, Fergus G.

    2000-01-01

    Seven strains of Lactobacillus isolated from malt whisky fermentations and representing Lactobacillus brevis, L. crispatus, L. fermentum, L. hilgardii, L. paracasei, L. pentosus, and L. plantarum contained genes for hydroxycinnamic acid (p-coumaric acid) decarboxylase. With the exception of L. hilgardii, these bacteria decarboxylated p-coumaric acid and/or ferulic acid, with the production of 4-vinylphenol and/or 4-vinylguaiacol, respectively, although the relative activities on the two substrates varied between strains. The addition of p-coumaric acid or ferulic acid to cultures of L. pentosus in MRS broth induced hydroxycinnamic acid decarboxylase mRNA within 5 min, and the gene was also induced by the indigenous components of malt wort. In a simulated distillery fermentation, a mixed culture of L. crispatus and L. pentosus in the presence of Saccharomyces cerevisiae decarboxylated added p-coumaric acid more rapidly than the yeast alone but had little activity on added ferulic acid. Moreover, we were able to demonstrate the induction of hydroxycinnamic acid decarboxylase mRNA under these conditions. However, in fermentations with no additional hydroxycinnamic acid, the bacteria lowered the final concentration of 4-vinylphenol in the fermented wort compared to the level seen in a pure-yeast fermentation. It seems likely that the combined activities of bacteria and yeast decarboxylate p-coumaric acid and then reduce 4-vinylphenol to 4-ethylphenol more effectively than either microorganism alone in pure cultures. Although we have shown that lactobacilli participate in the metabolism of phenolic compounds during malt whisky fermentations, the net result is a reduction in the concentrations of 4-vinylphenol and 4-vinylguaiacol prior to distillation. PMID:11097909

  9. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  10. Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers.

    PubMed

    Simonovska, Breda; Vovk, Irena; Andrensek, Samo; Valentová, Katerina; Ulrichová, Jitka

    2003-10-17

    Thin-layer chromatographic (TLC) screening of crude extracts of dried leaves and tubers of yacon (Smallanthus sonchifolius, Asteraceae) and products of acid hydrolysis of tubers on the silica gel HPTLC plates using the developing solvents ethyl acetate-formic acid-water (85:10:15, v/v/v) and n-hexane-ethyl acetate-formic acid (20:19:1, v/v/v) proved the presence of chlorogenic, caffeic and ferulic acid. These phenolic acids were isolated from the crude extract of yacon leaves by preparative TLC, and identified after elution by HPLC/MS, as well as by direct injection of the crude extract into the HPLC/MS system. Acid hydrolysis of tubers released the increased amount of phenolic acids (e.g. caffeic acid and ferulic acid), flavonoid quercetin and an unidentified flavonoid, which was detected by TLC analysis. Ferulic acid, isomers of dicaffeoylquinic acid and still an unidentified derivative of chlorogenic acid (Mr = 562) as constituents of yacon leaves and ferulic acid as constituent of yacon tubers are reported here for the first time. These acids gave significant contribution to the radical scavenging activity detected directly on the TLC plate sprayed with 1,1-diphenyl-2-picrylhydrazyl (DPPH).

  11. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  12. Acid Rain

    MedlinePlus

    ... EPA Is Doing Acid Rain Program Cross-State Air Pollution Rule Progress Reports Educational Resources Kid's Site for ... Monitoring National Atmospheric Deposition Program (NADP) Exit Interstate Air Pollution Transport Contact Us to ask a question, provide ...

  13. Folic Acid

    MedlinePlus

    ... folic acid can hide signs that you lack vitamin B12, which can cause nerve damage. 10 Do I ... Rosenberg, I.H., et al. (2007). Folate and vitamin B12 status in relation to anemia, macrocytosis and cognitive ...

  14. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  15. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  16. Corn starch ferulates with antioxidant properties prepared by N,N'-carbonyldiimidazole-mediated grafting procedure.

    PubMed

    Wen, Yu; Ye, Fayin; Zhu, Jianfei; Zhao, Guohua

    2016-10-01

    This work presents novel synthesis processes and properties of corn starch ferulates. First, N,N'-carbonyldiimidazole, a green activating reagent, was used to transform ferulic acid into ferulate-imidazolide. The ferulate-imidazolide was then further reacted with corn starch to produce corn starch ferulates. The grafting reaction of ferulic acid onto corn starch was confirmed by FT-IR and (1)H NMR. The degree of substitution (DS), relating products and reaction parameters, depended on the molar ratio of the anhydroglucose unit to ferulic acid (nAGU/FA), the temperature of the reaction, and the time that elapsed. The dependence of the degree of substitution was optimized by response surface methodology. Results implied the greatest DS (0.389) was obtained under the conditions of nAGU/FA 1:3.6, 90°C and 7.12h. The morphological, crystalline, and in vitro antioxidant properties were evaluated. The DPPH radical scavenging activity, reducing power, and ferric reducing power of the corn starch ferulates showed potential for antioxidant properties.

  17. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1993-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  18. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  19. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  20. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  1. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 03 / 007 www.epa.gov / iris TOXICOLOGICAL REVIEW OF DICHLOROACETIC ACID ( CAS No . 79 - 43 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) August 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been revi

  2. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 09 / 003F www.epa.gov / iris TOXICOLOGICAL REVIEW OF TRICHLOROACETIC ACID ( CAS No . 76 - 03 - 9 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2011 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This document has

  3. Acid rain

    SciTech Connect

    Not Available

    1984-06-01

    An overview is presented of acid rain and the problems it causes to the environment worldwide. The acidification of lakes and streams is having a dramatic effect on aquatic life. Aluminum, present in virtually all forest soils, leaches out readily under acid conditions and interferes with the gills of all fish, some more seriously than others. There is evidence of major damage to forests in European countries. In the US, the most severe forest damage appears to be in New England, New York's Adirondacks, and the central Appalachians. This small region is part of a larger area of the Northeast and Canada that appears to have more acid rainfall than the rest of the country. It is downwind from major coal burning states, which produce about one quarter of US SO/sub 2/ emissions and one sixth of nitrogen oxide emissions. Uncertainties exist over the causes of forest damage and more research is needed before advocating expensive programs to reduce rain acidity. The President's current budget seeks an expansion of research funds from the current $30 million per year to $120 million.

  4. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  5. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  6. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  7. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  8. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  9. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.

    PubMed

    Kenar, James A; Compton, David L; Little, Jeanette A; Peterson, Steve C

    2016-04-20

    Amylose-ligand inclusion complexes represent an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose from high amylose maize starch. To overcome this problem a lipophilic ferulic acid ester, octadecyl ferulate, was prepared and complexed with amylose via excess steam jet cooking. Jet-cooking octadecyl ferulate and high amylose starch gave an amylose-octadecyl ferulate inclusion complex in 51.0% isolated yield. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed that a 61 V-type inclusion complex was formed. Amylose and extraction assays showed the complex to be enriched in amylose (91.9±4.3%) and contain 70.6±5.6mgg(-1) octadecyl ferulate, although, minor hydrolysis (∼4%) of the octadecyl ferulate was observed under the excess steam jet-cooking conditions utilized. This study demonstrates that steam jet cooking is a rapid and scalable process in which to prepare amylose-octadecyl ferulate inclusion complexes.

  10. Azelaic acid.

    PubMed

    Nazzaro-Porro, M

    1987-12-01

    This review is an update on the literature accumulated over the past 10 years following the original observation that azelaic acid, a naturally occurring and nontoxic C9 dicarboxylic acid, possesses significant biologic properties and a potential as a therapeutic agent. These studies have shown that azelaic acid is a reversible inhibitor of tyrosinase and other oxidoreductases in vitro and that it inhibits mitochondrial respiration. It can also inhibit anaerobic glycolysis. Both in vitro and in vivo it has an antimicrobial effect on both aerobic and anaerobic (Propionibacterium acnes) microorganisms. In tissue culture it exerts a dose- and time-dependent cytotoxic effect on malignant melanocytes, associated with mitochondrial damage and inhibition of deoxyribonucleic acid (DNA) synthesis. Tumoral cell lines not containing tyrosinase are equally affected. Normal cells in culture exposed to the same concentrations of the diacid that are toxic for tumoral cells are in general not damaged. Radioactive azelaic acid has been shown to penetrate tumoral cells at a higher level than normal cells of the corresponding line. Topically applied (a 20% cream), it has been shown to be of therapeutic value in skin disorders of different etiologies. Its beneficial effect on various forms of acne (comedogenic, papulopustular, nodulocystic) has been clearly demonstrated. Particularly important is its action on abnormal melanocytes, which has led to the possibility of obtaining good results on melasma and highly durable therapeutic responses on lentigo maligna. It is also capable of causing regression of cutaneous malignant melanoma, but its role in melanoma therapy remains to be investigated.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  12. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN).

    PubMed

    Souto, E B; Anselmi, C; Centini, M; Müller, R H

    2005-05-13

    Solid lipid nanoparticles (SLN) containing a novel potential sunscreen n-dodecyl-ferulate (ester of ferulic acid) were developed. The preparation and stability parameters of n-dodecyl-ferulate-loaded SLN have been investigated concerning particle size, surface electrical charge (zeta potential) and matrix crystallinity. The chemical stability of n-dodecyl-ferulate at high temperatures was also assessed by thermal gravimetry analysis. For the selection of the appropriated lipid matrix, chemically different lipids were melted with 4% (m/m) of active and lipid nanoparticles were prepared by the so-called high pressure homogenization technique. n-Dodecyl-ferulate-loaded SLN prepared with cetyl palmitate showed the lowest mean particle size and polydispersity index, as well as the highest physical stability during storage time of 21 days at 4, 20 and 40 degrees C. These colloidal dispersions containing the sunscreen also exhibited the common melting behaviour of aqueous SLN dispersions.

  13. Acidic domains around nucleic acids.

    PubMed Central

    Lamm, G; Pack, G R

    1990-01-01

    The hydrogen ion concentration in the vicinity of DNA was mapped out within the Poisson-Boltzmann approximation. Experimental conditions were modeled by assuming Na-DNA to be solvated in a buffer solution containing 45 mM Tris and 3 mM Mg cations at pH 7.5. Three regions of high H+ concentration (greater than 10 microM) are predicted: one throughout the minor groove of DNA and two localized in the major groove near N7 of guanine and C5 of cytosine for a G.C base pair. These acidic domains correlate well with the observed covalent binding sites of benzo[a]pyrene epoxide (N2 of guanine) and of aflatoxin B1 epoxide (N7 of guanine), chemical carcinogens that presumably undergo acid catalysis to form highly reactive carbocations that ultimately bind to DNA. It is suggested that these regions of high H+ concentration may also be of concern in understanding interactions involving proteins and noncarcinogenic molecules with or near nucleic acids. PMID:2123348

  14. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  15. Influence of phenolic acids on indole acetic acid production and on the type III secretion system gene transcription in food-associated Pseudomonas fluorescens KM05.

    PubMed

    Myszka, Kamila; Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Leja, Katarzyna; Czaczyk, Katarzyna

    2014-12-01

    The purpose of these investigations was to evaluate the reduction capability of phenolic acids (ferulic, chlorogenic, gallic, and p-coumaric acids) on indole acetic acid synthesis by food-associated Pseudomonas fluorescens KM05. Specific genetic primer for the type III secretion system (TTSS) in P. fluorescens KM05 was designed and the influence of phenolic acids on its expression was investigated. In the work the ferulic and chlorogenic acids at the concentration of 0.02 and 0.04 μg/ml affected on bacterial growth pattern and the signal molecules production. The phenolic acids, that were appreciable effective against P. fluorescens KM05 indole acetic acid production, significantly suppressed TTSS gene.

  16. Folic Acid and Pregnancy

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  17. Enhanced Lignin Monomer Production Caused by Cinnamic Acid and Its Hydroxylated Derivatives Inhibits Soybean Root Growth

    PubMed Central

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth. PMID:24312480

  18. Enhanced lignin monomer production caused by cinnamic Acid and its hydroxylated derivatives inhibits soybean root growth.

    PubMed

    Lima, Rogério Barbosa; Salvador, Victor Hugo; dos Santos, Wanderley Dantas; Bubna, Gisele Adriana; Finger-Teixeira, Aline; Soares, Anderson Ricardo; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.

  19. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  20. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  1. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  2. Acid rain

    SciTech Connect

    Boyle, R.H.; Boyle, R.A.

    1983-01-01

    Acid rain, says Boyle is a chemical leprosy eating into the face of North America and Europe, perhaps the major ecological problem of our time. Boyle describes the causes and scope of the phenomenon; the effects on man, wildlife, water, and our cultural heritage. He probes the delays of politicians and the frequent self-serving arguments advanced by industry in the face of what scientists have proved. The solutions he offers are to strengthen the Clean Air Act and require emission reductions that can be accomplished by establishing emission standards on a regional or bubble basis, burn low-sulfur coal, install scrubbers at critical plants, and invest in alternative energy sources. 73 references, 1 figure.

  3. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T).

    PubMed

    Rodríguez, Héctor; Landete, José María; Curiel, José Antonio; de Las Rivas, Blanca; Mancheño, José Miguel; Muñoz, Rosario

    2008-05-14

    It was previously reported that cell cultures from Lactobacillus plantarum CECT 748 (T) were able to decarboxylate phenolic acids, such as p-coumaric, m-coumaric, caffeic, ferulic, gallic, and protocatechuic acid. The p-coumaric acid decarboxylase (PDC) from this strain has been overexpressed and purified. This PDC differs at its C-terminal end when compared to the previously reported PDC from L. plantarum LPCHL2. Because the C-terminal region of PDC is involved in enzymatic activity, especially in substrate activity, it was decided to biochemically characterize the PDC from L. plantarum CECT 748 (T). Contrarily to L. plantarum LPCHL2 PDC, the recombinant PDC from L. plantarum CECT 748 (T) is a heat-labile enzyme, showing optimal activity at 22 degrees C. This PDC is able to decarboxylate exclusively the hydroxycinnamic acids p-coumaric, caffeic, and ferulic acids. Kinetic analysis showed that the enzyme has a 14-fold higher K(M) value for p-coumaric and caffeic acids than for ferulic acid. PDC catalyzes the formation of the corresponding 4-vinyl derivatives (vinylphenol and vinylguaiacol) from p-coumaric and ferulic acids, respectively, which are valuable food additives that have been approved as flavoring agents. The biochemical characteristics showed by L. plantarum PDC should be taken into account for its potential use in the food-processing industry.

  4. Effects of Phenolic Acids on the Growth and Production of T-2 and HT-2 Toxins by Fusarium langsethiae and F. sporotrichioides.

    PubMed

    Ferruz, Elena; Atanasova-Pénichon, Vessela; Bonnin-Verdal, Marie-Noëlle; Marchegay, Gisèle; Pinson-Gadais, Laëtitia; Ducos, Christine; Lorán, Susana; Ariño, Agustín; Barreau, Christian; Richard-Forget, Florence

    2016-04-04

    The effect of natural phenolic acids was tested on the growth and production of T-2 and HT-2 toxins by Fusarium langsethiae and F. sporotrichioides, on Mycotoxin Synthetic medium. Plates treated with 0.5 mM of each phenolic acid (caffeic, chlorogenic, ferulic and p-coumaric) and controls without phenolic acid were incubated for 14 days at 25 °C. Fungal biomass of F. langsethiae and F. sporotrichioides was not reduced by the phenolic acids. However, biosynthesis of T-2 toxin by F. langsethiae was significantly reduced by chlorogenic (23.1%) and ferulic (26.5%) acids. Production of T-2 by F. sporotrichioides also decreased with ferulic acid by 23% (p < 0.05). In contrast, p-coumaric acid significantly stimulated the production of T-2 and HT-2 toxins for both strains. A kinetic study of F. langsethiae with 1 mM ferulic acid showed a significant decrease in fungal biomass, whereas T-2 production increased after 10 days of incubation. The study of gene expression in ferulic supplemented cultures of F. langsethiae revealed a significant inhibition for Tri5, Tri6 and Tri12 genes, while for Tri16 the decrease in gene expression was not statistically significant. Overall, results indicated that phenolic acids had a variable effect on fungal growth and mycotoxin production, depending on the strain and the concentration and type of phenolic acid assayed.

  5. [Teichoic acids from lactic acid bacteria].

    PubMed

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  6. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness.

    PubMed

    Chiremba, Constance; Rooney, Lloyd W; Beta, Trust

    2012-05-09

    To release bound phenolic acids, a microwave-assisted extraction procedure was applied to bran and flour fractions obtained from eight sorghum and eight maize cultivars varying in hardness. The procedure was followed by HPLC analysis, and the identities of phenolic acids were confirmed by MS/MS spectra. The extraction of sorghum and maize bound phenolic acids was done for 90 s in 2 M NaOH to release ferulic acid and p-coumaric acid from bran and flour. Two diferulic acids, 8-O-4'- and 8-5'-benzofuran form, were identified and quantitated in sorghum bran, and only the former was found in maize bran. The contents of ferulic acid and diferulic acids in sorghum bran were 416-827 and 25-179 μg/g, respectively, compared to 2193-4779 and 271-819 μg/g in maize. Phenolic acid levels of sorghum were similar between hard and soft cultivars, whereas those of maize differed significantly (p < 0.05) except for ferulic acid in flour. Sorghum phenolic acids were not correlated with grain hardness as measured using a tangential abrasive decortication device. Maize ferulic acid (r = -0.601, p < 0.01), p-coumaric acid (r = -0.668, p < 0.01), and 8-O-4'-diferulic acid (r = -0.629, p < 0.01) were significantly correlated with hardness.

  7. Organic acids tunably catalyze carbonic acid decomposition.

    PubMed

    Kumar, Manoj; Busch, Daryle H; Subramaniam, Bala; Thompson, Ward H

    2014-07-10

    Density functional theory calculations predict that the gas-phase decomposition of carbonic acid, a high-energy, 1,3-hydrogen atom transfer reaction, can be catalyzed by a monocarboxylic acid or a dicarboxylic acid, including carbonic acid itself. Carboxylic acids are found to be more effective catalysts than water. Among the carboxylic acids, the monocarboxylic acids outperform the dicarboxylic ones wherein the presence of an intramolecular hydrogen bond hampers the hydrogen transfer. Further, the calculations reveal a direct correlation between the catalytic activity of a monocarboxylic acid and its pKa, in contrast to prior assumptions about carboxylic-acid-catalyzed hydrogen-transfer reactions. The catalytic efficacy of a dicarboxylic acid, on the other hand, is significantly affected by the strength of an intramolecular hydrogen bond. Transition-state theory estimates indicate that effective rate constants for the acid-catalyzed decomposition are four orders-of-magnitude larger than those for the water-catalyzed reaction. These results offer new insights into the determinants of general acid catalysis with potentially broad implications.

  8. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  9. Uric acid - urine

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003616.htm Uric acid urine test To use the sharing features on this page, please enable JavaScript. The uric acid urine test measures the level of uric acid ...

  10. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  11. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour in ...

  12. Methylmalonic acid blood test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003565.htm Methylmalonic acid blood test To use the sharing features on this page, please enable JavaScript. The methylmalonic acid blood test measures the amount of methylmalonic acid ...

  13. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  14. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  15. Factors affecting phenolic acid liberation from rice grains in the sake brewing process.

    PubMed

    Ito, Toshihiko; Suzuki, Nobukazu; Nakayama, Airi; Ito, Masaya; Hashizume, Katsumi

    2014-12-01

    Phenolic acid (ferulic and p-coumaric acid) liberation from rice grains was examined using rice samples containing phenolic acid at different levels, using two sake mash simulated digestion tests to elucidate influencing factors. Phenolic acid levels in a digest made from steamed rice using dialyzed rice koji enzymes were smaller than levels in a rice koji self-digest. Differences in phenolic acid levels among rice samples in the rice koji self-digest were larger than levels in a digest of steamed rice. In the rice koji self-digest, phenolic acid levels in the ingredient rice grains or in the formed digest related to feruloylesterase (FE) activity in the rice koji. Addition of exogenous FE to rice koji self-digestion increased phenolic acid levels, while addition of xylanase (Xyl) showed weak effects. A concerted effect of FE and Xyl was not clearly observed. Addition of ferulic acid to koji made from α-rice grains raised FE activity, but it did not increase the activity of other enzymes. A similar phenomenon was observed in an agar plate culture of koji mold. These results indicated that ferulic acid levels in ingredient rice grains correlate with FE activities of koji, as a resulut, they affect the phenolic acid levels in sake mash.

  16. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  17. Enhancing charge storage of conjugated polymer electrodes with phenolic acids

    NASA Astrophysics Data System (ADS)

    Wagner, Michal; Rębiś, Tomasz; Inganäs, Olle

    2016-01-01

    We here present studies of electrochemical doping of poly(1-aminoanthraquinone) (PAAQ) films with three structurally different phenolic acids. The examined phenolic acids (sinapic, ferulic and syringic acid) were selected due to their resemblance to redox active groups, which can be found in lignin. The outstanding electrochemical stability of PAAQ films synthesized for this work enabled extensive cycling of phenolic acid-doped PAAQ films. Potentiodynamic and charge-discharge studies revealed that phenolic acid-doped PAAQ films exhibited enhanced capacitance in comparison to undoped PAAQ films, together with appearance of redox activity characteristics specific for each dopant. Electrochemical kinetic studies performed on microelectrodes affirmed the fast electron transfer for hydroquinone-to-quinone reactions with these phenolic compounds. These results imply the potential application of phenolic acids in cheap and degradable energy storage devices.

  18. Interaction of milk whey protein with common phenolic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yu, Dandan; Sun, Jing; Guo, Huiyuan; Ding, Qingbo; Liu, Ruihai; Ren, Fazheng

    2014-01-01

    Phenolics-rich foods such as fruit juices and coffee are often consumed with milk. In this study, the interactions of α-lactalbumin and β-lactoglobulin with the phenolic acids (chlorogenic acid, caffeic acid, ferulic acid, and coumalic acid) were examined. Fluorescence, CD, and FTIR spectroscopies were used to analyze the binding modes, binding constants, and the effects of complexation on the conformation of whey protein. The results showed that binding constants of each whey protein-phenolic acid interaction ranged from 4 × 105 to 7 × 106 M-n and the number of binding sites n ranged from 1.28 ± 0.13 to 1.54 ± 0.34. Because of these interactions, the conformation of whey protein was altered, with a significant reduction in the amount of α-helix and an increase in the amounts of β-sheet and turn structures.

  19. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis.

    PubMed

    Schopp, Lauren M; Lee, Jungmin; Osborne, James P; Chescheir, Stuart C; Edwards, Charles G

    2013-11-27

    While Brettanomyces can metabolize nonesterified hydroxycinnamic acids found in grape musts/wines (caffeic, p-coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p-coutaric, and fertaric acids, respectively). Red wines from Washington and Oregon were inoculated with B. bruxellensis, while hydroxycinnamic acids were monitored by HPLC. Besides consuming p-coumaric and ferulic acids, strains I1a, B1b, and E1 isolated from Washington wines metabolized 40-50% of caffeic acid, a finding in contrast to strains obtained from California wines. Higher molar recoveries of 4-ethylphenol and 4-ethylguaiacol synthesized from p-coumaric and ferulic acids, respectively, were observed in Washington Cabernet Sauvignon and Syrah but not Merlot. This finding suggested that Brettanomyces either (a) utilized vinylphenols formed during processing of some wines or (b) metabolized other unidentified phenolic precursors. None of the strains of Brettanomyces studied metabolized caftaric or p-coutaric acids present in wines from Washington or Oregon.

  20. An organic solvent-tolerant phenolic acid decarboxylase from Bacillus licheniformis for the efficient bioconversion of hydroxycinnamic acids to vinyl phenol derivatives.

    PubMed

    Hu, Hongfei; Li, Lulu; Ding, Shaojun

    2015-06-01

    A new phenolic acid decarboxylase gene (blpad) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The full-length blpad encodes a 166-amino acid polypeptide with a predicted molecular mass and pI of 19,521 Da and 5.02, respectively. The recombinant BLPAD displayed maximum activity at 37 °C and pH 6.0. This enzyme possesses a broad substrate specificity and is able to decarboxylate p-coumaric, ferulic, caffeic, and sinapic acids at the relative ratios of specific activities 100:74.59:34.41:0.29. Kinetic constant K m values toward p-coumaric, ferulic, caffeic, and sinapic acids were 1.64, 1.55, 1.93, and 2.45 mM, and V max values were 268.43, 216.80, 119.07, and 0.78 U mg(-1), respectively. In comparison with other phenolic acid decarboxylases, BLPAD exhibited remarkable organic solvent tolerance and good thermal stability. BLPAD showed excellent catalytic performance in biphasic organic/aqueous systems and efficiently converted p-coumaric and ferulic acids into 4-vinylphenol and 4-vinylguaiacol. At 500 mM of p-coumaric and ferulic acids, the recombinant BLPAD produced a total 60.63 g l(-1) 4-vinylphenol and 58.30 g l(-1) 4-vinylguaiacol with the conversion yields 97.02 and 70.96 %, respectively. The low yield and product concentration are the crucial drawbacks to the practical bioproduction of vinyl phenol derivatives using phenolic acid decarboxylases. These unusual properties make BLPAD a desirable biocatalyst for commercial use in the bioconversion of hydroxycinnamic acids to vinyl phenol derivatives via enzymatic decarboxylation in a biphasic organic/aqueous reaction system.

  1. Effect of Asafoetida Extract on Growth and Quality of Pleurotus ferulic

    PubMed Central

    Feng, Zuoshan; Bai, Yujia; Lu, Fanglin; Huang, Wenshu; Li, Xinmin; Hu, Xiaosong

    2009-01-01

    Different concentrations of asafoetida extract were added to the medium of Pleurotus ferulic and the effects of the extract on growth of P. ferulic mycelium and fruiting bodies was observed. As the amount of asafoetida extract additive was increased, the growth of Pleurotus mycelium was faster, the time formation of buds was shorter and that yield of fruiting bodies was stimulated. However, overdosing of asafoetida extract hampered the growth of Pleurotus ferulic. The amino acid composition and volatile components in three kinds of pleurotus’ were contrasted, including wild pleurotus (WP), cultivated pleurotus with asafoetida extract (CPAE) and cultivated pleurotus without asafoetida extract (CP). CPAE with 2.3 g/100 g asafoetida extract addition had the highest content of total amino acids, as well as essential amino acids. WP had a higher content of total amino acids and essential amino acids than CP. In addition, CPAE with 2.3 g/100 g had the highest score of protein content of pleurotus fruiting bodies, while WP had a higher score than CP. In the score of essential amino acid components of pleurotus fruiting bodies, CP had the highest score, while CPAE was higher than WP. Asafoetida extract influenced the volatile components of Pleurotus ferulic greatly, making the volatile components of cultivated pleurotus more similar to those of wild pleurotus (WP). PMID:20162000

  2. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  3. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  4. Hypochlorite scavenging activity of hydroxycinnamic acids evaluated by a rapid microplate method based on the measurement of chloramines.

    PubMed

    Firuzi, Omidreza; Giansanti, Luisa; Vento, Roberta; Seibert, Cathrin; Petrucci, Rita; Marrosu, Giancarlo; Agostino, Roberta; Saso, Luciano

    2003-07-01

    Scavengers of hypochlorite (XOCl) could have beneficial effects in diseases in which this oxidant plays a pathogenic role. It has been reported that ferulic acid and chlorogenic acid, the quinic ester of caffeic acid, are good hypochlorite scavengers, but a systematic evaluation of the naturally occurring hydroxycinnamic acids (HCAs), which these substances belong to, has not been performed yet. Thus, in this work we studied, by two different in-vitro methods, the antioxidant activity of five HCAs: p-coumaric acid, ferulic acid, sinapinic acid, caffeic acid and chlorogenic acid. The methods applied in this study were based on the oxidation of human serum albumin (HSA) by XOCl, a new microplate method based on the measurement of chloramines and a previously described carbonyl assay. Firstly, lysine-derived chloramines, in the presence or absence of the HCAs, were detected using 5-thio-2-nitrobenzoic acid (TNB), measuring the absorbance at 415 nm by a microplate reader. To remove excess XOCl, Trolox, a known XOCl scavenger, was added before TNB. Secondly, lysine-derived carbonyls, in the presence or absence of the HCAs, were detected by using 2,4-dinitrophenylhydrazine. Hydroxycinnamic acids appeared active (caffeic >/= sinapinic > chlorogenic congruent with ferulic > p-coumaric acid) by both methods, suggesting possible pharmacological applications for these compounds, which are present at high concentrations in the plant kingdom.

  5. Toxicity of adipic acid.

    PubMed

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests.

  6. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  7. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  8. Synthesis and evaluation of anti-oxidant and cytotoxic activities of novel 10-undecenoic acid methyl ester based lipoconjugates of phenolic acids

    PubMed Central

    Narra, Naganna; Prasad, Rachapudi Badari Narayana; Misra, Sunil; Dhevendar, Koude; Kontham, Venkateshwarlu

    2017-01-01

    The synthesis of five novel methyl 10-undecenoate-based lipoconjugates of phenolic acids from undecenoic acid was carried out. Undecenoic acid was methylated to methyl 10-undecenoate which was subjected to a thiol–ene reaction with cysteamine hydrochloride. Further amidation of the amine was carried out with different phenolic acids such as caffeic, ferulic, sinapic, coumaric and cinnamic acid. All synthesized compounds were fully characterized and their structures were confirmed by spectral data. The anti-oxidant activity of the synthesized lipoconjugates of phenolic acids was studied by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and also by the inhibition of linoleic acid oxidation in micellar medium by differential scanning calorimetry (DSC). The prepared compounds were also screened for their cytotoxic activity against five cell lines. It was observed that the lipoconjugates of caffeic acid, sinapic acid, ferulic acid, and coumaric acid displayed anticancer and anti-oxidant properties. The anticancer properties of these derivatives have been assessed by their IC50 inhibitory values in the proliferation of MDA-MB231, SKOV3, MCF7, DU 145 and HepG2 cancer cell lines. PMID:28179945

  9. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  10. Omega-3 fatty acids

    PubMed Central

    Schwalfenberg, Gerry

    2006-01-01

    OBJECTIVE To examine evidence for the role of omega-3 fatty acids in cardiovascular disease. QUALITY OF EVIDENCE PubMed was searched for articles on the role of omega-3 fatty acids in cardiovascular disease. Level I and II evidence indicates that omega-3 fatty acids are beneficial in improving cardiovascular outcomes. MAIN MESSAGE Dietary intake of omega-3 fatty acids has declined by 80% during the last 100 years, while intake of omega-6 fatty acids has greatly increased. Omega-3 fatty acids are cardioprotective mainly due to beneficial effects on arrhythmias, atherosclerosis, inflammation, and thrombosis. There is also evidence that they improve endothelial function, lower blood pressure, and significantly lower triglycerides. CONCLUSION There is good evidence in the literature that increasing intake of omega-3 fatty acids improves cardiac outcomes. Physicians need to integrate dietary recommendations for consumption of omega-3 fatty acids into their usual cardiovascular care. PMID:16812965

  11. Sulfuric acid poisoning

    MedlinePlus

    Sulfuric acid is a very strong chemical that is corrosive. Corrosive means it can cause severe burns and ... or mucous membranes. This article discusses poisoning from sulfuric acid. This article is for information only. Do NOT ...

  12. Lactic acid test

    MedlinePlus

    Lactate test ... test. Exercise can cause a temporary increase in lactic acid levels. ... not getting enough oxygen. Conditions that can increase lactic acid levels include: Heart failure Liver disease Lung disease ...

  13. Folic Acid Quiz

    MedlinePlus

    ... About Us Information For... Media Policy Makers Folic Acid Quiz Language: English Español (Spanish) Recommend on Facebook ... button beside the question. Good Luck! 1. Folic acid is: A a B vitamin B a form ...

  14. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe damage, such ... poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do NOT ...

  15. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel and foam is used to clear the bumps, lesions, and swelling caused by rosacea (a skin ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat the pimples and ...

  16. Zoledronic Acid Injection

    MedlinePlus

    Zoledronic acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and weak ... of life,' end of regular menstrual periods). Zoledronic acid (Reclast) is also used to treat osteoporosis in ...

  17. Alpha Hydroxy Acids

    MedlinePlus

    ... Cosmetics Home Cosmetics Products & Ingredients Ingredients Alpha Hydroxy Acids Share Tweet Linkedin Pin it More sharing options ... for Industry: Labeling for Cosmetics Containing Alpha Hydroxy Acids The following information is intended to answer questions ...

  18. Uric Acid Test

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  19. Amino Acid Metabolism Disorders

    MedlinePlus

    ... breaks the food parts down into sugars and acids, your body's fuel. Your body can use this ... process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple ...

  20. Valproic Acid and Pregnancy

    MedlinePlus

    ... live chat Live Help Fact Sheets Share Valproic Acid and Pregnancy Wednesday, 01 July 2015 In every ... This sheet talks about whether exposure to valproic acid may increase the risk for birth defects over ...

  1. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  2. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  3. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  4. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  5. Refining Lurgi tar acids

    SciTech Connect

    Greco, N.P.

    1984-04-17

    There is disclosed a process for removing tar bases and neutral oils from the Lurgi tar acids by treating the tar acids with aqueous sodium bisulfate to change the tar bases to salts and to hydrolyze the neutral oils to hydrolysis products and distilling the tar acids to obtain refined tar acid as the distillate while the tar base salts and neutral oil hydrolysis products remain as residue.

  6. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  7. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Part 180 Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic..., polymer with adipic acid, linoleic acid, oleic acid and ricinoleic acid (CAS Reg. No. 1357486-09- 9) when used as an inert ingredient in a pesticide formulation. Advance Polymer Technology submitted a...

  8. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy.

    PubMed

    Stalmach, Angélique; Steiling, Heike; Williamson, Gary; Crozier, Alan

    2010-09-01

    The intestinal absorption and metabolism of 385 micromol chlorogenic acids following a single intake of 200 mL of instant coffee by human volunteers with an ileostomy was investigated. HPLC-MS(3) analysis of 0-24h post-ingestion ileal effluent revealed the presence of 274+/-28 micromol of chlorogenic acids and their metabolites accounting for 71+/-7% of intake. Of the compounds recovered, 78% comprised parent compounds initially present in the coffee, and 22% were metabolites including free and sulfated caffeic and ferulic acids. Over a 24h period after ingestion of the coffee, excretion of chlorogenic acid metabolites in urine accounted for 8+/-1% of intake, the main compounds being ferulic acid-4-O-sulfate, caffeic acid-3-O-sulfate, isoferulic acid-3-O-glucuronide and dihydrocaffeic acid-3-O-sulfate. In contrast, after drinking a similar coffee, urinary excretion by humans with an intact colon corresponded to 29+/-4% of chlorogenic acid intake. This difference was due to the excretion of higher levels of dihydroferulic acid and feruloylglycine together with sulfate and glucuronide conjugates of dihydrocaffeic and dihydroferulic acids. This highlights the importance of colonic metabolism. Comparison of the data obtained in the current study with that of Stalmach et al. facilitated elucidation of the pathways involved in post-ingestion metabolism of chlorogenic acids and also helped distinguish between compounds absorbed in the small and the large intestine.

  9. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  10. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  11. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  12. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  13. Acid Lipase Disease

    MedlinePlus

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  14. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  15. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  17. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  18. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  1. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS).

    PubMed

    Lee, Jihyun; Chan, Bronte Lee Shan; Mitchell, Alyson E

    2017-01-15

    Free and bound phenolic acids were measured in the pulp and peel of four varieties of apples using high resolution mass spectrometry. Twenty-five phenolic acids were identified and included: 8 hydroxybenzoic acids, 11 hydroxycinnamic acids, 5 hydroxyphenylacetic acids, and 1 hydoxyphenylpropanoic acid. Several phenolics are tentatively identified for the first time in apples and include: methyl gallate, ethyl gallate, hydroxy phenyl acetic acid, three phenylacetic acid isomers, 3-(4-hydroxyphenyl)propionic acid, and homoveratric acid. With exception of chlorogenic and caffeic acid, most phenolic acids were quantified for the first time in apples. Significant varietal differences (p<0.05) were observed in both peel and pulp. The levels of total phenolic acids were higher in the pulp as compared to apple peel (dry weight) in all varieties. Coumaroylquinic, protocatechuic, 4-hydroxybenzoic, vanillic and t-ferulic acids were present in free forms. With exception of chlorogenic acid, all other phenolic acids were present only as bound forms.

  2. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  3. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  4. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  5. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  6. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.

    PubMed

    Jiang, Deshou; Chiaro, Christopher; Maddali, Pranav; Prabhu, K Sandeep; Peterson, Devin G

    2009-11-11

    The chemistry and fate of hydroxycinnamic acids (ferulic, p-coumeric, caffeic, sinapic, and cinnamic acid) in a glucose/glycine simulated baking model (10% moisture at 200 degrees C for 15 min) were investigated. Liquid chromatography-mass spectrometry analysis of glucose/glycine and glucose/glycine/hydroxycinnamic acid model systems confirmed the phenolics reacted with Maillard intermediates; two main reaction product adducts were reported. On the basis of isotopomeric analysis, LC-MS, and NMR spectroscopy, structures of two ferulic acid-Maillard reaction products were identified as 6-(4-hydroxy-3-methoxyphenyl)-5-(hydroxymethyl)-8-oxabicyclo[3.2.1]oct-3-en-2-one (adduct I) and 2-(6-(furan-2-yl)-7-(4-hydroxy-3-methoxyphenyl)-1-methyl-3-oxo-2,5-diazabicyclo[2.2.2]oct-5-en-2-yl)acetic acid (adduct II). In addition, a pyrazinone-type Maillard product, 2-(5-(furan-2-yl)-6-methyl-2-oxopyrazin-1(2H)-yl) acetic acid (IIa), was identified as an intermediate for reaction product adduct II, whereas 3-deoxy-2-hexosulose was identified as an intermediate of adduct I. Both adducts I and II were suggested to be generated by pericyclic reaction mechanisms. Quantitative gas chromatography (GC) analysis and liquid chromatography (LC) also indicated that the addition of ferulic acid to a glucose/glycine model significantly reduced the generation of select Maillard-type aroma compounds, such as furfurals, methylpyrazines, 2-acetylfuran, 2-acetylpyridine, 2-acetylpyrrole, and cyclotene as well as inhibited color development in these Maillard models. In addition, adducts I and II suppressed the bacterial lipopolysaccharide (LPS)-mediated expression of two prototypical pro-inflammatory genes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, in an in vitro murine macrophage model; ferulic acid reported negligible activity.

  7. Hydroxycinnamic acid antioxidants: an electrochemical overview.

    PubMed

    Teixeira, José; Gaspar, Alexandra; Garrido, E Manuela; Garrido, Jorge; Borges, Fernanda

    2013-01-01

    Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure. The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants. The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far.

  8. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  9. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  10. In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects.

    PubMed

    Zhao, Mouming; Zhu, Dashuai; Sun-Waterhouse, Dongxiao; Su, Guowan; Lin, Lianzhu; Wang, Xiao; Dong, Yi

    2014-08-06

    This study aimed to explore the potential of polished adlay, brown adlay, adlay bran, and adlay hull to prevent and treat hyperuricemia. Brown adlay extract effectively decreased the serum uric acid levels of oxonate-induced hyperuricemic rats. Free and bound phenolic extracts from these materials contained significant amounts of phenolics, with free phenolics dominated by chlorogenic acid and p-coumaric acid while bound phenolics dominated by p-coumaric acid and ferulic acid. Free and bound phenolics of adlay bran exhibited significant xanthine oxidase inhibition activities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, oxygen radical absorbance capacities, and superoxide radical scavenging activities. Adlay bran phenolics could be effective xanthine oxidase inhibitors and radical scavengers. p-Coumaric acid is a xanthine oxidase inhibitor with strong superoxide radical scavenging activity. However, ferulic acid is a xanthine oxidase inhibitor with weak superoxide radical scavenging activity. Chlorogenic acid is a superoxide radical scavenger with weak xanthine oxidase inhibitory activity.

  11. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  12. Phenolic acids and antioxidant activities in husk of different Thai rice varieties.

    PubMed

    Butsat, S; Siriamornpun, S

    2010-08-01

    This study was designed to investigate the free and bound phenolic acids as well as their antioxidant activities in husk of 12 Thai rice varieties consisting of pigmented rice and normal rice. The pigmented rice husk gave higher free total phenolic contents than normal rice husk. However, there was no significant difference in bound total phenolic contents between pigmented rice and normal rice husks. Ferulic and p-coumaric acids were the major phenolic acids in the free fraction of pigmented rice husks, whereas vanillic acid was the dominant phenolic acid in the free fraction of normal rice husks. On the other hand, p-coumaric acid was highly found in bound form of both pigmented and normal rice husks. The antioxidant activity of husk extracts was positively correlated with the total free phenolics content and individual of phenolic acids especially ferulic acid. On the basis of this study, it is suggested that the rice husk could be a potential phenolic acid source and may therefore offer an effective source of natural antioxidant. Our findings provide valuable information on phenolic acids composition and antioxidant activity of husk for further food application.

  13. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  14. Recovery of organic acids

    DOEpatents

    Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  15. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  16. Parenteral Nutrition: Amino Acids.

    PubMed

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  17. Parenteral Nutrition: Amino Acids

    PubMed Central

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  18. Phenolic acids in the flowers and leaves of Grindelia robusta Nutt. and Grindelia squarrosa Dun. (Asteraceae).

    PubMed

    Nowak, Sławomira; Rychlińska, Izabela

    2012-01-01

    2D-TLC and RP-HPLC methods were applied to qualitatively determinate free phenolic acids and those liberated by acid and alkaline hydrolysis in the flowers and leaves of G. robusta and G. squarrosa. The presence of eleven phenolic acids, namely: caffeic, chlorogenic, p-coumaric, p-hydroxybenzoic, ferulic, gallic, protocatechuic, vanillic salicylic, p-hydroxyphenylacetic and ellagic acids was determined. Quantitative estimate of phenolic acids, expressed as caffeic acid, has been analyzed by the method described in the Polish Pharmacopoeia VIII. The content of phenolic acids in G. robusta reached 7.33 mg/g and 6.23 mg/g for flowers and leaves, respectively. The flowers and leaves of G. squarrosa were characterized by similar level of phenolic acids, namely 6.81 mg/g and 6.59 mg/g, respectively.

  19. Characterization of nutrients, amino acids, polyphenols and antioxidant activity of Ridge gourd (Luffa acutangula) peel.

    PubMed

    Swetha, M P; Muthukumar, S P

    2016-07-01

    Ridge gourd (Luffa acutangula) is consumed as a vegetable after peeling off the skin which is a domestic waste. Luffa acutangula peel (LAP) was observed to be a good source of fiber (20.6 %) and minerals (7.7 %). Amino acid analysis revealed presence of the highest content of Carnosine followed by aspartic acid and aminoadipic acid. Antioxidant activity of different extracts showed that ethyl acetate extract was more potent when compared to other solvent extractions. It exhibited a significant amount of phenolic acids like p-coumaric acid (68.64 mg/100 g of dry weight) followed by gallic acid (34.98 mg/100 g of dry weight), protocatechuic acid (30.52 mg/100 g of dry weight) in free form and ferulic acid (13.04 mg/100 g of dry weight) in bound form.

  20. Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots.

    PubMed

    Negrel, Jonathan; Javelle, Francine; Morandi, Dominique; Lucchi, Géraldine

    2016-12-01

    A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (Km = 2 μM) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid isomers), feruloyl esterases substrates (methyl caffeate and methyl ferulate), and even caffeoyl-CoA in vitro but all of them were less active than chlorogenic acid, demonstrating that the esterase is a genuine chlorogenic acid esterase. It was also induced when the bacterial strain was cultured in the presence of hydroxycinnamic acids (caffeic, p-coumaric or ferulic acid) as sole carbon source, but not in the presence of simple phenolics such as catechol or protocatechuic acid, nor in the presence of organic acids such as succinic or quinic acids. The purified esterase was remarkably stable in the presence of methanol, rapid formation of methyl caffeate occurring when its activity was measured in aqueous solutions containing 10-60% methanol. Our results therefore show that this bacterial chlorogenase can catalyse the transesterification reaction previously detected during the methanolic extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots. Data are presented suggesting that colonisation by Rhizophagus irregularis could increase chlorogenic acid exudation from tomato roots, especially in nutrient-deprived plants, and thus favour the growth of chlorogenate-metabolizing bacteria on the root surface or in the mycorhizosphere.

  1. Diterpenoid acids from Grindelia nana.

    PubMed

    Mahmoud, A A; Ahmed, A A; Tanaka, T; Iinuma, M

    2000-03-01

    Two new norditerpenoid acids of the labdane-type (norgrindelic acids), 4,5-dehydro-6-oxo-18-norgrindelic acid (1) and 4beta-hydroxy-6-oxo-19-norgrindelic acid (2), as well as a new grindelic acid derivative, 18-hydroxy-6-oxogrindelic acid (3), were isolated from the aerial parts of Grindelia nana. In addition, the known compounds, 6-oxogrindelic acid, grindelic acid, methyl grindeloate, 7alpha,8alpha-epoxygrindelic acid, and 4alpha-carboxygrindelic acid were also isolated. The structures of the new compounds were characterized on the basis of spectroscopic analysis.

  2. Production of hydroxycinnamoyl-shikimates and chlorogenic acid in Escherichia coli: production of hydroxycinnamic acid conjugates

    PubMed Central

    2013-01-01

    Background Hydroxycinnamates (HCs) are mainly produced in plants. Caffeic acid (CA), p-coumaric acid (PA), ferulic acid (FA) and sinapic acid (SA) are members of the HC family. The consumption of HC by human might prevent cardiovascular disease and some types of cancer. The solubility of HCs is increased through thioester conjugation to various compounds such as quinic acid, shikimic acid, malic acid, anthranilic acid, and glycerol. Although hydroxycinnamate conjugates can be obtained from diverse plant sources such as coffee, tomato, potato, apple, and sweet potato, some parts of the world have limited availability to these compounds. Thus, there is growing interest in producing HC conjugates as nutraceutical supplements. Results Hydroxycinnamoyl transferases (HCTs) including hydroxycinnamate-CoA shikimate transferase (HST) and hydroxycinnamate-CoA quinate transferase (HQT) were co-expressed with 4-coumarateCoA:ligase (4CL) in Escherichia coli cultured in media supplemented with HCs. Two hydroxycinnamoyl conjugates, p-coumaroyl shikimates and chlorogenic acid, were thereby synthesized. Total 29.1 mg/L of four different p-coumaroyl shikimates (3-p-coumaroyl shikimate, 4-p-coumaroyl shikimate, 3,4-di-p-coumaroyl shikimate, 3,5-di-p-coumaroyl shikimate, and 4,5-di-p-coumaroyl shikimate) was obtained and 16 mg/L of chlorogenic acid was synthesized in the wild type E. coli strain. To increase the concentration of endogenous acceptor substrates such as shikimate and quinate, the shikimate pathway in E. coli was engineered. A E. coli aroL and aroK gene were mutated and the resulting mutants were used for the production of p-coumaroyl shikimate. An E. coli aroD mutant was used for the production of chlorogenic acid. We also optimized the vector and cell concentration optimization. Conclusions To produce p-coumaroyl-shikimates and chlorogenic acid in E. coli, several E. coli mutants (an aroD mutant for chlorogenic acid production; an aroL, aroK, and aroKL mutant for p

  3. Structure of Acid phosphatases.

    PubMed

    Araujo, César L; Vihko, Pirkko T

    2013-01-01

    Acid phosphatases are enzymes that have been studied extensively due to the fact that their dysregulation is associated with pathophysiological conditions. This characteristic has been exploited for the development of diagnostic and therapeutic methods. As an example, prostatic acid phosphatase was the first marker for metastatic prostate cancer diagnosis and the dysregulation of tartrate resistant acid phosphatase is associated with abnormal bone resorption linked to osteoporosis. The pioneering crystallization studies on prostatic acid phosphatase and mammalian tartrate-resistant acid phosphatase conformed significant milestones towards the elucidation of the mechanisms followed by these enzymes (Schneider et al., EMBO J 12:2609-2615, 1993). Acid phosphatases are also found in nonmammalian species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with mammalian acid phosphatase enzymes. Acid phosphatase (EC 3.1.3.2) enzymes catalyze the hydrolysis of phosphate monoesters following the general equation. Phosphate monoester + H2O -->/<-- alcohol + phosphate. The general classification "acid phosphatase" relies only on the optimum acidic pH for the enzymatic activity in assay conditions using non-physiological substrates. These enzymes accept a wide range of substrates in vitro, ranging from small organic molecules to phosphoproteins, constituting a heterogeneous group of enzymes from the structural point of view. These structural differences account for the divergence in cofactor dependences and behavior against substrates, inhibitors, and activators. In this group only the tartrate-resistant acid phosphatase is a metallo-enzyme whereas the other members do not require metal-ion binding for their catalytic activity. In addition, tartrate-resistant acid phosphatase and erythrocytic acid phosphatase are not inhibited by L-(+)-tartrate ion while the prostatic acid phosphatase is tartrate-sensitive. This is an important

  4. Uptake of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) from the apical membranes of the human intestinal Caco-2 cells.

    PubMed

    Kimura, Osamu; Tsukagoshi, Kensuke; Hayasaka, Moriaki; Endo, Tetsuya

    2012-01-01

    We investigated whether the uptake of triclopyr (3, 5, 6-trichloro-2-pyridinyloxyacetic acid) and dicamba (3,6-dichloro-2-methoxybenzoic acid) across the apical membrane of Caco-2 cells was mediated via proton-linked monocarboxylic acid transporters (MCTs). The uptake of triclopyr from the apical membranes was fast, pH-, temperature-, and concentration dependent, required metabolic energy to proceed, and was competitively inhibited by monocarboxylic acids such as benzoic acid and ferulic acid (substrates of L-lactic acid-insensitive MCTs), but not by L-lactic acid. Thus, the uptake of triclopyr in Caco-2 cells appears to be mediated mainly via L-lactic acid-insensitive MCTs. In contrast, the uptake of dicamba (a benzoic acid derivative) was slow, and it was both pH- and temperature dependent. Coincubation with ferulic acid did not decrease the uptake of dicamba, although coincubation with benzoic acid moderately decreased it. The uptake of dicamba appears to be mediated mainly via passive diffusion, which is in contrast to the uptake of benzoic acid via MCTs. We speculate that the substituted groups in dicamba may inhibit uptake via MCTs.

  5. Folic Acid and Pregnancy

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Folic Acid ... > For Parents > Folic Acid and Pregnancy A A A What's ...

  6. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  7. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  8. Salicylic Acid Topical

    MedlinePlus

    Propa pH® Peel-Off Acne Mask ... pimples and skin blemishes in people who have acne. Topical salicylic acid is also used to treat ... medications called keratolytic agents. Topical salicylic acid treats acne by reducing swelling and redness and unplugging blocked ...

  9. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  10. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  11. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  12. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  13. Production of shikimic acid.

    PubMed

    Ghosh, Saptarshi; Chisti, Yusuf; Banerjee, Uttam C

    2012-01-01

    Shikimic acid is a key intermediate for the synthesis of the antiviral drug oseltamivir (Tamiflu®). Shikimic acid can be produced via chemical synthesis, microbial fermentation and extraction from certain plants. An alternative production route is via biotransformation of the more readily available quinic acid. Much of the current supply of shikimic acid is sourced from the seeds of Chinese star anise (Illicium verum). Supply from star anise seeds has experienced difficulties and is susceptible to vagaries of weather. Star anise tree takes around six-years from planting to bear fruit, but remains productive for long. Extraction and purification from seeds are expensive. Production via fermentation is increasing. Other production methods are too expensive, or insufficiently developed. In the future, production in recombinant microorganisms via fermentation may become established as the preferred route. Methods for producing shikimic acid are reviewed.

  14. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  15. Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid.

    PubMed

    Shah, Sayali; White, Jonathan M; Williams, Spencer J

    2014-12-14

    cis-Cyclopropane fatty acids (cis-CFAs) are widespread constituents of the seed oils of subtropical plants, membrane components of bacteria and protozoa, and the fats and phospholipids of animals. We describe a systematic approach to the synthesis of enantiomeric pairs of four cis-CFAs: cis-9,10-methylenehexadecanoic acid, lactobacillic acid, dihydromalvalic acid, and dihydrosterculic acid. The approach commences with Rh2(OAc)4-catalyzed cyclopropenation of 1-octyne and 1-decyne, and hinges on the preparative scale chromatographic resolution of racemic 2-alkylcycloprop-2-ene-1-carboxylic acids using a homochiral Evan's auxiliary. Saturation of the individual diastereomeric N-cycloprop-2-ene-1-carbonylacyloxazolidines, followed by elaboration to alkylcyclopropylmethylsulfones, allowed Julia-Kocienski olefination with various ω-aldehyde-esters. Finally, saponification and diimide reduction afforded the individual cis-CFA enantiomers.

  16. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD.

    PubMed

    Arimboor, Ranjith; Kumar, K Sarin; Arumughan, C

    2008-05-12

    A RP-HPLC-DAD method was developed and validated for the simultaneous analysis of nine phenolic acids including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, salicylic acid, p-coumaric acid, cinnamic acid, caffiec acid and ferulic acid in sea buckthorn (SB) (Hippophaë rhamnoides) berries and leaves. The method was validated in terms of linearity, LOD, precision, accuracy and recovery and found to be satisfactory. Phenolic acid derivatives in anatomical parts of SB berries and leaves were separated into free phenolic acids, phenolic acids bound as esters and phenolic acids bound as glycosides and profiled in HPLC. Berry pulp contained a total of 1068 mg/kg phenolic acids, of which 58.8% was derived from phenolic glycosides. Free phenolic acids and phenolic acid esters constituted 20.0% and 21.2%, respectively, of total phenolic acids in SB berry pulp. The total phenolic acid content in seed kernel (5741 mg/kg) was higher than that in berry pulp and seed coat (Table 2). Phenolic acids liberated from soluble esters constituted the major fraction of phenolic acids (57.3% of total phenolic acids) in seed kernel. 8.4% and 34.3% of total phenolic acids in seed kernel were, respectively contributed by free and phenolic acids liberated from glycosidic bonds. The total soluble phenolic acids content in seed coat (448 mg/kg) was lower than that in seed kernel and pulp (Table 2). Proportion of free phenolic acids in total phenolic acids in seed coat was higher than that in seed kernel and pulp. Phenolic acids bound as esters and glycosides, respectively contributed 49.1% and 20.3% of total phenolic acids in seed coat. The major fraction (approximately 70%) of phenolic acids in SB berries was found to be concentrated in the seeds. Gallic acid was the predominant phenolic acid both in free and bound forms in SB berry parts and leaves.

  17. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  18. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  19. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  20. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  1. HPLC Quantification of Phenolic Acids from Vetiveria zizanioides (L.) Nash and Its Antioxidant and Antimicrobial Activity

    PubMed Central

    Prajna, Jha; Richa, Jindal; Dipjyoti, Chakraborty

    2013-01-01

    Extraction procedure was standardized and for the soluble, glycoside, and wall-bound fractions of phenolic acids from Vetiveria zizanioides. The water soluble alkaline extract which represents the cell wall-bound fraction contained the highest amount of phenolic acids (2.62 ± 1.2 μM/g fwt GA equivalents). Increased phenolic content in the cell wall indicates more lignin deposition which has an important role in plant defense and stress mitigation. Antioxidant property expressed as percentage TEAC value obtained by ABTS assay was correlated with the amount of phenolic acids and showed a Pearson's coefficient 0.988 (significant at 0.01 level). The compounds p-coumaric acid, p-dihydroxybenzoic acid, and ferulic acid were detected in the acidic extracts by HPLC analysis. The plant extracts exhibited considerable antimicrobial activity against tested bacterial and fungal strains. PMID:26555971

  2. Impacts of lignocellulose-derived inhibitors on L-lactic acid fermentation by Rhizopus oryzae.

    PubMed

    Zhang, Li; Li, Xin; Yong, Qiang; Yang, Shang-Tian; Ouyang, Jia; Yu, Shiyuan

    2016-03-01

    Inhibitors generated in the pretreatment and hydrolysis of corn stover and corn cob were identified. In general, they inhibited cell growth, lactate dehydrogenase, and lactic acid production but with less or no adverse effect on alcohol dehydrogenase and ethanol production in batch fermentation by Rhizopus oryzae. Furfural and 5-hydroxymethyl furfural (HMF) were highly toxic at 0.5-1 g L(-1), while formic and acetic acids at less than 4 g L(-1) and levulinic acid at 10 g L(-1) were not toxic. Among the phenolic compounds at 1 g L(-1), trans-cinnamic acid and syringaldehyde had the highest toxicity while syringic, ferulic and p-coumaric acids were not toxic. Although these inhibitors were present at concentrations much lower than their separately identified toxic levels, lactic acid fermentation with the hydrolysates showed much inferior performance compared to the control without inhibitor, suggesting synergistic or compounded effects of the lignocellulose-degraded compounds on inhibiting lactic acid fermentation.

  3. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat.

    PubMed

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation.

  4. Accumulation of Phenolic Compounds and Expression Profiles of Phenolic Acid Biosynthesis-Related Genes in Developing Grains of White, Purple, and Red Wheat

    PubMed Central

    Ma, Dongyun; Li, Yaoguang; Zhang, Jian; Wang, Chenyang; Qin, Haixia; Ding, Huina; Xie, Yingxin; Guo, Tiancai

    2016-01-01

    Polyphenols in whole grain wheat have potential health benefits, but little is known about the expression patterns of phenolic acid biosynthesis genes and the accumulation of phenolic acid compounds in different-colored wheat grains. We found that purple wheat varieties had the highest total phenolic content (TPC) and antioxidant activity. Among phenolic acid compounds, bound ferulic acid, vanillic, and caffeic acid levels were significantly higher in purple wheat than in white and red wheat, while total soluble phenolic acid, soluble ferulic acid, and vanillic acid levels were significantly higher in purple and red wheat than in white wheat. Ferulic acid and syringic acid levels peaked at 14 days after anthesis (DAA), whereas p-coumaric acid and caffeic acid levels peaked at 7 DAA, and vanillic acid levels gradually increased during grain filling and peaked near ripeness (35 DAA). Nine phenolic acid biosynthesis pathway genes (TaPAL1, TaPAL2, TaC3H1, TaC3H2, TaC4H, Ta4CL1, Ta4CL2, TaCOMT1, and TaCOMT2) exhibited three distinct expression patterns during grain filling, which may be related to the different phenolic acids levels. White wheat had higher phenolic acid contents and relatively high gene expression at the early stage, while purple wheat had the highest phenolic acid contents and gene expression levels at later stages. These results suggest that the expression of phenolic acid biosynthesis genes may be closely related to phenolic acids accumulation. PMID:27148345

  5. Chlorogenic acids from green coffee extract are highly bioavailable in humans.

    PubMed

    Farah, Adriana; Monteiro, Mariana; Donangelo, Carmen M; Lafay, Sophie

    2008-12-01

    Chlorogenic acids (CGA) are cinnamic acid derivatives with biological effects mostly related to their antioxidant and antiinflammatory activities. Caffeoylquinic acids (CQA) and dicaffeoylquinic acids (diCQA) are the main CGA found in nature. Because green coffee is a major source of CGA, it has been used for production of nutraceuticals. However, data on the bioavailability of CGA from green coffee in humans are inexistent. The present study evaluated the pharmacokinetic profile and apparent bioavailability of CGA in plasma and urine of 10 healthy adults for 8 h after the consumption of a decaffeinated green coffee extract containing 170 mg of CGA. Three CQA, 3 diCQA, and caffeic, ferulic, isoferulic, and p-coumaric acids were identified in plasma by HPLC-Diode Array Detector-MS after treatment. Over 30% (33.1 +/- 23.1%) of the ingested cinnamic acid moieties were recovered in plasma, including metabolites, with peak levels from 0.5 to 8 h after treatment. CGA and metabolites identified in urine after treatment were 4-CQA, 5-CQA, and sinapic, p-hydroxybenzoic, gallic, vanillic, dihydrocaffeic, caffeic, ferulic, isoferulic, and p-coumaric acids, totaling 5.5 +/- 10.6% urinary recovery of the ingested cinnamic and quinic acid moiteties. This study shows that the major CGA compounds present in green coffee are highly absorbed and metabolized in humans.

  6. Selective inhibition of leukotriene C/sub 4/ synthesis in human neutrophils by ethacrynic acid

    SciTech Connect

    Leung, K.H.

    1986-05-29

    Addition of glutathione S-transferase inhibitors, ethyacrynic acid (ET), caffeic acid (CA), and ferulic acid (FA) to human neutrophils led to inhibition of leukotriene C/sub 4/ (LTC/sub 4/) synthesis induced by calcium ionophore A23187. ET is the most specific of these inhibitors for it had little effect on LTB/sub 4/, PGE/sub 2/, and 5-HETE synthesis. The inhibition of LTC/sub 4/ was irreversible and time dependent. ET also had little effect on /sup 3/H-AA release from A23187-stimulated neutrophils.

  7. Aminolevulinic Acid Topical

    MedlinePlus

    ... under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated ...

  8. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  9. Folic acid - test

    MedlinePlus

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider ...

  10. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  11. Amoxicillin and Clavulanic Acid

    MedlinePlus

    ... Amoxicillin is in a class of medications called penicillin-like antibiotics. It works by stopping the growth ... allergic to amoxicillin (Amoxil, Trimox, Wymox), clavulanic acid, penicillin, cephalosporins, or any other medications.tell your doctor ...

  12. Amino Acid Metabolism Disorders

    MedlinePlus

    ... acidemia? In ASA, the body can’t remove ammonia or a substance called argininosuccinic acid from the ... and children include: Breathing problems High levels of ammonia in the bloodIntense headache, especially after a high- ...

  13. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  14. Citric acid urine test

    MedlinePlus

    ... used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The normal range is 320 ... tubular acidosis and a tendency to form calcium kidney stones. The following may decrease urine citric acid levels: ...

  15. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  16. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  17. The linoleic acid and trans fatty acids of margarines.

    PubMed

    Beare-Rogers, J L; Gray, L M; Hollywood, R

    1979-09-01

    Fifty brands of margarine were analysed for cis-polyunsaturated acids by lipoxidase, for trans fatty acid by infared spectroscopy, and for fatty acid composition by gas-liquid chromatography. High concentrations of trans fatty acids tended to be associated with low concentrations of linoleic acid. Later analyses on eight of the brands, respresenting various proportions of linoleic to trans fatty acids, indicated that two of them contained still higher levels of trans fatty acids (greater than 60%) and negligible amounts of linoleic acid. It is proposed that margarine could be a vehicle for the distribution of some dietary linoleic acid and that the level of linoleic acid and the summation of the saturated plus trans fatty acids be known to ascertain nutritional characteristics.

  18. Hydroxycinnamic Acids Used as External Acceptors of Electrons: an Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria

    PubMed Central

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria

    2014-01-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD+/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD+/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons. PMID:25261518

  19. Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria.

    PubMed

    Filannino, Pasquale; Gobbetti, Marco; De Angelis, Maria; Di Cagno, Raffaella

    2014-12-01

    The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons.

  20. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  1. [Acids in coffee. XI. The proportion of individual acids in the total titratable acid].

    PubMed

    Engelhardt, U H; Maier, H G

    1985-07-01

    22 acids in ground roast coffees and instant coffees were determined by GLC of their silyl derivatives (after preseparation by gel electrophoresis) or isotachophoresis. The contribution to the total acidity (which was estimated by titration to pH 8 after cation exchange of the coffee solutions) was calculated for each individual acid. The mentioned acids contribute with 67% (roast coffee) and 72% (instant coffee) to the total acidity. In the first place citric acid (12.2% in roast coffee/10.7% in instant coffee), acetic acid (11.2%/8.8%) and the high molecular weight acids (8%/9%) contribute to the total acidity. Also to be mentioned are the shares of chlorogenic acids (9%/4.8%), formic acid (5.3%/4.6%), quinic acid (4.7%/5.9%), malic acid (3.9%/3%) and phosphoric acid (2.5%/5.2%). A notable difference in the contribution to total acidity between roast and instant coffee was found for phosphoric acid and pyrrolidonecarboxylic acid (0.7%/1.9%). It can be concluded that those two acids are formed or released from e.g. their esters in higher amounts than other acids during the production of instant coffee.

  2. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  3. The second acidic constant of salicylic acid.

    PubMed

    Porto, Raffaella; De Tommaso, Gaetano; Furia, Emilia

    2005-01-01

    The second dissociation constant of salicylic acid (H2L) has been determined, at 25 degrees C, in NaCl ionic media by UV spectrophotometric measurements. The investigated ionic strength values were 0.16, 0.25, 0.50, 1.0, 2.0 and 3.0 M. The protolysis constants calculated at the different ionic strengths yielded, with the Specific Interaction Theory, the infinite dilution constant, log beta1(0) = 13.62 +/- 0.03, for the equilibrium L2- + H+ <==> HL-. The interaction coefficient between Na+ and L2-, b(Na+, L2-) = 0.02 +/- 0.07, has been also calculated.

  4. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid.

    PubMed

    Seow, Chun Ling; Lau, Aik Jiang

    2017-03-10

    Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects.

  5. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  6. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  7. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  8. HPLC method for comparative study on tissue distribution in rat after oral administration of salvianolic acid B and phenolic acids from Salvia miltiorrhiza.

    PubMed

    Xu, Man; Fu, Gang; Qiao, Xue; Wu, Wan-Ying; Guo, Hui; Liu, Ai-Hua; Sun, Jiang-Hao; Guo, De-An

    2007-10-01

    A sensitive and selective high-performance liquid chromatography method was developed and validated to determine the prototype of salvianolic acid B and the metabolites of phenolic acids (protocatechuic acid, vanillic acid and ferulic acid) in rat tissues after oral administration of total phenolic acids and salvianolic acid B extracted from the roots of Salvia miltiorrhiza, respectively. The tissue samples were treated with a simple liquid-liquid extraction prior to HPLC. Analysis of the extract was performed on a reverse-phase C(18) column with a mobile phase consisting of acetonitrile and 0.05% trifluoracetic acid. The calibration curves for the four phenolic acids were linear in the given concentration ranges. The intra-day and inter-day relative standard deviations in the measurement of quality control samples were less than 10% and the accuracies were in the range of 88-115%. The average recoveries of all the tissues ranged from 78.0 to 111.8%. This method was successfully applied to evaluate the distribution of the four phenolic acids in rat tissues after oral administration of total phenolic acids of Salvia miltiorrhiza or salvianolic acid B and the possible metabolic pathway was illustrated.

  9. Formation of Guaiacol by Spoilage Bacteria from Vanillic Acid, a Product of Rice Koji Cultivation, in Japanese Sake Brewing.

    PubMed

    Ito, Toshihiko; Konno, Mahito; Shimura, Yoichiro; Watanabe, Seiei; Takahashi, Hitoshi; Hashizume, Katsumi

    2016-06-08

    The formation of guaiacol, a potent phenolic off-odor compound in the Japanese sake brewing process, was investigated. Eight rice koji samples were analyzed, and one contained guaiacol and 4-vinylguaiacol (4-VG) at extraordinarily high levels: 374 and 2433 μg/kg dry mass koji, respectively. All samples contained ferulic and vanillic acids at concentrations of mg/kg dry mass koji. Guaiacol forming microorganisms were isolated from four rice koji samples. They were identified as Bacillus subtilis, B. amyloliquefaciens/subtilis, and Staphylococcus gallinarum using 16S rRNA gene sequence. These spoilage bacteria convert vanillic acid to guaiacol and ferulic acid to 4-VG. However, they convert very little ferulic acid or 4-VG to guaiacol. Nine strains of koji fungi tested produced vanillic acid at the mg/kg dry mass koji level after cultivation. These results indicated that spoilage bacteria form guaiacol from vanillic acid, which is a product of koji cultivation in the sake brewing process.

  10. Use of Vine-Trimming Wastes as Carrier for Amycolatopsis sp. to Produce Vanillin, Vanillyl Alcohol, and Vanillic Acid.

    PubMed

    Castañón-Rodríguez, Juan Francisco; Pérez-Rodríguez, Noelia; de Souza Oliveira, Ricardo Pinheiro; Aguilar-Uscanga, María Guadalupe; Domínguez, José Manuel

    2016-10-01

    Raw vine-trimming wastes or the solid residues obtained after different fractionation treatments were evaluated for their suitability as Amycolatopsis sp. immobilization carriers during the bioconversion of ferulic acid into valuable phenolic compounds such as vanillin, vanillyl alcohol, and vanillic acid, the main flavor components of vanilla pods. Previously, physical-chemical characteristics of the materials were determined by quantitative acid hydrolysis and water absorption index (WAI), and microbiological characteristics by calculating the cell retention in the carrier (λ). Additionally, micrographics of carrier surface were obtained by field emission-scanning electron microscopy to study the influence of morphological changes during pretreatments in the adhesion of cells immobilized. The results point out that in spite of showing the lowest WAI and intermediate λ, raw material was the most appropriated substrate to conduct the bioconversion, achieving up to 262.9 mg/L phenolic compounds after 24 h, corresponding to 42.9 mg/L vanillin, 115.6 mg/L vanillyl alcohol, and 104.4 mg/L vanillic acid. The results showed the potential of this process to be applied for biotechnological production of vanillin from ferulic acid solutions; however, further studies must be carried out to increase vanillin yield. Additionally, the liquors obtained after treatment of vine-trimming wastes could be assayed to replace synthetic ferulic acid.

  11. Characterisation of calamansi (Citrus microcarpa). Part I: volatiles, aromatic profiles and phenolic acids in the peel.

    PubMed

    Cheong, Mun Wai; Chong, Zhi Soon; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Bin Yu

    2012-09-15

    Volatile compounds in the peel of calamansi (Citrus microcarpa) from Malaysia, the Philippines and Vietnam were extracted with dichloromethane and hexane, and then analysed by gas chromatography-mass spectroscopy/flame ionisation detector. Seventy-nine compounds representing >98% of the volatiles were identified. Across the three geographical sources, a relatively small proportion of potent oxygenated compounds was significantly different, exemplified by the highest amount of methyl N-methylanthranilate in Malaysian calamansi peel. Principal component analysis and canonical discriminant analysis were applied to interpret the complex volatile compounds in the calamansi peel extracts, and to verify the discrimination among the different origins. In addition, four common hydroxycinnamic acids (caffeic, p-coumaric, ferulic and sinapic acids) were determined in the methanolic extracts of calamansi peel using ultra-fast liquid chromatography coupled to photodiode array detector. The Philippines calamansi peel contained the highest amount of total phenolic acids. In addition, p-Coumaric acid was the dominant free phenolic acids, whereas ferulic acid was the main bound phenolic acid.

  12. Comparison of phenolic acids profile and antioxidant potential of six varieties of spelt (Triticum spelta L.).

    PubMed

    Gawlik-Dziki, Urszula; Świeca, Michał; Dziki, Dariusz

    2012-05-09

    Phenolic acids profile and antioxidant activity of six diverse varieties of spelt are reported. Antioxidant activity was assessed using eight methods based on different mechanism of action. Phenolic acids composition of spelt differed significantly between varieties and ranged from 506.6 to 1257.4 μg/g DW. Ferulic and sinapinic acids were the predominant phenolic acids found in spelt. Total ferulic acid content ranged from 144.2 to 691.5 μg/g DW. All analyzed spelt varieties possessed high antioxidant potential. In spite of the fact that bound phenolic acids possessed higher antioxidant activities, analysis of antioxidant potential and their relationship with phenolic acid content showed that free phenolics were more effective. Eight antioxidant methods were integrated to obtain a total antioxidant capacity index that may be used for comparison of total antioxidant capacity of spelt varieties. Total antioxidant potential of spelt cultivars were ordered as follows: Ceralio > Spelt INZ ≈ Ostro > Oberkulmer Rotkorn > Schwabenspelz > Schwabenkorn.

  13. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  14. Recurrent uric acid stones.

    PubMed

    Kamel, K S; Cheema-Dhadli, S; Shafiee, M A; Davids, M R; Halperin, M L

    2005-01-01

    A 46-year-old female had a history of recurrent uric acid stone formation, but the reason why uric acid precipitated in her urine was not obvious, because the rate of urate excretion was not high, urine volume was not low, and the pH in her 24-h urine was not low enough. In his discussion of the case, Professor McCance provided new insights into the pathophysiology of uric acid stone formation. He illustrated that measuring the pH in a 24-h urine might obscure the fact that the urine pH was low enough to cause uric acid to precipitate during most of the day. Because he found a low rate of excretion of NH(4)(+) relative to that of sulphate anions, as well as a high rate of citrate excretion, he speculated that the low urine pH would be due to a more alkaline pH in proximal convoluted tubule cells. He went on to suspect that there was a problem in our understanding of the function of renal medullary NH(3) shunt pathway, and he suggested that its major function might be to ensure a urine pH close to 6.0 throughout the day, to minimize the likelihood of forming uric acid kidney stones.

  15. Administration of caffeic acid worsened bone mechanical properties in female rats.

    PubMed

    Zych, Maria; Folwarczna, Joanna; Pytlik, Maria; Sliwiński, Leszek; Gołden, Magdalena A; Burczyk, Jan; Trzeciak, Henryk I

    2010-03-01

    Natural phenolic acids, commonly present in plants that are normally consumed in the diet, have been reported to exert antiresorptive and/or bone formation increasing activity. The aim of the present study was to investigate the effects of ferulic, caffeic, P-coumaric, and chlorogenic acids on the skeletal system of normal, mature female rats. The phenolic acids (10 mg/kg p. o. daily for 4 weeks) were administered to 3-month-old female Wistar Cmd:(WI)WU rats. Bone mass, mineral and calcium content, macrometric and histomorphometric parameters, and mechanical properties were examined. Phenolic acids had differential effects on the rat skeletal system. Although none of them affected bone macrometric parameters, mass and mineralization, all of them increased the width of femoral trabeculae. Administration of caffeic acid worsened bone mechanical properties (decreasing ultimate load sustained by the femur in three-point bending test). In conclusion, high intake of caffeic acid may unfavorably affect the skeletal system.

  16. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  17. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  18. Some polyphenols inhibit the formation of pentyl radical and octanoic acid radical in the reaction mixture of linoleic acid hydroperoxide with ferrous ions.

    PubMed Central

    Iwahashi, H

    2000-01-01

    Effects of some polyphenols and their related compounds (chlorogenic acid, caffeic acid, quinic acid, ferulic acid, gallic acid, D-(+)-catechin, D-(-)-catechin, 4-hydroxy-3-methoxybenzoic acid, salicylic acid, L-dopa, dopamine, L-adrenaline, L-noradrenaline, o-dihydroxybenzene, m-dihydroxybenzene, and p-dihydroxybenzene) on the formation of 13-hydroperoxide octadecadienoic (13-HPODE) acid-derived radicals (pentyl radical and octanoic acid radical) were examined. The ESR spin trapping showed that chlorogenic acid, caffeic acid, gallic acid, D-(+)-catechin, D-(-)-catechin, L-dopa, dopamine, L-adrenaline, L-noradrenaline, and o-dihydroxybenzene inhibited the overall formation of 13-HPODE acid-derived radicals in the reaction mixture of 13-HPODE with ferrous ions. The ESR peak heights of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN)/13-HPODE-derived radical adducts decreased to 46+/-4% (chlorogenic acid), 54+/-2% (caffeic acid), 49+/-2% (gallic acid), 55+/-1% [D-(+)-catechin], 60+/-3% [D-(-)-catechin], 42+/-1% (L-dopa), 30+/-2% (dopamine), 49+/-2% (L-adrenaline), 24+/-2% (L-noradrenaline), and 54+/-5% (o-dihydroxybenzene) of the control, respectively. The high performance liquid chromatography-electron spin resonance (HPLC-ESR) and high performance liquid chromatography-electron spin resonance-mass spectrometries (HPLC-ESR-MS) showed that caffeic acid inhibited the formation of octanoic acid radical and pentyl radical to 42+/-2% and 52+/-7% of the control, respectively. On the other hand, the polyphenols and their related compounds had few inhibitory effects on the radical formation in the presence of EDTA. Visible absorbance measurement revealed that all the polyphenols exhibiting the inhibitory effect chelate ferrous ions. Above results indicated that the chelation of ferrous ion is essential to the inhibitory effects of the polyphenols. PMID:10677343

  19. Biodegradation of Cyanuric Acid

    PubMed Central

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  20. [Aristolochic acid nephropathy].

    PubMed

    Witkowicz, Joanna

    2009-01-01

    Aristolochic acid nephropathy is a chronic, fibrosing, interstitial nephritis caused by aristolochic acid (AA), which is a component of the plants of Aristolochiacae family. It was first reported in 1993, in Belgium as a Chinese herb nephropathy, in patients who received a slimming regimen containing AA. The term aristolochic acid nephropathy also includes Balcan endemic nephropathy and other endemic tubulointerstitial fibrosis. Moreover, AA is a human carcinogen which induces urothelial cancer. The AA-containing herbs are banned in many countries and FDA published the warnings concerning the safety of AA-containing botanical remedies in 2000. Regarding the increasing interest in herbal medicines, uncontrolled access to botanical remedies and replacement of one herb by another AA-containing compounds makes thousands of people all around the world at risk of this grave disease.

  1. Calorimetry of Nucleic Acids.

    PubMed

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  2. Acid rain in Asia

    NASA Astrophysics Data System (ADS)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.

    1992-07-01

    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  3. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate.

    PubMed

    Rodrigues, Joana L; Araújo, Rafael G; Prather, Kristala L J; Kluskens, Leon D; Rodrigues, Ligia R

    2015-04-01

    Curcuminoids are phenylpropanoids with high pharmaceutical potential. Herein, we report an engineered artificial pathway in Escherichia coli to produce natural curcuminoids through caffeic acid. Arabidopsis thaliana 4-coumaroyl-CoA ligase and Curcuma longa diketide-CoA synthase (DCS) and curcumin synthase (CURS1) were used to produce curcuminoids and 70 mg/L of curcumin was obtained from ferulic acid. Bisdemethoxycurcumin and demethoxycurcumin were also produced, but in lower concentrations, by feeding p-coumaric acid or a mixture of p-coumaric acid and ferulic acid, respectively. Additionally, curcuminoids were produced from tyrosine through the caffeic acid pathway. To produce caffeic acid, tyrosine ammonia lyase from Rhodotorula glutinis and 4-coumarate 3-hydroxylase from Saccharothrix espanaensis were used. Caffeoyl-CoA 3-O-methyltransferase from Medicago sativa was used to convert caffeoyl-CoA to feruloyl-CoA. Using caffeic acid, p-coumaric acid or tyrosine as a substrate, 3.9, 0.3, and 0.2 mg/L of curcumin were produced, respectively. This is the first time DCS and CURS1 were used in vivo to produce curcuminoids and that curcumin was produced by feeding tyrosine. We have shown that curcumin can be produced using a pathway involvoing caffeic acid. This alternative pathway represents a step forward in the heterologous production of curcumin using E. coli.

  4. Ethylenediaminetetraacetic acid in endodontics.

    PubMed

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-09-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented.

  5. Ethylenediaminetetraacetic acid in endodontics

    PubMed Central

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-01-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented. PMID:24966721

  6. Interactions of low molecular weight aromatic acids and amino acids with goethite, kaolinite and bentonite with or without organic matter coating

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten

    2015-04-01

    Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that

  7. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  8. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham; Hamid, Mohamed Ali

    2015-04-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid.

  9. Oxalic acid excretion after intravenous ascorbic acid administration.

    PubMed

    Robitaille, Line; Mamer, Orval A; Miller, Wilson H; Levine, Mark; Assouline, Sarit; Melnychuk, David; Rousseau, Caroline; Hoffer, L John

    2009-02-01

    Ascorbic acid is frequently administered intravenously by alternative health practitioners and, occasionally, by mainstream physicians. Intravenous administration can greatly increase the amount of ascorbic acid that reaches the circulation, potentially increasing the risk of oxalate crystallization in the urinary space. To investigate this possibility, we developed gas chromatography mass spectrometry methodology and sampling and storage procedures for oxalic acid analysis without interference from ascorbic acid and measured urinary oxalic acid excretion in people administered intravenous ascorbic acid in doses ranging from 0.2 to 1.5 g/kg body weight. In vitro oxidation of ascorbic acid to oxalic acid did not occur when urine samples were brought immediately to pH less than 2 and stored at -30 degrees C within 6 hours. Even very high ascorbic acid concentrations did not interfere with the analysis when oxalic acid extraction was carried out at pH 1. As measured during and over the 6 hours after ascorbic acid infusions, urinary oxalic acid excretion increased with increasing doses, reaching approximately 80 mg at a dose of approximately 100 g. We conclude that, when studied using correct procedures for sample handling, storage, and analysis, less than 0.5% of a very large intravenous dose of ascorbic acid is recovered as urinary oxalic acid in people with normal renal function.

  10. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  11. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  12. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  13. Hydrofluoric acid poisoning

    MedlinePlus

    Chemical Emergencies: Case Definition: Hydrofluoric Acid . Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2005. Goldfrank LR, ed. Goldfrank's Toxicologic Emergencies . 8th ed. New York, NY: McGraw Hill; 2006. Wax PM, Young A. ...

  14. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  15. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Oates-Bockenstedt, Catherine

    1997-01-01

    Details an activity designed to motivate students by incorporating science-related issues into a classroom debate. Includes "The Acid Rain Bill" and "Position Guides" for student roles as committee members, consumers, governors, industry owners, tourism professionals, senators, and debate directors. (DKM)

  16. Acid Rain Investigations.

    ERIC Educational Resources Information Center

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  17. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  18. Acid Rain Classroom Projects.

    ERIC Educational Resources Information Center

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  19. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Bybee, Rodger; And Others

    1984-01-01

    Describes an activity which provides opportunities for role-playing as industrialists, ecologists, and government officials. The activity involves forming an international commission on acid rain, taking testimony, and, based on the testimony, making recommendations to governments on specific ways to solve the problem. Includes suggestions for…

  20. Acid rain bibliography

    SciTech Connect

    Sayers, C.S.

    1983-09-01

    This bibliography identifies 900 citations on various aspects of Acid Rain, covering published bibliographies, books, reports, conference and symposium proceedings, audio visual materials, pamphlets and newsletters. It includes five sections: citations index (complete record of author, title, source, order number); KWIC index; title index; author index; and source index. 900 references.

  1. Docosahexaenoic acid and lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina, and brain, and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews dat...

  2. Spermatotoxicity of dichloroacetic acid

    EPA Science Inventory

    The testicular toxicity of dichloroacetic acid (DCA), a disinfection byproduct of drinking water, was evaluated in adult male rats given both single and multiple (up to 14 d) oral doses. Delayed spermiation and altered resorption of residual bodies were observed in rats given sin...

  3. Water surface is acidic

    PubMed Central

    Buch, Victoria; Milet, Anne; Vácha, Robert; Jungwirth, Pavel; Devlin, J. Paul

    2007-01-01

    Water autoionization reaction 2H2O → H3O− + OH− is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH− ions, density functional studies of (H2O)48H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH− does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere. PMID:17452650

  4. Acid rain sourcebook

    SciTech Connect

    Elliott, T.C.; Schwieger, R.G.

    1984-01-01

    Discusses the problem of acid rain and how it can be controlled. The book is divided into seven key sections: the problem and the legislative solutions; international mitigation programs; planning the US program; emissions reduction-before combustion; emissions/reduction-during combustion; emissions reduction-after combustion and engineering solutions under development. 13 papers have been abstracted separately.

  5. The acid rain sourcebook

    SciTech Connect

    Elliott, T.C.; Schwieger, R.G.

    1985-01-01

    A reference collection of specialized information discussions on areas critical to the acid rain issue: problem definition, impact of legislation, emissions standards, international perspective, cost scenarios, and engineering solutions. The text is reinforced with 130 illustrations and about 50 tables. Contents: International mitigation programs. Emissions reduction: before combustion; during combustion; after combustion. Engineering solutions under development.

  6. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  7. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  8. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations.

  9. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  10. Acid diffusion through polyaniline membranes

    SciTech Connect

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  11. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  12. Radioenzymatic assay for quinolinic acid

    SciTech Connect

    Foster, A.C.; Okuno, E.; Brougher, D.S.; Schwarcz, R.

    1986-10-01

    A new and rapid method for the determination of the excitotoxic tryptophan metabolite quinolinic acid is based on its enzymatic conversion to nicotinic acid mononucleotide and, in a second step utilizing (/sup 3/H)ATP, further to (/sup 3/H) deamido-NAD. Specificity of the assay is assured by using a highly purified preparation of the specific quinolinic acid-catabolizing enzyme, quinolinic acid phosphoribosyltransferase, in the initial step. The limit of sensitivity was found to be 2.5 pmol of quinolinic acid, sufficient to conveniently determine quinolinic acid levels in small volumes of human urine and blood plasma.

  13. Progress in engineering acid stress resistance of lactic acid bacteria.

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  14. Aphyllin, the first isoferulic acid glycoside and other phenolics from Tamarix aphylla flowers.

    PubMed

    Nawwar, M A M; Hussein, S A M; Ayoub, N A; Hofmann, K; Linscheid, M; Harms, M; Wende, K; Lindequist, U

    2009-05-01

    The first glycosylated isoferulic acid, isoferulic acid 3-O-beta-glucopyranoside, together with the new phenolics, tamarixetin 3,3'-di-sodium sulphate and dehydrodigallic acid dimetyl ester have been characterized from a flower extract of Tamarix aphylla. The structures were established on the basis of spectral data. The extract exhibited a distinct radical scavenging effect and to improve the viability of human keratinocytes (HaCaT cells). Also, the known isoferulic acid and ferulic acid which have been determined to be the major components of the investigated extract by HPLC/ESI mass spectrometric screening have been separated, characterized and evaluated as active antioxidants and as cell activity stimulating agents as well.

  15. Changes in antioxidant activity and phenolic acid composition of tarhana with steel-cut oats.

    PubMed

    Kilci, A; Gocmen, D

    2014-02-15

    Steel-cut oats (SCO) was used to replace wheat flour in the tarhana formulation (control) at the levels of 10%, 20%, 30% and 40% (w/w). Control sample included no SCO. Substitution of wheat flour in tarhana formulation with SCO affected the mineral contents positively. SCO additions also increased phenolic acid contents of tarhana samples. The most abundant phenolic acids were ferulic and vanillic acids, followed by syringic acid in the samples with SCO. Tarhana samples with SCO also showed higher antioxidant activities than the control. Compared with the control, the total phenolic content increased when the level of SCO addition was increased. SCO addition did not have a deteriorative effect on sensory properties of tarhana samples and resulted in acceptable soup properties in terms of overall acceptability. SCO addition improved the nutritional and functional properties of tarhana by causing increases in antioxidant activity, phenolic content and phenolic acids.

  16. Catabolism of coffee chlorogenic acids by human colonic microbiota.

    PubMed

    Ludwig, Iziar A; Paz de Peña, Maria; Concepción, Cid; Alan, Crozier

    2013-01-01

    Several studies have indicated potential health benefits associated with coffee consumption. These benefits might be ascribed in part to the chlorogenic acids (CGAs), the main (poly)phenols in coffee. The impact of these dietary (poly)phenols on health depends on their bioavailability. As they pass along the gastrointestinal tract, CGAs are metabolized extensively and it is their metabolites rather than the parent compounds that predominate in the circulatory system. This article reports on a study in which after incubation of espresso coffee with human fecal samples, high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to monitor CGA breakdown and identify and quantify the catabolites produced by the colonic microflora. The CGAs were rapidly degraded by the colonic microflora and over the 6-h incubation period, 11 catabolites were identified and quantified. The appearance of the initial degradation products, caffeic and ferulic acids, was transient, with maximum quantities at 1 h. Dihydrocaffeic acid, dihydroferulic acid, and 3-(3'-hydroxyphenyl)propionic acid were the major end products, comprising 75-83% of the total catabolites, whereas the remaining 17-25% consisted of six minor catabolites. The rate and extent of the degradation showed a clear influence of the composition of the gut microbiota of individual volunteers. Pathways involved in colonic catabolism of CGAs are proposed and comparison with studies on the bioavailability of coffee CGAs ingested by humans helped distinguish between colonic catabolites and phase II metabolites of CGAs.

  17. Identification of 8-O-4/8-5(Cyclic)- and 8-8(Cyclic)/5-5-Coupled Dehydrotriferulic Acids, Naturally Occurring in Cell Walls of Mono- and Dicotyledonous Plants.

    PubMed

    Waterstraat, Martin; Bunzel, Diana; Bunzel, Mirko

    2016-09-28

    Besides ferulate dimers, higher oligomers of ferulic acid such as trimers and tetramers were previously demonstrated to occur in plant cell walls. This paper reports the identification of two new triferulic acids. 8-O-4/8-5(cyclic)-triferulic acid was synthesized from ethyl ferulate under oxidative conditions using copper(II)-tetramethylethylenediamine [CuCl(OH)-TMEDA] as a catalyst, whereas 8-8(cyclic)/5-5-triferulic acid was isolated (preparative size exclusion chromatography, reversed-phase HPLC) from saponified insoluble maize fiber. Structures of both trimers were unambiguously elucidated by high-resolution LC-ToF-MS/MS and one- ((1)H) and two-dimensional (HSQC, HMBC, COSY, NOESY) NMR spectroscopy. The newly described trimers were identified by LC-MS/MS in alkaline hydrolysates of insoluble fibers from maize, wheat, and sugar beet, indicating that ferulic acid cross-links between cell wall polymers are more diverse than previously recognized. Saponification experiments also suggest that the newly identified 8-O-4/8-5(cyclic)-triferulic acid is the naturally occurring precursor of the previously identified 8-O-4/8-5(noncyclic)-triferulic acid in plant cell walls.

  18. NAPAP (National Acid Precipitation Assessment Program) results on acid rain

    SciTech Connect

    Not Available

    1990-06-01

    The National Acid Precipitation Assessment Program (NAPAP) was mandated by Congress in 1980 to study the effects of acid rain. The results of 10 years of research on the effect of acid deposition and ozone on forests, particularly high elevation spruce and fir, southern pines, eastern hardwoods and western conifers, will be published this year.

  19. Acid Earth--The Global Threat of Acid Pollution.

    ERIC Educational Resources Information Center

    McCormick, John

    Acid pollution is a major international problem, but the debate it has elicited has often clouded the distinction between myth and facts. This publication attempts to concerning the acid pollution situation. This publication attempts to identify available facts. It is the first global review of the problem of acid pollution and the first to…

  20. Boric/sulfuric acid anodize - Alternative to chromic acid anodize

    NASA Astrophysics Data System (ADS)

    Koop, Rodney; Moji, Yukimori

    1992-04-01

    The suitability of boric acid/sulfuric acid anodizing (BSAA) solution as a more environmentally acceptable replacement of the chromic acid anodizing (CAA) solution was investigated. Results include data on the BSAA process optimization, the corrosion protection performance, and the compatibility with aircraft finishing. It is shown that the BSSA implementation as a substitude for CAA was successful.

  1. Circulating folic acid in plasma: relation to folic acid fortification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The implementation of folic acid fortification in the United States has resulted in unprecedented amounts of this synthetic form of folate in the American diet. Folic acid in circulation may be a useful measure of physiologic exposure to synthetic folic acid, and there is a potential for elevated co...

  2. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  3. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  4. Autohydrolysis of phytic acid.

    PubMed

    Hull, S R; Gray, J S; Montgomery, R

    1999-09-10

    The autohydrolysis of phytic acid at 120 degrees C resulted in the formation of most of the phosphate esters of myo-inositol in varying amounts depending upon the reaction time. Eighteen of the 39 chromatographically distinct myo-inositol mono-, bis-, tris-, tetrakis-, pentakis-, and hexakisphosphates have been characterized using two different HPLC systems. These myo-inositol phosphates were partially purified by preparative anion-exchange chromatography under acidic and alkaline elution conditions. The combination of these two methods provides a two-tiered chromatographic approach to the rapid and sensitive identification of inositol phosphates in complex mixtures. Identification of the products was confirmed by 1D and 2D (1)H NMR analysis. The analytical procedure was applied to the autohydrolysis of the mixture of inositol phosphates from corn steep water.

  5. Optimize acid gas removal

    SciTech Connect

    Nicholas, D.M.; Wilkins, J.T.

    1983-09-01

    Innovative design of physical solvent plants for acid gas removal can materially reduce both installation and operating costs. A review of the design considerations for one physical solvent process (Selexol) points to numerous arrangements for potential improvement. These are evaluated for a specific case in four combinations that identify an optimum for the case in question but, more importantly, illustrate the mechanism for use for such optimization elsewhere.

  6. Perfluorooctanoic acid and environmental risks

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acids (PFAA) family of chemicals, which consist of a carbon backbone typically four to fourteen carbons in length and a charged functional moiety.

  7. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  8. Pantothenic acid (Vitamin B5)

    MedlinePlus

    Pantothenic acid is a vitamin, also known as vitamin B5. It is widely found in both plants and animals ... Vitamin B5 is commercially available as D-pantothenic acid, as well as dexpanthenol and calcium pantothenate, which ...

  9. Folic Acid Questions and Answers

    MedlinePlus

    ... Controls NCBDDD Cancel Submit Search The CDC Folic Acid Note: Javascript is disabled or is not supported ... please visit this page: About CDC.gov . Folic Acid Homepage Facts Quiz Frequently Asked Questions General Information ...

  10. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  11. Immunomodulatory spherical nucleic acids.

    PubMed

    Radovic-Moreno, Aleksandar F; Chernyak, Natalia; Mader, Christopher C; Nallagatla, Subbarao; Kang, Richard S; Hao, Liangliang; Walker, David A; Halo, Tiffany L; Merkel, Timothy J; Rische, Clayton H; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A; Gryaznov, Sergei M

    2015-03-31

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.

  12. Immunomodulatory spherical nucleic acids

    PubMed Central

    Radovic-Moreno, Aleksandar F.; Chernyak, Natalia; Mader, Christopher C.; Nallagatla, Subbarao; Kang, Richard S.; Hao, Liangliang; Walker, David A.; Halo, Tiffany L.; Merkel, Timothy J.; Rische, Clayton H.; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A.; Gryaznov, Sergei M.

    2015-01-01

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582

  13. Microbial naphthenic Acid degradation.

    PubMed

    Whitby, Corinne

    2010-01-01

    Naphthenic acids (NAs) are an important group of trace organic pollutants predominantly comprising saturated aliphatic and alicyclic carboxylic acids. NAs are ubiquitous; occurring naturally in hydrocarbon deposits (petroleum, oil sands, bitumen, and crude oils) and also have widespread industrial uses. Consequently, NAs can enter the environment from both natural and anthropogenic processes. NAs are highly toxic, recalcitrant compounds that persist in the environment for many years, and it is important to develop efficient bioremediation strategies to decrease both their abundance and toxicity in the environment. However, the diversity of microbial communities involved in NA-degradation, and the mechanisms by which NAs are biodegraded, are poorly understood. This lack of knowledge is mainly due to the difficulties in identifying and purifying individual carboxylic acid compounds from complex NA mixtures found in the environment, for microbial biodegradation studies. This paper will present an overview of NAs, their origin and fate in the environment, and their toxicity to the biota. The review describes the microbial degradation of both naturally occurring and chemically synthesized NAs. Proposed pathways for aerobic NA biodegradation, factors affecting NA biodegradation rates, and possible bioremediation strategies are also discussed.

  14. RP-HPLC analysis of phenolic acids of selected Central European Carex L. (Cyperaceae) species and its implication for taxonomy.

    PubMed

    Bogucka-Kocka, Anna; Szewczyk, Katarzyna; Janyszek, Magdalena; Janyszek, Sławomir; Cieśla, Łukasz

    2011-01-01

    Eighteen species belonging to the Carex genus were checked for the presence and the amount of eight phenolic acids (p-hydroxybenzoic, vanillic, caffeic, syringic, protocatechuic, p-coumaric, sinapic, and ferulic) by means of HPLC. Both the free and bonded phenolic acids were analyzed. The majority of the analyzed acids occurred in the studied species in relatively high amounts. The highest concentrations found were caffeic acid and p-coumaric acid, for which the detected levels were negatively correlated. A very interesting feature was the occurrence of sinapic acid, a compound very rarely detected in plant tissues. Its distribution across the analyzed set of species can be hypothetically connected with the humidity of plants' habitats. Several attempted tests of aggregative cluster analysis showed no similarity to the real taxonomical structure of the genus Carex. Thus, the phenolic acids' composition cannot be considered as the major taxonomical feature for the genus Carex.

  15. Amino acids in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Peterson, E.

    1975-01-01

    Studies with the combined gas chromatograph-mass spectrometer were conducted to characterize further the amino acids found in extracts of the Murchison meteorite. With the exception of beta-aminoisobutyric acid, all of the amino acids which were found in previous studies of the Murchison meteorite and the Murray meteorite have been identified. The results obtained lend further support to the hypothesis that amino acids are present in the Murchison meteorite as the result of an extraterrestrial abiotic synthesis.

  16. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  17. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  18. An Umbrella for Acid Rain.

    ERIC Educational Resources Information Center

    Randal, Judith

    1979-01-01

    The Environmental Protection Agency has awarded several grants to study effects of and possible solutions to the problem of "acid rain"; pollution from atmospheric nitric and sulfuric acids. The research program is administered through North Carolina State University at Raleigh and will focus on biological effects of acid rain. (JMF)

  19. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  20. Scientists Puzzle Over Acid Rain

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Reports on a growing concern over increased acidity in atmospheric percipitation. Explores possible causes of the increased acidity, identifies chemical components of precipitation in various parts of the world, and presents environmental changes that might be attributed to the acidity. (GS)

  1. [Total synthesis of nordihydroguaiaretic acid].

    PubMed

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F

    1997-04-01

    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized.

  2. Pantothenic acid biosynthesis in zymomonas

    SciTech Connect

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  3. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids.

    PubMed

    Koschorreck, Katja; Richter, Sven M; Ene, Augusta B; Roduner, Emil; Schmid, Rolf D; Urlacher, Vlada B

    2008-05-01

    A new laccase gene (cotA) was cloned from Bacillus licheniformis and expressed in Escherichia coli. The recombinant protein CotA was purified and showed spectroscopic properties, typical for blue multi-copper oxidases. The enzyme has a molecular weight of approximately 65 kDa and demonstrates activity towards canonical laccase substrates 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). Kinetic constants KM and kcat for ABTS were of 6.5+/-0.2 microM and 83 s(-1), for SGZ of 4.3+/-0.2 microM and 100 s(-1), and for 2,6-DMP of 56.7+/-1.0 microM and 28 s(-1). Highest oxidizing activity towards ABTS was obtained at 85 degrees C. However, after 1 h incubation of CotA at 70 degrees C and 80 degrees C, a residual activity of 43% and 8%, respectively, was measured. Furthermore, oxidation of several phenolic acids and one non-phenolic acid by CotA was investigated. CotA failed to oxidize coumaric acid, cinnamic acid, and vanillic acid, while syringic acid was oxidized to 2,6-dimethoxy-1,4-benzoquinone. Additionally, dimerization of sinapic acid, caffeic acid, and ferulic acid by CotA was observed, and highest activity of CotA was found towards sinapic acid.

  4. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  5. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast.

    PubMed

    Lentz, Michael; Harris, Chad

    2015-10-15

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces' metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains.

  6. Analysis of Growth Inhibition and Metabolism of Hydroxycinnamic Acids by Brewing and Spoilage Strains of Brettanomyces Yeast

    PubMed Central

    Lentz, Michael; Harris, Chad

    2015-01-01

    Brettanomyces yeasts are well-known as spoilage organisms in both the wine and beer industries, but also contribute important desirable characters to certain beer styles. These properties are mediated in large part by Brettanomyces’ metabolism of hydroxycinnamic acids (HCAs) present in beverage raw materials. Here we compare growth inhibition by, and metabolism of, HCAs among commercial brewing strains and spoilage strains of B. bruxellensis and B. anomalus. These properties vary widely among the different strains tested and between the HCAs analyzed. Brewing strains showed more efficient metabolism of ferulic acid over p-coumaric acid, a trait not shared among the spoilage strains. PMID:28231223

  7. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  8. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

  9. The politics of acid rain

    SciTech Connect

    Wilcher, M.E. )

    1989-01-01

    This work examines and compares the acid rain policies through the different political systems of Canada, Great Britain and the United States. Because the flow of acid rain can transcend national boundaries, acid rain has become a crucial international problem. According to the author, because of differences in governmental institutions and structure, the extent of governmental intervention in the industrial economy, the degree of reliance on coal for power generation, and the extent of acid rain damage, national responses to the acid rain problem have varied.

  10. [Stewart's acid-base approach].

    PubMed

    Funk, Georg-Christian

    2007-01-01

    In addition to paCO(2), Stewart's acid base model takes into account the influence of albumin, inorganic phosphate, electrolytes and lactate on acid-base equilibrium. It allows a comprehensive and quantitative analysis of acid-base disorders. Particularly simultaneous and mixed metabolic acid-base disorders, which are common in critically ill patients, can be assessed. Stewart's approach is therefore a valuable tool in addition to the customary acid-base approach based on bicarbonate or base excess. However, some chemical aspects of Stewart's approach remain controversial.

  11. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  12. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-11-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  13. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-07-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids to quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  14. Twinning of dodecanedicarboxylic acid

    NASA Technical Reports Server (NTRS)

    Sen, R.; Wilcox, W. R.

    1986-01-01

    Twinning of 1,10-dodecanedicarboxyl acid (DDA) was observed in 0.1 mm thick films with a polarizing microscope. Twins originated from polycrystalline regions which tended to nucleate on twin faces, and terminated by intersection gone another. Twinning increased dramatically with addition of organic compounds with a similar molecular size and shape. Increasing the freezing rate, increasing the temperature gradient, and addition of silica particles increased twinning. It is proposed that twins nucleate with polycrystals and sometimes anneal out before they become observable. The impurities may enhance twinning either by lowering the twin energy or by adsorbing on growing faces.

  15. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  16. Antioxidant capacity and phenolic acids of virgin coconut oil.

    PubMed

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  17. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  18. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid.

    PubMed

    Májer, Ferenc; Sharma, Ruchika; Mullins, Claire; Keogh, Luke; Phipps, Sinead; Duggan, Shane; Kelleher, Dermot; Keely, Stephen; Long, Aideen; Radics, Gábor; Wang, Jun; Gilmer, John F

    2014-01-01

    We have prepared a new panel of 23 BA derivatives of DCA, chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) in order to study the effect of dual substitution with 3-azido and 24-amidation, features individually associated with cytotoxicity in our previous work. The effect of the compounds on cell viability of HT-1080 and Caco-2 was studied using the 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds with high potency towards reduction of cell viability were further studied using flow cytometry in order to understand the mechanism of cell death. Several compounds were identified with low micromolar IC₅₀ values for reducing cell viability in the Caco-2 and HT1080 cell lines, making them among the most potent BA apoptotic agents reported to date. There was no evidence of relationship between overall hydrophobicity and cytotoxicity supporting the idea that cell death induction by BAs may be structure-specific. Compounds derived from DCA caused cell death through apoptosis. There was some evidence of selectivity between the two cell lines studied which may be due to differing expression of CD95/FAS. The more toxic compounds increased ROS production in Caco-2 cells, and co-incubation with the antioxidant N-acetyl cysteine blunted pro-apoptotic effects. The properties these compounds suggest that there may be specific mechanism(s) mediating BA induced cell death. Compound 8 could be useful for investigating this phenomenon.

  19. Cryoprotection from lipoteichoic acid

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Middaugh, Amy; Wickham, Jason R.; Friedline, Anthony; Thomas, Kieth J.; Johnson, Karen; Zachariah, Malcolm; Garimella, Ravindranth

    2012-10-01

    Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as the high salt concentration of brine veins and adhesion to particulates or ice crystal defects. We have discovered an endogenous cryoprotectant in the cell wall of bacteria, lipoteichoic acid biopolymers. Adding 1% LTA to bacteria cultures immediately prior to freezing provides 50% survival rate, similar to the results obtained with 1% glycerol. In the absence of an additive, bacterial survival is negligible as measured with the resazurin cell viability assay. The mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. Our observations suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.

  20. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  1. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  2. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification.

  3. Identification and Quantification of Potential Anti-inflammatory Hydroxycinnamic Acid Amides from Wolfberry.

    PubMed

    Wang, Siyu; Suh, Joon Hyuk; Zheng, Xi; Wang, Yu; Ho, Chi-Tang

    2017-01-18

    Wolfberry or Goji berry, the fruit of Lycium barbarum, exhibits health-promoting properties that leads to an extensive study of their active components. We synthesized a set of hydroxycinnamic acid amide (HCCA) compounds, including trans-caffeic acid, trans-ferulic acid, and 3,4-dihydroxyhydrocinnamic acid, with extended phenolic amine components as standards to identify and quantify the corresponding compounds from wolfberry and to investigate anti-inflammatory properties of these compounds using in vitro model. With optimized LC-MS/MS and NMR analysis, nine amide compounds were identified from the fruits. Seven of these compounds were identified in this plant for the first time. The amide compounds with a tyramine moiety were the most abundant. In vitro studies indicated that five HCCA compounds showed inhibitory effect on NO production inuded by lipopolysaccharides with IC50 less than 15.08 μM (trans-N-feruloyl dopamine). These findings suggested that wolfberries demonstrated anti-inflammatory properties.

  4. Relationship between hydroxycinnamic acid content, lignin composition and digestibility of maize silages in sheep.

    PubMed

    Novo-Uzal, Esther; Taboada, Alfredo; Rivera, Antonio; Flores, Gonzalo; Barceló, Alfonso Ros; Masa, Antón; Pomar, Federico

    2011-04-01

    Cell wall-bound hydroxycinnamic acids and the composition of lignin were studied in relation to the digestibility of a collection of 91 maize silages in wethers. Total lignin and guaiacyl content showed the highest correlation coefficients with digestibility. Using the above-mentioned chemical parameters, eight equations were also developed to predict digestibility. The prediction of organic matter digestibility produced a high adjusted R2 value (0.487) using total lignin, guaiacyl, esterified ferulic acid and esterified p-coumaric acid content as predictors. The prediction of in vivo dry matter digestibility produced a higher adjusted R2 value (0.516) using the same variables as predictors. Cell wall digestibility depends on a multiplicity of factors and it is not possible to attribute a causal effect on in vivo digestibility to any single factor. However, total lignin, guaiacyl and p-coumaric acid content emerge as good predictors of digestibility.

  5. Effect of organic acids found in cottonseed hull hydrolysate on the xylitol fermentation by Candida tropicalis.

    PubMed

    Wang, Le; Wu, Dapeng; Tang, Pingwah; Yuan, Qipeng

    2013-08-01

    Five organic acids (acetic, ferulic, 4-hydroxybenzoic, formic and levulinic acids) typically associated in the hemicellulose hydrolysate were selected to study their effects on the xylitol fermentation. The effects of individual and combined additions were independently evaluated on the following parameters: inhibitory concentration; initial cell concentration; pH value; and membrane integrity. The results showed that the toxicities of organic acids were related to their hydrophobility and significantly affected by the fermentative pH value. In addition, it was revealed that the paired combinations of organic acids did not impose synergetic inhibition. Moreover, it was found that the fermentation inhibition could be alleviated with the simple manipulations by increasing the initial cell concentration, raising the initial pH value and minimizing furfural levels by evaporation during the concentration of hydrolysates. The proposed strategies for minimizing the negative effects could be adopted to improve the xylitol fermentation in the industrial applications.

  6. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  7. CELL PENETRATION BY ACIDS : VI. THE CHLOROACETIC ACIDS.

    PubMed

    Crozier, W J

    1922-09-20

    Measurements of the penetration of tissue from Chromodoris zebra are believed to show that a determining factor in penetration involves the establishment of a critical pH (near 3.5) in relation to superficial cell proteins. The rapidity with which this state is produced depends upon acid strength, and upon some property of the acid influencing the speed of absorption; hence it is necessary to compare acids within groups of chemical relationship. The actual speed of penetration observed with any acid is dependent upon two influences: preliminary chemical combination with the outer protoplasm, followed by diffusion. The variation of the temperature coefficient of penetration velocity with the concentration of acid, and the effect of size (age) of individual providing the tissue sample agree in demonstrating the significant part played by diffusion. In comparing different acids, however, their mode of chemical union with the protoplasm determines the general order of penetrating ability.

  8. Bile acids: regulation of synthesis.

    PubMed

    Chiang, John Y L

    2009-10-01

    Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.

  9. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  10. [Analysis of citric acid and citrates. Citric acid and urolithiasis].

    PubMed

    Leskovar, P

    1979-08-01

    In the first part the physico-chemical, analytic chemical and physiologic biochemical properties of the citric acid are discussed. In the second part the author enters the role of the citric acid in the formation of uric calculi. In the third part is reported on the individual methods of the determination of citric acid and the method practised in the author's laboratory is described.

  11. Comparative evaluation of volatiles, phenolics, sugars, organic acids and antioxidant properties of Sel-42 and Tainung papaya varieties.

    PubMed

    Kelebek, Hasim; Selli, Serkan; Gubbuk, Hamide; Gunes, Esma

    2015-04-15

    The present study was designed to determine the phenolic compounds, organic acids, sugars, aroma profiles and antioxidant properties of Sel-42 and Tainung papayas grown in Turkey. High-performance liquid chromatography/electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS) method was used for the phenolic compounds analysis. Twelve phenolic compounds were identified and quantified in the samples. The total phenolic content of Sel-42 was clearly higher than that of Tainung. Protocatechuic acid-hexoside, gallic acid-deoxyhexoside, ferulic acid and chlorogenic acids were the most abundant phenolics in both cultivars. Aroma composition of papaya was analysed by gas chromatography-mass spectrometry (GC-MS). A total of 46 and 42 aroma compounds, including esters, alcohols, terpenes, lactones, acids, carbonyl compounds, and volatile phenols were identified in the Sel-42 and Tainung, respectively. The significant linear correlation was confirmed between the values for the total phenolic content and antioxidant activity of papaya extracts.

  12. Identification of Quantitative Trait Loci for the Phenolic Acid Contents and Their Association with Agronomic Traits in Tibetan Wild Barley.

    PubMed

    Cai, Shengguan; Han, Zhigang; Huang, Yuqing; Hu, Hongliang; Dai, Fei; Zhang, Guoping

    2016-02-03

    Phenolic acids have been of considerable interest in human nutrition because of their strong antioxidative properties. However, even in a widely grown crop, such as barley, their genetic architecture is still unclear. In this study, genetic control of two main phenolic acids, ferulic acid (FA) and p-coumaric acid (p-CA), and their associations with agronomic traits were investigated among 134 Tibetan wild barley accessions. A genome-wide association study (GWAS) identified three DArT markers (bpb-2723, bpb-7199, and bpb-7273) associated with p-CA content and one marker (bpb-3653) associated with FA content in 2 consecutive years. The contents of the two phenolic acids were positively correlated with some agronomic traits, such as the first internode length, plant height, and some grain color parameters, and negatively correlated with the thousand-grain weight (TGW). This study provides DNA markers for barley breeding programs to improve the contents of phenolic acids.

  13. Rotational study of the bimolecule acetic acid-fluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Caminati, Walther

    2017-01-01

    The rotational spectrum of the acetic acid-fluoroacetic acid bimolecule was measured by using a pulsed jet Fourier transform microwave spectrometer. One conformer, in which fluoroacetic acid is in trans form, has been observed. The rotational transitions are split into two component lines, due to the internal rotation of the methyl group of acetic acid. From these splittings, the corresponding V3 barrier has been determined. The dissociation energy of this complex has been estimated to 66 kJ/mol. An increase of the distance between the two monomers upon the OH → OD substitution (Ubbelohde effect) has been observed.

  14. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    NASA Astrophysics Data System (ADS)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  15. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  16. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  17. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  18. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  19. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  20. Induction of phenolsulfotransferase expression by phenolic acids in human hepatoma HepG2 cells.

    PubMed

    Yeh, Chi-Tai; Huang, Shang-Ming; Yen, Gow-Chin

    2005-06-15

    Phenolic acids are antioxidant phenolic compounds, widespread in plant foods, which contribute significant biological and pharmacological properties; some have demonstrated a remarkable ability to alter sulfate conjugation. However, the modulation mechanisms of antioxidant phenolic acids on phenolsulfotransferase activity have not yet been described. In the present study, the human hepatoma cell line, HepG2, was used as a model to investigate the effect of antioxidant phenolic acids on enzymatic activity and expression of one of the major phase II sulfate conjugation enzymes, P-form phenolsulfotransferase (PST-P). The results showed that gallic acid, gentisic acid, p-hydroxybenzoic acid, and p-coumaric acid increased PST-P activity, in a dose-dependent manner. A maximum of 4- and 5-fold induction of PST-P activity was observed for both gallic acid and gentisic acid; however, they showed an adverse effect on cell growth at higher concentrations. A 2- or 2.5-fold increase of PST-P activity was found with either p-coumaric or p-hydroxybenzoic acid treatment, whereas no significant effect was found for ferulic acid treatment. PST-P induction, by gallic acid, was further confirmed, using reverse transcription PCR and Western blotting techniques to measure mRNA expression and protein translation. A significant correlation (r = 0.74, p < 0.01) between the expressions of PST-P mRNA and the corresponding PST-P activity was observed. Thus, gallic acid increased PST-P protein expression in HepG2 cells, in a dose- and time-dependent manner. The results demonstrated that certain antioxidant phenolic acids could induce PST-P activity in HepG2 cells, by promoting PST-P mRNA and protein expression, suggesting a novel mechanism by which phenolic acids may be implicated in phase II sulfate conjugation.