Science.gov

Sample records for acid ffa flux

  1. Selective Orthosteric Free Fatty Acid Receptor 2 (FFA2) Agonists

    PubMed Central

    Schmidt, Johannes; Smith, Nicola J.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Hudson, Brian D.; Ward, Richard J.; Drewke, Christel; Milligan, Graeme; Kostenis, Evi; Ulven, Trond

    2011-01-01

    Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [35S]guanosine 5′-(3-O-thio)triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp3-hybridized α-carbons preferentially activate FFA3, whereas ligands with sp2- or sp-hybridized α-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors. PMID:21220428

  2. Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120).

    PubMed

    Sparks, Steven M; Chen, Grace; Collins, Jon L; Danger, Dana; Dock, Steven T; Jayawickreme, Channa; Jenkinson, Stephen; Laudeman, Christopher; Leesnitzer, M Anthony; Liang, Xi; Maloney, Patrick; McCoy, David C; Moncol, David; Rash, Vincent; Rimele, Thomas; Vulimiri, Padmaja; Way, James M; Ross, Sean

    2014-07-15

    The exploration of a diarylsulfonamide series of free fatty acid receptor 4 (FFA4/GPR120) agonists is described. This work led to the identification of selective FFA4 agonist 8 (GSK137647A) and selective FFA4 antagonist 39. The in vitro profile of compounds 8 and 39 is presented herein.

  3. Extracellular Ionic Locks Determine Variation in Constitutive Activity and Ligand Potency between Species Orthologs of the Free Fatty Acid Receptors FFA2 and FFA3*

    PubMed Central

    Hudson, Brian D.; Tikhonova, Irina G.; Pandey, Sunil K.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs, it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations, marked variation in ligand-independent constitutive activity was identified using a [35S]GTPγS assay. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity in this assay, whereas the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the second extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity and in most cases also yielded corresponding changes in SCFA potency. PMID:23066016

  4. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    PubMed Central

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets. PMID:23060857

  5. Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization.

    PubMed

    Villegas-Comonfort, S; Takei, Y; Tsujimoto, G; Hirasawa, A; García-Sáinz, J A

    2017-02-01

    Arachidonic acid increased intracellular calcium, in cells expressing green fluorescent protein-tagged human FFA4 receptors, with an EC50 of ~40µM. This action was not blocked by cyclooxygenase or lipoxigenase inhibitors but it was inhibited by AH7614, a FFA4 antagonist. Arachidonic acid induced ERK activation accompanied by EGF receptor transactivation. However, EGF transactivation was not the major mechanism through which the fatty acid induced ERK phosphorylation, as evidenced by the inability of AG1478 to block it. Arachidonic acid increased FFA4 receptor phosphorylation that reached its maximum within 15min with an EC50 of ~30µM; inhibitors of protein kinase C partially diminish this effect and AH7614 blocked it. Arachidonic acid induced rapid and sustained Akt/PKB phosphorylation and FFA4 - β-arrestin interaction. Confocal microscopy evidenced that FFA4 receptor activation and phosphorylation were associated to internalization. In conclusion, arachidonic acid is a bona fide FFA4 receptor agonist.

  6. Omega-3 polyunsaturated fatty acids accelerate airway repair by activating FFA4 in club cells.

    PubMed

    Lee, Kyoung-Pil; Park, Soo-Jin; Kang, Saeromi; Koh, Jung-Min; Sato, Koichi; Chung, Hae Young; Okajima, Fumikazu; Im, Dong-Soon

    2017-03-17

    A GPCR named FFA4 (also known as GPR120) was found to act as a GPCR for omega-3 polyunsaturated fatty acids. Its expression has been reported in lung epithelial club cells. The authors investigated whether supplementation of the omega-3 fatty acids benefits lung health. Omacor® (7.75 mg kg-1), clinically prescribed preparation of omega-3 fatty acids and FFA4-knockout mice were utilized in a naphthalene-induced mouse model of acute airway injury (one injection of 30 mg kg-1, i.p.). Naphthalene injection induced complete destruction of bronchiolar epithelial cells within a day. Appearance of bronchiolar epithelial cells was observed after 21 days in control mice. It was found, however, that supplementation of omacor accelerated the recovery. The appearance of bronchiolar epithelial cells was observed between 7 and 14 days after naphthalene injury in omacor-treated mice. In isolated club cells, omega-3 fatty acids were found to stimulate cell proliferation and migration but to inhibit cell differentiation. Using pharmacological tools and FFA4-knockout mice, FFA4 was found to be responsible for omega-3 fatty acids-induced proliferation in vitro in club cells. Furthermore, accelerated recovery from naphthalene-induced airway injury in omacor-treated mice was not observed in FFA4-knockout mice in vivo. Present findings indicate that omega-3 fatty acids-induced proliferation of bronchiole epithelial cells through FFA4 is responsible for omacor-induced accelerated recovery from airway injury. Therefore, intermittent administration of omacor needs to be tested for acute airway injury, because omega-3 fatty acids stimulate proliferation but inhibits differentiation of club cells.

  7. [Profile of free fatty acids (FFA) in serum of young Colombians with obesity and metabolic syndrome].

    PubMed

    Bermudez, J A; Velásquez, C M

    2014-12-01

    Obesity produces greater circulation of free fatty acids (FFA). In adults, the FFA composition changes in states of obesity; in adolescents, the results are contradictory. This study compare the FFA profile of obese youth with and without Metabolic Syndrome (MetS) and explore the association between FFA and metabolic alterations of obesity and MetS. A cross-sectional study with 96 young people between 10 and 18 years old was divided into three groups: 1) obese youth with MetS, 2) obese youth without MetS; and 3) adequate weight (AW), matched according to age, gender, pubertal maturation and socioeconomic stratum. The nutritional status was classified according to the body-mass index (BMI), according to the World Health Organization 2007 (WHO, 2007); the waist circumference (WC), adiposity, lipid profile, highly-sensitive reactive C protein (hsRCP), glucose, insulin and insulin resistance (IR), according to the homeostatic model assessment (HOMA Calculator Version 2.2.2). The FFA serum concentration was determined by gas chromatography. Both obese groups had higher adiposity, inflamation (hsRCP), FFA totals and frequency palmitoleic-16:Jn7, compared to AW. The obese with MetS presented more metabolic alterations, a greater amount of dihomo-γ-linolenic (DHGL-20:3n6) and a 20:3n6/18:2n6 relation, indicative of increased activity of A6 desaturase (D6D). The FFA totals, palmitoleic-l6:1n7, DHGL-20:3n6, D6D activity and hsRCP significantly correlated with variables of adiposity, IR and triglicerides. The results in obese with MetS corroborate the association among central obesity, inflammation and increased lipolysis in visceral adipose tissue and metabolic alterations.

  8. The Molecular Basis of Ligand Interaction at Free Fatty Acid Receptor 4 (FFA4/GPR120)*

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Milligan, Graeme; Ulven, Trond

    2014-01-01

    The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands at FFA4 by integrating molecular modeling, receptor mutagenesis, and ligand structure-activity relationship approaches in an iterative format. In doing so, residues required for binding of fatty acid and synthetic agonists to FFA4 have been identified. This has allowed for the refinement of a well validated model of the mode of ligand-FFA4 interaction that will be invaluable in the identification of novel ligands and the future development of this receptor as a therapeutic target. The model reliably predicted the effects of substituent variations on agonist potency, and it was also able to predict the qualitative effect of binding site mutations in the majority of cases. PMID:24860101

  9. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells.

    PubMed

    Liu, Ze; Hopkins, Mandi M; Zhang, Zhihong; Quisenberry, Chrystal B; Fix, Louise C; Galvan, Brianna M; Meier, Kathryn E

    2015-02-01

    Omega-3 fatty acids (n-3 FAs) are proposed to have many beneficial effects on human health. However, the mechanisms underlying their potential cancer preventative effects are unclear. G protein-coupled receptors (GPCRs) of the free fatty acid receptor (FFAR) family, FFA1/GPR40 and FFA4/GPR120, specifically bind n-3 FAs as agonist ligands. In this study, we examined the effects of n-3 FAs in human prostate cancer cell lines. Initial studies established that the long-chain n-3 FAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid, inhibit proliferation of DU145 cells in response to lysophosphatidic acid (LPA), a mitogenic lipid mediator. When added alone to serum-starved DU145 cells, EPA transiently activates signaling events, including p70S6K phosphorylation. However, when added 15 minutes prior to LPA, EPA suppresses LPA-induced activating phosphorylations of ERK, FAK, and p70S6K, and expression of the matricellular protein CCN1. The rapid onset of the inhibitory action of EPA suggested involvement of a GPCR. Further studies showed that DU145 and PC-3 cells express mRNA and protein for both FFA4 and FFA1. TUG-891 (4-[(4-fluoro-4'-methyl[1,1'-biphenyl]-2-yl)methoxy]-benzenepropanoic acid), a selective agonist for FFA4, exerts inhibitory effects on LPA- and epidermal growth factor-induced proliferation and migration, similar to EPA, in DU145 and PC-3 cells. The effects of TUG-891 and EPA are readily reversible. The FFA1/FFA4 agonist GW9508 (4-[[(3-phenoxyphenyl)methyl]amino]-benzenepropranoic acid) likewise inhibits proliferation at doses that block FFA4. Knockdown of FFA4 expression prevents EPA- and TUG-891-induced inhibition of growth and migration. Together, these results indicate that activation of FFA4 initiates signaling events that can inhibit growth factor-induced signaling, providing a novel mechanism for suppression of cancer cell proliferation.

  10. Liver free fatty acid (FFA) accumulation as an indicator of ischemic injury during cold preservation

    SciTech Connect

    Nemoto, E.M.; Kang, Y.; DeWolf, A.M.; Lin, M.R.; Bleyaert, A.L.; Winter, P.M.

    1987-05-01

    Reliable assessment of hepatic viability prior to harvest and transplant could improve graft success and aid in evaluating the efficacy of liver preservation techniques. Hepatic tissue metabolites, protein (Pr) synthesis, and ATP have been studied, but none reliably correlate with hepatic viability. Therefore, they studied changes in liver FFA relative to changes in ATP and Pr synthesis during cold ischemic preservation. Rats mechanically ventilated on 0.5% isoflurane/70% N/sub 2/O/30% O/sub 2/ were heparinized and their livers perfused with air-equilibrated Euro-Collins solution (ECS) at 0-4/sup 0/C and kept on ice. A piece of the liver was removed after 0, 2, 6, 8, 12, 24, 36 and 48 h of preservation for ATP and FFA analysis. A portion of the liver was sliced (250 ..mu..m thick) and incubated in vitro for /sup 14/C-lysine incorporation in albumin. ATP, FFA and Pr synthesis were unchanged in the first 8 h, but markedly decreased between 8 and 12 h with little change thereafter. In contrast, between 8 and 48 h, arachidonic and stearic acids increased by 5 and 2-fold, respectively. Changes in ATP and Pr synthesis correlate with the empirically derived clinical maximum of 8 to 12 h preservation. FFA accumulation appears to reflect hepatic ischemic injury and may be a means of evaluating the quality of a donor liver.

  11. Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120.

    PubMed

    Ulven, Trond; Christiansen, Elisabeth

    2015-01-01

    It is well known that the amount and type of ingested fat impacts the development of obesity and metabolic diseases, but the potential for beneficial effects from fat has received less attention. It is becoming clear that the composition of the individual fatty acids in diet is important. Besides acting as precursors of potent signaling molecules, dietary fatty acids act directly on intracellular and cell surface receptors. The free fatty acid receptor 4 (FFA4, previously GPR120) is linked to the regulation of body weight, inflammation, and insulin resistance and represents a potential target for the treatment of metabolic disorders, including type 2 diabetes and obesity. In this review, we discuss the various types of dietary fatty acids, the link between FFA4 and metabolic diseases, the potential effects of the individual fatty acids on health, and the ability of fatty acids to activate FFA4. We also discuss the possibility of dietary schemes that implement activation of FFA4.

  12. Structure−Activity Study of Dihydrocinnamic Acids and Discovery of the Potent FFA1 (GPR40) Agonist TUG-469

    PubMed Central

    2010-01-01

    The free fatty acid 1 receptor (FFA1 or GPR40), which is highly expressed on pancreatic β-cells and amplifies glucose-stimulated insulin secretion, has emerged as an attractive target for the treatment of type 2 diabetes. Several FFA1 agonists containing the para-substituted dihydrocinnamic acid moiety are known. We here present a structure−activity relationship study of this compound family suggesting that the central methyleneoxy linker is preferable for the smaller compounds, whereas the central methyleneamine linker gives higher potency to the larger compounds. The study resulted in the discovery of the potent and selective full FFA1 agonist TUG-469 (29). PMID:24900217

  13. Defining the Molecular Basis for the First Potent and Selective Orthosteric Agonists of the FFA2 Free Fatty Acid Receptor*

    PubMed Central

    Hudson, Brian D.; Due-Hansen, Maria E.; Christiansen, Elisabeth; Hansen, Anna Mette; Mackenzie, Amanda E.; Murdoch, Hannah; Pandey, Sunil K.; Ward, Richard J.; Marquez, Rudi; Tikhonova, Irina G.; Ulven, Trond; Milligan, Graeme

    2013-01-01

    FFA2 is a G protein-coupled receptor that responds to short chain fatty acids and has generated interest as a therapeutic target for metabolic and inflammatory conditions. However, definition of its functions has been slowed by a dearth of selective ligands that can distinguish it from the closely related FFA3. At present, the only selective ligands described for FFA2 suffer from poor potency, altered signaling due to allosteric modes of action, or a lack of function at non-human orthologs of the receptor. To address the need for novel selective ligands, we synthesized two compounds potentially having FFA2 activity and examined the molecular basis of their function. These compounds were confirmed to be potent and selective orthosteric FFA2 agonists. A combination of ligand structure-activity relationship, pharmacological analysis, homology modeling, species ortholog comparisons, and mutagenesis studies were then employed to define the molecular basis of selectivity and function of these ligands. From this, we identified key residues within both extracellular loop 2 and the transmembrane domain regions of FFA2 critical for ligand function. One of these ligands was active with reasonable potency at rodent orthologs of FFA2 and demonstrated the role of FFA2 in inhibition of lipolysis and glucagon-like peptide-1 secretion in murine-derived 3T3-L1 and STC-1 cell lines, respectively. Together, these findings describe the first potent and selective FFA2 orthosteric agonists and demonstrate key aspects of ligand interaction within the binding site of FFA2 that will be invaluable in future ligand development at this receptor. PMID:23589301

  14. A New Pain Regulatory System via the Brain Long Chain Fatty Acid Receptor GPR40/FFA1 Signal.

    PubMed

    Nakamoto, Kazuo

    2017-01-01

     An increasingly large number of pharmacological and physiological works on fatty acids have shown that the functional properties of fatty acids are regulated by the amount of individual fatty acid intake and the distribution of fatty acids among organs. Recently, it has been determined that G-protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA1) is activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). GPR40/FFA1 is mainly expressed in the β cell of the pancreas, spinal cord and brain. It is reported that this receptor has a functional role in controlling blood glucose levels via the modulation of insulin secretion. However, its physiological function in the brain remains unknown. Our previous studies have shown that GPR40/FFA1 is expressed in pro-opiomelanocortin (POMC)-positive neurons of the arcuate nucleus, serotonergic neurons in the nucleus raphe magnus, and in noradrenergic neurons in the locus coeruleus. Furthermore, the intracerebroventricular injection of DHA or GW9508, which is a selective GPR40/FFA1 agonist, attenuates formalin-induced inflammatory pain behavior through increasing β-endorphin release in the hypothalamus. It also suppresses complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia. Our findings suggest that brain free long-chain fatty acids-GPR40/FFA1 signaling might have an important role in the modulation of endogenous pain control systems. In this review, I discuss the current status and our recent study regarding a new pain regulatory system via the brain long chain fatty acid receptor GPR40/FFA1 signal.

  15. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40*

    PubMed Central

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole; Grundmann, Manuel; Mielenz, Manfred; Sauerwein, Helga; Christiansen, Elisabeth; Due-Hansen, Maria E.; Ulven, Trond; Ullrich, Susanne; Gomeza, Jesús; Drewke, Christel; Kostenis, Evi

    2011-01-01

    Among dietary components, conjugated linoleic acids (CLAs) have attracted considerable attention as weight loss supplements in the Western world because they reduce fat stores and increase muscle mass. However, a number of adverse effects are also ascribed to the intake of CLAs such as aggravation of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2 diabetes. Using different recombinant cellular systems engineered to stably express FFA1 and a set of diverse functional assays including the novel, label-free non-invasive dynamic mass redistribution technology (Corning® Epic® biosensor), both CLA isomers cis-9, trans-11-CLA and trans-10, cis-12-CLA were found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1−/− knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components in widely used nutraceuticals, a finding with significant implication for development of FFA1 modulators to treat type 2 diabetes. PMID:21339298

  16. FFA Contests

    ERIC Educational Resources Information Center

    Schumann, Herbert

    1977-01-01

    A teacher educator gives reasons why the vocational agriculture teacher should become involved in preparing his students for Future Farmers of America (FFA) contests and some steps and precautions he should take to successfully integrate FFA contests into the instructional program. (MF)

  17. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis.

    PubMed

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M; Angueira, Anthony R; Brodsky, Michael; Hayes, M Geoffrey; Kovatcheva-Datchary, Petia; Bäckhed, Fredrik; Gilbert, Jack A; Lowe, William L; Layden, Brian T

    2015-11-15

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.

  18. The short chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis

    DOE PAGES

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M.; ...

    2015-09-22

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression ismore » higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Altogether, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.« less

  19. The short chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis

    SciTech Connect

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M.; Angueira, Anthony R.; Brodsky, Michael; Hayes, M. Geoffrey; Kovatcheva-Datchary, Petia; Backhed, Fredrik; Gilbert, Jack A.; Lowe, Jr., William L.; Layden, Brian T.

    2015-09-22

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Altogether, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.

  20. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  1. Concomitant Action of Structural Elements and Receptor Phosphorylation Determines Arrestin-3 Interaction with the Free Fatty Acid Receptor FFA4*

    PubMed Central

    Butcher, Adrian J.; Hudson, Brian D.; Shimpukade, Bharat; Alvarez-Curto, Elisa; Prihandoko, Rudi; Ulven, Trond; Milligan, Graeme; Tobin, Andrew B.

    2014-01-01

    In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implicated in the regulation of metabolic and inflammatory responses. Here we show, using mass spectrometry, mutagenesis, and phosphospecific antibodies, that agonist-regulated phosphorylation of the human FFA4 receptor occurred primarily at five residues (Thr347, Thr349, Ser350, Ser357, and Ser360) in the C-terminal tail. Mutation of these residues reduced both the efficacy and potency of ligand-mediated arrestin-3 recruitment as well as affecting recruitment kinetics. Combined mutagenesis of all five of these residues was insufficient to fully abrogate interaction with arrestin-3, but further mutagenesis of negatively charged residues revealed additional structural components for the interaction with arrestin-3 within the C-terminal tail of the receptor. These elements consist of the acidic residues Glu341, Asp348, and Asp355 located close to the phosphorylation sites. Receptor phosphorylation thus operates in concert with structural elements within the C-terminal tail of FFA4 to allow for the recruitment of arrestin-3. Importantly, these mechanisms of arrestin-3 recruitment operate independently from Gq/11 coupling, thereby offering the possibility that ligands showing stimulus bias could be developed that exploit these differential coupling mechanisms. Furthermore, this provides a strategy for the design of biased receptors to probe physiologically relevant signaling. PMID:24817122

  2. Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes

    PubMed Central

    2013-01-01

    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing. PMID:23687558

  3. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Mackenzie, Amanda E.; Butcher, Adrian J.; Pediani, John D.; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B.; Ulven, Trond

    2013-01-01

    TUG-891 [3-(4-((4-fluoro-4′-methyl-[1,1′-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein–coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca2+ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca2+ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  4. Inverse relationship of leucine flux and oxidation to free fatty acid availability in vivo.

    PubMed Central

    Tessari, P; Nissen, S L; Miles, J M; Haymond, M W

    1986-01-01

    To determine the effect of fatty acid availability on leucine metabolism, 14-h fasted dogs were infused with either glycerol or triglyceride plus heparin, and 46-h fasted dogs were infused with either nicotinic acid or nicotinic acid plus triglyceride and heparin. Leucine metabolism was assessed using a simultaneous infusion of L-[4,5-3H]leucine and alpha-[1-14C]ketoisocaproate. Leucine, alpha-ketoisocaproate (KIC), and totalleucine carbon (leucine plus KIC) flux and oxidation rates were calculated at steady state. In 14-h fasted animals, infusion of triglyceride and heparin increased plasma free fatty acids (FFA) by 0.7 mM (P less than 0.01) and decreased leucine (P less than 0.01), total leucine carbon flux (P less than 0.02), and oxidation (P less than 0.05). The estimated rate of leucine utilization not accounted for by oxidation and KIC flux decreased, but the changes were not significant. During glycerol infusion, leucine and KIC flux and oxidation did not change. In 46-h fasted dogs, nicotinic acid decreased FFA by 1.0 mM (P less than 0.01) and increased (P less than 0.05) the rate of leucine and total leucine carbon flux, but did not affect KIC flux. Leucine oxidation increased (P less than 0.01) by nearly threefold, whereas nonoxidized leucine utilization decreased. Infusion of triglyceride plus heparin together with nicotinic acid blunted some of the responses observed with nicotinic acid alone. In that changes in oxidation under steady state condition reflect changes in net leucine balance, these data suggest that FFA availability may positively affect the sparing of at least one essential amino acid and may influence whole body protein metabolism. PMID:3080479

  5. Effects of Increased Free Fatty Acid Availability on Adipose Tissue Fatty Acid Storage in Men

    PubMed Central

    Mundi, Manpreet S.; Koutsari, Chistina

    2014-01-01

    Context: A portion of free fatty acids (FFA) released from adipose tissue lipolysis are re-stored in adipocytes via direct uptake. Rates of direct adipose tissue FFA storage are much greater in women than men, but women also have greater systemic FFA flux and more body fat. Objective: We tested the hypotheses that experimental increases in FFA in men would equalize the rates of direct adipose tissue FFA storage in men and women. Design: We used a lipid emulsion infusion to raise FFA in men to levels seen in post-absorptive women. Direct FFA storage (μmol·kg fat−1·min−1) rates in abdominal and femoral fat was assessed using stable isotope tracer infusions to measure FFA disappearance rates and an iv FFA radiotracer bolus/timed biopsy. Setting: These studies were performed in a Clinical Research Center. Participants: Data from 13 non-obese women was compared with that from eight obese and eight non-obese men. Intervention: The men received a lipid emulsion infusion to raise FFA. Main Outcome Measures: We measured the rates of direct FFA storage in abdominal and femoral adipose tissue. Results: The three groups were similar in age and FFA flux by design; obese men had similar body fat percentage as non-obese women. Despite matching for FFA concentrations and flux, FFA storage per kg abdominal (P < .01) and femoral (P < .001) fat was less in both lean and obese men than in non-obese women. Abdominal FFA storage rates were correlated with proteins/enzymes in the FFA uptake/triglyceride synthesis pathway in men. Conclusion: The lesser rates of direct FFA adipose tissue in men compared with women cannot be explained by reduced FFA availability. PMID:25192251

  6. Prevocational Agribusiness and the FFA

    ERIC Educational Resources Information Center

    James, Kenneth A.

    1975-01-01

    The author discusses the development of the career education concept relating to agribusiness at the junior high and middle school level. In the prevocational agribusiness program, it is also effective to supplement the program with an FFA chapter. (JB)

  7. Advising an Urban FFA Chapter: A Narrative of Two Urban FFA Advisors

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2015-01-01

    Advising an urban FFA chapter can be a challenge for urban agriculture teachers. The contextual differences between the rural-oriented FFA and urban FFA members can make bridging the gap difficult. This narrative study sought to explore how the urban context shapes the work of an FFA chapter from the perspectives of two FFA advisors at the same…

  8. Influence of FFA Activities on Critical Thinking Skills in Texas Three-Star FFA Chapters

    ERIC Educational Resources Information Center

    Latham, Lindsey; Rayfield, John; Moore, Lori L.

    2015-01-01

    The purpose of this study was to determine the relationship of FFA activities on critical thinking skills of Texas FFA members in three-star FFA chapters. This descriptive study was conducted in eight purposively selected three-star FFA chapters throughout Texas. Three-star chapters are those chapters who have emerged as outstanding programs…

  9. The New FFA--Relevant, Flexible.

    ERIC Educational Resources Information Center

    Future Farmers of America, Washington, DC.

    To make education more relevant, the 1972 national seminar sought ways of integrating the Future Farmers of America (FFA) program with the broadened agricultural instruction program. Topics discussed included: (1) "Role of the FFA in the Changing Program of Agricultural Education" - William Gray (Moderator), (2) "But How Do We Get…

  10. Parliamentary Procedure for the FFA Member.

    ERIC Educational Resources Information Center

    Joestgen, John G.

    Information and examples concerning parliamentary procedures are presented in this instructional manual written for Wisconsin Future Farmers of America (FFA) members and FFA parliamentary procedure teams. Topics include the following: secretary minutes (bylaws, officers, quorum, order of business, meeting and session, introducing business,…

  11. Robust expertise effects in right FFA

    PubMed Central

    McGugin, Rankin Williams; Newton, Allen T; Gore, John C; Gauthier, Isabel

    2015-01-01

    The fusiform face area (FFA) is one of several areas in occipito-temporal cortex whose activity is correlated with perceptual expertise for objects. Here, we investigate the robustness of expertise effects in FFA and other areas to a strong task manipulation that increases both perceptual and attentional demands. With high-resolution fMRI at 7Telsa, we measured responses to images of cars, faces and a category globally visually similar to cars (sofas) in 26 subjects who varied in expertise with cars, in (a) a low load 1-back task with a single object category and (b) a high load task in which objects from two categories rapidly alternated and attention was required to both categories. The low load condition revealed several areas more active as a function of expertise, including both posterior and anterior portions of FFA bilaterally (FFA1/FFA2 respectively). Under high load, fewer areas were positively correlated with expertise and several areas were even negatively correlated, but the expertise effect in face-selective voxels in the anterior portion of FFA (FFA2) remained robust. Finally, we found that behavioral car expertise also predicted increased responses to sofa images but no behavioral advantages in sofa discrimination, suggesting that global shape similarity to a category of expertise is enough to elicit a response in FFA and other areas sensitive to experience, even when the category itself is not of special interest. The robustness of expertise effects in right FFA2 and the expertise effects driven by visual similarity both argue against attention being the sole determinant of expertise effects in extrastriate areas. PMID:25192631

  12. Robust expertise effects in right FFA.

    PubMed

    McGugin, Rankin Williams; Newton, Allen T; Gore, John C; Gauthier, Isabel

    2014-10-01

    The fusiform face area (FFA) is one of several areas in occipito-temporal cortex whose activity is correlated with perceptual expertise for objects. Here, we investigate the robustness of expertise effects in FFA and other areas to a strong task manipulation that increases both perceptual and attentional demands. With high-resolution fMRI at 7T, we measured responses to images of cars, faces and a category globally visually similar to cars (sofas) in 26 subjects who varied in expertise with cars, in (a) a low load 1-back task with a single object category and (b) a high load task in which objects from two categories were rapidly alternated and attention was required to both categories. The low load condition revealed several areas more active as a function of expertise, including both posterior and anterior portions of FFA bilaterally (FFA1/FFA2, respectively). Under high load, fewer areas were positively correlated with expertise and several areas were even negatively correlated, but the expertise effect in face-selective voxels in the anterior portion of FFA (FFA2) remained robust. Finally, we found that behavioral car expertise also predicted increased responses to sofa images but no behavioral advantages in sofa discrimination, suggesting that global shape similarity to a category of expertise is enough to elicit a response in FFA and other areas sensitive to experience, even when the category itself is not of special interest. The robustness of expertise effects in right FFA2 and the expertise effects driven by visual similarity both argue against attention being the sole determinant of expertise effects in extrastriate areas.

  13. Factors Impacting Members Decision to Continue FFA beyond High School

    ERIC Educational Resources Information Center

    Sanok, Danielle E.; Stripling, Christopher T.; Stephens, Carrie A.; Griffith, Andrew P.

    2015-01-01

    The purpose of this study was to determine the factors influencing FFA members to continue their FFA experience beyond high school. Two focus groups were conducted, one for collegiate FFA members and one for past/current state officers. Participants provided several areas of improvement for collegiate and alumni FFA membership. Participants noted…

  14. Critical Theory View of the National FFA Convention

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2015-01-01

    Urban FFA members face unique challenges if they want to become active members in the National FFA Organization. FFA leaders have realized that the FFA organization does not represent the evolving demographics of America and have made efforts to cater to urban and diverse high school audiences with some success. This study seeks to explore this…

  15. Urban FFA Members' Sense of the Organizational Culture of the FFA

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2014-01-01

    Organizational culture shapes how members of a group act. The culture has the power to exclude potential new members who do not fit into the culture of the organization. Research on urban school-based agriculture programs has indicated that urban agriculture students face barriers to their participation in the National FFA Organization (FFA).…

  16. Depression of serum calcium by increased plasma free fatty acids in the rat: a mechanism for hypocalcemia in acute pancreatitis.

    PubMed

    Warshaw, A L; Lee, K H; Napier, T W; Fournier, P O; Duchainey, D; Axelrod, L

    1985-10-01

    Some patients with hypertriglyceridemia and acute pancreatitis have marked hypocalcemia and high levels of plasma free fatty acids (FFAs). This study tests the hypothesis that increased plasma FFAs can significantly reduce the calcium level in vivo, a phenomenon which is different from local formation of calcium soaps due to lipolysis of adipose tissue lipids. Free fatty acid elevation was induced in rats by the administration of heparin and by the infusion of triglycerides. The results show that, compared with controls, induction of elevated FFA (from 1.57 +/- 0.08 mEq/L to 5.64 +/- 0.35, mean +/- SEM) causes the concentration of calcium to fall rapidly (from 9.04 +/- 0.06 mg/dl to 8.42 +/- 0.10, p less than 0.001). There is a significant (p less than 0.001) positive correlation between spontaneous baseline concentration of FFA and the responsiveness of calcium concentration to FFA challenge. At near-normal levels of FFA there is a significant (p less than 0.001) correlation between the magnitude of increased FFA concentration and decreased calcium concentration. Additional studies in vivo and in vitro show that elevated plasma triglycerides per se did not interfere with measurement of calcium concentration; however, FFA-albumin complexes bind calcium and lower its measured value. These findings suggest that (a) changes in the concentration of FFA occurring spontaneously may affect measured serum calcium concentration; (b) the observed depression of serum calcium concentration may be due in part to intravascular sequestration of calcium by FFA, but increased flux of circulating calcium-FFA complexes into extravascular and intracellular sites may also be important; (c) the markedly increased FFA concentration in some patients with acute pancreatitis may contribute significantly to hypocalcemia and calcium flux in these patients. As parathyroid hormone secretion, function, or integrity may be impaired in pancreatitis, the depressant effect of FFA could be even

  17. FFA4/GPR120 agonists: a survey of the recent patent literature.

    PubMed

    Formicola, Rosa; Pevarello, Paolo; Kuhn, Christina; Liberati, Chiara; Piscitelli, Francesco; Sodano, Mariangela

    2015-01-01

    FFA4/GPR120, a member of the rhodopsin family of G-protein-coupled receptors (GPCRs), is becoming an important target for therapeutic intervention in several areas of disease, including metabolic diseases, inflammation and cancer. In the last few years several patents on original chemotypes have been generated by different companies. In this review an analysis of the patents in the FFA4 agonism field is presented, with an emphasis on the documents published between 2013 and mid-2015. A discussion of the biological methods used in the patents is included. The general interest in this area is growing fast as half of the existing patents on FFA4 agonists have been issued after 2013. There is, however, a need of further diversifying new chemical classes away form the current substrate-like, carboxylic acid-containing agonists.

  18. Regulation of prohormone convertase 2 protein expression via GPR40/FFA1 in the hypothalamus.

    PubMed

    Nakamoto, Kazuo; Aizawa, Fuka; Nishinaka, Takashi; Tokuyama, Shogo

    2015-09-05

    Previous studies have shown that the administration of docosahexaenoic acid (DHA) or GW9508, a GPR40/FFA1 (free fatty acid receptor) agonist, facilitates β-endorphin release in the arcuate nucleus of the hypothalamus in mice. However, the mechanisms mediating β-endorphin release induced by GPR40/FFA1 agonists remain unknown. In this study, we focused on the changes in expression of hypothalamic prohormone convertase (PC) 2, which is a calcium-dependent subtilisin-related proteolytic enzyme. The intracerebroventricular injection of DHA or GW9508 significantly increased PC2 protein expression in the hypothalamus. This increase in PC2 expression was inhibited by pretreatment with GW1100, a GPR40/FFA1 antagonist. Furthermore, PC2 protein expression gradually increased over time after complete Freund's adjuvant. These increase in PC2 expression were inhibited by pretreatment with GW1100. However, GW1100 by itself had no effect on PC2 levels. Taken together, our findings suggest that activation of the hypothalamic GPR40/FFA1 signaling pathway may regulate β-endorphin release via PC2, and regulate the endogenous pain control system.

  19. Oleic acid exposure of cultured endothelial cells alters lipid mediator production

    EPA Science Inventory

    Diesel, biodiesel, and other combustion sources contain free fatty acid (FFA) components capable of entering the body through particulate inhalation. FFA can also be endogenously released into circulation in response to stress. When in circulation, bioactive FFA may interact with...

  20. State FFA Officers' Confidence and Trustworthiness of Biotechnology Information Sources

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.

    2007-01-01

    Are state FFA officers' awareness levels of agricultural topics reported in mass media superior to those who do not serve in leadership roles? The purpose of this study was to determine elected state FFA officers' awareness of biotechnology, and their confidence and trust of biotechnology information sources. Descriptive survey methods were used…

  1. Agrarianism: An Ideology of the National FFA Organization

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2013-01-01

    The traditions of the National FFA Organization (FFA) are grounded in agrarianism. This ideology focuses on the ability of farming and nature to develop citizens and integrity within people. Agrarianism has been an important thread of American rhetoric since the founding of country. The ideology has morphed over the last two centuries as the…

  2. Factors Influencing or Discouraging Secondary School Students' FFA Participation

    ERIC Educational Resources Information Center

    Phelps, Kirstin; Henry, Anna L.; Bird, William A.

    2012-01-01

    Modern adolescents are faced with a variety of choices regarding how to spend their free time. As recruitment and increased student participation continues to be a major priority of the National FFA Organization, it is essential to explore the reasons why students make the choice to become or not to become a member of FFA. This study was a part of…

  3. The Benefits of FFA Membership as Part of Agricultural Education

    ERIC Educational Resources Information Center

    Rose, Chelsea; Stephens, Carrie A.; Stripling, Christopher; Cross, Tim; Sanok, Danielle E.; Brawner, Shelby

    2016-01-01

    The study sought to identify the benefits of FFA membership based on the fulfillment of three basic human needs: love and belonging, self-esteem, and self-actualization. The study focused on the fulfillment of FFA members' basic human needs as defined by Abraham Maslow. The three needs on which this study focused are: love and belonging,…

  4. Effects of Acute Supramaximal Cycle Exercise on Plasma FFA Concentration in Obese Adolescent Boys

    PubMed Central

    Jabbour, Georges

    2015-01-01

    Aims The aims of the present study are 1) to evaluate the free fatty acid (FFA) profile and 2) to determine the relative anaerobic and aerobic contributions to total energy consumption during repeated supramaximal cycling bouts (SCE) in adolescent boys with different body weight statuses. Materials and Methods Normal-weight (NW), overweight (OW), and obese (OB) adolescent boys (n =15 per group) completed a SCE sessions consisted of 6 x 6s maximal sprints with 2 min of passive rest between each repetition. Plasma FFA levels were determined at rest, immediately after a 10 min warm-up, and immediately at the end of SCE. The anaerobic and aerobic contributions (%) were measured via repeated SCE bouts. Insulin resistance was calculated using the homoeostatic model assessment (HOMA-IR) index. Results The FFA concentrations measured immediately after SCE were higher in the OB group than in the OW and NW (p<0.01 and p<0.01, respectively) groups. Moreover, the anaerobic contributions to SCE were significantly lower in obese adolescents (p<0.01) and decreased significantly during the 2nd, 3rd and 4th repetitions. The FFA levels were significantly associated with the HOMA-IR index and aerobic contribution among adolescent boys (r=0.83 and r=0.91, respectively, p<0.01). Conclusion In contrast to the NW and OW groups, there is an increase in lipid mobilization and sift to aerobic energy metabolism during SCE in the OB group. PMID:26076464

  5. Adiponectin concentrations increase during acute FFA elevation in humans treated with rosiglitazone.

    PubMed

    Krzyzanowska, K; Mittermayer, F; Krugluger, W; Roden, M; Schernthaner, G; Wolzt, M

    2007-10-01

    The adipocytokine adiponectin is released by adipocytes upon activation of the peroxisome proliferator-activated receptor gamma (PPAR gamma). PPAR gamma has binding sites for thiazolidinediones and free fatty acids (FFAs). To evaluate if adiponectin serum concentrations are synergistically regulated by FFAs and thiazolidinediones IN VIVO plasma FFAs were acutely elevated in healthy subjects pre-treated with rosiglitazone or placebo. Sixteen healthy male subjects (23-37 years) were included in this double-blind, randomized, placebo-controlled parallel-group study. Rosiglitazone 8 mg or placebo was administered daily for 21 days. On the last day plasma FFA concentrations were increased by an intravenous triglyceride/heparin infusion. Blood for determination of adiponectin, C-reactive protein (CRP), leptin, resistin, FFAs, glucose, and insulin was drawn at baseline and on day 21 before and after 5 hours of triglyceride/heparin infusion. Adiponectin concentrations increased and FFA levels decreased in subjects receiving rosiglitazone (all p<0.05 VS. baseline). Lipid infusion significantly increased FFA plasma concentrations, with an attenuated elevation in rosiglitazone-treated subjects. However, adiponectin concentrations were only increased in subjects on rosiglitazone (p=0.018 VS. before lipid infusion), but not in controls. Leptin increased during lipid infusion in subjects receiving placebo but not in those on rosiglitazone. CRP and resistin were not affected by rosiglitazone or FFAs. The acute increase in circulating adiponectin concentrations during acutely elevated FFA depends on PPAR gamma activation in healthy subjects.

  6. An Examination of Middle School Agricultural Education and FFA Programs: Survey Results from State FFA Executive Secretaries.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; McCaslin, N. L.

    A study collected information from 52 of the 53 state Future Farmers of America (FFA) executive secretaries who were sent questionnaires on middle school student enrollment in agricultural education and membership in the national FFA organization. Results showed that 30 states have agricultural education programs in the middle school level, with a…

  7. Insulin-Mediated FFA Suppression Is Associated with Triglyceridemia and Insulin Sensitivity Independent of Adiposity

    PubMed Central

    Bush, Nikki C.; Basu, Rita; Rizza, Robert A.; Nair, K. Sreekumaran; Khosla, Sundeep

    2012-01-01

    Context: A central/visceral fat distribution and excess free fatty acid (FFA) availability are associated with dyslipidemia and insulin resistance. However, these two characteristics often coexist, making it difficult to detect the independent contributions of each. Whether FFA suppression is more closely linked to metabolic abnormalities is not clear. Objective: The aim of the study was to examine the relationship between FFA suppression, body fat distribution, and fitness as contributors toward insulin resistance and hypertriglyceridemia. Design: We measured systemic palmitate turnover using an iv infusion of [9,10-3H]palmitate; upper body sc adipose tissue (UBSQ) and visceral adipose tissue (VAT) with dual-energy x-ray absorptiometry and a single-slice abdominal computed tomography scan; fitness with a graded exercise treadmill test; and insulin sensitivity with both the iv glucose tolerance test (IVGTT) (SIIVGTT) and mixed meal tolerance test (SIMeal). Setting: The study was conducted at a General Clinical Research Center. Participants: Baseline data were obtained from 140 elderly adults (age, 60–88 yr; 83 males) and 60 young adults (age, 18–31 yr; 31 males) who participated in a previously published trial assessing the effects of 2-yr supplementation of dehydroepiandrosterone or testosterone on body composition, glucose metabolism, and bone density. Interventions: There were no interventions. Main Outcome Measures: We measured fasting plasma triglyceride (TG) concentrations, SIIVGTT, and SIMeal. Results: Using multivariate regression analysis, the strongest combined predictors of TG concentrations were VAT, postmeal nadir FFA concentrations, sex, and age. The best predictors of SIIVGTT were IVGTT nadir palmitate concentration, VAT, UBSQ fat, fitness, and age, whereas the best predictors of SIMeal were meal nadir palmitate concentration, UBSQ fat, fitness, and sex. Conclusions: FFA suppression is associated with both fasting TG concentrations and insulin

  8. Meeting record for FFA working meeting of November 15, 1991

    SciTech Connect

    Stejskal, G.F.

    1992-01-03

    This document provides a meeting record of the Federal Facility Agreement (FFA) working meeting to discuss progress on old issues and further required actions regarding environmental impacts of the Savannah River Facility. (FI)

  9. An Analysis of FFA Chapter Demographics as Compared to Schools and Communities

    ERIC Educational Resources Information Center

    Lawrence, Shannon; Rayfield, John; Moore, Lori L.; Outley, Corliss

    2013-01-01

    This descriptive study was a special project for the National FFA [Future Farmers of America] Organization to determine the demographic makeup of rural, suburban, urban, and randomly selected at-large FFA chapters from the four national FFA regions. Summary data for this study revealed that gender in selected FFA chapters was 55% male and 45%…

  10. Winning the War: A Historical Analysis of the FFA during World War II

    ERIC Educational Resources Information Center

    Wolf, Kattlyn J.; Connors, James J.

    2009-01-01

    The United States' participation in World War II affected millions of men, women, and children, both at home and around the world. The war effort also affected the Future Farmers of America (FFA). FFA members, agriculture teachers, and national FFA officers all volunteered to serve their country during the war. Local FFA chapters and individual…

  11. Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux.

    PubMed Central

    Gerrard, J. M.; Kindom, S. E.; Peterson, D. A.; Peller, J.; Krantz, K. E.; White, J. G.

    1979-01-01

    Decanoyl-, palmitoyl-, and oleoyl-lysophosphatidic acid (LPA) were studied for their effects on platelet aggregation and intracellular calcium flux. Palmitoyl-LPA and oleoyl-LPA both caused a concentration-dependent aggregation of human blood platelets at concentrations of 12--300 microM. Aggregation by adenosine diphosphate (ADP) was enhanced at slightly lower concentrations. First-wave aggregation induced by these LPAs was not blocked by aspirin, indomethacin, or heparin, suggesting similarities to ADP aggregation. However, in washed platelets with a high calcium concentration, no serotonin secretion was observed, even though full aggregation occurred, suggesting that aggregation was not due to released ADP. This concept was supported by studies of platelets deficient in the storage pool of ADP and serotonin, which had a normal first-wave aggregation response to palmitoyl-LPA. Aggregation induced by palmitoyl LPA was inhibited by prostaglandin E1 (PGE1), theophylline, and ethylenediaminotetraacetate (EDTA), though in the presence of EDTA shape change occurred. Aggregation stimulated by palmitoyl-LPA or oleoyl-LPA was characterized by changes in the shape of the platelets with development of pseudopods and centralization of granules closely surrounded by contractile microfilaments and supporting microtubules. The addition of palmitoyl-LPA and oleoyl-LPA, but not decanoyl-LPA, caused the release of calcium from a platelet membrane fraction that contains elements of the intracellular calcium storage system and actively concentrates this cation in the presence of adenosine triphosphate (ATP) and magnesium. It is suggested that LPAs cause aggregation by stimulating the release of calcium intracellularly. Images Figure 1 Figure 2 Figure 3 Figure 4 Text-Figure 6 PMID:112871

  12. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy

    PubMed Central

    Munger, Joshua; Bennett, Bryson D; Parikh, Anuraag; Feng, Xiao-Jiang; McArdle, Jessica; Rabitz, Herschel A; Shenk, Thomas; Rabinowitz, Joshua D

    2010-01-01

    Viruses rely on the metabolic network of their cellular hosts to provide energy and building blocks for viral replication. We developed a flux measurement approach based on liquid chromatography–tandem mass spectrometry to quantify changes in metabolic activity induced by human cytomegalovirus (HCMV). This approach reliably elucidated fluxes in cultured mammalian cells by monitoring metabolome labeling kinetics after feeding cells 13C-labeled forms of glucose and glutamine. Infection with HCMV markedly upregulated flux through much of the central carbon metabolism, including glycolysis. Particularly notable increases occurred in flux through the tricarboxylic acid cycle and its efflux to the fatty acid biosynthesis pathway. Pharmacological inhibition of fatty acid biosynthesis suppressed the replication of both HCMV and influenza A, another enveloped virus. These results show that fatty acid synthesis is essential for the replication of two divergent enveloped viruses and that systems-level metabolic flux profiling can identify metabolic targets for antiviral therapy. PMID:18820684

  13. Defective liver disposal of free fatty acids in patients with impaired glucose tolerance.

    PubMed

    Iozzo, Patricia; Turpeinen, Anu K; Takala, Teemu; Oikonen, Vesa; Bergman, Jörgen; Grönroos, Tove; Ferrannini, Ele; Nuutila, Pirjo; Knuuti, Juhani

    2004-07-01

    The liver exchanges high fluxes of glucose and free fatty acids (FFA) and is one main site of their reciprocal regulation. Acute exposure to hyperglycemia and hyperinsulinemia has been shown to reduce splanchnic beta-oxidation in healthy humans. We investigated whether a spontaneous condition of chronic mild hyperglycemia and hyperinsulinemia affects liver FFA uptake. Hepatic FFA influx rate constant (LKi) was measured after a 12-15-h fast in 10 patients with impaired glucose tolerance (IGT) and eight control subjects using positron emission tomography in combination with the long-chain FFA analog 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid. Compared with controls, IGT patients had higher serum insulin, glucose, and triglyceride levels (1.71 +/- 0.24 vs. 0.59 +/- 0.06 mmol/liter, P < 0.001), lower high-density lipoprotein (1.04 +/- 0.11 vs. 1.42 +/- 0.13 mmol/liter, P < 0.05), and similar FFA levels (0.59 +/- 0.06 vs. 0.56 +/- 0.05 mmol/liter(-1), P = not significant). LKi was significantly reduced in IGT (0.288 +/- 0.014 min(-1)) compared with control subjects (0.341 +/- 0.014 min(-1), P < 0.02). LKi was negatively correlated with plasma glucose (r = 0.51, P < 0.03), glycosylated hemoglobin (r = 0.55, P < 0.02), and blood lactate levels (r = 0.52, P < 0.03). We conclude that, in IGT patients, the ability of the liver to extract FFA from the circulation appears to be impaired. The reciprocal relationship between hepatic FFA extraction and glucose/lactate flux may derive from intrahepatic substrate competition.

  14. High upward fluxes of formic acid from a boreal forest canopy

    NASA Astrophysics Data System (ADS)

    Schobesberger, Siegfried; Lopez-Hilfiker, Felipe D.; Taipale, Ditte; Millet, Dylan B.; D'Ambro, Emma L.; Rantala, Pekka; Mammarella, Ivan; Zhou, Putian; Wolfe, Glenn M.; Lee, Ben H.; Boy, Michael; Thornton, Joel A.

    2016-09-01

    Eddy covariance fluxes of formic acid, HCOOH, were measured over a boreal forest canopy in spring/summer 2014. The HCOOH fluxes were bidirectional but mostly upward during daytime, in contrast to studies elsewhere that reported mostly downward fluxes. Downward flux episodes were explained well by modeled dry deposition rates. The sum of net observed flux and modeled dry deposition yields an upward "gross flux" of HCOOH, which could not be quantitatively explained by literature estimates of direct vegetative/soil emissions nor by efficient chemical production from other volatile organic compounds, suggesting missing or greatly underestimated HCOOH sources in the boreal ecosystem. We implemented a vegetative HCOOH source into the GEOS-Chem chemical transport model to match our derived gross flux and evaluated the updated model against airborne and spaceborne observations. Model biases in the boundary layer were substantially reduced based on this revised treatment, but biases in the free troposphere remain unexplained.

  15. Occupational Aspirations of State FFA Contest and Award Winners.

    ERIC Educational Resources Information Center

    Bowen, Blannie E.; Doerfert, David L.

    1989-01-01

    A study explored the occupational aspirations of 300 (of 503) students with high levels of participation in Future Farmers of America's (FFA) Computers in Agriculture (CIA), Proficiency Award (PA), and Prepared and Extemporaneous Speaking (PES) contests. CIA and PES winners aspired to professional occupations more than PA winners. PES winners…

  16. Identifying Quality Indicators of SAE and FFA: A Delphi Approach

    ERIC Educational Resources Information Center

    Jenkins, Charles Cordell, III; Kitchel, Tracy

    2009-01-01

    The purpose of this study was to determine quality indicators for SAE and FFA according to 36 experts across the United States. This is a part of a larger study looking at all components of the traditional three-circle model. The study utilized the Delphi technique to garner expert opinion about quality indicators in Agricultural Education. For…

  17. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution.

    PubMed

    Liu, Jianguo; Wang, Qunhui; Zou, Hui; Liu, Yingying; Wang, Juan; Gan, Kemin; Xiang, Juan

    2013-11-01

    The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution.

  18. Examining Year-Long Leadership Gains in FFA Members by Prior FFA Involvement, Class Year, and Gender

    ERIC Educational Resources Information Center

    Rosch, David; Simonsen, Jon C.; Velez, Jonathan J.

    2015-01-01

    Students (N = 160) in three diverse FFA chapters were surveyed in early fall, midwinter, and late spring in regard to their leadership skills, confidence in leading, and motivation to engage in leadership-oriented behaviors. The results indicated small-to-moderate gains in transformational leadership skill and a marginally significant…

  19. Factors Related to the Success of New Mexico Vocational Agriculture Teachers as FFA Advisors

    ERIC Educational Resources Information Center

    Vaughn, Paul R.

    1976-01-01

    A study to identify characteristics which are related to the degree of success of an FFA advisor, and to identify competencies in which a teacher's perceived proficiency are related to his success as an FFA advisor. (HD)

  20. The Impact of Learning Styles on Learning Outcomes at FFA Camp: What Campers Retain over Time

    ERIC Educational Resources Information Center

    Brown, Nicholas R.; Terry, Robert, Jr.; Kelsey, Kathleen D.

    2013-01-01

    Twenty-four states host FFA summer camps to support adolescent maturation along with indoctrination into the culture and values of the FFA. Camps typically include a variety of activities designed to engage members in social activities and non-formal academic content. More than 1500 campers attend the Oklahoma FFA Alumni Leadership Camp annually…

  1. Student Self-Perceptions of Leadership in Two Missouri FFA Chapters: A Collective Case Study

    ERIC Educational Resources Information Center

    Kagay, Rachel Bartholomew; Marx, Adam A.; Simonsen, Jon C.

    2015-01-01

    The focus of this study is the self-perceptions of leadership engagement of FFA members in two FFA chapters in Missouri. This multiple case study used documentation of student self-perceptions, researcher observations, and focus groups. The two cases included 24 high school students comprised of FFA officers and members, who provided their…

  2. Self-Perceived Youth Leadership and Life Skills of Iowa FFA Members.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Kahler, Alan A.

    1997-01-01

    The Youth Leadership and Life Skills Development Scale was completed by 282 of 316 Iowa Future Farmers of America (FFA) members. The strongest relationship appeared between their scores and FFA leadership activities. Other factors affecting life/leadership skills development included after-school jobs, years in FFA, grades, and gender. (SK)

  3. ADAPTING THE FFA TO A CHANGING PROGRAM OF VOCATIONAL AGRICULTURE. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    KANTER, EARL F.; BENDER, RALPH E.

    THE PURPOSE OF THIS NATIONAL STUDY WAS TO SUGGEST WAYS OF ADAPTING THE FUTURE FARMERS OF AMERICA (FFA) TO A CHANGING PROGRAM OF VOCATIONAL AGRICULTURE THROUGH IDENTIFYING NEW PURPOSES OF THE FFA AND EVALUATING SELECTED OPERATIONAL GUIDELINES AND NATIONAL AND STATE FFA ACTIVITIES. MEMBERS OF THE UNITED STATES OFFICE OF EDUCATION, HEAD STATE…

  4. Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress.

    PubMed

    Fu, Yanfen; Yoon, Jong Moon; Jarboe, Laura; Shanks, Jacqueline V

    2015-05-01

    Systems metabolic engineering has made the renewable production of industrial chemicals a feasible alternative to modern operations. One major example of a renewable process is the production of carboxylic acids, such as octanoic acid (C8), from Escherichia coli, engineered to express thioesterase enzymes. C8, however, is toxic to E. coli above a certain concentration, which limits the final titer. (13)C metabolic flux analysis of E. coli was performed for both C8 stress and control conditions using NMR2Flux with isotopomer balancing. A mixture of labeled and unlabeled glucose was used as the sole carbon source for bacterial growth for (13)C flux analysis. By comparing the metabolic flux maps of the control condition and C8 stress condition, pathways that were altered under the stress condition were identified. C8 stress was found to reduce carbon flux in several pathways: the tricarboxylic acid (TCA) cycle, the CO2 production, and the pyruvate dehydrogenase pathway. Meanwhile, a few pathways became more active: the pyruvate oxidative pathway, and the extracellular acetate production. These results were statistically significant for three biological replicates between the control condition and C8 stress. As a working hypothesis, the following causes are proposed to be the main causes for growth inhibition and flux alteration for a cell under stress: membrane disruption, low activity of electron transport chain, and the activation of the pyruvate dehydrogenase regulator (PdhR).

  5. Amino Acid Flux from Metabolic Network Benefits Protein Translation: the Role of Resource Availability.

    PubMed

    Hu, Xiao-Pan; Yang, Yi; Ma, Bin-Guang

    2015-06-09

    Protein translation is a central step in gene expression and affected by many factors such as codon usage bias, mRNA folding energy and tRNA abundance. Despite intensive previous studies, how metabolic amino acid supply correlates with protein translation efficiency remains unknown. In this work, we estimated the amino acid flux from metabolic network for each protein in Escherichia coli and Saccharomyces cerevisiae by using Flux Balance Analysis. Integrated with the mRNA expression level, protein abundance and ribosome profiling data, we provided a detailed description of the role of amino acid supply in protein translation. Our results showed that amino acid supply positively correlates with translation efficiency and ribosome density. Moreover, with the rank-based regression model, we found that metabolic amino acid supply facilitates ribosome utilization. Based on the fact that the ribosome density change of well-amino-acid-supplied genes is smaller than poorly-amino-acid-supply genes under amino acid starvation, we reached the conclusion that amino acid supply may buffer ribosome density change against amino acid starvation and benefit maintaining a relatively stable translation environment. Our work provided new insights into the connection between metabolic amino acid supply and protein translation process by revealing a new regulation strategy that is dependent on resource availability.

  6. Luminal hydrochloric acid stimulates rapid transepithelial ion fluxes in rodent esophageal stratified squamous epithelium.

    PubMed

    Lin, B R; Hsieh, H T; Lee, J M; Lai, I R; Chen, C F; Yu, L C H

    2008-09-01

    It remains unclear whether enhanced ion fluxes occur in the esophageal stratified squamous epithelium upon acid exposure. Rat esophageal tissues devoid of submucosal glands displayed basal short-circuit current (Isc) of 5.03 +/- 1.93 microA/cm(2) and lumen-negative potential difference (PD) in association with net absorption of Na+ and Cl-, and secretion of HCO3(-). Luminal hydrochloric acid (HCl) challenge (pH = 1.6) triggered an acute rise of the Isc and increment of negative PD to seven-fold of baseline, which was diminished in HCO3(-)-free, but not Na+- free buffer. The rise of Isc was inhibited by pretreatment with di-isothiocyanatostilbene-2, 2'-disulphonic acid (DIDS) and 5-(N-ethyl-N-isopropyl)-amiloride (EIPA). Topical carbachol, capsaicin, forskolin or CFTR(inh)-172 had no effect on basal Isc.CFTR(inh)-172 did not reduce the acid-increased Isc. Functional ablation of capsaicin-sensitive nerves had no effect on the acid-induced Isc. The phenomenon of enhanced ion fluxes upon acid stimulation was confirmed in human esophageal specimens. Our results demonstrated that the mechanism of acid-induced rapid transepithelial ion fluxes is dependent on the presence of bicarbonate ions as well as functional anion transporters and Na+/H+ exchanger, but independent of cystic fibrosis transmembrane conductance regulator (CFTR). The capsaicin-sensitive and muscarinic-dependent nerve pathways did not play roles in the mechanism.

  7. Carbon fluxes in an acid rain impacted boreal headwater catchment

    NASA Astrophysics Data System (ADS)

    Marx, Anne; Hintze, Simone; Jankovec, Jakub; Sanda, Martin; Dusek, Jaromir; Vogel, Tomas; van Geldern, Robert; Barth, Johannes A. C.

    2016-04-01

    Terrestrial carbon export via inland aquatic systems is a key process in the budget of the global carbon cycle. This includes loss of carbon to the atmosphere via gas evasion from rivers or reservoirs as well as carbon fixation in freshwater sediments. Headwater streams are the first endmembers of the transition of carbon between soils, groundwater and surface waters and the atmosphere. In order to quantify these processes the experimental catchment Uhlirska (1.78 km2) located in the northern Czech Republic was studied. Dissolved inorganic, dissolved organic and particulate organic carbon (DIC, DOC, POC) concentrations and isotopes were analyzed in ground-, soil -and stream waters between 2014 and 2015. In addition, carbon dioxide degassing was quantified via a stable isotope modelling approach. Results show a discharge-weighted total carbon export of 31.99 g C m-2 yr-1 of which CO2 degassing accounts 79 %. Carbon isotope ratios (δ13C) of DIC, DOC, and POC (in ‰ VPDB) ranged from -26.6 to -12.4 ‰ from -29.4 to -22.7 ‰ and from -30.6 to -26.6 ‰ respectively. The mean values for DIC are -21.8 ±3.8 ‰ -23.6 ±0.9 ‰ and -19.5 ±3.0 ‰ for soil, shallow ground and surface water compartments. For DOC, these compartments have mean values of -27.1 ±0.3 ‰ -27.0 ±0.8 ‰ and -27.4 ±0.7 ‰Ṁean POC value of shallow groundwaters and surface waters are -28.8 ±0.8 ‰ and -29.3 ±0.5 ‰ respectively. These isotope ranges indicate little turnover of organic material and predominant silicate weathering. The degassing of CO2 caused an enrichment of the δ13C-DIC values of up to 6.8 ‰ between a catchment gauge and the catchment outlet over a distance of 866 m. In addition, the Uhlirska catchment has only negligible natural sources of sulphate, yet SO42- accounts for 21 % of major stream water ions. This is most likely a remainder from acid rain impacts in the area.

  8. The Quest for the FFA and Where It Led.

    PubMed

    Kanwisher, Nancy

    2017-02-01

    This article tells the story behind our first paper on the fusiform face area (FFA): how we chose the question, developed the methods, and followed the data to find the FFA and subsequently many other functionally specialized cortical regions. The paper's impact had less to do with the particular findings in the paper itself and more to do with the method that it promoted and the picture of the human mind and brain that it led to. The use of a functional localizer to define a candidate region in each subject individually enabled us not just to make pictures of brain activation, but also to ask principled, hypothesis-driven questions about a thing in nature. This method enabled stronger and more extensive tests of the function of each cortical region than had been possible before in humans and, as a result, has produced a large body of evidence that the human cortex contains numerous regions that are specifically engaged in particular mental processes. The growing inventory of cortical regions with distinctive and often very specific functions can be seen as an initial sketch of the basic components of the human mind. This sketch also serves as a roadmap into the vast and exciting new landscape of questions about the computations, structural connections, time course, development, plasticity, and evolution of each of these regions, as well as the hardest question of all: how do these regions work together to produce human intelligence?

  9. Delphinidin Reduces Glucose Uptake in Mice Jejunal Tissue and Human Intestinal Cells Lines through FFA1/GPR40.

    PubMed

    Hidalgo, Jorge; Teuber, Stefanie; Morera, Francisco J; Ojeda, Camila; Flores, Carlos A; Hidalgo, María A; Núñez, Lucía; Villalobos, Carlos; Burgos, Rafael A

    2017-04-05

    Anthocyanins are pigments with antihyperglycemic properties, and they are potential candidates for developing functional foods for the therapy or prevention of Diabetes mellitus type 2 (DM2). The mechanism of these beneficial effects of anthocyanins are, however, hard to explain, given their very low bioavailability due to poor intestinal absorption. We propose that free fatty acid receptor 1 (FFA1, also named GPR40), is involved in an inhibitory effect of the anthocyanidin delphinidin over intestinal glucose absorption. We show the direct effects of delphinidin on the intestine using jejunum samples from RF/J mice, and the human intestinal cell lines HT-29, Caco-2, and NCM460. By the use of specific pharmacological antagonists, we determined that delphinidin inhibits glucose absorption in both mouse jejunum and a human enterocytic cell line in a FFA1-dependent manner. Delphinidin also affects the function of sodium-glucose cotransporter 1 (SGLT1). Intracellular signaling after FFA1 activation involved cAMP increase and cytosolic Ca(2+) oscillations originated from intracellular Ca(2+) stores and were followed by store-operated Ca(2+) entry. Taken together, our results suggest a new GPR-40 mediated local mechanism of action for delphinidin over intestinal cells that may in part explain its antidiabetic effect. These findings are promising for the search for new prevention and pharmacological treatment strategies for DM2 management.

  10. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress.

    PubMed

    Pereira, Sandra; Park, Edward; Mori, Yusaku; Haber, C Andrew; Han, Ping; Uchida, Toyoyoshi; Stavar, Laura; Oprescu, Andrei I; Koulajian, Khajag; Ivovic, Alexander; Yu, Zhiwen; Li, Deling; Bowman, Thomas A; Dewald, Jay; El-Benna, Jamel; Brindley, David N; Gutierrez-Juarez, Roger; Lam, Tony K T; Najjar, Sonia M; McKay, Robert A; Bhanot, Sanjay; Fantus, I George; Giacca, Adria

    2014-07-01

    Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling.

  11. FFA2 Contribution to Gestational Glucose Tolerance Is Not Disrupted by Antibiotics

    PubMed Central

    Li, Xiaoran; Fisch, Robert; Bughara, Moneb; Wicksteed, Barton; Kovatcheva-Datchary, Petia; Layden, Brian T.

    2016-01-01

    During the insulin resistant phase of pregnancy, the mRNA expression of free fatty acid 2 receptor (Ffar2) is upregulated and as we recently reported, this receptor contributes to insulin secretion and pancreatic beta cell mass expansion in order to maintain normal glucose homeostasis during pregnancy. As impaired gestational glucose levels can affect metabolic health of offspring, we aimed to explore the role of maternal Ffar2 expression during pregnancy on the metabolic health of offspring and also the effects of antibiotics, which have been shown to disrupt gut microbiota fermentative activity (the source of the FFA2 ligands) on gestational glucose homeostasis. We found that maternal Ffar2 expression and impaired glucose tolerance during pregnancy had no effect on the growth rates, ad lib glucose and glucose tolerance in the offspring between 3 and 6 weeks of age. To disrupt short chain fatty acid production, we chronically treated WT mice and Ffar2-/- mice with broad range antibiotics and further compared their glucose tolerance prior to pregnancy and at gestational day 15, and also quantified cecum and plasma SCFAs. We found that during pregnancy antibiotic treatment reduced the levels of SCFAs in the cecum of the mice, but resulted in elevated levels of plasma SCFAs and altered concentrations of individual SCFAs. Along with these changes, gestational glucose tolerance in WT mice, but not Ffar2-/- mice improved while on antibiotics. Additional data showed that gestational glucose tolerance worsened in Ffar2-/- mice during a second pregnancy. Together, these results indicate that antibiotic treatment alone is inadequate to deplete plasma SCFA concentrations, and that modulation of gut microbiota by antibiotics does not disrupt the contribution of FFA2 to gestational glucose tolerance. PMID:27959892

  12. Competition for amino acid flux among translation, growth and detoxification in bacteria.

    PubMed

    Ferro, Iolanda; Chelysheva, Irina; Ignatova, Zoya

    2017-03-15

    Transfer RNAs (tRNAs) are central entities for translation that deliver amino acids to the ribosome to translate genetic information in an mRNA-template dependent manner. Recent discoveries from our laboratory show that in E. coli and B. licheniformis, some tRNAs are poorly charged despite the plentiful intracellular cognate amino acid. Specifically, tRNAs carrying amino acids that exert toxicity and inhibit bacterial growth when added separately to the growth medium are poorly charged. Here, we discuss various evolutionary strategies different bacterial cells have adopted to precisely hone the competition between amino acid utilization for translation and proliferation and combat the inhibitory effect towards maximizing bacterial fitness. These data add a new twist to the amino acid flux models and to our understanding of the complex intimate link between dynamics of translation and bacterial growth.

  13. Tissue amino acid flux after exposure of rats to Diplococcus pneumoniae.

    PubMed

    Wannemacher, R W; Powanda, M C; Pekarek, R S; Beisel, W R

    1971-11-01

    The concentration of 21 individual free amino acids in serum, liver, and skeletal muscle was determined in rats during the incubation, acute illness, and terminal stages of experimental infection with Diplococcus pneumoniae. By 4 hr after subcutaneous inoculation with bacteria, the concentration of total and many individual free amino acids in serum, liver, and muscle was significantly decreased in comparison to findings in noninfected, pair-fed control rats. By use of a nonmetabolizable amino acid analogue (cycloleucine), it was possible to detect a flux of amino acids from muscle to liver in the infected rat. The endogenous amino acids which moved to the liver were rapidly utilized for the synthesis of serum proteins.

  14. Correlation of Sulfuric Acid Hydrate Abundance with Charged Particle Flux at the Surface of Europa

    NASA Astrophysics Data System (ADS)

    Dalton, James B.; Paranicas, C. P.; Cassidy, T. A.; Shirley, J. H.

    2010-10-01

    The trailing hemisphere of Jupiter's moon Europa is bombarded by charged particles trapped within Jupiter's magnetosphere. Sulfur ion implantation and impacting energetic electrons strongly affect the surface chemistry of Europa. Understanding these processes is important for disentangling the extrinsic and intrinsic components of Europa's surface chemistry. In the sulfur cycle model of Carlson et al. (Science 286, 97, 1999), hydrated sulfuric acid represents the dominant reaction product of radiolytic surface modification processes on Europa. In recent compositional investigations employing linear mixture modeling, Dalton et al. (LPSC XV, #2511, 2009) and Shirley et al. (Icarus, in press, 2010) document a well-defined gradient of hydrated sulfuric acid abundance for a study area spanning the leading side - trailing side boundary in Argadnel Regio. Sulfuric acid hydrate abundance in this region increases toward the trailing side apex. Here we compare the derived sulfuric acid hydrate abundances at 41 locations on Europa's surface with independent model results describing 1) the sulfur ion flux (Hendrix et al., 2010, in preparation), and 2) the energetic electron flux, at the same locations. We improve upon the prior calculation of electron energy into the surface of Paranicas et al. (2009, in Europa, U. Arizona, p529; Pappalardo, McKinnon, & Khurana eds.) by incorporating a realistic pitch angle dependence of the distribution. While the sulfur ion implantation and electron energy deposition model distributions differ in important details, both show trailing side gradients similar to that found for the sulfuric acid hydrate. Correlation coefficients exceed 0.9 in comparisons of each of these models with the sulfuric acid hydrate distribution. Our results support models in which the electron energy flux drives reactions that utilize implanted sulfur to produce sulfuric acid hydrate. This work was performed at the California Institute of Technology-Jet Propulsion

  15. Composition and flux of particulate amino acids and chloropigments in equatorial Pacific seawater and sediments

    NASA Astrophysics Data System (ADS)

    Lee, Cindy; Wakeham, Stuart G.; Hedges, John I.

    2000-08-01

    Compositions and fluxes of amino acids and major chloropigments were measured in the central equatorial Pacific Ocean as part of the US JGOFS EqPac program. Fluxes decreased by several orders of magnitude, from 400 to 0.03 mg amino acid m -2 d -1 and from 9 mg to 0.0004 μg chloropigment m -2 d -1, between production in the surface waters and accumulation at the sea floor. Most rapid losses were in surface waters and at the sediment interface. Losses from the mid-water column were as great as those in surface waters or at the sediment interface, but occurred over a much greater depth range. Export flux estimates based on floating sediment traps were higher near the equator and decreased poleward, similar to primary production. Little meridional difference was apparent in composition of either amino acids or pigments in exported material over the 24° of latitude sampled in spite of the large (factor of 5-6) difference in fluxes. However, pigment composition changed dramatically with depth in the water column, and considerable diagenesis occurred before particles reached the sediment. Pigment compositions suggest that suspended particles were more degraded in the northern than in the southern hemisphere, possibly due to differences in food chain structure. Compositional changes in amino acids occurred in the water column, but were most noticeable at the sediment-seawater interface. Increases in the relative proportions of aspartic acid and glycine with depth were more consistent with preferential preservation within the particulate matrix than with any inherent stability of these compounds to heterotrophic consumption. The contribution of amino acids and pigments to total organic carbon clearly shows that selective degradation of organic matter occurs with depth; this is not evident from total organic carbon data alone. Amino acids contributed about a quarter of the total organic carbon (OC) in surface waters and 16% of the OC in sediment; pigments decreased from 1

  16. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains

    PubMed Central

    2014-01-01

    Background Shikimic acid (SA) is a key chiral starting molecule for the synthesis of the neuramidase inhibitor GS4104 against viral influenza. Microbial production of SA has been extensively investigated in Escherichia coli, and to a less extent in Bacillus subtilis. However, metabolic flux of the high SA-producing strains has not been explored. In this study, we constructed with genetic manipulation and further determined metabolic flux with 13C-labeling test of high SA-producing B. subtilis strains. Results B. subtilis 1A474 had a mutation in SA kinase gene (aroI) and accumulated 1.5 g/L of SA. Overexpression of plasmid-encoded aroA, aroB, aroC or aroD in B. subtilis revealed that aroD had the most significantly positive effects on SA production. Simultaneous overexpression of genes for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroA) and SA dehydrogenase (aroD) in B. subtilis BSSA/pSAAroA/pDGSAAroD resulted in SA production of 3.2 g/L. 13C-Metabolic flux assay (MFA) on the two strains BSSA/pHCMC04/pDG148-stu and BSSA/pSAAroA/pDGSAAroD indicated the carbon flux from glucose to SA increased to 4.6% in BSSA/pSAAroA/pDGSAAroD from 1.9% in strain BSSA/pHCMC04/pDG148-stu. The carbon flux through tricarboxylic acid cycle significantly reduced, while responses of the pentose phosphate pathway and the glycolysis to high SA production were rather weak, in the strain BSSA/pSAAroA/pDGSAAroD. Based on the results from MFA, two potential targets for further optimization of SA production were identified. Experiments on genetic deletion of phosphoenoylpyruvate kinase gene confirmed its positive influence on SA production, while the overexpression of the transketolase gene did not lead to increase in SA production. Conclusion Of the genes involved in shikimate pathway in B. subtilis, aroD exerted most significant influence on SA accumulation. Overexpression of plasmid-encoded aroA and aroD doubled SA production than its parent strain. MFA revealed metabolic flux

  17. A Status Report on Middle Grade Agricultural Education and FFA Programs in the United States.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; McCaslin, N. L.

    1994-01-01

    Census of 52 Future Farmers of America (FFA) executive secretaries found the following: 30 states have middle-grade agricultural education; 19 have middle-grade FFA membership; 14 have a core agriculture curriculum; 17 have state-level competitions; most do not favor national middle-grade competitions; and few disadvantages apart from potential…

  18. Bridging Horizons. An Advisor's Guide to FFA Involvement for Members with Disabilities.

    ERIC Educational Resources Information Center

    Ploss, Adrienne J.; Field, William E.; Frick, Martin J.

    This guide is designed to provide Future Farmers of America (FFA) advisors with information to assist them in their efforts to include all youth in FFA, including those with disabilities. It addresses benefits of involving youth with disabilities and federal, state, and local legislation and regulations concerning people with disabilities.…

  19. Examining Camper Learning Outcomes and Knowledge Retention at Oklahoma FFA Leadership Camp

    ERIC Educational Resources Information Center

    Brown, Nicholas R.; Terry, Robert, Jr.; Kelsey, Kathleen D.

    2014-01-01

    The National FFA Organization is committed to providing non-formal learning activities focusing on leadership education. Summer camps are a major component of FFA activities and concentrate on personal growth, leadership development, and recreational activities for youth. This repeated measures study determined the level of cognitive gain and the…

  20. Fitting Vo-Ag and FFA Together Best for Students and Teachers.

    ERIC Educational Resources Information Center

    Snyder, H. Leon

    1979-01-01

    The Future Farmers of America (FFA) is more than a leadership development organization and when used as an intracurricular activity, it can serve as a teaching tool. The FFA adds advantages to the program in areas such as supervised experience, award motivation, providing real world experience, public relations, travel, and competition. (LRA)

  1. Barriers to Participation in the National FFA Organization According to Urban Agriculture Students

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2014-01-01

    Urban youth engaged in after-school organizations have more positive attributes compared to their unengaged contemporaries. The FFA is one particular intra-curricular organization with after-school components; yet, urban students do not participate in FFA at the same levels as rural students. The purpose of this descriptive study was to explore…

  2. Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Panama basin

    NASA Astrophysics Data System (ADS)

    Ittekkot, Venugopalan; Degens, Egon T.; Honjo, Susumu

    1984-09-01

    Time-series sediment traps were deployed for an entire year at depths of 890, 2590, and 3560 m at a station in the Panama Basin during 1980. Fluxes of sugars, amino acids, and amino sugars varied seasonally at each depth. Two peak fluxes were observed: one in February-March, the other in June-July. The peaks were associated with a high productivity period by regional upwelling and an unusual coccolithophorid bloom. There were significant differences in the distributions of sugars and amino acids associated with the fluxes. The peak flux of June/July was characterized by high amounts of arabinose and ribose within the sugar, and high amounts of aspartic acid in the amino acid fractions. The differences were observed at all three depths simultaneously, indicating rapid vertical transport without significant dissolution or decomposition. The observed pattern indicates the utility of specific compounds such as sugars and amino acids as tracers of source materials in the marine environment.

  3. Processes and fluxes during the initial stage of acid sulfate soil formation

    NASA Astrophysics Data System (ADS)

    Gröger, J.; Hamer, K.; Schulz, H. D.

    2009-04-01

    Acid sulfate soils occur over a wide range of climatic zones, mainly in coastal landscapes. In these soils, the release of sulfuric acid by the oxidation of pyrite generates a very acidic environment (e.g., DENT and PONS, 1995, PONS, 1973). Two major types of acid sulfate soils can be distinguished: In actual acid sulfate soils, the initially contained pyrite was at least partly oxidized. This resulted in a severe acidification of the soil. Potential acid sulfate soils are generally unoxidized and contain large amounts of pyrite. Upon oxidation, these soils will turn into actual acid sulfate soils. By excavation or lowering of the groundwater table, potential acid sulfate soils can be exposed to atmospheric oxygen. During oxidation the pH drops sharply to values below pH 4. This acidification promotes the release of various metals, e.g., alumina, iron and heavy metals. Additionally, large quantities of sulfate are released. In order to assess the effects of disturbances of potential acid sulfate soils, for example by excavations during construction works, several large scale column experiments were conducted with various types of potential acid sulfate soils from Northern Germany. In these experiments, the oxidation and initial profile development of pyritic fen peats and thionic fluvisols were studied over a period of 14 months. The study focused on leaching and the translocation of various metals in the soil profile. To study mobilization processes, element fluxes and the progress of acidification, soil water and leachate were analyzed for total element concentrations. Furthermore, several redox-sensitive parameters, e.g., Fe2+ and sulfide, were measured and changes to the initial solid phase composition were analyzed. Chemical equilibria calculations of the soil water were used to gain insights into precipitation processes of secondary products of pyrite oxidation and leaching products. The results of this study will support the assessment of risks deriving from

  4. Loss of fatty acid control of gluconeogenesis and PDH complex flux in adrenalectomized rats.

    PubMed

    Ciprés, G; Urcelay, E; Butta, N; Ayuso, M S; Parrilla, R; Martín-Requero, A

    1994-10-01

    This work aimed to determine the role played by the adrenal gland in the fatty acid control of gluconeogenesis in isolated perfused rat livers. The gluconeogenic substrate concentration responses were not altered in adrenalectomized (ADX) rats. This observation indicates that glucocorticoids are not essential to maintain normal basal gluconeogenic rates. In contrast, fatty acid failed to stimulate gluconeogenesis from lactate and elicited attenuated stimulation with pyruvate as substrate in livers from ADX rats. Fatty acid-induced stimulation of respiration and ketone body production were similar in control and ADX rats. Thus the diminished responsiveness of the gluconeogenic pathway to fatty acid cannot be the result of different rates of energy production and/or generation of reducing power. Fatty acids did not inhibit pyruvate decarboxylation in livers from ADX rats. Even though mitochondria isolated from livers of ADX rats showed normal basal rates of pyruvate metabolism, fatty acids failed to inhibit pyruvate decarboxylation and the activity of the pyruvate dehydrogenase complex. This novel observation of the glucocorticoid effect in controlling the pyruvate dehydrogenase complex responsiveness indicates that the mitochondrial partitioning of pyruvate between carboxylation and decarboxylation reactions may be altered in livers from ADX rats. We propose that the diminished effect of fatty acid in stimulating gluconeogenesis in livers from ADX rats is the result of a limited pyruvate availability for the carboxylase reaction due to a lack of inhibition of flux through the pyruvate dehydrogenase complex.

  5. Adipose Tissue Free Fatty Acid Storage In Vivo: Effects of Insulin Versus Niacin as a Control for Suppression of Lipolysis.

    PubMed

    Ali, Asem H; Mundi, Manpreet; Koutsari, Christina; Bernlohr, David A; Jensen, Michael D

    2015-08-01

    Insulin stimulates the translocation fatty acid transport protein 1 (FATP1) to plasma membrane, and thus greater free fatty acid (FFA) uptake, in adipocyte cell models. Whether insulin stimulates greater FFA clearance into adipose tissue in vivo is unknown. We tested this hypothesis by comparing direct FFA storage in subcutaneous adipose tissue during insulin versus niacin-medicated suppression of lipolysis. We measured direct FFA storage in abdominal and femoral subcutaneous fat in 10 and 11 adults, respectively, during euglycemic hyperinsulinemia or after oral niacin to suppress FFA compared with 11 saline control experiments. Direct palmitate storage was assessed using a [U-(13)C]palmitate infusion to measure palmitate kinetics and an intravenous palmitate radiotracer bolus/timed biopsy. Plasma palmitate concentrations and flux were suppressed to 23 ± 3 and 26 ± 5 µmol ⋅ L(-1) (P = 0.91) and 44 ± 4 and 39 ± 5 µmol ⋅ min(-1) (P = 0.41) in the insulin and niacin groups, respectively, much less (P < 0.001) than the saline control group (102 ± 8 and 104 ± 12 µmol ⋅ min(-1), respectively). In the insulin, niacin, and saline groups, abdominal palmitate storage rates were 0.25 ± 0.05 vs. 0.25 ± 0.07 vs. 0.32 ± 0.05 µmol ⋅ kg adipose lipid(-1) ⋅ min(-1), respectively (P = NS), and femoral adipose storage rates were 0.19 ± 0.06 vs. 0.20 ± 0.05 vs. 0.31 ± 0.05 µmol ⋅ kg adipose lipid(-1) ⋅ min(-1), respectively (P = NS). In conclusion, insulin does not increase FFA storage in adipose tissue compared with niacin, which suppresses lipolysis via a different pathway.

  6. Adipose Tissue Free Fatty Acid Storage In Vivo: Effects of Insulin Versus Niacin as a Control for Suppression of Lipolysis

    PubMed Central

    Ali, Asem H.; Mundi, Manpreet; Koutsari, Christina; Bernlohr, David A.

    2015-01-01

    Insulin stimulates the translocation fatty acid transport protein 1 (FATP1) to plasma membrane, and thus greater free fatty acid (FFA) uptake, in adipocyte cell models. Whether insulin stimulates greater FFA clearance into adipose tissue in vivo is unknown. We tested this hypothesis by comparing direct FFA storage in subcutaneous adipose tissue during insulin versus niacin-medicated suppression of lipolysis. We measured direct FFA storage in abdominal and femoral subcutaneous fat in 10 and 11 adults, respectively, during euglycemic hyperinsulinemia or after oral niacin to suppress FFA compared with 11 saline control experiments. Direct palmitate storage was assessed using a [U-13C]palmitate infusion to measure palmitate kinetics and an intravenous palmitate radiotracer bolus/timed biopsy. Plasma palmitate concentrations and flux were suppressed to 23 ± 3 and 26 ± 5 µmol ⋅ L−1 (P = 0.91) and 44 ± 4 and 39 ± 5 µmol ⋅ min−1 (P = 0.41) in the insulin and niacin groups, respectively, much less (P < 0.001) than the saline control group (102 ± 8 and 104 ± 12 µmol ⋅ min−1, respectively). In the insulin, niacin, and saline groups, abdominal palmitate storage rates were 0.25 ± 0.05 vs. 0.25 ± 0.07 vs. 0.32 ± 0.05 µmol ⋅ kg adipose lipid−1 ⋅ min−1, respectively (P = NS), and femoral adipose storage rates were 0.19 ± 0.06 vs. 0.20 ± 0.05 vs. 0.31 ± 0.05 µmol ⋅ kg adipose lipid−1 ⋅ min−1, respectively (P = NS). In conclusion, insulin does not increase FFA storage in adipose tissue compared with niacin, which suppresses lipolysis via a different pathway. PMID:25883112

  7. Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator.

    PubMed

    Grousseau, Estelle; Blanchet, Elise; Déléris, Stéphane; Albuquerque, Maria G E; Paul, Etienne; Uribelarrea, Jean-Louis

    2014-02-01

    Properties of polyhydroxybutyrate-co-hydroxyvalerate (P(3HB-co-3HV)) depend on their 3HV content. 3HV can be produced by Cupriavidus necator from propionic acid. Few studies explored carbon distribution and dynamics of 3HV and 3HB monomers production, and none of them have been done with phosphorus as limiting nutrient. In this study, fed-batch cultures of C. necator with propionic acid, as sole carbon source or mixed with butyric acid, were performed. Phosphorus deficiency allowed sustaining 3HV production rate and decreasing 3HB production rate, leading to an instant production of up to 100% of 3HV. When a residual growth is sustained by a phosphorus feeding, the maximum 3HV percentage produced from propionic acid is limited to 33% (Mole.Mole(-1)). The association of a second carbon source like butyric acid lead to higher conversion of propionic acid into 3HV. This study showed the importance of the limiting nutrient and of the culture strategy to get the appropriate product.

  8. Activation of β3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats

    PubMed Central

    Warner, Amy; Kjellstedt, Ann; Carreras, Alba; Böttcher, Gerhard; Peng, Xiao-Rong; Seale, Patrick; Oakes, Nicholas

    2016-01-01

    Activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) present potential new therapies for obesity and type 2 diabetes. Here, we examined the effects of β3-adrenergic stimulation on tissue-specific uptake and storage of free fatty acids (FFA) and its implications for whole body FFA metabolism in diet-induced obese rats using a multi-radiotracer technique. Male Wistar rats were high fat-fed for 12 wk and administered β3-agonist CL316,243 (CL, 1 mg·kg−1·day−1) or saline via osmotic minipumps during the last 3 wk. The rats were then fasted and acutely infused with a tracer mixture ([14C]palmitate and the partially metabolized R-[3H]bromopalmitate) under anesthesia. CL infusion decreased body weight gain and fasting plasma glucose levels. While core body temperature was unaffected, infrared thermography showed an increase in tail heat dissipation following CL infusion. Interestingly, CL markedly increased both FFA storage and utilization in interscapular and perirenal BAT, whereas the flux of FFA to skeletal muscle was decreased. In this rat model of obesity, only sporadic populations of beige adipocytes were detected in the epididymal WAT depot of CL-infused rats, and there was no change in FFA uptake or utilization in WAT following CL infusion. In summary, β3-agonism robustly increased FFA flux to BAT coupled with enhanced utilization. Increased BAT activation most likely drove the increased tail heat dissipation to maintain thermostasis. Our results emphasize the quantitative role of brown fat as the functional target of β3-agonism in obesity. PMID:27780820

  9. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.

    PubMed

    He, Lian; Xiao, Yi; Gebreselassie, Nikodimos; Zhang, Fuzhong; Antoniewiez, Maciek R; Tang, Yinjie J; Peng, Lifeng

    2014-03-01

    We engineered a fatty acid overproducing Escherichia coli strain through overexpressing tesA (“pull”) and fadR (“push”) and knocking out fadE (“block”). This “pull-push-block” strategy yielded 0.17 g of fatty acids (C12–C18) per gram of glucose (equivalent to 48% of the maximum theoretical yield) in batch cultures during the exponential growth phase under aerobic conditions. Metabolic fluxes were determined for the engineered E. coli and its control strain using tracer ([1,2-13C]glucose) experiments and 13C-metabolic flux analysis. Cofactor (NADPH) and energy (ATP) balances were also investigated for both strains based on estimated fluxes. Compared to the control strain, fatty acid overproduction led to significant metabolic responses in the central metabolism: (1) Acetic acid secretion flux decreased 10-fold; (2) Pentose phosphate pathway and Entner–Doudoroff pathway fluxes increased 1.5- and 2.0-fold, respectively; (3) Biomass synthesis flux was reduced 1.9-fold; (4) Anaplerotic phosphoenolpyruvate carboxylation flux decreased 1.7-fold; (5) Transhydrogenation flux converting NADH to NADPH increased by 1.7-fold. Real-time quantitative RT-PCR analysis revealed the engineered strain increased the transcription levels of pntA (encoding the membrane-bound transhydrogenase) by 2.1-fold and udhA (encoding the soluble transhydrogenase) by 1.4-fold, which is in agreement with the increased transhydrogenation flux. Cofactor and energy balances analyses showed that the fatty acid overproducing E. coli consumed significantly higher cellular maintenance energy than the control strain. We discussed the strategies to future strain development and process improvements for fatty acid production in E. coli.

  10. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source.

    PubMed

    Mente, Eleni; Coutteau, Peter; Houlihan, Dominic; Davidson, Ian; Sorgeloos, Patrick

    2002-10-01

    The effect of dietary protein on protein synthesis and growth of juvenile shrimps Litopenaeus vannamei was investigated using three different diets with equivalent protein content. Protein synthesis was investigated by a flooding dose of tritiated phenylalanine. Survival, specific growth and protein synthesis rates were higher, and protein degradation was lower, in shrimps fed a fish/squid/shrimp meal diet, or a 50% laboratory diet/50% soybean meal variant diet, than in those fed a casein-based diet. The efficiency of retention of synthesized protein as growth was 94% for shrimps fed the fish meal diet, suggesting a very low protein turnover rate; by contrast, the retention of synthesized protein was only 80% for shrimps fed the casein diet. The amino acid profile of the casein diet was poorly correlated with that of the shrimps. 4 h after a single meal the protein synthesis rates increased following an increase in RNA activity. A model was developed for amino acid flux, suggesting that high growth rates involve a reduction in the turnover of proteins, while amino acid loss appears to be high.

  11. Fatty acid labeling from glutamine in hypoxia can be explained by isotope exchange without net reductive isocitrate dehydrogenase (IDH) flux.

    PubMed

    Fan, Jing; Kamphorst, Jurre J; Rabinowitz, Joshua D; Shlomi, Tomer

    2013-10-25

    Acetyl-CoA is an important anabolic precursor for lipid biosynthesis. In the conventional view of mammalian metabolism, acetyl-CoA is primarily derived by the oxidation of glucose-derived pyruvate in mitochondria. Recent studies have employed isotope tracers to show that in cancer cells grown in hypoxia or with defective mitochondria, a major fraction of acetyl-CoA is produced via another route, reductive carboxylation of glutamine-derived α-ketoglutarate (catalyzed by reverse flux through isocitrate dehydrogenase, IDH). Here, we employ a quantitative flux model to show that in hypoxia and in cells with defective mitochondria, oxidative IDH flux persists and may exceed the reductive flux. Therefore, IDH flux may not be a net contributor to acetyl-CoA production, although we cannot rule out net reductive IDH flux in some compartments. Instead of producing large amounts of net acetyl-CoA reductively, the cells adapt by reducing their demand for acetyl-CoA by importing rather than synthesizing fatty acids. Thus, fatty acid labeling from glutamine in hypoxia can be explained by spreading of label without net reductive IDH flux.

  12. (13)C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids.

    PubMed

    Ghosh, Amit; Ando, David; Gin, Jennifer; Runguphan, Weerawat; Denby, Charles; Wang, George; Baidoo, Edward E K; Shymansky, Chris; Keasling, Jay D; García Martín, Héctor

    2016-01-01

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined (13)C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.

  13. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    PubMed Central

    Ghosh, Amit; Ando, David; Gin, Jennifer; Runguphan, Weerawat; Denby, Charles; Wang, George; Baidoo, Edward E. K.; Shymansky, Chris; Keasling, Jay D.; García Martín, Héctor

    2016-01-01

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%. PMID:27761435

  14. Extraction, purification, methylation and GC-MS analysis of short-chain carboxylic acids for metabolic flux analysis.

    PubMed

    Tivendale, Nathan D; Jewett, Erin M; Hegeman, Adrian D; Cohen, Jerry D

    2016-08-15

    Dynamic metabolic flux analysis requires efficient and effective methods for extraction, purification and analysis of a plethora of naturally-occurring compounds. One area of metabolism that would be highly informative to study using metabolic flux analysis is the tricarboxylic acid (TCA) cycle, which consists of short-chain carboxylic acids. Here, we describe a newly-developed method for extraction, purification, derivatization and analysis of short-chain carboxylic acids involved in the TCA cycle. The method consists of snap-freezing the plant material, followed by maceration and a 12-15h extraction at -80 °C. The extracts are then subject to reduction (to stabilize β-keto acids), purified by strong anion exchange solid phase extraction and methylated with methanolic HCl. This method could also be readily adapted to quantify many other short-chain carboxylic acids.

  15. A hybrid SVM-FFA method for prediction of monthly mean global solar radiation

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Zamani, Mazdak; Motamedi, Shervin; Ch, Sudheer

    2016-07-01

    In this study, a hybrid support vector machine-firefly optimization algorithm (SVM-FFA) model is proposed to estimate monthly mean horizontal global solar radiation (HGSR). The merit of SVM-FFA is assessed statistically by comparing its performance with three previously used approaches. Using each approach and long-term measured HGSR, three models are calibrated by considering different sets of meteorological parameters measured for Bandar Abbass situated in Iran. It is found that the model (3) utilizing the combination of relative sunshine duration, difference between maximum and minimum temperatures, relative humidity, water vapor pressure, average temperature, and extraterrestrial solar radiation shows superior performance based upon all approaches. Moreover, the extraterrestrial radiation is introduced as a significant parameter to accurately estimate the global solar radiation. The survey results reveal that the developed SVM-FFA approach is greatly capable to provide favorable predictions with significantly higher precision than other examined techniques. For the SVM-FFA (3), the statistical indicators of mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2) are 3.3252 %, 0.1859 kWh/m2, 3.7350 %, and 0.9737, respectively which according to the RRMSE has an excellent performance. As a more evaluation of SVM-FFA (3), the ratio of estimated to measured values is computed and found that 47 out of 48 months considered as testing data fall between 0.90 and 1.10. Also, by performing a further verification, it is concluded that SVM-FFA (3) offers absolute superiority over the empirical models using relatively similar input parameters. In a nutshell, the hybrid SVM-FFA approach would be considered highly efficient to estimate the HGSR.

  16. Low to middle tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian taiga

    NASA Technical Reports Server (NTRS)

    Klemm, O.; Talbot, R. W.; Fitzgerald, D. R.; Klemm, K. I.; Lefer, B. L.

    1994-01-01

    We report features of acidic gases in the troposphere from 9 to 5000 m altitude above ground over the Canadian taiga in the summer of 1990. The measurements were conducted at a 30-m meteorological tower and from the NASA Wallops Electra aircraft as part of the joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B Northern Wetland Studies (NOWES). We sampled air for acidic gases using the mist chamber collector coupled with subsequent analysis using ion chromatography. At the tower we collected samples at two heights during a 13-day period, including diurnal studies. Using eddy flux and profile data, we estimated the biosphere/troposphere fluxes of nitric, formic, and acetic acids and sulfur dioxide. For the organic acids, emissions from the taiga in the afternoon hours and deposition during the predawn morning hours were observed. The flux intensities alone were however not high enough to explain the observed changes in mixing ratios. The measured deposition fluxes of nitric acid were high enough to have a significant influence on its mixing ratio in the boundary layer. On three days we measured vertical profiles of nitric, formic, and acetic acids through the lower to midtroposphere. We found that the chemical composition of the troposphere was extremely heterogenous. Pronounced layers of polluted air were readily apparent from our measurements. Local photochemical production and episodic long-range transport of trace components, originating from biomass burning and possibly industrial emissions, appear to have a strong influence on the composition of the troposphere and biosphere/troposphere fluxes of acidic gases at this site.

  17. Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels.

    PubMed

    Yu, J; Wang, J

    2001-06-20

    Ralstonia eutropha grows on and produces polyhydroxyalkanoates (PHAs) from fermentation acids. Acetic acid, one major organic acid from acidogenesis of organic wastes, has an inhibitory effect on the bacterium at slightly alkaline pH (6 g HAc/L at pH 8). The tolerance of R. eutropha to acetate, however, was increased significantly up to 15 g/L at the slightly alkaline pH level with high cell mass concentration. A metabolic cell model with five fluxes is proposed to depict the detoxification mechanism including mass transfer and acetyl-CoA formation of acetic acid and the formation of three final metabolic products, polyhydroxybutyrate (PHB), active biomass, and CO(2). The fluxes were measured under different conditions such as cell mass concentration, acetic acid concentration, and medium composition. The experimental results indicate that the acetate detoxification by high cell mass concentration is attributed to the increased fluxes at high extracellular acetate concentrations. The fluxes could be doubled to reduce and hence detoxify the accumulated intracellular acetate anions.

  18. Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum.

    PubMed

    Amador-Noguez, Daniel; Feng, Xiao-Jiang; Fan, Jing; Roquet, Nathaniel; Rabitz, Herschel; Rabinowitz, Joshua D

    2010-09-01

    Obligatory anaerobic bacteria are major contributors to the overall metabolism of soil and the human gut. The metabolic pathways of these bacteria remain, however, poorly understood. Using isotope tracers, mass spectrometry, and quantitative flux modeling, here we directly map the metabolic pathways of Clostridium acetobutylicum, a soil bacterium whose major fermentation products include the biofuels butanol and hydrogen. While genome annotation suggests the absence of most tricarboxylic acid (TCA) cycle enzymes, our results demonstrate that this bacterium has a complete, albeit bifurcated, TCA cycle; oxaloacetate flows to succinate both through citrate/alpha-ketoglutarate and via malate/fumarate. Our investigations also yielded insights into the pathways utilized for glucose catabolism and amino acid biosynthesis and revealed that the organism's one-carbon metabolism is distinct from that of model microbes, involving reversible pyruvate decarboxylation and the use of pyruvate as the one-carbon donor for biosynthetic reactions. This study represents the first in vivo characterization of the TCA cycle and central metabolism of C. acetobutylicum. Our results establish a role for the full TCA cycle in an obligatory anaerobic organism and demonstrate the importance of complementing genome annotation with isotope tracer studies for determining the metabolic pathways of diverse microbes.

  19. A Method for the Measurement of Nitrous Acid Flux Using Relaxed Eddy Accumulation

    NASA Astrophysics Data System (ADS)

    Bertman, S.; Marchewka, M.; King, J.

    2003-12-01

    HONO has recently received renewed attention as a byproduct of condensed nitrogen photolysis and as a potential atmospheric radical source. In particular, several recent accounts suggesting a photochemical source in forests have lead us to develop a method for assessing nitrous acid flux above a hardwood forest in northern Michigan. The technique was based on nitrous acid in ambient air being scrubbed into a 1mM phosphate buffer that was then derivatized into a light absorbing complex. A separate scrubbing system was used for updrafts and downdrafts after the air had been separated through Teflon valves according to input from a sonic anemometer. The detection of the complex was performed via UV absorption through a capillary flowthrough cell. Detection limit for this analytical method is around 10 pptv. Derivatized solution from each flow system was injected into the capillary cell via an 8-port valve with two sample loops. Each sample loop was injected as soon as it filled, which allowed measurement of all of the scrubbed material in each flow system. Laboratory tests were performed to assess the accuracy and suitability of this method. The field worthiness of the instrument was determined during the summer of 2003 at the University of Michigan Biological Station in northern Michigan where it was placed on top of a 35m tower above a forest canopy.

  20. Solder Flux Residues and Humidity-Related Failures in Electronics: Relative Effects of Weak Organic Acids Used in No-Clean Flux Systems

    NASA Astrophysics Data System (ADS)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-04-01

    This paper presents the results of humidity testing of weak organic acids (WOAs), namely adipic, succinic, glutaric, dl-malic, and palmitic acids, which are commonly used as activators in no-clean solder fluxes. The study was performed under humidity conditions varying from 60% relative humidity (RH) to ˜99%RH at 25°C. The following parameters were used for characterization of WOAs: mass gain due to water adsorption and deliquescence of the WOA (by quartz crystal microbalance), resistivity of the water layer formed on the printed circuit board (by impedance spectroscopy), and leakage current measured using the surface insulation resistance pattern in the potential range from 0 V to 10 V. The combined results indicate the importance of the WOA chemical structure for the water adsorption and therefore conductive water layer formation on the printed circuit board assembly (PCBA). A substantial increase of leakage currents and probability of electrochemical migration was observed at humidity levels above the RH corresponding to the deliquescence point of WOAs present as contaminants on the printed circuit boards. The results suggest that use of solder fluxes with WOAs having higher deliquescence point could improve the reliability of electronics operating under circumstances in which exposure to high humidity is likely to occur.

  1. gamma-Aminobutyric acid agonists and antagonists alter chloride flux across brain membranes.

    PubMed

    Allan, A M; Harris, R A

    1986-05-01

    gamma-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, increases membrane chloride conductance. Previously, we reported that GABA increases 36Cl- uptake by membrane vesicles (microsacs) prepared from mouse brain. Employing this technique, we found that the GABAA agonists, muscimol, isoguvacine, 4,5,6,7-tetrahydroisoxazolo(5,4-C)pyridine-3-ol, and 3-amino-1-propane sulfonate, all produced a concentration-dependent increase in 36Cl- influx, but baclofen, a GABAB agonist, failed to alter 36Cl- flux. Inhibition of GABA-dependent 36Cl- influx was produced by the convulsant drugs, bicuculline, picrotoxin, and pentylenetetrazole. Ion specificity was demonstrated by a failure of GABA agonists to stimulate influx of 45Ca2+, 86Rb+, 22Na+, or 35SO4(2). GABA-stimulated uptake of 36Cl- was largest in cortex and cerebellum and smaller in hippocampus and striatum. There was little difference in sensitivity to GABA among the areas. Analysis of subcellular fractions prepared from mouse brain demonstrated that the GABA-dependent 36Cl- influx was enriched in the synaptosomal fraction. The nonspecific (GABA-independent) uptake of 36Cl- was enriched in the myelin fraction. These experiments provide evidence for a functional coupling among GABA receptors and the chloride ionophore and suggest that the GABA-activated chloride channel is a site of action for several convulsant compounds.

  2. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects.

    PubMed

    Martin-Creuzburg, Dominik; Kowarik, Carmen; Straile, Dietmar

    2017-01-15

    Cross-ecosystem fluxes can crucially influence the productivity of adjacent habitats. Emerging aquatic insects represent one important pathway through which freshwater-derived organic matter can enter terrestrial food webs. Aquatic insects may be of superior food quality for terrestrial consumers because they contain high concentrations of essential polyunsaturated fatty acids (PUFA). We quantified the export of PUFA via emerging insects from a midsize, mesotrophic lake. Insects were collected using emergence traps installed above different water depths and subjected to fatty acid analyses. Insect emergence from different depth zones and seasonal mean fatty acid concentrations in different insect groups were used to estimate PUFA fluxes. In total, 80.5mg PUFA m(-2)yr(-1) were exported, of which 32.8mgm(-2)yr(-1) were eicosapentaenoic acid (EPA), 7.8mgm(-2)yr(-1) were arachidonic acid (ARA), and 2.6mgm(-2)yr(-1) were docosahexaenoic acid (DHA). While Chironomidae contributed most to insect biomass and total PUFA export, Chaoborus flavicans contributed most to the export of EPA, ARA, and especially DHA. The export of total insect biomass from one square meter declined with depth and the timing at which 50% of total insect biomass emerged was correlated with the water depths over which the traps were installed, suggesting that insect-mediated PUFA fluxes are strongly affected by lake morphometry. Applying a conceptual model developed to assess insect deposition rates on land to our insect-mediated PUFA export data revealed an average total PUFA deposition rate of 150mgm(-2)yr(-1) within 100m inland from the shore. We propose that PUFA export can be reliably estimated using taxon-specific information on emergent insect biomass and seasonal mean body PUFA concentrations of adult insects provided here. Our data indicate that insect-mediated PUFA fluxes from lakes are substantial, implying that freshwater-derived PUFA can crucially influence food web processes in adjacent

  3. A Nationwide Examination of Middle School Enrollment in Agricultural Education and Membership in the National FFA Organization.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; And Others

    The purpose of this study was to determine the status of middle and junior high school agricultural education and FFA (Future Farmers of America) programs. In spring 1991. questionnaires were sent to all state FFA Executive Secretaries (n=53); 52 returned questionnaires. Three teachers in each of 9 states identified as having middle or junior high…

  4. Relationship of Length of Vocational Agriculture Teacher Contract to Supervised Occupational Experience Program Scope and FFA Chapter Activity Level.

    ERIC Educational Resources Information Center

    Arrington, Larry R.

    A study examined the relationship of length of vocational agriculture teacher contract to supervised occupational experience program scope and Future Farmers of America (FFA) chapter activity level. A questionnaire measuring the activity level of the FFA chapter and soliciting information on various extraneous variables was administered to the…

  5. Career Development, Supervised Agricultural Experience, and FFA. The Connecticut Vocational Agriculture Education Curriculum.

    ERIC Educational Resources Information Center

    Mannebach, Alfred J.; And Others

    This curriculum guide was developed to help teachers and administrators in Connecticut Regional Vocational Agriculture Centers to update and upgrade their vocational agriculture curriculum in the areas of career development, supervised agricultural experience (SAE), and Future Farmers of America (FFA). The curriculum incorporates the competencies…

  6. Needed: Educational Objectives and Administrative Criteria for the National FFA Contests.

    ERIC Educational Resources Information Center

    Smith, Mack W.; Kahler, Alan A.

    1987-01-01

    The purpose of the study was to establish overall educational objectives and administrative criteria for the national Future Farmers of America (FFA) contests. Through a series of three questionnaires, input was received from a Delphi panel of 33 members that generated and identified objectives and criteria. (CH)

  7. A Historical Review of Leadership Development in the FFA and 4-H

    ERIC Educational Resources Information Center

    Hoover, Tracy S.; Scholl, Jan F.; Dunigan, Anne H.; Mamontova, Nadezhda

    2007-01-01

    FFA and 4-H are two youth-based organizations that cite leadership development as a key foundational component. The purpose of this study was to review and document the historical development of leadership events and activities in both programs. Evidence can be found of leadership development in schools, conferences, and camps. Leadership-related…

  8. [8-hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes].

    PubMed

    Xu, Li-jun; Lu, Fu-er; Yi, Ping; Wang, Zeng-si; Wei, Shi-chao; Chen, Guang; Dong, Hui; Zou, Xin

    2009-11-01

    The purpose of the study is to investigate the effect of 8-hydroxy-dihydroberberine on insulin resistance induced by high free fatty acid (FFA) and high glucose in 3T3-L1 adipocytes and its possible molecular mechanism. Palmic acid or glucose in combination with insulin was used to induce insulin resistance in 3T3-L1 adipocytes. 8-Hydroxy-dihydroberberine and berberine were added to the cultured medium separately, which were considered as treated group and positive control group. The rate of glucose uptake was determined by 2-deoxy-[3H]-D-glucose method. The amount of glucose consumption in the medium was measured by glucose oxidase method. Cell growth and proliferation of 3T3-L1 adipocytes were detected with Cell Counting Kit-8 (CCK-8) assay. After incubated with palmic acid for 24 hours or glucose with insulin for 18 hours, the rate of glucose transport in 3T3-L1 adipocytes was inhibited by 67% and 58%, respectively. The amount of glucose consumption in 3T3-L1 adipose cells was decreased by 41% after cells were incubated with palmic acid for 24 h. However, the above changes were reversed by pretreatment with 8-hydroxy-dihydroberberine for 24 and 48 h. Significant difference existed between groups. Insulin resistance in 3T3-L1 adipocytes, which is induced by high FFA and high glucose, could be ameliorated by 8-hydroxy-dihydroberberine.

  9. Rainwater trifluoroacetic acid (TFA) in Guangzhou, South China: levels, wet deposition fluxes and source implication.

    PubMed

    Wang, Qiaoyun; Wang, Xinming; Ding, Xiang

    2014-01-15

    The origin of trifluoroacetic acid (TFA) occurring in hydrosphere has long been a controversial issue. Hydrochlorofluorocarbons and hydrofluorocarbons (HCFCs/HFCs) as replacements of chlorofluorocarbons (CFCs) are precursors of TFA in the atmosphere, their contribution to rainwater TFA is a concern as their ambient mixing ratios are continually growing. Here we present rainwater TFA monitored from April 2007 to March 2008 in urban Guangzhou, a central city in south China's highly industrialized and densely populated Pearl River Delta region. Rainwater TFA levels ranged 45.8-974 ng L(-1) with a median of 166 ng L(-1). TFA levels negatively correlated with rainfall amount, the yearly rainfall-weighted average for TFA was 152 ng L(-1). The annual TFA wet deposition flux was estimated to be 229 g km(-2) yr(-1), and the total wet deposition of TFA reached ~1.7 tyr(-1) in Guangzhou. The Two-Box model was applied to estimate attributions of HCFCs/HFCs and fluoropolymers to rainwater TFA assuming TFA generated was proportional to gross domestic product (GDP), gross industrial product (GIP) or number of private cars. The results revealed that the degradation of HCFCs/HFCs and fluoropolymers could explain 131.5-152.4 ng L(-1) rainwater TFA, quite near the observed rainfall-weighted annual mean of 152 ng L(-1), suggesting rainwater TFA in Guangzhou was predominantly originated from these anthropogenic precursors. HCFCs/HFCs accounted for 83.3-96.5% of rainwater TFA observed, while fluoropolymers' contributions were minor (~5%). HFC-134a alone could explain 55.9-90.0% of rainwater TFA, and its contribution would be greatly enhanced with its wide use in mobile air conditioning systems and rapid increase in ambient mixing ratios.

  10. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa.

    PubMed

    Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Chen, Hsi-Chuan; Liu, Jie; Loziuk, Philip; Song, Jina; Williams, Cranos; Muddiman, David C; Sederoff, Ronald R; Chiang, Vincent L

    2015-01-01

    Downregulation of 4-coumaric acid:coenzyme A ligase (4CL) can reduce lignin content in a number of plant species. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes, Ptr4CL3 and Ptr4CL5, catalyze the coenzyme A (CoA) ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits the formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only the formation of 4-coumaroyl-CoA. 4-Coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Metabolic flux in wild-type and PtrC3H3 downregulated P. trichocarpa transgenics has been estimated by absolute protein and metabolite quantification based on liquid chromatography-tandem mass spectrometry, mass action kinetics, and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.

  11. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate.

    PubMed Central

    Russell, R R; Taegtmeyer, H

    1991-01-01

    To determine the temporal relationship between changes in contractile performance and flux through the citric acid cycle in hearts oxidizing acetoacetate, we perfused isolated working rat hearts with either glucose or acetoacetate (both 5 mM) and freeze-clamped the tissue at defined times. After 60 min of perfusion, hearts utilizing acetoacetate exhibited lower systolic and diastolic pressures and lower cardiac outputs. The oxidation of acetoacetate increased the tissue content of 2-oxoglutarate and glutamate and decreased the content of succinyl-CoA suggesting inhibition of citric acid cycle flux through 2-oxoglutarate dehydrogenase. Whereas hearts perfused with either acetoacetate or glucose were similar with respect to their function for the first 20 min, changes in tissue metabolites were already observed within 5 min of perfusion at near-physiological workloads. The addition of lactate or propionate, but not acetate, to hearts oxidizing acetoacetate improved contractile performance, although inhibition of 2-oxoglutarate dehydrogenase was probably not diminished. If lactate or propionate were added, malate and citrate accumulated indicating utilization of anaplerotic pathways for the citric acid cycle. We conclude that a decreased rate of flux through 2-oxoglutarate dehydrogenase in hearts oxidizing acetoacetate precedes, and may be responsible for, contractile failure and is not the result of decreased cardiac work. Further, anaplerosis play an important role in the maintenance of contractile function in hearts utilizing acetoacetate. Images PMID:1671390

  12. Humic acid acts as a natural antidote of graphene by regulating nanomaterial translocation and metabolic fluxes in vivo.

    PubMed

    Hu, Xiangang; Mu, Li; Kang, Jia; Lu, Kaicheng; Zhou, Ruiren; Zhou, Qixing

    2014-06-17

    Graphene-related research has intensified rapidly in a wide range of disciplines, but few studies have examined ecosystem risks, particularly phytotoxicity. This study revealed that graphene significantly inhibits the number of wheat roots and the biosynthesis of chlorophyll, and altered the morphology of shoots. Humic acid (HA), a ubiquitous form of natural organic matter, significantly (P < 0.05) relieved this phytotoxicity and recovered the sharp morphology of shoot tips. Both graphene and graphene-HA were transferred from wheat roots to shoots and were found in the cytoplasms and chloroplasts. HA increased the disordered structure and surface negative charges, and reduced the aggregation of graphene. HA enhanced the storage of graphene in vacuoles, potentially indicating an effective detoxification path. The content of cadaverine, alkane, glyconic acid, and aconitic acid was up-regulated by graphene, greatly contributing to the observed phytotoxicity. Conversely, inositol, phenylalanine, phthalic acid, and octadecanoic acid were up-regulated by graphene-HA. The metabolic pathway analysis revealed that the direction of metabolic fluxes governed nanotoxicity. This work presents the innovative concept that HA acts as a natural antidote of graphene by regulating its translocation and metabolic fluxes in vivo. This knowledge is critical for avoiding the overestimation of nanomaterial risks and can be used to control nanomaterial contamination.

  13. Post-operative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs.

    PubMed

    Deutz, N E; Reijven, P L; Athanasas, G; Soeters, P B

    1992-11-01

    1. After operation, changes in nitrogen metabolism occur. Although increased flux of amino acids from peripheral to splanchnic organs after operation has been described, substrate utilization by the individual organs in the splanchnic area is less well characterized. We were specifically interested in substrate flux across the spleen as it is an organ with important immunological functions. 2. Therefore, hindquarter, gut, spleen and liver fluxes of amino acids, ammonia, glucose, lactate and blood gases were measured for 4 days after a standard operation in pigs. In a separate control group, fluxes were measured 2-3 weeks after this operation and these values were assumed to represent the normal situation. 3. One day after operation, the hindquarter effluxes of glutamine, alanine and several essential amino acids were increased (P > 0.001), but these normalized at the end of the observation period. In the same period, liver glutamine uptake increased (P < 0.01), concomitantly with increased HCO3-, glucose and urea production, which also normalized. Portal drained viscera ammonia production decreased, concomitant with decreased glutamine uptake (P < 0.001). After operation, the splenic release of ammonia increased sevenfold (P < 0.05) and that of lactate increased from -158 +/- 544 to 3294 +/- 642 nmol min-1 kg-1 body weight (P < 0.001). Glucose uptake increased from -964 +/- 632 to -3933 +/- 1524 nmol min-1 kg-1 body weight and glutamine efflux (391 +/- 143) reversed to uptake (-752 +/- 169 nmol min-1 kg-1 body weight) (P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation.

    PubMed

    Tumova, Jana; Malisova, Lucia; Andel, Michal; Trnka, Jan

    2015-10-01

    Unsaturated free fatty acids (FFA) are able to prevent deleterious effects of saturated FFA in skeletal muscle cells although the mechanisms involved are still not completely understood. FFA act as endogenous ligands of peroxisome proliferator-activated receptors (PPAR), transcription factors regulating the expression of genes involved in lipid metabolism. The aim of this study was to determine whether activation of PPARδ, the most common PPAR subtype in skeletal muscle, plays a role in mediating the protective effect of unsaturated FFA on saturated FFA-induced damage in skeletal muscle cells and to examine an impact on mitochondrial respiration. Mouse C2C12 myotubes were treated for 24 h with different concentrations of saturated FFA (palmitic acid), unsaturated FFA (oleic, linoleic and α-linolenic acid), and their combinations. PPARδ agonist GW501516 and antagonist GSK0660 were also used. Both mono- and polyunsaturated FFA, but not GW501516, prevented palmitic acid-induced cell death. Mono- and polyunsaturated FFA proved to be effective activators of PPARδ compared to saturated palmitic acid; however, in combination with palmitic acid their effect on PPARδ activation was blocked and stayed at the levels observed for palmitic acid alone. Unsaturated FFA at moderate physiological concentrations as well as GW501516, but not palmitic acid, mildly uncoupled mitochondrial respiration. Our results indicate that although unsaturated FFA are effective activators of PPARδ, their protective effect on palmitic acid-induced toxicity is not mediated by PPARδ activation and subsequent induction of lipid regulatory genes in skeletal muscle cells. Other mechanisms, such as mitochondrial uncoupling, may underlie their effect.

  15. Physiological Effects of Free Fatty Acid Production in Genetically Engineered Synechococcus elongatus PCC 7942

    PubMed Central

    Ruffing, Anne M.; Jones, Howland D.T.

    2012-01-01

    The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel

  16. Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid.

    PubMed

    Su, Chia-Hung

    2013-02-01

    The catalytic performance and recoverability of several homogeneous acid catalysts (hydrochloric, sulfuric, and nitric acids) for the esterification of enzyme-hydrolyzed free fatty acid (FFA) and methanol were studied. Although all tested catalysts drove the reaction to a high yield, hydrochloric acid was the only catalyst that could be considerably recovered and reused. The kinetics of the esterification reaction catalyzed by hydrochloric acid was investigated under varying catalyst loading (0.1-1M), reaction temperature (303-343K), and methanol/FFA molar ratio (1:1-20:1). In addition, a pseudo-homogeneous kinetic model incorporating the above factors was developed. A good agreement (r(2)=0.98) between the experimental and calculated data was obtained, thus proving the reliability of the model. Furthermore, the reusability of hydrochloric acid in FFA esterification can be predicted by the developed model. The recoverable hydrochloric acid achieved high yields of FFA esterification within five times of reuse.

  17. Hyperinsulinemia and skeletal muscle fatty acid trafficking

    PubMed Central

    Kanaley, Jill A.; Shadid, Samyah; Sheehan, Michael T.; Guo, ZengKui

    2013-01-01

    We hypothesized that insulin alters plasma free fatty acid (FFA) trafficking into intramyocellular (im) long-chain acylcarnitines (imLCAC) and triglycerides (imTG). Overnight-fasted adults (n = 41) received intravenous infusions of [U-13C]palmitate (0400–0900 h) and [U-13C]oleate (0800–1400 h) to label imTG and imLCAC. A euglycemic-hyperinsulinemic (1.0 mU·kg fat-free mass−1·min−1) clamp (0800–1400 h) and two muscle biopsies (0900 h, 1400 h) were performed. The patterns of [U-13C]palmitate incorporation into imTG-palmitate and palmitoylcarnitine were similar to those we reported in overnight postabsorptive adults (saline control); the intramyocellular palmitoylcarnitine enrichment was not different from and correlated with imTG-palmitate enrichment for both the morning (r = 0.38, P = 0.02) and afternoon (r = 0.44, P = 0.006) biopsy samples. Plasma FFA concentrations, flux, and the incorporation of plasma oleate into imTG-oleate during hyperinsulinemia were ∼1/10th of that observed in the previous saline control studies (P < 0.001). At the time of the second biopsy, the enrichment in oleoylcarnitine was <25% of that in imTG-oleate and was not correlated with imTG-oleate enrichment. The intramyocellular nonesterified fatty acid-palmitate-to-imTG-palmitate enrichment ratio was greater (P < 0.05) in women than men, suggesting that sex differences in intramyocellular palmitate trafficking may occur under hyperinsulinemic conditions. We conclude that plasma FFA trafficking into imTG during hyperinsulinemia is markedly suppressed, and these newly incorporated FFA fatty acids do not readily enter the LCAC preoxidative pools. Hyperinsulinemia does not seem to inhibit the entry of fatty acids from imTG pools that were labeled under fasting conditions, possibly reflecting the presence of two distinct imTG pools that are differentially regulated by insulin. PMID:23820622

  18. Carbon Flux Trapping: Highly Efficient Production of Polymer-Grade d-Lactic Acid with a Thermophilic d-Lactate Dehydrogenase.

    PubMed

    Li, Chao; Tao, Fei; Xu, Ping

    2016-08-17

    High production of polymer-grade d-lactic acid is urgently required, particularly for the synthesis of polylactic acid. High-temperature fermentation has multiple advantages, such as lower equipment requirement and energy consumption, which are essential for lowering operating costs. We identified and introduced a unique d-lactate dehydrogenase into a thermotolerant butane-2,3-diol-producing strain. Carbon flux "trapping" was achieved by a "trapping point" created by combination of the introduced enzyme and the host efflux pump, which afforded irreversible transport of d-lactic acid. The overall carbon flux of the engineered strain was significantly enhanced and was redistributed predominantly to d-lactic acid. Under optimized conditions at 50 °C, d-lactic acid reached the highest titer (226.6 g L(-1) ) reported to date. This discovery allows us to extend the carbon flux trapping strategy to engineering complex metabolic networks.

  19. Effects of rice harvest moisture on kernel damage and milled rice surface free fatty acid levels.

    PubMed

    Parker, Amanda M; Proctor, Andrew; Eason, Robert L; Jain, Vishal

    2007-01-01

    Surface free fatty acid (FFA) on milled rice is a key factor in determining rice quality and acceptability to the brewing industry. Rice FFA oxidizes, causing off-flavors and odors to develop, compromising the brewing quality of milled rice. The effect of harvest moisture (13%, 16%, and 20%), harvester type (1688 Case and 9500 John Deere), and rice variety (Cocodrie and Bengal) on harvest damaged rough rice and milled rice surface FFA after drying to 12% moisture and 6 mo rough rice storage was examined. The Case harvester produced more damaged kernels than the John Deere harvester, but this was not reflected in surface FFA development. There were no significant FFA differences in variety or harvester type. Rice harvested at a higher moisture content (20%) produced significantly greater FFA values, with a peak near 0.1%, than rice harvested at lower moisture contents (13% and 16%), which had FFA values near 0.08%. Retention of bran by damaged kernels at high harvest moisture probably was responsible for promoting surface FFA development, but if bran was lost at lower harvest moistures, surface FFA, development was limited. Harvest moisture affected milled rice FFA, although rough rice was dried to 12% immediately after harvesting.

  20. Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host

    PubMed Central

    Ruffing, Anne M.

    2014-01-01

    Microbial free fatty acids (FFAs) have been proposed as a potential feedstock for renewable energy. The ability to directly convert carbon dioxide into FFAs makes cyanobacteria ideal hosts for renewable FFA production. Previous metabolic engineering efforts using the cyanobacterial hosts Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have demonstrated this direct conversion of carbon dioxide into FFAs; however, FFA yields in these hosts are limited by the negative impact of FFA production on the host cell physiology. This work investigates the use of Synechococcus sp. PCC 7002 as a cyanobacterial host for FFA production. In comparison to S. elongatus PCC 7942, Synechococcus sp. PCC 7002 strains produced and excreted FFAs at similar concentrations but without the detrimental effects on host physiology. The enhanced tolerance to FFA production with Synechococcus sp. PCC 7002 was found to be temperature-dependent, with physiological effects such as reduced photosynthetic yield and decreased photosynthetic pigments observed at higher temperatures. Additional genetic manipulations were targeted for increased FFA production, including thioesterases and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Overexpression of non-native RuBisCO subunits (rbcLS) from a psbAI promoter resulted in more than a threefold increase in FFA production, with excreted FFA concentrations reaching >130 mg/L. This work illustrates the importance of host strain selection for cyanobacterial biofuel production and demonstrates that the FFA tolerance of Synechococcus sp. PCC 7002 can allow for high yields of excreted FFA. PMID:25152890

  1. Single-step enantioselective amino acid flux analysis by capillary electrophoresis using on-line sample preconcentration with chemical derivatization.

    PubMed

    Ptolemy, Adam S; Tran, Lara; Britz-McKibbin, Philip

    2006-07-15

    Capillary electrophoresis (CE) represents a versatile platform for integrating sample pretreatment with chemical analysis because of its ability to tune analyte electromigration and band dispersion properties in discontinuous electrolyte systems. In this article, a single-step method that combines on-line sample preconcentration with in-capillary chemical derivatization is developed for rapid, sensitive, and enantioselective analysis of micromolar levels of amino acids that lack intrinsic chromophores by CE with UV detection. Time-resolved electrophoretic studies revealed two distinct stages of amino acid band narrowing within the original long sample injection plug occurring both prior to and after in-capillary labeling via zone passing by ortho-phthalaldehyde/N-acetyl l-cysteine (OPA/NAC). This technique enabled direct analysis of d-amino acids in a 95% enantiomeric excess mixture with sub-micromolar detection limits and minimal sample handling, where the capillary functions as a preconcentrator, microreactor, and chiral selector. On-line sample preconcentration with chemical derivatization CE (SPCD-CE) was applied to study the enantioselective amino acid flux in Escherichia coli bacteria cultures, which demonstrated a unique l-Ala efflux into the extracellular medium. New strategies for high-throughput analyses of low-abundance metabolites are important for understanding fundamental physiological processes in bacteria required for screening the efficacy of new classes of antibiotics as well as altered metabolism in genetically modified mutant strains.

  2. Regulation of adipose branched chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated blood branched chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes. One possibility is that under these conditions there is a reduced cellular utilization and/or lower complete oxidation of BCAAs. White adipose tissue (WAT) has become appreciated as a...

  3. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT silenced lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucros...

  4. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer

    NASA Astrophysics Data System (ADS)

    Cánovas, C. R.; Macías, F.; Pérez-López, R.

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40 days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  5. Amino acid accumulation in frog muscle. II. Are cycloleucine fluxes consistent with an adsorption model for concentrative uptake of amino acid?

    PubMed

    Neville, M C

    1975-03-25

    Cycloleucine accumulation by frog muscle was studied at 0 degrees C and 25 degrees C. At external concentrations less than 5 mM the distribution ratio of cycloleucine is higher at 0 degrees C. At concentrations greater than 5 mM the converse is true due to apparent exclusion of cycloleucine from a larger portion of the cell water at 0 degrees C than at 25 degrees C. The steady state data are consistent with an adsorption model for amino acid accumulation. Flux studies provide a means to rule out this model if all the possible rate-limiting steps in the movement of amino acid into and out of the cell are considered. These steps include intra-cytoplasmic diffusion, desorption from cytoplasmic or membrane sites and passage through the cell membrane. The assumption is made that the rate-limiting step for influx and efflux is the same, allowing the use of either influx or efflux data to examine the model. Diffusion-limited flux is ruled out on the basis of "influx profile analysis" of the time course of cycloleucine entry at both 0 degrees C and 25 degrees C. At least 95% of all intracellular cycloleucine leaves frog muscle cells with a single exponential time course at both 0 degrees C and 25 degrees C. The rate constant of efflux does not vary with cellular concentration. These findings are shown to be incompatible with desorption-limited efflux. They are compatible with membrane-limited efflux only if (i) adsorption sites are located on membranes with direct access to the extracellular space and (ii) the rate constant for desorption is equal to the rate constant of membrane-limited efflux of free amino acid. It is considered unlikely that such a coincidence would occur at both 0 degrees C and 25 degrees C. Therefore, an adsorption model for cycloleucine accumulation in frog muscle appears to be untenable.

  6. A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks

    PubMed Central

    Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M.

    2016-01-01

    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover. PMID:27438600

  7. TCF2 attenuates FFA-induced damage in islet β-cells by regulating production of insulin and ROS.

    PubMed

    Quan, Xiaojuan; Zhang, Lin; Li, Yingna; Liang, Chunlian

    2014-07-30

    Free fatty acids (FFAs) are cytotoxic to pancreatic islet β-cells and play a crucial role in the diabetes disease process. A recent study revealed a down-regulation of transcription factor 2 (TCF2) levels during FFA-mediated cytotoxicity in pancreatic β-cells. However, its function during this process and the underlying mechanism remains unclear. In this study, treatment with palmitic acid (PA) at high levels (400 and 800 μM) decreased β-cell viability and TCF2 protein expression, along with the glucose-stimulated insulin secretion (GSIS). Western and RT-PCR analysis confirmed the positive regulatory effect of TCF2 on GSIS through promotion of the key regulators pancreatic duodenal homeobox-1 (PDX1) and glucose transporter 2 (GLUT2) in β-cells. In addition, both PI3K/AKT and MEK/ERK showed decreased expression in PA (800 μM)-treated β-cells. Overexpression of TCF2 could effectively restore the inhibitory effect of PA on the activation of PI3K/AKT and MEK/ERK as well as β-cell viability, simultaneously, inhibited PA-induced reactive oxygen species (ROS) generation. After blocking the PI3K/AKT and MAPK/ERK signals with their specific inhibitor, the effect of overexpressed TCF2 on β-cell viability and ROS production was obviously attenuated. Furthermore, a protective effect of TCF2 on GSIS by positive modulation of JNK-PDX1/GLUT2 signaling was also confirmed. Accordingly, our study has confirmed that TCF2 positively modulates insulin secretion and further inhibits ROS generation via the PI3K/AKT and MEK/ERK signaling pathways. Our work may provide a new therapeutic target to achieve prevention and treatment of diabetes.

  8. Platelet adhesion, contact phase coagulation activation, and C5a generation of polyethylene glycol acid-grafted high flux cellulosic membrane with varieties of grafting amounts.

    PubMed

    Fushimi, F; Nakayama, M; Nishimura, K; Hiyoshi, T

    1998-10-01

    Grafting of polyethylene glycol chains onto cellulosic membrane can be expected to reduce the interaction between blood (plasma protein and cells) and the membrane surface. Alkylether carboxylic acid (PEG acid) grafted high flux cellulosic membranes for hemodialysis, in which the polyethylene glycol chain bears an alkyl group at one side and a carboxyl group at the other side, have been developed and evaluated. PEG acid-grafted high flux cellulosic membranes with various grafting amounts have been compared with respect to platelet adhesion, the contact phase of blood coagulation, and complement activation in vitro. A new method of quantitating platelet adhesion on hollow-fiber membrane surfaces has been developed, which is based on the determination of lactate dehydrogenase (LDH) activity after lysis of the adhered platelets. PEG acid-grafted high flux cellulosic membranes showed reduced platelet adhesion and complement activation effects in grafting amounts of 200 ppm or higher without detecting adverse effects up to grafting amounts of 850 ppm. The platelet adhesion of a PEG acid-grafted cellulosic membrane depends on both the flux and grafting amounts of the membrane. It is concluded that the grafting of PEG acid onto a cellulosic membrane improves its biocompatibility as evaluated in terms of platelet adhesion, complement activation, and thrombogenicity.

  9. Recent Advances in Detection of Ammonia and Nitric Acid on Short Timescales Suitable for Eddy Covariance Flux Measurements

    NASA Astrophysics Data System (ADS)

    Roscioli, Joseph; Herndon, Scott; Zahniser, Mark; Nelson, David; McManus, Barry

    2015-04-01

    Ammonia and nitric acid play important roles in aerosol, cloud, and NOx chemistry. Accurately measuring these species' concentrations on a fast timescale has historically been complicated due to their tendency to slowly and irreversibly interact with instrument surfaces. Here we present recent efforts aimed at mitigating these effects using new inlet technologies. First, an inlet that combines an inertial impactor with a pressure drop across a critical orifice provides particle removal without a traditional filter. This approach is used to reduce instrumental time responses for NH3 and HNO3 to 3-15 seconds. Second, a further reduction in time response is achieved by entraining functionalized perfluoroalkane vapor into the inlet sampling stream. This "active passivation" method is used to achieve time responses of ~0.5 seconds for both NH3 and HNO3, and is found to be applicable to a variety of inlet designs. These technologies enable fast time response sampling suitable for eddy covariance flux measurements.

  10. Nonoxidative Free Fatty Acid Disposal Is Greater in Young Women than Men

    PubMed Central

    Koutsari, Christina; Basu, Rita; Rizza, Robert A.; Nair, K. Sreekumaran; Khosla, Sundeep

    2011-01-01

    Context: Large increases in systemic free fatty acid (FFA) availability in the absence of a corresponding increase in fatty acid oxidation can create a host of metabolic abnormalities. These adverse responses are thought to be the result of fatty acids being shunted into hepatic very low-density lipoprotein-triglyceride production and/or intracellular lipid storage and signaling pathways because tissues are forced to increase nonoxidative FFA disposal. Objective: The objective of the study was to examine whether variations in postabsorptive nonoxidative FFA disposal within the usual range predict insulin resistance and hypertriglyceridemia. Design: We measured: systemic FFA turnover using a continuous iv infusion of [9–10, 3H]palmitate; substrate oxidation with indirect calorimetry combined with urinary nitrogen excretion; whole-body and peripheral insulin sensitivity with the labeled iv glucose tolerance test minimal model. Setting: the study was conducted at the Mayo Clinic General Clinical Research Center. Participants: Participants included healthy, postabsorptive, nonobese adults (21 women and 21 men). Interventions: There were no interventions. Main Outcome Measures: Nonoxidative FFA disposal (micromoles per minute), defined as the FFA disappearance rate minus fatty acid oxidation. Results: Women had 64% greater nonoxidative FFA disposal rate than men but a better lipid profile and similar insulin sensitivity. There was no significant correlation between nonoxidative FFA disposal and whole-body sensitivity, peripheral insulin sensitivity, or fasting serum triglyceride concentrations in men or women. Conclusions: Healthy nonobese women have greater rates of nonoxidative FFA disposal than men, but this does not appear to relate to adverse health consequences. Understanding the sex-specific interaction between adipose tissue lipolysis and peripheral FFA removal will help to discover new approaches to treat FFA-induced abnormalities. PMID:21123445

  11. Insights into the Indian Peanut Genotypes for ahFAD2 Gene Polymorphism Regulating Its Oleic and Linoleic Acid Fluxes

    PubMed Central

    Nawade, Bhagwat; Bosamia, Tejas C.; Thankappan, Radhakrishnan; Rathnakumar, Arulthambi L.; Kumar, Abhay; Dobaria, Jentilal R.; Kundu, Rahul; Mishra, Gyan P.

    2016-01-01

    In peanut (Arachis hypogaea L.), the customization of fatty acid profile is an evolving area to fulfill the nutritional needs in the modern market. A total of 174 peanut genotypes, including 167 Indian cultivars, 6 advanced breeding lines and “SunOleic95R”—a double mutant line, were investigated using AS-PCRs, CAPS and gene sequencing for the ahFAD2 allele polymorphism, along with its fatty acid compositions. Of these, 80 genotypes were found having substitution (448G>A) mutation only in ahFAD2A gene, while none recorded 1-bp insertion (441_442insA) mutation in ahFAD2B gene. Moreover, 22 wild peanut accessions found lacking both the mutations. Among botanical types, the ahFAD2A mutation was more frequent in ssp. hypogaea (89%) than in ssp. fastigiata (17%). This single allele mutation, found affecting not only oleic to linoleic acid fluxes, but also the composition of other fatty acids in the genotypes studied. Repeated use of a few selected genotypes in the Indian varietal development programs were also eminently reflected in its ahFAD2 allele polymorphism. Absence of known mutations in the wild-relatives indicated the possible origin of these mutations, after the allotetraploidization of cultivated peanut. The SNP analysis of both ahFAD2A and ahFAD2B genes, revealed haplotype diversity of 1.05% and 0.95%, while Ka/Ks ratio of 0.36 and 0.39, respectively, indicating strong purifying selection pressure on these genes. Cluster analysis, using ahFAD2 gene SNPs, showed presence of both mutant and non-mutant genotypes in the same cluster, which might be due the presence of ahFAD2 gene families. This investigation provided insights into the large number of Indian peanut genotypes, covering various aspects related to O/L flux regulation and ahFAD2 gene polymorphism. PMID:27610115

  12. Catalytic synthesis of biodiesel from high free fatty acid-containing feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recyclable and reusable heterogeneous diarylammonium catalysts are highly effective in catalyzing the esterification of the free fatty acid (FFA) present in greases to methyl esters to reduce the FFA content from 12-40 wt% to 0.5 – 1 wt%. The resulting ester-glyceride mixture (pretreated grease) co...

  13. Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions.

    PubMed

    Youngquist, J Tyler; Korosh, Travis C; Pfleger, Brian F

    2016-10-13

    Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing oleochemicals. Many groups have established strains of Escherichia coli capable of producing various chain-length mixtures of FFA by heterologous expression of acyl-ACP thioesterases. For example, high levels of dodecanoic acid are produced by an E. coli strain expressing the Umbellularia californica FatB2 thioesterase, BTE. Prior studies achieved high dodecanoic acid yields and productivities under phosphate-limiting media conditions. In an effort to understand the metabolic and physiological changes that led to increased FFA production, the transcriptome of this strain was assessed as a function of nutrient limitation and growth rate. FFA generation under phosphate limitation led to consistent changes in transporter expression, osmoregulation, and central metabolism. Guided by these results, targeted knockouts led to a further ~11 % in yield in FFA.

  14. Accumulating Evidence Supports a Taste Component for Free Fatty Acids in Humans

    PubMed Central

    Mattes, Richard D.

    2011-01-01

    The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA. PMID:21557960

  15. Changes in the serum composition of free-fatty acids during an intravenous glucose tolerance test.

    PubMed

    Soriguer, Federico; García-Serrano, Sara; García-Almeida, Jose M; Garrido-Sánchez, Lourdes; García-Arnés, Juan; Tinahones, Francisco J; Cardona, Isabel; Rivas-Marín, Jose; Gallego-Perales, Jose L; García-Fuentes, Eduardo

    2009-01-01

    Recent studies suggest that measuring the free-fatty acids (FFA) during an intravenous glucose tolerance test (IVGTT) may provide information about the metabolic associations between serum FFA and carbohydrate and insulin metabolism. We evaluated the FFA profile during an IVGTT and determined whether this test changes the composition and concentration of FFA. An IVGTT was given to 38 severely obese persons before and 7 months after undergoing bariatric surgery and also to 12 healthy, nonobese persons. The concentration and composition of the FFA were studied at different times during the test. The concentration of FFA fell significantly faster during the IVGTT in the controls and in the severely obese persons with normal-fasting glucose (NFG) than in the severely obese persons with impaired-fasting glucose (IFG) or type 2 diabetes mellitus (T2DM) (P < 0.05). Significant differences were found in the time to minimum serum concentrations of FFA (control = NFG < IFG < T2DM) (P < 0.001). These variables improved after bariatric surgery in the three groups. The percentage of monounsaturated and n-6 polyunsaturated FFA in the control subjects and in the obese persons, both before and after surgery, decreased significantly during the IVGTT. In conclusion, during an IVGTT, severely obese persons with IFG or T2DM experienced a lower fall in the FFA than the severely obese persons with NFG and the controls, becoming normal after bariatric surgery.

  16. [EFfect of quinazolone-alkyl-carboxylic acid derivatives on the transmembrane Ca2+ ion flux mediated by AMPA receptors].

    PubMed

    Szárics, Eva; LaszTóczi, Bálint; Nyikos, Lajos; Barabás, Péter; Kovács, Ilona; Skuban, Nina; Nagy, Péter I; Kökösi, József; Takácsné, Novák Krisztina; Kardos, Julianna

    2002-01-01

    The excitatory neurotransmitter, Glu, plays a crucial role in many sensory and motor functions as well as in brain development, learning and memory and it is also involved in the pathogenesis of a number of neurological disorders, including epilepsy, Alzheimer's and Parkinson's diseases. Therefore, the study of Glu receptors (GluRs) is of therapeutical importance. We showed here by fluorescence monitoring of transmembrane Ca2+ ion fluxes in response to (S)-alpha-amino-3-hidroxi-5-metil-4-izoxazol propionic acid ((S)-AMPA) on the time scale of 0.00004-10 s that Ca2+ ion influx proceeds through faster and slower desensitizing receptors. Pharmacological isolation of the slower and faster desensitizing AMPA receptor was possible by fluorescence monitoring of Ca2+ ion translocation in response to (S)-AMPA in the presence and absence of various 2-methyl-4-oxo-3H-quinazoline-3-alkyl-carboxilic acid derivatives (Qxs): the acetic acid Q1 inhibits the slower desensitizing receptor response specifically, while the acetyl-piperidine Q5 is a more potent inhibitor of the faster desensitizing receptor response. In addition, spontaneous interictal activity, as induced by high [K+] conditions in hippocampal slices, was reduced significantly by Q5, suggesting a possible anticonvulsant property of Q5. Substitutions of Qxs into the GluR2 S1S2 binding core were consistent with their effect by causing variable degree of S1S2 bridging interaction as one of the main determinants of AMPA receptor agonist activity. The exploitation of differences between similar receptors will be important in the development and use of drugs with high pharmacological specificity.

  17. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus

    PubMed Central

    Rodríguez-Carrio, Javier; López, Patricia; Sánchez, Borja; González, Sonia; Gueimonde, Miguel; Margolles, Abelardo; de los Reyes-Gavilán, Clara G.; Suárez, Ana

    2017-01-01

    Metabolic impairments are a frequent hallmark of systemic lupus erythematosus (SLE). Increased serum levels of free fatty acids (FFA) are commonly found in these patients, although the underlying causes remain elusive. Recently, it has been suggested that factors other than inflammation or clinical features may be involved. The gut microbiota is known to influence the host metabolism, the production of short-chain fatty acids (SCFA) playing a potential role. Taking into account that lupus patients exhibit an intestinal dysbiosis, we wondered whether altered FFA levels may be associated with the intestinal microbial composition in lupus patients. To this aim, total and specific serum FFA levels, fecal SCFA levels, and gut microbiota composition were determined in 21 SLE patients and 25 healthy individuals. The Firmicutes to Bacteroidetes (F/B) ratio was strongly associated with serum FFA levels in healthy controls (HC), even after controlling for confounders. However, this association was not found in lupus patients, where a decreased F/B ratio and increased FFA serum levels were noted. An altered production of SCFA was related to the intestinal dysbiosis in lupus, while SCFA levels paralleled those of serum FFA in HC. Although a different serum FFA profile was not found in SLE, specific FFA showed distinct patterns on a principal component analysis. Immunomodulatory omega-3 FFA were positively correlated to the F/B ratio in HC, but not in SLE. Furthermore, divergent associations were observed for pro- and anti-inflammatory FFA with endothelial activation biomarkers in lupus patients. Overall, these findings support a link between the gut microbial ecology and the host metabolism in the pathological framework of SLE. A potential link between intestinal dysbiosis and surrogate markers of endothelial activation in lupus patients is supported, FFA species having a pivotal role. PMID:28167944

  18. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus.

    PubMed

    Rodríguez-Carrio, Javier; López, Patricia; Sánchez, Borja; González, Sonia; Gueimonde, Miguel; Margolles, Abelardo; de Los Reyes-Gavilán, Clara G; Suárez, Ana

    2017-01-01

    Metabolic impairments are a frequent hallmark of systemic lupus erythematosus (SLE). Increased serum levels of free fatty acids (FFA) are commonly found in these patients, although the underlying causes remain elusive. Recently, it has been suggested that factors other than inflammation or clinical features may be involved. The gut microbiota is known to influence the host metabolism, the production of short-chain fatty acids (SCFA) playing a potential role. Taking into account that lupus patients exhibit an intestinal dysbiosis, we wondered whether altered FFA levels may be associated with the intestinal microbial composition in lupus patients. To this aim, total and specific serum FFA levels, fecal SCFA levels, and gut microbiota composition were determined in 21 SLE patients and 25 healthy individuals. The Firmicutes to Bacteroidetes (F/B) ratio was strongly associated with serum FFA levels in healthy controls (HC), even after controlling for confounders. However, this association was not found in lupus patients, where a decreased F/B ratio and increased FFA serum levels were noted. An altered production of SCFA was related to the intestinal dysbiosis in lupus, while SCFA levels paralleled those of serum FFA in HC. Although a different serum FFA profile was not found in SLE, specific FFA showed distinct patterns on a principal component analysis. Immunomodulatory omega-3 FFA were positively correlated to the F/B ratio in HC, but not in SLE. Furthermore, divergent associations were observed for pro- and anti-inflammatory FFA with endothelial activation biomarkers in lupus patients. Overall, these findings support a link between the gut microbial ecology and the host metabolism in the pathological framework of SLE. A potential link between intestinal dysbiosis and surrogate markers of endothelial activation in lupus patients is supported, FFA species having a pivotal role.

  19. Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology.

    PubMed

    Hopkins, Mandi M; Meier, Kathryn E

    2017-01-01

    The effects of fatty acids on cancer cells have been studied for decades. The roles of dietary long-chain n-3 polyunsaturated fatty acids, and of microbiome-generated short-chain butyric acid, have been of particular interest over the years. However, the roles of free fatty acid receptors (FFARs) in mediating effects of fatty acids in tumor cells have only recently been examined. In reviewing the literature, the data obtained to date indicate that the long-chain FFARs (FFA1 and FFA4) play different roles than the short-chain FFARs (FFA2 and FFA3). Moreover, FFA1 and FFA4 can in some cases mediate opposing actions in the same cell type. Another conclusion is that different types of cancer cells respond differently to FFAR activation. Currently, the best-studied models are prostate, breast, and colon cancer. FFA1 and FFA4 agonists can inhibit proliferation and migration of prostate and breast cancer cells, but enhance growth of colon cancer cells. In contrast, FFA2 activation can in some cases inhibit proliferation of colon cancer cells. Although the available data are sometimes contradictory, there are several examples in which FFAR agonists inhibit proliferation of cancer cells. This is a unique response to GPCR activation that will benefit from a mechanistic explanation as the field progresses. The development of more selective FFAR agonists and antagonists, combined with gene knockout approaches, will be important for unraveling FFAR-mediated inhibitory effects. These inhibitory actions, mediated by druggable GPCRs, hold promise for cancer prevention and/or therapy.

  20. GLYCOENGINEERING OF ESTERASE ACTIVITY THROUGH METABOLIC FLUX-BASED MODULATION OF SIALIC ACID.

    PubMed

    Mathew, Mohit; Tan, Elaine; Labonte, Jason W; Shah, Shivam; Saeui, Christopher T; Liu, Lingshu; Bhattacharya, Rahul; Bovonratwet, Patawut; Gray, Jeffrey J; Yarema, Kevin

    2017-02-20

    This report describes the metabolic glycoengineering (MGE) of intracellular esterase activity in human colon cancer (LS174T) and Chinese hamster ovary (CHO) cells. In silico analysis of the carboxylesterases CES1 and CES2 suggested that these enzymes are modified with sialylated N-glycans, which are proposed to stabilize the active multimeric forms of these enzymes. This premise was supported by treating cells with butanolylated ManNAc to increase sialylation, which in turn increased esterase activity. By contrast, hexosamine analogs not targeted to sialic acid biosynthesis (e.g., butanoylated GlcNAc or GalNAc) had minimal impact. Measurement of mRNA and protein confirmed that esterase activity was controlled through glycosylation and not through transcription or translation. Azide-modified ManNAc analogs widely used in MGE also enhanced esterase activity and provided a way to enrich targeted "glycoengineered" proteins (such as CES2), thereby providing unambiguous evidence that the compounds were converted to sialosides and installed into the glycan structures of esterases as intended. Overall, this study provides a pioneering example of the modulation of intracellular enzyme activity through MGE, which expands the value of this technology from its current status as a labeling strategy and modulator of cell surface biological events.

  1. Beyond the FFA: The Role of the Ventral Anterior Temporal Lobes in Face Processing

    PubMed Central

    Collins, Jessica A.; Olson, Ingrid R.

    2014-01-01

    Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge. PMID:24937188

  2. Crystal Chemistry of the Potassium and Rubidium Uranyl Borate Families Derived from Boric Acid Fluxes

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-07-19

    The reaction of uranyl nitrate with a large excess of molten boric acid in the presence of potassium or rubidium nitrate results in the formation of three new potassium uranyl borates, K{sub 2}[(UO{sub 2}){sub 2}B{sub 12}O{sub 19}(OH){sub 4}]·0.3H{sub 2}O (KUBO-1), K[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}] (KUBO-2), and K[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (KUBO-3) and two new rubidium uranyl borates Rb{sub 2}[(UO{sub 2}){sub 2}B{sub 13}O{sub 20}(OH){sub 5}] (RbUBO-1) and Rb[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (RbUBO-2). The latter is isotypic with KUBO-3. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+}, cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create an UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers and are directed approximately perpendicular to the sheets. All of these compounds adopt layered structures. With the exception of KUBO-1, the structures are all centrosymmetric. All of these compounds fluoresce when irradiated with long-wavelength UV light. The fluorescence spectrum yields well-defined vibronically coupled charge-transfer features.

  3. Modulating Membrane Composition Alters Free Fatty Acid Tolerance in Escherichia coli

    PubMed Central

    Lennen, Rebecca M.; Pfleger, Brian F.

    2013-01-01

    Microbial synthesis of free fatty acids (FFA) is a promising strategy for converting renewable sugars to advanced biofuels and oleochemicals. Unfortunately, FFA production negatively impacts membrane integrity and cell viability in Escherichia coli, the dominant host in which FFA production has been studied. These negative effects provide a selective pressure against FFA production that could lead to genetic instability at industrial scale. In prior work, an engineered E. coli strain harboring an expression plasmid for the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase was shown to have highly elevated levels of unsaturated fatty acids in the cell membrane. The change in membrane content was hypothesized to be one underlying cause of the negative physiological effects associated with FFA production. In this work, a connection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase expression, and unsaturated membrane content was established. A strategy for restoring normal membrane saturation levels and increasing tolerance towards endogenous production of FFAs was implemented by modulating acyl-ACP pools with a second thioesterase (from Geobacillus sp. Y412MC10) that primarily targets medium chain length, unsaturated acyl-ACPs. The strategy succeeded in restoring membrane content and improving viability in FFA producing E. coli while maintaining FFA titers. However, the restored fitness did not increase FFA productivity, indicating the existence of additional metabolic or regulatory barriers. PMID:23349781

  4. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli.

    PubMed

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Microbial synthesis of free fatty acids (FFA) is a promising strategy for converting renewable sugars to advanced biofuels and oleochemicals. Unfortunately, FFA production negatively impacts membrane integrity and cell viability in Escherichia coli, the dominant host in which FFA production has been studied. These negative effects provide a selective pressure against FFA production that could lead to genetic instability at industrial scale. In prior work, an engineered E. coli strain harboring an expression plasmid for the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase was shown to have highly elevated levels of unsaturated fatty acids in the cell membrane. The change in membrane content was hypothesized to be one underlying cause of the negative physiological effects associated with FFA production. In this work, a connection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase expression, and unsaturated membrane content was established. A strategy for restoring normal membrane saturation levels and increasing tolerance towards endogenous production of FFAs was implemented by modulating acyl-ACP pools with a second thioesterase (from Geobacillus sp. Y412MC10) that primarily targets medium chain length, unsaturated acyl-ACPs. The strategy succeeded in restoring membrane content and improving viability in FFA producing E. coli while maintaining FFA titers. However, the restored fitness did not increase FFA productivity, indicating the existence of additional metabolic or regulatory barriers.

  5. Modeling of free fatty acid dynamics: insulin and nicotinic acid resistance under acute and chronic treatments.

    PubMed

    Andersson, Robert; Kroon, Tobias; Almquist, Joachim; Jirstrand, Mats; Oakes, Nicholas D; Evans, Neil D; Chappel, Michael J; Gabrielsson, Johan

    2017-02-21

    Nicotinic acid (NiAc) is a potent inhibitor of adipose tissue lipolysis. Acute administration results in a rapid reduction of plasma free fatty acid (FFA) concentrations. Sustained NiAc exposure is associated with tolerance development (drug resistance) and complete adaptation (FFA returning to pretreatment levels). We conducted a meta-analysis on a rich pre-clinical data set of the NiAc-FFA interaction to establish the acute and chronic exposure-response relations from a macro perspective. The data were analyzed using a nonlinear mixed-effects framework. We also developed a new turnover model that describes the adaptation seen in plasma FFA concentrations in lean Sprague-Dawley and obese Zucker rats following acute and chronic NiAc exposure. The adaptive mechanisms within the system were described using integral control systems and dynamic efficacies in the traditional [Formula: see text] model. Insulin was incorporated in parallel with NiAc as the main endogenous co-variate of FFA dynamics. The model captured profound insulin resistance and complete drug resistance in obese rats. The efficacy of NiAc as an inhibitor of FFA release went from 1 to approximately 0 during sustained exposure in obese rats. The potency of NiAc as an inhibitor of insulin and of FFA release was estimated to be 0.338 and 0.436 [Formula: see text], respectively, in obese rats. A range of dosing regimens was analyzed and predictions made for optimizing NiAc delivery to minimize FFA exposure. Given the exposure levels of the experiments, the importance of washout periods in-between NiAc infusions was illustrated. The washout periods should be [Formula: see text]2 h longer than the infusions in order to optimize 24 h lowering of FFA in rats. However, the predicted concentration-response relationships suggests that higher AUC reductions might be attained at lower NiAc exposures.

  6. An Examination of Middle School Enrollment in Agricultural Education and Membership in the National FFA Organization in the United States. Summary of Research 73.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; And Others

    The status of middle and junior high school agricultural education and Future Farmers of America (FFA) programs in the United States was the focus of a study. Data were collected through a census of the FFA executive secretaries and a survey of a purposive sample of 27 successful middle or junior high school agricultural education programs in 9…

  7. Factors Related to the Success of New Mexico Vocational Agriculture Teachers as FFA Advisors. Summary of Research.

    ERIC Educational Resources Information Center

    Vaughan, Paul R.; Bender, Ralph E.

    This study was designed to (1) identify competencies in which a New Mexico vocational agriculture teacher's perceived level of proficiency was related to the degree of success of his Future Farmers of America (FFA) chapter, (2) identify characteristics possessed by New Mexico vocational agriculture teachers which showed a significant relationship…

  8. Enhancement of free fatty acid production in Saccharomyces cerevisiae by control of fatty acyl-CoA metabolism.

    PubMed

    Chen, Liwei; Zhang, Jianhua; Lee, Jaslyn; Chen, Wei Ning

    2014-08-01

    Production of biofuels derived from microbial fatty acids has attracted great attention in recent years owing to their potential to replace petroleum-derived fuels. To be cost competitive with current petroleum fuel, flux toward the direct precursor fatty acids needs to be enhanced to approach high yields. Herein, fatty acyl-CoA metabolism in Saccharomyces cerevisiae was engineered to accumulate more free fatty acids (FFA). For this purpose, firstly, haploid S. cerevisiae double deletion strain △faa1△faa4 was constructed, in which the genes FAA1 and FAA4 encoding two acyl-CoA synthetases were deleted. Then the truncated version of acyl-CoA thioesterase ACOT5 (Acot5s) encoding Mus musculus peroxisomal acyl-CoA thioesterase 5 was expressed in the cytoplasm of the strain △faa1△faa4. The resulting strain △faa1△faa4 [Acot5s] accumulated more extracellular FFA with higher unsaturated fatty acid (UFA) ratio as compared to the wild-type strain and double deletion strain △faa1△faa4. The extracellular total fatty acids (TFA) in the strain △faa1△faa4 [Acot5s] increased to 6.43-fold as compared to the wild-type strain during the stationary phase. UFA accounted for 42 % of TFA in the strain △faa1△faa4 [Acot5s], while no UFA was detected in the wild-type strain. In addition, the expression of Acot5s in △faa1△faa4 restored the growth, which indicates that FFA may not be the reason for growth inhibition in the strain △faa1△faa4. RT-PCR results demonstrated that the de-repression of fatty acid synthesis genes led to the increase of extracellular fatty acids. The study presented here showed that through control of the acyl-CoA metabolism by deleting acyl-CoA synthetase and expressing thioesterase, more FFA could be produced in S. cerevisiae, demonstrating great potential for exploitation in the platform of microbial fatty acid-derived biofuels.

  9. Relationship between body fat mass and free fatty acid kinetics in men and women.

    PubMed

    Mittendorfer, Bettina; Magkos, Faidon; Fabbrini, Elisa; Mohammed, B Selma; Klein, Samuel

    2009-10-01

    An increased release of free fatty acids (FFAs) into plasma likely contributes to the metabolic complications associated with obesity. However, the relationship between body fat and FFA metabolism is unclear because of conflicting results from different studies. The goal of our study was to determine the inter-relationships between body fat, sex, and plasma FFA kinetics. We determined FFA rate of appearance (Ra) in plasma, by using stable isotopically labeled tracer techniques, during basal conditions in 106 lean, overweight, and obese, nondiabetic subjects (43 men and 63 women who had 7.0-56.0% body fat). Correlation analyses demonstrated: (i) no differences between men and women in the relationship between fat mass (FM) and total FFA Ra (micromol/min); (ii) total FFA Ra increased linearly with increasing FM (r=0.652, P<0.001); (iii) FFA Ra per kg FM decreased in a curvilinear fashion with increasing FM (r=-0.806; P<0.001); (iv) FFA Ra in relationship to fat-free mass (FFM) was greater in obese than lean subjects and greater in women than in men; and (v) abdominal fat itself was not an important determinant of total FFA Ra. We conclude that total body fat, not regional fat distribution or sex, is an important modulator of the rate of FFA release into plasma. Although increased adiposity is associated with a decrease in fatty acid release in relationship to FM, this downregulation is unable to completely compensate for the increase in FM, so total FFA Ra and FFA Ra with respect to FFM are greater in women than in men and in obese than in lean subjects.

  10. GPR40/FFA1 and Neutral Sphingomyelinase Are Involved in Palmitate-Boosted Inflammatory Response of Microvascular Endothelial Cells to LPS

    PubMed Central

    Lu, Zhongyang; Li, Yanchun; Jin, Junfei; Zhang, Xiaoming; Hannun, Yusuf A.; Huang, Yan

    2015-01-01

    Objectives Increased levels of both saturated fatty acids (SFAs) and lipopolysaccharide (LPS) are associated with type 2 diabetes. However, it remains largely unknown how SFAs interact with LPS to regulate inflammatory responses in microvascular endothelial cells (MIC ECs) that are critically involved in atherosclerosis as a diabetic complication. In this study, we compared the effects of LPS, palmitic acid (PA), the most abundant saturated fatty acid, or the combination of LPS and PA on interleukin (IL)-6 expression by MIC ECs and explored the underlying mechanisms. Methods Human cardiac MIC ECs were treated with LPS, PA and LPS plus PA and the regulatory pathways including receptors, signal transduction, transcription and post-transcription, and sphingolipid metabolism for IL-6 expression were investigated. Results G protein-coupled receptor (GPR)40 or free fatty acid receptor 1 (FFA1), but not toll-like receptor 4, was involved in PA-stimulated IL-6 expression. PA not only stimulated IL-6 expression by itself, but also remarkably enhanced LPS-stimulated IL-6 expression via a cooperative stimulation on mitogen-activated protein kinase and nuclear factor kappa B signaling pathways, and both transcriptional and post-transcriptional activation. Furthermore, PA induced a robust neutral sphingomyelinase (nSMase)-mediated sphingomyelin hydrolysis that was involved in PA-augmented IL-6 upregulation. Conclusion PA boosted inflammatory response of microvascular endothelial cells to LPS via GPR40 and nSMase. PMID:25795558

  11. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]NMR.

    PubMed Central

    Hyder, F; Chase, J R; Behar, K L; Mason, G F; Siddeek, M; Rothman, D L; Shulman, R G

    1996-01-01

    NMR spectroscopy was used to test recent proposals that the additional energy required for brain activation is provided through nonoxidative glycolysis. Using localized NMR spectroscopic methods, the rate of C4-glutamate isotopic turnover from infused [1-(13)C]glucose was measured in the somatosensory cortex of rat brain both at rest and during forepaw stimulation. Analysis of the glutamate turnover data using a mathematical model of cerebral glucose metabolism showed that the tricarboxylic acid cycle flux [(V(TCA)] increased from 0.49 +/- 0.03 at rest to 1.48 +/- 0.82 micromol/g/min during stimulation (P < 0.01). The minimum fraction of C4-glutamate derived from C1-glucose was approximately 75%, and this fraction was found in both the resting and stimulated rats. Hence, the percentage increase in oxidative cerebral metabolic rate of glucose use (CMRglc) equals the percentage increases in V(TCA) and cerebral metabolic rate of oxygen consumption (CMRO2). Comparison with previous work for the same rat model, which measured total CMRglc [Ueki, M., Linn, F. & Hossman, K. A. (1988) J. Cereb. Blood Flow Metab. 8, 486-4941, indicates that oxidative CMRglc supplies the majority of energy during sustained brain activation. Images Fig. 2 PMID:8755523

  12. Bile acid flux through portal but not peripheral veins inhibits CYP7A1 expression without involvement of ileal FGF19 in rabbits.

    PubMed

    Shang, Quan; Guo, Grace L; Honda, Akira; Shi, Daniel; Saumoy, Monica; Salen, Gerald; Xu, Guorong

    2014-08-15

    It was proposed that CYP7A1 expression is suppressed through the gut-hepatic signaling pathway fibroblast growth factor (FGF) 15/19-fibroblast growth factor receptor 4, which is initiated by activation of farnesoid X receptor in the intestine rather than in the liver. The present study tested whether portal bile acid flux alone without ileal FGF19 could downregulate CYP7A1 expression in rabbits. A rabbit model was developed by infusing glycodeoxycholic acid (GDCA) through the splenic vein to bypass ileal FGF19. Study was conducted in four groups of rabbits: control; bile fistula + bovine serum albumin solution perfusion (BF); BF + GDCA (by portal perfusion); and BF + GDCA-f (by femoral perfusion). Compared with only BF, BF + GDCA (6 h portal perfusion) suppressed CYP7A1 mRNA, whereas BF + GDCA-f (via femoral vein) with the same perfusion rate of GDCA did not show inhibitory effects. Meanwhile, there was a decrease in ileal FGF19 expression and portal FGF19 protein levels, but an equivalent increase in biliary bile acid outputs in both GDCA perfusion groups. This study demonstrated that portal bile acid flux alone downregulated CYP7A1 expression with diminished FGF19 expression and protein levels, whereas the same bile acid flux reaching the liver through the hepatic artery via femoral vein had no inhibitory effect on CYP7A1. We propose that bile acid flux through the portal venous system may be a kind of "intestinal factor" that suppresses CYP7A1 expression.

  13. Methane Suppression: The Impacts of Fe(III) and Humic Acids on Net Methane Flux from Arctic Tundra Wetlands in Alaska and Finland (Invited)

    NASA Astrophysics Data System (ADS)

    Lipson, D.; Miller, K.; Lai, C.

    2013-12-01

    Arctic soils contain large reservoirs of carbon (C) that are vulnerable to loss from climatic warming. However the potential global impacts of this C depend on whether it is lost primarily in the form of methane (CH4) or carbon dioxide (CO2), two gases with very different greenhouse warming potentials. In anaerobic environments, the relative production of CH4 vs. CO2 may be controlled by the presence of alternative terminal electron acceptors, which allow more thermodynamically favorable anaerobic respiratory pathways to dominate over methanogenesis. This work investigated how the addition of terminal electron acceptors, ferric iron (Fe(III)) and humic acids, affected net CH4 fluxes from high-latitude wetland ecosystems. We conducted two manipulative field experiments in Barrow, Alaska (71° N) and Finnish Lapland (69° N). The ecosystem in Barrow was known from previous studies to be rich in Fe(III) and to harbor a microbial community that is dominated by Fe(III)- and humic acid-reducing microorganisms. The role of these alternative electron acceptors had not previously been studied at the Finnish site. CH4 and CO2 fluxes were measured using a portable trace gas analyzer from experimental plots, before and after amendments with Fe(III) (in the chelated form, ferric nitrilotriacetic acid), humic acids, or water as a control. Both in the ecosystem with permafrost and naturally high levels of soil Fe (Barrow, AK) and in the ecosystem with no permafrost and naturally low levels of soil Fe (Petsikko, Finland), the addition of the alternative electron acceptors Fe(III) and humic acids significantly reduced net CH4 flux. CO2 fluxes were not significantly altered by the treatments. The reduction in CH4 flux persisted for at least several weeks post-treatment. There was no significant difference between the reduction caused by humic acids versus that from Fe(III). These results show that the suppression of CH4 flux by Fe(III) and humic acids is a widespread phenomenon that

  14. Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis.

    PubMed

    Jágerszki, Gyula; Gyurcsányi, Róbert E; Höfler, Lajos; Pretsch, Ernö

    2007-06-01

    The inner walls of gold nanotubes, prepared by template synthesis in the nanopores of polycarbonate track etch membranes, have been chemically modified with peptide nucleic acid (PNA) and used for label-free quantification of complementary DNA sequences. Selective binding of DNA to the PNA-modified nanotubes is shown to decrease the flux of optically detected anionic markers through the nanotubes in a concentration-dependent manner. The strong dependence of the biorecognition-modulated ion transport through the nanopores on the ionic strength suggests a dominantly electrostatic exclusion mechanism of the ion flux decrease as a result of DNA binding to the PNA-modified nanopores.

  15. Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    PubMed

    Priesnitz, Christian; Niklas, Jens; Rose, Thomas; Sandig, Volker; Heinzle, Elmar

    2012-03-01

    This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and finally metabolic fluxes calculated by metabolite balancing were compared. Growth and A1AT production decreased with increasing ammonia concentration. The maximum A1AT concentration decreased from 0.63g/l to 0.51g/l. Central energy metabolism remained relatively unaffected exhibiting only slightly increased glycolytic flux at high initial ammonia concentration in the medium. However, the amino acid metabolism was significantly changed. Fluxes through transaminases involved in amino acid degradation were reduced concurrently with a reduced uptake of amino acids. On the other hand fluxes through transaminases working in the direction of amino acid synthesis, i.e., alanine and phosphoserine, were increased leading to increased storage of excess nitrogen in extracellular alanine and serine. Glutamate dehydrogenase flux was reversed increasingly fixing free ammonia with increasing ammonia concentration. Urea production additionally observed was associated with arginine uptake by the cells and did not increase at high ammonia stress. It was therefore not used as nitrogen sink to remove excess ammonia. The results indicate that the AGE1.HN cell line can adapt to ammonia concentrations usually present during the cultivation process to a large extent by changing metabolism but with slightly reduced A1AT production and growth.

  16. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly.

    PubMed Central

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-01-01

    Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops. PMID:12023882

  17. Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly.

    PubMed

    Ramli, Umi S; Baker, Darren S; Quant, Patti A; Harwood, John L

    2002-06-01

    Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops.

  18. Selective cannabinoid-1 receptor blockade benefits fatty acid and triglyceride metabolism significantly in weight-stable nonhuman primates.

    PubMed

    Vaidyanathan, Vidya; Bastarrachea, Raul A; Higgins, Paul B; Voruganti, V Saroja; Kamath, Subhash; DiPatrizio, Nicholas V; Piomelli, Daniele; Comuzzie, Anthony G; Parks, Elizabeth J

    2012-09-01

    The goal of this study was to determine whether administration of the CB₁ cannabinoid receptor antagonist rimonabant would alter fatty acid flux in nonhuman primates. Five adult baboons (Papio Sp) aged 12.1 ± 4.7 yr (body weight: 31.9 ± 2.1 kg) underwent repeated metabolic tests to determine fatty acid and TG flux before and after 7 wk of treatment with rimonabant (15 mg/day). Animals were fed ad libitum diets, and stable isotopes were administered via diet (d₃₁-tripalmitin) and intravenously (¹³C₄-palmitate, ¹³C₁-acetate). Plasma was collected in the fed and fasted states, and blood lipids were analyzed by GC-MS. DEXA was used to assess body composition and a hyperinsulinemic euglycemic clamp used to assess insulin-mediated glucose disposal. During the study, no changes were observed in food intake, body weight, plasma, and tissue endocannabinoid concentrations or the quantity of liver-TG fatty acids originating from de novo lipogenesis (19 ± 6 vs. 16 ± 5%, for pre- and posttreatment, respectively, P = 0.39). However, waist circumference was significantly reduced 4% in the treated animals (P < 0.04), glucose disposal increased 30% (P = 0.03), and FFA turnover increased 37% (P = 0.02). The faster FFA flux was consistent with a 43% reduction in these fatty acids used for TRL-TG synthesis (40 ± 3 vs. 23 ± 4%, P = 0.02) and a twofold increase in TRL-TG turnover (1.5 ± 0.9 vs. 3.1 ± 1.4 μmol·kg⁻¹·h⁻¹, P = 0.03). These data support the potential for a strong effect of CB₁ receptor antagonism at the level of adipose tissue, resulting in improvements in fasting turnover of fatty acids at the whole body level, central adipose storage, and significant improvements in glucose homeostasis.

  19. RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background High-energy-density biofuels are typically derived from the fatty acid pathway, thus establishing free fatty acids (FFAs) as important fuel precursors. FFA production using photosynthetic microorganisms like cyanobacteria allows for direct conversion of carbon dioxide into fuel precursors. Recent studies investigating cyanobacterial FFA production have demonstrated the potential of this process, yet FFA production was also shown to have negative physiological effects on the cyanobacterial host, ultimately limiting high yields of FFAs. Results Cyanobacterial FFA production was shown to generate reactive oxygen species (ROS) and lead to increased cell membrane permeability. To identify genetic targets that may mitigate these toxic effects, RNA-seq analysis was used to investigate the host response of Synechococcus elongatus PCC 7942. Stress response, nitrogen metabolism, photosynthesis, and protein folding genes were up-regulated during FFA production while genes involved in carbon and hydrogen metabolisms were down-regulated. Select genes were targeted for mutagenesis to confirm their role in mitigating FFA toxicity. Gene knockout of two porins and the overexpression of ROS-degrading proteins and hypothetical proteins reduced the toxic effects of FFA production, allowing for improved growth, physiology, and FFA yields. Comparative transcriptomics, analyzing gene expression changes associated with FFA production and other stress conditions, identified additional key genes involved in cyanobacterial stress response. Conclusions A total of 15 gene targets were identified to reduce the toxic effects of FFA production. While single-gene targeted mutagenesis led to minor increases in FFA production, the combination of these targeted mutations may yield additional improvement, advancing the development of high-energy-density fuels derived from cyanobacteria. PMID:23919451

  20. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    SciTech Connect

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han; Ge, Ming; Portman, Michael A.

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acids (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.

  1. Impaired cytosolic NADH shuttling and elevated UCP3 contribute to inefficient citric acid cycle flux support of postischemic cardiac work in diabetic hearts.

    PubMed

    Banke, Natasha H; Lewandowski, E Douglas

    2015-02-01

    Diabetic hearts are subject to more extensive ischemia/reperfusion (ISC/REP) damage. This study examined the efficiency of citric acid cycle (CAC) flux and the transfer of cytosolic reducing equivalents into the mitochondria for oxidative support of cardiac work following ISC/REP in hearts of c57bl/6 (NORM) and type 2 diabetic, db/db mouse hearts. Flux through the CAC and malate-aspartate shuttle (MA) were monitored via dynamic (13)C NMR of isolated hearts perfused with (13)C palmitate+glucose. MA flux was lower in db/db than NORM. Oxoglutarate malate carrier (OMC) was elevated in the db/db heart, suggesting a compensatory response to low NADHc. Baseline CAC flux per unit work (rate-pressure-product, RPP) was similar between NORM and db/db, but ISC/REP reduced the efficiency of CAC flux/RPP by 20% in db/db. ISC/REP also increased UCP3 transcription, indicating potential for greater uncoupling. Therefore, ISC/REP induces inefficient carbon utilization through the CAC in hearts of diabetic mice due to the combined inefficiencies in NADHc transfer per OMC content and increased uncoupling via UCP3. Ischemia and reperfusion exacerbated pre-existing mitochondrial defects and metabolic limitations in the cytosol of diabetic hearts. These limitations and defects render diabetic hearts more susceptible to inefficient carbon fuel utilization for oxidative energy metabolism.

  2. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil.

    PubMed

    Scharko, Nicole K; Schütte, Ursel M E; Berke, Andrew E; Banina, Lauren; Peel, Hannah R; Donaldson, Melissa A; Hemmerich, Chris; White, Jeffrey R; Raff, Jonathan D

    2015-12-01

    Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.

  3. Boronic acid flux synthesis and crystal growth of uranium and neptunium boronates and borates: a low-temperature route to the first neptunium(V) borate.

    PubMed

    Wang, Shuao; Alekseev, Evgeny V; Miller, Hannah M; Depmeier, Wulf; Albrecht-Schmitt, Thomas E

    2010-11-01

    Molten methylboronic acid has been used as a reactive flux to prepare the first neptunium(V) borate, NpO(2)[B(3)O(4)(OH)(2)] (NpBO-1), and the first actinide boronate, UO(2)(CH(3)BO(2))(H(2)O) (UCBO-1). NpBO-1 contains cation-cation interactions between the neptunyl units. In contrast, the presence of the methyl groups in the uranyl boronate leads to a one-dimensional structure.

  4. Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

    PubMed Central

    Watterson, Kenneth R.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3 activation. In this review, we therefore show that FFA receptor agonism is a potential clinical target for T2D treatment and discuss ongoing drug development programs within industry and academia aimed at improving the safety and effectiveness of these potential treatments. PMID:25221541

  5. 13C-NMR spectroscopic evaluation of the citric acid cycle flux in conditions of high aspartate transaminase activity in glucose-perfused rat hearts.

    PubMed

    Tran-Dinh, S; Hoerter, J A; Mateo, P; Gyppaz, F; Herve, M

    1998-12-01

    A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate <--> 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin

  6. Free Fatty Acids Induce Autophagy and LOX-1 Upregulation in Cultured Aortic Vascular Smooth Muscle Cells.

    PubMed

    Cheng, Cheng-I; Lee, Yueh-Hong; Chen, Po-Han; Lin, Yu-Chun; Chou, Ming-Huei; Kao, Ying-Hsien

    2016-11-05

    Elevation of free fatty acids (FFAs) is known to affect microvascular function and contribute to obesity-associated insulin resistance, hypertension, and microangiopathy. Proliferative and synthetic vascular smooth muscle cells (VSMCs) increase intimal thickness and destabilize atheromatous plaques. This study aimed to investigate whether saturated palmitic acid (PA) and monounsaturated oleic acid (OA) modulate autophagy activity, cell proliferation, and vascular tissue remodeling in an aortic VSMC cell line. Exposure to PA and OA suppressed growth of VSMCs without apoptotic induction, but enhanced autophagy flux with elevation of Beclin-1, Atg5, and LC3I/II. Cotreatment with autophagy inhibitors potentiated the FFA-suppressed VSMC growth and showed differential actions of PA and OA in autophagy flux retardation. Both FFAs upregulated lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) but only OA increased LDL uptake by VSMCs. Mechanistically, FFAs induced hyperphosphorylation of Akt, ERK1/2, JNK1/2, and p38 MAPK. All pathways, except OA-activated PI3K/Akt cascade, were involved in the LOX-1 upregulation, whereas blockade of PI3K/Akt and MEK/ERK cascades ameliorated the FFA-induced growth suppression on VSMCs. Moreover, both FFAs exhibited tissue remodeling effect through increasing MMP-2 and MMP-9 expression and their gelatinolytic activities, whereas high-dose OA significantly suppressed collagen type I expression. Conversely, siRNA-mediated LOX-1 knockdown significantly attenuated the OA-induced tissue remodeling effects in VSMCs. In conclusion, OA and PA enhance autophagy flux, suppress aortic VSMC proliferation, and exhibit vascular remodeling effect, thereby leading to the loss of VSMCs and interstitial ECM in vascular walls and eventually the instability of atheromatous plaques. J. Cell. Biochem. 9999: 1-13, 2016. © 2016 Wiley Periodicals, Inc.

  7. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells

    PubMed Central

    Wang, Yizhou; Blatt, Michael R.

    2011-01-01

    Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic fluxes across both the plasma membrane and tonoplast, the metabolism of organic acids, primarily Mal (malate), and its accumulation and loss. Anion channels at the plasma membrane are thought to comprise a major pathway for Mal efflux during stomatal closure, implicating their key role in linking solute flux with metabolism. Nonetheless, little is known of the regulation of anion channel current (ICl) by cytosolic Mal or its immediate metabolite OAA (oxaloacetate). In the present study, we have examined the impact of Mal, OAA and of the monocarboxylic acid anion acetate in guard cells of Vicia faba L. and report that all three organic acids affect ICl, but with markedly different characteristics and sidedness to their activities. Most prominent was a suppression of ICl by OAA within the physiological range of concentrations found in vivo. These findings indicate a capacity for OAA to co-ordinate organic acid metabolism with ICl through the direct effect of organic acid pool size. The findings of the present study also add perspective to in vivo recordings using acetate-based electrolytes. PMID:21745184

  8. Abscisic Acid Flux Alterations Result in Differential Abscisic Acid Signaling Responses and Impact Assimilation Efficiency in Barley under Terminal Drought Stress1[C][W][OPEN

    PubMed Central

    Seiler, Christiane; Harshavardhan, Vokkaliga T.; Reddy, Palakolanu S.; Hensel, Götz; Kumlehn, Jochen; Eschen-Lippold, Lennart; Rajesh, Kalladan; Korzun, Viktor; Wobus, Ulrich; Lee, Justin; Selvaraj, Gopalan; Sreenivasulu, Nese

    2014-01-01

    Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and by making use of transgenic barley lines that express Arabidopsis (Arabidopsis thaliana) 9-cis-epoxycarotenoid dioxygenase (AtNCED6) coding sequence or an RNA interference (RNAi) sequence of ABA 8′-hydroxylase under the control of a drought-inducible barley promoter. The high levels of ABA and its catabolites in the senescing breeding line under long-term stress were detrimental for assimilate productivity, whereas these levels were not perturbed in the stay-green type that performed better. In transgenic barley, drought-inducible AtNCED expression afforded temporal control in ABA levels such that the ABA levels rose sooner than in wild-type plants but also subsided, unlike as in the wild type , to near-basal levels upon prolonged stress treatment due to down-regulation of endogenous HvNCED genes. Suppressing of ABA catabolism with the RNA interference approach of ABA 8′-hydroxylase caused ABA flux during the entire period of stress. These transgenic plants performed better than the wild type under stress to maintain a favorable instantaneous water use efficiency and better assimilation. Gene expression analysis, protein structural modeling, and protein-protein interaction analyses of the members of the PYRABACTIN RESISTANCE1/PYRABACTIN RESISTANCE1-LIKE/REGULATORY COMPONENT OF ABA RECEPTORS, TYPE 2C PROTEIN PHOSPHATASE Sucrose non-fermenting1-related protein kinase2, and ABA-INSENSITIVE5/ABA-responsive element binding factor family identified specific members that could potentially impact ABA metabolism and stress adaptation in barley. PMID:24610749

  9. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity.

    PubMed

    Lackey, Denise E; Lynch, Christopher J; Olson, Kristine C; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H; Dunn, Tamara N; Thomas, Anthony P; Oort, Pieter J; Kieffer, Dorothy A; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G; Permana, Paska; Anthony, Tracy G; Adams, Sean H

    2013-06-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35-50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals.

  10. Associations of free fatty acids with insulin secretion and action among African-American and European-American girls and women.

    PubMed

    Goree, Laura Lee T; Darnell, Betty E; Oster, Robert A; Brown, Marian A; Gower, Barbara A

    2010-02-01

    Ethnic differences in insulin secretion and action between African Americans (AAs) and European Americans (EAs) may influence mobilization of free fatty acids (FFAs). We tested the hypotheses that FFA concentrations would be associated with measures of insulin secretion and action before and during a glucose challenge test. Subjects were 48 prepubertal girls, 60 premenopausal women, and 46 postmenopausal women. Fasting insulin (insulin(0)), the acute insulin response to glucose (AIR(g)), the insulin sensitivity index (S(I)), basal and nadir FFA (FFA(0), FFA(nadir)), and nadir time (TIME(nadir)) were determined during an intravenous glucose tolerance test (IVGTT). Stepwise multiple linear regression (MLR) analysis was conducted to identify associations of FFA(0), FFA(nadir), and TIME(nadir) with ethnicity, age group, insulin measures, indexes of body composition from dual-energy X-ray absorptiometry, and measures of fat distribution from computed tomography scan. In this population, insulin(0) and AIR(g) were higher among AAs vs. EAs, whereas S(I) was lower, independent of age group. MLR analyses indicated that FFA(0) was best predicted by lean tissue mass (LTM), leg fat mass, ethnicity (lower in AAs), S(I), and insulin(0). FFA(nadir) was best predicted by FFA(0), age group, and intra-abdominal adipose tissue (IAAT). TIME(nadir) was best predicted by leg fat mass, AIR(g), and S(I). In conclusion, indexes of insulin secretion and action were associated with FFA dynamics in healthy girls and women. Lower FFA(0) among AAs was independent of insulin(0) and S(I). Whether lower FFA(0) is associated with substrate oxidation or risk for obesity remains to be determined.

  11. In vitro analysis of flufenamic acid activity against Candida albicans biofilms.

    PubMed

    Chavez-Dozal, Alba A; Jahng, Maximillian; Rane, Hallie S; Asare, Kingsley; Kulkarny, Vibhati V; Bernardo, Stella M; Lee, Samuel A

    2014-01-01

    In a recent high-throughput screen against specific Candida albicans drug targets, several compounds that exhibited non-specific antifungal activity were identified, including the non-steroidal anti-inflammatory drug flufenamic acid (FFA). This study sought to determine the effect of different doses of FFA, alone or in combination with fixed concentrations of the standard antifungal agents amphotericin B (AmB), caspofungin (CAS) or fluconazole (FLU), for the prevention and treatment of C. albicans biofilms. Biofilms were formed in a 96-well microplate followed by evaluation of antifungal activity using the XTT assay. FFA concentrations of ≥512mg/L demonstrated >80% prevention of biofilm formation. FFA concentrations of 1024mg/L demonstrated >85% reduction of mature biofilms. When FFA (≥8mg/L) was used in combination with FLU (32mg/L), antifungal activity increased to 99% for the prevention of biofilm formation. Similarly, when a FFA concentration of ≥8mg/L was used in combination with either AmB (0.25mg/L) or CAS (0.125mg/L), antifungal activity also increased up to 99% for the prevention of biofilm formation. The inhibitory effect of FFA on C. albicans biofilms has not been reported previously, therefore these findings suggest that FFA in combination with traditional antifungals might be useful for the treatment and prevention of C. albicans biofilms.

  12. Flufenamic acid prevents behavioral manifestations of salicylate-induced tinnitus in the rat

    PubMed Central

    Ustundag, Yasemin; Bulut, Funda; Demir, Caner Feyzi; Bal, Ali

    2016-01-01

    Introduction Tinnitus is defined as a phantom auditory sensation, the perception of sound in the absence of external acoustic stimulation. Given that flufenamic acid (FFA) blocks TRPM2 cation channels, resulting in reduced neuronal excitability, we aimed to investigate whether FFA suppresses the behavioral manifestation of sodium salicylate (SSA)-induced tinnitus in rats. Material and methods Tinnitus was evaluated using a conditioned lick suppression model of behavioral testing. Thirty-one Wistar rats, randomly divided into four treatment groups, were trained and tested in the behavioral experiment: (1) control group: DMSO + saline (n = 6), (2) SSA group: DMSO + SSA (n = 6), (3) FFA group: FFA (66 mg/kg bw) + saline (n = 9), (4) FFA + SSA group: FFA (66 mg/kg bw) + SSA (400 mg/kg bw) (n = 10). Localization of TRPM2 to the plasma membrane of cochlear nucleus neurons was demonstrated by confocal microscopy. Results Pavlovian training resulted in strong suppression of licking, having a mean value of 0.05 ±0.03 on extinction day 1, which is below the suppression training criterion level of 0.20 in control tinnitus animals. The suppression rate for rats having both FFA (66 mg/kg bw) and SSA (400 mg/kg bw) injections was significantly lower than that for the rats having SSA injections (p < 0.01). Conclusions We suggest that SSA-induced tinnitus could possibly be prevented by administration of a TRPM2 ion channel antagonist, FFA at 66 mg/kg bw. PMID:26925138

  13. Serum fatty acid binding protein 4, free fatty acids and metabolic risk markers

    PubMed Central

    Karakas, Sidika E.; Almario, Rogelio U.; Kim, Kyoungmi

    2009-01-01

    Fatty acid binding protein (FABP) 4 chaperones free fatty acids (FFA) in the adipocytes during lipolysis. Serum FFA relates to Metabolic Syndrome (METS) and serum FABP4 is emerging as a novel risk marker. In 36 overweight/obese women, serum FABP4 and FFA were measured hourly during 5-hour oral glucose tolerance test (OGTT). Insulin resistance was determined using frequently sampled intravenous GTT (FS-IVGTT). Serum lipids and inflammation markers were measured at fasting. During OGTT, serum FABP4 decreased by 40%, reaching its nadir at 3h (from 45.3±3.1 to 31.9±1.6 ng/mL) and stayed below the baseline at 5 h (35.9±2.2 ng/mL) (p < 0.0001 for both, compared to the baseline). Serum FFA decreased by 10 fold, reaching a nadir at 2h (from 0.611±0.033 to 0.067±0.004 mmol/L), then rebounded to 0.816±0.035 mmol/ L at 5h (p < 0.001 for both, compared to baseline). Both fasting-FABP4 and nadir-FABP4 correlated with obesity. Nadir-FABP4 correlated also with insulin resistance parameters from FS-IVGTT and with inflammation. Nadir-FFA, but not fasting-FFA, correlated with the METS-parameters. In conclusion, fasting-FABP4 related to metabolic risk markers more strongly than fasting-FFA. Nadir-FABP4 and nadir-FFA measured after glucose loading may provide better risk assessment than the fasting values. PMID:19394980

  14. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    PubMed

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling.

  15. Regulation of metabolic flux in Lactobacillus casei for lactic acid production by overexpressed ldhL gene with two-stage oxygen supply strategy.

    PubMed

    Ge, Xiang-Yang; Xu, Yan; Chen, Xiang; Zhang, Long-Yun

    2015-01-01

    This study describes a novel strategy to regulate the metabolic flux for lactic acid production in Lactobacillus casei. The ldhL gene encoding L-lactate dehydrogenase (L-LDH) was overexpressed in L. casei, and a two-stage oxygen supply strategy (TOS) that maintained a medium oxygen supply level during the early fermentation phase, and a low oxygen supply level in the later phase was carried out. As a consequence, a maximum L-LDH activity of 95.6 U/ml was obtained in the recombinant strain, which was over 4-fold higher than that of the initial strain. Under the TOS for L. casei (pMG-ldhL), the maximum lactic acid concentration of 159.6 g/l was obtained in 36 h, corresponding to a 62.8% increase. The results presented here provide a novel way to regulate the metabolic flux of L. casei for lactic acid production in different fermentation stages, which is available to enhance organic acid production in other strains.

  16. Projected stream water fluxes of NO3 and total organic carbon from the Storgama headwater catchment, Norway, under climate change and reduced acid deposition.

    PubMed

    de Wit, Heleen A; Wright, Richard F

    2008-02-01

    Fluctuations in the 20-year record of nitrate (NO3) and total organic carbon (TOC) concentrations and fluxes in runoff at the small headwater catchment Storgama, southern Norway, were related to climate and acid deposition. The long-term decline in NO3 related to reduced NO3 deposition and increased winter discharge, whereas the long-term increase in TOC related to reduced sulfur deposition. Multiple regression models describing long-term trends and seasonal variability in these records were used to project future concentrations given scenarios of climate change and acid deposition. All scenarios indicated reduced NO3 fluxes and increased TOC fluxes; the largest projected changes for the period 2071-2100 were -86% and +24%, respectively. Uncertainties are that the predicted future temperatures are considerably higher than the historical record. Also, nonlinear responses of ecosystem processes (nitrogen [N] mineralization) to temperature, N-enrichment of soils, and step-changes in environmental conditions may affect future leaching of carbon and N.

  17. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  18. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  19. Snowmelt controls on concentration-discharge relationships and the balance of oxidative and acid-base weathering fluxes in an alpine catchment, East River, Colorado

    DOE PAGES

    Winnick, Matthew J.; Carroll, Rosemary; Williams, Kenneth; ...

    2017-03-02

    Although important for riverine solute and nutrient fluxes, the connections between biogeochemical processes and subsurface hydrology remain poorly characterized. We investigate these couplings in the East River, CO, a high-elevation shale-dominated catchment in the Rocky Mountains, using concentration-discharge (C-Q) relationships for major cations, anions, and organic carbon. Dissolved organic carbon (DOC) displays a positive C-Q relationship with clockwise hysteresis, indicating mobilization and depletion of DOC in the upper soil horizons and emphasizing the importance of shallow flowpaths during snowmelt. Cation and anion concentrations demonstrate that carbonate weathering, which dominates solute fluxes, is promoted by both sulfuric acid derived from pyritemore » oxidation in the shale bedrock and carbonic acid derived from subsurface respiration. Sulfuric acid weathering dominates during baseflow conditions when waters infiltrate below the inferred pyrite oxidation front, whereas carbonic acid weathering plays a dominant role during snowmelt as a result of shallow flowpaths. Differential C-Q relationships between solutes suggest that infiltrating waters approach calcite saturation before reaching the pyrite oxidation front, after which sulfuric acid reduces carbonate alkalinity. This reduction in alkalinity results in CO2 outgassing when waters equilibrate to surface conditions, and reduces the riverine export of carbon and alkalinity by roughly 33% annually. In conclusion, future changes in snowmelt dynamics that control the balance of carbonic and sulfuric acid weathering may substantially alter carbon cycling in the East River. Ultimately, we demonstrate that differential C-Q relationships between major solutes can provide unique insights into the complex subsurface flow and biogeochemical dynamics that operate at catchment scales.« less

  20. Acetate stimulates flux through the tricarboxylic acid cycle in rabbit renal proximal tubules synthesizing glutamine from alanine: a 13C NMR study.

    PubMed Central

    Dugelay, S; Chauvin, M F; Megnin-Chanet, F; Martin, G; Laréal, M C; Lhoste, J M; Baverel, G

    1999-01-01

    Although glutamine synthesis has a major role in the control of acid-base balance and ammonia detoxification in the kidney of herbivorous species, very little is known about the regulation of this process. We therefore studied the influence of acetate, which is readily metabolized by the kidney and whose metabolism is accompanied by the production of bicarbonate, on glutamine synthesis from variously labelled [(13)C]alanine and [(14)C]alanine molecules in isolated rabbit renal proximal tubules. With alanine as sole exogenous substrate, glutamine and, to a smaller extent, glutamate and CO(2), were the only significant products of the metabolism of this amino acid, which was removed at high rates. Absolute fluxes through the enzymes involved in alanine conversion into glutamine were assessed by using a novel model describing the corresponding reactions in conjunction with the (13)C NMR, and to a smaller extent, the radioactive and enzymic data. The presence of acetate (5 mM) led to a large stimulation of fluxes through citrate synthase and alpha-oxoglutarate dehydrogenase. These effects were accompanied by increases in the removal of alanine, in the accumulation of glutamate and in flux through the anaplerotic enzyme pyruvate carboxylase. Acetate did not alter fluxes through glutamate dehydrogenase and glutamine synthetase; as a result, acetate did not change the accumulation of ammonia, which was negligible under both experimental conditions. We conclude that acetate, which seems to be an important energy-provider to the rabbit renal proximal tubule, simultaneously traps as glutamate the extra nitrogen removed as alanine, thus preventing the release of additional ammonia by the glutamate dehydrogenase reaction. PMID:10477267

  1. Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric ModulatorS⃞

    PubMed Central

    Smith, Nicola J.; Ward, Richard J.; Stoddart, Leigh A.; Hudson, Brian D.; Kostenis, Evi; Ulven, Trond; Morris, Joanne C.; Tränkle, Christian; Tikhonova, Irina G.; Adams, David R.

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu173 or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB. PMID:21498659

  2. Nonsteroidal anti-inflammatory drug flufenamic acid is a potent activator of AMP-activated protein kinase.

    PubMed

    Chi, Yuan; Li, Kai; Yan, Qiaojing; Koizumi, Schuichi; Shi, Liye; Takahashi, Shuhei; Zhu, Ying; Matsue, Hiroyuki; Takeda, Masayuki; Kitamura, Masanori; Yao, Jian

    2011-10-01

    Flufenamic acid (FFA) is a nonsteroidal anti-inflammatory drug (NSAID). It has anti-inflammatory and antipyretic properties. In addition, it modulates multiple channel activities. The mechanisms underlying the pharmacological actions of FFA are presently unclear. Given that AMP-activated protein kinase (AMPK) has both anti-inflammatory and channel-regulating functions, we examined whether FFA induces AMPK activation. 1) Exposure of several different types of cells to FFA resulted in an elevation of AMPKα phosphorylation at Thr172. This effect of FFA was reproduced by functionally and structurally similar mefenamic acid, tolfenamic acid, niflumic acid, and meclofenamic acid. 2) FFA-induced activation of AMPK was largely abolished by the treatment of cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (an intracellular Ca(2+) chelator) or depletion of extracellular Ca(2+), whereas it was mimicked by stimulation of cells with the Ca(2+) ionophore 5-(methylamino)-2-({(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl]-1,7-dioxaspiro[5.5]undec-2-yl}methyl)-1,3-benzoxazole-4-carboxylic acid (A23187) or ionomycin. 3) FFA triggered a rise in intracellular Ca(2+), which was abolished by cyclosporine, a blocker of mitochondrial permeability transition pore. Cyclosporine also abolished FFA-induced activation of AMPK. 4) Inhibition of Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ) with 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate (STO-609) or down-regulation of CaMKKβ with short interfering RNA largely abrogated FFA-induced activation of AMPK. 5) FFA significantly suppressed nuclear factor-κB activity and inducible nitric-oxide synthase expression triggered by interleukin-1β and tumor necrosis factor α. This suppression was also largely abrogated by STO-609. Taken together, we conclude that FFA induces AMPK activation through the Ca(2+)-CaMKKβ pathway

  3. Omega-3 free fatty acids inhibit tamoxifen-induced cell apoptosis.

    PubMed

    Wu, Shufan; Guo, Yang; Wu, Yikuan; Zhu, Shenglong; He, Zhao; Chen, Yong Q

    2015-04-03

    Fish oil, which contains omega-3 fatty acids mainly in the form of triglycerides, has benefits for reducing breast cancer risk, similar to tamoxifen action. However, it remains to be elucidated whether the combination of omega-3 free fatty acid (ω-3FFA) with tamoxifen leads to improved treatment in breast cancer. In this study, we observed that ω-3FFA induces MCF-7 cell apoptosis to suppress cell growth. The treatment of breast cancer cells with ω-3FFA attenuated tamoxifen-induced cell apoptosis. ω-3FFA and tamoxifen significantly increased Erk1/2 and Akt phosphorylation levels in a dose and time dependent manner. Compared to ω-3FFA alone, the combination of tamoxifen with ω-3FFA significantly increased Erk1/2 and Akt phosphorylation levels. Because Erk1/2 and Akt activation has been linked to tamoxifen-related anti-estrogen resistance in breast cancer patients, these results indicate that ω-3FFA may interfere with the effects of tamoxifen in the prevention of breast cancer risk.

  4. Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating.

    PubMed

    Yau, Hau-Jie; Baranauskas, Gytis; Martina, Marco

    2010-10-15

    The electrophysiological phenotype of individual neurons critically depends on the biophysical properties of the voltage-gated channels they express. Differences in sodium channel gating are instrumental in determining the different firing phenotypes of pyramidal cells and interneurons; moreover, sodium channel modulation represents an important mechanism of action for many widely used CNS drugs. Flufenamic acid (FFA) is a non-steroidal anti-inflammatory drug that has been long used as a blocker of calcium-dependent cationic conductances. Here we show that FFA inhibits voltage-gated sodium currents in hippocampal pyramidal neurons; this effect is dose-dependent with IC(50) = 189 μm. We used whole-cell and nucleated patch recordings to investigate the mechanisms of FFA modulation of TTX-sensitive voltage-gated sodium current. Our data show that flufenamic acid slows down the inactivation process of the sodium current, while shifting the inactivation curve ~10 mV toward more hyperpolarized potentials. The recovery from inactivation is also affected in a voltage-dependent way, resulting in slower recovery at hyperpolarized potentials. Recordings from acute slices demonstrate that FFA reduces repetitive- and abolishes burst-firing in CA1 pyramidal neurons. A computational model based on our data was employed to better understand the mechanisms of FFA action. Simulation data support the idea that FFA acts via a novel mechanism by reducing the voltage dependence of the sodium channel fast inactivation rates. These effects of FFA suggest that it may be an effective anti-epileptic drug.

  5. pH gradients and a micro-pore filter at the luminal surface affect fluxes of propionic acid across guinea pig large intestine.

    PubMed

    Busche, Roger; von Engelhardt, Wolfgang

    2007-10-01

    A neutral pH microclimate had been shown at the luminal surface of the large intestine. The aim was to estimate to what extent fluxes of propionic acid/propionate are affected by changes of the luminal pH when this microclimate is present, largely reduced or absent. Fluxes of propionic acid/propionate (J(Pr)) across epithelia from the caecum, the proximal and the distal colon of guinea pigs were measured in Ussing chambers with and without a filter at the luminal surface. With bicarbonate and with a neutral or an acid pH of mucosal solutions (pH 7.4 or 6.4), mucosal-to-serosal fluxes (J(ms)(Pr) ) were 1.5 to 1.9-fold higher at the lower pH, in bicarbonate-free solutions and carbonic anhydrase (CA) inhibition 2.1 to 2.6-fold. With a filter at the mucosal surface and with bicarbonate containing solutions, J (ms) (Pr) was not or only little elevated at the lower pH. Without bicarbonate J(ms)(Pr) was clearly higher. We conclude that the higher J(ms)(Pr) after luminal acidification is due to vigorous mixing in Ussing chambers resulting in a markedly reduced unstirred layer. Therefore, an effective pH microclimate at the epithelial surface is missing. J(ms)(Pr) is not or is little affected by lowering of pH because in the presence of bicarbonate the filter maintains the pH microclimate. However, in bicarbonate-free solutions J(ms)(Pr) was higher at pH 6.4 because a pH microclimate does not develop. Findings confirm that 30-60% of J(ms)(Pr) results from non-ionic diffusion.

  6. Boronic Acid Flux Synthesis and Crystal Growth of Uranium and Neptunium Boronates and Borates: A Low Temperature Route to the First Neptunium(V) Borate

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Miller, Hannah M.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-10-04

    Molten methylboronic acid has been used as a reactive flux to prepare the first neptunium(V) borate, NpO2[B3O4(OH)2] (NpBO-1), and the first actinide boronate, UO2(CH3BO2)(H2O) (UCBO-1). NpBO-1 contains cation-cation interactions between the neptunyl units. In contrast, the presence of the methyl groups in the uranyl boronate leads to a one-dimensional structure.

  7. Cerebral lateralization of face-sensitive areas in left-handers: only the FFA does not get it right.

    PubMed

    Bukowski, Henryk; Dricot, Laurence; Hanseeuw, Bernard; Rossion, Bruno

    2013-10-01

    Face perception is highly lateralized to the right hemisphere (RH) in humans, as supported originally by observations of face recognition impairment (prosopagnosia) following brain damage. Divided visual field presentations, neuroimaging and event-related potential studies have supported this view. While the latter studies are typically performed in right-handers, the few reported cases of prosopagnosia with unilateral left damage were left-handers, suggesting that handedness may shift or qualify the lateralization of face perception. We tested this hypothesis by recording the whole set of face-sensitive areas in 11 left-handers, using a face-localizer paradigm in functional magnetic resonance imaging (fMRI) (faces, cars, and their phase-scrambled versions). All face-sensitive areas identified (superior temporal sulcus, inferior occipital cortex, anterior infero-temporal cortex, amygdala) were strongly right-lateralized in left-handers, this right lateralization bias being as large as in a population of right-handers (40) tested with the same paradigm (Rossion et al., 2012). The notable exception was the so-called 'Fusiform face area' (FFA), an area that was slightly left lateralized in the population of left-handers. Since the left FFA is localized closely to an area sensitive to word form in the human brain ('Visual Word Form Area' - VWFA), the enhanced left lateralization of the FFA in left-handers may be due to a decreased competition with the representation of words. The implications for the neural basis of face perception, aetiology of brain lateralization in general, and prosopagnosia are also discussed.

  8. Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability.

    PubMed

    Kotosai, Mari; Shimada, Sachiko; Kanda, Mai; Matsuda, Namiko; Sekido, Keiko; Shimizu, Yoshibumi; Tokumura, Akira; Nakamura, Toshiyuki; Murota, Kaeko; Kawai, Yoshichika; Terao, Junji

    2013-06-01

    The antioxidant property of plasma high-density lipoprotein (HDL) is thought to be involved in potential anti-atherogenic effects but the exact mechanism is not known. We aimed to reveal the contribution of HDL on the elimination of lipid hydroperoxides (LOOH) derived from oxidized low-density lipoprotein (LDL). Oxidized LDL prepared by copper ion-induced oxidation contained nonesterified fatty acid hydroperoxides (FFA-OOH) and lysophosphatidylcholine (lysoPtdCho), in addition to cholesteryl ester hydroperoxides (CE-OOH) and phosphatidylcholine hydroperoxides (PtdCho-OOH). A platelet-activating factor-acetylhydrolase (PAF-AH) inhibitor suppressed formation of FFA-OOH and lysoPtdCho in oxidized LDL. Among LOOH species, FFA-OOH was preferentially reduced by incubating oxidized LDL with HDL. HDL exhibited selective FFA-OOH reducing ability if it was mixed with a liposomal solution containing FFA-OOH, CE-OOH and PtdCho-OOH. Two-electron reduction of the hydroperoxy group to the hydroxy group was confirmed by the formation of 13-hydroxyoctadecadienoic acid from 13-hydroperoxyoctadecadienoic acid in HPLC analyses. This reducing effect was also found in apolipoprotein A-1 (apoA-1). FFA-OOH released from PtdCho-OOH due to PAF-AH activity in oxidized LDL undergo two-electron reduction by the reducing ability of apoA1 in HDL. This preferential reduction of FFA-OOH may participate in the mechanism of the antioxidant property of HDL.

  9. Fatty acid compositions of triglycerides and free fatty acids in sebum depend on amount of triglycerides, and do not differ in presence or absence of acne vulgaris.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Numata, Shigeki; Matsusue, Miyuki; Mashima, Yasuo; Miyawaki, Masaaki; Yamada, Shunji; Yagami, Akiko; Nakata, Satoru; Matsunaga, Kayoko

    2014-12-01

    To clarify the influence of the fatty acid composition of sebum in acne vulgaris, we investigated the amounts and fatty acid compositions of triglycerides (TG) and free fatty acids (FFA), and the amounts of cutaneous superficial Propionibacterium acnes in acne patients and healthy subjects. The foreheads of 18 female patients, 10 male patients, 10 healthy females and 10 healthy males were studied in a Japanese population. There were significant differences in the amounts of sebum, TG and cutaneous superficial P. acnes, as well as the fatty acid compositions of TG and FFA between acne patients and healthy subjects in females. Their fatty acid compositions were correlated with the amount of TG with or without acne. It was clarified that the fatty acid compositions of TG and FFA depended on the amount of TG, and there were no differences in the fatty acid composition in the presence and absence of acne.

  10. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.

    PubMed

    Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan

    2010-10-01

    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq).

  11. Bitter gourd seed fatty acid rich in 9c,11t,13t-conjugated linolenic acid induces apoptosis and up-regulates the GADD45, p53 and PPARgamma in human colon cancer Caco-2 cells.

    PubMed

    Yasui, Yumiko; Hosokawa, Masashi; Sahara, Takehiko; Suzuki, Rikako; Ohgiya, Satoru; Kohno, Hiroyuki; Tanaka, Takuji; Miyashita, Kazuo

    2005-08-01

    Bitter gourd (Momordica charantia) seed oil (BGO) is a unique oil which contains 9cis, 11trans, 13trans-conjugated linolenic acid (9c,11t,13t-CLN) at a high level of more than 60%. In this study, we investigated the anti-proliferative and apoptosis-inducing effects of free fatty acids prepared from BGO (BGO-FFA) using colon cancer Caco-2 cells. BGO-FFA and purified 9c,11t,13t-CLN remarkably reduced the cell viability of Caco-2. In Caco-2 cells treated with BGO-FFA, DNA fragmentation of apoptosis indicators was observed in a dose-dependent manner. The expression level of apoptosis suppressor Bcl-2 protein was also decreased by BGO-FFA treatment. The GADD45 and p53, which play an important role in apoptosis-inducing pathways, were remarkably up-regulated by BGO-FFA treatment in Caco-2 cells. Up-regulation of PPARgamma mRNA and protein were also observed during apoptosis induced by BGO-FFA. These results suggest that BGO-FFA rich in 9c,11t,13t-CLN may induce apoptosis in Caco-2 cells through up-regulation of GADD45, p53 and PPARgamma.

  12. Microbial Oxidation of Fe2+ and Pyrite Exposed to Flux of Micromolar H2O2 in Acidic Media

    PubMed Central

    Ma, Yingqun; Lin, Chuxia

    2013-01-01

    At an initial pH of 2, while abiotic oxidation of aqueous Fe2+ was enhanced by a flux of H2O2 at micromolar concentrations, bio-oxidation of aqueous Fe2+ could be impeded due to oxidative stress/damage in Acidithiobacillus ferrooxidans caused by Fenton reaction-derived hydroxyl radical, particularly when the molar ratio of Fe2+ to H2O2 was low. When pyrite cubes were intermittently exposed to fluxes of micromolar H2O2, the reduced Fe2+-Fe3+ conversion rate in the solution (due to reduced microbial activity) weakened the Fe3+-catalyzed oxidation of cubic pyrite and added to relative importance of H2O2-driven oxidation in the corrosion of mineral surfaces for the treatments with high H2O2 doses. This had effects on reducing the build-up of a passivating coating layer on the mineral surfaces. Cell attachment to the mineral surfaces was only observed at the later stage of the experiment after the solutions became less favorable for the growth of planktonic bacteria. PMID:23760258

  13. Free fatty acids do not acutely increase asymmetrical dimethylarginine concentrations.

    PubMed

    Namiranian, K; Mittermayer, F; Artwohl, M; Pleiner, J; Schaller, G; Mayer, B X; Bayerle-Eder, M; Roden, M; Baumgartner-Parzer, S; Wolzt, M

    2005-12-01

    Concentrations of asymmetrical dimethylarginine (ADMA) and free fatty acids (FFAs) are elevated in insulin resistance which is associated with impaired vascular function. We hypothesized that FFAs could alter vascular tone by affecting ADMA concentrations. Plasma FFA levels were increased in seventeen healthy male volunteers by Intralipid/heparin infusion; hemodynamic and biochemical parameters were measured after 90 minutes. Plasma collected before and during Intralipid/heparin or equivalent synthetic FFAs was incubated with human umbilical vein endothelial cells (HUVECs) in vitro. Intralipid/heparin infusion resulted in an approximately seven-fold increase in plasma FFA levels to 1861 +/- 139 micromol/l, which was paralleled by increased systemic blood pressure and forearm blood flow. Intralipid/heparin did not affect ADMA (baseline mean 0.59 [95 % confidence interval [CI]: 0.54; 0.64] and 0.56 [CI: 0.51; 0.59] after 90 minutes), but slightly decreased SDMA (from 0.76, [CI: 0.70; 0.83] to 0.71 [CI: 0.64; 0.74], p < 0.05), and had no effect on ADMA/SDMA ratio. There was no correlation between ADMA and FFA concentrations or forearm blood flow. Incubation of HUVECs with FFA-rich plasma or synthetic FFAs induced an ADMA release after 24 hours, but not after 90 minutes. Acutely increased FFA levels caused hemodynamic effects but did not affect ADMA. Prolonged elevation of FFA levels might influence vascular function by increasing ADMA levels.

  14. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  15. Constraint-based modeling of heterologous pathways: application and experimental demonstration for overproduction of fatty acids in Escherichia coli.

    PubMed

    Ip, Kuhn; Donoghue, Neil; Kim, Min Kyung; Lun, Desmond S

    2014-10-01

    Constraint-based modeling has been shown, in many instances, to be useful for metabolic engineering by allowing the prediction of the metabolic phenotype resulting from genetic manipulations. But the basic premise of constraint-based modeling-that of applying constraints to preclude certain behaviors-only makes sense for certain genetic manipulations (such as knockouts and knockdowns). In particular, when genes (such as those associated with a heterologous pathway) are introduced under artificial control, it is unclear how to predict the correct behavior. In this paper, we introduce a modeling method that we call proportional flux forcing (PFF) to model artificially induced enzymatic genes. The model modifications introduced by PFF can be transformed into a set of simple mass balance constraints, which allows computational methods for strain optimization based on flux balance analysis (FBA) to be utilized. We applied PFF to the metabolic engineering of Escherichia coli (E. coli) for free fatty acid (FFA) production-a metabolic engineering problem that has attracted significant attention because FFAs are a precursor to liquid transportation fuels such as biodiesel and biogasoline. We show that PFF used in conjunction with FBA-based computational strain optimization methods can yield non-obvious genetic manipulation strategies that significantly increase FFA production in E. coli. The two mutant strains constructed and successfully tested in this work had peak fatty acid (FA) yields of 0.050 g FA/g carbon source (17.4% theoretical yield) and 0.035 g FA/g carbon source (12.3% theoretical yield) when they were grown using a mixed carbon source of glucose and casamino acids in a ratio of 2-to-1. These yields represent increases of 5.4- and 3.8-fold, respectively, over the baseline strain.

  16. Macrolide Antibiotics Exhibit Cytotoxic Effect under Amino Acid-Depleted Culture Condition by Blocking Autophagy Flux in Head and Neck Squamous Cell Carcinoma Cell Lines

    PubMed Central

    Hirasawa, Kazuhiro; Moriya, Shota; Miyahara, Kana; Kazama, Hiromi; Hirota, Ayako; Takemura, Jun; Abe, Akihisa; Inazu, Masato; Hiramoto, Masaki; Tsukahara, Kiyoaki

    2016-01-01

    Autophagy, a self-digestive system for cytoplasmic components, is required to maintain the amino acid pool for cellular homeostasis. We previously reported that the macrolide antibiotics azithromycin (AZM) and clarithromycin (CAM) have an inhibitory effect on autophagy flux, and they potently enhance the cytocidal effect of various anticancer reagents in vitro. This suggests that macrolide antibiotics can be used as an adjuvant for cancer chemotherapy. Since cancer cells require a larger metabolic demand than normal cells because of their exuberant growth, upregulated autophagy in tumor cells has now become the target for cancer therapy. In the present study, we examined whether macrolides exhibit cytotoxic effect under an amino acid-starving condition in head and neck squamous cancer cell lines such as CAL 27 and Detroit 562 as models of solid tumors with an upregulated autophagy in the central region owing to hypovascularity. AZM and CAM induced cell death under the amino acid-depleted (AAD) culture condition in these cell lines along with CHOP upregulation, although they showed no cytotoxicity under the complete culture medium. CHOP knockdown by siRNA in the CAL 27 cells significantly suppressed macrolide-induced cell death under the AAD culture condition. CHOP-/- murine embryonic fibroblast (MEF) cell lines also attenuated AZM-induced cell death compared with CHOP+/+ MEF cell lines. Using a tet-off atg5 MEF cell line, knockout of atg5, an essential gene for autophagy, also induced cell death and CHOP in the AAD culture medium but not in the complete culture medium. This suggest that macrolide-induced cell death via CHOP induction is dependent on autophagy inhibition. The cytotoxicity of macrolide with CHOP induction was completely cancelled by the addition of amino acids in the culture medium, indicating that the cytotoxicity is due to the insufficient amino acid pool. These data suggest the possibility of using macrolides for “tumor-starving therapy”. PMID

  17. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins

    PubMed Central

    Hannukainen, Jarna C; Nuutila, Pirjo; Ronald, Borra; Kaprio, Jaakko; Kujala, Urho M; Janatuinen, Tuula; Heinonen, Olli J; Kapanen, Jukka; Viljanen, Tapio; Haaparanta, Merja; Rönnemaa, Tapani; Parkkola, Riitta; Knuuti, Juhani; Kalliokoski, Kari K

    2007-01-01

    Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 ± 10% higher V˙O2,max (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 ± 4.3 versus 9.0 ± 6.1 μmol (100 ml)−1 min−1, P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake. PMID:17053033

  18. Loss of Free Fatty Acid Receptor 2 leads to impaired islet mass and beta cell survival

    PubMed Central

    Villa, Stephanie R.; Priyadarshini, Medha; Fuller, Miles H.; Bhardwaj, Tanya; Brodsky, Michael R.; Angueira, Anthony R.; Mosser, Rockann E.; Carboneau, Bethany A.; Tersey, Sarah A.; Mancebo, Helena; Gilchrist, Annette; Mirmira, Raghavendra G.; Gannon, Maureen; Layden, Brian T.

    2016-01-01

    The regulation of pancreatic β cell mass is a critical factor to help maintain normoglycemia during insulin resistance. Nutrient-sensing G protein-coupled receptors (GPCR) contribute to aspects of β cell function, including regulation of β cell mass. Nutrients such as free fatty acids (FFAs) contribute to precise regulation of β cell mass by signaling through cognate GPCRs, and considerable evidence suggests that circulating FFAs promote β cell expansion by direct and indirect mechanisms. Free Fatty Acid Receptor 2 (FFA2) is a β cell-expressed GPCR that is activated by short chain fatty acids, particularly acetate. Recent studies of FFA2 suggest that it may act as a regulator of β cell function. Here, we set out to explore what role FFA2 may play in regulation of β cell mass. Interestingly, Ffar2−/− mice exhibit diminished β cell mass at birth and throughout adulthood, and increased β cell death at adolescent time points, suggesting a role for FFA2 in establishment and maintenance of β cell mass. Additionally, activation of FFA2 with Gαq/11-biased agonists substantially increased β cell proliferation in in vitro and ex vivo proliferation assays. Collectively, these data suggest that FFA2 may be a novel therapeutic target to stimulate β cell growth and proliferation. PMID:27324831

  19. Metabolic flux between unsaturated and saturated fatty acids is controlled by the FabA:FabB ratio in the fully reconstituted fatty acid biosynthetic pathway of Escherichia coli.

    PubMed

    Xiao, Xirui; Yu, Xingye; Khosla, Chaitan

    2013-11-19

    The entire fatty acid biosynthetic pathway of Escherichia coli, starting from the acetyl-CoA carboxylase, has been reconstituted in vitro from 14 purified protein components. Radiotracer analysis verified stoichiometric conversion of acetyl-CoA and NAD(P)H to the free fatty acid product, allowing implementation of a facile spectrophotometric assay for kinetic analysis of this multienzyme system. At steady state, a maximal turnover rate of 0.5 s(-1) was achieved. Under optimal turnover conditions, the predominant products were C16 and C18 saturated as well as monounsaturated fatty acids. The reconstituted system allowed us to quantitatively interrogate the factors that influence metabolic flux toward unsaturated versus saturated fatty acids. In particular, the concentrations of the dehydratase FabA and the β-ketoacyl synthase FabB were found to be crucial for controlling this property. Via changes in these variables, the percentage of unsaturated fatty acid produced could be adjusted between 10 and 50% without significantly affecting the maximal turnover rate of the pathway. Our reconstituted system provides a powerful tool for understanding and engineering rate-limiting and regulatory steps in this complex and practically significant metabolic pathway.

  20. Induction of Cell Death by Betulinic Acid through Induction of Apoptosis and Inhibition of Autophagic Flux in Microglia BV-2 Cells.

    PubMed

    Seo, Jeongbin; Jung, Juneyoung; Jang, Dae Sik; Kim, Joungmok; Kim, Jeong Hee

    2017-03-10

    Betulinic acid (BA), a natural pentacyclic triterpene found in many medicinal plants is known to have various biological activity including tumor suppression and anti-inflammatory effects. In this study, the cell-death induction effect of BA was investigated in BV-2 microglia cells. BA was cytotoxic to BV-2 cells with IC₅₀ of approximately 2.0 μM. Treatment of BA resulted in a dosedependent chromosomal DNA degradation, suggesting that these cells underwent apoptosis. Flow cytometric analysis further confirmed that BA-treated BV-2 cells showed hypodiploid DNA content. BA treatment triggered apoptosis by decreasing Bcl-2 levels, activation of capase-3 protease and cleavage of PARP. In addition, BA treatment induced the accumulation of p62 and the increase in conversion of LC3-I to LC3-II, which are important autophagic flux monitoring markers. The increase in LC3-II indicates that BA treatment induced autophagosome formation, however, accumulation of p62 represents that the downstream autophagy pathway is blocked. It is demonstrated that BA induced cell death of BV-2 cells by inducing apoptosis and inhibiting autophagic flux. These data may provide important new information towards understanding the mechanisms by which BA induce cell death in microglia BV-2 cells.

  1. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  2. Redirection of Metabolic Flux into Novel Gamma-Aminobutyric Acid Production Pathway by Introduction of Synthetic Scaffolds Strategy in Escherichia Coli.

    PubMed

    Pham, Van Dung; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-04-01

    In general, gamma-aminobutyric acid (GABA) pathway involves the decarboxylation of glutamate, which is produced from sugar by Corynebacterium fermentation. GABA can be used for the production of pharmaceuticals and functional foods. Due to the increasing demand of GABA, it is essential to create an effective alternative pathway for the GABA production. In this study, Escherichia coli were engineered to produce GABA from glucose via GABA shunt, which consists of succinate dehydrogenase, succinate-semialdehyde dehydrogenase, and GABA aminotransferase. The three enzymes were physically attached to each other through a synthetic scaffold, and the Krebs cycle flux was redirected to the GABA pathway. By introduction of synthetic scaffold, 0.75 g/l of GABA was produced from 10 g/l of glucose at 30 °C and pH 6.5. The inactivation of competing metabolic pathways provided 15.4 % increase in the final GABA concentration.

  3. cAMP and forskolin decrease. gamma. -aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    SciTech Connect

    Heuschneider, G.; Schwartz, R.D. )

    1989-04-01

    The effects of the cyclic nucleotide cAMP on {gamma}-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N{sup 6}, O{sup 2{prime}}-dibutyryladenosine 3{prime},5{prime}-cyclic monophosphate inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3{prime},5{prime}-cyclic monophosphate, 8-bromoadenosine 3{prime},5{prime}-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the {gamma}-aminobutyric acid-gated Cl{sup {minus}} channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl{sup {minus}} channel directly. The data suggest that {gamma}-aminobutyric acid (GABA{sub A}) receptor function in brain can be regulated by cAMP-dependent phosphorylation.

  4. Regulation of adipose branched-chain amin acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated blood branched-chain amin acids (BCAA)are often assoicated with insulin resistance and type2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metaboli...

  5. Basal and insulin-regulated free fatty acid and glucose metabolism in humans.

    PubMed

    Shadid, Samyah; Kanaley, Jill A; Sheehan, Michael T; Jensen, Michael D

    2007-06-01

    These studies were done to examine the effects of body composition, resting energy expenditure (REE), sex, and fitness on basal and insulin-regulated FFA and glucose metabolism. We performed 137 experiments in 101 nondiabetic, premenopausal women and men, ranging from low normal weight to class III obese (BMI 18.0-40.5 kg/m2). Glucose flux was measured using [6-(2)H2]glucose and FFA kinetics with [9,10-(3)H]oleate under either basal (74 experiments) or euglycemic hyperinsulinemic (1.0 mU.kg FFM(-1).min(-1)) clamp conditions (63 experiments). Consistent with our previous findings, REE and sex independently predicted basal FFA flux, whereas fat-free mass was the best predictor of basal glucose flux; in addition, percent body fat was independently and positively associated with basal glucose flux (total r2 = 0.52, P < 0.0001). Insulin-suppressed lipolysis remained significantly associated with REE (r = 0.25, P < 0.05), but percent body fat also contributed (total adjusted r2 = 0.36, P < 0.0001), whereas sex was not significantly related to insulin-suppressed FFA flux. Glucose disposal during hyperinsulinemia was independently associated with peak VO2, percent body fat, and FFA concentrations (total r2 = 0.63, P < 0.0001) but not with sex. We conclude that basal glucose production is independently related to both FFM and body fatness. In addition, hyperinsulinemia obscures the sex differences in FFA release relative to REE, but brings out the effects of fatness on lipolysis.

  6. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study

    PubMed Central

    Zhang, Juanwen; Zhao, Ying; Xu, Chengfu; Hong, Yani; Lu, Huanle; Wu, Jianping; Chen, Yu

    2014-01-01

    High serum free fatty acid (FFA) levels are associated with metabolic syndrome (MS). This study aimed to assess the association of fasting serum FFAs with nonalcoholic fatty liver disease (NAFLD) in a Chinese population. A total of 840 subjects fulfilled the diagnostic criteria of NAFLD and 331 healthy control participants were enrolled in this cross-sectional study. Fasting serum FFA levels and other clinical and laboratory parameters were measured. NAFLD patients had significantly higher serum FFA levels than controls (P < 0.001). Serum FFA levels were significantly and positively correlated with parameters of MS, inflammation indexes, and markers of hepatocellular damage. Elevated serum FFA levels were found in NAFLD subjects with individual components of MS (obesity, hypertriglyceridaemia, and hyperglycaemia). Stepwise regression showed that serum FFA levels were an independent factor predicting advanced fibrosis (FIB-4 ≥ 1.3) in NAFLD patients. Serum FFA levels correlated with NAFLD and could be used as an indicator for predicting advanced fibrosis in NAFLD patients. PMID:25060337

  7. Determination of ether extract digestibility and energy content of specialty lipids with variable FA and FFA content, and the effect of lecithin, for nursery pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various specialty lipids are commercially available and used in nursery pig diets, but may have FA profiles and FFA content that affect their caloric value. In each of 2 experiments, 54 barrows (28-d of age) were fed a common diet for 7-d, allotted to dietary treatments and fed their respective expe...

  8. Perceptions of North Carolina High School Agricultural Educators regarding Students with Special Needs Participating in Supervised Agricultural Experience and FFA Activities

    ERIC Educational Resources Information Center

    Johnson, Lendy; Wilson, Elizabeth; Flowers, Jim; Croom, Barry

    2012-01-01

    The purpose of this study was to examine the perceptions of North Carolina high school agricultural educators toward including students with special needs when implementing Supervised Agricultural Experience and participating in FFA activities. The population was all high school agricultural educators in North Carolina with 12 month employment (N…

  9. An Internal Evaluation of the National FFA Agricultural Mechanics Career Development Event through Analysis of Individual and Team Scores from 1996-2006

    ERIC Educational Resources Information Center

    Franklin, Edward A.; Armbruster, James

    2012-01-01

    The purpose of this study was to conduct an internal evaluation of the National FFA Agricultural Mechanics Career Development Event (CDE) through analysis of individual and team scores from 1996-2006. Data were analyzed by overall and sub-event areas scores for individual contestants and team event. To facilitate the analysis process scores were…

  10. Resource recycling through artificial lightweight aggregates from sewage sludge and derived ash using boric acid flux to lower co-melting temperature.

    PubMed

    Hu, Shao-Hua; Hu, Shen-Chih; Fu, Yen-Pei

    2012-02-01

    This study focuses on artificial lightweight aggregates (ALWAs) formed from sewage sludge and ash at lowered co-melting temperatures using boric acid as the fluxing agent. The weight percentages of boric acid in the conditioned mixtures of sludge and ash were 13% and 22%, respectively. The ALWA derived from sewage sludge was synthesized under the following conditions: preheating at 400 degrees C 0.5 hr and a sintering temperature of 850 degrees C 1 hr. The analytical results of water adsorption, bulk density, apparent porosity, and compressive strength were 3.88%, 1.05 g/cm3, 3.93%, and 29.7 MPa, respectively. Scanning electron microscope (SEM) images of the ALWA show that the trends in water adsorption and apparent porosity were opposite to those of bulk density. This was due to the inner pores being sealed off by lower-melting-point material at the aggregates'surface. In the case of ash-derived aggregates, water adsorption, bulk density, apparent porosity, and compressive strength were 0.82%, 0.91 g/cm3, 0.82%, and 28.0 MPa, respectively. Both the sludge- and ash-derived aggregates meet the legal standards for ignition loss and soundness in Taiwan for construction or heat insulation materials.

  11. Infusion of long-chain fatty acid anions by continuous-flow centrifugation

    PubMed Central

    Greenough, William B.; Crespin, Stephen R.; Steinberg, Daniel

    1969-01-01

    We have developed a method for the rapid infusion into plasma of large amounts of long-chain free fatty acids (FFA). Unanesthetized dogs were connected by a peripheral artery to a closed, continuousflow centrifuge from which cells and plasma emerged in separate lines. Sodium oleate was infused directly into the plasma line before cells and plasma were recombined and returned to the animal through a peripheral vein. The centrifugation procedure itself produced only small changes in circulating levels of glucose, FFA, and electrolytes. Plasma flow rates as high as 100 ml/min could be maintained, and centrifugations of 12 hr were accomplished without complications. During centrifugation, sodium oleate was infused at rates up to 80 μEq/kg per min for 2.5 hr; the maximum molar ratio of FFA to albumin without hemolysis was 10:1. Plasma FFA levels rose rapidly after infusions were started and reached constant elevated levels within 15-20 min. Oleate infusion at 10-50 μEq/kg per min produced a rise in plasma FFA proportional to the infusion rate. The maximum increment in plasma FFA above control values was 1.66 μEq/ml. When infusions ended, plasma FFA declined rapidly to control levels. Oleate infusion at rates below 30 μEq/kg per min did not reduce levels of other plasma FFA. Infusion at high rates was accompanied by a marked fall in blood glucose. This method permits adminsitration of long-chain fatty acids in sufficient quantities to study their individual metabolic effects, and provides a new way to supply lipid calories parenterally. PMID:5822596

  12. Phloem sugar flux and jasmonic acid-responsive cell wall invertase control extrafloral nectar secretion in Ricinus communis.

    PubMed

    Millán-Cañongo, Cynthia; Orona-Tamayo, Domancar; Heil, Martin

    2014-07-01

    Plants secrete extrafloral nectar (EFN) that attracts predators. The efficiency of the resulting anti-herbivore defense depends on the quantity and spatial distribution of EFN. Thus, according to the optimal defense hypothesis (ODH), plants should secrete EFN on the most valuable organs and when herbivore pressure is high. Ricinus communis plants secreted most EFN on the youngest (i.e., most valuable) leaves and after the simulation of herbivory via the application of jasmonic acid (JA). Here, we investigated the physiological mechanisms that might produce these seemingly adaptive spatiotemporal patterns. Cell wall invertase (CWIN; EC 3.2.1.26) was most active in the hours before peak EFN secretion, its decrease preceded the decrease in EFN secretion, and CWIN activity was inducible by JA. Thus, CWIN appears to be a central player in EFN secretion: its activation by JA is likely to cause the induction of EFN secretion after herbivory. Shading individual leaves decreased EFN secretion locally on these leaves with no effect on CWIN activity in the nectaries, which is likely to be because it decreased the content of sucrose, the substrate of CWIN, in the phloem. Our results demonstrate how the interplay of two physiological processes can cause ecologically relevant spatiotemporal patterns in a plant defense trait.

  13. Characterization of acid flux in osteoclasts from patients harboring a G215R mutation in ClC-7

    SciTech Connect

    Henriksen, Kim Gram, Jeppe Neutzsky-Wulff, Anita Vibsig Jensen, Vicki Kaiser Dziegiel, Morten H. Bollerslev, Jens Karsdal, Morten A.

    2009-01-23

    The chloride-proton antiporter ClC-7 has been speculated to be involved in acidification of the lysosomes and the resorption lacunae in osteoclasts; however, neither direct measurements of chloride transport nor acidification have been performed. Human osteoclasts harboring a dominant negative mutation in ClC-7 (G215R) were isolated, and used these to investigate bone resorption measured by CTX-I, calcium release and pit scoring. The actin cytoskeleton of the osteoclasts was also investigated. ClC-7 enriched membranes from the osteoclasts were isolated, and used to test acidification rates in the presence of a V-ATPase and a chloride channel inhibitor, using a H{sup +} and Cl{sup -} driven approach. Finally, acidification rates in ClC-7 enriched membranes from ADOII osteoclasts and their corresponding controls were compared. Resorption by the G215R osteoclasts was reduced by 60% when measured by both CTX-I, calcium release, and pit area when comparing to age and sex matched controls. In addition, the ADOII osteoclasts showed no differences in actin ring formation. Finally, V-ATPase and chloride channel inhibitors completely abrogated the H{sup +} and Cl{sup -} driven acidification. Finally, the acid influx was reduced by maximally 50% in the ClC-7 deficient membrane fractions when comparing to controls. These data demonstrate that ClC-7 is essential for bone resorption, via its role in acidification of the lysosomes and resorption lacunae in osteoclasts.

  14. Effects of forage intake level on nitrogen net flux by portal-drained viscera of mature sheep with abomasal infusion of an amino acid mixture.

    PubMed

    EL-Sabagh, M; Sugino, T; Obitsu, T; Taniguchi, K

    2013-10-01

    This study aimed to investigate the pattern of nitrogen (N) metabolites flux across the portal-drained viscera (PDV) of mature sheep over a wide range of forage intake, and to determine the effect of dry matter intake (DMI) on the PDV recovery of an abomasally infused amino acids (AA) mixture. Four Suffolk mature sheep (61.4 ± 3.6 kg BW) surgically fitted with abomasal cannulae and multi-catheters were fed four levels of DMI of lucerne hay cubes ranging from 0.4 to 1.6 fold the metabolizable energy requirements for maintenance. Each period lasted for 17 days: 7 days for diet adaptation, 5 days for measurement of N balance and N metabolites flux under basal pre-infusion conditions (basal phase) and 5 days for determining the recovery of the infused AA (584 mmol/day) across the PDV (infusion phase). Six sets of blood samples were collected on the last day of both basal and infusion phases. Increasing DMI increased portal release of AA and enhanced N retention. At 0.4 M and as a proportion of digested N, there was a marked drop in total AA-N release accompanied by greater ammonia-N release and urea-N uptake across the PDV. The incremental recovery ratio of infused AA across the PDV was altered with increasing DMI accounting for 0.88, 1.12, 1.23 and 1.31 at 0.4, 0.8, 1.2 and 1.6 M, respectively. In addition, across the individual AA, the net portal recovery ratio of infused methionine and valine increased linearly (P < 0.05) while that of phenylalanine, branched-chain AA and total essential AA tended to increase linearly (P < 0.10) with increasing DMI. These results indicated that DMI affects the net portal recovery of AA available in the small intestine of mature sheep.

  15. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress.

    PubMed

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-03-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na(+) efflux and H(+) influx, but decreased net K(+) efflux, which maintained a high cytosolic K(+)/Na(+) ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K(+) effluxes and decrease Na(+) efflux and H(+) influx in salt-treated transgenic roots, but the K(+) effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na(+)/H(+) antiport and K(+) channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K(+) and Na(+) homeostasis and better water status in maize exposed to salt stress.

  16. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  17. Defense Priming and Jasmonates: A Role for Free Fatty Acids in Insect Elicitor-Induced Long Distance Signaling

    PubMed Central

    Li, Ting; Cofer, Tristan; Engelberth, Marie; Engelberth, Jurgen

    2016-01-01

    Green leaf volatiles (GLV) prime plants against insect herbivore attack resulting in stronger and faster signaling by jasmonic acid (JA). In maize this response is specifically linked to insect elicitor (IE)-induced signaling processes, which cause JA accumulation not only around the damage site, but also in distant tissues, presumably through the activation of electrical signals. Here, we present additional data further characterizing these distal signaling events in maize. Also, we describe how exposure to GLV increases free fatty acid (fFA) levels in maize seedlings, but also in other plants, and how increased fFA levels affect IE-induced JA accumulation. Increased fFA, in particular α-linolenic acid (LnA), caused a significant increase in JA accumulation after IE treatment, while JA induced by mechanical wounding (MW) alone was not affected. We also identified treatments that significantly decreased certain fFA level including simulated wind and rain. In such treated plants, IE-induced JA accumulation was significantly reduced when compared to un-moved control plants, while MW-induced JA accumulation was not significantly affected. Since only IE-induced JA accumulation was altered by changes in the fFA composition, we conclude that changing levels of fFA affect primarily IE-induced signaling processes rather than serving as a substrate for JA. PMID:27135225

  18. Boric acid flux synthesis, structure and magnetic property of MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn)

    SciTech Connect

    Yang, Dingfeng; Cong, Rihong; Gao, Wenliang; Yang, Tao

    2013-05-01

    Three new borates MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) have been synthesized by boric acid flux methods, which are isotypic to NiB₁₂O₁₄(OH)₁₀. Single-crystal XRD was performed to determine the crystal structures in detail. They all crystallize in the monoclinic space group P2₁/c. The size of MO{sub 6} (M=Mg, Mn, Fe, Co, Ni, Zn) octahedron shows a good agreement with the Shannon effective ionic radii of M²⁺. Magnetic measurements indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. The values of its magnetic superexchange constants were evaluated by DFT calculations, which explain the observed magnetic behavior. The UV–vis diffuse reflectance spectrum of ZnB₁₂O₁₄(OH)₁₀ suggests a band gap ~4.6 eV. DFT calculations indicate it has a direct band gap 4.9 eV. The optical band gap is contributed by charge transfers from the occupied O 2p to the unoccupied Zn 4s states. - Graphical abstract: Experimental and theoretical studies indicate MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering. DFT calculations show ZnB₁₂O₁₄(OH)₁₀ has a direct band gap of 4.9 eV. Highlights: • MB₁₂O₁₄(OH)₁₀ (M=Mn, Fe, Zn) are synthesized by two-step boric acid flux method. • Single-crystal XRD was performed to determine the crystal structures in detail. • Size of MO₆ (M=Mg, Mn, Fe, Co, Ni, Zn) agrees with the effective ionic radii. • MnB₁₂O₁₄(OH)₁₀ is antiferromagnetic without a long-range ordering down to 2 K. • DFT calculations indicate ZnB₁₂O₁₄(OH)₁₀ has a direct band gap 4.9 eV.

  19. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    PubMed Central

    Hudson, Brian D.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Kostenis, Evi; Adams, David R.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL of the free fatty acid receptor 2 (FFA2) could be developed on the basis of pharmacological variation between species orthologs. For this, bovine FFA2 was characterized, revealing distinct ligand selectivity compared with human FFA2. Homology modeling and mutational analysis demonstrated a single mutation in human FFA2 of C4.57G resulted in a human FFA2 receptor with ligand selectivity similar to the bovine receptor. This was exploited to generate human FFA2-RASSL by the addition of a second mutation at a known orthosteric ligand interaction site, H6.55Q. The resulting FFA2-RASSL displayed a >100-fold loss of activity to endogenous ligands, while responding to the distinct ligand sorbic acid with pEC50 values for inhibition of cAMP, 5.83 ± 0.11; Ca2+ mobilization, 4.63 ± 0.05; ERK phosphorylation, 5.61 ± 0.06; and dynamic mass redistribution, 5.35 ± 0.06. This FFA2-RASSL will be useful in future studies on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.—Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. PMID:22919070

  20. Identification of Transport Proteins Involved in Free Fatty Acid Efflux in Escherichia coli

    PubMed Central

    Lennen, Rebecca M.; Politz, Mark G.; Kruziki, Max A.

    2013-01-01

    Escherichia coli has been used as a platform host for studying the production of free fatty acids (FFA) and other energy-dense compounds useful in biofuel applications. Most of the FFA produced by E. coli are found extracellularly. This finding suggests that a mechanism for transport across the cell envelope exists, yet knowledge of proteins that may be responsible for export remains incomplete. Production of FFA has been shown to cause cell lysis, induce stress responses, and impair basic physiological processes. These phenotypes could potentially be diminished if efflux rates were increased. Here, a total of 15 genes and operons were deleted and screened for their impact on cell viability and titer in FFA-producing E. coli. Deletions of acrAB and rob and, to a lower degree of statistical confidence, emrAB, mdtEF, and mdtABCD reduced multiple measures of viability, while deletion of tolC nearly abolished FFA production. An acrAB emrAB deletion strain exhibited greatly reduced FFA titers approaching the tolC deletion phenotype. Expression of efflux pumps on multicopy plasmids did not improve endogenous FFA production in an acrAB+ strain, but plasmid-based expression of acrAB, mdtEF, and an mdtEF-tolC artificial operon improved the MIC of exogenously added decanoate for an acrAB mutant strain. The findings suggest that AcrAB-TolC is responsible for most of the FFA efflux in E. coli, with residual activity provided by other resistance-nodulation-cell division superfamily-type efflux pumps, including EmrAB-TolC and MdtEF-TolC. While the expression of these proteins on multicopy plasmids did not improve production over the basal level, their identification enables future engineering efforts. PMID:23104810

  1. Comparative proteomic analysis of engineered Saccharomyces cerevisiae with enhanced free fatty acid accumulation.

    PubMed

    Chen, Liwei; Lee, Jaslyn Jie Lin; Zhang, Jianhua; Chen, Wei Ning

    2016-02-01

    The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production.

  2. Differential modulation of alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors expressed in Xenopus oocytes by flufenamic acid and niflumic acid.

    PubMed

    Zwart, R; Oortgiesen, M; Vijverberg, H P

    1995-03-01

    Effects of flufenamic acid (FFA) and niflumic acid (NFA), which are often used to block Ca(2+)-activated Cl- current, have been investigated in voltage-clamped Xenopus oocytes expressing alpha 3 beta 2 and alpha 3 beta 4 nicotinic ACh receptors (nAChRs). NFA and FFA inhibit alpha 3 beta 2 nAChR-mediated inward currents and potentiate alpha 3 beta 4 nAChR-mediated inward currents in normal, Cl(-)-free and Ca(2+)-free solutions to a similar extent. The concentration-dependence of the inhibition of alpha 3 beta 2 nAChR-mediated ion current yields IC50 values of 90 microM for FFA and of 260 microM for NFA. The potentiation of alpha 3 beta 4 nAChR-mediated ion current by NFA yields an EC50 value of 30 microM, whereas the effect of FFA does not saturate for concentrations of up to 1 mM. At 100 microM, FFA reduces the maximum of the concentration-effect curve of ACh for alpha 3 beta 2 nAChRs, but leaves the EC50 of ACh unaffected. The same concentration of FFA potentiates alpha 3 beta 4 nAChR-mediated ion currents for all ACh concentrations and causes a small shift of the concentration-effect curve of ACh to lower agonist concentrations. The potentiation, like the inhibition, is most likely due to a noncompetitive effect of FFA. Increasing ACh-induced inward current either by raising the agonist concentration from 10 microM to 200 microM or by coapplication of 10 microM ACh and 200 microM FFA causes a similar enhancement of block of the alpha 3 beta 4 nAChR-mediated ion current by Mg2+. This suggests that the effects of FFA and of an increased agonist concentration result in a similar functional modification of the alpha 3 beta 4 nAChR-operated ion channel. It is concluded that alpha 3 beta 4 and alpha 3 beta 2 nAChRs are oppositely modulated by FFA and NFA through a direct beta-subunit-dependent effect.

  3. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity

    PubMed Central

    Patterson, Rainey E.; Kalavalapalli, Srilaxmi; Williams, Caroline M.; Nautiyal, Manisha; Mathew, Justin T.; Martinez, Janie; Reinhard, Mary K.; McDougall, Danielle J.; Rocca, James R.; Yost, Richard A.; Cusi, Kenneth; Garrett, Timothy J.

    2016-01-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by 13C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P < 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of “lipotoxic” metabolites in the liver and could hasten inflammation and the metabolic transition to NASH. PMID:26814015

  4. Lipotoxicity in steatohepatitis occurs despite an increase in tricarboxylic acid cycle activity.

    PubMed

    Patterson, Rainey E; Kalavalapalli, Srilaxmi; Williams, Caroline M; Nautiyal, Manisha; Mathew, Justin T; Martinez, Janie; Reinhard, Mary K; McDougall, Danielle J; Rocca, James R; Yost, Richard A; Cusi, Kenneth; Garrett, Timothy J; Sunny, Nishanth E

    2016-04-01

    The hepatic tricarboxylic acid (TCA) cycle is central to integrating macronutrient metabolism and is closely coupled to cellular respiration, free radical generation, and inflammation. Oxidative flux through the TCA cycle is induced during hepatic insulin resistance, in mice and humans with simple steatosis, reflecting early compensatory remodeling of mitochondrial energetics. We hypothesized that progressive severity of hepatic insulin resistance and the onset of nonalcoholic steatohepatitis (NASH) would impair oxidative flux through the hepatic TCA cycle. Mice (C57/BL6) were fed a high-trans-fat high-fructose diet (TFD) for 8 wk to induce simple steatosis and NASH by 24 wk. In vivo fasting hepatic mitochondrial fluxes were determined by(13)C-nuclear magnetic resonance (NMR)-based isotopomer analysis. Hepatic metabolic intermediates were quantified using mass spectrometry-based targeted metabolomics. Hepatic triglyceride accumulation and insulin resistance preceded alterations in mitochondrial metabolism, since TCA cycle fluxes remained normal during simple steatosis. However, mice with NASH had a twofold induction (P< 0.05) of mitochondrial fluxes (μmol/min) through the TCA cycle (2.6 ± 0.5 vs. 5.4 ± 0.6), anaplerosis (9.1 ± 1.2 vs. 16.9 ± 2.2), and pyruvate cycling (4.9 ± 1.0 vs. 11.1 ± 1.9) compared with their age-matched controls. Induction of the TCA cycle activity during NASH was concurrent with blunted ketogenesis and accumulation of hepatic diacylglycerols (DAGs), ceramides (Cer), and long-chain acylcarnitines, suggesting inefficient oxidation and disposal of excess free fatty acids (FFA). Sustained induction of mitochondrial TCA cycle failed to prevent accretion of "lipotoxic" metabolites in the liver and could hasten inflammation and the metabolic transition to NASH.

  5. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  6. Effects of particle size and dry matter content of a total mixed ration on intraruminal equilibration and net portal flux of volatile fatty acids in lactating dairy cows.

    PubMed

    Storm, A C; Kristensen, N B

    2010-09-01

    Effects of physical changes in consistency of ruminal contents on intraruminal equilibration and net portal fluxes of volatile fatty acids (VFA) in dairy cows were studied. Four Danish Holstein cows (121+/-17 d in milk, 591+/-24 kg of body weight, mean+/-SD) surgically fitted with a ruminal cannula and permanent indwelling catheters in the major splanchnic blood vessels were used. The experimental design was a 4x4 Latin square with a 2x2 factorial design of treatments. Treatments differed in forage (grass hay) particle size (FPS; 3.0 and 30 mm) and feed dry matter (DM) content of the total mixed ration (44.3 and 53.8%). The feed DM did not affect chewing time, ruminal variables, or net portal flux of VFA. However, decreasing the FPS decreased the overall chewing and rumination times by 151+/-55 and 135+/-29 min/d, respectively. No effect of the reduced chewing time was observed on ruminal pH or milk fat percentage. Cows maintained average ventral ruminal pH of 6.65+/-0.02, medial ruminal pH of 5.95+/-0.04, and milk fat of 4.42+/-0.12% with chewing time of 28.0+/-2.1 min/kg of DM when fed short particles. The medial ruminal pool of wet particulate matter was decreased by 10.53+/-2.29 kg with decreasing FPS, thereby decreasing the medial pool of total VFA, acetate, propionate, butyrate, isobutyrate, and isovalerate by 1,143+/-333, 720+/-205, 228+/-69, 140+/-51, 8.0+/-2.3, and 25.2+/-5.6 mmol, respectively. Ventral pool variables were not affected by treatments. Relatively large intraruminal differences of VFA concentrations and pH between the ventral and medial pools were observed, VFA concentrations being largest and pH being the lowest medially. This indicates that the ruminal mat acts as a barrier retaining VFA. The effects of reduced FPS were limited to the VFA pool sizes of the mat, leaving ruminal pH, ruminal VFA concentrations, and net portal flux of VFA unaffected. Consequently reduced FPS affected the intraruminal equilibration of VFA between mat and ventral

  7. The Anterior Temporal Face Area Contains Invariant Representations of Face Identity That Can Persist Despite the Loss of Right FFA and OFA.

    PubMed

    Yang, Hua; Susilo, Tirta; Duchaine, Bradley

    2016-03-01

    Macaque neurophysiology found image-invariant representations of face identity in a face-selective patch in anterior temporal cortex. A face-selective area in human anterior temporal lobe (fATL) has been reported, but has not been reliably identified, and its function and relationship with posterior face areas is poorly understood. Here, we used fMRI adaptation and neuropsychology to ask whether fATL contains image-invariant representations of face identity, and if so, whether these representations require normal functioning of fusiform face area (FFA) and occipital face area (OFA). We first used a dynamic localizer to demonstrate that 14 of 16 normal subjects exhibit a highly selective right fATL. Next, we found evidence that this area subserves image-invariant representation of identity: Right fATL showed repetition suppression to the same identity across different images, while other areas did not. Finally, to examine fATL's relationship with posterior areas, we used the same procedures with Galen, an acquired prosopagnosic who lost right FFA and OFA. Despite the absence of posterior face areas, Galen's right fATL preserved its face selectivity and showed repetition suppression comparable to that in controls. Our findings suggest that right fATL contains image-invariant face representations that can persist despite the absence of right FFA and OFA, but these representations are not sufficient for normal face recognition.

  8. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-Based Proteomic Analysis of Hugan Qingzhi and Its Protective Properties against Free Fatty Acid-Induced L02 Hepatocyte Injury

    PubMed Central

    Xia, Fan; Yao, Xiaorui; Tang, Waijiao; Xiao, Chunxin; Yang, Miaoting; Zhou, Benjie

    2017-01-01

    In previous research, Hugan Qingzhi, a traditional Chinese medicine, was shown to have protective effects against hepatic steatosis. However, its activity against non-alcoholic fatty liver disease (NAFLD) and the mechanisms by which it exerts its effects remain unknown. In the present study, the effects of Hugan Qingzhi on free fatty acid (FFA)-induced L02 cells were examined. The techniques of iTRAQ labeling, together with strong cation exchange-non-liquid chromatography–tandem mass spectrometry (SCX-non-LC-MS/MS) analysis and serum pharmacology, were used to evaluate the effects of Hugan Qingzhi-medicated serum on FFA-induced L02 hepatocyte injury. Results identified 355 differentially expressed proteins following FFA treatment, compared with a control group; 359 altered proteins in the Hugan Qingzhi high dose + FFA treatment group, compared with the FFA treatment group; and 365 altered proteins in the Hugan Qingzhi high dose + FFA treatment group, compared with the control group. Based on the Kyoto Encyclopedia of Gene and Genomes pathway enrichment analysis, it is concluded that several pathways including those of microbial metabolism in diverse environments, fatty acid metabolism, peroxisome proliferator activated receptor signaling, and mitogen-activated protein kinase signaling are closely associated with the effects of Hugan Qingzhi-medicated serum in FFA-induced L02 hepatocyte injury. Furthermore, several differentially expressed proteins, including heat shock protein 27 (HSP27), acetyl-CoA acetyltransferase 1, calnexin, and integrin-linked kinase, were validated by western blotting. A target-specific HSP27 siRNA was used to investigate further the function of HSP27, and it was found that HSP27 might have a key role in the observable effects of Hugan Qingzhi-medicated serum in FFA-induced L02 hepatocyte injury. The results not only confirmed that Hugan Qingzhi exhibits a significant protective effect in FFA-induced L02 hepatocyte injury, but also suggest

  9. Recognition of a Biofilm at the Sediment-Water Interface of AN Acid Mine Drainage-Contaminated Stream, and its Role in Controlling Iron Flux

    NASA Astrophysics Data System (ADS)

    Boult, Stephen; Johnson, Nicholas; Curtis, Charles

    1997-03-01

    Material collected over a month on plates attached to the bed of the Afon Goch, Anglesey, a stream highly contaminated by acid mine drainage (AMD), was either examined intact by electron microscopy or suspended and cultured to reveal the presence of microbiota. Certain of the aerobic microbiota were identified, the genus Pseudomonas formed the commonest isolate and cultures of Serratia plymuthica were grown in order to compare the biofilms formed with the material collected in the Afon Goch. The material at the sediment-water interface of the Afon Goch was of similar underlying morphology to that of the cultured biofilms. However, the former had a superficial granular coating of equidimensional (60-100 nm) and evenly spaced iron rich particles (determined by X-ray microanalysis). The sediment-water interface of this AMD-contaminated stream is therefore best described as a highly contaminated biofilm. Evidence from previous work suggests that the streambed is active in iron removal from the water column. The intimate association of iron with microbiota at the streambed, therefore, implies that iron flux prediction may not be possible from physical and chemical data alone but requires knowledge of biofilm physiology and ecology.Microbially mediated metal precipitation, both by single bacteria and by biofilms, has been reported elsewhere but mass balance considerations suggest that this explanation cannot hold good for the large amounts of iron hydroxide depositing from waters of the prevalent pH and redox status. Filtered stream water analyses indicate the presence of colloidal iron hydroxide and also its removal downstream where ochreous (iron hydroxide rich) material accumulates. The process of iron immobilization is likely to be the attraction and physical trapping of colloidal iron hydroxide by extracellular polymeric substances (EPS) which constitute the matrix of biofilms.

  10. Plasma long-chain free fatty acids predict mammalian longevity.

    PubMed

    Jové, Mariona; Naudí, Alba; Aledo, Juan Carlos; Cabré, Rosanna; Ayala, Victoria; Portero-Otin, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-11-28

    Membrane lipid composition is an important correlate of the rate of aging of animals and, therefore, the determination of their longevity. In the present work, the use of high-throughput technologies allowed us to determine the plasma lipidomic profile of 11 mammalian species ranging in maximum longevity from 3.5 to 120 years. The non-targeted approach revealed a specie-specific lipidomic profile that accurately predicts the animal longevity. The regression analysis between lipid species and longevity demonstrated that the longer the longevity of a species, the lower is its plasma long-chain free fatty acid (LC-FFA) concentrations, peroxidizability index, and lipid peroxidation-derived products content. The inverse association between longevity and LC-FFA persisted after correction for body mass and phylogenetic interdependence. These results indicate that the lipidomic signature is an optimized feature associated with animal longevity, emerging LC-FFA as a potential biomarker of longevity.

  11. Free fatty acid and triacylglycerol forms of CLA isomers are not incorporated equally in the liver but do not lead to differences in bone density and biomarkers of bone metabolism.

    PubMed

    DeGuire, Jason R; Weiler, Hope A

    2013-05-01

    Few studies have compared differences between conjugated linoleic acid (CLA) in triacylglycerol (TG) and free fatty acid (FFA) form. This study assessed differences in liver incorporation, mineral mass balance, bone density, and biomarkers of bone metabolism between FFA and TG CLA diets. Rats (n=36) were fed a control (CTRL) or 1% CLA diet in FFA or TG form (1:1 mixture c9, t11: t10, c12). Liver content of c9, t11 CLA from FFA was greater than TG form and CTRL (FFA: 0.05±0.01 vs. TG: 0.02±0.01 vs. CTRL: 0.001±0.001% total fatty acids, P<0.0001). Liver t10, c12 CLA did not differ among groups (P=0.11). No diet differences among groups for growth, bone biomarkers or mass nor mineral balance were found. These findings suggest that c9, t11 CLA in FFA form is preferentially incorporated in the liver but fatty acid forms of CLA do not affect bone or mineral outcomes.

  12. Comparison and validation of 2 analytical methods for the determination of free fatty acids in dairy products by gas chromatography with flame ionization detection.

    PubMed

    Mannion, David T; Furey, Ambrose; Kilcawley, Kieran N

    2016-07-01

    Accurate quantification of free fatty acids (FFA) in dairy products is important for quality control, nutritional, antimicrobial, authenticity, legislative, and flavor purposes. In this study, the performance of 2 widely used gas chromatographic flame ionization detection methods for determination of FFA in dairy products differing in lipid content and degree of lipolysis were evaluated. We used a direct on-column approach where the isolated FFA extract was injected directly and a derivatization approach where the FFA were esterified in the injector to methyl esters using tetramethylammonium hydroxide as a catalyst. A comprehensive validation was undertaken to establish method linearity, limits of detection, limits of quantification, accuracy, and precision. Linear calibrations of 3 to 700mg/L (R(2)>0.999) and 20 to 700mg/L (R(2)>0.997), and limits of detection and limits of quantification of 0.7 and 3mg/L and 5 and 20mg/L were obtained for the direct injection on-column and the derivatization method, respectively. Intraday precision of 1.5 to 7.2% was obtained for both methods. The direct injection on-column method had the lower levels of limits of detection and quantification, because FFA are directly injected onto the GC as opposed to the split injection used in the derivatization method. However, the direct injection on-column method experienced accumulative column phase deterioration and irreversible FFA absorption because of the acidic nature of the injection extract, which adversely affected method robustness and the quantification of some longer chain FFA. The derivatization method experienced issues with quantification of butyric acid at low concentrations because of coelution with the injection solvent peak, loss of polyunsaturated FFA due to degradation by tetramethylammonium hydroxide, and the periodic emergence of by-product peaks of the tetramethylammonium hydroxide reaction that interfered with the quantification of some short-chain FFA. The

  13. A Novel Allosteric Activator of Free Fatty Acid 2 Receptor Displays Unique Gi-functional Bias*

    PubMed Central

    Bolognini, Daniele; Moss, Catherine E.; Nilsson, Karolina; Petersson, Annika U.; Donnelly, Iona; Sergeev, Eugenia; König, Gabriele M.; Kostenis, Evi; Kurowska-Stolarska, Mariola; Miller, Ashley; Dekker, Niek; Tobin, Andrew B.

    2016-01-01

    The short chain fatty acid receptor FFA2 is able to stimulate signaling via both Gi- and Gq/G11-promoted pathways. These pathways are believed to control distinct physiological end points but FFA2 receptor ligands appropriate to test this hypothesis have been lacking. Herein, we characterize AZ1729, a novel FFA2 regulator that acts as a direct allosteric agonist and as a positive allosteric modulator, increasing the activity of the endogenously produced short chain fatty acid propionate in Gi-mediated pathways, but not at those transduced by Gq/G11. Using AZ1729 in combination with direct inhibitors of Gi and Gq/G11 family G proteins demonstrated that although both arms contribute to propionate-mediated regulation of phospho-ERK1/2 MAP kinase signaling in FFA2-expressing 293 cells, the Gq/G11-mediated pathway is predominant. We extend these studies by employing AZ1729 to dissect physiological FFA2 signaling pathways. The capacity of AZ1729 to act at FFA2 receptors to inhibit β-adrenoreceptor agonist-promoted lipolysis in primary mouse adipocytes and to promote chemotaxis of isolated human neutrophils confirmed these as FFA2 processes mediated by Gi signaling, whereas, in concert with blockade by the Gq/G11 inhibitor FR900359, the inability of AZ1729 to mimic or regulate propionate-mediated release of GLP-1 from mouse colonic preparations defined this physiological response as an end point transduced via activation of Gq/G11. PMID:27385588

  14. Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles.

    PubMed

    Varady, Krista A; Dam, Vi T; Klempel, Monica C; Horne, Matthew; Cruz, Rani; Kroeger, Cynthia M; Santosa, Sylvia

    2015-01-05

    Cardiovascular disease risk is associated with excess body weight and elevated plasma free fatty acid (FFA) concentrations. This study examines how an alternate-day fasting (ADF) diet high (HF) or low (LF) in fat affects plasma FFA profiles in the context of weight loss, and changes in body composition and lipid profiles. After a 2-week weight maintenance period, 29 women (BMI 30-39.9 kg/m(2)) 25-65 years old were randomized to an 8-week ADF-HF (45% fat) diet or an ADF-LF (25% fat) diet with 25% energy intake on fast days and ad libitum intake on feed days. Body weight, BMI and waist circumference were assessed weekly and body composition was measured using dual x-ray absorptiometry (DXA). Total and individual FFA and plasma lipid concentrations were measured before and after weight loss. Body weight, BMI, fat mass, total cholesterol, LDL-C and triglyceride concentrations decreased (P < 0.05) in both groups. Total FFA concentrations also decreased (P < 0.001). In the ADF-LF group, decreases were found in several more FFAs than in the ADF-HF group. In the ADF-HF group, FFA concentrations were positively correlated with waist circumference. Depending on the macronutrient composition of a diet, weight loss with an ADF diet decreases FFA concentrations through potentially different mechanisms.

  15. Purification and identification of bovine cheese whey fatty acids exhibiting in vitro antifungal activity.

    PubMed

    Clément, M; Tremblay, J; Lange, M; Thibodeau, J; Belhumeur, P

    2008-07-01

    Milk lipids contain several bioactive factors exhibiting antimicrobial activity against bacteria, viruses, and fungi. In the present study, we demonstrate that free fatty acids (FFA) derived from the saponification of bovine whey cream lipids are active in vitro at inhibiting the germination of Candida albicans, a morphological transition associated with pathogenicity. This activity was found to be significantly increased when bovine FFA were enriched in non-straight-chain FFA. At low cell density, this non-straight-chain FFA-enriched fraction was also found to inhibit in a dose-dependant manner the growth of both developmental forms of C. albicans as well as the growth of Aspergillus fumigatus. Using an assay-guided fractionation, the main components responsible for these activities were isolated. On the basis of mass spectroscopic and gas chromatographic analysis, antifungal compounds were identified as capric acid (C10:0), lauroleic acid (C12:1), 11-methyldodecanoic acid (iso-C13:0), myristoleic acid (C14:1n-5), and gamma-linolenic acid (C18:3n-6). The most potent compound was gamma-linolenic acid, with minimal inhibitory concentration values of 5.4 mg/L for C. albicans and 1.3 mg/L for A. fumigatus, in standardized conditions. The results of this study indicate that bovine whey contains bioactive fatty acids exhibiting antifungal activity in vitro against 2 important human fungal pathogens.

  16. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid.

    PubMed

    Takisawa, Kenji; Kanemoto, Kazuyo; Kartikawati, Muliasari; Kitamura, Yutaka

    2013-12-01

    This research demonstrated hydrolysis of wet microalgal lipid and esterification of free fatty acid (FFA) using acid in one-step process. The investigation of simultaneous hydrolysis-esterification (SHE) of wet microalgal lipid was conducted by using L27 orthogonal design and the effects of water content, volume of sulphuric acid, volume of methanol, temperature and time on SHE were examined. As a result, water content was found to be the most effective factor. The effects of various parameters on fatty acid methyl ester (FAME) content and equilibrium relation between FAME and FFA were also examined under water content 80%. Equimolar amounts of sulphuric acid and hydrochloric acid showed similar results. This method has great potential in terms of biodiesel production from microalgae since no organic solvents are used.

  17. The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen.

    PubMed

    Heo, Wan; Kim, Eun Tae; Cho, Sung Do; Kim, Jun Ho; Kwon, Seong Min; Jeong, Ha Yeon; Ki, Kwang Seok; Yoon, Ho Baek; Ahn, Young Dae; Lee, Sung Sill; Kim, Young Jun

    2016-03-01

    This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.

  18. The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen

    PubMed Central

    Heo, Wan; Kim, Eun Tae; Cho, Sung Do; Kim, Jun Ho; Kwon, Seong Min; Jeong, Ha Yeon; Ki, Kwang Seok; Yoon, Ho Baek; Ahn, Young Dae; Lee, Sung Sill; Kim, Young Jun

    2016-01-01

    This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation. PMID:26950867

  19. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    PubMed

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016.

  20. Ethanol and fatty acids impair lipid homeostasis in an in vitro model of hepatic steatosis.

    PubMed

    Vecchione, Giulia; Grasselli, Elena; Compalati, Andrea D; Ragazzoni, Milena; Cortese, Katia; Gallo, Gabriella; Voci, Adriana; Vergani, Laura

    2016-04-01

    Excess ethanol consumption and fatty acid intake lead to a cumulative effect on liver steatosis through still unclear mechanisms. This study aimed to characterize the lipid homoeostasis alterations under the exposure of hepatocytes to ethanol alone or combined with fatty acids. FaO hepatoma cells were incubated in the absence (C) or in the presence of 100 mM ethanol (EtOH) or 0.35 mM oleate/palmitate (FFA) alone or in the combination (FFA/EtOH). Content of intra- and extra-cellular triglycerides (TAGs) and of lipid droplets (LDs), expression of lipogenic and lipolytic genes, and oxidative stress-related parameters were evaluated. Exposure to either FFAs or EtOH given separately led to steatosis which was augmented when they were combined. Our results show that FFA/EtOH: (i) increased the LD number, but reduced their size compared to separate treatments; (ii) up-regulated PPARγ and SREBP-1c and down-regulated sirtuin-1 (SIRT1); (iii) impaired FFA oxidation; (iv) did not change lipid secretion and oxidative stress. Our findings indicate that one of the major mechanisms of the metabolic interference between ethanol and fat excess is the impairment of FFA oxidation, in addition to lipogenic pathway stimulation. Interestingly, ethanol combined with FFAs led to a shift from macrovesicular to microvesicular steatosis that represents a more dangerous condition.

  1. GC-MS/MS survey of collision-induced dissociation of tert-butyldimethylsilyl-derivatized amino acids and its application to (13)C-metabolic flux analysis of Escherichia coli central metabolism.

    PubMed

    Okahashi, Nobuyuki; Kawana, Shuichi; Iida, Junko; Shimizu, Hiroshi; Matsuda, Fumio

    2016-09-01

    Stable isotope labeling experiments using mass spectrometry have been employed to investigate carbon flow levels (metabolic flux) in mammalian, plant, and microbial cells. To achieve a more precise (13)C-metabolic flux analysis ((13)C-MFA), novel fragmentations of tert-butyldimethylsilyl (TBDMS)-amino acids were investigated by gas chromatography-tandem mass spectrometry (GC-MS/MS). The product ion scan analyses of 15 TBDMS-amino acids revealed 24 novel fragment ions. The amino acid-derived carbons included in the five fragment ions were identified by the analyses of (13)C-labeled authentic standards. The identification of the fragment ion at m/z 170 indicated that the isotopic abundance of S-methyl carbon in methionine could be determined from the cleavage of C5 in the precursor of [M-159](+) (m/z 218). It was also confirmed that the precision of (13)C-MFA in Escherichia coli central carbon metabolism could be improved by introducing (13)C-labeling data derived from novel fragmentations. Graphical Abstract Novel collision-induced dissociation fragmentations of tert-butyldimethylsilyl amino acids were investigated and identified by GC-MS/MS.

  2. Degree of free fatty acid saturation influences chocolate rejection in human assessors.

    PubMed

    Running, Cordelia A; Hayes, John E; Ziegler, Gregory R

    2017-02-01

    In foods, free fatty acids (FFAs) traditionally have been viewed as contributing an odor, yet evidence has accumulated that FFAs also contribute a unique taste ("oleogustus"). However, minimal work has been conducted using actual foods to test the contribution of FFA to taste preferences. Here, we investigate flavor, taste, and aroma contributions of added FFA in chocolate, as some commercial manufacturers already use lipolysis of triglycerides to generate unique profiles. We hypothesized that small added concentrations of FFAs would increase preferences for chocolate, whereas higher added concentrations would decrease preferences. We also hypothesized a saturated fatty acid (stearic C18) would have a lesser effect than a monounsaturated (oleic C18:1), which would have a lesser effect than a polyunsaturated (linoleic C18:2) fatty acid. For each, paired preference tests were conducted for 10 concentrations (0.04% to 2.25%) of added FFAs compared with the control chocolate without added FFAs. Stearic acid was tested for flavor (tasting and nares open), whereas the unsaturated fatty acids were tested for both aroma (orthonasal only and no tasting) and taste (tasting with nares blocked to eliminate retronasal odor). We found no preference for any added FFA chocolate; however, rejection was observed independently for both taste and aroma of unsaturated fatty acids, with linoleic acid reaching rejection at lower concentrations than oleic acid. These data indicate that degree of unsaturation influences rejection of both FFA aroma and taste in chocolate. Thus, alterations of FFA profiles in foods should be approached cautiously to avoid shifting concentrations of unsaturated fatty acids to hedonically unacceptable levels.

  3. Impact of in vivo fatty acid oxidation blockade on glucose turnover and muscle glucose metabolism during low-dose AICAR infusion.

    PubMed

    Christopher, Michael; Rantzau, Christian; Chen, Zhi-Ping; Snow, Rodney; Kemp, Bruce; Alford, Frank P

    2006-11-01

    AMPK plays a central role in influencing fuel usage and selection. The aim of this study was to analyze the impact of low-dose AMP analog 5-aminoimidazole-4-carboxamide-1-beta-d-ribosyl monophosphate (ZMP) on whole body glucose turnover and skeletal muscle (SkM) glucose metabolism. Dogs were restudied after prior 48-h fatty acid oxidation (FA(OX)) blockade by methylpalmoxirate (MP; 5 x 12 hourly 10 mg/kg doses). During the basal equilibrium period (0-150 min), fasting dogs (n = 8) were infused with [3-(3)H]glucose followed by either 2-h saline or AICAR (1.5-2.0 mg x kg(-1) x min(-1)) infusions. SkM was biopsied at completion of each study. On a separate day, the same protocol was undertaken after 48-h in vivo FA(OX) blockade. The AICAR and AICAR + MP studies were repeated in three chronic alloxan-diabetic dogs. AICAR produced a transient fall in plasma glucose and increase in insulin and a small decline in free fatty acid (FFA). Parallel increases in hepatic glucose production (HGP), glucose disappearance (R(d tissue)), and glycolytic flux (GF) occurred, whereas metabolic clearance rate of glucose (MCR(g)) did not change significantly. Intracellular SkM glucose, glucose 6-phosphate, and glycogen were unchanged. Acetyl-CoA carboxylase (ACC approximately pSer(221)) increased by 50%. In the AICAR + MP studies, the metabolic responses were modified: the glucose was lower over 120 min, only minor changes occurred with insulin and FFA, and HGP and R(d tissue) responses were markedly attenuated, but MCR(g) and GF increased significantly. SkM substrates were unchanged, but ACC approximately pSer(221) rose by 80%. Thus low-dose AICAR leads to increases in HGP and SkM glucose uptake, which are modified by prior FA(ox) blockade.

  4. The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment

    PubMed Central

    Björkman, Lena; Mårtensson, Jonas; Winther, Malene; Gabl, Michael; Holdfeldt, André; Uhrbom, Martin; Bylund, Johan; Højgaard Hansen, Anders; Pandey, Sunil K.; Ulven, Trond; Forsman, Huamei

    2016-01-01

    Ligands with improved potency and selectivity for free fatty acid receptor 2 (FFA2R) have become available, and we here characterize the neutrophil responses induced by one such agonist (Cmp1) and one antagonist (CATPB). Cmp1 triggered an increase in the cytosolic concentration of Ca2+, and the neutrophils were then desensitized to Cmp1 and to acetate, a naturally occurring FFA2R agonist. The antagonist CATPB selectively inhibited responses induced by Cmp1 or acetate. The activated FFA2R induced superoxide anion secretion at a low level in naive blood neutrophils. This response was largely increased by tumor necrosis factor alpha (TNF-α) in a process associated with a recruitment of easily mobilizable granules, but neutrophils recruited to an aseptic inflammation in vivo were nonresponding. Superoxide production induced by Cmp1 was increased in latrunculin A-treated neutrophils, but no reactivation of desensitized FFA2R was induced by this drug, suggesting that the cytoskeleton is not directly involved in terminating the response. The functional and regulatory differences between the receptors that recognize short-chain fatty acids and formylated peptides, respectively, imply different roles of these receptors in the orchestration of inflammation and confirm the usefulness of a selective FFA2R agonist and antagonist as tools for the exploration of the precise role of the FFA2R. PMID:27503855

  5. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids.

    PubMed

    Jordà, Joel; de Jesus, Sérgio S; Peltier, Solenne; Ferrer, Pau; Albiol, Joan

    2014-01-25

    The yeast Pichia pastoris has emerged as one of the most promising yeast cell factories for the production of heterologous proteins. The readily available genetic tools and the ease of high-cell density cultivations using methanol or glycerol/methanol mixtures are among the key factors for this development. Previous studies have shown that the use of mixed feeds of glycerol and methanol seem to alleviate the metabolic burden derived from protein production, allowing for higher specific and volumetric process productivities. However, initial studies of glycerol/methanol co-metabolism in P. pastoris by classical metabolic flux analyses using (13)C-derived Metabolic Flux Ratio (METAFoR) constraints were hampered by the reduced labelling information obtained when using C3:C1 substrate mixtures in relation to the conventional C6 substrate, that is, glucose. In this study, carbon flux distributions through the central metabolic pathways in glycerol/methanol co-assimilation conditions have been further characterised using biosynthetically directed fractional (13)C labelling. In particular, metabolic flux distributions were obtained under 3 different glycerol/methanol ratios and growth rates by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids using the software tool (13)CFlux2. Specifically, cells were grown aerobically in chemostat cultures fed with 80:20, 60:40 and 40:60 (w:w) glycerol/methanol mixtures at two dilutions rates (0.05 hour(-1) and 0.16 hour(-1)), allowing to obtain additional data (biomass composition and extracellular fluxes) to complement pre-existing datasets. The performed (13)C-MFA reveals a significant redistribution of carbon fluxes in the central carbon metabolism as a result of the shift in the dilution rate, while the ratio of carbon sources has a lower impact on carbon flux distribution in cells growing at the same dilution rate. At low growth rate, the percentage of methanol directly dissimilated to CO2 ranges

  6. Engineering Escherichia coli to synthesize free fatty acids

    PubMed Central

    Lennen, Rebecca M.; Pfleger, Brian F.

    2013-01-01

    Fatty acid metabolism has received significant attention as a route for producing high-energy density, liquid transportation fuels and high-value oleochemicals from renewable feedstocks. If microbes can be engineered to produce these compounds at yields that approach the theoretical limits of 0.3–0.4 g/g glucose, then processes can be developed to replace current petrochemical technologies. Here, we review recent metabolic engineering efforts to maximize production of free fatty acids (FFA) in Escherichia coli, the first step towards production of downstream products. To date, metabolic engineers have succeeded in achieving higher yields of FFA than any downstream products. Regulation of fatty acid metabolism and the physiological effects of fatty acid production will also be reviewed from the perspective of identifying future engineering targets. PMID:23102412

  7. Release of free fatty acids from raw or processed soybeans and subsequent effects on fiber digestibilities.

    PubMed

    Reddy, P V; Morrill, J L; Nagaraja, T G

    1994-11-01

    Two in vitro experiments were conducted to determine the rates of lipolysis and the extent of biohydrogenation of fat from raw or processed soybeans and to examine the subsequent effects on fiber digestibilities. In Experiment 1, substrates containing soy oil, raw soybeans, extruded soybeans, and soybeans roasted at 132, 146, or 163 degrees C were incubated with ruminal contents for 2, 4, 6, 12, or 24 h; and release of FFA was measured. The FFA released from substrates containing soy oil, extruded soybeans, and raw or roasted soybeans reached maxima at incubations of 4, 6, and 12 h, respectively. As the roasting temperature increased from 132 to 163 degrees C, release of FFA decreased at incubations of 2, 12, and 24 h. Fatty acids in roasted soybeans were subjected to less biohydrogenation than those in raw or extruded soybeans, suggesting that FFA of roasted soybeans are partially protected from ruminal bacteria. In Experiment 2, ground alfalfa hay was added to substrates used previously to determine the effect of release rate of FFA on ADF and NDF digestibilities. At all incubation times, the substrates containing soy oil and extruded soybeans had lower digestibilities, and those containing raw or roasted soybeans had higher digestibilities of NDF and ADF.

  8. Nano porous alkaline earth metal silicates as free fatty acid adsorbents from Crude Palm Oil (CPO)

    NASA Astrophysics Data System (ADS)

    Masmur, Indra; Sembiring, Seri Bima; Bangun, Nimpan; Kaban, Jamaran; Putri, Nabila Karina

    2017-01-01

    Free fatty acids(FFA) from Crude Palm Oil (CPO) have been adsorbed by alkaline earth metal silicate (M-silicate : M = Mg, Ca, Sr and Ba) adsorbents in ethanol using batch method. The adsorbents were prepared from the chloride salts of alkaline metals and Na2SiO3. The resulting white solid of the alkaline earth metal silicates were then heated at 800°C for 3 hours to enlarge their porosities. All adsorbents were characterized by SEM-EDX, XRD and BET. The EDX spectrum of SEM-EDX showed the appearance of all elements in the adsorbents, and the XRD spectrum of all adsorbents showed that they have crystobalite structure. The porosity of the adsorbents calculated by BET method showed that the porosities of the adsorbents range from 2.0884 - 2.0969 nm. All the adsorbents were used to adsorb the FFA from CPO containing 4.79%, 7.3%, 10.37% and 13.34% of FFA. The ratio of adsorbent to CPO to be used in adsorption of FFA from CPO were made 1:1, 1:2 and 1:3, with adsorption time of 1 hour. We found that the maximum adsorption of FFA from CPO was given by Ca-Silicate adsorbent which was between 69.86 - 94.78%, while the lowest adsorption was shown by Mg-silicate adsorbent which was 49.32 -74.53%.

  9. Polysorbate 20 Degradation in Biopharmaceutical Formulations: Quantification of Free Fatty Acids, Characterization of Particulates, and Insights into the Degradation Mechanism.

    PubMed

    Tomlinson, Anthony; Demeule, Barthélemy; Lin, Baiwei; Yadav, Sandeep

    2015-11-02

    Polysorbate 20 (PS20), a commonly used surfactant in biopharmaceuticals, showed degradation upon long-term (∼18-36 months) storage of two monoclonal antibody (mAb, mAb-A, and mAb-B) drug products at 2-8 °C. The PS20 degradation resulted in the accumulation of free fatty acids (FFA), which ultimately precipitated to form particles upon long-term storage. This study documents the development, qualification, and application of a method for FFA quantification in soluble and insoluble fraction of protein formulation. The method was applied to the quantification of capric acid, lauric acid, myristic acid, palmitic/oleic acid, and stearic acid in placebo as well as active protein formulations on stability. Quantification of FFA in both the soluble and insoluble fraction of mAb-A and mAb-B provided a better mechanistic understanding of PS20 degradation and the dynamics of subsequent fatty acid particle formation. Additionally, the use of this method for monitoring and quantitation of the FFA on real time storage stability appears to aid in identifying batches with higher probability for particulate formation upon extended storage at 5 °C.

  10. Ageing, adipose tissue, fatty acids and inflammation.

    PubMed

    Pararasa, Chathyan; Bailey, Clifford J; Griffiths, Helen R

    2015-04-01

    A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

  11. Assessing the Accuracy and Precision of Inorganic Geochemical Data Produced through Flux Fusion and Acid Digestions: Multiple (60+) Comprehensive Analyses of BHVO-2 and the Development of Improved "Accepted" Values

    NASA Astrophysics Data System (ADS)

    Ireland, T. J.; Scudder, R.; Dunlea, A. G.; Anderson, C. H.; Murray, R. W.

    2014-12-01

    The use of geological standard reference materials (SRMs) to assess both the accuracy and the reproducibility of geochemical data is a vital consideration in determining the major and trace element abundances of geologic, oceanographic, and environmental samples. Calibration curves commonly are generated that are predicated on accurate analyses of these SRMs. As a means to verify the robustness of these calibration curves, a SRM can also be run as an unknown item (i.e., not included as a data point in the calibration). The experimentally derived composition of the SRM can thus be compared to the certified (or otherwise accepted) value. This comparison gives a direct measure of the accuracy of the method used. Similarly, if the same SRM is analyzed as an unknown over multiple analytical sessions, the external reproducibility of the method can be evaluated. Two common bulk digestion methods used in geochemical analysis are flux fusion and acid digestion. The flux fusion technique is excellent at ensuring complete digestion of a variety of sample types, is quick, and does not involve much use of hazardous acids. However, this technique is hampered by a high amount of total dissolved solids and may be accompanied by an increased analytical blank for certain trace elements. On the other hand, acid digestion (using a cocktail of concentrated nitric, hydrochloric and hydrofluoric acids) provides an exceptionally clean digestion with very low analytical blanks. However, this technique results in a loss of Si from the system and may compromise results for a few other elements (e.g., Ge). Our lab uses flux fusion for the determination of major elements and a few key trace elements by ICP-ES, while acid digestion is used for Ti and trace element analyses by ICP-MS. Here we present major and trace element data for BHVO-2, a frequently used SRM derived from a Hawaiian basalt, gathered over a period of over two years (30+ analyses by each technique). We show that both digestion

  12. Association of free fatty acids with the insulin-resistant state but not with central obesity in individuals from Venezuela.

    PubMed

    Campos, Gilberto; Fernández, Virginia; Fernández, Erika; Molero, Emperatriz; Morales, Luz Marina; Raleigh, Xiomara; Connell, Lissette; Ryder, Elena

    2010-03-01

    Individuals with insulin resistance (IR) usually have upper body obesity phenotype, often accompanied by an increase in plasma free fatty acids (FFA). Since the Venezuelan population has a high frequency of IR and central obesity, the purpose of this work was to determine FFA levels in 47 Venezuelan individuals, men and women, 24-58 years old, and analyze their relationship with central obesity and parameters of carbohydrate and lipid metabolism. Basal concentrations of TG, total cholesterol, LDL-C, and HDL-C were measured, and FFA, glucose and insulin, at basal state and at different times after a glucose load. Eighteen individuals presented insulin resistance (HOMA-IR > 2.7) and 29 were non-insulin resistant (non-IR). Insulin resistant individuals (IR) had higher waist circumference, BMI and basal concentrations of FFA than the non-IR. No differences were observed in skin folds and other basal lipids studied. The increased FFA seemed to be related to the IR associated to BMI and not to central obesity, since the difference between IR and non-IR disappeared when they were matched for waist circumference. After a glucose load, FFA decreased in both groups, but remained significantly elevated in IR subjects. This effect disappeared after matching for BMI or waist circumference, inferring that it was independent of anthropometries. FFA were positively associated with HOMA-IR, glucose and TG levels; however, there was.no association with BMI or waist circumference. These findings, and the lack of elements to support the presence of hepatic IR, common to increased visceral lipolysis, might suggest that the IR present in the obese individuals studied, might be due to an increase in subcutaneous fat.

  13. Hepatitis C Virus Increases Free Fatty Acids Absorption and Promotes its Replication Via Down-Regulating GADD45α Expression

    PubMed Central

    Chen, Wei; Li, Xiao-ming; Li, An-ling; Yang, Gui; Hu, Han-ning

    2016-01-01

    Background Hepatitis C virus (HCV) infection, as a major cause of chronic hepatic diseases, is always accompanied with an abnormality of lipid metabolism. The aim of this study was to investigate the pathogenic role of free fatty acids (FFA) in human HCV infection. Material/Methods Peripheral blood lipid indexes among HCV patients with different viral loads (199 samples) and healthy donors (80 samples) were detected by clinical biochemistry tests. HCV replication and the expression of growth arrest and DNA-damage-inducible gene 45-α (GADD45α) in Huh7 cells and clinical samples were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Lipid accumulation in Huh7 cells was detected by immunofluorescence. Results In this study, we found that FFA showed a significant positive correlation with viral load in peripheral blood of HCV patients, but not total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), or low-density lipoprotein cholesterol (LDL-C). GADD45α expression in HCV patients dramatically decreased with the increase of viral load. In Huh7 cells, FFA treatment significantly enhanced HCV replication. HCV infection inhibited GADD45α expression, and this effect was further enhanced with the presence of FFA treatment. Ectopic expression of GADD45α in HCV-infected Huh7 cells markedly inhibited the absorption of FFA and HCV replication. However, FFA significantly elevated GADD45α expression without HCV infection. Conclusions These results demonstrated that HCV down-regulates GADD45α expression to enhance FFA absorption and thus facilitate its replication. GADD45α is an essential mediator for the pathogenesis of HCV infection. Thus, our study provides potential clues in the search for novel therapeutics and fatty lipid control options for HCV patients. PMID:27381636

  14. Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells.

    PubMed

    Foster, Rebecca R; Zadeh, Maryam A H; Welsh, Gavin I; Satchell, Simon C; Ye, Yi; Mathieson, Peter W; Bates, David O; Saleem, Moin A

    2009-04-01

    Mutations in the cation channel TRPC6 result in a renal-specific phenotype of familial nephrotic syndrome, affecting intracellular calcium ([Ca(2+)](i)) signalling in the glomerular podocyte. Tools to study native TRPC6 activity are scarce, although there has been recent success with flufenamic acid (FFA). We confirm the specificity of FFA for TRPC6 both in an artificial expression system and in a human conditionally immortalised podocyte cell line (ciPod). Cells were loaded with fura-2AM and changes in intracellular calcium ([Ca(2+)](i)) were calculated. 200microM FFA induced an increase in [Ca(2+)](i) in HEK293 cells with native TRPC6 expression, which was enhanced by overexpression of TRPC6 and completely blocked in the absence of extracellular calcium. Expressed TRPC7 did not significantly affect the response to FFA whereas expressed TRPC3 reduced it. FFA also induced an increase ciPod in [Ca(2+)](i), which was inhibited using SKF96365 and 2-APB, but not indomethacin. In ciPod, adenovirus (Ad-v) wild type (WT) TRPC6 increased [Ca(2+)](i) activity to FFA compared to native TRPC6, whereas activity was significantly reduced with Ad-v dominant negative (DN) TRPC6. The niflumic acid (NFA) induced increase in [Ca(2+)](i) in ciPod was not affected by Ad-v TRPC6 DN, and in HEK293 cells was not affected by WT TRPC6. In conclusion, FFA activates TRPC6 [Ca(2+)](i) signalling in both ciPod and HEK293 cells independently of TRPC3 and TRPC7, and independently of properties of the fenamate family.

  15. Decreased expression of adipose CD36 and FATP1 are associated with increased plasma nonesterified fatty acids during prolonged fasting in northern elephant seal pups (Mirounga angustirostris)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The northern elephant seal undergoes a 2-3 month post-weaning fast during which it depends primarily on the oxidation of fatty acids to meet its energetic demands. The concentration of plasma free fatty acids (FFA) increases and is associated with the development of insulin resistance in late-fasted...

  16. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  17. Methane flux from Minnesota peatlands

    SciTech Connect

    Crill, P.M.; Bartlett, K.B.; Harriss, R.C.; Gorham, E.; Verry, E.S. )

    1988-12-01

    Northern (> 40 deg N) wetlands have been suggested as the largest natural source of methane (CH{sub 4}) to the troposphere. To refine the authors estimates of source strengths from this region and to investigate climatic controls on the process, fluxes were measured from a variety of Minnesota peatlands during May, June, and August 1986. Late spring and summer fluxes ranged from 11 to 866 mg CH{sub 4}/sq/m/day, averaging 207 mg CH{sub 4} sq/m/day overall. At Marcell Forest, forested bogs and fen sites had lower fluxes than open bogs. In the Red Lake peatland, circumneutral fens, with standing water above the peat surface, produced more methane than acid bog sites in which the water table was beneath the moss surface. Peat temperature was an important control. Methane flux increased in response to increasing soil temperature. It is estimated that the methane flux from all peatlands north of 40 deg may be on the order of 70 to 90 Tg/yr though estimates of this sort are plagued by uncertainties in the areal extent of peatlands, length of the CH{sub 4} producing season, and the spatial and temporal variability of the flux. 60 refs., 7 figs., 5 tabs.

  18. Portal drained visceral flux, hepatic metabolism, and mammary uptake of free and peptide-bound amino acids and milk amino acid output in dairy cows fed diets containing corn grain steam flaked at 360 or steam rolled at 490 g/L.

    PubMed

    Tagari, H; Webb, K; Theurer, B; Huber, T; DeYoung, D; Cuneo, P; Santos, J E P; Simas, J; Sadik, M; Alio, A; Lozano, O; Delgado-Elorduy, A; Nussio, L; Nussio, C; Santos, F

    2004-02-01

    Objectives were to measure net fluxes of free (FAA) and peptide bound amino acids (AA) (PBAA) across portal-drained viscera (PDV), liver, splanchnic, and mammary tissues, and of milk AA output of lactating Holstein cows (n = 6, 109 +/- 9 d in milk) as influenced by flaking density of corn grain. Cows were fed alfalfa-based total mixed ration (TMR) containing 40% steam-flaked (SFC) or steam-rolled corn (SRC) grain. The TMR were offered at 12-h intervals in a crossover design. Six sets of blood samples were obtained from indwelling catheters in portal, hepatic, and mammary veins and mesenteric or costoabdominal arteries every 2 h from each cow and diet. Intake of dry matter (18.4 +/- 0.4 kg/d), N, and net energy for lactation were not altered by corn processing. Milk and milk crude protein yields (kg/12-h sampling) were 14.2 vs. 13.5 and 0.43 vs. 0.39 for cows fed SFC or SRC, respectively. The PDV flux of total essential FAA was greater (571.2 vs. 366.4 g/12 h, SEM 51.4) in cows fed SFC. The PDV flux of total essential PBAA was 69.3 +/- 10.8 and 51.5 +/- 13.2 g/12 h for cows fed SFC and SRC, respectively, and differed from zero, but fluxes of individual PBAA rarely differed between treatments. Liver flux of essential FAA was greater in cows fed SRC, but only the PBAA flux in cows fed SRC differed from zero. Splanchnic flux of FAA and PBAA followed the pattern of PDV flux, but variation was greater. Mammary uptake (g/12 h) of total essential FAA was greater in cows fed SFC than SRC (224.6 vs. 198.3, SEM 7.03). Mammary uptake of essential PBAA was 25.0 vs. 15.1, SEM 5.2, g/12 h for cows fed SFC or SRC, respectively, and differed from zero in half of the PBAA. Milk output of EAA was 187.8 vs 175.4, SEM 4.4 g/12 h in cows fed SFC and SRC, respectively, and output of most essential AA consistently tended to be greater in cows fed SFC. It is apparent that PBAA comprise a portion of total AA flux across PDV and are affected by grain processing. Further, this pool supplies

  19. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca.

    PubMed

    Deng, Yu; Mao, Yin; Zhang, Xiaojuan

    2015-12-20

    Butyric acid, a 4-carbon short chain fatty acid, is widely used in chemical, food, and pharmaceutical industries. The low activity of butyryl-CoA: acetate CoA-transferase in Thermobifida fusca muS, a thermophilic actinobacterium whose optimal temperature was 55°C, was found to hinder the accumulation of high yield of butyric acid. In order to solve this problem, an exogenous butyryl-CoA: acetate CoA-transferase gene (actA) from Thermoanaerobacterium thermosaccharolyticum DSM571 was integrated into the chromosome of T. fusca muS by replacing celR gene, forming T. fusca muS-1. We demonstrated that on 5g/L cellulose, the yield of butyric acid by the engineered muS-1 strain was increased by 42.9 % compared to the muS strain. On 100g/L of cellulose, the muS-1 strain could consume 90.5% of total cellulose in 144h, with 33.2g/L butyric acid produced. Furthermore, on the mix substrates including the major components of biomass: cellulose, xylose, mannose and galactose, 70.4g/L butyric acid was produced in 168h by fed-batch fermentation. To validate the ability of fermenting biomass, the muS-1 strain was grown on the milled corn stover ranging from 200 to 250μm. The muS-1 strain had the highest butyrate titer 17.1g/L on 90g/L corn stover.

  20. Environment and phenology: CO2 net ecosystem exchange and CO2 flux partitioning at an acid and oligotrophic mire system in northern Sweden

    NASA Astrophysics Data System (ADS)

    Gažovič, Michal; Peichl, Matthias; Vermeij, Ilse; Limpens, Juul; Nilsson, Mats. B.

    2015-04-01

    Static chamber and environmental measurements in combination with vegetation indices (i.e. vascular green area (VGA) and the greenness chromatic color index (gcc) derived from digital camera images) were used to investigate effects of environment and phenology on the CO2 net ecosystem exchange (NEE) and CO2 flux partitioning at the Degerö Stormyr site in northern Sweden (64°11' 23.565" N, 19°33' 55.291 E) during two environmentally different years. Our measurement design included a control plot, a moss plot (where vascular plants were removed by clipping) and four heterotrophic respiration (RH) collars (where all green moss and vascular plant biomass were removed) to partition between soil heterotrophic and plant autotrophic (moss and vascular plants) respiration (RA), as well as between moss and vascular plant gross primary production (GPP). Environmental conditions, especially the shallow snow cover, peat soil frost and cold spring in 2014 caused delayed onset of spring green up, reduced soil respiration flux and reduced GPP of vascular plants. Soil temperature measured in 26 cm depth started to rise from spring temperatures of ~ 0.6 °C in 2013 and 0.15 °C in 2014 about 20 days earlier in 2013 compared to 2014. With earlier onset of the growing season and higher soil temperatures in 2013, heterotrophic soil respiration was higher in year 2013 than in year 2014. In 2013, RH dominated the total ecosystem respiration in all months but June and August. On contrary, autotrophic respiration dominated ecosystem respiration in all months of 2014. In both years, vascular plants and mosses were more or less equally contributing to autotrophic respiration. We measured higher GPP in year 2013 compared to year 2014. Also VGA and gcc were higher in spring and throughout the rest of 2013 compared to 2014. The onset of VGA was delayed by ~ 10 days in 2014. In general, total GPP was dominated by GPP of vascular plants in both years, although moss GPP had substantial

  1. Free fatty acids and oxidative changes of a raw goat milk cheese through maturation.

    PubMed

    Delgado, Francisco J; González-Crespo, José; Cava, Ramón; Ramírez, Rosario

    2011-05-01

    Free fatty acids (FFA) and lipid and protein oxidation changes were studied throughout maturation process of a raw goat milk cheese with protected designation of origin. Cheeses were analyzed at 4 different times of maturation, at 1, 30, 60, and 90 d. All FFA significantly increased during maturation and the relative increase was higher for long-chain than medium- or short-chain FFA. At the end of maturation, oleic (C18:1 n9), butyric (C4:0), and palmitic (C16:0) acids were the most abundant. The higher levels of short-chain fatty acids (SCFA) regarding total FFA obtained at the end of Ibores cheese ripening compared with other raw goat milk cheeses, highlight the notable role of SCFA on the flavor of this cheese owing to their low-odor thresholds. Lipid oxidation values significantly increased during maturation process but low levels of malondialdehyde were reported; however, protein oxidation did not significantly change during ripening.

  2. Non-equivalence of Key Positively Charged Residues of the Free Fatty Acid 2 Receptor in the Recognition and Function of Agonist Versus Antagonist Ligands*

    PubMed Central

    Sergeev, Eugenia; Hansen, Anders Højgaard; Pandey, Sunil K.; MacKenzie, Amanda E.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2016-01-01

    Short chain fatty acids (SCFAs) are produced in the gut by bacterial fermentation of poorly digested carbohydrates. A key mediator of their actions is the G protein-coupled free fatty acid 2 (FFA2) receptor, and this has been suggested as a therapeutic target for the treatment of both metabolic and inflammatory diseases. However, a lack of understanding of the molecular determinants dictating how ligands bind to this receptor has hindered development. We have developed a novel radiolabeled FFA2 antagonist to probe ligand binding to FFA2, and in combination with mutagenesis and molecular modeling studies, we define how agonist and antagonist ligands interact with the receptor. Although both agonist and antagonist ligands contain negatively charged carboxylates that interact with two key positively charged arginine residues in transmembrane domains V and VII of FFA2, there are clear differences in how these interactions occur. Specifically, although agonists require interaction with both arginine residues to bind the receptor, antagonists require an interaction with only one of the two. Moreover, different chemical series of antagonist interact preferentially with different arginine residues. A homology model capable of rationalizing these observations was developed and provides a tool that will be invaluable for identifying improved FFA2 agonists and antagonists to further define function and therapeutic opportunities of this receptor. PMID:26518871

  3. Net Flux of Amino Acids Across the Portal-drained Viscera and Liver of the Ewe During Abomasal Infusion of Protein and Glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decreasing the fraction of amino acids metabolized by the mucosal cells may increase the fraction of AA being released into the blood. A potential mechanism to reduce AA catabolism by mucosal cells is to provide an alternative source of energy. We hypothesized that increasing glucose flow to the s...

  4. Storage of Circulating Free Fatty Acid in Adipose Tissue of Postabsorptive Humans

    PubMed Central

    Koutsari, Christina; Ali, Asem H.; Mundi, Manpreet S.; Jensen, Michael D.

    2011-01-01

    OBJECTIVE Preferential upper-body fat gain, a typical male pattern, is associated with a greater cardiometabolic risk. Regional differences in lipolysis and meal fat storage cannot explain sex differences in body fat distribution. We examined the potential role of the novel free fatty acid (FFA) storage pathway in determining body fat distribution in postabsorptive humans and whether adipocyte lipogenic proteins (CD36, acyl-CoA synthetases, and diacylglycerol acyltransferase) predict differences in FFA storage. RESEARCH DESIGN AND METHODS Rates of postabsorptive FFA (palmitate) storage into upper-body subcutaneous (UBSQ) and lower-body subcutaneous (LBSQ) fat were measured in 28 men and 53 premenopausal women. Stable and radiolabeled palmitate tracers were intravenously infused followed by subcutaneous fat biopsies. Body composition was assessed with a combination of dual-energy X-ray absorptiometry and computed tomography. RESULTS Women had greater FFA (palmitate) storage than men in both UBSQ (0.37 ± 0.15 vs. 0.27 ± 0.18 μmol · kg−1 · min−1, P = 0.0001) and LBSQ (0.42 ± 0.19 vs. 0.22 ± 0.11 μmol · kg−1 · min−1, P < 0.0001) fat. Palmitate storage rates were significantly greater in LBSQ than UBSQ fat in women, whereas the opposite was true in men. Plasma palmitate concentration positively predicted palmitate storage in both depots and sexes. Adipocyte CD36 content predicted UBSQ palmitate storage and sex-predicted storage in LBSQ fat. Palmitate storage rates per kilogram fat did not decrease as a function of fat mass, whereas lipolysis did. CONCLUSIONS The FFA storage pathway, which had remained undetected in postabsorptive humans until recently, can have considerable, long-term, and sex-specific effects on body fat distribution. It can also offer a way of protecting the body from excessive circulating FFA in obesity. PMID:21659500

  5. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  6. Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes

    NASA Astrophysics Data System (ADS)

    Phillips, G. J.; Pouvesle, N.; Thieser, J.; Schuster, G.; Axinte, R.; Fischer, H.; Williams, J.; Lelieveld, J.; Crowley, J. N.

    2013-02-01

    We describe measurements of peroxyacetyl nitrate (CH3C(O)O2NO2, PAN) and peroxyacetic acid (CH3C(O)OOH, PAA) in the Boreal forest using iodide chemical ionization mass spectrometry (ICIMS). The measurements were made during the Hyytiälä United Measurement of Photochemistry and Particles - Comprehensive Organic Particle and Environmental Chemistry (HUMPPA-COPEC-2010) measurement intensive. Mixing ratios of PAN and PAA were determined by measuring the acetate ion signal (CH3C(O)O-, m/z = 59) resulting from reaction of CH3C(O)O2 (from the thermal dissociation of PAN) or CH3C(O)OOH with iodide ions using alternatively heated and ambient temperature inlet lines. During some periods of high temperature (~ 30 °C) and low NOx (< 1 ppbv), PAA mixing ratios were similar to, or exceeded those of PAN and thus contributed a significant fraction of the total acetate signal. PAA is thus a potential interference for ICIMS measurements of PAN, and especially eddy covariance flux measurements in environments where the PAA flux is likely to be a significant proportion of the (short timescale) acetate ion variability. Within the range of mixing ratios of NOx measured during HUMPPA-COPEC, the modelled ratio of PAA-to-PAN was found to be sensitive to temperature (through the thermal decomposition rate of PAN) and the HO2 mixing ratio, thus providing some constraint to estimates of photochemical activity and oxidation rates in the Boreal environment.

  7. Peroxyacetyl nitrate (PAN) and peroxyacetic acid (PAA) measurements by iodide chemical ionisation mass spectrometry: first analysis of results in the boreal forest and implications for the measurement of PAN fluxes

    NASA Astrophysics Data System (ADS)

    Phillips, G. J.; Pouvesle, N.; Thieser, J.; Schuster, G.; Axinte, R.; Fischer, H.; Williams, J.; Lelieveld, J.; Crowley, J. N.

    2012-08-01

    We describe measurements of peroxyacetyl nitrate (CH3C(O)O2NO2, PAN) and peroxyacetic acid (CH3C(O)OOH, PAA) in the Boreal forest using iodide chemical ionization mass spectrometry (ICIMS). The measurements were made during the Hyytiälä United Measurement of Photochemistry and Particles - Comprehensive Organic Particle and Environmental Chemistry (HUMPPA-COPEC-2010) measurement intensive. Mixing ratios of PAN and PAA were determined by measuring the acetate ion signal (CH3C(O)O2-, m/z 59) resulting from reaction of CH3C(O)O2 (from the thermal dissociation of PAN) or CH3C(O)OOH with iodide ions using alternatively heated and ambient temperature inlet lines. During conditions of high temperature and low NOx, PAA mixing ratios were similar to, or exceeded those of PAN and thus contributed a significant fraction of the total acetate signal. PAA is thus a potential interference for ICIMS measurements of PAN, and especially eddy covariance flux measurements in environments where the PAA flux is likely to be a significant proportion of the short timescale acetate ion variability. Within the range of mixing ratios of NOx measured during HUMPPA-COPEC, the ratio of PAA-to-PAN was found to be sensitive to temperature (through the thermal decomposition rate of PAN) and the HO2 mixing ratio, thus providing some constraint to estimates of photochemical activity and oxidation rates in the Boreal environment.

  8. Single-laboratory validation of an LC-MS/MS method for determining florfenicol (FF) and florfenicol amine (FFA) residues in chicken feathers and application to a residue-depletion study.

    PubMed

    Cornejo, J; Pokrant, E; Riquelme, R; Briceño, C; Maddaleno, A; Araya-Jordán, C; San Martin, B

    2017-04-01

    A suitable analytical method is required to study the behaviour of florfenicol (FF) and its metabolite florfenicol amine (FFA) in broiler's feathers. An LC-MS/MS method was developed, assessed and intra-laboratory-validated for FF and FFA analyses. We chose cloramphenicol-d5 as an internal standard, acetone as a solvent for the extraction of the analytes and dichloromethane for the clean-up. Through LC-MS/MS analysis, we established a detection limit of 20 μg kg(-)(1), as well as calculated quantification limits of 24.4 and 24.5 μg kg(-)(1) for FF and FFA, respectively. Validation parameters such as linearity, recovery and precision were calculated following Commission Decision 2002/657/EC. For linearity, all standard curves showed a standard coefficient greater than 0.99. Recoveries ranged from 99% to 102% for all studied concentrations. The results show that this analytical method is precise and reliable. For the depletion study, 64 Ross 308 broilers were treated with a therapeutic dosage of 10% FF during 5 consecutive days and their feathers were then analysed. Samples were drawn on days 5, 10, 15, 20, 25, 30, 35 and 40 post-treatments. As for the control group, 16 broiler chickens were raised under the same regime. Throughout the whole study, the detected concentrations of FF and FFA in feather samples were above 100 µg kg(-)(1). In fact, even on day 30 post-treatment we detected concentrations of 221.8 and 28.8 µg kg(-)(1) for FF and FFA, respectively. Based on these results, we conclude that these analytes will persist for a long time and will deplete slowly in feathers of treated broiler chickens.

  9. Capillary electrophoresis of some free fatty acids using partially aqueous electrolyte systems and indirect UV detection. Application to the analysis of oleic and linoleic acids in peanut breeding lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study has shown for the first time the suitability of CE with a partially aqueous electrolyte system for the analysis of free fatty acids (FFA's) in small portions of single peanut seeds. The partially aqueous electrolyte system consisted of 40 mM Tris, 2.5 mM adenosine-5'-monophosphate (AMP) ...

  10. Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals

    PubMed Central

    Daniele, Giuseppe; Eldor, Roy; Merovci, Aurora; Clarke, Geoffrey D.; Xiong, Juan; Tripathy, Devjit; Taranova, Anna; Abdul-Ghani, Muhammad

    2014-01-01

    Insulin resistance and dysregulation of free fatty acid (FFA) metabolism are core defects in type 2 diabetic (T2DM) and obese normal glucose tolerant (NGT) individuals. Impaired muscle mitochondrial function (reduced ATP synthesis) also has been described in insulin-resistant T2DM and obese subjects. We examined whether reduction in plasma FFA concentration with acipimox improved ATP synthesis rate and altered reactive oxygen species (ROS) production. Eleven NGT obese and 11 T2DM subjects received 1) OGTT, 2) euglycemic insulin clamp with muscle biopsy, and 3) 1H-magnetic resonance spectroscopy of tibialis anterior muscle before and after acipimox (250 mg every 6 h for 12 days). ATP synthesis rate and ROS generation were measured in mitochondria isolated from muscle tissue ex vivo with chemoluminescence and fluorescence techniques, respectively. Acipimox 1) markedly reduced the fasting plasma FFA concentration and enhanced suppression of plasma FFA during oral glucose tolerance tests and insulin clamp in obese NGT and T2DM subjects and 2) enhanced insulin-mediated muscle glucose disposal and suppression of hepatic glucose production. The improvement in insulin sensitivity was closely correlated with the decrease in plasma FFA in obese NGT (r = 0.81) and T2DM (r = 0.76) subjects (both P < 0.001). Mitochondrial ATP synthesis rate increased by >50% in both obese NGT and T2DM subjects and was strongly correlated with the decrease in plasma FFA and increase in insulin-mediated glucose disposal (both r > 0.70, P < 0.001). Production of ROS did not change after acipimox. Reduction in plasma FFA in obese NGT and T2DM individuals improves mitochondrial ATP synthesis rate, indicating that the mitochondrial defect in insulin-resistant individuals is, at least in part, reversible. PMID:24353180

  11. Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals.

    PubMed

    Daniele, Giuseppe; Eldor, Roy; Merovci, Aurora; Clarke, Geoffrey D; Xiong, Juan; Tripathy, Devjit; Taranova, Anna; Abdul-Ghani, Muhammad; DeFronzo, Ralph A

    2014-08-01

    Insulin resistance and dysregulation of free fatty acid (FFA) metabolism are core defects in type 2 diabetic (T2DM) and obese normal glucose tolerant (NGT) individuals. Impaired muscle mitochondrial function (reduced ATP synthesis) also has been described in insulin-resistant T2DM and obese subjects. We examined whether reduction in plasma FFA concentration with acipimox improved ATP synthesis rate and altered reactive oxygen species (ROS) production. Eleven NGT obese and 11 T2DM subjects received 1) OGTT, 2) euglycemic insulin clamp with muscle biopsy, and 3) (1)H-magnetic resonance spectroscopy of tibialis anterior muscle before and after acipimox (250 mg every 6 h for 12 days). ATP synthesis rate and ROS generation were measured in mitochondria isolated from muscle tissue ex vivo with chemoluminescence and fluorescence techniques, respectively. Acipimox 1) markedly reduced the fasting plasma FFA concentration and enhanced suppression of plasma FFA during oral glucose tolerance tests and insulin clamp in obese NGT and T2DM subjects and 2) enhanced insulin-mediated muscle glucose disposal and suppression of hepatic glucose production. The improvement in insulin sensitivity was closely correlated with the decrease in plasma FFA in obese NGT (r = 0.81) and T2DM (r = 0.76) subjects (both P < 0.001). Mitochondrial ATP synthesis rate increased by >50% in both obese NGT and T2DM subjects and was strongly correlated with the decrease in plasma FFA and increase in insulin-mediated glucose disposal (both r > 0.70, P < 0.001). Production of ROS did not change after acipimox. Reduction in plasma FFA in obese NGT and T2DM individuals improves mitochondrial ATP synthesis rate, indicating that the mitochondrial defect in insulin-resistant individuals is, at least in part, reversible.

  12. Pulse flux measuring device

    DOEpatents

    Riggan, William C.

    1985-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  13. Positive and Negative Cross-Talk between Lysophosphatidic Acid Receptor 1, Free Fatty Acid Receptor 4, and Epidermal Growth Factor Receptor in Human Prostate Cancer Cells.

    PubMed

    Hopkins, Mandi M; Liu, Ze; Meier, Kathryn E

    2016-10-01

    Lysophosphatidic acid (LPA) is a lipid mediator that mediates cellular effects via G protein-coupled receptors (GPCRs). Epidermal growth factor (EGF) is a peptide that acts via a receptor tyrosine kinase. LPA and EGF both induce proliferation of prostate cancer cells and can transactivate each other's receptors. The LPA receptor LPA1 is particularly important for LPA response in human prostate cancer cells. Previous work in our laboratory has demonstrated that free fatty acid 4 (FFA4), a GPCR activated by ω-3 fatty acids, inhibits responses to both LPA and EGF in these cells. One potential mechanism for the inhibition involves negative interactions between FFA4 and LPA1, thereby suppressing responses to EGF that require LPA1 In the current study, we examined the role of LPA1 in mediating EGF and FFA4 agonist responses in two human prostate cancer cell lines, DU145 and PC-3. The results show that an LPA1-selective antagonist inhibits proliferation and migration to both LPA and EGF. Knockdown of LPA1 expression, using silencing RNA, blocks responses to LPA and significantly inhibits responses to EGF. The partial response to EGF that is observed after LPA1 knockdown is not inhibited by FFA4 agonists. Finally, the role of arrestin-3, a GPCR-binding protein that mediates many actions of activated GPCRs, was tested. Knockdown of arrestin-3 completely inhibits responses to both LPA and EGF in prostate cancer cells. Taken together, these results suggest that LPA1 plays a critical role in EGF responses and that FFA4 agonists inhibit proliferation by suppressing positive cross-talk between LPA1 and the EGF receptor.

  14. Metabolic fluxes in the liver of rats bearing the Walker-256 tumour: influence of the circulating levels of substrates and fatty acids.

    PubMed

    da Veiga, Renata P; da Silva, Mário H R Alves; Teodoro, Graziele R; Yamamoto, Nair Seiko; Constantin, Jorgete; Bracht, Adelar

    2008-01-01

    Studies on fatty acid and amino acid metabolism in the liver of Walker-256 tumour-bearing rats have revealed several changes. Comparisons, however, have been based on experiments performed with non-physiological, frequently unrealistic, substrate concentrations. The aim of the present work was to examine the influence of physiological substrate concentrations on gluconeogenesis, ketogenesis and related parameters. Isolated livers were perfused and substrates were infused at concentrations that were reported to occur in healthy and tumour-bearing rats. Ketogenesis and the mitochondrial NADH/NAD+ ratio were smaller in the tumour-bearing condition at low (0.2 mM) and high (0.8 mM) oleate concentrations. In the absence of oleate, gluconeogenesis from alanine (0.7 mM) and gluconeogenesis plus the associated changes in oxygen uptake due to lactate/pyruvate (2/0.2 and 6/0.3 mM) were smaller in livers of tumour-bearing rats. However, the response of gluconeogenesis from lactate/pyruvate in livers of tumour-bearing rats to 0.8 mM oleate was more pronounced so that a trend towards normalization was apparent at high substrate and oleate concentrations. Gluconeogenesis from 0.7 mM alanine was not significantly changed by oleate in the tumour-bearing state; in the control condition, stimulation occurred at 0.2 mM oleate and inhibition at 0.8 mM oleate. This diminution almost equalized the hepatic alanine-dependent gluconeogenesis of both control and tumour-bearing rats. Ureogenesis was smaller in the tumour-bearing state and was not affected by oleate. It was concluded that the high concentrations of fatty acids and lactate/pyruvate, which predominate in rats bearing the Walker-256 tumour, could be effective in normalizing the gluconeogenic response of livers from tumour-bearing rats.

  15. Low-quality vegetable oils as feedstock for biodiesel production using K-pumice as solid catalyst. Tolerance of water and free fatty acids contents.

    PubMed

    Díaz, L; Borges, M E

    2012-08-15

    Waste oils are a promising alternative feedstock for biodiesel production due to the decrease of the industrial production costs. However, feedstock with high free fatty acids (FFA) content presents several drawbacks when alkaline-catalyzed transesterification reaction is employed in biodiesel production process. Nowadays, to develop suitable processes capable of treating oils with high free fatty acids content, a two-step process for biodiesel production is being investigated. The major problem that it presents is that two catalysts are needed to carry out the whole process: an acidic catalyst for free fatty acids esterification (first step) and a basic catalyst for pretreated product transesterification (second step). The use of a bifunctional catalyst, which allows both reactions to take place simultaneously, could minimize the production costs and time. In the present study, the behavior of pumice, a natural volcanic material used as a heterogeneous catalyst, was tested using oils with several FFA and water contents as feedstock in the transesterification reaction to produce biodiesel. Pumice as a bifunctional solid catalyst, which can catalyze simultaneously the esterification of FFA and the transesterification of fatty acid glycerides into biodiesel, was shown to be an efficient catalyst for the conversion of low-grade, nonedible oil feedstock into biodiesel product. Using this solid catalyst for the transesterification reaction, high FAME yields were achieved when feedstock oils presented a FFA content until approximately 2% wt/wt and a water content until 2% wt/wt.

  16. Free fatty acids normalize a rosiglitazone-induced visfatin release.

    PubMed

    Haider, Dominik G; Mittermayer, Friedrich; Schaller, Georg; Artwohl, Michaela; Baumgartner-Parzer, Sabina M; Prager, Gerhard; Roden, Michael; Wolzt, Michael

    2006-11-01

    The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo (n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 +/- 0.1 to 1.7 +/- 0.2 ng/ml (P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.

  17. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    DTIC Science & Technology

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  18. The dominant glutamic acid metabolic flux to produce γ-amino butyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity.

    PubMed

    Liu, Cuili; Zhao, Li; Yu, Guanghui

    2011-08-01

    γ-Amino butyric acid (GABA) and proline play a crucial role in protecting plants during various environmental stresses. Their synthesis is from the common precursor glutamic acid, which is catalyzed by glutamate decarboxylase and Δ(1) -pyrroline-5-carboxylate synthetase respectively. However, the dominant pathway under water stress has not yet been established. To explore this, excised tobacco leaves were used to simulate a water-stress condition. The results showed GABA content was much higher than that of proline in leaves under water-deficit and non-water-deficit conditions. Specifically, the amount of GABA significantly increased compared to proline under continuous water loss for 16 h, indicating that GABA biosynthesis is the dominant pathway from glutamic acid metabolism under these conditions. Quantitative reverse transcription polymerase chain reaction and protein Western gel-blot analysis further confirmed this. To explore the function of GABA accumulation, a system producing superoxide anion (O(2) (-) ), peroxide hydrogen (H(2) O(2) ), and singlet oxygen ((1) O(2) ) was employed to investigate the scavenging role on free-radical production. The results demonstrated that the scavenging ability of GABA for O(2) (-) , H(2) O(2) , and (1) O(2) was significantly higher than that of proline. This indicated that GABA acts as an effective osmolyte to reduce the production of reactive oxygen species under water stress.

  19. Serum free fatty acid levels in PCOS patients treated with glucophage, magnesium oxide and spironolactone.

    PubMed

    Muneyyirci-Delale, Ozgul; Kaplan, Julie; Joulak, Ibrahim; Yang, Lianfu; Von Gizycki, Hans; Nacharaju, Vijaya L

    2013-05-01

    To assess the effect of glucophage, magnesium oxide and spironolactone in altering free fatty acids (FFAs), 36 PCOS women were randomly divided into three groups. Group 1 (n = 14) was treated with 500 mg glucophage po bid, group 2 (n = 10) was treated with 400 mg magnesium oxide po bid and group 3 (n = 12) was treated with 50 mg spironolactone po bid for 12 weeks. A glucose tolerance test with 75 g glucose load was performed before and after treatment, collecting blood at 0, 1 and 2 h for insulin, glucose, FFA and aldosterone. Amount of FFA before and after treatment were compared by repeated measure ANOVA and represented as area under the curve. FFA levels before treatment were 0.83 ± 0.23, 0.77 ± 0.15 and 0.85 ± 0.28 and after treatment were 0.77 ± 0.48, 0.71 ± 0.18 and 0.66 ± 0.25 for glucophage, magnesium oxide and spironolactone-treated patients, respectively. The FFA levels were unchanged in the groups treated with glucophage and magnesium oxide but were significantly (p < 0.03) decreased in the group treated with spironolactone. Since FFAs are known to be involved in the development of insulin resistance, these results suggest that spironolactone may be useful for lowering insulin resistance in PCOS patients.

  20. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function.

    PubMed

    Antollini, Silvia S; Barrantes, Francisco J

    2016-01-01

    Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.

  1. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function

    PubMed Central

    Antollini, Silvia S.; Barrantes, Francisco J.

    2016-01-01

    Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action. PMID:27965583

  2. Characterization of the esterification reaction in high free fatty acid oils

    NASA Astrophysics Data System (ADS)

    Altic, Lucas Eli Porter

    Energy and vegetable oil prices have caused many biodiesel producers to turn to waste cooking oils as feedstocks. These oils contain high levels of free fatty acids (FFAs) which make them difficult or impossible to convert to biodiesel by conventional production methods. Esterification is required for ultra-high FFA feedstocks such as Brown Grease. In addition, ultrasonic irradiation has the potential to improve the kinetics of the esterification reaction. 2-level, multi-factor DOE experiments were conducted to characterize the esterification reaction in ultra-high FFA oils as well as determine whether ultrasonic irradiation gives any benefit besides energy input. The study determined that sulfuric acid content had the greatest effect followed by temperature and water content (inhibited reaction). Methanol content had no effect in the range studied. A small interaction term existed between sulfuric acid and temperature. The study also concluded that sonication did not give any additional benefit over energy input.

  3. Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil.

    PubMed

    Thaiyasuit, Prachasanti; Pianthong, Kulachate; Worapun, Ittipon

    2012-01-01

    This study aims to examine methods and the most suitable conditions for producing methyl ester from crude rubber seed oil. An acid esterification-alkaline transesterification process is proposed. In the experiment, the 20% FFA of crude rubber seed oil could be reduced to 3% FFA by acid esterification. The product after esterified was then tranesterified by alkaline transesterification process. By this method, the maximum yield of methyl ester was 90% by mass. The overall consumption of methanol was 10.5:1 by molar ratio. The yielded methyl ester was tested for its fuel properties and met required standards. The major fatty acid methyl ester compositions were analyzed and constituted of methyl linoleate 41.57%, methyl oleate 24.87%, and methyl lonolenate 15.16%. Therefore, the cetane number of methyl ester could be estimated as 47.85, while the tested result of motor cetane number was 51.20.

  4. Sex Differences in Long Chain Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Burnett, David A.; Lysenko, Nina; Manning, Joan A.

    1979-01-01

    Female sex and estrogen administration are associated with increased hepatic production of triglyceride-rich lipoproteins; the basis for this has not been fully elucidated. Inasmuch as hepatic lipoprotein production is also influenced by FFA availability and triglyceride biosynthesis, we investigated sex differences in FFA utilization in rat hepatocyte suspensions and in the components of the triglyceride biosynthetic pathway. Isolated adult rat hepatocyte suspensions were incubated with albumin-bound [14C]oleate for up to 15 min. At physiological and low oleate concentrations, cells from females incorporated significantly more 14C into glycerolipids, especially triglycerides, and into oxidation products than did male cells, per milligram cell protein. At 0.44 mM oleate, incorporation into triglycerides in female cells was approximately twice that in male cells. Comparable sex differences were observed in cells from fasted animals and when [14C]-glycerol incorporation was measured. At higher oleate concentrations, i.e., fatty acid:albumin mole ratios in excess of 2:1, these sex differences were no longer demonstrable, suggesting that maximal rates of fatty acid esterification and oxidation were similar in female and male cells. In female and male hepatic microsomes, specific activities of long chain acyl coenzyme A synthetase, phosphatidate phosphohydrolase, and diglyceride acyltransferase were similar, but glycerol-3-phosphate acyltransferase activity was slightly greater in females at certain substrate concentrations. Microsomal incorporation of [14C]oleate into total glycerolipids was not significantly greater in females. In further contrast to intact cells, microsomal incorporation of [14C]oleate into triglycerides, although significantly greater in female microsomes, accounted for only a small fraction of the fatty acid esterified. The binding affinity and stoichiometry of partially purified female hepatic fatty acid binding protein (FABP) were similar to

  5. Microwave-assisted biodiesel production by esterification of palm fatty acid distillate.

    PubMed

    Lokman, Ibrahim M; Rashid, Umer; Zainal, Zulkarnain; Yunus, Robiah; Taufiq-Yap, Yun Hin

    2014-01-01

    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.

  6. Bacterial production of free fatty acids from freshwater macroalgal cellulose.

    PubMed

    Hoover, Spencer W; Marner, Wesley D; Brownson, Amy K; Lennen, Rebecca M; Wittkopp, Tyler M; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E; Chaston, Sheena D; McMahon, Katherine D; Pfleger, Brian F

    2011-07-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing microorganisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (∼90 μg/mL FFA) cultures grown on rich Luria-Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds.

  7. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    PubMed Central

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M.; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E.; Chaston, Sheena D.; McMahon, Katherine D.

    2013-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing micro-organisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl–acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (~90 μg/mL FFA) cultures grown on rich Luria–Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds. PMID:21643704

  8. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    SciTech Connect

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  9. Understanding Particle Formation: Solubility of Free Fatty Acids as Polysorbate 20 Degradation Byproducts in Therapeutic Monoclonal Antibody Formulations.

    PubMed

    Doshi, Nidhi; Demeule, Barthélemy; Yadav, Sandeep

    2015-11-02

    The purpose of this work was to determine the aqueous solubilities at 2-8 °C of the major free fatty acids (FFAs) formed by polysorbate 20 (PS20) degradation and identify possible ways to predict, delay, or mitigate subsequent particle formation in monoclonal antibody (mAb) formulations. The FFA solubility limits at 2-8 °C were determined by titrating known amounts of FFA in monoclonal antibody formulations and identifying the FFA concentration leading to visible and subvisible particle formation. The solubility limits of lauric, myristic, and palmitic acids at 2-8 °C were 17 ± 1 μg/mL, 3 ± 1 μg/mL, and 1.5 ± 0.5 μg/mL in a formulation containing 0.04% (w/v) PS20 at pH 5.4 and >22 μg/mL, 3 ± 1 μg/mL, and 0.75 ± 0.25 μg/mL in a formulation containing 0.02% (w/v) PS20 at pH 6.0. For the first time, a 3D correlation between FFA solubility, PS20 concentration, and pH has been reported providing a rational approach for the formulator to balance these with regard to potential particle formation. The results suggest that the lower solubilities of the longer chain FFAs, generated from degradation of the stearate, palmitate, and myristate fraction of PS20, is the primary cause of seeding and subsequent FFA precipitation rather than the most abundant lauric acid.

  10. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification.

    PubMed

    Zhang, Yue; Wong, Wing-Tak; Yung, Ka-Fu

    2013-11-01

    Due to the high content (25-50%) of free fatty acid (FFA), crude rice bran oil usually requires a two steps conversion or one step conversion with very harsh condition for simultaneous esterification and transesterification. In this study, chlorosulfonic acid modified zirconia (HClSO3-ZrO2) with strong acidity and durability is prepared and it shows excellent catalytic activity toward simultaneous esterification and transesterification. Under a relative low reaction temperature of 120 °C, HClSO3-ZrO2 catalyzes a complete conversion of simulated crude rice bran oil (refined oil with 40 wt% FFA) into biodiesel and the conversion yield keep at above 92% for at least three cycles. Further investigation on the tolerance towards FFA and water reveals that it maintains high activity even with the presence of 40 wt% FFA and 3 wt% water. It shows that HClSO3-ZrO2 is a robust and durable catalyst which shows high potential to be commercial catalyst for biodiesel production from low grade feedstock.

  11. Aspects of flux compactification

    NASA Astrophysics Data System (ADS)

    Liu, Tao

    In this thesis, we study three main aspects of flux compactifications: (1) classify supergravity solutions from flux compactification; (2) construct flux-deformed geometry and 4D low-energy theory to describe these flux vacua; and (3) study 4D particle phenomenology and cosmology of flux vacua. In the first part, we review G-structure, the basic tool to study supersymmetric flux solutions, and some typical solutions obtained in heterotic, type IIA and type IIB string theories. Then we present a comprehensive classification of supersymmetric vacua of M-theory compactification on 7D manifolds with general four-form fluxes. We analyze the cases where the resulting four-dimensional vacua have N = 1, 2, 3, 4 supersymmetry and the internal space allows for SU(2)-, SU(3)- or G 2-structures. In particular, we find for N = 2 supersymmetry, that the external space-time is Minkowski and the base manifold of the internal space is conformally Kahler for SU(2) structures, while for SU(3) structures the internal space has to be Einstein-Sasaki and no internal fluxes are allowed. Moreover, we provide a new vacuum with N = 1 supersymmetry and SU(3) structure, where all fluxes are non-zero and the first order differential equations are solved. In the second part, we simply review the methods used to construct one subclass of fluxed-deformed geometry or the so-called "twisted manifold", and the associated 4D effective theory describing these flux vacua. Then by employing (generalized) Scherk-Schwarz reduction, we construct the geometric twisting for Calabi-Yau manifolds of Voisin-Borcea type (K 3 x T2)/ Z2 and study the superpotential in a type IIA orientifold based on this geometry. The twists modify the direct product by fibering the K 3 over T2 while preserving the Z2 involution. As an important application, the Voisin-Borcea class contains T6/( Z2 x Z2 ), the usual setting for intersecting D6 brane model building. Past work in this context considered only those twists inherited

  12. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  13. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  14. Electron heat flux instability

    NASA Astrophysics Data System (ADS)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  15. Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli.

    SciTech Connect

    Lennen, Rebecca M.; Kruziki, Max A.; Kumar, Kritika; Zinkel, Robert A.; Burnum, Kristin E.; Lipton, Mary S.; Hoover, Spencer W.; Ranatunga, Don Ruwan; Wittkopp, Tyler M.; Marner II, Wesley D.; Pfleger, Brian F.

    2011-11-01

    Microbially produced fatty acids are potential precursors to high energy density biofuels, including alkanes and alkyl ethyl esters by either catalytic conversion of free fatty acids (FFAs) or enzymatic conversions of acyl-acyl carrier protein or acyl-coenzyme A intermediates. Metabolic engineering efforts aimed at overproducing FFAs in Escherichia coli have achieved less than 30% of the maximum theoretical yield on the supplied carbon source. In this work, the viability, morphology, transcript levels, and protein levels of a strain of E. coli that overproduces medium chain length FFAs was compared to an engineered control strain. By early stationary phase, an 85% reduction in viable cell counts and exacerbated loss of inner membrane integrity were observed in the FFA overproducing strain. These effects were enhanced in strains endogenously producing FFAs compared to strains exposed to exogenously fed FFAs. Under two sets of cultivation conditions, long chain unsaturated fatty acid content greatly increased and the expression of genes and proteins required for unsaturated fatty acid biosynthesis were significantly decreased. Membrane stresses were further implicated by increased expression of genes and proteins of the phage shock response, the MarA/Rob/SoxS regulon, and the nuo and cyo operons of aerobic respiration. Gene deletion studies confirmed the importance of the phage shock proteins and Rob for maintaining cell viability, however little to no change in FFA titers was observed after 24 h cultivation. The results of this study serve as a baseline for future targeted attempts to improve FFA yields and titers in E. coli.

  16. Hyperbaric nitrogen and pentobarbital on synaptosomal membrane lipids and free fatty acids.

    PubMed

    Kostopanagiotou, G; Hamamoto, I; Hartwell, V; Nemoto, E M

    2006-01-01

    Nitrogen at high pressures and anesthetics increase lipid monolayer surface pressure and in turn modulates monolayer associated lipolytic enzyme activity that could alter membrane lipids. We tested the hypothesis that nitrogen at pressures of 5 and 10 megapascals (MPa) and pentobarbital induce alterations in synaptosomal membrane phospholipid and free fatty acid (FFA). Rat cortical synaptosomes in Krebs-Henseleit buffer were placed in steel chambers and incubated for four hours at 37 degrees C: at 5 or 10 MPa of O2/balance N2; at one 0.1 MPa on room air, and with 10 mg pentobarbital. Free fatty acids (FFA) were quantified by thin-layer and gas chromatography, and neutral and acidic lipids by high-pressure thin layer chromatography and protein by Biorad colorimetric assay. Statistical analyses were by ANOVA and posthoc analysis by Neuman-Keuls and Kruskal-Wallis tests at p < 0.05. Sphyngomyelin, phosphatidylcholine, phosphatidylethanolamine, cerebroside and cholesterol were unchanged by 5 and 10 MPa nitrogen and pentobarbital. Free fatty acids (16:00, 18:00, 18:01, 20:00, 22:0, 22:01 and 24:01) at 10 MPa were reduced compared to 5 MPa (p < 0.05) but unaffected by pentobarbital. The decrease in synaptosomal membrane FFA at 10 MPa suggests attenuated hydrolysis of membrane phospholipids without detectable alterations in membrane phospholipid composition.

  17. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells.

    PubMed

    Fazio, Chiara; Piazzi, Giulia; Vitaglione, Paola; Fogliano, Vincenzo; Munarini, Alessandra; Prossomariti, Anna; Milazzo, Maddalena; D'Angelo, Leonarda; Napolitano, Manuela; Chieco, Pasquale; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2016-02-11

    Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA.

  18. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells

    PubMed Central

    Fazio, Chiara; Piazzi, Giulia; Vitaglione, Paola; Fogliano, Vincenzo; Munarini, Alessandra; Prossomariti, Anna; Milazzo, Maddalena; D’Angelo, Leonarda; Napolitano, Manuela; Chieco, Pasquale; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2016-01-01

    Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA. PMID:26864323

  19. Unsaturated Fatty Acids Drive Disintegrin and Metalloproteinase (ADAM)-dependent Cell Adhesion, Proliferation, and Migration by Modulating Membrane Fluidity*

    PubMed Central

    Reiss, Karina; Cornelsen, Isabell; Husmann, Matthias; Gimpl, Gerald; Bhakdi, Sucharit

    2011-01-01

    The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers. PMID:21642425

  20. Unsaturated fatty acids drive disintegrin and metalloproteinase (ADAM)-dependent cell adhesion, proliferation, and migration by modulating membrane fluidity.

    PubMed

    Reiss, Karina; Cornelsen, Isabell; Husmann, Matthias; Gimpl, Gerald; Bhakdi, Sucharit

    2011-07-29

    The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers.

  1. Esterification free fatty acid in palm fatty acid distillate using sulfonated rice husk ash catalyst

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Sutrisno, Bachrun

    2017-01-01

    Indonesia, as one of the biggest palm oil producers and exporters in the world, is producing large amounts of low-grade oil such as Palm Fatty Acid Distillate (PFAD) from palm oil industries. The use of PFAD can reduce the cost of biodiesel production significantly, which makes PFAD a highly potential alternative feedstock for biodiesel production. In this paper, the esterification of free fatty acid (FFA) on PFAD was studied using rice husk ash (RHA) as heterogeneous catalyst. The rice husk ash catalyst was synthesized by sulfonation using concentrated sulfuric acid. The RHA catalyst were characterized by using different techniques, such as porosity analysis, Fourier transform infrared (FT-IR) spectroscopy, total number of acid sites and elemental analysis. The effects of the molar ratio of methanol to PFAD (1-10%), the molar ratio of methanol to PFAD (4:1-10:1), and the reaction temperature (40-60°C) were studied for the conversion of FFA to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 10:1, the catalyst amount of 10 wt% of PFAD, and reaction temperature of 60°C.

  2. The triacylglycerol preparation of conjugated linoleic acid reduces lipid oxidation in irradiated, cooked ground beef patties.

    PubMed

    Chae, S H; Keeton, J T; Miller, R K; Johnson, D; Maxim, J; Smith, S B

    2009-04-01

    It is proposed that conjugated linoleic acid (CLA) would depress the lipid oxidation caused by irradiation of cooked, aerobically stored ground beef patties. The free fatty acid (FFA-CLA) and triacylglycerol (TAG-CLA) preparations of CLA were added at 0%, 1%, 2%, or 4% during the grinding process. Patties were irradiated at 1.5-2.0kGy and frozen at -20°C. Subsequently, the patties were tempered to 4°C, cooked to 70°C and held at 4°C for 7d. Enrichment of ground beef with CLA increased the cis-9,trans-11 and CLA trans-10,cis-12 CLA isomers in ground beef patties, even after cooking. Weight loss (P=0.03) and percentage fat (P=0.05) were higher in irradiated beef patties than in control patties. Irradiation decreased the concentration of α-linolenic acid (18:3n-3) in the ground beef by over 60% (P=0.07), whereas thiobarbituric acid reactive substances (TBARS) values were higher (P=0.004) in irradiated beef patties than in control patties. The 1% concentration of added TAG-CLA reduced TBARS in irradiated ground beef patties, whereas 2% and 4% FFA-CLA depressed TBARS (CLA type×percentage interaction P=0.04). Irradiation increased the cardboard and painty aromatic attributes (P⩽0.05), and FFA-CLA preparation increased the painty aromatic attribute and afterburn aftertaste, but these effects were not observed with the TAG-CLA preparation (CLA type×treatment interaction P<0.04). Adding 1% TAG-CLA to ground beef during grinding can reduce lipid oxidation in irradiated, cooked ground beef patties without the negative aftertastes associated with the FFA-CLA preparation.

  3. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  4. Metabolic flux analysis using 13C peptide label measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    13C metabolic flux analysis (MFA) has become the experimental method of choice to investigate cellular metabolism. MFA has established flux maps of central metabolism for dozens of microbes, cell cultures, and plant seeds. Steady-state MFA utilizes isotopic labeling measurements of amino acids obtai...

  5. Cryogenic flux-concentrator

    NASA Technical Reports Server (NTRS)

    Bailey, B. M.; Brechna, H.; Hill, D. A.

    1969-01-01

    Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources.

  6. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  7. GEWEX Radiative Flux Assessment

    Atmospheric Science Data Center

    2016-05-20

    ... climate components (atmosphere, ocean, land, cryosphere, biosphere). The GEWEX Radiative Flux Assessment (RFA) project will provide a ... Spatial Coverage: (-20.45, -2.43)(-62.87, -47.90) Full Product Page ...

  8. Probiotic in lamb rennet paste enhances rennet lipolytic activity, and conjugated linoleic acid and linoleic acid content in Pecorino cheese.

    PubMed

    Santillo, A; Albenzio, M; Quinto, M; Caroprese, M; Marino, R; Sevi, A

    2009-04-01

    Cheeses manufactured using traditional lamb rennet paste, lamb rennet paste containing Lactobacillus acidophilus, and lamb rennet paste containing a mix of Bifidobacterium lactis and Bifidobacterium longum were characterized for the lipolytic pattern during ripening. Lipase activity of lamb rennet paste, lamb rennet containing Lb. acidophilus, and lamb rennet containing a mix of bifidobacteria was measured in sheep milk cream substrate. Rennet paste containing probiotics showed a lipase activity 2-fold greater than that displayed by traditional rennet. Total free fatty acid (FFA) in sheep milk cream was lower in lamb rennet paste (981 microg/g of milk cream) than in lamb rennet containing Lb. acidophilus (1,382.4 microg/g of milk cream) and in lamb rennet containing a mix of bifidobacteria (1,227.5 microg/g of milk cream) according to lipase activity of lamb rennet paste. The major increase of FFA in all cheeses occurred during the first 30 d of ripening with the greatest values being observed for C16:0, C18:0 C18:1. At 60 d of ripening all cheeses showed a reduction in the amount of free fatty acids; in particular, total free fatty acids underwent a decrease of more than 30% from 30 to 60 d in cheeses manufactured using traditional lamb rennet paste, whereas the same parameter decreased 10% in cheeses manufactured using lamb rennet paste containing Lb. acidophilus and cheeses manufactured using lamb rennet paste containing a mix of B. lactis and B. longum. Cheese containing Lb. acidophilus was characterized by the greatest levels of total conjugated linoleic acids (CLA) 9-cis, 11-trans CLA and 9-trans, 11-trans CLA, whereas cheese containing bifidobacteria displayed the greatest levels of free linoleic acid. Rennet pastes containing viable cells of Lb. acidophilus and a mix of B. lactis and B. longum were able to influence the amount of FFA and CLA in Pecorino cheese during ripening.

  9. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production.

    PubMed

    Zhang, Junhua; Jiang, Lifeng

    2008-12-01

    A technique to produce biodiesel from crude Zanthoxylum bungeanum seed oil (ZSO) with high free fatty acids (FFA) was developed. The acid value of ZSO was reduced to 1.16mg KOH/g from 45.51mg KOH/g by only one-step acid-catalyzed esterification with methanol-to-oil molar ratio 24:1, H(2)SO(4) 2%, temperature 60 degrees C and reaction time 80min, which was selected as optimum for the acid-catalyzed esterification. During the acid-catalyzed esterification, FFA was converted into fatty acid methyl esters, which was confirmed by (1)H NMR spectrum. Compared with the other two-step pretreatment procedure, this one-step pretreatment can reduce the production cost of ZSO biodiesel. Alkaline-catalyzed transesterification converted the pretreated ZSO into ZSO biodiesel. The yield of ZSO biodiesel was above 98% determined by (1)H NMR spectrum. This study supports the use of crude ZSO as a viable and valuable raw feedstock for biodiesel production.

  10. Flufenamic acid modulates multiple currents in gonadotropin-releasing hormone neurons

    PubMed Central

    Wang, Yong; Kuehl-Kovarik, M. Cathleen

    2010-01-01

    Reproduction in mammals is dependent upon the appropriate neurosecretion of gonadotropin-releasing hormone (GnRH), yet the endogenous generation of activity underlying GnRH secretion remains poorly understood. We have demonstrated that the depolarizing afterpotential (DAP), which modulates bursting activity, is reduced in isolated GnRH neurons from aged animals. Calcium-activated non-specific cation (CAN) channels contribute to the DAP in other vertebrate neurosecretory cells. We used the CAN channel blocker flufenamic acid (FFA) to examine the contribution of CAN channels to the DAP in GnRH neurons during aging. Recordings were performed on isolated fluorescent GnRH neurons from young, middle-aged and aged female mice. Flufenamic acid inhibited spontaneous activity, but significantly increased the DAP in neurons from young and middle-aged animals. Apamin did not significantly potentiate the DAP, but did reduce the effects of FFA, suggesting that the increased DAP is partially due to blockade of apamin-sensitive SK channels. Flufenamic acid increased the current underlying the DAP (IADP) and decreased the preceding fast outward current (IOUT) at all ages. These current responses were not affected by apamin, but TEA evoked similar changes. Thus, a potassium current, likely mediated through BK channels, contributes to the fast AHP and appears to offset the DAP; this current is sensitive to FFA, but insensitive to age. The effect of FFA on the DAP, but not IADP, is diminished in aged animals, possibly reflecting an age-related modulation of the apamin-sensitive SK channel. Future studies will examine the expression of SK channels during the aging process in GnRH neurons. PMID:20655884

  11. Stimulatory short-term effects of free fatty acids on glucagon secretion at low to normal glucose concentrations.

    PubMed

    Bollheimer, L Cornelius; Landauer, Heike C; Troll, Stephanie; Schweimer, Joachim; Wrede, Christian E; Schölmerich, Jürgen; Buettner, Roland

    2004-11-01

    While free fatty acids (FFA) are well known as insulin secretagogues, their effects on pancreatic alpha cells have been mostly neglected. In the present study we therefore systematically analyzed the glucagon metabolism of rat pancreatic islets under the influence of FFA. Primary islets were incubated in the presence or absence of 200 micromol/L albumin-complexed palmitate or oleate at 2.8 mmol/L versus 16.7 mmol/L glucose and glucagon secretion was monitored over 8 hours. In addition to these time-course experiments, dose dependency of palmitate-induced effects was tested by a 2-hour incubation with 50 to 300 micromol/L albumin-complexed palmitate at 2.8 mmol/L and 5.6 mmol/L glucose. Apart from glucagon secretion, intracellular immunoreactive glucagon and cellular preproglucagon-mRNA (PPG-mRNA) content were determined from the remaining cell lysates. FFA, especially palmitate, induced a significant and dose-dependent increase of glucagon secretion (in average 2-fold above control) during the first 120 minutes of incubation at low to normal glucose (2.8 and 5.6 mmol/L). There was no significant glucagonotropic effect of FFA at concomitant 16.7 mmol/L glucose. Intracellular glucagon as well as cellular PPG-mRNA content were found to be dose-dependently diminished by palmitate when compared with untreated controls at 5.6 mmol/L glucose. The present analysis therefore points to a new role for FFA as a nutritient secretagogue and a modulator of alpha-cellular glucagon metabolism.

  12. Fatty Acid Saturation of Albumin Used in Resuscitation Fluids Modulates Cell Damage in Shock: In Vitro Results Using a Novel Technique to Measure Fatty Acid Binding Capacity.

    PubMed

    Penn, Alexander H; Dubick, Michael A; Torres Filho, Ivo P

    2017-03-21

    The use of albumin for resuscitation has not proven as beneficial in human trials as expected from numerous animal studies. One explanation could be the practice of adding fatty acid (FA) during manufacture of pharmaceutical albumin. During ischemia, unbound free FAs (FFA) in the circulation could potentially induce cellular damage. We hypothesized that albumins with higher available binding capacities (ABC) for FFAs may prevent that damage. Therefore, we developed a technique to measure ABC, determined if pharmaceutical human serum albumin (HSA) has decreased ABC compared to FA-free bovine serum albumin (BSA), and if binding capacity would affect hemolysis when blood is mixed with exogenous FFA at levels similar to those observed in shock. The new assay used exogenous oleic acid (OA), glass fiber filtration, and a FFA assay kit. RBC hemolysis was determined by mixing 0-5 mM OA with PBS, HSA, FA-free BSA, or FA-saturated BSA and measuring plasma hemoglobin after incubation with human blood. 5% HSA contained 4.7±0.2 mM FFA, leaving an ABC of 5.0 ± 0.6 mM, compared to FA-free BSA's ABC of 7.0 ± 1.3 mM (P < 0.024). Hemolysis after OA was reduced with FA-free BSA but increased with FA-saturated BSA. HSA provided intermediate results. 25% solutions of FA-free BSA and HSA were more protective, while 25% FA-saturated BSA was more damaging than 5% solutions. These findings suggest that increased FA saturation may reverse albumin's potential benefit to lessen cellular damage and may explain, at least in part, its failure in human trauma studies.

  13. SAMOS Surface Fluxes

    NASA Astrophysics Data System (ADS)

    Smith, Shawn; Bourassa, Mark

    2014-05-01

    The development of a new surface flux dataset based on underway meteorological observations from research vessels will be presented. The research vessel data center at the Florida State University routinely acquires, quality controls, and distributes underway surface meteorological and oceanographic observations from over 30 oceanographic vessels. These activities are coordinated by the Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative in partnership with the Rolling Deck to Repository (R2R) project. Recently, the SAMOS data center has used these underway observations to produce bulk flux estimates for each vessel along individual cruise tracks. A description of this new flux product, along with the underlying data quality control procedures applied to SAMOS observations, will be provided. Research vessels provide underway observations at high-temporal frequency (1 min. sampling interval) that include navigational (position, course, heading, and speed), meteorological (air temperature, humidity, wind, surface pressure, radiation, rainfall), and oceanographic (surface sea temperature and salinity) samples. Vessels recruited to the SAMOS initiative collect a high concentration of data within the U.S. continental shelf and also frequently operate well outside routine shipping lanes, capturing observations in extreme ocean environments (Southern, Arctic, South Atlantic, and South Pacific oceans). These observations are atypical for their spatial and temporal sampling, making them very useful for many applications including validation of numerical models and satellite retrievals, as well as local assessments of natural variability. Individual SAMOS observations undergo routine automated quality control and select vessels receive detailed visual data quality inspection. The result is a quality-flagged data set that is ideal for calculating turbulent flux estimates. We will describe the bulk flux algorithms that have been applied to the

  14. Kinetic study on microwave-assisted esterification of free fatty acids derived from Ceiba pentandra Seed Oil.

    PubMed

    Lieu, Thanh; Yusup, Suzana; Moniruzzaman, Muhammad

    2016-07-01

    Recently, a great attention has been paid to advanced microwave technology that can be used to markedly enhance the biodiesel production process. Ceiba pentandra Seed Oil containing high free fatty acids (FFA) was utilized as a non-edible feedstock for biodiesel production. Microwave-assisted esterification pretreatment was conducted to reduce the FFA content for promoting a high-quality product in the next step. At optimum condition, the conversion was achieved 94.43% using 2wt% of sulfuric acid as catalyst where as 20.83% conversion was attained without catalyst. The kinetics of this esterification reaction was also studied to determine the influence of factors on the rate of reaction and reaction mechanisms. The results indicated that microwave-assisted esterification was of endothermic second-order reaction with the activation energy of 53.717kJ/mol.

  15. Silica-bonded N-propyl sulfamic acid used as a heterogeneous catalyst for transesterification of soybean oil with methanol.

    PubMed

    Xie, Wenlei; Yang, Dong

    2011-10-01

    The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability.

  16. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro.

    PubMed

    Krueger, N A; Anderson, R C; Tedeschi, L O; Callaway, T R; Edrington, T S; Nisbet, D J

    2010-11-01

    Ruminant-derived foods contain high proportions of saturated fats as a result of ruminal biohydrogenation that rapidly saturates and thus limits the availability of free unsaturated fatty acids for assimilation. The objective of this study was to evaluate the effects of glycerol on ruminal free-fatty acid (FFA) production rates and in vitro fermentation kinetics of alfalfa hay. In vitro incubations demonstrated 48% and 77% reductions in rates of FFA accumulation in incubations supplemented with 2% and 20% glycerol as compared to controls. In vitro incubations with alfalfa hay demonstrated that increasing levels of glycerol did not affect NDF digestibility of the hay. Additionally, increasing amounts of glycerol decreased the acetate to propionate ratio in the rumen. These results suggest that inhibiting bacterial fat degradation may promote ruminal passage of total lipid, thereby providing greater proportions of beneficial unsaturated fat for incorporation into beef products.

  17. High-fat diet alters serum fatty acid profiles in obesity prone rats: implications for in-vitro studies

    PubMed Central

    Liu, Tzu-Wen; Heden, Timothy D.; Morris, E. Matthew; Fritsche, Kevin L.; Vieira-Potter, Victoria J.; Thyfault, John P.

    2015-01-01

    High-fat diets (HFD) are commonly used in rodents to induce obesity, increase serum fatty acids, and induce lipotoxicity in various organs. In-vitro studies commonly utilize individual free fatty acids (FFA) to study lipid exposure in an effort to model what is occurring in-vivo, however, these approaches are not physiological as tissues are exposed to multiple fatty acids in-vivo. Here we characterize circulating lipids in obese-prone rats fed a HFD in both fasted and fed states with the goal of developing physiologically relevant fatty acid mixtures for subsequent in-vitro studies. Rats were fed a HFD (60% kcal fat) or a control diet (10% kcal fat) for 3 weeks; liver tissue, and both portal and systemic blood was collected. Fatty acid profiles and absolute concentrations of triglycerides (TAG) and FFA in the serum and TAG, diacylglycerol (DAG), and phospholipids (PL) in the liver were measured. Surprisingly, both systemic and portal serum TAG were ~40% lower in HFD-fed compared to controls. Overall, compared to the control diet, HFD feeding consistently induced an increase in the proportion of circulating polyunsaturated fatty acids (PUFA) with a concomitant decline in monounsaturated fatty acids (MUFA), and saturated fatty acids (SFA) in both serum TAG and FFA. The elevations of PUFA were mostly attributed to increases in n-6 PUFA, linoleic acid and arachidonic acid. In conclusion, fatty acid mixtures enriched with linoleic and arachidonic acid in addition to SFA and MUFA should be utilized for in-vitro studies attempting to model lipid exposures that occur during in-vivo HFD condition. PMID:26318121

  18. Broad-range TRP channel inhibitors (2-APB, flufenamic acid, SKF-96365) affect differently contraction of resistance and conduit femoral arteries of rat.

    PubMed

    Bencze, Michal; Behuliak, Michal; Vavřínová, Anna; Zicha, Josef

    2015-10-15

    Transient receptor potential (TRP) channels are proposed to contribute to membrane depolarization and Ca2+ influx into vascular smooth muscle (VSM) cells. Our aim was to study the effects of widely used broad-range TRP channel inhibitors--2-aminoethoxydiphenyl borate (2-APB), flufenamic acid (FFA) and SKF-96365--on the contraction of freshly isolated small and large arteries. Endothelium-denuded resistance (≈250 µm) and conduit (≈1000 µm) femoral arteries were isolated from adult Wistar rats and mounted in wire myograph. The effects of the above mentioned TRP channel inhibitors and voltage-dependent calcium channel inhibitor nifedipine were studied on arterial contractions induced by phenylephrine, U-46619 or K+. Phenylephrine-induced contractions were also studied in the absence of extracellular Na+. mRNA expression of particular canonical and melastatin TRP channel subunits in femoral vascular bed was determined. TRP channel inhibitors attenuated K+-induced contraction less than nifedipine. Phenylephrine-induced contraction was more influenced by 2-APB in resistance arteries, while FFA completely prevented U-46619-induced contraction in both sizes of arteries. The absence of extracellular Na+ prevented the inhibitory effects of 2-APB, but not those of FFA. The observed effects of broad-range TRP channel inhibitors, which were dependent on the size of the artery, confirmed the involvement of TRP channels in agonist-induced contractions. The inhibitory effects of 2-APB (but not those of FFA or SKF-96365) were dependent on the presence of extracellular Na+.

  19. A study of the relationship between bile salts, bile salt-stimulated lipase, and free fatty acids in breast milk: normal infants and those with breast milk jaundice.

    PubMed

    Forsyth, J S; Donnet, L; Ross, P E

    1990-08-01

    Breast milk jaundice has been reported to be associated with increased lipase activity and elevated free fatty acid (FFA) concentrations within breast milk. We have previously shown that bile salts are present in small concentrations in breast milk and the aim of this study was to examine the relationship of bile salt-stimulated lipase (BSSL) activity, FFA concentration, and bile salt concentration in milks of normal infants and the milk of infants with breast milk jaundice. Mothers of healthy newborn infants were recruited in the early newborn period and 42 provided breast milk samples at 2 weeks, 30 at 6 weeks, 16 at 10 weeks, and 13 at 14 weeks postnatally. We initially studied the effect of lactation on bile salts and found there was a significant decline in both cholate and chenodeoxycholate levels with duration of lactation (p less than 0.05). There was also a significant fall in BSSL activity with duration of lactation (p less than 0.05), but no correlation was found between BSSL activity and bile salt concentration. FFA concentrations were similar throughout lactation and were not related to either BSSL activity or bile salt concentration. There was a significant increase in the concentration of cholate and the cholate-to-chenodeoxycholate ratio in the milks of 12 infants with breast milk jaundice compared with normal milks, the BSSL activity was similar and contrary to previous reports, the FFA concentration was not increased in the milks of infants with breast milk jaundice.

  20. Protected Flux Pairing Qubit

    NASA Astrophysics Data System (ADS)

    Bell, Matthew; Zhang, Wenyuan; Ioffe, Lev; Gershenson, Michael

    2014-03-01

    We have studied the coherent flux tunneling in a qubit containing two submicron Josephson junctions shunted by a superinductor (a dissipationless inductor with an impedance much greater than the resistance quantum). The two low energy quantum states of this device, 0 and 1, are represented by even and odd number of fluxes in the loop, respectively. This device is dual to the charge pairing Josephson rhombi qubit. The spectrum of the device, studied by microwave spectroscopy, reflects the interference between coherent quantum phase slips in the two junctions (the Aharonov-Casher effect). The time domain measurements demonstrate the suppression of the qubit's energy relaxation in the protected regime, which illustrates the potential of this flux pairing device as a protected quantum circuit. Templeton Foundation, NSF, and ARO.

  1. Preparation of biodiesel from rice bran fatty acids catalyzed by heterogeneous cesium-exchanged 12-tungstophosphoric acids.

    PubMed

    Srilatha, K; Sree, Rekha; Prabhavathi Devi, B L A; Sai Prasad, P S; Prasad, R B N; Lingaiah, N

    2012-07-01

    Biodiesel synthesis from rice bran fatty acids (RBFA) was carried out using cesium exchanged 12-tungstophosphoric acid (TPA) catalysts. The physico-chemical properties of the catalysts were derived from X-ray diffraction (XRD), Fourier transform infrared (FTIR), temperature programmed desorption (TPD) of NH(3) and scanning electron microscopy (SEM). The characterization techniques revealed that the Keggin structure of TPA remained intact as Cs replaced protons. The partial exchange of Cs for protons resulted in an increase in acidity and the catalysts with one Cs(+) (Cs(1)H(2)PW(12)O(40)) showed highest acidity. Under optimized conditions about 92% conversion of RBFA was obtained. The catalyst was reused for five times and retained of its original activity. Pseudo-first order model was applied to correlate the experimental kinetic data. Modified tungstophosphoric acids are efficient solid acid catalysts for the synthesis of biodiesel from the oils containing high FFA.

  2. Coenzyme Q releases the inhibitory effect of free fatty acids on mitochondrial glycerophosphate dehydrogenase.

    PubMed

    Rauchová, Hana; Drahota, Zdenek; Rauch, Pavel; Fato, Romana; Lenaz, Giorgio

    2003-01-01

    Data presented in this paper show that the size of the endogenous coenzyme Q (CoQ) pool is not a limiting factor in the activation of mitochondrial glycerophosphate-dependent respiration by exogenous CoQ(3), since successive additions of succinate and NADH to brown adipose tissue mitochondria further increase the rate of oxygen uptake. Because the inhibition of glycerophosphate-dependent respiration by oleate was eliminated by added CoQ(3), our data indicate that the activating effect of CoQ(3) is related to the release of the inhibitory effect of endogenous free fatty acids (FFA). Both the inhibitory effect of FFA and the activating effect of CoQ(3) could be demonstrated only for glycerophosphate-dependent respiration, while succinate- or NADH-dependent respiration was not affected. The presented data suggest differences between mitochondrial glycerophosphate dehydrogenase and succinate or NADH dehydrogenases in the transfer of reducing equivalents to the CoQ pool.

  3. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  4. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  5. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  6. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-06-25

    A heat flux gauge is described comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  7. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1989-06-07

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figs.

  8. Optical heat flux gauge

    SciTech Connect

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MaCarthur, C.D.; Cala, G.C.

    1991-09-03

    A heat flux gauge is described comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  9. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil

    PubMed Central

    2011-01-01

    Background Fatty acids (FAs) are important as raw materials for the biotechnology industry. Existing methods of FAs production are based on chemical methods. In this study potassium hydroxide (KOH)-catalyzed reactions were utilized to hydrolysis Jatropha curcas seed oil. Results The parameters effect of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA%) were investigated using D-Optimal Design. Characterization of the product has been studied using Fourier transforms infrared spectroscopy (FTIR), gas chromatography (GC) and high performance liquid chromatography (HPLC). The optimum conditions for maximum FFA% were achieved at 1.75M of ethanolic KOH concentration, 65°C of reaction temperature and 2.0 h of reaction time. Conclusions This study showed that ethanolic KOH concentration was significant variable for J. curcas seed oil hydrolysis. In a 18-point experimental design, FFA% of hydrolyzed J. curcas seed oil can be raised from 1.89% to 102.2%, which proved by FTIR and HPLC. PMID:22044685

  10. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.

    PubMed

    Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun

    2016-02-17

    In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.

  11. Determination of free fatty acids and triglycerides by gas chromatography using selective esterification reactions.

    PubMed

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-01-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  12. Determination of Free Fatty Acids and Triglycerides by Gas Chromatography Using Selective Esterification Reactions

    SciTech Connect

    Kail, Brian W; Link, Dirk D; Morreale, Bryan D

    2012-11-01

    A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography–flame ionization detection, gas chromatography–mass spectrometry, and liquid chromatography–mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.

  13. Postprandial triglyceride and free fatty acid metabolism in obese women after either endurance or resistance exercise.

    PubMed

    Davitt, Patrick M; Arent, Shawn M; Tuazon, Marc A; Golem, Devon L; Henderson, Gregory C

    2013-06-15

    We investigated the effects of two exercise modalities on postprandial triglyceride (TG) and free fatty acid (FFA) metabolism. Sedentary, obese women were studied on three occasions in randomized order: endurance exercise for 60 min at 60-65% aerobic capacity (E), ~60 min high-intensity resistance exercise (R), and a sedentary control trial (C). After exercise, a liquid-mixed meal containing [U-(13)C]palmitate was consumed, and subjects were studied over 7 h. Isotopic enrichment (IE) of plasma TG, plasma FFA, and breath carbon dioxide compared with meal IE indicated the contribution of dietary fat to each pool. Total and endogenously derived plasma TG content was reduced significantly in both E and R compared with C (P < 0.05), with no effect of exercise on circulating exogenous (meal-derived) TG content. Exogenous plasma FFA content was increased significantly following both E and R compared with C (P < 0.05), whereas total and endogenous FFA concentrations were elevated only in E (P < 0.05) compared with C. Fatty acid (FA) oxidation rates were increased significantly after E and R compared with C (P < 0.05), with no difference between exercise modalities. The present results indicate that E and R may be equally effective in reducing postprandial plasma TG concentration and enhancing lipid oxidation when the exercise sessions are matched for duration rather than for energy expenditure. Importantly, tracer results indicated that the reduction in postprandial lipemia after E and R exercise bouts is not achieved by enhanced clearance of dietary fat but rather, is achieved by reduced abundance of endogenous FA in plasma TG.

  14. Advanced Surface Flux Parameterization

    DTIC Science & Technology

    2001-09-30

    within PE 0602435N are BE-35-2-18, for the Mesoscale Modeling of the Atmos- phere and Aerosols, BE-35-2-19, and for the Exploratory Data Assimilation ... Methods . Related project at NPS is N0001401WR20242 for Evaluating Surface Flux and Boundary Layer Parameterizations in Mesoscale Models Using

  15. Flux Tube Model

    NASA Astrophysics Data System (ADS)

    Steiner, O.

    2011-05-01

    This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.

  16. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  17. Carbon Flux Explorers

    ScienceCinema

    Bishop, Jim

    2016-10-12

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  18. Carbon Flux Explorers

    SciTech Connect

    Bishop, Jim

    2016-09-09

    Jim Bishop, senior scientist at Berkeley Lab and professor at UC Berkeley, is leading a project to deploy robotic floats that provide data on how microorganisms sequester carbon in the ocean. He recently led a research team on a 10-day voyage, funded by the National Science Foundation, to put the Carbon Flux Explorers to the test.

  19. Radiative Flux Analysis

    DOE Data Explorer

    Long, Chuck [NOAA

    2008-05-14

    The Radiative Flux Analysis is a technique for using surface broadband radiation measurements for detecting periods of clear (i.e. cloudless) skies, and using the detected clear-sky data to fit functions which are then used to produce continuous clear-sky estimates. The clear-sky estimates and measurements are then used in various ways to infer cloud macrophysical properties.

  20. A Topical Medication of All-Trans Retinoic Acid Reduces Sebum Excretion Rate in Patients With Forehead Acne.

    PubMed

    Pan, Jing; Wang, Qian; Tu, Ping

    2016-02-11

    Acne is a disease of the hair follicles of the face, chest, and back that affects almost all teenagers during puberty. This study is conducted to investigate if all-trans retinoic acid (ATRA) could reduce sebum excretion rate (SER) in acne patients by influencing content of skin-surface lipid production. Thirty-nine patients with forehead acne were topically treated with cream base (vehicle) and 0.025% ATRA cream once a night for 7 days. Separation and identification of sebum production collected from the skin on the acne were performed using thin-layer chromatography. SER was calculated according to the total amount of individual sebum productions that were quantified by using Alphaimager IS-2200 imaging analysis. Our data showed that the value of SER on the acne-affected skin was significantly decreased in the ATRA-treated patients as compared with ones treated with vehicle (P < 0.01). Treatment with ATRA resulted in inducing significant decreases in the contents of wax esters (WE), triglycerides and fatty acids, and free fatty acids (FFA) productions (all P < 0.01). In further analysis, the changes in the data before and after treatments with vehicle and ATRA were compared with significant differences exhibited in the values of SER, WE, and FFA (all P < 0.05). This study indicates that the topical application of ATRA in treatment of acne patients induces decrease in SER by inhibiting the excretion of WE and FFA productions.

  1. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation.

    PubMed

    Sleeth, Michelle L; Thompson, Emily L; Ford, Heather E; Zac-Varghese, Sagen E K; Frost, Gary

    2010-06-01

    The way in which the composition of the diet may affect appetite, food intake and body weight is now receiving considerable attention in a bid to halt the global year-on-year rise in obesity prevalence. Epidemiological evidence suggests that populations who follow a fibre-rich, traditional diet are likely to have a lower body weight and improved metabolic parameters than their Western-diet counterparts. The colonic effects of fibre, and more specifically the SCFA that the fermentation process produces, may play a role in maintaining energy homeostasis via their action on the G-coupled protein receptor free fatty acid receptor 2 (FFA2; formerly GPR43). In the present review, we summarise the evidence for and against the role of FFA2 in energy homeostasis circuits and the possible ways that these could be exploited therapeutically. We also propose that the decline in fibre content of the diet since the Industrial Revolution, particularly fermentable fractions, may have resulted in the FFA2-mediated circuits being under-utilised and hence play a role in the current obesity epidemic.

  2. [Effect of different organic fraction on membrane flux declines].

    PubMed

    Zhou, Xian-Jiao; Dong, Bing-Zhi

    2009-02-15

    Organic matter in the tap water was isolated into strongly hydrophobic acids, weakly hydrophobic acids, charged hydrophilic and neutral hydrophilic by DAX-8, XAD-4 and IRA-958 synthetic resins. Filtration tests using polyvinylidene fluoride (PVDF), polyethersulphone (PES) and cellulose acetate (CA) membranes were conducted to investigate the contribution of different organic fractions to membrane fouling. The results show that in filtration of raw water, flux declines with PES, PVDF and CA membrane are 67%, 59% and 19% of the initial flux, indicating that the more hydrophobic membrane resulted in more severe fouling. For the effect of different fractions on flux, flux decline with neutral hydrophilic is 41%-75% of the initial flux, whereas weakly hydrophobic acids is 6%-33%, suggesting that neutral hydrophilic has a great impact on filtration flux. Among three membranes tested, CA membrane shows the lowest flux decline compared with other membranes in spite of rejection of as high as 14.69% of neutral hydrophilic, suggesting that the extent of flux decline may not be associated with the total amount of NOM removed. The mechanism of fouling was discussed and found that the neutral hydrophilic fraction with greater than 3 x 10(4) of molecular weight caused a significant flux decline, through blocking the pore for the MF or UF having greater relative molecular mass cut-off (MWCO), but resulted in a little impact on flux with the UF having lower MWCO, through forming cake layer on the surface of membrane due to not entering the inside of pore.

  3. Dynamic flux cartography of hairy roots primary metabolism.

    PubMed

    Cloutier, M; Perrier, M; Jolicoeur, M

    2007-01-01

    A dynamic model for plant cell and hairy root primary metabolism is presented. The model includes nutrient uptake (Pi, sugars, nitrogen sources), the glycolysis and pentose phosphate pathways, the TCA cycle, amino acid biosynthesis, respiratory chain, biosynthesis of cell building blocks (structural hexoses, organic acids, lipids, and organic phosphated molecules). The energy shuttles (ATP, ADP) and cofactors (NAD/H, NADP/H) are also included. The model describes the kinetics of 44 biochemical reactions (fluxes) of the primary metabolism of plant cells and includes 41 biochemical species (metabolites, nutrients, biomass components). Multiple Michaelis-Menten type kinetics are used to describe biochemical reaction rates. Known regulatory phenomena on metabolic pathways are included using sigmoid switch functions. A visualization framework showing fluxes and metabolite concentrations over time is presented. The visualization of fluxes and metabolites is used to analyze simulation results from Catharanthus roseus hairy root 50 d batch cultures. The visualization of the metabolic system allows analyzing split ratios between pathways and flux time-variations. For carbon metabolism, the cells were observed to have relatively high and stable fluxes for the central carbon metabolism and low and variable fluxes for anabolic pathways. For phosphate metabolism, a very high free intracellular Pi turnover rate was observed with higher flux variations than for the carbon metabolism. Nitrogen metabolism also exhibited large flux variations. The potential uses of the model are also discussed.

  4. Branched Chain Amino Acids Cause Liver Injury in Obese/Diabetic Mice by Promoting Adipocyte Lipolysis and Inhibiting Hepatic Autophagy.

    PubMed

    Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling

    2016-11-01

    The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte.

  5. Flux compactifications grow lumps

    NASA Astrophysics Data System (ADS)

    Dahlen, Alex; Zukowski, Claire

    2014-12-01

    The simplest flux compactifications are highly symmetric—a q -form flux is wrapped uniformly around an extra-dimensional q -sphere. In this paper, we investigate solutions that break the internal SO (q +1 ) symmetry down to SO (q )×Z2 ; we find a large number of such lumpy solutions, and show that often at least one of them has lower vacuum energy, larger entropy, and is more stable than the symmetric solution. We construct the phase diagram of lumpy solutions, and provide an interpretation in terms of an effective potential. Finally, we provide evidence that the perturbatively stable vacua have a nonperturbative instability to spontaneously sprout lumps. We give an estimate of the decay rate and argue that generically it is exponentially faster than all other known decays.

  6. Lobotomy of flux compactifications

    NASA Astrophysics Data System (ADS)

    Dibitetto, Giuseppe; Guarino, Adolfo; Roest, Diederik

    2014-05-01

    We provide the dictionary between four-dimensional gauged supergravity and type II compactifications on 6 with metric and gauge fluxes in the absence of supersymmetry breaking sources, such as branes and orientifold planes. Secondly, we prove that there is a unique isotropic compactification allowing for critical points. It corresponds to a type IIA background given by a product of two 3-tori with SO(3) twists and results in a unique theory (gauging) with a non-semisimple gauge algebra. Besides the known four AdS solutions surviving the orientifold projection to = 4 induced by O6-planes, this theory contains a novel AdS solution that requires non-trivial orientifold-odd fluxes, hence being a genuine critical point of the = 8 theory.

  7. Optical heat flux gauge

    DOEpatents

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  8. NEUTRON FLUX INTENSITY DETECTION

    DOEpatents

    Russell, J.T.

    1964-04-21

    A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

  9. Heat Flux Sensor Testing

    NASA Astrophysics Data System (ADS)

    Clark, D. W.

    2002-07-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  10. Heat Flux Sensor Testing

    NASA Technical Reports Server (NTRS)

    Clark, D. W.

    2002-01-01

    This viewgraph presentation provides information on the following objectives: Developing secondary calibration capabilities for MSFC's (Marshall Space Flight Center) Hot Gas Facility (HGF), a Mach 4 Aerothermal Wind Tunnel; Evaluating ASTM (American Society for Testing and Materials) slug/ thinskin calorimeters against current HGF heat flux sensors; Providing verification of baselined AEDC (Arnold Engineering Development Center) / Medtherm gage calibrations; Addressing future calibration issues involving NIST (National Institute of Standards and Technology) certified radiant gages.

  11. Oxygen radicals shaping evolution: why fatty acid catabolism leads to peroxisomes while neurons do without it: FADH₂/NADH flux ratios determining mitochondrial radical formation were crucial for the eukaryotic invention of peroxisomes and catabolic tissue differentiation.

    PubMed

    Speijer, Dave

    2011-02-01

    Oxygen radical formation in mitochondria is a highly important, but incompletely understood, attribute of eukaryotic cells. I propose a kinetic model in which the ratio between electrons entering the respiratory chain via FADH₂ or NADH is a major determinant in radical formation. During the breakdown of glucose, this ratio is low; during fatty acid breakdown, this ratio is much higher. The longer the fatty acid, the higher the ratio and the higher the level of radical formation. This means that very long chain fatty acids should be broken down without generation of FADH₂ for mitochondria. This is accomplished in peroxisomes, thus explaining their role and evolution. The model explains many recent observations regarding radical formation by the respiratory chain. It also sheds light on the reasons for the lack of neuronal fatty acid (beta-) oxidation and for beneficial aspects of unsaturated fatty acids. Last but not least, it has very important implications for all models describing eukaryotic origins.

  12. Element fluxes from Copahue Volcano, Argentina

    NASA Astrophysics Data System (ADS)

    Varekamp, J. C.

    2003-12-01

    Copahue volcano in Argentina has an active volcano-magmatic hydrothermal system that emits fluids with pH=0.3 that feed a river system. River flux measurements and analytical data provide element flux data from 1997 to 2003, which includes the eruptive period of July to December 2000. The fluids have up to 6.5 percent sulfate, 1 percent Cl and ppm levels of B, As, Cu, Zn and Pb. The hydrothermal system acts as a perfect scrubber for magmatic gases during the periods of passive degassing, although the dissolved magmatic gases are modified through water rock interaction and mineral precipitation. The magmatic SO2 disproportionates into sulfate and liquid elemental sulfur at about 300 C; the sulfate is discharged with the fluids, whereas the liquid sulfur is temporarily retained in the reservoir but ejected during phreatic and hydrothermal eruptions. The intrusion and chemical attack of new magma in the hydrothermal reservoir in early 2000 was indicated by strongly increased Mg concentrations and Mg fluxes, and higher Mg/Cl and Mg/K values. The hydrothermal discharge has acidified a large glacial lake (0.5 km3) to pH=2 and the lake effluents acidify the exiting river. Even more than 100 km downstream, the effects of acid pulses from the lake are evident from red coated boulders and fish die-offs. The river-bound sulfate fluxes from the system range from 70 to 200 kilotonnes/year. The equivalent SO2 output of the whole volcanic system ranges from 150 to 500 tonnes/day, which includes the fraction of native sulfur that formed inside the mountain but does not include the release of SO2 into the atmosphere during the eruptions. Trace element fluxes of the river will be scaled up and compared with global element fluxes from meteoric river waters (subterranean volcanic weathering versus watershed weathering).

  13. Tuning Lipase Reaction for Production of Fatty Acids from Oil.

    PubMed

    Odaneth, Annamma A; Vadgama, Rajeshkumar N; Bhat, Anuradha D; Lali, Arvind M

    2016-10-01

    Fats or oils are split partially or completely to obtain fatty acids that find wide applications in oleo-chemical industries. Lipase-mediated complete splitting (hydrolysis) of oils is a green process having great potential to replace the traditional methods of oil splitting. However, cost of lipases, mechanistic kinetic equilibrium and associated operational limitations prove to be deterrents for scale up of the enzymatic oil splitting process. In the present study, we demonstrate the use of immobilised 1,3-regioselective lipase (HyLIP) for complete hydrolysis of oil in monophasic reaction medium. Incorporation of a polar organic solvent (tert-butanol, 1:5, v/v) homogenises the oil-water mixture and contributes positively towards complete hydrolysis. The monophasic oil hydrolysis reaction with optimised water concentration (0.05 %, v/v) gave Free Fatty Acid (FFA) yield of 88 % (HyLIP and Novozym-435) and 66 % (TLIM and RMIM). Smart reaction engineering and modification of the reaction intermediates to favourable substrate lead to ∼99 % degree of hydrolysis of triglycerides with ∼90 % FFA yield using 1,3-regioselective lipase. The present work becomes basic platform for developing technologies for synthesis of fatty acids, monoglycerides, diglycerides and glycerol.

  14. Acyl Ghrelin Induces Insulin Resistance Independently of GH, Cortisol, and Free Fatty Acids

    PubMed Central

    Vestergaard, Esben T.; Jessen, Niels; Møller, Niels; Jørgensen, Jens Otto Lunde

    2017-01-01

    Ghrelin produced in the gut stimulates GH and ACTH secretion from the pituitary and also stimulates appetite and gastric emptying. We have shown that ghrelin also induces insulin resistance via GH-independent mechanisms, but it is unknown if this effect depends on ambient fatty acid (FFA) levels. We investigated the impact of ghrelin and pharmacological antilipolysis (acipimox) on insulin sensitivity and substrate metabolism in 8 adult hypopituitary patients on stable replacement with GH and hydrocortisone using a 2 × 2 factorial design: Ghrelin infusion, saline infusion, ghrelin plus short-term acipimox, and acipimox alone. Peripheral and hepatic insulin sensitivity was determined with a hyperinsulinemic euglycemic clamp in combination with a glucose tracer infusion. Insulin signaling was assayed in muscle biopsies. Peripheral insulin sensitivity was reduced by ghrelin independently of ambient FFA concentrations and was increased by acipimox independently of ghrelin. Hepatic insulin sensitivity was increased by acipimox. Insulin signaling pathways in skeletal muscle were not consistently regulated by ghrelin. Our data demonstrate that ghrelin induces peripheral insulin resistance independently of GH, cortisol, and FFA. The molecular mechanisms remain elusive, but we speculate that ghrelin is a hitherto unrecognized direct regulator of substrate metabolism. We also suggest that acipimox per se improves hepatic insulin sensitivity. PMID:28198428

  15. Lipotoxic effect of p21 on free fatty acid-induced steatosis in L02 cells.

    PubMed

    Wang, Jie-wei; Wan, Xing-yong; Zhu, Hua-tuo; Lu, Chao; Yu, Wei-lai; Yu, Chao-hui; Shen, Zhe; Li, You-ming

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA)-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.

  16. Modeling population kinetics of free fatty acids in isolated rat hepatocytes using Markov Chain Monte Carlo.

    PubMed

    Pavan, Alessandra; Thomaseth, Karl; Valerio, Anna

    2003-01-01

    The aim of this study is the characterization, by means of mathematical models, of the activity of isolated hepatic rat cells as regards the conversion of free fatty acids (FFA) to ketone bodies (KB). A new physiologically based compartmental model of FFA metabolism is used within a context of population pharmacokinetics. This analysis is based on a hierarchical model, that differs from standard model formulations, to account for the fact that some data sets belong to the same animal but have been collected under different experimental conditions. The statistical inference problem has been addressed within a Bayesian context and solved by using Markov Chain Monte Carlo (MCMC) simulation. The results obtained in this study indicate that, although hormones epinephrine and insulin are important metabolic regulatory factors in vivo, the conversion of FFA to KB by isolated hepatic rat cells is not significantly affected by epinephrine and only little influenced by insulin. So we conclude that in vivo, the interaction of these two hormones with other compounds not considered in this study plays a fundamental role in ketogenesis. From this study it appears that mathematical models of metabolic processes can be successfully employed in population kinetic studies using MCMC methods.

  17. Transformation of 2,4,6-trimethylphenol and furfuryl alcohol, photosensitised by Aldrich humic acids subject to different filtration procedures.

    PubMed

    Minella, Marco; Merlo, Maria Paola; Maurino, Valter; Minero, Claudio; Vione, Davide

    2013-01-01

    Suspended particles in a system made up of Aldrich humic acids (HAs) in water account for about 13% of the total HA mass, 10-11% of the organic carbon and 9-11% of radiation extinction in the UVA region. Extinction would be made up of radiation scattering (less than one third) and absorption (over two thirds). The contribution of particles to the degradation rates of trimethylphenol and furfuryl alcohol (FFA) (probes of triplet states and (1)O(2), respectively) was lower than 10% and possibly negligible. The results indicate that triplet states and (1)O(2) occurring in the solution bulk are mostly produced by the dissolved HA fraction. Experimental data would not exclude production of (1)O(2) in particle hydrophobic cores, unavailable for reaction with FFA. However, the limited to negligible particle fluorescence places an upper limit to particle core photoactivity.

  18. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    PubMed

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.

  19. Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects.

    PubMed

    Albergamo, Ambrogina; Rigano, Francesca; Purcaro, Giorgia; Mauceri, Angela; Fasulo, Salvatore; Mondello, Luigi

    2016-11-15

    The present work aims to elucidate the free fatty acid (FFA) profile of the mussel Mytilus galloprovincialis caged in an anthropogenically impacted area and in a reference site through an innovative and validated analytical approach for the assessment of biological alterations induced by marine pollution. The FFA pattern is involved in the regulation of different cellular pathways and differs with respect to metabolic stimuli. To this purpose, the lipid fraction of mussels coming from both sampling areas was extracted and the FFA fractions were isolated and purified by a solid phase extraction; then, nano-scale liquid chromatography coupled to electron ionization mass spectrometry (nanoLC-EI-MS) was employed for the characterization of the two samples. A total of 19 and 17 FFAs were reliably identified in the mussels coming from the reference and polluted site, respectively. Significant qualitative and quantitative differences found in saturated, monounsaturated and polyunsaturated species may be exploited as typical pollution biomarkers (e.g. alteration of the fatty acid biosynthetic system and lipotoxicity) and explain adverse and compromising effects (e.g. oxidative stress and inflammatory processes) related to environmental pollution.

  20. Fourier Transform Infrared (FTIR) Spectroscopy as a Utilitarian Tool for the Routine Determination of Acidity in Ester-Based Oils.

    PubMed

    Meng, Xianghe; Li, Lei; Ye, Qin; van de Voort, Frederik

    2015-09-23

    A primary Fourier transform infrared (FTIR) method capable of determining acidity in ester-based oils is described and evaluated. Absolute free fatty acid (%FFA) and acid value (AV) calibrations were devised by spiking oleic acid into a refined, acid-free oil and measuring ν COO(-) at ∼ 1569 and ν phenolate(-) at ∼ 1588 cm(-1), respectively, in the second-derivative differential spectra. The FTIR acidity predictions were compared to the AOCS titrimetric method using acid mixtures as well as acid containing used vendor oils of undefined makeup and provenance, using two spectroscopically divergent reference oils as AC0. Relative to the AOCS reference method, the FTIR procedure was found to be both more accurate (± 0.107 vs ± 0.122) and reproducible (± 0.025 vs ± 0.077) in determining %FFA and similar in predicting AV. The FTIR phenolate method overcomes a variety of limitations of earlier FTIR-based methods, being particularly simple and well suited to routine, semiautomated acidity analysis of ester-based oils using a basic FTIR spectrometer.

  1. CYP2J2 Overexpression Ameliorates Hyperlipidemia via Increased Fatty Acid Oxidation Mediated by the AMPK Pathway

    PubMed Central

    Zhang, Shasha; Chen, Guangzhi; Li, Ning; Dai, Meiyan; Chen, Chen; Wang, Peihua; Tang, Huiru; Hoopes, Samantha L.; Zeldin, Darryl C.; Wang, Dao Wen; Xu, Xizhen

    2015-01-01

    Objective The study aims to investigate the effect of Cytochrome P450 2J2 (CYP2J2) overexpression on hyperlipidemia in mice and further to explore their effect on fatty acid oxidation in vivo and in vitro. Methods The effects and mechanisms of endothelial-specific CYP2J2 transgene (Tie2-CYP2J2-Tr) on lipid and fatty acids metabolism were investigated in high fat diet (HFD)-treated mice. HepG2, LO2 cells and HUVECs were exposed to 0.4 mM free fatty acid (FFA) for 24h and used as a model to investigate the roles of CYP2J2 overexpression and epoxyeicosatrienoic acids (EETs) on fatty acid β oxidation in vitro. Results Tie2-CYP2J2-Tr mice had significantly lower plasma and liver triglycerides, lower liver cholesterol and fatty acids, and the reduction in HFD-induced lipid accumulation. CYP2J2 overexpression resulted in activation of the hepatic and endothelial AMPKα, increased ACC phosphorylation, increased expression of CPT-1 and PPARα, which were all reduced by HFD treatment. In FFA-treated HepG2, LO2 and HUVECs, both CYP2J2 overexpression and EETs significantly decreased lipid accumulation and increased fatty acid oxidation via activating the AMPK and PPARα pathway. Conclusions Endothelial specific CYP2J2 overexpression alleviates HFD–induced hyperlipidemia in vivo. CYP2J2 ameliorates FFA-induced dyslipidemia via increased fatty acid oxidation mediated by the AMPK and PPARα pathway. PMID:26053032

  2. Thermal flux transfer system

    NASA Technical Reports Server (NTRS)

    Freggens, R. A. (Inventor)

    1973-01-01

    A thermal flux transfer system for use in maintaining the thrust chamber of an operative reaction motor at given temperatures is described. The system is characterized by an hermetically sealed chamber surrounding a thrust chamber to be cooled, with a plurality of parallel, longitudinally spaced, disk-shaped wick members formed of a metallic mesh and employed in delivering a working fluid, in its liquid state, radially toward the thrust chamber and delivering the working fluid, in its vapor state, away from the nozzle for effecting a cooling of the nozzle, in accordance with known principles of an operating heat pipe.

  3. High flux reactor

    DOEpatents

    Lake, James A.; Heath, Russell L.; Liebenthal, John L.; DeBoisblanc, Deslonde R.; Leyse, Carl F.; Parsons, Kent; Ryskamp, John M.; Wadkins, Robert P.; Harker, Yale D.; Fillmore, Gary N.; Oh, Chang H.

    1988-01-01

    A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

  4. Melatonin rescues 3T3-L1 adipocytes from FFA-induced insulin resistance by inhibiting phosphorylation of IRS-1 on Ser307.

    PubMed

    She, Meihua; Hou, Hongjie; Wang, Zongbao; Zhang, Chi; Laudon, Moshe; Yin, Weidong

    2014-08-01

    Melatonin is biosynthesized in the pineal gland and secreted into the bloodstream. Evidences indicate a role of melatonin in the regulation of glucose metabolism. The objective of this study was to investigate the effect of melatonin on insulin sensitivity in insulin resistant adipocytes. Following a preincubation with melatonin or vehicle for 30 min, insulin resistant cells of 3T3-L1 adipocytes were induced by palmitic acids (300 μM, 6 h). Our results showed that palmitic acids inhibited both the basal and insulin-stimulated uptake of [(3)H]-2-Deoxyglucose, down-regulated the levels of IRS-1 and GLUT-4. However, compared to the vehicle group, melatonin pre-treatment increased significantly the uptake of [(3)H]-2-Deoxyglucose as well as the level of GLUT-4, and decreased phosphorylated IRS-1 (Ser307) although total IRS-1 did not change significantly. These data suggest that palmitic acids impair insulin signal via down-regulating the expressions of IRS-1 and GLUT-4; whereas melatonin can ameliorate insulin sensitivity by inhibiting Ser307 phosphorylation in IRS-1 and increasing GLUT-4 expressions in insulin resistant 3T3-L1 adipocytes. We conclude that melatonin regulates the insulin sensitivity and glucose homeostasis via inhibiting Ser-phosphorylation and improving function of IRS-1.

  5. Disruption of glucose homeostasis and induction of insulin resistance by elevated free fatty acids in human L02 hepatocytes.

    PubMed

    Wan, X-D; Yang, W-B; Xia, Y-Z; Wang, J-F; Lu, T; Wang, X-M

    2009-05-01

    Free fatty acids (FFA) have been implicated as an important causative link between obesity, insulin resistance, and Type 2 diabetes. However, the underlying mechanisms especially for FFA-mediated hepatic insulin resistance are not fully elucidated. Here, we investigated the impaired sites in insulin signaling pathways and mechanisms of insulin resistance induced by elevated FFA in L02 hepatocytes. L02 cells were cultured in Dulbecco's modified eagle medium containing various concentrations of palmitic acid (PA) for 24 h followed by 10(-7) mol/l insulin stimulation. In some experiments, cells were pre-treated with enzymatic inhibitor Wortmannin (10(-6) mol/l). Glucose levels in medium, cytosolic glycogen contents, and phosphoenolpyruvate carboxykinase (PEPCK) activity were measured. Protein level of insulin receptor substrate (IRS)-2 and phosphorylated Akt were detected by Western blot analysis. L02 cells treated with high levels of PA exhibited increased glucose levels, whereas hepatic glycogen contents were decreased in a dose-dependent manner as compared to the control cells. There was a significant attenuation of IRS- 2 protein expression in the cells cultured with PA, and Wortmannin intervention exhibited different IRS-2 protein level with or without PA treatment. In accordance with the reduced IRS-2 level, the insulin-stimulated phosphorylation of Akt was diminished in the PA-treated cells. Basal PEPCK activity and insulin- regulated PEPCK activity were overstimulated in the cells incubated with PA. These data indicate high levels of FFA can disrupt glucose homeostasis, inflict some defects in insulin signaling, and induce insulin resistance in L02 cells.

  6. First Reconnected Flux Tubes

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Lapenta, G.; Newman, D. L.; Markidis, S.; Spanswick, E. L.; Baker, J. B.; Clausen, L. B.; Larson, D. E.; Ergun, R. E.; Frey, H. U.; Singer, H. J.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Wolfgang, B.

    2011-12-01

    THEMIS observations from the magnetic equator (the equatorial plane) in the near-earth tail reveal a great amount of information regarding the plasma environment in the vicinity of the first reconnected flux tubes (a subgroup of dipolarization fronts). Two sequential observations of dipolarization fronts are analyzed in detail using three of the THEMIS spacecraft. Particle acceleration to high energies (>50 keV) is observed together with a void region interpreted as a region to which the full electron distribution has incomplete access. Whistler waves, which are observed, could be driven by one of the two electron populations located in the wake of the first reconnected flux tubes. The detailed observations are compared with 2D and 3D implicit kinetic simulation of reconnection events. This presentation focuses on the similarity between observation and simulation. One key aspect of this presentation is a demonstration of how different the signature is when observing at vs off the magnetic equator, since most observations in the literature (unlike the observations presented here) are from off the equator. For this event, additional spacecraft and ground observations have been analyzed, which demonstrate that a reconfiguration of the magnetosphere is taking place. However, the focus of this presentation is on the small scale (<~10 di), rather than the large scale (~20 Re).

  7. Computing the Flux Footprint

    NASA Astrophysics Data System (ADS)

    Wilson, J. D.

    2015-07-01

    We address the flux footprint for measurement heights in the atmospheric surface layer, comparing eddy diffusion solutions with those furnished by the first-order Lagrangian stochastic (or "generalized Langevin") paradigm. The footprint given by Langevin models differs distinctly from that given by the random displacement model (i.e. zeroth-order Lagrangian stochastic model) corresponding to its "diffusion limit," which implies that a well-founded theory of the flux footprint must incorporate the turbulent velocity autocovariance. But irrespective of the choice of the eddy diffusion or Langevin class of model as basis for the footprint, tuning relative to observations is ultimately necessary. Some earlier treatments assume Monin-Obukhov profiles for the mean wind and eddy diffusivity and that the effective Schmidt number (ratio of eddy viscosity to the tracer eddy diffusivity) in the neutral limit , while others calibrate the model to the Project Prairie Grass dispersion trials. Because there remains uncertainty as to the optimal specification of (or a related parameter in alternative theories, e.g. the Kolmogorov coefficient in Langevin models) it is recommended that footprint models should be explicit in this regard.

  8. Arterio-venous balance studies of skeletal muscle fatty acid metabolism: what can we believe?

    PubMed Central

    Guo, ZengKui

    2013-01-01

    The arterio-venous balance (A-V balance/difference) technique has been used by a number of groups, including ours, to study skeletal muscle fatty acid metabolism. Several lines of evidence indicate that, like glycogen, intramyocellular triglycerides (imcTG) are an energy source for local use. As such, the report that increased release of free fatty acids (FFA) via lipolysis from skeletal muscle, but not from adipose tissue, is responsible for the increased systemic lipolysis during IL-6 infusion in healthy humans is somewhat unexpected (26). It appears that given the complex anatomy of human limbs, as to be discussed in this review, it is virtually impossible to determine whether any fatty acids being released into the venous circulation of an arm or leg derive from the lipolysis of intermuscular fat residing between muscle groups, intramuscular fat residing within muscle groups (between epimysium and perimysium, or bundles), or the intramyocellular triglyceride droplets (imcTG). In many cases, it may even be difficult to be confident that there is no contribution of FFA from subcutaneous adipose tissue. This question is fundamentally important as one attempts to interpret the results of skeletal muscle fatty acid metabolism studies using the A-V balance technique. In this Perspectives article, we examine the reported results of fatty acid kinetics obtained using the techniques to evaluate the degree of and how to minimize contamination when attempting to sample skeletal muscle-specific fatty acids. PMID:23941872

  9. An oleaginous bacterium that intrinsically accumulates long-chain free Fatty acids in its cytoplasm.

    PubMed

    Katayama, Taiki; Kanno, Manabu; Morita, Naoki; Hori, Tomoyuki; Narihiro, Takashi; Mitani, Yasuo; Kamagata, Yoichi

    2014-02-01

    Medium- and long-chain fatty acids are present in organisms in esterified forms that serve as cell membrane constituents and storage compounds. A large number of organisms are known to accumulate lipophilic materials as a source of energy and carbon. We found a bacterium, designated GK12, that intrinsically accumulates free fatty acids (FFAs) as intracellular droplets without exhibiting cytotoxicity. GK12 is an obligatory anaerobic, mesophilic lactic acid bacterium that was isolated from a methanogenic reactor. Phylogenetic analysis based on 16S rRNA gene sequences showed that GK12 is affiliated with the family Erysipelotrichaceae in the phylum Firmicutes but is distantly related to type species in this family (less than 92% similarity in 16S rRNA gene sequence). Saturated fatty acids with carbon chain lengths of 14, 16, 18, and 20 were produced from glucose under stress conditions, including higher-than-optimum temperatures and the presence of organic solvents that affect cell membrane integrity. FFAs were produced at levels corresponding to up to 25% (wt/wt) of the dry cell mass. Our data suggest that FFA accumulation is a result of an imbalance between excess membrane fatty acid biosynthesis due to homeoviscous adaptation and limited β-oxidation activity due to anaerobic growth involving lactic acid fermentation. FFA droplets were not further utilized as an energy and carbon source, even under conditions of starvation. A naturally occurring bacterium that accumulates significant amounts of long-chain FFAs with noncytotoxicity would provide useful strategies for microbial biodiesel production.

  10. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development--a review.

    PubMed

    Herrera, Emilio

    2002-04-01

    During pregnancy, the mother adapts her metabolism to support the continuous draining of substrates by the fetus. Her increase in net body weight (free of the conceptus) corresponds to the accumulation of fat depots during the first two-thirds of gestation, switching to an accelerated breakdown of these during the last trimester. Under fasting conditions, adipose tissue lipolytic activity is highly enhanced, and its products, free fatty acids (FFA) and glycerol, are mainly driven to maternal liver, where FFA are converted to ketone bodies and glycerol to glucose, which easily cross the placenta and sustain fetal metabolism. Lipolytic products reaching maternal liver are also used for triglyceride synthesis that are released in turn to the circulation, where together with an enhanced transfer of triglycerides among the different lipoprotein fractions, and a decrease in extrahepatic lipoprotein lipase activity, increase the content of triglycerides in all the lipoprotein fractions. Long chain polyunsaturated fatty acids (LCPUFA) circulate in maternal plasma associated to lipoprotein triglycerides, and in a minor proportion in the form of FFA. Despite the lack of a direct placental transfer of triglycerides, diffusion of their fatty acids to the fetus is ensured by means of lipoprotein receptors, lipoprotein lipase activity and intracellular lipase activities in the placenta. Maternal plasma FFA are also an important source of LCPUFA to the fetus, and their placental uptake occurs via a selective process of facilitated membrane translocation involving a plasma membrane fatty acid-binding protein. This mechanism together with a selective cellular metabolism determine the actual rate of placental transfer and its selectivity, resulting even in an enrichment of certain LCPUFA in fetal circulation as compared to maternal. The degree to which the fetus is capable of fatty acid desaturation and elongation is not clear, although both term and preterm infants can synthesize

  11. Acid activated montmorillonite as catalysts in methyl esterification reactions of lauric acid.

    PubMed

    Zatta, Leandro; Ramos, Luiz Pereira; Wypych, Fernando

    2012-01-01

    The catalytic activity of acid activated montmorillonite in the esterification of free fatty acids (FFA) is reported. Standard Montmorillonite (MMT) type STx-1 provided by the Clay Mineral Society repository was activated using phosphoric, nitric and sulphuric acids under different conditions and the resulting materials were characterized and evaluated as catalysts in the methyl esterification of lauric acid. Blank reactions carried out in the absence of any added catalyst presented conversions of 32.64, 69.79 and 79.23%, for alcohol:lauric acid molar ratios of 60:1, 12:1 and 6:1, respectively. In the presence of the untreated clay and using molar ratios of 12:1 and 6:1 with 12% of catalyst, conversions of 70.92 and 82.30% were obtained, respectively. For the acid activated clays, conversions up to 93.08% of lauric acid to methyl laurate were obtained, much higher than those observed for the thermal conversion or using untreated montmorillonite. Relative good correlations were observed between the catalytic activity and the development of acid sites and textural properties of the resulting materials. Therefore, a simple acid activation was able to improve the catalytic activity and produce clay catalysts that are environmental friendly, cost effective, noncorrosive and reusable.

  12. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  13. Optimal fluxes and Reynolds stresses

    NASA Astrophysics Data System (ADS)

    Jiménez, Javier

    2016-12-01

    It is remarked that fluxes in conservation laws, such as the Reynolds stresses in the momentum equation of turbulent shear flows, or the spectral energy flux in isotropic turbulence, are only defined up to an arbitrary solenoidal field. While this is not usually significant for long-time averages, it becomes important when fluxes are modelled locally in large-eddy simulations, or in the analysis of intermittency and cascades. As an example, a numerical procedure is introduced to compute fluxes in scalar conservation equations in such a way that their total integrated magnitude is minimised. The result is an irrotational vector field that derives from a potential, thus minimising sterile flux `circuits'. The algorithm is generalised to tensor fluxes and applied to the transfer of momentum in a turbulent channel. The resulting instantaneous Reynolds stresses are compared with their traditional expressions, and found to be substantially different.

  14. Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation.

    PubMed Central

    Bollheimer, L C; Skelly, R H; Chester, M W; McGarry, J D; Rhodes, C J

    1998-01-01

    The pancreatic beta cell normally maintains a stable balance among insulin secretion, insulin production, and insulin degradation to keep optimal intracellular stores of the hormone. Elevated levels of FFA markedly enhance insulin secretion; however, the effects of FFA on insulin production and intracellular stores remain unclear. In this study, twofold elevation in total circulating FFA effected by infusion of lard oil and heparin into rats for 6 h under normoglycemic conditions resulted in a marked elevation of circulating insulin levels evident after 4 h, and a 30% decrease in pancreatic insulin content after a 6-h infusion in vivo. Adding 125 muM oleate to isolated rat pancreatic islets cultured with 5.6 mM glucose caused a 50% fall in their insulin content over 24 h, coupled with a marked enhancement of basal insulin secretion. Both effects of fatty acid were blocked by somatostatin. In contrast to the stimulatory effects of oleate on insulin secretion, glucose-induced proinsulin biosynthesis was inhibited by oleate up to 24 h, but was unaffected thereafter. This result was in spite of a two- to threefold oleate-induced increase in preproinsulin mRNA levels, underscoring the importance of translational regulation of proinsulin biosynthesis in maintaining beta cell insulin stores. Collectively, these results suggest that chronically elevated FFA contribute to beta cell dysfunction in the pathogenesis of NIDDM by significantly increasing the basal rate of insulin secretion. This increase in turn results in a decrease in the beta cell's intracellular stores that cannot be offset by commensurate FFA induction of proinsulin biosynthesis. PMID:9486980

  15. Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli▿†

    PubMed Central

    Lennen, Rebecca M.; Kruziki, Max A.; Kumar, Kritika; Zinkel, Robert A.; Burnum, Kristin E.; Lipton, Mary S.; Hoover, Spencer W.; Ranatunga, Don R.; Wittkopp, Tyler M.; Marner, Wesley D.; Pfleger, Brian F.

    2011-01-01

    Microbially produced fatty acids are potential precursors to high-energy-density biofuels, including alkanes and alkyl ethyl esters, by either catalytic conversion of free fatty acids (FFAs) or enzymatic conversion of acyl-acyl carrier protein or acyl-coenzyme A intermediates. Metabolic engineering efforts aimed at overproducing FFAs in Escherichia coli have achieved less than 30% of the maximum theoretical yield on the supplied carbon source. In this work, the viability, morphology, transcript levels, and protein levels of a strain of E. coli that overproduces medium-chain-length FFAs was compared to an engineered control strain. By early stationary phase, an 85% reduction in viable cell counts and exacerbated loss of inner membrane integrity were observed in the FFA-overproducing strain. These effects were enhanced in strains endogenously producing FFAs compared to strains exposed to exogenously fed FFAs. Under two sets of cultivation conditions, long-chain unsaturated fatty acid content greatly increased, and the expression of genes and proteins required for unsaturated fatty acid biosynthesis were significantly decreased. Membrane stresses were further implicated by increased expression of genes and proteins of the phage shock response, the MarA/Rob/SoxS regulon, and the nuo and cyo operons of aerobic respiration. Gene deletion studies confirmed the importance of the phage shock proteins and Rob for maintaining cell viability; however, little to no change in FFA titer was observed after 24 h of cultivation. The results of this study serve as a baseline for future targeted attempts to improve FFA yields and titers in E. coli. PMID:21948837

  16. HONO fluxes from soil surfaces: an overview

    NASA Astrophysics Data System (ADS)

    Wu, Dianming; Sörgel, Matthias; Tamm, Alexandra; Ruckteschler, Nina; Rodriguez-Caballero, Emilio; Cheng, Yafang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Gaseous nitrous acid (HONO) contributes up to 80% of atmospheric hydroxyl (OH) radicals and is also linked to health risks through reactions with tobacco smoke forming carcinogens. Field and modeling results suggested a large unknown HONO source in the troposphere during daytime. By measuring near ground HONO mixing ratio, up to 30% of HONO can be released from forest, rural and urban ground as well as snow surfaces. This source has been proposed to heterogeneous reactions of nitrogen dioxide (NO2) on humic acid surfaces or nitric acid photolysis. Laboratory studies showed that HONO emissions from bulk soil samples can reach 258 ng m-2 s-1 (in term of nitrogen), which corresponding to 1.1 × 1012 molecules cm-2 s-1and ˜ 100 times higher than most of the field studies, as measured by a dynamic chamber system. The potential mechanisms for soil HONO emissions include chemical equilibrium of acid-base reaction and gas-liquid partitioning between soil nitrite and HONO, but the positive correlation of HONO fluxes with pH (largest at neutral and slightly alkaline) points to the dominance of the formation process by ammonia-oxidizing bacteria (AOB). In general soil surface acidity, nitrite concentration and abundance of ammonia-oxidizing bacteria mainly regulate the HONO release from soil. A recent study showed that biological soil crusts in drylands can also emit large quantities of HONO and NO, corresponding to ˜20% of global nitrogen oxide emissions from soils under natural vegetation. Due to large concentrations of microorganisms in biological soil crusts, particularly high HONO and NO emissions were measured after wetting events. Considering large areas of arid and arable lands as well as peatlands, up to 70% of global soils are able to emitting HONO. However, the discrepancy between large soil HONO emissions measured in lab and low contributions of HONO flux from ground surfaces in field as well as the role of microorganisms should be further investigated.

  17. Neutron fluxes in radiotherapy rooms.

    PubMed

    Agosteo, S; Foglio Para, A; Maggioni, B

    1993-01-01

    The spatial distribution of the neutron flux, originated in an electron accelerator therapy room when energies above the threshold of (y,n) and (e,e'n) reactions are employed, is physically due to a direct flux, coming from the accelerator head, and to a flux diffused from the walls. In this work, the flux is described to a high degree of approximation by a set of functions whose spatial behavior is univocally determined by the angular distributions of the neutrons emitted from the shield of the accelerator head and diffused from the walls. The analytical results are verified with an extended series of Monte Carlo simulations obtained with the MCNP code.

  18. Lithium metaborate flux in silicate analysis

    USGS Publications Warehouse

    Ingamells, C.O.

    1970-01-01

    Lithium metaborate is an effective flux for silicates and other rock-forming minerals. The glass resulting from fusion is mechanically strong, reasonably nonhygroscopic, and is readily soluble in dilute acids. These characteristics lead to its use in X-ray spectrography and in methods which require whole-rock solutions, such as atomic absorption and emission spectrometry. Difficulties have been encountered in the use of such techniques : a high-quality reagent has been difficult to obtain ; fusion conditions must be rather closely controlled; graphite crucibles used in the fusions need special treatment. Methods for overcoming these difficulties are outlined. Selected procedures for various instrumental methods of analysis are described. ?? 1970.

  19. Determination of free fatty acids in beer.

    PubMed

    Bravi, Elisabetta; Marconi, Ombretta; Sileoni, Valeria; Perretti, Giuseppe

    2017-01-15

    Free fatty acids (FFA) content of beer affects the ability to form a stable head of foam and plays an important role in beer staling. Moreover, the presence of saturated FAs is related sometimes to gushing problems in beer. The aim of this research was to validate an analytical method for the determination of FFAs in beer. The extraction of FFAs in beer was achieved via Liquid-Liquid Cartridge Extraction (LLCE), the FFAs extract was purified by Solid Phase Extraction (SPE), methylated by boron trifluoride in methanol, and injected into GC-FID system. The performance criteria demonstrate that this method is suitable for the analysis of medium and long chain FFAs in beer. The proposed method was tested on four experimental beers.

  20. KoFlux: Korean Regional Flux Network in AsiaFlux

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2002-12-01

    AsiaFlux, the Asian arm of FLUXNET, held the Second International Workshop on Advanced Flux Network and Flux Evaluation in Jeju Island, Korea on 9-11 January 2002. In order to facilitate comprehensive Asia-wide studies of ecosystem fluxes, the meeting launched KoFlux, a new Korean regional network of long-term micrometeorological flux sites. For a successful assessment of carbon exchange between terrestrial ecosystems and the atmosphere, an accurate measurement of surface fluxes of energy and water is one of the prerequisites. During the 7th Global Energy and Water Cycle Experiment (GEWEX) Asian Monsoon Experiment (GAME) held in Nagoya, Japan on 1-2 October 2001, the Implementation Committee of the Coordinated Enhanced Observing Period (CEOP) was established. One of the immediate tasks of CEOP was and is to identify the reference sites to monitor energy and water fluxes over the Asian continent. Subsequently, to advance the regional and global network of these reference sites in the context of both FLUXNET and CEOP, the Korean flux community has re-organized the available resources to establish a new regional network, KoFlux. We have built up domestic network sites (equipped with wind profiler and radiosonde measurements) over deciduous and coniferous forests, urban and rural rice paddies and coastal farmland. As an outreach through collaborations with research groups in Japan, China and Thailand, we also proposed international flux sites at ecologically and climatologically important locations such as a prairie on the Tibetan plateau, tropical forest with mixed and rapid land use change in northern Thailand. Several sites in KoFlux already begun to accumulate interesting data and some highlights are presented at the meeting. The sciences generated by flux networks in other continents have proven the worthiness of a global array of micrometeorological flux towers. It is our intent that the launch of KoFlux would encourage other scientists to initiate and

  1. Carbon Dioxide Flux Measurement Systems (CO2Flux) Handbook

    SciTech Connect

    Fischer, M

    2005-01-01

    The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The fluxes are obtained by the eddy covariance technique, which computes the flux as the mean product of the vertical wind component with CO2 and H2O densities, or estimated virtual temperature. A three-dimensional sonic anemometer is used to obtain the orthogonal wind components and the virtual (sonic) temperature. An infrared gas analyzer is used to obtain the CO2 and H2O densities. A separate sub-system also collects half-hour average measures of meteorological and soil variables from separate 4-m towers.

  2. Selective elimination of the free fatty acid fraction from esterified fatty acids in rat plasma through chemical derivatization and immobilization on amino functionalized silica nano-particles.

    PubMed

    Chen, Jun; Lyu, Qiang; Yang, Mingqing; Chen, Zhi; He, Junhui

    2016-01-29

    A high throughput and low cost approach to separate free fatty acids (FFAs) from phospholipid and acylglycerols (esterified fatty acids, EFAs) has been demonstrated, which may be widely used as a sample preparation method in the metabolomics and lipid research. The optimal conditions for FFAs reacting with N-hydroxysuccinimide (NHS) only need 10min at room temperature to obtain a 93.5% yield of FFAs-NHS ester. The rest 6% FFA transformed into N-cyclohexyl-fatty acid-amide which is stable to methyl esterification adopted for fatty acids analysis. 10min are taken for FFAs-NHS ester to react with amino functionalized silica nanoparticles to immobilize the FFAs. The separation of FFAs from EFAs could be carried out readily by centrifugation. The whole process including derivatization, immobilization, and centrifugation takes less than 40min. Much more accurate fatty acids composition of rat plasma EFAs could be obtained by this approach than the previous reported methods.

  3. From elementary flux modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints.

    PubMed

    Klamt, Steffen; Regensburger, Georg; Gerstl, Matthias P; Jungreuthmayer, Christian; Schuster, Stefan; Mahadevan, Radhakrishnan; Zanghellini, Jürgen; Müller, Stefan

    2017-04-01

    Elementary flux modes (EFMs) emerged as a formal concept to describe metabolic pathways and have become an established tool for constraint-based modeling and metabolic network analysis. EFMs are characteristic (support-minimal) vectors of the flux cone that contains all feasible steady-state flux vectors of a given metabolic network. EFMs account for (homogeneous) linear constraints arising from reaction irreversibilities and the assumption of steady state; however, other (inhomogeneous) linear constraints, such as minimal and maximal reaction rates frequently used by other constraint-based techniques (such as flux balance analysis [FBA]), cannot be directly integrated. These additional constraints further restrict the space of feasible flux vectors and turn the flux cone into a general flux polyhedron in which the concept of EFMs is not directly applicable anymore. For this reason, there has been a conceptual gap between EFM-based (pathway) analysis methods and linear optimization (FBA) techniques, as they operate on different geometric objects. One approach to overcome these limitations was proposed ten years ago and is based on the concept of elementary flux vectors (EFVs). Only recently has the community started to recognize the potential of EFVs for metabolic network analysis. In fact, EFVs exactly represent the conceptual development required to generalize the idea of EFMs from flux cones to flux polyhedra. This work aims to present a concise theoretical and practical introduction to EFVs that is accessible to a broad audience. We highlight the close relationship between EFMs and EFVs and demonstrate that almost all applications of EFMs (in flux cones) are possible for EFVs (in flux polyhedra) as well. In fact, certain properties can only be studied with EFVs. Thus, we conclude that EFVs provide a powerful and unifying framework for constraint-based modeling of metabolic networks.

  4. Flufenamic acid as an ion channel modulator

    PubMed Central

    Guinamard, Romain; Simard, Christophe; Negro, Christopher Del

    2014-01-01

    Flufenamic acid has been known since the 1960s to have anti-inflammatory properties attributable to the reduction of prostaglandin synthesis. Thirty years later, flufenamic acid appeared to be an ion channel modulator. Thus, while its use in medicine diminished, its use in ionic channel research expanded. Flufenamic acid commonly affects non-selective cation channels and chloride channels, but also modulates potassium, calcium and sodium channels with effective concentrations ranging from 10-6 M in TRPM4 channel inhibition to 10-3 M in two-pore outwardly rectifying potassium channel activation. Because flufenamic acid effects develop and reverse rapidly, it is a convenient and widely used tool. However, given the broad spectrum of its targets, experimental results have to be interpreted cautiously. Here we provide an overview of ion channels targeted by flufenamic acid to aid in interpreting its effects at the molecular, cellular, and systems levels. If it is used with good practices, flufenamic acid remains a useful tool for ion channel research. Understanding the targets of FFA may help reevaluate its physiological impacts and revive interest in its therapeutic potential. PMID:23356979

  5. Effect of somatic cell count in goat milk on yield, sensory quality, and fatty acid profile of semisoft cheese.

    PubMed

    Chen, S X; Wang, J Z; Van Kessel, J S; Ren, F Z; Zeng, S S

    2010-04-01

    This study investigated the effect of somatic cell count (SCC) in goat milk on yield, free fatty acid (FFA) profile, and sensory quality of semisoft cheese. Sixty Alpine goats without evidence of clinical mastitis were assigned to 3 groups with milk SCC level of <500,000 (low), 500,000 to 1,000,000 (medium), and 1,000,000 to 1,500,000 (high) cells/mL. Thirty kilograms of goat milk with mean SCC levels of 410,000 (low), 770,000 (medium), and 1,250,000 (high) cells/mL was obtained for the manufacture of semisoft cheese for 2 consecutive weeks in 3 lactation stages. The composition of milk was analyzed and cheese yield was recorded on d 1. Cheese samples on d 1, 60, and 120 were analyzed for total sensory scores, flavor, and body and texture by a panel of 3 expert judges and were also analyzed for FFA. Results indicated that milk composition did not change when milk SCC varied from 214,000 to 1,450,000 cells/mL. Milk with higher SCC had a lower standard plate count, whereas coliform count and psychrotrophic bacteria count were not affected. However, milk components (fat, protein, lactose, casein, and total solids) among the 3 groups were similar. As a result, no significant differences in the yield of semisoft goat cheeses were detected. However, total sensory scores and body and texture scores for cheeses made from the high SCC milk were lower than those for cheeses made from the low and medium SCC milks. The difference in milk SCC levels also resulted in diverse changes in cheese texture (hardness, springiness, and so on) and FFA profiles. Individual and total FFA increased significantly during ripening, regardless the SCC levels. It is concluded that SCC in goat milk did not affect the yield of semisoft cheese but did result in inferior sensory quality of aged cheeses.

  6. Granulocyte colony-stimulating factor (G-CSF): A saturated fatty acid-induced myokine with insulin-desensitizing properties in humans

    PubMed Central

    Ordelheide, Anna-Maria; Gommer, Nadja; Böhm, Anja; Hermann, Carina; Thielker, Inga; Machicao, Fausto; Fritsche, Andreas; Stefan, Norbert; Häring, Hans-Ulrich; Staiger, Harald

    2016-01-01

    Objective Circulating long-chain free fatty acids (FFAs) are important metabolic signals that acutely enhance fatty acid oxidation, thermogenesis, energy expenditure, and insulin secretion. However, if chronically elevated, they provoke inflammation, insulin resistance, and β-cell failure. Moreover, FFAs act via multiple signaling pathways as very potent regulators of gene expression. In human skeletal muscle cells differentiated in vitro (myotubes), we have shown in previous studies that the expression of CSF3, the gene encoding granulocyte colony-stimulating factor (G-CSF), is markedly induced upon FFA treatment and exercise. Methods and results We now report that CSF3 is induced in human myotubes by saturated, but not unsaturated, FFAs via Toll-like receptor 4-dependent and -independent pathways including activation of Rel-A, AP-1, C/EBPα, Src, and stress kinases. Furthermore, we show that human adipocytes and myotubes treated with G-CSF become insulin-resistant. In line with this, a functional polymorphism in the CSF3 gene affects adipose tissue- and whole-body insulin sensitivity and glucose tolerance in human subjects with elevated plasma FFA concentrations. Conclusion G-CSF emerges as a new player in FFA-induced insulin resistance and thus may be of interest as a target for prevention and treatment of type 2 diabetes. PMID:27069870

  7. Flux Compression Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    In pulsed fusion propulsion schemes in which the fusion energy creates a radially expanding plasma, a magnetic nozzle is required to redirect the radially diverging flow of the expanding fusion plasma into a rearward axial flow, thereby producing a forward axial impulse to the vehicle. In a highly electrically conducting plasma, the presence of a magnetic field B in the plasma creates a pressure B(exp 2)/2(mu) in the plasma, the magnetic pressure. A gradient in the magnetic pressure can be used to decelerate the plasma traveling in the direction of increasing magnetic field, or to accelerate a plasma from rest in the direction of decreasing magnetic pressure. In principle, ignoring dissipative processes, it is possible to design magnetic configurations to produce an 'elastic' deflection of a plasma beam. In particular, it is conceivable that, by an appropriate arrangement of a set of coils, a good approximation to a parabolic 'magnetic mirror' may be formed, such that a beam of charged particles emanating from the focal point of the parabolic mirror would be reflected by the mirror to travel axially away from the mirror. The degree to which this may be accomplished depends on the degree of control one has over the flux surface of the magnetic field, which changes as a result of its interaction with a moving plasma.

  8. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPAR{alpha} deterioration

    SciTech Connect

    Takahashi, Kyoko; Kamijo, Yuji; Hora, Kazuhiko; Hashimoto, Koji; Higuchi, Makoto; Nakajima, Takero; Ehara, Takashi; Shigematsu, Hidekazu; Gonzalez, Frank J.; Aoyama, Toshifumi

    2011-05-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPAR{alpha}), suggesting the benefit of PPAR{alpha} activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPAR{alpha} agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPAR{alpha} agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPAR{alpha} deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NF{kappa}B activation. These effects are common to other fibrates and dependent on PPAR{alpha} function. Interestingly, however, clofibrate pretreatment also exerted PPAR{alpha}-independent tubular toxicities in PPAR{alpha}-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPAR{alpha}-dependent tubular protective effects outweigh their PPAR{alpha}-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPAR

  9. Chesapeake Bay Sediment Flux Model

    DTIC Science & Technology

    1993-06-01

    that influence sediment-water fluxes. Sediment oxygen demand and sediment-water fluxes of sulfide, ammonium , nitrate , phosphate, and silica are...32- C. Nitrate Source from the Overlying Water...39- D. Nitrate Source from Nitrification ................................................................................ -40- E . M odel A

  10. PHLUX: Photographic Flux Tools for Solar Glare and Flux

    SciTech Connect

    2010-12-02

    A web-based tool to a) analytically and empirically quantify glare from reflected light and determine the potential impact (e.g., temporary flash blindness, retinal burn), and b) produce flux maps for central receivers. The tool accepts RAW digital photographs of the glare source (for hazard assessment) or the receiver (for flux mapping), as well as a photograph of the sun for intensity and size scaling. For glare hazard assessment, the tool determines the retinal irradiance (W/cm2) and subtended source angle for an observer and plots the glare source on a hazard spectrum (i.e., low-potential for flash blindness impact, potential for flash blindness impact, retinal burn). For flux mapping, the tool provides a colored map of the receiver scaled by incident solar flux (W/m2) and unwraps the physical dimensions of the receiver while accounting for the perspective of the photographer (e.g., for a flux map of a cylindrical receiver, the horizontal axis denotes receiver angle in degrees and the vertical axis denotes vertical position in meters; for a flat panel receiver, the horizontal axis denotes horizontal position in meters and the vertical axis denotes vertical position in meters). The flux mapping capability also allows the user to specify transects along which the program plots incident solar flux on the receiver.

  11. Flux growth utilizing the reaction between flux and crucible

    DOE PAGES

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growthmore » in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.« less

  12. A rheostat mechanism governs the bifurcation of carbon flux in mycobacteria

    PubMed Central

    Murima, Paul; Zimmermann, Michael; Chopra, Tarun; Pojer, Florence; Fonti, Giulia; Dal Peraro, Matteo; Alonso, Sylvie; Sauer, Uwe; Pethe, Kevin; McKinney, John D.

    2016-01-01

    Fatty acid metabolism is an important feature of the pathogenicity of Mycobacterium tuberculosis during infection. Consumption of fatty acids requires regulation of carbon flux bifurcation between the oxidative TCA cycle and the glyoxylate shunt. In Escherichia coli, flux bifurcation is regulated by phosphorylation-mediated inhibition of isocitrate dehydrogenase (ICD), a paradigmatic example of post-translational mechanisms governing metabolic fluxes. Here, we demonstrate that, in contrast to E. coli, carbon flux bifurcation in mycobacteria is regulated not by phosphorylation but through metabolic cross-activation of ICD by glyoxylate, which is produced by the glyoxylate shunt enzyme isocitrate lyase (ICL). This regulatory circuit maintains stable partitioning of fluxes, thus ensuring a balance between anaplerosis, energy production, and precursor biosynthesis. The rheostat-like mechanism of metabolite-mediated control of flux partitioning demonstrates the importance of allosteric regulation during metabolic steady-state. The sensitivity of this regulatory mechanism to perturbations presents a potentially attractive target for chemotherapy. PMID:27555519

  13. Regulation of flux through metabolic cycles

    SciTech Connect

    Walsh, K.

    1984-01-01

    The branchpoint of the tricarboxylic acid and glyoxylate shunt was characterized in the intact organism by a multidimensional approach. Theory and methodology were developed to determine velocities for the net flow of carbon through the major steps of acetate metabolism in E. coli. Rates were assigned based on the /sup 13/C-NMR spectrum of intracellular glutamate, measured rates of substrate incorporation into end products, the constituent composition of E. coli and a series of conservation equations which described the system at steady state. The in vivo fluxes through the branchpoint of the tricarboxylic acid and glyoxylate cycles were compared to rates calculated from the kinetic constants of the branchpoint enzymes and the intracellular concentrations of their substrates. These studies elucidated the role of isocitrate dehydrogenase phosphorylation in the Krebs cycle and led to the development of a generalized mathematical description of the sensitivity of branchpoints to regulatory control. This theoretical analysis was termed the branchpoint effect and it describes conditions which result in large changes in the flux through an enzyme even though that enzyme is not subject to direct regulatory control. The theoretical and experimental characterization of this system provided a framework to study the effects of enzyme overproduction and underproduction on metabolic processes in the cell. An in vivo method was developed to determine the extent to which an enzyme catalyzes a rate-controlling reaction. The enzyme chosen for this study was citrate synthase.

  14. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment.

    PubMed

    Venkata Mohan, S; Prathima Devi, M

    2012-11-01

    Acid-rich effluent generated from acidogenic biohydrogen production process was evaluated as substrate for lipid synthesis by integrating with heterotrophic cultivation of mixed microalgae. Experiments were performed both with synthetic volatile fatty acids (SVFA) and fermented fatty acids (FFA) from biohydrogen producing reactor. Fatty acid based platform evidenced significant influence on algal growth as well as lipid accumulation by the formation of triglycerides through fatty acid synthesis. Comparatively FFA documented higher biomass and lipid productivity (1.42mg/ml (wet weight); 26.4%) than SVFAs ((HAc+HBu+HPr), 0.60mg/ml; 23.1%). Lipid profiles varied with substrates and depicted 18 types of saturated and unsaturated fatty acids with wide fuel and food characteristics. The observed higher concentrations of Chl b over Chl a supports the biosynthesis of triacylglycerides. Microalgae diversity visualized the presence of lipid accumulating species viz., Scenedesmus sp. and Chlorella sp. Integration of microalgae cultivation with biohydrogen production showed lipid productivity for biodiesel production along with additional treatment.

  15. Metabolic fuels: regulating fluxes to select mix.

    PubMed

    Weber, Jean-Michel

    2011-01-15

    Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.

  16. [Breeding of Actinobacillus succiniogenes mutants with improved succinate production based on metabolic flux analysis].

    PubMed

    Pan, Lijun; Li, Xingjiang; Jiang, Shaotong; Wei, Zhaojun; Chen, Xiaohui; Cai, Licheng; Wang, Hefeng; Jiang, Jijun

    2008-09-01

    It is very important to obtain high yield mutant strains on the base of metabolic flux analysis of Actinobacillus succinogenes S.JST for the industrial bioconversion of succinic acid. The metabolic pathway was analized at first and the flux of the metabolic networks was calculated by matrix. In order to decrease acetic acid flux, the strains mutated by soft X-ray of synchronous radiation were screened on the plates with high concentration of fluoroacetic acid. For decreasing the metabolic flux of ethanol the site-directed mutagenesis was carried out for the reduction of alcohol dehydrogenase(Adh) specific activity. Then the enzyme activity determination and the gene sequence analysis of the mutant strain was compared with those of the parent strain. Metabolic flux analysis of the parent strain indicated that the flux of succinic acid was 1.78(mmol/g/h) and that the flux of acetic acid and ethanol were 0.60 (mmol/g/h) and 1.04( mmol/g/h), respectively. Meanwhile the metabolic pathway analysis showed that the ethanol metabolism enhanced the lacking of H electron donor during the synthesis of succinic acid and that the succinic acid flux was weakened by the metabolism of byproducts ethanol and acetic acid. Compared with the parent strain, the acetic acid flux of anti-fluoroacetic mutant strain S.JST1 was 0.024 (mmol/g/h), decreasing by 96%. Then the enzyme determination showed that the specific activity unit of phosphotransacetylase(Pta) decreased from 602 to 74 and a mutated site was founded in the pta gene of the mutant strain S.JST1. Compared with that of the parent strain S.JST1 the ethanol flux of adh-site-directed mutant strain S.JST2 was 0.020 (mmol/g/h), decreasing by 98%. Then the enzyme determination showed that the specific activity unit of Adh decreased from 585 to 62 and the yield of end product succinic acid was 65.7 (g/L). The interdiction of Adh and Pta decreased the metabolism of byproducts and the H electron donor was well balanced, thus the succinic

  17. Effect of unsaturated fatty acids and triglycerides from soybeans on milk fat synthesis and biohydrogenation intermediates in dairy cattle.

    PubMed

    Boerman, J P; Lock, A L

    2014-11-01

    Increased rumen unsaturated fatty acid (FA) load is a risk factor for milk fat depression. This study evaluated if increasing the amount of unsaturated FA in the diet as triglycerides or free FA affected feed intake, yield of milk and milk components, and feed efficiency. Eighteen Holstein cows (132 ± 75 d in milk) were used in a replicated 3 × 3 Latin square design. Treatments were a control (CON) diet, or 1 of 2 unsaturated FA (UFA) treatments supplemented with either soybean oil (FA present as triglycerides; TAG treatment) or soybean FA distillate (FA present as free FA; FFA treatment). The soybean oil contained a higher concentration of cis-9 C18:1 (26.0 vs. 11.8 g/100g of FA) and lower concentrations of C16:0 (9.6 vs. 15.0 g/100g of FA) and cis-9,cis-12 C18:2 (50.5 vs. 59.1g/100g of FA) than the soybean FA distillate. The soybean oil and soybean FA distillate were included in the diet at 2% dry matter (DM) to replace soyhulls in the CON diet. Treatment periods were 21 d, with the final 4 d used for sample and data collection. The corn silage- and alfalfa silage-based diets contained 23% forage neutral detergent fiber and 17% crude protein. Total dietary FA were 2.6, 4.2, and 4.3% of diet DM for CON, FFA, and TAG treatments, respectively. Total FA intake was increased 57% for UFA treatments and was similar between FFA and TAG. The intakes of individual FA were similar, with the exception of a 24 g/d lower intake of C16:0 and a 64 g/d greater intake of cis-9 C18:1 for the TAG compared with the FFA treatment. Compared with CON, the UFA treatments decreased DM intake (1.0 kg/d) but increased milk yield (2.2 kg/d) and milk lactose concentration and yield. The UFA treatments reduced milk fat concentration, averaging 3.30, 3.18, and 3.11% for CON, FFA, and TAG treatments, respectively. Yield of milk fat, milk protein, and 3.5% fat-corrected milk remained unchanged when comparing CON with the UFA treatments. No differences existed in the yield of milk or milk

  18. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  19. Interpreting Flux from Broadband Photometry

    NASA Astrophysics Data System (ADS)

    Brown, Peter J.; Breeveld, Alice; Roming, Peter W. A.; Siegel, Michael

    2016-10-01

    We discuss the transformation of observed photometry into flux for the creation of spectral energy distributions (SED) and the computation of bolometric luminosities. We do this in the context of supernova studies, particularly as observed with the Swift spacecraft, but the concepts and techniques should be applicable to many other types of sources and wavelength regimes. Traditional methods of converting observed magnitudes to flux densities are not very accurate when applied to UV photometry. Common methods for extinction and the integration of pseudo-bolometric fluxes can also lead to inaccurate results. The sources of inaccuracy, though, also apply to other wavelengths. Because of the complicated nature of translating broadband photometry into monochromatic flux densities, comparison between observed photometry and a spectroscopic model is best done by forward modeling the spectrum into the count rates or magnitudes of the observations. We recommend that integrated flux measurements be made using a spectrum or SED which is consistent with the multi-band photometry rather than converting individual photometric measurements to flux densities, linearly interpolating between the points, and integrating. We also highlight some specific areas where the UV flux can be mischaracterized.

  20. Oil palm trunk and sugarcane bagasse derived solid acid catalysts for rapid esterification of fatty acids and moisture-assisted transesterification of oils under pseudo-infinite methanol.

    PubMed

    Ezebor, Francis; Khairuddean, Melati; Abdullah, Ahmad Zuhairi; Boey, Peng Lim

    2014-04-01

    The use of pseudo-infinite methanol in increasing the rate of esterification and transesterification reactions was studied using oil palm trunk (OPT) and sugarcane bagasse (SCB) derived solid acid catalysts. The catalysts were prepared by incomplete carbonisation at 400°C for 8h, followed by sulfonation at 150°C for 15h and characterised using TGA/DTA, XRD, FT-IR, SEM-EDS, EA and titrimetric determinations of acid sites. Under optimal reaction conditions, the process demonstrated rapid esterification of palmitic acid, with FAME yields of 93% and 94% in 45min for OPT and SCB catalysts, respectively. With the process, moisture levels up to 16.7% accelerated the conversion of low FFA oils by sulfonated carbon catalysts, through moisture-induced violent bumping. Moisture assisted transesterification of palm olein containing 1.78% FFA and 8.33% added water gave FAME yield of 90% in 10h, which was two folds over neat oil.

  1. Suppression of hepatic fatty acid oxidation and food intake in men.

    PubMed

    Kahler, A; Zimmermann, M; Langhans, W

    1999-01-01

    We investigated the effects of the fatty acid oxidation inhibitor etomoxir (ETO) on food intake and on fat and carbohydrate metabolism in two double-blind crossover studies in male, normal-weight subjects. In study 1, ETO (75 mg [+]-racemate) or placebo was given orally 30 min after completion of a standardized, fat-enriched (total energy: 2698 kJ, 40% from fat) lunch. The subjects (n = 15) were isolated from external time cues and free to choose when to eat dinner from an oversized serving (total energy: 6656 kJ, 60% from fat). In study 2, subjects (n = 13) were selected for habitually high fat intake (mean: 44% of energy intake). ETO (150 mg) or placebo was given after an overnight fast, 2.5 h before offering an oversized high fat breakfast (6960 kJ, 72% from fat). In both studies, blood samples were taken and the respiratory quotient (RQ) was measured several times during each test period. In study 1, ETO (75 mg) did not affect the timing and size of the dinner or subjective feelings of hunger and satiety. Although ETO (75 mg) did not affect the RQ, it decreased plasma beta-hydroxybutyrate (BHB) and increased plasma lactate compared with placebo. Plasma triacylglycerols (TG), free fatty acids (FFA), glucose, and insulin were not affected by ETO. In study 2, ETO (150 mg) enhanced hunger feelings and increased the size of the breakfast by 22.7%. ETO did not affect the RQ, but baseline RQ was lower in study 2 than in study 1 (0.83 versus 0.89, P < 0.01). Compared with placebo, ETO (150 mg) decreased plasma BHB and increased plasma FFA and plasma lactate. Baseline plasma concentrations of BHB, FFA, and lactate were higher in study 2 than in study 1 (BHB: 242 versus 81 mumol/L, P < 0.001; FFA: 0.674 versus 0.406 mmol/L, P < 0.01; lactate: 1.08 versus 0.74 mmol/L, P < 0.05). Plasma concentrations of TG, glucose, and insulin were not affected by ETO. The results suggest that inhibition of hepatic fatty acid oxidation stimulates eating in men when baseline fatty acid

  2. New insights into fatty acid modulation of pancreatic beta-cell function.

    PubMed

    Haber, Esther P; Procópio, Joaquim; Carvalho, Carla R O; Carpinelli, Angelo R; Newsholme, Philip; Curi, Rui

    2006-01-01

    Insulin resistance states as found in type 2 diabetes and obesity are frequently associated with hyperlipidemia. Both stimulatory and detrimental effects of free fatty acids (FFA) on pancreatic beta cells have long been recognized. Acute exposure of the pancreatic beta cell to both high glucose concentrations and saturated FFA results in a substantial increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release but palmitate can augment insulin release in the presence of nonstimulatory concentrations of glucose. These results imply that changes in physiological plasma levels of FFA are important for regulation of beta-cell function. Although it is widely accepted that fatty acid (FA) metabolism (notably FA synthesis and/or formation of LC-acyl-CoA) is necessary for stimulation of insulin secretion, the key regulatory molecular mechanisms controlling the interplay between glucose and fatty acid metabolism and thus insulin secretion are not well understood but are now described in detail in this review. Indeed the correct control of switching between FA synthesis or oxidation may have critical implications for beta-cell function and integrity both in vivo and in vitro. LC-acyl-CoA (formed from either endogenously synthesized or exogenous FA) controls several aspects of beta-cell function including activation of certain types of PKC, modulation of ion channels, protein acylation, ceramide- and/or NO-mediated apoptosis, and binding to and activating nuclear transcriptional factors. The present review also describes the possible effects of FAs on insulin signaling. We have previously reported that acute exposure of islets to palmitate up-regulates some key components of the intracellular insulin signaling pathway in pancreatic islets. Another aspect considered in this review is the potential source of fatty acids

  3. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells.

    PubMed

    Luo, Yi; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients.

  4. Conical electromagnetic radiation flux concentrator

    NASA Technical Reports Server (NTRS)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  5. Production of Jatropha biodiesel fuel over sulfonic acid-based solid acids.

    PubMed

    Chen, Shih-Yuan; Lao-Ubol, Supranee; Mochizuki, Takehisa; Abe, Yohko; Toba, Makoto; Yoshimura, Yuji

    2014-04-01

    Sulfonic acid-functionalized platelet SBA-15 mesoporous silica with an acid capacity of 2.44mmol H(+) g-cat(-1) (shortly termed 15SA-SBA-15-p) was one-pot synthesized by co-condensation method. When applied as solid acid catalyst in synthesis of Jatropha biodiesel fuel (BDF), the 15SA-SBA-15-p catalyst showed higher activity and resistances to water and free fatty acid (FFA) than commercial sulfonic resins of Amberlyst-15 and SAC-13. For the continuous Jatropha BDF production, a steady 75-78wt% of fatty acid methyl ester (FAME) content was obtained over 15SA-SBA-15-p catalyst at 150°C for 75h, whereas the Amberlyst-15 and SAC-13 catalysts were quickly deactivated due to the decomposition of thermally unstable framework and serious leaching of sulfonic acids. More importantly, the quality, stability and cold flow characteristic of Jatropha BDF synthesized by 15SA-SBA-15-p catalyst were better than those synthesized by Amberlyst-15 and SAC-13 catalysts, making the blending with petro-diesel an easy task.

  6. Chloride flux in phagocytes.

    PubMed

    Wang, Guoshun

    2016-09-01

    Phagocytes, such as neutrophils and macrophages, engulf microbes into phagosomes and launch chemical attacks to kill and degrade them. Such a critical innate immune function necessitates ion participation. Chloride, the most abundant anion in the human body, is an indispensable constituent of the myeloperoxidase (MPO)-H2 O2 -halide system that produces the potent microbicide hypochlorous acid (HOCl). It also serves as a balancing ion to set membrane potentials, optimize cytosolic and phagosomal pH, and regulate phagosomal enzymatic activities. Deficient supply of this anion to or defective attainment of this anion by phagocytes is linked to innate immune defects. However, how phagocytes acquire chloride from their residing environment especially when they are deployed to epithelium-lined lumens, and how chloride is intracellularly transported to phagosomes remain largely unknown. This review article will provide an overview of chloride protein carriers, potential mechanisms for phagocytic chloride preservation and acquisition, intracellular chloride supply to phagosomes for oxidant production, and methods to measure chloride levels in phagocytes and their phagosomes.

  7. Flux growth utilizing the reaction between flux and crucible

    SciTech Connect

    Yan, J. -Q.

    2015-01-22

    Flux growth involves dissolving the components of the target compound in an appropriate flux at high temperatures and then crystallizing under supersaturation controlled by cooling or evaporating the flux. A refractory crucible is generally used to contain the high temperature melt. Moreover, the reaction between the melt and crucible materials can modify the composition of the melt, which typically results in growth failure, or contaminates the crystals. Thus one principle in designing a flux growth is to select suitable flux and crucible materials thus to avoid any reaction between them. In this paper, we review two cases of flux growth in which the reaction between flux and Al2O3 crucible tunes the oxygen content in the melt and helps the crystallization of desired compositions. For the case of La5Pb3O, the Al2O3 crucible oxidizes La to form a passivating La2O3 layer which not only prevents further oxidization of La in the melt but also provides [O] to the melt. Finally, in the case of La0.4Na0.6Fe2As2, it is believed that the Al2O3 crucible reacts with NaAsO2 and the reaction consumes oxygen in the melt thus maintaining an oxygen-free environment.

  8. Simultaneous conversion of free fatty acids and triglycerides to biodiesel by immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase.

    PubMed

    Amoah, Jerome; Quayson, Emmanuel; Hama, Shinji; Yoshida, Ayumi; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2017-03-01

    The presence of high levels of free fatty acids (FFA) in oil is a barrier to one-step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole-cell Candida antarctica lipase B-expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase-expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.

  9. Metabolic flux prediction in cancer cells with altered substrate uptake.

    PubMed

    Schwartz, Jean-Marc; Barber, Michael; Soons, Zita

    2015-12-01

    Proliferating cells, such as cancer cells, are known to have an unusual metabolism, characterized by an increased rate of glycolysis and amino acid metabolism. Our understanding of this phenomenon is limited but could potentially be used in order to develop new therapies. Computational modelling techniques, such as flux balance analysis (FBA), have been used to predict fluxes in various cell types, but remain of limited use to explain the unusual metabolic shifts and altered substrate uptake in human cancer cells. We implemented a new flux prediction method based on elementary modes (EMs) and structural flux (StruF) analysis and tested them against experimentally measured flux data obtained from (13)C-labelling in a cancer cell line. We assessed the quality of predictions using different objective functions along with different techniques in normalizing a metabolic network with more than one substrate input. Results show a good correlation between predicted and experimental values and indicate that the choice of cellular objective critically affects the quality of predictions. In particular, lactate gives an excellent correlation and correctly predicts the high flux through glycolysis, matching the observed characteristics of cancer cells. In contrast with FBA, which requires a priori definition of all uptake rates, often hard to measure, atomic StruFs (aStruFs) are able to predict uptake rates of multiple substrates.

  10. Screening and identification of differentially expressed genes in goose hepatocytes exposed to free fatty acid.

    PubMed

    Pan, Zhixiong; Wang, Jiwen; Kang, Bo; Lu, Lizhi; Han, Chunchun; Tang, Hui; Li, Liang; Xu, Feng; Zhou, Zehui; Lv, Jia

    2010-12-15

    The overaccumulation of triglycerides in hepatocytes induces hepatic steatosis; however, little is known about the mechanism of goose hepatic steatosis. The aim of this study was to define an experimental model of hepatocellular steatosis with TG overaccumulation and minimal cytotoxicity, using a mixture of various proportions of oleate and palmitate free fatty acids (FFAs) to induce fat-overloading, then using suppressive subtractive hybridization and a quantitative PCR approach to identify genes with higher or lower expression levels after the treatment of cells with FFA mixtures. Overall, 502 differentially expressed clones, representing 21 novel genes and 87 known genes, were detected by SSH. Based on functional clustering, up- and down-regulated genes were mostly related to carbohydrate and lipid metabolism, enzyme activity and signal transduction. The expression of 20 selected clones involved with carbohydrate and lipid metabolism pathways was further studied by quantitative PCR. The data indicated that six clones similar to the genes ChREBP, FoxO1, apoB, IHPK2, KIF1B, and FSP27, which participate in de novo synthesis of fatty acid and secretion of very low density lipoproteins, had significantly lower expression levels in the hepatocytes treated with FFA mixtures. Meanwhile, 13 clones similar to the genes DGAT-1, ACSL1, DHRS7, PPARα, L-FABP, DGAT-2, PCK, ACSL3, CPT-1, A-FABP, PPARβ, MAT, and ALDOB had significantly higher expression levels in the hepatocytes treated with FFA mixtures. These results suggest that several metabolic pathways are altered in goose hepatocytes, which may be useful for further research into the molecular mechanism of goose hepatic steatosis.

  11. Two-step in situ biodiesel production from microalgae with high free fatty acid content.

    PubMed

    Dong, Tao; Wang, Jun; Miao, Chao; Zheng, Yubin; Chen, Shulin

    2013-05-01

    The yield of fatty acid methyl ester (FAME) from microalgae biomass is generally low via traditional extraction-conversion route due to the deficient solvent extraction. In this study a two-step in situ process was investigated to obtain a high FAME yield from microalgae biomass that had high free fatty acids (FFA) content. This was accomplished with a pre-esterification process using heterogeneous catalyst to reduce FFA content prior to the base-catalyzed transesterification. The two-step in situ process resulted in a total FAME recovery up to 94.87±0.86%, which was much higher than that obtained by a one-step acid or base catalytic in situ process. The heterogeneous catalyst, Amberlyst-15, could be used for 8 cycles without significant loss in activity. This process have the potential to reduce the production cost of microalgae-derived FAME and be more environmental compatible due to the higher FAME yield with reduced catalyst consumption.

  12. Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states.

    PubMed

    Impey, Samuel G; Smith, Dominic; Robinson, Amy L; Owens, Daniel J; Bartlett, Jonathan D; Smith, Kenneth; Limb, Marie; Tang, Jonathan; Fraser, William D; Close, Graeme L; Morton, James P

    2015-02-01

    Given that the enhanced oxidative adaptations observed when training in carbohydrate (CHO)-restricted states is potentially regulated through free fatty acid (FFA)-mediated signalling and that leucine-rich protein elevates muscle protein synthesis, the present study aimed to test the hypothesis that leucine-enriched protein feeding enhances circulating leucine concentration but does not impair FFA availability or whole body lipid oxidation during exercise. Nine males cycled for 2 h at 70% VO2peak when fasted (PLACEBO) or having consumed a whey protein solution (WHEY) or a leucine-enriched whey protein gel (GEL), administered as 22 g 1 h pre-exercise, 11 g/h during and 22 g 30 min post-exercise. Total leucine administration was 14.4 g and 6.3 in GEL and WHEY, respectively. Mean plasma leucine concentrations were elevated in GEL (P = 0.001) compared with WHEY and PLACEBO (375 ± 100, 272 ± 51, 146 ± 14 µmol L(-1), respectively). No differences (P = 0.153) in plasma FFA (WHEY 0.53 ± 0.30, GEL 0.45 ± 0.25, PLACEBO 0.65 ± 0.30, mmol L(-1)) or whole body lipid oxidation during exercise (WHEY 0.37 ± 0.26, GEL 0.36 ± 0.24, PLACEBO 0.34 ± 0.24 g/min) were apparent between trials, despite elevated (P = 0.001) insulin in WHEY and GEL compared with PLACEBO (38 ± 16, 35 ± 16, 22 ± 11 pmol L(-1), respectively). We conclude that leucine-enriched protein feeding does not impair FFA availability or whole body lipid oxidation during exercise, thus having practical applications for athletes who deliberately train in CHO-restricted states to promote skeletal muscle adaptations.

  13. Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania

    PubMed Central

    2012-01-01

    Background A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. Results The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. Conclusions All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and α-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils. PMID:22995716

  14. Flood Frequency Analysis (FFA) in Spanish catchments

    NASA Astrophysics Data System (ADS)

    Mateo Lázaro, Jesús; Sánchez Navarro, José Ángel; García Gil, Alejandro; Edo Romero, Vanesa

    2016-07-01

    A frequency analysis of rainfall and flow from the available data and applications in Spain takes place. In the case of streamflow, various methods that can be grouped into two categories are used, (1) the gauged method which consist in the analysis of maximum flow rate annual series, and (2) the hydro-meteorological method which take into account processes with rainfall-runoff transformation models. The results are compared with observed data in historical series. Finally, six episodes with actual rainfall and flow record are analyzed. These episodes are also classified according to their frequency domain and results obtained from models are contrasted. To make this work we have used two applications launched in the University of Zaragoza: the SHEE program, which provides a simple and flexible working environment which allows the simultaneous management of the most actual and important databases from a hydrological point of view, highlighting the digital terrain models, the rainfall coverage and the curve number coverage, and that is suitable for the application of hydro-meteorological models; and the EHVE software, which is a hydrological statistical program for analysis of time series of extreme values, suitable for application in models of gauged data.

  15. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function

    PubMed Central

    2012-01-01

    Insulin resistance condition is associated to the development of several syndromes, such as obesity, type 2 diabetes mellitus and metabolic syndrome. Although the factors linking insulin resistance to these syndromes are not precisely defined yet, evidence suggests that the elevated plasma free fatty acid (FFA) level plays an important role in the development of skeletal muscle insulin resistance. Accordantly, in vivo and in vitro exposure of skeletal muscle and myocytes to physiological concentrations of saturated fatty acids is associated with insulin resistance condition. Several mechanisms have been postulated to account for fatty acids-induced muscle insulin resistance, including Randle cycle, oxidative stress, inflammation and mitochondrial dysfunction. Here we reviewed experimental evidence supporting the involvement of each of these propositions in the development of skeletal muscle insulin resistance induced by saturated fatty acids and propose an integrative model placing mitochondrial dysfunction as an important and common factor to the other mechanisms. PMID:22360800

  16. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  17. Two-stage conversion of high free fatty acid Jatropha curcas oil to biodiesel using Brønsted acidic ionic liquid and KOH as catalysts.

    PubMed

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70 °C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64 °C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis.

  18. Two-Stage Conversion of High Free Fatty Acid Jatropha curcas Oil to Biodiesel Using Brønsted Acidic Ionic Liquid and KOH as Catalysts

    PubMed Central

    Das, Subrata; Thakur, Ashim Jyoti; Deka, Dhanapati

    2014-01-01

    Biodiesel was produced from high free fatty acid (FFA) Jatropha curcas oil (JCO) by two-stage process in which esterification was performed by Brønsted acidic ionic liquid 1-(1-butylsulfonic)-3-methylimidazolium chloride ([BSMIM]Cl) followed by KOH catalyzed transesterification. Maximum FFA conversion of 93.9% was achieved and it reduced from 8.15 wt% to 0.49 wt% under the optimum reaction conditions of methanol oil molar ratio 12 : 1 and 10 wt% of ionic liquid catalyst at 70°C in 6 h. The ionic liquid catalyst was reusable up to four times of consecutive runs under the optimum reaction conditions. At the second stage, the esterified JCO was transesterified by using 1.3 wt% KOH and methanol oil molar ratio of 6 : 1 in 20 min at 64°C. The yield of the final biodiesel was found to be 98.6% as analyzed by NMR spectroscopy. Chemical composition of the final biodiesel was also determined by GC-MS analysis. PMID:24987726

  19. Acid diffusion through polyaniline membranes

    SciTech Connect

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  20. Effect of broccoli phytochemical extract on release of fatty acids from salmon muscle and salmon oil during in vitro digestion.

    PubMed

    Aarak, K E; Kirkhus, B; Johansen, S; Vegarud, G E; Borge, G I A

    2014-09-01

    The aim of the present work was to study the effect of a broccoli phytochemical extract (Br-ex) on the release of fatty acids (FA) from salmon muscle (SM) and salmon oil (SO) during in vitro digestion. The hypothesis of the study was that Br-ex contains polyphenols which might act as pancreatic lipase inhibitors. The effect on the release of specific FA, in particular the long-chain n-3 polyunsaturated fatty acids (PUFAs), EPA (C20:5 n-3) and DHA (C22:6 n-3), was recorded, and the impact of the SM matrix was studied by comparing the release of FA from SM and SO. In vitro digestion was performed and lipolytic activity, measured as the release of fatty acids (FFA) by solid phase extraction and GC-FID, was recorded at 20, 40, 80 and 140 minutes in the intestinal phase. The results showed, unexpectedly, that Br-ex stimulated the release of FA during digestion of SO and SM, showing the highest increases in FFA, 67% and 64%, respectively, at 20 min. No difference in the release of FA from SO compared to SM was observed, suggesting that the SM matrix had minor influence on the lipolytic activity. The results also demonstrated that the increase in lipolytic activity caused by Br-ex was not affected by the SM matrix. However, addition of Br-ex resulted in a lower percentage of EPA and DHA in the FFA fraction, suggesting that the lipase sn-position preference was altered. Whether this affects the bioaccessibility of EPA and DHA needs further investigation.

  1. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    PubMed

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  2. A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities

    PubMed Central

    Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García

    2014-01-01

    The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426

  3. Reconnecting flux-rope dynamo.

    PubMed

    Baggaley, Andrew W; Barenghi, Carlo F; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit R_{m}-->infinity for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  4. Reconnecting flux-rope dynamo

    NASA Astrophysics Data System (ADS)

    Baggaley, Andrew W.; Barenghi, Carlo F.; Shukurov, Anvar; Subramanian, Kandaswamy

    2009-11-01

    We develop a model of the fluctuation dynamo in which the magnetic field is confined to thin flux ropes advected by a multiscale model of turbulence. Magnetic dissipation occurs only via reconnection of the flux ropes. This model can be viewed as an implementation of the asymptotic limit Rm→∞ for a continuous magnetic field, where magnetic dissipation is strongly localized to small regions of strong-field gradients. We investigate the kinetic-energy release into heat mediated by the dynamo action, both in our model and by solving the induction equation with the same flow. We find that a flux-rope dynamo is an order of magnitude more efficient at converting mechanical energy into heat. The probability density of the magnetic energy release in reconnections has a power-law form with the slope -3 , consistent with the solar corona heating by nanoflares.

  5. (13)C metabolic flux analysis of recombinant expression hosts.

    PubMed

    Young, Jamey D

    2014-12-01

    Identifying host cell metabolic phenotypes that promote high recombinant protein titer is a major goal of the biotech industry. (13)C metabolic flux analysis (MFA) provides a rigorous approach to quantify these metabolic phenotypes by applying isotope tracers to map the flow of carbon through intracellular metabolic pathways. Recent advances in tracer theory and measurements are enabling more information to be extracted from (13)C labeling experiments. Sustained development of publicly available software tools and standardization of experimental workflows is simultaneously encouraging increased adoption of (13)C MFA within the biotech research community. A number of recent (13)C MFA studies have identified increased citric acid cycle and pentose phosphate pathway fluxes as consistent markers of high recombinant protein expression, both in mammalian and microbial hosts. Further work is needed to determine whether redirecting flux into these pathways can effectively enhance protein titers while maintaining acceptable glycan profiles.

  6. Ion fluxes and neurotransmitters signaling in neural development.

    PubMed

    Andäng, Michael; Lendahl, Urban

    2008-06-01

    The brain develops and functions in a complex ionic milieu, which is a prerequisite for neurotransmitter function and neuronal signaling. Neurotransmitters and ion fluxes are, however, important not only in neuronal signaling, but also in the control of neural differentiation, and in this review, we highlight the recent advances in our understanding of how the gamma-amino butyric acid (GABA) neurotransmitter and ion fluxes are relevant for cell cycle control and neural differentiation. Conversely, proteins previously associated with ion transport across membranes have been endowed with novel ion-independent functions, and we discuss this in the context of gap junctions in cell adhesion and of the neuron-specific K(+)-Cl(-) cotransporter KCC2 in dendritic spine development. Collectively, these findings provide a richer and more complex picture of when ion fluxes are needed in neural development and when they are not.

  7. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo).

    PubMed

    Hernández-Santos, Betsabé; Rodríguez-Miranda, Jesús; Herman-Lara, Erasmo; Torruco-Uco, Juan G; Carmona-García, Roselis; Juárez-Barrientos, José M; Chávez-Zamudio, Rubí; Martínez-Sánchez, Cecilia E

    2016-07-01

    The effects of amplitude and time of ultrasound-assisted extraction on the physicochemical properties and the fatty acid profile of pumpkin seed oil (Cucurbita pepo) were evaluated. Ultrasound time (5-30 min) and the response variables amplitude (25-100%), extraction yield, efficiency, oxidative stability in terms of the free fatty acids (FFA) of the plant design comprising two independent experiments variables, peroxide (PV), p-anisidine (AV), totox value (TV) and the fatty acid profile were evaluated. The results were analyzed by multiple linear regression. The time and amplitude showed significant differences (P<0.05) for all variables. The highest yield of extraction was achieved at 5 min and amplitude of 62.5% (62%). However, the optimal ultrasound-assisted extraction conditions were as follows: ultrasound time of 26.34 min and amplitude of 89.02%. All extracts showed low FFA (2.75-4.93% oleic acid), PV (1.67-4.68 meq/kg), AV (1.94-3.69) and TV (6.25-12.55) values. The main fatty acids in all the extracts were oleic and linoleic acid. Therefore, ultrasound-assisted oil extraction had increased performance and reduced extraction time without affecting the oil quality.

  8. Modeling Coronal Jets with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.; Pariat, E.; Antiochos, S. K.; Deforest, C. E.

    2008-05-01

    We report on a comparative study of coronal jet formation with and without reconnection using two different simulation strategies. Coronal jets are features on the solar surface that appear to have some properties in common with coronal mass ejections, but are less energetic, massive, and broad. Magnetic free energy is built up over time and then suddenly released, which accelerates plasma outward in the form of a coronal jet. We compare results from the ARMS adaptive mesh and FLUX reconnection-less codes to study the role of reconnection in this system. This is the first direct comparison between FLUX and a numerical model with a 3D spatial grid.

  9. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  10. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  11. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  12. 13C metabolic flux analysis.

    PubMed

    Wiechert, W

    2001-07-01

    Metabolic flux analysis using 13C-labeled substrates has become an important tool in metabolic engineering. It allows the detailed quantification of all intracellular fluxes in the central metabolism of a microorganism. The method has strongly evolved in recent years by the introduction of new experimental procedures, measurement techniques, and mathematical data evaluation methods. Many of these improvements require advanced skills in the application of nuclear magnetic resonance and mass spectrometry techniques on the one hand and computational and statistical experience on the other hand. This minireview summarizes these recent developments and sketches the major practical problems. An outlook to possible future developments concludes the text.

  13. Charm production in flux tubes

    NASA Astrophysics Data System (ADS)

    Aguiar, C. E.; Kodama, T.; Nazareth, R. A. M. S.; Pech, G.

    1996-01-01

    We argue that the nonperturbative Schwinger mechanism may play an important role in the hadronic production of charm. We present a flux tube model which assumes that the colliding hadrons become color charged because of gluon exchange, and that a single nonelementary flux tube is built up as they recede. The strong chromoelectric field inside this tube creates quark pairs (including charmed ones) and the ensuing color screening breaks the tube into excited hadronic clusters. In their turn these clusters, or ``fireballs,'' decay statistically into the final hadrons. The model is able to account for the soft production of charmed, strange, and lighter hadrons within a unified framework.

  14. Orienting and Applying Flux to Solar Cells

    NASA Technical Reports Server (NTRS)

    Feder, H.; Frasch, W.

    1982-01-01

    Solar cells are oriented and fluxed automatically at first work station along solar-array assembly line. In under 2 seconds rotary drive rotates cell into proper position for applying solder flux to bus pad on collector side. When contact bus pad is in correct position, capstan drive is disengaged, and vacuum holddown beneath cell is turned on. Flux system lowers and applies preset amount of solder flux to bus pad. Two interconnect tabs are soldered to fluxed areas.

  15. Black branes in flux compactifications

    SciTech Connect

    Torroba, Gonzalo; Wang, Huajia

    2013-10-01

    We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS2×R2 and hyperscaling violating solutions.

  16. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  17. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  18. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    PubMed

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus.

  19. Chemical inhibition of fatty acid absorption and cellular uptake limits lipotoxic cell death

    PubMed Central

    Ahowesso, Constance; Black, Paul N.; Saini, Nipun; Montefusco, David; Chekal, Jessica; Malosh, Chrysa; Lindsley, Craig W.; Stauffer, Shaun R.; DiRusso, Concetta C.

    2015-01-01

    Chronic elevation of plasma free fatty acid (FFA) levels is commonly associated with obesity, type 2 diabetes, cardiovascular disease and some cancers. Experimental evidence indicates FFA and their metabolites contribute to disease development through lipotoxicity. Previously, we identified a specific fatty acid transport inhibitor CB16.2, a.k.a. Lipofermata, using high throughput screening methods. In this study, efficacy of transport inhibition was measured in four cell lines that are models for myocytes (mmC2C12), pancreatic ß-cells (rnINS-1E), intestinal epithelial cells (hsCaco-2), and hepatocytes (hsHepG2), as well as primary human adipocytes. The compound was effective in inhibiting uptake with IC50s between 3 and 6 µM for all cell lines except human adipocytes (39 µM). Inhibition was specific for long and very long chain fatty acids but had no effect on medium chain fatty acids (C6-C10), which are transported by passive diffusion. Derivatives of Lipofermata were evaluated to understand structural contributions to activity. Lipofermata prevented palmitate-mediated oxidative stress, induction of BiP and CHOP, and cell death in a dose-dependent manner in hsHepG2 and rnINS-1E cells, suggesting it will prevent induction of fatty acid-mediated cell death pathways and lipotoxic disease by channeling excess fatty acids to adipose tissue and away from liver and pancreas. Importantly, mice dosed orally with Lipofermata were not able to absorb 13C-oleate demonstrating utility as an inhibitor of fatty acid absorption from the gut. PMID:26394026

  20. Bidirectional substrate fluxes through the System N (SNAT5) glutamine transporter may determine net glutamine flux in rat liver

    PubMed Central

    Baird, F E; Beattie, K J; Hyde, A R; Ganapathy, V; Rennie, M J; Taylor, P M

    2004-01-01

    System N (SNAT3 and SNAT5) amino acid transporters are key mediators of glutamine transport across the plasma membrane of mammalian cell types, including hepatocytes and astrocytes. We demonstrate that SNAT5 shows simultaneous bidirectional glutamine fluxes when overexpressed in Xenopus oocytes. Influx and efflux are both apparently Na+ dependent but, since they are not directly coupled, the carrier is capable of mediating net amino acid movement across the cell membrane. The apparent Km values for glutamine influx and efflux are similar (∼1 mm) and the transporter behaviour is consistent with a kinetic model in which re-orientation of the carrier from outside- to inside-facing conformations (either empty or substrate loaded) is the limiting step in the transport cycle. In perfused rat liver, the observed relationship between influent (portal) glutamine concentration and net hepatic glutamine flux may be described by a simple kinetic model, assuming the balance between influx and efflux through System N determines net flux, where under physiological conditions efflux is generally saturated owing to high intracellular glutamine concentration. SNAT5 shows a more periportal mRNA distribution than SNAT3 in rat liver, indicating that SNAT5 may have particular importance for modulation of net hepatic glutamine flux. PMID:15218073

  1. Effect of natural antioxidants in Spanish salchichón elaborated with encapsulated n-3 long chain fatty acids in konjac glucomannan matrix.

    PubMed

    Munekata, P E S; Domínguez, R; Franco, D; Bermúdez, R; Trindade, M A; Lorenzo, Jose M

    2017-02-01

    The effect of natural antioxidants on physicochemical properties, lipid and protein oxidation, volatile compounds and free fatty acids (FFA) were determined in Spanish salchichón enriched with n-3 fatty acids encapsulated and stabilized in konjac matrix. Phenolic compounds of beer residue extract (BRE), chestnut leaves extract (CLE) and peanut skin extract (PSE) were also identified and quantified. Five batches of salchichón were prepared: control (CON, without antioxidants), butylated hydroxytoluene (BHT), BRE, CLE and PSE. The main phenolic compounds were catechin and benzoic acid for BRE, gallic acid and catechin for CLE and catechin and protocatechuic acid for PSE. Statistical analysis did not show significant differences on chemical composition among treatments. Reductions in luminosity (P<0.05) and pH (P<0.001) were observed with the CLE batch, whereas the other colour parameters were not affected by the addition of natural antioxidants. Finally, the inclusion of antioxidants (P<0.001) decreased the hexanal content, whereas the FFA content increased by the addition of natural extracts.

  2. Differently saturated fatty acids can be differentiated by 31P NMR subsequent to derivatization with 2-chloro-4,4,5,5-tetramethyldioxaphospholane: a cautionary note.

    PubMed

    Eibisch, Mandy; Riemer, Thomas; Fuchs, Beate; Schiller, Jürgen

    2013-03-20

    The analysis of free fatty acid (FFA) mixtures is a very important but, even nowadays, challenging task. This particularly applies as the so far most commonly used technique-gas chromatography/mass spectrometry (GC/MS)-is tedious and time-consuming. It has been convincingly shown ( Spyros, A.; Dais, P. J. Agric. Food Chem. 2000, 48, 802 - 5) that FFA may be analyzed by (31)P NMR subsequent to derivatization with 2-chloro-4,4,5,5-tetramethyldioxaphospholane (CTDP). However, it was also indicated that differently unsaturated FFAs result in the same (31)P NMR chemical shift and cannot be differentiated. Therefore, only the overall fatty acid content of a sample can be determined by the CTDP assay. In contrast, we will show here by using high-field NMR (600 MHz spectrometer, i.e., 242.884 MHz for (31)P) that the CTDP assay may be used to differentiate FFAs that have pronounced differences in their double bond contents: saturated fatty acids (16:0), moderately unsaturated (18:1, 18:2), highly unsaturated (20:4), and extremely unsaturated fatty acids (22:6) result in slightly different chemical shifts. The same applies for oxidized fatty acids. Finally, it will also be shown that the CTDP derivatization products decompose in a time-dependent manner. Therefore, all investigations must adhere to a strict time regime.

  3. Altered Skeletal Muscle Fatty Acid Handling in Subjects with Impaired Glucose Tolerance as Compared to Impaired Fasting Glucose

    PubMed Central

    Goossens, Gijs H.; Moors, Chantalle C. M.; Jocken, Johan W. E.; van der Zijl, Nynke J.; Jans, Anneke; Konings, Ellen; Diamant, Michaela; Blaak, Ellen E.

    2016-01-01

    Altered skeletal muscle fatty acid (FA) metabolism contributes to insulin resistance. Here, we compared skeletal muscle FA handling between subjects with impaired fasting glucose (IFG; n = 12 (7 males)) and impaired glucose tolerance (IGT; n = 14 (7 males)) by measuring arterio-venous concentration differences across forearm muscle. [2H2]-palmitate was infused intravenously, labeling circulating endogenous triacylglycerol (TAG) and free fatty acids (FFA), whereas [U-13C]-palmitate was incorporated in a high-fat mixed-meal, labeling chylomicron-TAG. Skeletal muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid content, their fractional synthetic rate (FSR) and degree of saturation, and gene expression. Insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp. Net skeletal muscle glucose uptake was lower (p = 0.018) and peripheral insulin sensitivity tended to be reduced (p = 0.064) in IGT as compared to IFG subjects. Furthermore, IGT showed higher skeletal muscle extraction of VLDL-TAG (p = 0.043), higher muscle TAG content (p = 0.025), higher saturation of FFA (p = 0.004), lower saturation of TAG (p = 0.017) and a tendency towards a lower TAG FSR (p = 0.073) and a lower saturation of DAG (p = 0.059) versus IFG individuals. Muscle oxidative gene expression was lower in IGT subjects. In conclusion, increased liver-derived TAG extraction and reduced lipid turnover of saturated FA, rather than DAG content, in skeletal muscle accompany the more pronounced insulin resistance in IGT versus IFG subjects. PMID:26985905

  4. Altered Skeletal Muscle Fatty Acid Handling in Subjects with Impaired Glucose Tolerance as Compared to Impaired Fasting Glucose.

    PubMed

    Goossens, Gijs H; Moors, Chantalle C M; Jocken, Johan W E; van der Zijl, Nynke J; Jans, Anneke; Konings, Ellen; Diamant, Michaela; Blaak, Ellen E

    2016-03-14

    Altered skeletal muscle fatty acid (FA) metabolism contributes to insulin resistance. Here, we compared skeletal muscle FA handling between subjects with impaired fasting glucose (IFG; n = 12 (7 males)) and impaired glucose tolerance (IGT; n = 14 (7 males)) by measuring arterio-venous concentration differences across forearm muscle. [²H₂]-palmitate was infused intravenously, labeling circulating endogenous triacylglycerol (TAG) and free fatty acids (FFA), whereas [U-(13)C]-palmitate was incorporated in a high-fat mixed-meal, labeling chylomicron-TAG. Skeletal muscle biopsies were taken to determine muscle TAG, diacylglycerol (DAG), FFA, and phospholipid content, their fractional synthetic rate (FSR) and degree of saturation, and gene expression. Insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp. Net skeletal muscle glucose uptake was lower (p = 0.018) and peripheral insulin sensitivity tended to be reduced (p = 0.064) in IGT as compared to IFG subjects. Furthermore, IGT showed higher skeletal muscle extraction of VLDL-TAG (p = 0.043), higher muscle TAG content (p = 0.025), higher saturation of FFA (p = 0.004), lower saturation of TAG (p = 0.017) and a tendency towards a lower TAG FSR (p = 0.073) and a lower saturation of DAG (p = 0.059) versus IFG individuals. Muscle oxidative gene expression was lower in IGT subjects. In conclusion, increased liver-derived TAG extraction and reduced lipid turnover of saturated FA, rather than DAG content, in skeletal muscle accompany the more pronounced insulin resistance in IGT versus IFG subjects.

  5. Fluxes across a thermohaline interface

    NASA Astrophysics Data System (ADS)

    Fleury, M.; Lueck, R. G.

    1991-07-01

    Measurements of velocity and temperature microstructure and hydrography were made with a towed vehicle moving in and around a single interface in a double-diffusive staircase. The interface was traversed 222 times in a saw-tooth pattern over a track 35 km long. The salinity and potential temperature and density in the mixed layers adjacent to the interface were spatially uniform except for one 8 km long anomaly. The rate of dissipation of kinetic energy was uniformly low in the interface and in the mixed layers, except for one section 600 m long where a Kelvin-Helmholtz instability generated turbulence. For the non-turbulent section of the interface, the mean rate of dissipation was 30.2 × 10 -10 W kg -1 in the mixed layers and 9.5 × 10 -10 W kg -1 in the interface. The non-dimensional dissipation rate, ɛ/vN 2, was almost always less than 16 in the interface and therfore, there was no turblent buoyancy flux according to ROHRet al. (1988, Journal of Fluid Mechanics, 195, 77-111). The average double-diffusive flux of buoyancy by heat was 3.6 × 10 -10 W kg -1. Under certain assumptions the ratio of the flux of buoyancy by heat and salt can be estimated to be 0.53 ± 0.10, in good agreement with laboratory and theoretical estimates for salt fingers. The average Cox number was about 8 in the interface, consistent with the theories of STERN (1975, Ocean circulation physics, Academic Press) and KUNZE (1987, Journal of Marine Research, 45 533-556), but displayed an inverse dependence on the vertical temperature gradient which was not predicted. As a result, the flux of buoyancy, as well as the individual contributions by heat and salt, were independent of the local mean vertical temperature gradient and the buoyancy frequency. The length of the turbulent section of the interface was only 1.7% of the total length observed. However, the turbulence was intense—the mean rate of dissipation was 2.5 × 10 -8 W kg -1—and may have sufficiently enhanced the flux of heat to

  6. Effects of frozen storage and vacuum packaging on free fatty acid and volatile composition of Turkish Motal cheese.

    PubMed

    Andic, S; Tuncturk, Y; Javidipour, I

    2011-08-01

    Effects of vacuum packaging and frozen storage were studied on the formation of free fatty acids (FFAs), volatile compounds and microbial counts of Motal cheese samples stored for a period of 180 days. The FFA concentration of Motal cheese samples increased throughout the storage period of 180 days. However, the FFA contents of samples stored at -18 °C showed considerably lower values than those of the samples stored at 4 °C. Palmitic (C16:0) and oleic (C18:1) acids were the most abundant FFAs in all the treatments. The volatile compounds detected by headspace solid-phase microextraction (HS-SPME) profile of Motal cheese consisted of 16 esters, 10 acids, 6 ketones, 4 alcohols, 3 aldehydes, styrene, p-cresol and m-cresol. Results showed that storage at -18 °C can limit the excessive volatile compound formation. Samples stored at 4°C with vacuum packaging showed comparatively high concentration of esters, ketones and alcohols. Samples stored without vacuum packaging at 4°C showed 2-nonanone as the most abundant volatile compound toward the end of storage period. Storage at 4°C under vacuum packaging decreased the mold-yeast counts of samples. Frozen storage could be a suitable method for storing the Motal cheese.

  7. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    NASA Astrophysics Data System (ADS)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  8. SQUID With Integral Flux Concentrator

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Sisk, Robert C.

    1989-01-01

    In improved superconducting quantum interference device (SQUID), change in size and shape of superconducting ring improves coupling to external signal coil and eases coil-positioning tolerances. More rugged and easier to manufacture than conventional SQUID's with comparable electrical characteristics. Thin-film superconducting flux concentrator utilizes Meissner effect to deflect magnetic field of signal coil into central hole of SQUID. Used in magnetometers, ammeters, analog-to-digital converters, and related electronic applications in which high signal-to-noise ratios required.

  9. Structural Control of Metabolic Flux

    PubMed Central

    Sajitz-Hermstein, Max; Nikoloski, Zoran

    2013-01-01

    Organisms have to continuously adapt to changing environmental conditions or undergo developmental transitions. To meet the accompanying change in metabolic demands, the molecular mechanisms of adaptation involve concerted interactions which ultimately induce a modification of the metabolic state, which is characterized by reaction fluxes and metabolite concentrations. These state transitions are the effect of simultaneously manipulating fluxes through several reactions. While metabolic control analysis has provided a powerful framework for elucidating the principles governing this orchestrated action to understand metabolic control, its applications are restricted by the limited availability of kinetic information. Here, we introduce structural metabolic control as a framework to examine individual reactions' potential to control metabolic functions, such as biomass production, based on structural modeling. The capability to carry out a metabolic function is determined using flux balance analysis (FBA). We examine structural metabolic control on the example of the central carbon metabolism of Escherichia coli by the recently introduced framework of functional centrality (FC). This framework is based on the Shapley value from cooperative game theory and FBA, and we demonstrate its superior ability to assign “share of control” to individual reactions with respect to metabolic functions and environmental conditions. A comparative analysis of various scenarios illustrates the usefulness of FC and its relations to other structural approaches pertaining to metabolic control. We propose a Monte Carlo algorithm to estimate FCs for large networks, based on the enumeration of elementary flux modes. We further give detailed biological interpretation of FCs for production of lactate and ATP under various respiratory conditions. PMID:24367246

  10. Sediment flux and the Anthropocene.

    PubMed

    Syvitski, James P M; Kettner, Albert

    2011-03-13

    Data and computer simulations are reviewed to help better define the timing and magnitude of human influence on sediment flux--the Anthropocene epoch. Impacts on the Earth surface processes are not spatially or temporally homogeneous. Human influences on this sediment flux have a secondary effect on floodplain and delta-plain functions and sediment dispersal into the coastal ocean. Human impact on sediment production began 3000 years ago but accelerated more widely 1000 years ago. By the sixteenth century, societies were already engineering their environment. Early twentieth century mechanization has led to global signals of increased sediment flux in most large rivers. By the 1950s, this sediment disturbance signal reversed for many rivers owing to the proliferation of dams, and sediment load reduction below pristine conditions is the dominant signal today. A delta subsidence signal began in the 1930s and is now a dominant signal in terms of sea level for many coastal environments, overwhelming even the global warming imprint on sea level. Humans have engineered how most water and sediment are discharged into the coastal ocean. Hyperpycnal flow events have become more common for some rivers, and less common for other rivers. Bottom trawling is now widespread, suggesting that even continental shelves have received a significant but as yet quantified Anthropocene impact. The Anthropocene attains the level of a geological climate event, such as that seen in the transition between the Pleistocene and the Holocene.

  11. Air-to-sea fluxes of lipids at Enewetak Atoll

    NASA Astrophysics Data System (ADS)

    Zafiriou, Oliver C.; Gagosian, Robert B.; Peltzer, Edward T.; Alford, Jane B.; Loder, T.

    1985-02-01

    We report data for the Enewetak site of the SEAREX program from the rainy season in 1979. The concentrations of n-alkanes, n-alkanols, sterols, n-alkanoic acids and their salts, and total organic compounds in rain are reported, as well as the apparent gaseous hydrocarbon concentrations. These data and information on the particulate forms are analyzed in conjunction with ancillary chemical and meteorological data to draw inferences about sources, fluxes, and chemical speciations. While the higher molecular weight lipid biomarker components are exclusively terrestrial, the organic carbon in rain may be derived from atmospheric transformations of terrestrial carbon. Distinctively marine components are nearly absent. Comparison of the scavenging ratios of the organic components in rain vs. those for clays reveals that the alkanoic acids and the higher molecular weight alkanols behave as essentially particulate materials, whereas lower alkanols and most hydrocarbons show much higher scavenging ratios, probably due to the involvement of a gaseous phase or sampling artifact. Vaporization in the atmosphere and scavenging of a gas phase would lead to higher scavenging ratios; vaporization during sampling would give low aerosol concentrations and high gas-phase concentrations, leading to high scavenging ratios. The major fluxes at Enewetak result from rain rather than dry deposition, and extrapolating the measured values to meaningful annual averages requires adjustment for seasonally varying source intensity and rain dynamics. Aerosol data for other seasons and other substances are used to correct for source-strength intensity variations, and a 210Pb/organic compound correlation is established and extrapolated to adjust for rainfall volume effects. These corrections, assumed independent and applied together, yield inferred fluxes 2.5-9 times larger than the fluxes calculated for mean concentrations. The inferred fluxes to the ocean, while small compared to primary

  12. Separation of free fatty acids from high free fatty acid crude palm oil using short-path distillation

    NASA Astrophysics Data System (ADS)

    Japir, Abd Al-Wali; Salimon, Jumat; Derawi, Darfizzi; Bahadi, Murad; Yusop, Muhammad Rahimi

    2016-11-01

    The separation of free fatty acids (FFAs) was done by using short-path distillation (SPD). The separation parameters was at their boiling points, a feed amount of 2.3 mL/min, an operating pressure of 10 Torr, a condenser temperature of 60°C, and a rotor speed of 300 rpm. The physicochemical characteristics of oil before and after SPD were determined. The results showed that FFA % of 8.7 ± 0.3 and 0.9 ± 0.1 %, iodine value of 53.1 ± 0.4 and 52.7 ± 0.5 g I2/100 g, hydroxyl value of 32.5 ± 0.6 and 13.9 ± 1.1 mg KOH/g, unsaponifiable value of 0.31 ± 0.01 and 0.20 ± 0.15%, moisture content of 0.31 ± 0.01 and 0.24 ± 0.01 % for high free fatty acid crude palm oil before and after distillation, respectively. Gas chromatography (GC) results showed that the major fatty acids in crude palm oil (CPO) were palmitic acid (44.4% - 45%) followed by oleic acid (39.6% - 39.8%). In general, high free fatty acid crude palm oil after molecular distillation (HFFA-CPOAM) showed admirably physicochemical properties.

  13. Energetic particle characteristics of magnetotail flux ropes

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Klecker, B.; Hovestadt, D.; Gloeckler, G.; Ipavich, F. M.; Galvin, A. B.

    1985-01-01

    During the recent ISEE-3 Geotail Mission three events have been identified from the magnetometer data which are consistent with a spacecraft crossing of a magnetotail flux rope. Energetic electron and proton observations obtained by the Max-Planck-Institut/University of Maryland sensor system during two of the possible flux rope events are presented. During one event remote sensing of the flux rope with energetic protons reveals that the flux rope is crossed by the spacecraft from south to north. This allows determination of the bandedness of the magnetic field twist and of the flux rope velocity relative to the spacecraft. A minimal flux rope radius of 3 earth radii is derived. Energetic proton intensity is highest just inside of the flux rope and decreases towards the core. Energetic electrons are streaming tailward near the outer boundary, indicating openness of the field lines, and are isotropic through the inner part of the flux rope.

  14. Turbulent crossed fluxes in incompressible flows

    PubMed

    Sancho

    2000-02-01

    We show in the framework of the stochastic calculus the existence of turbulent crossed fluxes in incompressible flows. Physically, these fluxes are related to the dependence of the phenomenological coefficients on the temperature and concentration variables.

  15. COMPLETE-MFA: complementary parallel labeling experiments technique for metabolic flux analysis.

    PubMed

    Leighty, Robert W; Antoniewicz, Maciek R

    2013-11-01

    We have developed a novel approach for measuring highly accurate and precise metabolic fluxes in living cells, termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. The COMPLETE-MFA method is based on combined analysis of multiple isotopic labeling experiments, where the synergy of using complementary tracers greatly improves the precision of estimated fluxes. In this work, we demonstrate the COMPLETE-MFA approach using all singly labeled glucose tracers, [1-(13)C], [2-(13)C], [3-(13)C], [4-(13)C], [5-(13)C], and [6-(13)C]glucose to determine precise metabolic fluxes for wild-type Escherichia coli. Cells were grown in six parallel cultures on defined medium with glucose as the only carbon source. Mass isotopomers of biomass amino acids were measured by gas chromatography-mass spectrometry (GC-MS). The data from all six experiments were then fitted simultaneously to a single flux model to determine accurate intracellular fluxes. We obtained a statistically acceptable fit with more than 300 redundant measurements. The estimated flux map is the most precise flux result obtained thus far for E. coli cells. To our knowledge, this is the first time that six isotopic labeling experiments have been successfully integrated for high-resolution (13)C-flux analysis.

  16. Force sensor using changes in magnetic flux

    NASA Technical Reports Server (NTRS)

    Pickens, Herman L. (Inventor); Richard, James A. (Inventor)

    2012-01-01

    A force sensor includes a magnetostrictive material and a magnetic field generator positioned in proximity thereto. A magnetic field is induced in and surrounding the magnetostrictive material such that lines of magnetic flux pass through the magnetostrictive material. A sensor positioned in the vicinity of the magnetostrictive material measures changes in one of flux angle and flux density when the magnetostrictive material experiences an applied force that is aligned with the lines of magnetic flux.

  17. High-flux solar photon processes

    NASA Astrophysics Data System (ADS)

    Lorents, Donald C.; Narang, Subhash; Huestis, David C.; Mooney, Jack L.; Mill, Theodore; Song, Her-King; Ventura, Susanna

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage.

  18. High-flux solar photon processes

    SciTech Connect

    Lorents, D.C.; Narang, S.; Huestis, D.C.; Mooney, J.L.; Mill, T.; Song, H.K.; Ventura, S.

    1992-06-01

    This study was commissioned by the National Renewable Energy Laboratory (NREL) for the purpose of identifying high-flux photoprocesses that would lead to beneficial national and commercial applications. The specific focus on high-flux photoprocesses is based on the recent development by NREL of solar concentrator technology capable of delivering record flux levels. We examined photolytic and photocatalytic chemical processes as well as photothermal processes in the search for processes where concentrated solar flux would offer a unique advantage. 37 refs.

  19. Serum fatty acid profiles and potential biomarkers of ankylosing spondylitis determined by gas chromatography-mass spectrometry and multivariate statistical analysis.

    PubMed

    Chen, Rui; Han, Su; Dong, Daming; Wang, Yansong; Liu, Qingpeng; Xie, Wei; Li, Mi; Yao, Meng

    2015-04-01

    Ankylosing spondylitis (AS) is a common chronic inflammatory rheumatic disease. Early and accurate detection is essential for effective disease treatment. Recently, research has focused on genomics and proteomics. However, the associated metabolic variations, especially fatty acid profiles, have been poorly discussed. In this study, the gas chromatography-mass spectrometry (GC-MS) approach and multivariate statistical analysis were used to investigate the metabolic profiles of serum free fatty acids (FFAs) and esterified fatty acids (EFAs) in AS patients. The results showed that significant differences in most of the FFA (C12:0, C16:0, C16:1, C18:3, C20:4, C20:5, C22:5 and C22:6) and EFA (C12:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:4 and C22:6) concentrations were found between the AS patients and healthy controls (p < 0.05). Principal component analysis and partial least squares discriminant analysis were performed to classify the AS patients and controls. Additionally, FFAs C20:4, C12:0, C18:3 and EFAs C22:6, C12:0 were confirmed as potential biomarkers to identify AS patients and healthy controls. The present study highlights that differences in the serum FFA and EFA profiles of AS patients reflect the metabolic disorder. Moreover, FFA and EFA biomarkers appear to have clinical applications for the screening and diagnosis of AS.

  20. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  1. What are Up, Down and Net Fluxes?

    Atmospheric Science Data Center

    2014-12-08

    ... is of particular interest. Hence the term "Up" and "Down" for characterizing the direction of flow of radiative fluxes at a ... level. Moreover, by counting in or out these "Up" and "Down" energy fluxes, one can define a "Net" flux that is ultimately ...

  2. The solar wind mass flux problem

    NASA Technical Reports Server (NTRS)

    Leer, E.; Holzer, T. E.

    1991-01-01

    The variation of the proton flux with coronal temperature and density in thermally driven solar wind models is discussed. It is shown that the rapid increase of the proton flux with increasing temperature can be reduced by adiabatic cooling of the expanding plasma. A significant coronal helium abundance can also act as a 'regulator' for the solar wind proton flux.

  3. Apparatus for measuring a flux of neutrons

    DOEpatents

    Stringer, James L.

    1977-01-01

    A flux of neutrons is measured by disposing a detector in the flux and applying electronic correlation techniques to discriminate between the electrical signals generated by the neutron detector and the unwanted interfering electrical signals generated by the incidence of a neutron flux upon the cables connecting the detector to the electronic measuring equipment at a remote location.

  4. Cold season soil NO fluxes from a temperate forest: drivers and contribution to annual budgets

    NASA Astrophysics Data System (ADS)

    Medinets, S.; Gasche, R.; Skiba, U.; Schindlbacher, A.; Kiese, R.; Butterbach-Bahl, K.

    2016-11-01

    Soils, and here specifically acidic forest soils exposed to high rates of atmospheric nitrogen deposition, are a significant source for the secondary greenhouse gas nitric oxide (NO). However, as flux estimates are mainly based on measurements during the vegetation period, annual NO emissions budgets may hold uncertainty as cold season soil NO fluxes have rarely been quantified. Here we analyzed cold season soil NO fluxes and potential environmental drivers on the basis of the most extensive database on forest soil NO fluxes obtained at the Höglwald Forest, Germany, spanning the years 1994 to 2010. On average, the cold season (daily average air temperature <3 °C) contributed to 22% of the annual soil NO budget, varying from 13% to 41% between individual cold seasons. Temperature was the main controlling factor of the cold season NO fluxes, whereas during freeze-thaw cycles soil moisture availability determined NO emission rates. The importance of cold season soil NO fluxes for annual NO fluxes depended positively on the length of the cold season, but responded negatively to frost events. Snow cover did not significantly affect cold season soil NO fluxes. Cold season NO fluxes significantly correlated with cold season soil carbon dioxide (CO2) emissions. During freeze-thaw periods strong positive correlations between NO and N2O fluxes were observed, though stimulation of NO fluxes by freeze-thaw was by far less pronounced as compared to N2O. Except for freeze-thaw periods NO fluxes significantly exceeded those for N2O during the cold season period. We conclude that in temperate forest ecosystems cold season NO emissions can contribute substantially to the annual NO budget and this contribution is significantly higher in years with long lasting but mild (less frost events) cold seasons.

  5. 13C metabolic flux analysis at a genome-scale.

    PubMed

    Gopalakrishnan, Saratram; Maranas, Costas D

    2015-11-01

    Metabolic models used in 13C metabolic flux analysis generally include a limited number of reactions primarily from central metabolism. They typically omit degradation pathways, complete cofactor balances, and atom transition contributions for reactions outside central metabolism. This study addresses the impact on prediction fidelity of scaling-up mapping models to a genome-scale. The core mapping model employed in this study accounts for (75 reactions and 65 metabolites) primarily from central metabolism. The genome-scale metabolic mapping model (GSMM) (697 reaction and 595 metabolites) is constructed using as a basis the iAF1260 model upon eliminating reactions guaranteed not to carry flux based on growth and fermentation data for a minimal glucose growth medium. Labeling data for 17 amino acid fragments obtained from cells fed with glucose labeled at the second carbon was used to obtain fluxes and ranges. Metabolic fluxes and confidence intervals are estimated, for both core and genome-scale mapping models, by minimizing the sum of square of differences between predicted and experimentally measured labeling patterns using the EMU decomposition algorithm. Overall, we find that both topology and estimated values of the metabolic fluxes remain largely consistent between core and GSM model. Stepping up to a genome-scale mapping model leads to wider flux inference ranges for 20 key reactions present in the core model. The glycolysis flux range doubles due to the possibility of active gluconeogenesis, the TCA flux range expanded by 80% due to the availability of a bypass through arginine consistent with labeling data, and the transhydrogenase reaction flux was essentially unresolved due to the presence of as many as five routes for the inter-conversion of NADPH to NADH afforded by the genome-scale model. By globally accounting for ATP demands in the GSMM model the unused ATP decreased drastically with the lower bound matching the maintenance ATP requirement. A non

  6. Dry matter intake is decreased more by abomasal infusion of unsaturated free fatty acids than by unsaturated triglycerides.

    PubMed

    Litherland, N B; Thire, S; Beaulieu, A D; Reynolds, C K; Benson, J A; Drackley, J K

    2005-02-01

    Previous experiments from our group have demonstrated that abomasal infusion of unsaturated free fatty acids (FFA) markedly decreases dry matter intake (DMI) in dairy cows. In contrast, experiments from other groups have noted smaller decreases in DMI when unsaturated triglycerides (TG) were infused postruminally. Our hypothesis was that unsaturated FFA would be more potent inhibitors of DMI than an equivalent amount of unsaturated TG. Four Holstein cows in late lactation were used in a single reversal design. Cows were fed a total mixed ration containing (DM basis) 23% alfalfa silage, 23% corn silage, 40.3% ground shelled corn, and 10.5% soybean meal. Two cows received soy FFA (UFA; 0, 200, 400, 600 g/d) and 2 received soy oil (TG) in the same amounts; cows then were switched to the other lipid source. Cows were abomasally infused with each amount for 5-d periods. The daily amount of lipid was pulse-dosed in 4 equal portions at 0600, 1000, 1700, and 2200 h; no emulsifiers were used and there was no sign of digestive disturbance. Both lipid sources linearly decreased DMI, with a significant interaction between lipid source and amount. Slope-ratio analysis indicated that UFA were about 2 times more potent in decreasing DMI than were TG. Decreased DMI led to decreased milk production. Milk fat content was increased linearly by lipid infusion. Milk fat yield decreased markedly for UFA infusion but was relatively unaffected by infusion of TG. Contents of short- and medium-chain fatty acids in milk fat decreased as the amount of either infusate increased. Contents of C(18:2) and C(18:3) in milk fat were increased linearly by abomasal infusion of either fat source; cis-9 C(18:1) was unaffected. Transfer of infused C(18:2) to milk fat was 35.6, 42.5, and 27.8% for 200, 400, and 600 g/d of UFA, and 34.3, 39.6, and 34.0% for respective amounts of TG. Glucagon-like peptide-1 (7-36) amide (GLP-1) concentration in plasma significantly increased as DMI decreased with increasing

  7. Methane Fluxes from Subtropical Wetlands

    NASA Astrophysics Data System (ADS)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  8. Instrumentation for Surface Flux Measurements

    DTIC Science & Technology

    2012-05-10

    National Park , she used the sonic and a Li-Cor C02-H20 analyzer at a height of 3 m to measure the vertical turbulent flux of C02 downwind of...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 3. REPORT TYPE...and subgrid-scale array measurements In summer 2000 we lent 7 of the CSAT3 sonics to the National Center for Atmo- spheric Research (NCAR) for use in

  9. MINERvA's Flux Prediction

    NASA Astrophysics Data System (ADS)

    Golan, Tomasz; Aliaga, Leonidas; Kordosky, Mike

    The MINERvA (Main INjector ExpeRiment: νA) experiment is focused on the measurement of neutrino cross sections on various nuclear targets. For this kind of study it is crucial to know precisely neutrino flux. MINERvA uses the NuMI (Neutrinos at the Main Injector) beam produced at Fermilab. The recent study on the evaluation of the beam and its uncertainty is presented. The NuMI beam is also used by other neutrino experiment, like MINOS, ArgoNeuT, PEANUT, and NOvA, therefore, the results can be used by other collaborations.

  10. Diffuse neutrino flux from failed supernovae.

    PubMed

    Lunardini, Cecilia

    2009-06-12

    I study the diffuse flux of electron antineutrinos from stellar collapses with direct black hole formation (failed supernovae). This flux is more energetic than that from successful supernovae, and therefore it might contribute substantially to the total diffuse flux above realistic detection thresholds. The total flux might be considerably higher than previously thought, and approach the sensitivity of Super-Kamiokande. For more conservative values of the parameters, the flux from failed supernovae dominates for antineutrino energies above 30-45 MeV, with potential to give an observable spectral distortion at megaton detectors.

  11. Increased presence of monounsaturated fatty acids in the stratum corneum of human skin equivalents.

    PubMed

    Thakoersing, Varsha S; van Smeden, Jeroen; Mulder, Aat A; Vreeken, Rob J; El Ghalbzouri, Abdoelwaheb; Bouwstra, Joke A

    2013-01-01

    Previous results showed that our in-house human skin equivalents (HSEs) differ in their stratum corneum (SC) lipid organization compared with human SC. To elucidate the cause of the altered SC lipid organization in the HSEs, a recently developed liquid chromatography/mass spectrometry method was used to study the free fatty acid (FFA) and ceramide composition in detail. In addition, the SC lipid composition of the HSEs and human skin was examined quantitatively with high-performance thin-layer chromatography. Our results reveal that all our HSEs have an increased presence of monounsaturated FFAs compared with human SC. Moreover, the HSEs display the presence of ceramide species with a monounsaturated acyl chain, which are not detected in human SC. All HSEs also exhibit an altered expression of stearoyl-CoA desaturase, the enzyme that converts saturated FFAs to monounsaturated FFAs. Furthermore, the HSEs show the presence of 12 ceramide subclasses, similar to native human SC. However, the HSEs have increased levels of ceramides EOS and EOH and ceramide species with short total carbon chains and a reduced FFA level compared with human SC. The presence of unsaturated lipid chains in HSE offers new opportunities to mimic the lipid properties of human SC more closely.

  12. Production of biodiesel from vegetable oil and microalgae by fatty acid extraction and enzymatic esterification.

    PubMed

    Castillo López, Beatriz; Esteban Cerdán, Luis; Robles Medina, Alfonso; Navarro López, Elvira; Martín Valverde, Lorena; Hita Peña, Estrella; González Moreno, Pedro A; Molina Grima, Emilio

    2015-06-01

    The aim of this work was to obtain biodiesel (methyl esters) from the saponifiable lipids (SLs) fraction of the microalga Nannochloropsis gaditana, whose biomass dry weight contains 12.1 wt% of these lipids. SLs were extracted from the microalga as free fatty acids (FFAs) for subsequent transformation to methyl esters (biodiesel) by enzymatic esterification. Extraction as FFAs rather than as SLs allows them to be obtained with higher purity. Microalgal FFAs were obtained by direct saponification of lipids in the biomass and subsequent extraction-purification with hexane. Esterification of FFAs with methanol was catalysed by lipase Novozym 435 from Candida antarctica. Stability studies of this lipase in the operational conditions showed that the esterification degree (ED) attained with the same batch of lipase remained constant over six reaction cycles (36 h total reaction time). The optimal conditions attained for 4 g of FFAs were 25°C, 200 rpm, methanol/FFA molar ratio of 1.5:1, Novozym 435/FFA ratio of 0.025:1 w/w and 4 h reaction time. In these conditions the ED attained was 92.6%, producing a biodiesel with 83 wt% purity from microalgal FFAs. Several experimental scales were tested (from 4 to 40 g FFAs), and in all cases similar EDs were obtained.

  13. Metabolic flux analysis using ¹³C peptide label measurements.

    PubMed

    Mandy, Dominic E; Goldford, Joshua E; Yang, Hong; Allen, Doug K; Libourel, Igor G L

    2014-02-01

    ¹³C metabolic flux analysis (MFA) has become the experimental method of choice to investigate the cellular metabolism of microbes, cell cultures and plant seeds. Conventional steady-state MFA utilizes isotopic labeling measurements of amino acids obtained from protein hydrolysates. To retain spatial information in conventional steady-state MFA, tissues or subcellular fractions must be dissected or biochemically purified. In contrast, peptides retain their identity in complex protein extracts, and may therefore be associated with a specific time of expression, tissue type and subcellular compartment. To enable 'single-sample' spatially and temporally resolved steady-state flux analysis, we investigated the suitability of peptide mass distributions (PMDs) as an alternative to amino acid label measurements. PMDs are the discrete convolution of the mass distributions of the constituent amino acids of a peptide. We investigated the requirements for the unique deconvolution of PMDs into amino acid mass distributions (AAMDs), the influence of peptide sequence length on parameter sensitivity, and how AAMD and flux estimates that are determined through deconvolution compare to estimates from a conventional GC-MS measurement-based approach. Deconvolution of PMDs of the storage protein β-conglycinin of soybean (Glycine max) resulted in good AAMD and flux estimates if fluxes were directly fitted to PMDs. Unconstrained deconvolution resulted in inferior AAMD and flux estimates. PMD measurements do not include amino acid backbone fragments, which increase the information content in GC-MS-derived analyses. Nonetheless, the resulting flux maps were of comparable quality due to the precision of Orbitrap quantification and the larger number of peptide measurements.

  14. Transcript abundance on its own cannot be used to infer fluxes in central metabolism

    DOE PAGES

    Schwender, Jorg; Konig, Christina; Klapperstuck, Matthias; ...

    2014-11-28

    An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism,more » some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. Lastly, this limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments.« less

  15. Transcript abundance on its own cannot be used to infer fluxes in central metabolism

    SciTech Connect

    Schwender, Jorg; Konig, Christina; Klapperstuck, Matthias; Heinzel, Nicolas; Munz, Eberhard; Hebbelmann, Inga; Hay, Jordan O.; Denolf, Peter; De Bodt, Stefanie; Redestig, Henning; Caestecker, Evelyne; Jakob, Peter M.; Borisjuk, Ljudmilla; Rolletschek, Hardy

    2014-11-28

    An attempt has been made to define the extent to which metabolic flux in central plant metabolism is reflected by changes in the transcriptome and metabolome, based on an analysis of in vitro cultured immature embryos of two oilseed rape (Brassica napus) accessions which contrast for seed lipid accumulation. Metabolic flux analysis (MFA) was used to constrain a flux balance metabolic model which included 671 biochemical and transport reactions within the central metabolism. This highly confident flux information was eventually used for comparative analysis of flux vs. transcript (metabolite). Metabolite profiling succeeded in identifying 79 intermediates within the central metabolism, some of which differed quantitatively between the two accessions and displayed a significant shift corresponding to flux. An RNA-Seq based transcriptome analysis revealed a large number of genes which were differentially transcribed in the two accessions, including some enzymes/proteins active in major metabolic pathways. With a few exceptions, differential activity in the major pathways (glycolysis, TCA cycle, amino acid, and fatty acid synthesis) was not reflected in contrasting abundances of the relevant transcripts. The conclusion was that transcript abundance on its own cannot be used to infer metabolic activity/fluxes in central plant metabolism. Lastly, this limitation needs to be borne in mind in evaluating transcriptome data and designing metabolic engineering experiments.

  16. Electrooptical measurements for monitoring metabolite fluxes in acetone-butanol-ethanol fermentations.

    PubMed

    Junne, Stefan; Klein, Eva; Angersbach, Alexander; Goetz, Peter

    2008-03-01

    Anisotropy of electrical polarizability in Clostridium acetobutylicum cells during pH 5 controlled acetone butanol e