Science.gov

Sample records for acid ffa release

  1. Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40*

    PubMed Central

    Schmidt, Johannes; Liebscher, Kathrin; Merten, Nicole; Grundmann, Manuel; Mielenz, Manfred; Sauerwein, Helga; Christiansen, Elisabeth; Due-Hansen, Maria E.; Ulven, Trond; Ullrich, Susanne; Gomeza, Jesús; Drewke, Christel; Kostenis, Evi

    2011-01-01

    Among dietary components, conjugated linoleic acids (CLAs) have attracted considerable attention as weight loss supplements in the Western world because they reduce fat stores and increase muscle mass. However, a number of adverse effects are also ascribed to the intake of CLAs such as aggravation of insulin resistance and the risk of developing diabetes. However, the mechanisms accounting for the effects of CLAs on glucose homeostasis are incompletely understood. Herein we provide evidence that CLAs specifically activate the cell surface receptor FFA1, an emerging therapeutic target to treat type 2 diabetes. Using different recombinant cellular systems engineered to stably express FFA1 and a set of diverse functional assays including the novel, label-free non-invasive dynamic mass redistribution technology (Corning® Epic® biosensor), both CLA isomers cis-9, trans-11-CLA and trans-10, cis-12-CLA were found to activate FFA1 in vitro at concentrations sufficient to also account for FFA1 activation in vivo. Each CLA isomer markedly increased glucose-stimulated insulin secretion in insulin-producing INS-1E cells that endogenously express FFA1 and in primary pancreatic β-cells of wild type but not FFA1−/− knock-out mice. Our findings establish a clear mechanistic link between CLAs and insulin production and identify the cell surface receptor FFA1 as a molecular target for CLAs, explaining their acute stimulatory effects on insulin secretion in vivo. CLAs are also revealed as insulinotropic components in widely used nutraceuticals, a finding with significant implication for development of FFA1 modulators to treat type 2 diabetes. PMID:21339298

  2. Selective Orthosteric Free Fatty Acid Receptor 2 (FFA2) Agonists

    PubMed Central

    Schmidt, Johannes; Smith, Nicola J.; Christiansen, Elisabeth; Tikhonova, Irina G.; Grundmann, Manuel; Hudson, Brian D.; Ward, Richard J.; Drewke, Christel; Milligan, Graeme; Kostenis, Evi; Ulven, Trond

    2011-01-01

    Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [35S]guanosine 5′-(3-O-thio)triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp3-hybridized α-carbons preferentially activate FFA3, whereas ligands with sp2- or sp-hybridized α-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors. PMID:21220428

  3. Identification of diarylsulfonamides as agonists of the free fatty acid receptor 4 (FFA4/GPR120).

    PubMed

    Sparks, Steven M; Chen, Grace; Collins, Jon L; Danger, Dana; Dock, Steven T; Jayawickreme, Channa; Jenkinson, Stephen; Laudeman, Christopher; Leesnitzer, M Anthony; Liang, Xi; Maloney, Patrick; McCoy, David C; Moncol, David; Rash, Vincent; Rimele, Thomas; Vulimiri, Padmaja; Way, James M; Ross, Sean

    2014-07-15

    The exploration of a diarylsulfonamide series of free fatty acid receptor 4 (FFA4/GPR120) agonists is described. This work led to the identification of selective FFA4 agonist 8 (GSK137647A) and selective FFA4 antagonist 39. The in vitro profile of compounds 8 and 39 is presented herein.

  4. Extracellular Ionic Locks Determine Variation in Constitutive Activity and Ligand Potency between Species Orthologs of the Free Fatty Acid Receptors FFA2 and FFA3*

    PubMed Central

    Hudson, Brian D.; Tikhonova, Irina G.; Pandey, Sunil K.; Ulven, Trond; Milligan, Graeme

    2012-01-01

    Free fatty acid receptors 2 and 3 (FFA2 and FFA3) are G protein-coupled receptors for short chain free fatty acids (SCFAs). They respond to the same set of endogenous ligands but with distinct rank-order of potency such that acetate (C2) has been described as FFA2-selective, whereas propionate (C3) is non-selective. Although C2 was confirmed to be selective for human FFA2 over FFA3, this ligand was not selective between the mouse orthologs. Moreover, although C3 was indeed not selective between the human orthologs, it displayed clear selectivity for mouse FFA3 over mouse FFA2. This altered selectivity to C2 and C3 resulted from broad differences in SCFAs potency at the mouse orthologs. In studies to define the molecular basis for these observations, marked variation in ligand-independent constitutive activity was identified using a [35S]GTPγS assay. The orthologs with higher potency for the SCFAs, human FFA2 and mouse FFA3, displayed high constitutive activity in this assay, whereas the orthologs with lower potency for the agonist ligands, mouse FFA2 and human FFA3, did not. Sequence alignments of the second extracellular loop identified single negatively charged residues in FFA2 and FFA3 not conserved between species and predicted to form ionic lock interactions with arginine residues within the FFA2 or FFA3 agonist binding pocket to regulate constitutive activity and SCFA potency. Reciprocal mutation of these residues between species orthologs resulted in the induction (or repression) of constitutive activity and in most cases also yielded corresponding changes in SCFA potency. PMID:23066016

  5. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    PubMed Central

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets. PMID:23060857

  6. A New Pain Regulatory System via the Brain Long Chain Fatty Acid Receptor GPR40/FFA1 Signal.

    PubMed

    Nakamoto, Kazuo

    2017-01-01

     An increasingly large number of pharmacological and physiological works on fatty acids have shown that the functional properties of fatty acids are regulated by the amount of individual fatty acid intake and the distribution of fatty acids among organs. Recently, it has been determined that G-protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA1) is activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). GPR40/FFA1 is mainly expressed in the β cell of the pancreas, spinal cord and brain. It is reported that this receptor has a functional role in controlling blood glucose levels via the modulation of insulin secretion. However, its physiological function in the brain remains unknown. Our previous studies have shown that GPR40/FFA1 is expressed in pro-opiomelanocortin (POMC)-positive neurons of the arcuate nucleus, serotonergic neurons in the nucleus raphe magnus, and in noradrenergic neurons in the locus coeruleus. Furthermore, the intracerebroventricular injection of DHA or GW9508, which is a selective GPR40/FFA1 agonist, attenuates formalin-induced inflammatory pain behavior through increasing β-endorphin release in the hypothalamus. It also suppresses complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia. Our findings suggest that brain free long-chain fatty acids-GPR40/FFA1 signaling might have an important role in the modulation of endogenous pain control systems. In this review, I discuss the current status and our recent study regarding a new pain regulatory system via the brain long chain fatty acid receptor GPR40/FFA1 signal.

  7. Effects of arachidonic acid on FFA4 receptor: Signaling, phosphorylation and internalization.

    PubMed

    Villegas-Comonfort, S; Takei, Y; Tsujimoto, G; Hirasawa, A; García-Sáinz, J A

    2017-02-01

    Arachidonic acid increased intracellular calcium, in cells expressing green fluorescent protein-tagged human FFA4 receptors, with an EC50 of ~40µM. This action was not blocked by cyclooxygenase or lipoxigenase inhibitors but it was inhibited by AH7614, a FFA4 antagonist. Arachidonic acid induced ERK activation accompanied by EGF receptor transactivation. However, EGF transactivation was not the major mechanism through which the fatty acid induced ERK phosphorylation, as evidenced by the inability of AG1478 to block it. Arachidonic acid increased FFA4 receptor phosphorylation that reached its maximum within 15min with an EC50 of ~30µM; inhibitors of protein kinase C partially diminish this effect and AH7614 blocked it. Arachidonic acid induced rapid and sustained Akt/PKB phosphorylation and FFA4 - β-arrestin interaction. Confocal microscopy evidenced that FFA4 receptor activation and phosphorylation were associated to internalization. In conclusion, arachidonic acid is a bona fide FFA4 receptor agonist.

  8. Omega-3 polyunsaturated fatty acids accelerate airway repair by activating FFA4 in club cells.

    PubMed

    Lee, Kyoung-Pil; Park, Soo-Jin; Kang, Saeromi; Koh, Jung-Min; Sato, Koichi; Chung, Hae Young; Okajima, Fumikazu; Im, Dong-Soon

    2017-03-17

    A GPCR named FFA4 (also known as GPR120) was found to act as a GPCR for omega-3 polyunsaturated fatty acids. Its expression has been reported in lung epithelial club cells. The authors investigated whether supplementation of the omega-3 fatty acids benefits lung health. Omacor® (7.75 mg kg-1), clinically prescribed preparation of omega-3 fatty acids and FFA4-knockout mice were utilized in a naphthalene-induced mouse model of acute airway injury (one injection of 30 mg kg-1, i.p.). Naphthalene injection induced complete destruction of bronchiolar epithelial cells within a day. Appearance of bronchiolar epithelial cells was observed after 21 days in control mice. It was found, however, that supplementation of omacor accelerated the recovery. The appearance of bronchiolar epithelial cells was observed between 7 and 14 days after naphthalene injury in omacor-treated mice. In isolated club cells, omega-3 fatty acids were found to stimulate cell proliferation and migration but to inhibit cell differentiation. Using pharmacological tools and FFA4-knockout mice, FFA4 was found to be responsible for omega-3 fatty acids-induced proliferation in vitro in club cells. Furthermore, accelerated recovery from naphthalene-induced airway injury in omacor-treated mice was not observed in FFA4-knockout mice in vivo. Present findings indicate that omega-3 fatty acids-induced proliferation of bronchiole epithelial cells through FFA4 is responsible for omacor-induced accelerated recovery from airway injury. Therefore, intermittent administration of omacor needs to be tested for acute airway injury, because omega-3 fatty acids stimulate proliferation but inhibits differentiation of club cells.

  9. [Profile of free fatty acids (FFA) in serum of young Colombians with obesity and metabolic syndrome].

    PubMed

    Bermudez, J A; Velásquez, C M

    2014-12-01

    Obesity produces greater circulation of free fatty acids (FFA). In adults, the FFA composition changes in states of obesity; in adolescents, the results are contradictory. This study compare the FFA profile of obese youth with and without Metabolic Syndrome (MetS) and explore the association between FFA and metabolic alterations of obesity and MetS. A cross-sectional study with 96 young people between 10 and 18 years old was divided into three groups: 1) obese youth with MetS, 2) obese youth without MetS; and 3) adequate weight (AW), matched according to age, gender, pubertal maturation and socioeconomic stratum. The nutritional status was classified according to the body-mass index (BMI), according to the World Health Organization 2007 (WHO, 2007); the waist circumference (WC), adiposity, lipid profile, highly-sensitive reactive C protein (hsRCP), glucose, insulin and insulin resistance (IR), according to the homeostatic model assessment (HOMA Calculator Version 2.2.2). The FFA serum concentration was determined by gas chromatography. Both obese groups had higher adiposity, inflamation (hsRCP), FFA totals and frequency palmitoleic-16:Jn7, compared to AW. The obese with MetS presented more metabolic alterations, a greater amount of dihomo-γ-linolenic (DHGL-20:3n6) and a 20:3n6/18:2n6 relation, indicative of increased activity of A6 desaturase (D6D). The FFA totals, palmitoleic-l6:1n7, DHGL-20:3n6, D6D activity and hsRCP significantly correlated with variables of adiposity, IR and triglicerides. The results in obese with MetS corroborate the association among central obesity, inflammation and increased lipolysis in visceral adipose tissue and metabolic alterations.

  10. The Pharmacology of TUG-891, a Potent and Selective Agonist of the Free Fatty Acid Receptor 4 (FFA4/GPR120), Demonstrates Both Potential Opportunity and Possible Challenges to Therapeutic Agonism

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Mackenzie, Amanda E.; Butcher, Adrian J.; Pediani, John D.; Christiansen, Elisabeth; Heathcote, Helen; Tobin, Andrew B.; Ulven, Trond

    2013-01-01

    TUG-891 [3-(4-((4-fluoro-4′-methyl-[1,1′-biphenyl]-2-yl)methoxy)phenyl)propanoic acid] was recently described as a potent and selective agonist for the long chain free fatty acid (LCFA) receptor 4 (FFA4; previously G protein–coupled receptor 120, or GPR120). Herein, we have used TUG-891 to further define the function of FFA4 and used this compound in proof of principle studies to indicate the therapeutic potential of this receptor. TUG-891 displayed similar signaling properties to the LCFA α-linolenic acid at human FFA4 across various assay end points, including stimulation of Ca2+ mobilization, β-arrestin-1 and β-arrestin-2 recruitment, and extracellular signal-regulated kinase phosphorylation. Activation of human FFA4 by TUG-891 also resulted in rapid phosphorylation and internalization of the receptor. While these latter events were associated with desensitization of the FFA4 signaling response, removal of TUG-891 allowed both rapid recycling of FFA4 back to the cell surface and resensitization of the FFA4 Ca2+ signaling response. TUG-891 was also a potent agonist of mouse FFA4, but it showed only limited selectivity over mouse FFA1, complicating its use in vivo in this species. Pharmacologic dissection of responses to TUG-891 in model murine cell systems indicated that activation of FFA4 was able to mimic many potentially beneficial therapeutic properties previously reported for LCFAs, including stimulating glucagon-like peptide-1 secretion from enteroendocrine cells, enhancing glucose uptake in 3T3-L1 adipocytes, and inhibiting release of proinflammatory mediators from RAW264.7 macrophages, which suggests promise for FFA4 as a therapeutic target for type 2 diabetes and obesity. Together, these results demonstrate both potential but also significant challenges that still need to be overcome to therapeutically target FFA4. PMID:23979972

  11. The Molecular Basis of Ligand Interaction at Free Fatty Acid Receptor 4 (FFA4/GPR120)*

    PubMed Central

    Hudson, Brian D.; Shimpukade, Bharat; Milligan, Graeme; Ulven, Trond

    2014-01-01

    The long-chain fatty acid receptor FFA4 (previously GPR120) is receiving substantial interest as a novel target for the treatment of metabolic and inflammatory disease. This study examines for the first time the detailed mode of binding of both long-chain fatty acid and synthetic agonist ligands at FFA4 by integrating molecular modeling, receptor mutagenesis, and ligand structure-activity relationship approaches in an iterative format. In doing so, residues required for binding of fatty acid and synthetic agonists to FFA4 have been identified. This has allowed for the refinement of a well validated model of the mode of ligand-FFA4 interaction that will be invaluable in the identification of novel ligands and the future development of this receptor as a therapeutic target. The model reliably predicted the effects of substituent variations on agonist potency, and it was also able to predict the qualitative effect of binding site mutations in the majority of cases. PMID:24860101

  12. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells.

    PubMed

    Liu, Ze; Hopkins, Mandi M; Zhang, Zhihong; Quisenberry, Chrystal B; Fix, Louise C; Galvan, Brianna M; Meier, Kathryn E

    2015-02-01

    Omega-3 fatty acids (n-3 FAs) are proposed to have many beneficial effects on human health. However, the mechanisms underlying their potential cancer preventative effects are unclear. G protein-coupled receptors (GPCRs) of the free fatty acid receptor (FFAR) family, FFA1/GPR40 and FFA4/GPR120, specifically bind n-3 FAs as agonist ligands. In this study, we examined the effects of n-3 FAs in human prostate cancer cell lines. Initial studies established that the long-chain n-3 FAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid, inhibit proliferation of DU145 cells in response to lysophosphatidic acid (LPA), a mitogenic lipid mediator. When added alone to serum-starved DU145 cells, EPA transiently activates signaling events, including p70S6K phosphorylation. However, when added 15 minutes prior to LPA, EPA suppresses LPA-induced activating phosphorylations of ERK, FAK, and p70S6K, and expression of the matricellular protein CCN1. The rapid onset of the inhibitory action of EPA suggested involvement of a GPCR. Further studies showed that DU145 and PC-3 cells express mRNA and protein for both FFA4 and FFA1. TUG-891 (4-[(4-fluoro-4'-methyl[1,1'-biphenyl]-2-yl)methoxy]-benzenepropanoic acid), a selective agonist for FFA4, exerts inhibitory effects on LPA- and epidermal growth factor-induced proliferation and migration, similar to EPA, in DU145 and PC-3 cells. The effects of TUG-891 and EPA are readily reversible. The FFA1/FFA4 agonist GW9508 (4-[[(3-phenoxyphenyl)methyl]amino]-benzenepropranoic acid) likewise inhibits proliferation at doses that block FFA4. Knockdown of FFA4 expression prevents EPA- and TUG-891-induced inhibition of growth and migration. Together, these results indicate that activation of FFA4 initiates signaling events that can inhibit growth factor-induced signaling, providing a novel mechanism for suppression of cancer cell proliferation.

  13. Liver free fatty acid (FFA) accumulation as an indicator of ischemic injury during cold preservation

    SciTech Connect

    Nemoto, E.M.; Kang, Y.; DeWolf, A.M.; Lin, M.R.; Bleyaert, A.L.; Winter, P.M.

    1987-05-01

    Reliable assessment of hepatic viability prior to harvest and transplant could improve graft success and aid in evaluating the efficacy of liver preservation techniques. Hepatic tissue metabolites, protein (Pr) synthesis, and ATP have been studied, but none reliably correlate with hepatic viability. Therefore, they studied changes in liver FFA relative to changes in ATP and Pr synthesis during cold ischemic preservation. Rats mechanically ventilated on 0.5% isoflurane/70% N/sub 2/O/30% O/sub 2/ were heparinized and their livers perfused with air-equilibrated Euro-Collins solution (ECS) at 0-4/sup 0/C and kept on ice. A piece of the liver was removed after 0, 2, 6, 8, 12, 24, 36 and 48 h of preservation for ATP and FFA analysis. A portion of the liver was sliced (250 ..mu..m thick) and incubated in vitro for /sup 14/C-lysine incorporation in albumin. ATP, FFA and Pr synthesis were unchanged in the first 8 h, but markedly decreased between 8 and 12 h with little change thereafter. In contrast, between 8 and 48 h, arachidonic and stearic acids increased by 5 and 2-fold, respectively. Changes in ATP and Pr synthesis correlate with the empirically derived clinical maximum of 8 to 12 h preservation. FFA accumulation appears to reflect hepatic ischemic injury and may be a means of evaluating the quality of a donor liver.

  14. Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120.

    PubMed

    Ulven, Trond; Christiansen, Elisabeth

    2015-01-01

    It is well known that the amount and type of ingested fat impacts the development of obesity and metabolic diseases, but the potential for beneficial effects from fat has received less attention. It is becoming clear that the composition of the individual fatty acids in diet is important. Besides acting as precursors of potent signaling molecules, dietary fatty acids act directly on intracellular and cell surface receptors. The free fatty acid receptor 4 (FFA4, previously GPR120) is linked to the regulation of body weight, inflammation, and insulin resistance and represents a potential target for the treatment of metabolic disorders, including type 2 diabetes and obesity. In this review, we discuss the various types of dietary fatty acids, the link between FFA4 and metabolic diseases, the potential effects of the individual fatty acids on health, and the ability of fatty acids to activate FFA4. We also discuss the possibility of dietary schemes that implement activation of FFA4.

  15. Structure−Activity Study of Dihydrocinnamic Acids and Discovery of the Potent FFA1 (GPR40) Agonist TUG-469

    PubMed Central

    2010-01-01

    The free fatty acid 1 receptor (FFA1 or GPR40), which is highly expressed on pancreatic β-cells and amplifies glucose-stimulated insulin secretion, has emerged as an attractive target for the treatment of type 2 diabetes. Several FFA1 agonists containing the para-substituted dihydrocinnamic acid moiety are known. We here present a structure−activity relationship study of this compound family suggesting that the central methyleneoxy linker is preferable for the smaller compounds, whereas the central methyleneamine linker gives higher potency to the larger compounds. The study resulted in the discovery of the potent and selective full FFA1 agonist TUG-469 (29). PMID:24900217

  16. Defining the Molecular Basis for the First Potent and Selective Orthosteric Agonists of the FFA2 Free Fatty Acid Receptor*

    PubMed Central

    Hudson, Brian D.; Due-Hansen, Maria E.; Christiansen, Elisabeth; Hansen, Anna Mette; Mackenzie, Amanda E.; Murdoch, Hannah; Pandey, Sunil K.; Ward, Richard J.; Marquez, Rudi; Tikhonova, Irina G.; Ulven, Trond; Milligan, Graeme

    2013-01-01

    FFA2 is a G protein-coupled receptor that responds to short chain fatty acids and has generated interest as a therapeutic target for metabolic and inflammatory conditions. However, definition of its functions has been slowed by a dearth of selective ligands that can distinguish it from the closely related FFA3. At present, the only selective ligands described for FFA2 suffer from poor potency, altered signaling due to allosteric modes of action, or a lack of function at non-human orthologs of the receptor. To address the need for novel selective ligands, we synthesized two compounds potentially having FFA2 activity and examined the molecular basis of their function. These compounds were confirmed to be potent and selective orthosteric FFA2 agonists. A combination of ligand structure-activity relationship, pharmacological analysis, homology modeling, species ortholog comparisons, and mutagenesis studies were then employed to define the molecular basis of selectivity and function of these ligands. From this, we identified key residues within both extracellular loop 2 and the transmembrane domain regions of FFA2 critical for ligand function. One of these ligands was active with reasonable potency at rodent orthologs of FFA2 and demonstrated the role of FFA2 in inhibition of lipolysis and glucagon-like peptide-1 secretion in murine-derived 3T3-L1 and STC-1 cell lines, respectively. Together, these findings describe the first potent and selective FFA2 orthosteric agonists and demonstrate key aspects of ligand interaction within the binding site of FFA2 that will be invaluable in future ligand development at this receptor. PMID:23589301

  17. FFA Contests

    ERIC Educational Resources Information Center

    Schumann, Herbert

    1977-01-01

    A teacher educator gives reasons why the vocational agriculture teacher should become involved in preparing his students for Future Farmers of America (FFA) contests and some steps and precautions he should take to successfully integrate FFA contests into the instructional program. (MF)

  18. The short-chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis.

    PubMed

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M; Angueira, Anthony R; Brodsky, Michael; Hayes, M Geoffrey; Kovatcheva-Datchary, Petia; Bäckhed, Fredrik; Gilbert, Jack A; Lowe, William L; Layden, Brian T

    2015-11-15

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Together, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.

  19. The short chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis

    DOE PAGES

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M.; ...

    2015-09-22

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression ismore » higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Altogether, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.« less

  20. The short chain fatty acid receptor, FFA2, contributes to gestational glucose homeostasis

    SciTech Connect

    Fuller, Miles; Priyadarshini, Medha; Gibbons, Sean M.; Angueira, Anthony R.; Brodsky, Michael; Hayes, M. Geoffrey; Kovatcheva-Datchary, Petia; Backhed, Fredrik; Gilbert, Jack A.; Lowe, Jr., William L.; Layden, Brian T.

    2015-09-22

    The structure of the human gastrointestinal microbiota can change during pregnancy, which may influence gestational metabolism; however, a mechanism of action remains unclear. Here we observed that in wild-type (WT) mice the relative abundance of Actinobacteria and Bacteroidetes increased during pregnancy. Along with these changes, short-chain fatty acids (SCFAs), which are mainly produced through gut microbiota fermentation, significantly changed in both the cecum and peripheral blood throughout gestation in these mice. SCFAs are recognized by G protein-coupled receptors (GPCRs) such as free fatty acid receptor-2 (FFA2), and we have previously demonstrated that the fatty acid receptor-2 gene (Ffar2) expression is higher in pancreatic islets during pregnancy. Using female Ffar2-/- mice, we explored the physiological relevance of signaling through this GPCR and found that Ffar2-deficient female mice developed fasting hyperglycemia and impaired glucose tolerance in the setting of impaired insulin secretion compared with WT mice during, but not before, pregnancy. Insulin tolerance tests were similar in Ffar2-/- and WT mice before and during pregnancy. Next, we examined the role of FFA2 in gestational β-cell mass, observing that Ffar2-/- mice had diminished gestational expansion of β-cells during pregnancy. Interestingly, mouse genotype had no significant impact on the composition of the gut microbiome, but did affect the observed SCFA profiles, suggesting a functional difference in the microbiota. Altogether, these results suggest a potential link between increased Ffar2 expression in islets and the alteration of circulating SCFA levels, possibly explaining how changes in the gut microbiome contribute to gestational glucose homeostasis.

  1. Oleic acid exposure of cultured endothelial cells alters lipid mediator production

    EPA Science Inventory

    Diesel, biodiesel, and other combustion sources contain free fatty acid (FFA) components capable of entering the body through particulate inhalation. FFA can also be endogenously released into circulation in response to stress. When in circulation, bioactive FFA may interact with...

  2. Concomitant Action of Structural Elements and Receptor Phosphorylation Determines Arrestin-3 Interaction with the Free Fatty Acid Receptor FFA4*

    PubMed Central

    Butcher, Adrian J.; Hudson, Brian D.; Shimpukade, Bharat; Alvarez-Curto, Elisa; Prihandoko, Rudi; Ulven, Trond; Milligan, Graeme; Tobin, Andrew B.

    2014-01-01

    In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been implicated in the regulation of metabolic and inflammatory responses. Here we show, using mass spectrometry, mutagenesis, and phosphospecific antibodies, that agonist-regulated phosphorylation of the human FFA4 receptor occurred primarily at five residues (Thr347, Thr349, Ser350, Ser357, and Ser360) in the C-terminal tail. Mutation of these residues reduced both the efficacy and potency of ligand-mediated arrestin-3 recruitment as well as affecting recruitment kinetics. Combined mutagenesis of all five of these residues was insufficient to fully abrogate interaction with arrestin-3, but further mutagenesis of negatively charged residues revealed additional structural components for the interaction with arrestin-3 within the C-terminal tail of the receptor. These elements consist of the acidic residues Glu341, Asp348, and Asp355 located close to the phosphorylation sites. Receptor phosphorylation thus operates in concert with structural elements within the C-terminal tail of FFA4 to allow for the recruitment of arrestin-3. Importantly, these mechanisms of arrestin-3 recruitment operate independently from Gq/11 coupling, thereby offering the possibility that ligands showing stimulus bias could be developed that exploit these differential coupling mechanisms. Furthermore, this provides a strategy for the design of biased receptors to probe physiologically relevant signaling. PMID:24817122

  3. Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes

    PubMed Central

    2013-01-01

    Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic β-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing. PMID:23687558

  4. Free fatty acids normalize a rosiglitazone-induced visfatin release.

    PubMed

    Haider, Dominik G; Mittermayer, Friedrich; Schaller, Georg; Artwohl, Michaela; Baumgartner-Parzer, Sabina M; Prager, Gerhard; Roden, Michael; Wolzt, Michael

    2006-11-01

    The detrimental effect of elevated free fatty acids (FFAs) on insulin sensitivity can be improved by thiazolidinediones (TZDs) in patients with type 2 diabetes mellitus. It is unknown whether this salutary action of TZD is associated with altered release of the insulin-mimetic adipocytokine visfatin. In this study, we investigated whether visfatin concentrations are altered by FFA and TZD treatment. In a randomized, double-blind, placebo-controlled, parallel-group study 16 healthy volunteers received an infusion of triglycerides/heparin to increase plasma FFA after 3 wk of treatment with rosiglitazone (8 mg/day, n = 8) or placebo (n = 8), and circulating plasma visfatin was measured. As a corollary, human adipocytes were incubated with synthetic fatty acids and rosiglitazone to assess visfatin release in vitro. The results were that rosiglitazone treatment increased systemic plasma visfatin concentrations from 0.6 +/- 0.1 to 1.7 +/- 0.2 ng/ml (P < 0.01). Lipid infusion caused a marked elevation of plasma FFA but had no effect on circulating visfatin in controls. In contrast, elevated visfatin concentrations in subjects receiving rosiglitazone were normalized by lipid infusion. In isolated adipocytes, visfatin was released into supernatant medium by acute addition and long-term treatment of rosiglitazone. This secretion was blocked by synthetic fatty acids and by inhibition of phosphatidylinositol 3-kinase or Akt. In conclusion, release of the insulin-mimetic visfatin may represent a major mechanism of metabolic TZD action. The presence of FFA antagonizes this action, which may have implications for visfatin bioactivity.

  5. Release of free fatty acids from raw or processed soybeans and subsequent effects on fiber digestibilities.

    PubMed

    Reddy, P V; Morrill, J L; Nagaraja, T G

    1994-11-01

    Two in vitro experiments were conducted to determine the rates of lipolysis and the extent of biohydrogenation of fat from raw or processed soybeans and to examine the subsequent effects on fiber digestibilities. In Experiment 1, substrates containing soy oil, raw soybeans, extruded soybeans, and soybeans roasted at 132, 146, or 163 degrees C were incubated with ruminal contents for 2, 4, 6, 12, or 24 h; and release of FFA was measured. The FFA released from substrates containing soy oil, extruded soybeans, and raw or roasted soybeans reached maxima at incubations of 4, 6, and 12 h, respectively. As the roasting temperature increased from 132 to 163 degrees C, release of FFA decreased at incubations of 2, 12, and 24 h. Fatty acids in roasted soybeans were subjected to less biohydrogenation than those in raw or extruded soybeans, suggesting that FFA of roasted soybeans are partially protected from ruminal bacteria. In Experiment 2, ground alfalfa hay was added to substrates used previously to determine the effect of release rate of FFA on ADF and NDF digestibilities. At all incubation times, the substrates containing soy oil and extruded soybeans had lower digestibilities, and those containing raw or roasted soybeans had higher digestibilities of NDF and ADF.

  6. Regulation of prohormone convertase 2 protein expression via GPR40/FFA1 in the hypothalamus.

    PubMed

    Nakamoto, Kazuo; Aizawa, Fuka; Nishinaka, Takashi; Tokuyama, Shogo

    2015-09-05

    Previous studies have shown that the administration of docosahexaenoic acid (DHA) or GW9508, a GPR40/FFA1 (free fatty acid receptor) agonist, facilitates β-endorphin release in the arcuate nucleus of the hypothalamus in mice. However, the mechanisms mediating β-endorphin release induced by GPR40/FFA1 agonists remain unknown. In this study, we focused on the changes in expression of hypothalamic prohormone convertase (PC) 2, which is a calcium-dependent subtilisin-related proteolytic enzyme. The intracerebroventricular injection of DHA or GW9508 significantly increased PC2 protein expression in the hypothalamus. This increase in PC2 expression was inhibited by pretreatment with GW1100, a GPR40/FFA1 antagonist. Furthermore, PC2 protein expression gradually increased over time after complete Freund's adjuvant. These increase in PC2 expression were inhibited by pretreatment with GW1100. However, GW1100 by itself had no effect on PC2 levels. Taken together, our findings suggest that activation of the hypothalamic GPR40/FFA1 signaling pathway may regulate β-endorphin release via PC2, and regulate the endogenous pain control system.

  7. Effects of Increased Free Fatty Acid Availability on Adipose Tissue Fatty Acid Storage in Men

    PubMed Central

    Mundi, Manpreet S.; Koutsari, Chistina

    2014-01-01

    Context: A portion of free fatty acids (FFA) released from adipose tissue lipolysis are re-stored in adipocytes via direct uptake. Rates of direct adipose tissue FFA storage are much greater in women than men, but women also have greater systemic FFA flux and more body fat. Objective: We tested the hypotheses that experimental increases in FFA in men would equalize the rates of direct adipose tissue FFA storage in men and women. Design: We used a lipid emulsion infusion to raise FFA in men to levels seen in post-absorptive women. Direct FFA storage (μmol·kg fat−1·min−1) rates in abdominal and femoral fat was assessed using stable isotope tracer infusions to measure FFA disappearance rates and an iv FFA radiotracer bolus/timed biopsy. Setting: These studies were performed in a Clinical Research Center. Participants: Data from 13 non-obese women was compared with that from eight obese and eight non-obese men. Intervention: The men received a lipid emulsion infusion to raise FFA. Main Outcome Measures: We measured the rates of direct FFA storage in abdominal and femoral adipose tissue. Results: The three groups were similar in age and FFA flux by design; obese men had similar body fat percentage as non-obese women. Despite matching for FFA concentrations and flux, FFA storage per kg abdominal (P < .01) and femoral (P < .001) fat was less in both lean and obese men than in non-obese women. Abdominal FFA storage rates were correlated with proteins/enzymes in the FFA uptake/triglyceride synthesis pathway in men. Conclusion: The lesser rates of direct FFA adipose tissue in men compared with women cannot be explained by reduced FFA availability. PMID:25192251

  8. Coenzyme Q releases the inhibitory effect of free fatty acids on mitochondrial glycerophosphate dehydrogenase.

    PubMed

    Rauchová, Hana; Drahota, Zdenek; Rauch, Pavel; Fato, Romana; Lenaz, Giorgio

    2003-01-01

    Data presented in this paper show that the size of the endogenous coenzyme Q (CoQ) pool is not a limiting factor in the activation of mitochondrial glycerophosphate-dependent respiration by exogenous CoQ(3), since successive additions of succinate and NADH to brown adipose tissue mitochondria further increase the rate of oxygen uptake. Because the inhibition of glycerophosphate-dependent respiration by oleate was eliminated by added CoQ(3), our data indicate that the activating effect of CoQ(3) is related to the release of the inhibitory effect of endogenous free fatty acids (FFA). Both the inhibitory effect of FFA and the activating effect of CoQ(3) could be demonstrated only for glycerophosphate-dependent respiration, while succinate- or NADH-dependent respiration was not affected. The presented data suggest differences between mitochondrial glycerophosphate dehydrogenase and succinate or NADH dehydrogenases in the transfer of reducing equivalents to the CoQ pool.

  9. Flufenamic acid modulates multiple currents in gonadotropin-releasing hormone neurons

    PubMed Central

    Wang, Yong; Kuehl-Kovarik, M. Cathleen

    2010-01-01

    Reproduction in mammals is dependent upon the appropriate neurosecretion of gonadotropin-releasing hormone (GnRH), yet the endogenous generation of activity underlying GnRH secretion remains poorly understood. We have demonstrated that the depolarizing afterpotential (DAP), which modulates bursting activity, is reduced in isolated GnRH neurons from aged animals. Calcium-activated non-specific cation (CAN) channels contribute to the DAP in other vertebrate neurosecretory cells. We used the CAN channel blocker flufenamic acid (FFA) to examine the contribution of CAN channels to the DAP in GnRH neurons during aging. Recordings were performed on isolated fluorescent GnRH neurons from young, middle-aged and aged female mice. Flufenamic acid inhibited spontaneous activity, but significantly increased the DAP in neurons from young and middle-aged animals. Apamin did not significantly potentiate the DAP, but did reduce the effects of FFA, suggesting that the increased DAP is partially due to blockade of apamin-sensitive SK channels. Flufenamic acid increased the current underlying the DAP (IADP) and decreased the preceding fast outward current (IOUT) at all ages. These current responses were not affected by apamin, but TEA evoked similar changes. Thus, a potassium current, likely mediated through BK channels, contributes to the fast AHP and appears to offset the DAP; this current is sensitive to FFA, but insensitive to age. The effect of FFA on the DAP, but not IADP, is diminished in aged animals, possibly reflecting an age-related modulation of the apamin-sensitive SK channel. Future studies will examine the expression of SK channels during the aging process in GnRH neurons. PMID:20655884

  10. Prevocational Agribusiness and the FFA

    ERIC Educational Resources Information Center

    James, Kenneth A.

    1975-01-01

    The author discusses the development of the career education concept relating to agribusiness at the junior high and middle school level. In the prevocational agribusiness program, it is also effective to supplement the program with an FFA chapter. (JB)

  11. Adiponectin concentrations increase during acute FFA elevation in humans treated with rosiglitazone.

    PubMed

    Krzyzanowska, K; Mittermayer, F; Krugluger, W; Roden, M; Schernthaner, G; Wolzt, M

    2007-10-01

    The adipocytokine adiponectin is released by adipocytes upon activation of the peroxisome proliferator-activated receptor gamma (PPAR gamma). PPAR gamma has binding sites for thiazolidinediones and free fatty acids (FFAs). To evaluate if adiponectin serum concentrations are synergistically regulated by FFAs and thiazolidinediones IN VIVO plasma FFAs were acutely elevated in healthy subjects pre-treated with rosiglitazone or placebo. Sixteen healthy male subjects (23-37 years) were included in this double-blind, randomized, placebo-controlled parallel-group study. Rosiglitazone 8 mg or placebo was administered daily for 21 days. On the last day plasma FFA concentrations were increased by an intravenous triglyceride/heparin infusion. Blood for determination of adiponectin, C-reactive protein (CRP), leptin, resistin, FFAs, glucose, and insulin was drawn at baseline and on day 21 before and after 5 hours of triglyceride/heparin infusion. Adiponectin concentrations increased and FFA levels decreased in subjects receiving rosiglitazone (all p<0.05 VS. baseline). Lipid infusion significantly increased FFA plasma concentrations, with an attenuated elevation in rosiglitazone-treated subjects. However, adiponectin concentrations were only increased in subjects on rosiglitazone (p=0.018 VS. before lipid infusion), but not in controls. Leptin increased during lipid infusion in subjects receiving placebo but not in those on rosiglitazone. CRP and resistin were not affected by rosiglitazone or FFAs. The acute increase in circulating adiponectin concentrations during acutely elevated FFA depends on PPAR gamma activation in healthy subjects.

  12. Advising an Urban FFA Chapter: A Narrative of Two Urban FFA Advisors

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2015-01-01

    Advising an urban FFA chapter can be a challenge for urban agriculture teachers. The contextual differences between the rural-oriented FFA and urban FFA members can make bridging the gap difficult. This narrative study sought to explore how the urban context shapes the work of an FFA chapter from the perspectives of two FFA advisors at the same…

  13. Effect of broccoli phytochemical extract on release of fatty acids from salmon muscle and salmon oil during in vitro digestion.

    PubMed

    Aarak, K E; Kirkhus, B; Johansen, S; Vegarud, G E; Borge, G I A

    2014-09-01

    The aim of the present work was to study the effect of a broccoli phytochemical extract (Br-ex) on the release of fatty acids (FA) from salmon muscle (SM) and salmon oil (SO) during in vitro digestion. The hypothesis of the study was that Br-ex contains polyphenols which might act as pancreatic lipase inhibitors. The effect on the release of specific FA, in particular the long-chain n-3 polyunsaturated fatty acids (PUFAs), EPA (C20:5 n-3) and DHA (C22:6 n-3), was recorded, and the impact of the SM matrix was studied by comparing the release of FA from SM and SO. In vitro digestion was performed and lipolytic activity, measured as the release of fatty acids (FFA) by solid phase extraction and GC-FID, was recorded at 20, 40, 80 and 140 minutes in the intestinal phase. The results showed, unexpectedly, that Br-ex stimulated the release of FA during digestion of SO and SM, showing the highest increases in FFA, 67% and 64%, respectively, at 20 min. No difference in the release of FA from SO compared to SM was observed, suggesting that the SM matrix had minor influence on the lipolytic activity. The results also demonstrated that the increase in lipolytic activity caused by Br-ex was not affected by the SM matrix. However, addition of Br-ex resulted in a lower percentage of EPA and DHA in the FFA fraction, suggesting that the lipase sn-position preference was altered. Whether this affects the bioaccessibility of EPA and DHA needs further investigation.

  14. Influence of FFA Activities on Critical Thinking Skills in Texas Three-Star FFA Chapters

    ERIC Educational Resources Information Center

    Latham, Lindsey; Rayfield, John; Moore, Lori L.

    2015-01-01

    The purpose of this study was to determine the relationship of FFA activities on critical thinking skills of Texas FFA members in three-star FFA chapters. This descriptive study was conducted in eight purposively selected three-star FFA chapters throughout Texas. Three-star chapters are those chapters who have emerged as outstanding programs…

  15. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species.

    PubMed

    Pasvolsky, Ronit; Zakin, Varda; Ostrova, Ievgeniia; Shemesh, Moshe

    2014-07-02

    Bacillus species form biofilms within milking pipelines and on surfaces of equipment in the dairy industry which represent a continuous hygiene problem and can lead to serious economic losses due to food spoilage and equipment impairment. Although much is known about the mechanism by which the model organism Bacillus subtilis forms biofilms in laboratory mediums in vitro, little is known of how these biofilms are formed in natural environments such as milk. Besides, little is known of the signaling pathways leading to biofilm formation in other Bacillus species, such as Bacillus cereus and Bacillus licheniformis, both of which are known to contaminate milk. In this study, we report that milk triggers the formation of biofilm-related structures, termed bundles. We show this to be a conserved phenomenon among all Bacillus members tested. Moreover, we demonstrate that the tasA gene, which encodes a major portion of the matrix which holds the biofilm together, is vital for this process. Furthermore, we show that the free fatty acid (FFA) - butyric acid (BA), which is released during lipolysis of milk fat and demonstrates antimicrobial activity, is the potent trigger for biofilm bundle formation. We finally show that BA-triggered biofilm bundle formation is mediated by the histidine kinase, KinD. Taken together, these observations indicate that BA, which is a major FFA within milk triggers biofilm formation in a conserved mechanism among members of the Bacillus genus.

  16. The New FFA--Relevant, Flexible.

    ERIC Educational Resources Information Center

    Future Farmers of America, Washington, DC.

    To make education more relevant, the 1972 national seminar sought ways of integrating the Future Farmers of America (FFA) program with the broadened agricultural instruction program. Topics discussed included: (1) "Role of the FFA in the Changing Program of Agricultural Education" - William Gray (Moderator), (2) "But How Do We Get…

  17. Parliamentary Procedure for the FFA Member.

    ERIC Educational Resources Information Center

    Joestgen, John G.

    Information and examples concerning parliamentary procedures are presented in this instructional manual written for Wisconsin Future Farmers of America (FFA) members and FFA parliamentary procedure teams. Topics include the following: secretary minutes (bylaws, officers, quorum, order of business, meeting and session, introducing business,…

  18. Physiological Effects of Free Fatty Acid Production in Genetically Engineered Synechococcus elongatus PCC 7942

    PubMed Central

    Ruffing, Anne M.; Jones, Howland D.T.

    2012-01-01

    The direct conversion of carbon dioxide into biofuels by photosynthetic microorganisms is a promising alternative energy solution. In this study, a model cyanobacterium, Synechococcus elongatus PCC 7942, is engineered to produce free fatty acids (FFA), potential biodiesel precursors, via gene knockout of the FFA-recycling acyl-ACP synthetase and expression of a thioesterase for release of the FFA. Similar to previous efforts, the engineered strains produce and excrete FFA, but the yields are too low for large-scale production. While other efforts have applied additional metabolic engineering strategies in an attempt to boost FFA production, we focus on characterizing the engineered strains to identify the physiological effects that limit cell growth and FFA synthesis. The strains engineered for FFA-production show reduced photosynthetic yields, chlorophyll-a degradation, and changes in the cellular localization of the light-harvesting pigments, phycocyanin and allophycocyanin. Possible causes of these physiological effects are also identified. The addition of exogenous linolenic acid, a polyunsaturated FFA, to cultures of S. elongatus 7942 yielded a physiological response similar to that observed in the FFA-producing strains with only one notable difference. In addition, the lipid constituents of the cell and thylakoid membranes in the FFA-producing strains show changes in both the relative amounts of lipid components and the degree of saturation of the fatty acid side chains. These changes in lipid composition may affect membrane integrity and structure, the binding and diffusion of phycobilisomes, and the activity of membrane-bound enzymes including those involved in photosynthesis. Thus, the toxicity of unsaturated FFA and changes in membrane composition may be responsible for the physiological effects observed in FFA-producing S. elongatus 7942. These issues must be addressed to enable the high yields of FFA synthesis necessary for large-scale biofuel

  19. Robust expertise effects in right FFA

    PubMed Central

    McGugin, Rankin Williams; Newton, Allen T; Gore, John C; Gauthier, Isabel

    2015-01-01

    The fusiform face area (FFA) is one of several areas in occipito-temporal cortex whose activity is correlated with perceptual expertise for objects. Here, we investigate the robustness of expertise effects in FFA and other areas to a strong task manipulation that increases both perceptual and attentional demands. With high-resolution fMRI at 7Telsa, we measured responses to images of cars, faces and a category globally visually similar to cars (sofas) in 26 subjects who varied in expertise with cars, in (a) a low load 1-back task with a single object category and (b) a high load task in which objects from two categories rapidly alternated and attention was required to both categories. The low load condition revealed several areas more active as a function of expertise, including both posterior and anterior portions of FFA bilaterally (FFA1/FFA2 respectively). Under high load, fewer areas were positively correlated with expertise and several areas were even negatively correlated, but the expertise effect in face-selective voxels in the anterior portion of FFA (FFA2) remained robust. Finally, we found that behavioral car expertise also predicted increased responses to sofa images but no behavioral advantages in sofa discrimination, suggesting that global shape similarity to a category of expertise is enough to elicit a response in FFA and other areas sensitive to experience, even when the category itself is not of special interest. The robustness of expertise effects in right FFA2 and the expertise effects driven by visual similarity both argue against attention being the sole determinant of expertise effects in extrastriate areas. PMID:25192631

  20. Robust expertise effects in right FFA.

    PubMed

    McGugin, Rankin Williams; Newton, Allen T; Gore, John C; Gauthier, Isabel

    2014-10-01

    The fusiform face area (FFA) is one of several areas in occipito-temporal cortex whose activity is correlated with perceptual expertise for objects. Here, we investigate the robustness of expertise effects in FFA and other areas to a strong task manipulation that increases both perceptual and attentional demands. With high-resolution fMRI at 7T, we measured responses to images of cars, faces and a category globally visually similar to cars (sofas) in 26 subjects who varied in expertise with cars, in (a) a low load 1-back task with a single object category and (b) a high load task in which objects from two categories were rapidly alternated and attention was required to both categories. The low load condition revealed several areas more active as a function of expertise, including both posterior and anterior portions of FFA bilaterally (FFA1/FFA2, respectively). Under high load, fewer areas were positively correlated with expertise and several areas were even negatively correlated, but the expertise effect in face-selective voxels in the anterior portion of FFA (FFA2) remained robust. Finally, we found that behavioral car expertise also predicted increased responses to sofa images but no behavioral advantages in sofa discrimination, suggesting that global shape similarity to a category of expertise is enough to elicit a response in FFA and other areas sensitive to experience, even when the category itself is not of special interest. The robustness of expertise effects in right FFA2 and the expertise effects driven by visual similarity both argue against attention being the sole determinant of expertise effects in extrastriate areas.

  1. Factors Impacting Members Decision to Continue FFA beyond High School

    ERIC Educational Resources Information Center

    Sanok, Danielle E.; Stripling, Christopher T.; Stephens, Carrie A.; Griffith, Andrew P.

    2015-01-01

    The purpose of this study was to determine the factors influencing FFA members to continue their FFA experience beyond high school. Two focus groups were conducted, one for collegiate FFA members and one for past/current state officers. Participants provided several areas of improvement for collegiate and alumni FFA membership. Participants noted…

  2. Critical Theory View of the National FFA Convention

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2015-01-01

    Urban FFA members face unique challenges if they want to become active members in the National FFA Organization. FFA leaders have realized that the FFA organization does not represent the evolving demographics of America and have made efforts to cater to urban and diverse high school audiences with some success. This study seeks to explore this…

  3. Relationship between body fat mass and free fatty acid kinetics in men and women.

    PubMed

    Mittendorfer, Bettina; Magkos, Faidon; Fabbrini, Elisa; Mohammed, B Selma; Klein, Samuel

    2009-10-01

    An increased release of free fatty acids (FFAs) into plasma likely contributes to the metabolic complications associated with obesity. However, the relationship between body fat and FFA metabolism is unclear because of conflicting results from different studies. The goal of our study was to determine the inter-relationships between body fat, sex, and plasma FFA kinetics. We determined FFA rate of appearance (Ra) in plasma, by using stable isotopically labeled tracer techniques, during basal conditions in 106 lean, overweight, and obese, nondiabetic subjects (43 men and 63 women who had 7.0-56.0% body fat). Correlation analyses demonstrated: (i) no differences between men and women in the relationship between fat mass (FM) and total FFA Ra (micromol/min); (ii) total FFA Ra increased linearly with increasing FM (r=0.652, P<0.001); (iii) FFA Ra per kg FM decreased in a curvilinear fashion with increasing FM (r=-0.806; P<0.001); (iv) FFA Ra in relationship to fat-free mass (FFM) was greater in obese than lean subjects and greater in women than in men; and (v) abdominal fat itself was not an important determinant of total FFA Ra. We conclude that total body fat, not regional fat distribution or sex, is an important modulator of the rate of FFA release into plasma. Although increased adiposity is associated with a decrease in fatty acid release in relationship to FM, this downregulation is unable to completely compensate for the increase in FM, so total FFA Ra and FFA Ra with respect to FFM are greater in women than in men and in obese than in lean subjects.

  4. Urban FFA Members' Sense of the Organizational Culture of the FFA

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2014-01-01

    Organizational culture shapes how members of a group act. The culture has the power to exclude potential new members who do not fit into the culture of the organization. Research on urban school-based agriculture programs has indicated that urban agriculture students face barriers to their participation in the National FFA Organization (FFA).…

  5. Modeling of free fatty acid dynamics: insulin and nicotinic acid resistance under acute and chronic treatments.

    PubMed

    Andersson, Robert; Kroon, Tobias; Almquist, Joachim; Jirstrand, Mats; Oakes, Nicholas D; Evans, Neil D; Chappel, Michael J; Gabrielsson, Johan

    2017-02-21

    Nicotinic acid (NiAc) is a potent inhibitor of adipose tissue lipolysis. Acute administration results in a rapid reduction of plasma free fatty acid (FFA) concentrations. Sustained NiAc exposure is associated with tolerance development (drug resistance) and complete adaptation (FFA returning to pretreatment levels). We conducted a meta-analysis on a rich pre-clinical data set of the NiAc-FFA interaction to establish the acute and chronic exposure-response relations from a macro perspective. The data were analyzed using a nonlinear mixed-effects framework. We also developed a new turnover model that describes the adaptation seen in plasma FFA concentrations in lean Sprague-Dawley and obese Zucker rats following acute and chronic NiAc exposure. The adaptive mechanisms within the system were described using integral control systems and dynamic efficacies in the traditional [Formula: see text] model. Insulin was incorporated in parallel with NiAc as the main endogenous co-variate of FFA dynamics. The model captured profound insulin resistance and complete drug resistance in obese rats. The efficacy of NiAc as an inhibitor of FFA release went from 1 to approximately 0 during sustained exposure in obese rats. The potency of NiAc as an inhibitor of insulin and of FFA release was estimated to be 0.338 and 0.436 [Formula: see text], respectively, in obese rats. A range of dosing regimens was analyzed and predictions made for optimizing NiAc delivery to minimize FFA exposure. Given the exposure levels of the experiments, the importance of washout periods in-between NiAc infusions was illustrated. The washout periods should be [Formula: see text]2 h longer than the infusions in order to optimize 24 h lowering of FFA in rats. However, the predicted concentration-response relationships suggests that higher AUC reductions might be attained at lower NiAc exposures.

  6. FFA4/GPR120 agonists: a survey of the recent patent literature.

    PubMed

    Formicola, Rosa; Pevarello, Paolo; Kuhn, Christina; Liberati, Chiara; Piscitelli, Francesco; Sodano, Mariangela

    2015-01-01

    FFA4/GPR120, a member of the rhodopsin family of G-protein-coupled receptors (GPCRs), is becoming an important target for therapeutic intervention in several areas of disease, including metabolic diseases, inflammation and cancer. In the last few years several patents on original chemotypes have been generated by different companies. In this review an analysis of the patents in the FFA4 agonism field is presented, with an emphasis on the documents published between 2013 and mid-2015. A discussion of the biological methods used in the patents is included. The general interest in this area is growing fast as half of the existing patents on FFA4 agonists have been issued after 2013. There is, however, a need of further diversifying new chemical classes away form the current substrate-like, carboxylic acid-containing agonists.

  7. Capture and release of acid-gasses with acid-gas binding organic compounds

    DOEpatents

    Heldebrant, David J; Yonker, Clement R; Koech, Phillip K

    2015-03-17

    A system and method for acid-gas capture wherein organic acid-gas capture materials form hetero-atom analogs of alkyl-carbonate when contacted with an acid gas. These organic-acid gas capture materials include combinations of a weak acid and a base, or zwitterionic liquids. This invention allows for reversible acid-gas binding to these organic binding materials thus allowing for the capture and release of one or more acid gases. These acid-gas binding organic compounds can be regenerated to release the captured acid gasses and enable these organic acid-gas binding materials to be reused. This enables transport of the liquid capture compounds and the release of the acid gases from the organic liquid with significant energy savings compared to current aqueous systems.

  8. Plasma HDL reduces nonesterified fatty acid hydroperoxides originating from oxidized LDL: a mechanism for its antioxidant ability.

    PubMed

    Kotosai, Mari; Shimada, Sachiko; Kanda, Mai; Matsuda, Namiko; Sekido, Keiko; Shimizu, Yoshibumi; Tokumura, Akira; Nakamura, Toshiyuki; Murota, Kaeko; Kawai, Yoshichika; Terao, Junji

    2013-06-01

    The antioxidant property of plasma high-density lipoprotein (HDL) is thought to be involved in potential anti-atherogenic effects but the exact mechanism is not known. We aimed to reveal the contribution of HDL on the elimination of lipid hydroperoxides (LOOH) derived from oxidized low-density lipoprotein (LDL). Oxidized LDL prepared by copper ion-induced oxidation contained nonesterified fatty acid hydroperoxides (FFA-OOH) and lysophosphatidylcholine (lysoPtdCho), in addition to cholesteryl ester hydroperoxides (CE-OOH) and phosphatidylcholine hydroperoxides (PtdCho-OOH). A platelet-activating factor-acetylhydrolase (PAF-AH) inhibitor suppressed formation of FFA-OOH and lysoPtdCho in oxidized LDL. Among LOOH species, FFA-OOH was preferentially reduced by incubating oxidized LDL with HDL. HDL exhibited selective FFA-OOH reducing ability if it was mixed with a liposomal solution containing FFA-OOH, CE-OOH and PtdCho-OOH. Two-electron reduction of the hydroperoxy group to the hydroxy group was confirmed by the formation of 13-hydroxyoctadecadienoic acid from 13-hydroperoxyoctadecadienoic acid in HPLC analyses. This reducing effect was also found in apolipoprotein A-1 (apoA-1). FFA-OOH released from PtdCho-OOH due to PAF-AH activity in oxidized LDL undergo two-electron reduction by the reducing ability of apoA1 in HDL. This preferential reduction of FFA-OOH may participate in the mechanism of the antioxidant property of HDL.

  9. State FFA Officers' Confidence and Trustworthiness of Biotechnology Information Sources

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Rutherford, Tracy A.

    2007-01-01

    Are state FFA officers' awareness levels of agricultural topics reported in mass media superior to those who do not serve in leadership roles? The purpose of this study was to determine elected state FFA officers' awareness of biotechnology, and their confidence and trust of biotechnology information sources. Descriptive survey methods were used…

  10. Agrarianism: An Ideology of the National FFA Organization

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2013-01-01

    The traditions of the National FFA Organization (FFA) are grounded in agrarianism. This ideology focuses on the ability of farming and nature to develop citizens and integrity within people. Agrarianism has been an important thread of American rhetoric since the founding of country. The ideology has morphed over the last two centuries as the…

  11. Factors Influencing or Discouraging Secondary School Students' FFA Participation

    ERIC Educational Resources Information Center

    Phelps, Kirstin; Henry, Anna L.; Bird, William A.

    2012-01-01

    Modern adolescents are faced with a variety of choices regarding how to spend their free time. As recruitment and increased student participation continues to be a major priority of the National FFA Organization, it is essential to explore the reasons why students make the choice to become or not to become a member of FFA. This study was a part of…

  12. The Benefits of FFA Membership as Part of Agricultural Education

    ERIC Educational Resources Information Center

    Rose, Chelsea; Stephens, Carrie A.; Stripling, Christopher; Cross, Tim; Sanok, Danielle E.; Brawner, Shelby

    2016-01-01

    The study sought to identify the benefits of FFA membership based on the fulfillment of three basic human needs: love and belonging, self-esteem, and self-actualization. The study focused on the fulfillment of FFA members' basic human needs as defined by Abraham Maslow. The three needs on which this study focused are: love and belonging,…

  13. Effects of Acute Supramaximal Cycle Exercise on Plasma FFA Concentration in Obese Adolescent Boys

    PubMed Central

    Jabbour, Georges

    2015-01-01

    Aims The aims of the present study are 1) to evaluate the free fatty acid (FFA) profile and 2) to determine the relative anaerobic and aerobic contributions to total energy consumption during repeated supramaximal cycling bouts (SCE) in adolescent boys with different body weight statuses. Materials and Methods Normal-weight (NW), overweight (OW), and obese (OB) adolescent boys (n =15 per group) completed a SCE sessions consisted of 6 x 6s maximal sprints with 2 min of passive rest between each repetition. Plasma FFA levels were determined at rest, immediately after a 10 min warm-up, and immediately at the end of SCE. The anaerobic and aerobic contributions (%) were measured via repeated SCE bouts. Insulin resistance was calculated using the homoeostatic model assessment (HOMA-IR) index. Results The FFA concentrations measured immediately after SCE were higher in the OB group than in the OW and NW (p<0.01 and p<0.01, respectively) groups. Moreover, the anaerobic contributions to SCE were significantly lower in obese adolescents (p<0.01) and decreased significantly during the 2nd, 3rd and 4th repetitions. The FFA levels were significantly associated with the HOMA-IR index and aerobic contribution among adolescent boys (r=0.83 and r=0.91, respectively, p<0.01). Conclusion In contrast to the NW and OW groups, there is an increase in lipid mobilization and sift to aerobic energy metabolism during SCE in the OB group. PMID:26076464

  14. An Examination of Middle School Agricultural Education and FFA Programs: Survey Results from State FFA Executive Secretaries.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; McCaslin, N. L.

    A study collected information from 52 of the 53 state Future Farmers of America (FFA) executive secretaries who were sent questionnaires on middle school student enrollment in agricultural education and membership in the national FFA organization. Results showed that 30 states have agricultural education programs in the middle school level, with a…

  15. Insulin-Mediated FFA Suppression Is Associated with Triglyceridemia and Insulin Sensitivity Independent of Adiposity

    PubMed Central

    Bush, Nikki C.; Basu, Rita; Rizza, Robert A.; Nair, K. Sreekumaran; Khosla, Sundeep

    2012-01-01

    Context: A central/visceral fat distribution and excess free fatty acid (FFA) availability are associated with dyslipidemia and insulin resistance. However, these two characteristics often coexist, making it difficult to detect the independent contributions of each. Whether FFA suppression is more closely linked to metabolic abnormalities is not clear. Objective: The aim of the study was to examine the relationship between FFA suppression, body fat distribution, and fitness as contributors toward insulin resistance and hypertriglyceridemia. Design: We measured systemic palmitate turnover using an iv infusion of [9,10-3H]palmitate; upper body sc adipose tissue (UBSQ) and visceral adipose tissue (VAT) with dual-energy x-ray absorptiometry and a single-slice abdominal computed tomography scan; fitness with a graded exercise treadmill test; and insulin sensitivity with both the iv glucose tolerance test (IVGTT) (SIIVGTT) and mixed meal tolerance test (SIMeal). Setting: The study was conducted at a General Clinical Research Center. Participants: Baseline data were obtained from 140 elderly adults (age, 60–88 yr; 83 males) and 60 young adults (age, 18–31 yr; 31 males) who participated in a previously published trial assessing the effects of 2-yr supplementation of dehydroepiandrosterone or testosterone on body composition, glucose metabolism, and bone density. Interventions: There were no interventions. Main Outcome Measures: We measured fasting plasma triglyceride (TG) concentrations, SIIVGTT, and SIMeal. Results: Using multivariate regression analysis, the strongest combined predictors of TG concentrations were VAT, postmeal nadir FFA concentrations, sex, and age. The best predictors of SIIVGTT were IVGTT nadir palmitate concentration, VAT, UBSQ fat, fitness, and age, whereas the best predictors of SIMeal were meal nadir palmitate concentration, UBSQ fat, fitness, and sex. Conclusions: FFA suppression is associated with both fasting TG concentrations and insulin

  16. Meeting record for FFA working meeting of November 15, 1991

    SciTech Connect

    Stejskal, G.F.

    1992-01-03

    This document provides a meeting record of the Federal Facility Agreement (FFA) working meeting to discuss progress on old issues and further required actions regarding environmental impacts of the Savannah River Facility. (FI)

  17. Hypochlorous acid regulates neutrophil extracellular trap release in humans.

    PubMed

    Palmer, L J; Cooper, P R; Ling, M R; Wright, H J; Huissoon, A; Chapple, I L C

    2012-02-01

    Neutrophil extracellular traps (NETs) comprise extracellular chromatin and granule protein complexes that immobilize and kill bacteria. NET release represents a recently discovered, novel anti-microbial strategy regulated non-exclusively by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generation of reactive oxygen intermediates (ROIs), particularly hydrogen peroxide. This study aimed to characterize the role of ROIs in the process of NET release and to identify the dominant ROI trigger. We employed various enzymes, inhibitors and ROIs to record their effect fluorometrically on in vitro NET release by human peripheral blood neutrophils. Treatment with exogenous superoxide dismutase (SOD) supported the established link between hydrogen peroxide and NET production. However, treatment with myeloperoxidase inhibitors and direct addition of hypochlorous acid (HOCl; generated in situ from sodium hypochlorite) established that HOCl was a necessary and sufficient ROI for NET release. This was confirmed by the ability of HOCl to stimulate NET release in chronic granulomatous disease (CGD) patient neutrophils which, due to the lack of a functional NADPH oxidase, also lack the capacity for NET release in response to classical stimuli. Moreover, the exogenous addition of taurine, abundantly present within the neutrophil cytosol, abrogated NET production stimulated by phorbol myristate acetate (PMA) and HOCl, providing a novel mode of cytoprotection by taurine against oxidative stress by taurine.

  18. An Analysis of FFA Chapter Demographics as Compared to Schools and Communities

    ERIC Educational Resources Information Center

    Lawrence, Shannon; Rayfield, John; Moore, Lori L.; Outley, Corliss

    2013-01-01

    This descriptive study was a special project for the National FFA [Future Farmers of America] Organization to determine the demographic makeup of rural, suburban, urban, and randomly selected at-large FFA chapters from the four national FFA regions. Summary data for this study revealed that gender in selected FFA chapters was 55% male and 45%…

  19. Winning the War: A Historical Analysis of the FFA during World War II

    ERIC Educational Resources Information Center

    Wolf, Kattlyn J.; Connors, James J.

    2009-01-01

    The United States' participation in World War II affected millions of men, women, and children, both at home and around the world. The war effort also affected the Future Farmers of America (FFA). FFA members, agriculture teachers, and national FFA officers all volunteered to serve their country during the war. Local FFA chapters and individual…

  20. Free fatty acids do not acutely increase asymmetrical dimethylarginine concentrations.

    PubMed

    Namiranian, K; Mittermayer, F; Artwohl, M; Pleiner, J; Schaller, G; Mayer, B X; Bayerle-Eder, M; Roden, M; Baumgartner-Parzer, S; Wolzt, M

    2005-12-01

    Concentrations of asymmetrical dimethylarginine (ADMA) and free fatty acids (FFAs) are elevated in insulin resistance which is associated with impaired vascular function. We hypothesized that FFAs could alter vascular tone by affecting ADMA concentrations. Plasma FFA levels were increased in seventeen healthy male volunteers by Intralipid/heparin infusion; hemodynamic and biochemical parameters were measured after 90 minutes. Plasma collected before and during Intralipid/heparin or equivalent synthetic FFAs was incubated with human umbilical vein endothelial cells (HUVECs) in vitro. Intralipid/heparin infusion resulted in an approximately seven-fold increase in plasma FFA levels to 1861 +/- 139 micromol/l, which was paralleled by increased systemic blood pressure and forearm blood flow. Intralipid/heparin did not affect ADMA (baseline mean 0.59 [95 % confidence interval [CI]: 0.54; 0.64] and 0.56 [CI: 0.51; 0.59] after 90 minutes), but slightly decreased SDMA (from 0.76, [CI: 0.70; 0.83] to 0.71 [CI: 0.64; 0.74], p < 0.05), and had no effect on ADMA/SDMA ratio. There was no correlation between ADMA and FFA concentrations or forearm blood flow. Incubation of HUVECs with FFA-rich plasma or synthetic FFAs induced an ADMA release after 24 hours, but not after 90 minutes. Acutely increased FFA levels caused hemodynamic effects but did not affect ADMA. Prolonged elevation of FFA levels might influence vascular function by increasing ADMA levels.

  1. Production of ascorbic acid releasing biomaterials for pelvic floor repair

    PubMed Central

    Mangır, Naşide; Bullock, Anthony J.; Roman, Sabiniano; Osman, Nadir; Chapple, Christopher; MacNeil, Sheila

    2016-01-01

    Objective An underlying abnormality in collagen turnover is implied in the occurrence of complications and recurrences after mesh augmented pelvic floor repair surgeries. Ascorbic acid is a potent stimulant of collagen synthesis. The aim of this study is to produce ascorbic acid releasing poly-lactic acid (PLA) scaffolds and evaluate them for their effects on extracellular matrix production and the strength of the materials. Materials and methods Scaffolds which contained either l-ascorbic acid (AA) and Ascorbate-2-Phosphate (A2P) were produced with emulsion electrospinning. The release of both drugs was measured by UV spectrophotometry. Human dermal fibroblasts were seeded on scaffolds and cultured for 2 weeks. Cell attachment, viability and total collagen production were evaluated as well as mechanical properties. Results No significant differences were observed between AA, A2P, Vehicle and PLA scaffolds in terms of fibre diameter and pore size. The encapsulation efficiency and successful release of both AA and A2P were demonstrated. Both AA and A2P containing scaffolds were significantly more hydrophilic and stronger in both dry and wet states compared to PLA scaffolds. Fibroblasts produced more collagen on scaffolds containing either AA or A2P compared to cells grown on control scaffolds. Conclusion This study is the first to directly compare the two ascorbic acid derivatives in a tissue engineered scaffold and shows that both AA and A2P releasing electrospun PLA scaffolds increased collagen production of fibroblasts to similar extents but AA scaffolds seemed to be more hydrophilic and stronger compared to A2P scaffolds. Statement of significance Mesh augmented surgical repair of the pelvic floor currently relies on non-degradable materials which results in severe complications in some patients. There is an unmet and urgent need for better pelvic floor repair materials. Our current understanding suggests that the ideal material should be able to better

  2. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  3. Interfacial Fast Release Layer in Monodisperse Poly (lactic-co-glycolic acid) Microspheres Accelerates the Drug Release.

    PubMed

    Wu, Jun; Zhao, Xiaoli; Yeung, Kelvin W K; To, Michael K T

    2016-01-01

    Understanding microstructural evolutions of drug delivery devices during drug release process is essential for revealing the drug release mechanisms and controlling the drug release profiles. In this study, monodisperse poly (lactic-co-glycolic acid) microspheres in different diameters were fabricated by microfluidics in order to find out the relationships between the microstructural evolutions and the drug release profiles. It was found that poly (lactic-co-glycolic acid) microspheres underwent significant size expansion which took place from the periphery to the center, resulting in the formation of interfacial fast release layers. At the same time, inner pores were created and the diffusion rate was increased so that the early stage drug release was accelerated. Due to the different expansion rates, small poly (lactic-co-glycolic acid) microspheres tendered to follow homogeneous drug release while large poly (lactic-co-glycolic acid) microspheres tendered to follow heterogeneous drug release. This study suggests that the size expansion and the occurrence of interfacial fast release layer were important mechanisms for early stage drug release of poly (lactic-co-glycolic acid) microspheres.

  4. Release of ANP and fat oxidation in overweight persons during aerobic exercise in water.

    PubMed

    Fenzl, M; Schnizer, W; Aebli, N; Schlegel, C; Villiger, B; Disch, A; Gredig, J; Zaugg, T; Krebs, J

    2013-09-01

    Exercise in water compared to land-based exercise (LE) results in a higher release of natriuretic peptides, which are involved in the regulation of exercise-induced adipose tissue lipolysis. The present study was performed to compare the release of atrial natriuretic peptide (ANP) and free fatty acids (FFA) during prolonged aerobic water-based exercise (WE) with the release after an identical LE. 14 untrained overweight subjects performed 2 steady state workload tests on the same ergometer in water and on land. Before and after exercise, venous blood samples were collected for measuring ANP, FFA, epinephrine, norepinephrine, insulin and glucose. The respiratory exchange ratio (RER) was determined for fat oxidation.The exercises resulted in a significant increase in ANP in LE (61%) and in WE (177%), and FFA increased about 3-fold in LE and WE with no significant difference between the groups. Epinephrine increased, while insulin decreased similarly in both groups. The RER values decreased during the exercises, but there was no significant difference between LE and WE. In conclusion, the higher ANP concentrations in WE had no additional effect on lipid mobilization, FFA release and fat oxidation. Moderate-intensity exercises in water offer no benefit regarding adipose tissue lipolysis in comparison to LE.

  5. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women.

    PubMed

    Pasman, Wilrike J; Heimerikx, Jos; Rubingh, Carina M; van den Berg, Robin; O'Shea, Marianne; Gambelli, Luisa; Hendriks, Henk F J; Einerhand, Alexandra W C; Scott, Corey; Keizer, Hiskias G; Mennen, Louise I

    2008-03-20

    Appetite suppressants may be one strategy in the fight against obesity. This study evaluated whether Korean pine nut free fatty acids (FFA) and triglycerides (TG) work as an appetite suppressant. Korean pine nut FFA were evaluated in STC-1 cell culture for their ability to increase cholecystokinin (CCK-8) secretion vs. several other dietary fatty acids from Italian stone pine nut fatty acids, oleic acid, linoleic acid, alpha-linolenic acid, and capric acid used as a control. At 50 muM concentration, Korean pine nut FFA produced the greatest amount of CCK-8 release (493 pg/ml) relative to the other fatty acids and control (46 pg/ml). A randomized, placebo-controlled, double-blind cross-over trial including 18 overweight post-menopausal women was performed. Subjects received capsules with 3 g Korean pine (Pinus koraiensis) nut FFA, 3 g pine nut TG or 3 g placebo (olive oil) in combination with a light breakfast. At 0, 30, 60, 90, 120, 180 and 240 minutes the gut hormones cholecystokinin (CCK-8), glucagon like peptide-1 (GLP-1), peptide YY (PYY) and ghrelin, and appetite sensations were measured. A wash-out period of one week separated each intervention day.CCK-8 was higher 30 min after pine nut FFA and 60 min after pine nut TG when compared to placebo (p < 0.01). GLP-1 was higher 60 min after pine nut FFA compared to placebo (p < 0.01). Over a period of 4 hours the total amount of plasma CCK-8 was 60% higher after pine nut FFA and 22% higher after pine nut TG than after placebo (p < 0.01). For GLP-1 this difference was 25% after pine nut FFA (P < 0.05). Ghrelin and PYY levels were not different between groups. The appetite sensation "prospective food intake" was 36% lower after pine nut FFA relative to placebo (P < 0.05). This study suggests that Korean pine nut may work as an appetite suppressant through an increasing effect on satiety hormones and a reduced prospective food intake.

  6. Occupational Aspirations of State FFA Contest and Award Winners.

    ERIC Educational Resources Information Center

    Bowen, Blannie E.; Doerfert, David L.

    1989-01-01

    A study explored the occupational aspirations of 300 (of 503) students with high levels of participation in Future Farmers of America's (FFA) Computers in Agriculture (CIA), Proficiency Award (PA), and Prepared and Extemporaneous Speaking (PES) contests. CIA and PES winners aspired to professional occupations more than PA winners. PES winners…

  7. Identifying Quality Indicators of SAE and FFA: A Delphi Approach

    ERIC Educational Resources Information Center

    Jenkins, Charles Cordell, III; Kitchel, Tracy

    2009-01-01

    The purpose of this study was to determine quality indicators for SAE and FFA according to 36 experts across the United States. This is a part of a larger study looking at all components of the traditional three-circle model. The study utilized the Delphi technique to garner expert opinion about quality indicators in Agricultural Education. For…

  8. Calcitonin releases acid phosphatase from rat ventral prostate explants.

    PubMed

    Latif, A; Nakhla, A M

    1994-01-01

    Inclusion of salmon calcitonin in the culture medium of rat ventral prostate explants diminished l-tartarate-sensitive acid phosphatase activity in the tissues with a concomitant increment of the enzyme activity in the medium. The effect of the hormone was dose-dependent for a dose range of 10(-12)-10(-6) M. Acid phosphatase activity in prostate explants decreased from 38.6 +/- 3.5 to 20.5 +/- 2.8, whereas it increased from 0.60 +/- 0.15 to 2.80 +/- 0.40 nmol p-nitrophenol liberated/mg protein/30 min in the culture medium. Tissues exposed to 10(-6) M salmon calcitonin had higher acetylcholinesterase activity (8.8 +/- 0.7) than non-exposed ones (6.2 +/- 0.5 mumol substrate hydrolyzed/g tissue/min). These results suggest that locally produced calcitonin causes a release for prostatic acid phosphatase from prostate tissues possibly through its interaction with the cholinergic system.

  9. Examining Year-Long Leadership Gains in FFA Members by Prior FFA Involvement, Class Year, and Gender

    ERIC Educational Resources Information Center

    Rosch, David; Simonsen, Jon C.; Velez, Jonathan J.

    2015-01-01

    Students (N = 160) in three diverse FFA chapters were surveyed in early fall, midwinter, and late spring in regard to their leadership skills, confidence in leading, and motivation to engage in leadership-oriented behaviors. The results indicated small-to-moderate gains in transformational leadership skill and a marginally significant…

  10. Chemically triggered release of 5-aminolevulinic acid from liposomes*

    PubMed Central

    Plaunt, Adam J.; Harmatys, Kara M.; Hendrie, Kyle A.; Musso, Anthony J.

    2014-01-01

    5-Aminolevulinic acid (5-ALA), a prodrug of Protoporphyrin IX (PpIX), is used for photodynamic therapy of several medical conditions, and as an adjunct for fluorescence guided surgery. The clinical problem of patient photosensitivity after systemic administration could likely be ameliorated if the 5-ALA was delivered more selectivity to the treatment site. Liposomal formulations are inherently attractive as targeted delivery vehicles but it is hard to regulate the spatiotemporal release of aqueous contents from a liposome. Here, we demonstrate chemically triggered leakage of 5-ALA from stealth liposomes in the presence of cell culture. The chemical trigger is a zinc(II)-dipicolylamine (ZnBDPA) coordination complex that selectively targets liposome membranes containing a small amount of anionic phosphatidylserine. Systematic screening of several ZnBDPA complexes uncovered a compound with excellent performance in biological media. Cell culture studies showed triggered release of 5-ALA from stealth liposomes followed by uptake into neighboring mammalian cells and intracellular biosynthesis to form fluorescent PpIX. PMID:25414791

  11. Factors Related to the Success of New Mexico Vocational Agriculture Teachers as FFA Advisors

    ERIC Educational Resources Information Center

    Vaughn, Paul R.

    1976-01-01

    A study to identify characteristics which are related to the degree of success of an FFA advisor, and to identify competencies in which a teacher's perceived proficiency are related to his success as an FFA advisor. (HD)

  12. Development of a Controlled Release of Salicylic Acid Loaded Stearic Acid-Oleic Acid Nanoparticles in Cream for Topical Delivery

    PubMed Central

    Woo, J. O.; Misran, M.; Lee, P. F.; Tan, L. P.

    2014-01-01

    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release. PMID:24578624

  13. Risk of hydrocyanic acid release in the electroplating industry.

    PubMed

    Piccinini, N; Ruggiero, G N; Baldi, G; Robotto, A

    2000-01-07

    This paper suggests assessing the consequences of hydrocyanic acid (HCN) release into the air by aqueous cyanide solutions in abnormal situations such as the accidental introduction of an acid, or the insertion of a cyanide in a pickling bath. It provides a well-defined source model and its resolution by methods peculiar to mass transport phenomena. The procedure consists of four stages: calculation of the liquid phase concentration, estimate of the HCN liquid-vapour equilibrium, determination of the mass transfer coefficient at the liquid-vapour interface, evaluation of the air concentration of HCN and of the damage distances. The results show that small baths operating at high temperatures are the major sources of risk. The building up of lethal air concentrations, on the other hand, is governed by the values of the mass transfer coefficient, which is itself determined by the flow dynamics and bath geometry. Concerning the magnitude of the risk, the fallout for external emergency planning is slight in all the cases investigated.

  14. The Impact of Learning Styles on Learning Outcomes at FFA Camp: What Campers Retain over Time

    ERIC Educational Resources Information Center

    Brown, Nicholas R.; Terry, Robert, Jr.; Kelsey, Kathleen D.

    2013-01-01

    Twenty-four states host FFA summer camps to support adolescent maturation along with indoctrination into the culture and values of the FFA. Camps typically include a variety of activities designed to engage members in social activities and non-formal academic content. More than 1500 campers attend the Oklahoma FFA Alumni Leadership Camp annually…

  15. Student Self-Perceptions of Leadership in Two Missouri FFA Chapters: A Collective Case Study

    ERIC Educational Resources Information Center

    Kagay, Rachel Bartholomew; Marx, Adam A.; Simonsen, Jon C.

    2015-01-01

    The focus of this study is the self-perceptions of leadership engagement of FFA members in two FFA chapters in Missouri. This multiple case study used documentation of student self-perceptions, researcher observations, and focus groups. The two cases included 24 high school students comprised of FFA officers and members, who provided their…

  16. Self-Perceived Youth Leadership and Life Skills of Iowa FFA Members.

    ERIC Educational Resources Information Center

    Wingenbach, Gary J.; Kahler, Alan A.

    1997-01-01

    The Youth Leadership and Life Skills Development Scale was completed by 282 of 316 Iowa Future Farmers of America (FFA) members. The strongest relationship appeared between their scores and FFA leadership activities. Other factors affecting life/leadership skills development included after-school jobs, years in FFA, grades, and gender. (SK)

  17. ADAPTING THE FFA TO A CHANGING PROGRAM OF VOCATIONAL AGRICULTURE. RESEARCH SERIES IN AGRICULTURAL EDUCATION.

    ERIC Educational Resources Information Center

    KANTER, EARL F.; BENDER, RALPH E.

    THE PURPOSE OF THIS NATIONAL STUDY WAS TO SUGGEST WAYS OF ADAPTING THE FUTURE FARMERS OF AMERICA (FFA) TO A CHANGING PROGRAM OF VOCATIONAL AGRICULTURE THROUGH IDENTIFYING NEW PURPOSES OF THE FFA AND EVALUATING SELECTED OPERATIONAL GUIDELINES AND NATIONAL AND STATE FFA ACTIVITIES. MEMBERS OF THE UNITED STATES OFFICE OF EDUCATION, HEAD STATE…

  18. Controlled release of insulin from folic acid-insulin complex nanoparticles.

    PubMed

    Gupta, Rajat; Mohanty, Sanat

    2017-03-03

    Associative interactions between folic acid and proteins are well known. This work leverages these interactions to engineer folic acid nanoparticles for controlled release of insulin during diabetes therapy. The insulin-loaded folic acid nanoformulation is synthesized during this study to achieve better insulin loading and encapsulation than previous strategies. The maximum insulin loading in the FA particles was kept at 6mg with less than 10% insulin loss during the synthesis process which is significantly better compare to previous strategies. The folic acid nanoparticles of 50-150nm size are further characterized in the present study. The release behaviour of insulin from the nanoparticles has been studied to quantify released insulin and folic acid with time using high performance liquid chromatography. Insulin release results suggest that more than 90% of the insulin is encapsulated and released within 24h from folic acid nanoparticles. The analysis of folic acid release along with insulin release indicates that the particles are formed by folic acid-insulin complexation at the molecular level. The release of insulin from nanoparticles is controllable with the change in the crosslinking salt concentration as well as the amount of folic acid loaded during particle synthesis. These results prove that folic acid nanocarriers are capable to control the release of therapeutic proteins.

  19. Release of ferulic acid and feruloylated oligosaccharides from sugar beet pulp by Streptomyces tendae.

    PubMed

    Ferreira, P; Diez, N; Faulds, C B; Soliveri, J; Copa-Patiño, J L

    2007-05-01

    Given several promising industrial applications of ferulic acid, this study was designed to identify actinomycete strains able to release high levels of this acid from sugar beet pulp (SBP). Out of 47 strains tested, 37% were found to release free ferulic acid from the growth substrate. One strain, identified as Streptomyces tendae by 16S RNA gene sequencing, was capable of releasing 80% of the ferulic acid ester-linked to the pectin in SBP after 5 days of growth. These data suggest that some actinomycetes are able to release ferulic acid and feruloylated oligosaccharides from SBP. During growth on SBP, it seems that Streptomyces species solubilize and release feruloylated oligosaccharides by specific carbohydrase activities before de-esterification and release of free ferulic acid.

  20. Activation and regulation of arachidonic acid release in rabbit peritoneal neutrophils

    SciTech Connect

    Tao, W.

    1988-01-01

    Arachidonic acid release in rabbit neutrophils can be enhanced by the addition of chemotactic fMet-Leu-Phe, platelet-activating factor, PAF, or the calcium ionophore A23187. Over 80% of the release ({sup 3}H)arachidonic acid comes from phosphatidylcholine and phosphatidylinositol. The release is dose-dependent and increases with increasing concentration of the stimulus. The A23187-induced release increases with increasing time of the stimulation. ({sup 3}H)arachidonic acid release, but not the rise in the concentration of intracellular calcium, is inhibited in pertussis toxin-treated neutrophils stimulated with PAF. The ({sup 3}H)arachidonic acid released by A23187 is potentiated while that release by fMET-Leu-Phe or PAF is inhibited in phorbol 12-myristate 13-acetate, PMA, treated rabbit neutrophils. The protein kinase C inhibitor 1-(5-isoquinoline sulfonyl)-2-methylpiperazine, H-7, has no effect on the potentiation by PMA of the A23187-induced release, it prevents the inhibition by PMA of the release produced by PAF or fMet-Leu-Phe. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. The diacylglycerol kinase inhibitor R59022 increases the level of diacylglycerol in neutrophils stimulated with fMet-Leu-Phe. Furthermore, R59022 potentiates ({sup 3}H) arachidonic acid release produced by fMet-Leu-Phe. This potentiation is not inhibited by H-7, in fact, it is increased in H-7-treated neutrophils.

  1. Action of luteinizing hormone-releasing hormone: involvement of novel arachidonic acid metabolites.

    PubMed Central

    Snyder, G D; Capdevila, J; Chacos, N; Manna, S; Falck, J R

    1983-01-01

    Anterior pituitary cells were incubated in the presence of luteinizing hormone-releasing hormone and one of three inhibitors of arachidonic acid metabolism:indomethacin, an inhibitor of the cyclooxygenase system; nordihydroguaiaretic acid, an antioxidant that inhibits lipoxygenase; and icosatetraynoic acid, an acetylenic analogue of arachidonic acid that blocks all known pathways of arachidonic acid metabolism. Indomethacin was ineffective in blocking luteinizing hormone-releasing hormone-stimulated luteinizing hormone secretion. Nordihydroguaiaretic acid was only marginally capable of inhibiting luteinizing hormone-releasing hormone-stimulated luteinizing hormone secretion. Icosatetraynoic acid at 10 microM completely inhibited stimulated luteinizing hormone secretion. Addition of several epoxygenated arachidonic acid metabolites to cells in vitro resulted in secretion of luteinizing hormone equal to or greater than that induced by 10 nM luteinizing hormone-releasing hormone. The half-maximal effective dose for these compounds was approximately 50 nM. The 5,6-epoxyicosatrienoic acid was the most potent of the compounds tested. These studies suggest that luteinizing hormone-releasing hormone-stimulated luteinizing hormone release is closely coupled with the production of oxidized arachidonic acid metabolites. Moreover, one or more of the epoxygenated arachidonic acid metabolites might be a component of the cascade of reactions initiated by luteinizing hormone-releasing hormone that ultimately results in secretion of luteinizing hormone. PMID:6344087

  2. A Novel Allosteric Activator of Free Fatty Acid 2 Receptor Displays Unique Gi-functional Bias*

    PubMed Central

    Bolognini, Daniele; Moss, Catherine E.; Nilsson, Karolina; Petersson, Annika U.; Donnelly, Iona; Sergeev, Eugenia; König, Gabriele M.; Kostenis, Evi; Kurowska-Stolarska, Mariola; Miller, Ashley; Dekker, Niek; Tobin, Andrew B.

    2016-01-01

    The short chain fatty acid receptor FFA2 is able to stimulate signaling via both Gi- and Gq/G11-promoted pathways. These pathways are believed to control distinct physiological end points but FFA2 receptor ligands appropriate to test this hypothesis have been lacking. Herein, we characterize AZ1729, a novel FFA2 regulator that acts as a direct allosteric agonist and as a positive allosteric modulator, increasing the activity of the endogenously produced short chain fatty acid propionate in Gi-mediated pathways, but not at those transduced by Gq/G11. Using AZ1729 in combination with direct inhibitors of Gi and Gq/G11 family G proteins demonstrated that although both arms contribute to propionate-mediated regulation of phospho-ERK1/2 MAP kinase signaling in FFA2-expressing 293 cells, the Gq/G11-mediated pathway is predominant. We extend these studies by employing AZ1729 to dissect physiological FFA2 signaling pathways. The capacity of AZ1729 to act at FFA2 receptors to inhibit β-adrenoreceptor agonist-promoted lipolysis in primary mouse adipocytes and to promote chemotaxis of isolated human neutrophils confirmed these as FFA2 processes mediated by Gi signaling, whereas, in concert with blockade by the Gq/G11 inhibitor FR900359, the inability of AZ1729 to mimic or regulate propionate-mediated release of GLP-1 from mouse colonic preparations defined this physiological response as an end point transduced via activation of Gq/G11. PMID:27385588

  3. [Release of Si, Al and Fe in red soil under simulated acid rain].

    PubMed

    Liu, Li; Song, Cun-yi; Li, Fa-sheng

    2007-10-01

    bstract:A laboratory leaching experiment on simulated acid rain was carried out using soil columns. The release of Si, Al and Fe from soils and pH values of eluates were investigated. The results showed that under the given leaching volume, the release amounts of cations were influenced by the pH value of simulated acid rain, while their response to acid rain was different. Acid rain led to Si release, nearly none of Fe. Within the range from pH 3.0 to 5.6, a little Al release but mass Al only release at the pH below 3.0, both Si and Al had a declining release ability with the undergoing eluviation. At pH 2.5, the release amounts of Si and Al, especially Al, increased significantly with the strengthened weathering process of soil mineral. With an increase of the leaching amount of acid rain, the release of Si and Al increased, but acceleration of Si was slower than Al which was slower and slower. When the soil pH falling down to a certain grade, there are negative correlation between pH and both Al and DOC concentration of eluate. released, but most of Al derived from the aluminosilicates dissolved. Acid deposition can result in solid-phase alumino-organics broken and Al released, but most of Al derived from the aluminosilicates dissolved.

  4. Effects of organic and inorganic acids on phosphorus release from municipal sludge.

    PubMed

    Pakdil, N B; Filibeli, A

    2007-01-01

    This paper reports on the effects of inorganic acids (sulphuric acid, hydrochloric acid, nitric acid) and organic acids (citric acid, oxalic acids) for phosphorus recovery from sludge and struvite precipitation results. It was observed that both inorganic acid and organic acids were effective at phosphorus release. The studies on precipitation of released phosphorus from sludge as magnesium ammonium phosphate (struvite) were also done using nitric and oxalic acids. Phosphorus and heavy metals of leachate were analyzed before and after precipitation. It was observed that heavy metal concentrations in the extracted samples decrease after precipitation. Precipitation was accomplished by using extract derived with nitric acid; however, in oxalic acid applications, it was not achieved. When the chemical constituents of the dried material were examined oxygen, sodium and nitrogen were found to be the major elements.

  5. Evidence to suggest that gonadotropin-releasing hormone inhibits its own secretion by affecting hypothalamic amino acid neurotransmitter release.

    PubMed

    Feleder, C; Jarry, H; Leonhardt, S; Moguilevsky, J A; Wuttke, W

    1996-10-01

    The mediobasal hypothalamus of rats contains gonadotropin-releasing hormone (GnRH) receptors. These hypothalamic neurons also express the GnRH corresponding gene. Under these circumstances, the possibility exists that these GnRH receptors could be localized in other neurons, which are GnRH-receptive, unknowing the neurotransmitter quality. Therefore, we studied the in vitro effects of the GnRH agonist buserelin on GnRH, glutamate, gamma-amino-butyric acid (GABA) and taurine release from explanted superfused hypothalami of untreated and buserelin-pretreated (down-regulated) male rats. When buserelin was added to the superfusion medium it inhibited promptly the release of GnRH and the excitatory amino acid neurotransmitter glutamate, but stimulated the release of the inhibitory neurotransmitters, GABA and taurine. Hypothalamic release of GnRH from hypothalami collected from buserelin-treated (30 micrograms/100 g b.w. twice daily for 4 days) male rats released significantly less GnRH, glutamate and more GABA and taurine. The inhibitory effect of buserelin was maintained when the superfusion medium continuously contained the GnRH analog. When superfusion of hypothalami from buserelin-pretreated animals was performed in the absence of buserelin, GnRH and glutamate release increased significantly within 45-60 min, whereas GABA and taurine release decreased at this time point. When buserelin was added to the superfusion medium 2 h after buserelin-free superfusion, GnRH and glutamate release decreased whereas GABA and taurine release increased instantaneously. Buserelin-treated rats showed significantly low values of LH and testosterone than the untreated rats. These results suggest that GnRH receptors may not only be present in GnRH axon terminals in the median eminence, but also on glutamatergic, GABAergic and taurinergic neurons by which GnRH may exert an autoinhibitory ultrashort loop feedback on its own secretion. This effect appears to be connected with glutamatergic

  6. In vitro release of theophylline from poly(lactic acid) sustained-release pellets prepared by direct compression.

    PubMed

    Kader, A; Jalil, R

    1998-06-01

    Poly(L-lactic acid), (L-PLA) pellets containing theophylline as a model drug were prepared with increasing bovine serum albumin (BSA) load of 10, 20, 30, 40, or 50% by direct compression. The drug release from pellets was studied in phosphate buffered saline (PBS, pH 7.4) at 37 degrees C. The annealing effect on theophylline release from pellets was also studied at 20, 30, 60, and 80 degrees C. In all cases, release kinetics followed the Higuchian mechanism with an initial burst effect followed by sustained release of theophylline during the experimental period. Increasing BSA load resulted in a linear increase in Higuchian release rates presumably because of the hydrophilic nature of BSA. Furthermore, BSA did not interact chemically with the polymer matrix and was held physically by the dense polymer matrix. However, drug release decreased with an increase in annealing temperature. Release of theophylline was higher from PLA-BSA combination pellets compared to PLA pellets at temperatures below the glass transition temperature (Tg) of the polymer and lower for temperatures above Tg. The temperature effect on drug release may be attributed to both the reduction of core solubility in the bulk phase and the lowering of diffusibility of the polymeric membrane. No drug-polymer interactions or polymer degradation was observed within the experimental setup when studied by differential scanning calorimetry (DSC), infrared (FTIR) spectroscopy, and gravimetric methods. DSC studies of pellets showed no hints of microstructural changes (crystallinity) of the polymers. In our experiments, theophylline was released primarily by leaching through channels and not by polymer degradation. The release rate was dependent on BSA loading and annealing. It may be concluded that PLA pellets can be fabricated suitably using BSA and annealing to design sustained-release preparations of water-soluble drugs.

  7. Controlled Release of Salicylic Acid from Biodegradable Cross-Linked Polyesters.

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2015-09-08

    The purpose of this work was to develop a family of cross-linked poly(xylitol adipate salicylate)s with a wide range of tunable release properties for delivering pharmacologically active salicylic acid. The synthesis parameters and release conditions were varied to modulate polyester properties and to understand the mechanism of release. Varying release rates were obtained upon longer curing (35% in the noncured polymer to 10% in the cured polymer in 7 days). Differential salicylic acid loading led to the synthesis of polymers with variable cross-linking and the release could be tuned (100% release for the lowest loading to 30% in the highest loading). Controlled release was monitored by changing various factors, and the release profiles were dependent on the stoichiometric composition, pH, curing time, and presence of enzyme. The polymer released a combination of salicylic acid and disalicylic acid, and the released products were found to be nontoxic. Minimal hemolysis and platelet activation indicated good blood compatibility. These polymers qualify as "bioactive" and "resorbable" and can, therefore, find applications as immunomodulatory resorbable biomaterials with tunable release properties.

  8. Bacterial endotoxin inhibits LHRH secretion following the increased release of hypothalamic GABA levels. Different effects on amino acid neurotransmitter release.

    PubMed

    Feleder, C; Refojo, D; Jarry, H; Wuttke, W; Moguilevsky, J A

    1996-01-01

    Immune system disorders are often accompanied by alterations in the reproductive axis. The bacterial endotoxin (lipopolysaccharide, LPS) has inflammatory effects and activates cytokine release in the pituitary and hypothalamus. LPS inhibition of luteinizing-hormone-releasing hormone (LHRH) release at the hypothalamic level appears to be associated with modifications in the inhibitory GABAergic neurotransmitter system. Then, knowing that gamma-aminobutyric acid (GABA) mediates other neurotransmitter effects in the central nervous system, the possibility arises that this amino acid might mediate the effect of LPS on LHRH release by modifying amino acid neurotransmitter release at the hypothalamic level. Therefore, the present study was designed to investigate a possible mediatory function of the GABAergic system in the LPS-induced inhibition of LHRH secretion. To this end, the modifications in the excitatory (glutamate, Glu) and inhibitory (taurine, Tau, and GABA) amino acid neurotransmitter release after the application of GABA-A and GABA-B antagonists, respectively, were studied and the effects of LPS on their release determined. Male rats were decapitated at 9.00 h, and the preoptic/mediobasal hypothalamic area (POA/MBH) was dissected and superfused with Earle's balanced salt solution. Superfusate fractions were collected at 15-min intervals after a 60-min stabilization superfusion period. LPS (100 ng/ml) was then added to the superfusion medium over 1 h in three different experimental designs: (1) LPS only (2) LPS simultaneously with bicuculline (GABA-A antagonist) or with phaclofen (GABA-B antagonist), and (3) LPS and subsequently bicuculline or phaclofen, performed in different experiments. This was followed by a wash-out period. The POA/MBH fragments were then subjected to a 56-mM K+ stimulus. Control POA/MBH fragments were continuously superfused with Earle's solution. As expected, LHRH release was significantly reduced (p < 0.05) during and following

  9. Inherently antioxidant and antimicrobial tannic acid release from poly(tannic acid) nanoparticles with controllable degradability.

    PubMed

    Sahiner, Nurettin; Sagbas, Selin; Aktas, Nahit; Silan, Coskun

    2016-06-01

    From a natural polyphenol, Tannic acid (TA), poly(TA) nanoparticles were readily prepared using a single step approach with three different biocompatible crosslinkers; trimethylolpropane triglycidyl ether (TMPGDE), poly(ethylene glycol) diglycidyl ether (PEGGE), and trisodium trimetaphosphate (STMP). P(TA) particles were obtained with controllable diameters between 400 to 800nm with -25mV surface charge. The effect of synthesis conditions, such as the emulsion medium, pH values of TA solution, and the type of crosslinker, on the shape, size, dispersity, yield, and degradability of poly(Tannic Acid) (p(TA)) nanoparticles was systematically investigated. The hydrolytic degradation amount in physiological pH conditions of 5.4, 7.4, and 9.0 at 37.5°C were found to be in the order TMPGDEreleasing media. The highest TA release, 600mg/g, was obtained for TMPGDE-crosslinked p(TA) particles in intestinal pH conditions (pH 9) over 3 days; whereas, a slow and linear TA release profile over almost 30 days was obtained by using PEGGE-crosslinked p(TA) in body fluid pH conditions (pH 7.4). The total phenol content of p(TA) particles was calculated as 70±1μgmL(-1) for 170μgmL(-1) p(TA), and the trolox equivalent antioxidant capacity was found to be 2027±104mM trolox equivalent g(-1). Moreover, p(TA) nanoparticles demonstrated strong antimicrobial effects against common bacterial strains. More interestingly, with a higher concentration of p(TA) particles, higher blood clotting indices were obtained.

  10. The Quest for the FFA and Where It Led.

    PubMed

    Kanwisher, Nancy

    2017-02-01

    This article tells the story behind our first paper on the fusiform face area (FFA): how we chose the question, developed the methods, and followed the data to find the FFA and subsequently many other functionally specialized cortical regions. The paper's impact had less to do with the particular findings in the paper itself and more to do with the method that it promoted and the picture of the human mind and brain that it led to. The use of a functional localizer to define a candidate region in each subject individually enabled us not just to make pictures of brain activation, but also to ask principled, hypothesis-driven questions about a thing in nature. This method enabled stronger and more extensive tests of the function of each cortical region than had been possible before in humans and, as a result, has produced a large body of evidence that the human cortex contains numerous regions that are specifically engaged in particular mental processes. The growing inventory of cortical regions with distinctive and often very specific functions can be seen as an initial sketch of the basic components of the human mind. This sketch also serves as a roadmap into the vast and exciting new landscape of questions about the computations, structural connections, time course, development, plasticity, and evolution of each of these regions, as well as the hardest question of all: how do these regions work together to produce human intelligence?

  11. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger.

    PubMed

    Sepúlveda, Leonardo; de la Cruz, Reynaldo; Buenrostro, José Juan; Ascacio-Valdés, Juan Alberto; Aguilera-Carbó, Antonio Francisco; Prado, Arely; Rodríguez-Herrera, Raúl; Aguilar, Cristóbal Noé

    2016-01-01

    Fungal hydrolysis of ellagitannins produces hexahydroxydiphenic acid, which is considered an intermediate molecule in ellagic acid release. Ellagic acid has important and desirable beneficial health properties. The aim of this work was to identify the effect of different sources of ellagitannins on the efficiency of ellagic acid release by Aspergillus niger. Three strains of A. niger (GH1, PSH and HT4) were assessed for ellagic acid release from different polyphenol sources: cranberry, creosote bush, and pomegranate used as substrate. Polyurethane foam was used as support for solid-state culture in column reactors. Ellagitannase activity was measured for each of the treatments. Ellagic acid was quantified by high performance liquid chromatography. When pomegranate polyphenols were used, a maximum value of ellagic acid (350.21 mg/g) was reached with A. niger HT4 in solid-state culture. The highest amount of ellagitannase (5176.81 U/l) was obtained at 8h of culture when cranberry polyphenols and strain A. niger PSH were used. Results demonstrated the effect of different polyphenol sources and A. niger strains on ellagic acid release. It was observed that the best source for releasing ellagic acid was pomegranate polyphenols and A. niger HT4 strain, which has the ability to degrade these compounds for obtaining a potent bioactive molecule such as ellagic acid.

  12. Delphinidin Reduces Glucose Uptake in Mice Jejunal Tissue and Human Intestinal Cells Lines through FFA1/GPR40.

    PubMed

    Hidalgo, Jorge; Teuber, Stefanie; Morera, Francisco J; Ojeda, Camila; Flores, Carlos A; Hidalgo, María A; Núñez, Lucía; Villalobos, Carlos; Burgos, Rafael A

    2017-04-05

    Anthocyanins are pigments with antihyperglycemic properties, and they are potential candidates for developing functional foods for the therapy or prevention of Diabetes mellitus type 2 (DM2). The mechanism of these beneficial effects of anthocyanins are, however, hard to explain, given their very low bioavailability due to poor intestinal absorption. We propose that free fatty acid receptor 1 (FFA1, also named GPR40), is involved in an inhibitory effect of the anthocyanidin delphinidin over intestinal glucose absorption. We show the direct effects of delphinidin on the intestine using jejunum samples from RF/J mice, and the human intestinal cell lines HT-29, Caco-2, and NCM460. By the use of specific pharmacological antagonists, we determined that delphinidin inhibits glucose absorption in both mouse jejunum and a human enterocytic cell line in a FFA1-dependent manner. Delphinidin also affects the function of sodium-glucose cotransporter 1 (SGLT1). Intracellular signaling after FFA1 activation involved cAMP increase and cytosolic Ca(2+) oscillations originated from intracellular Ca(2+) stores and were followed by store-operated Ca(2+) entry. Taken together, our results suggest a new GPR-40 mediated local mechanism of action for delphinidin over intestinal cells that may in part explain its antidiabetic effect. These findings are promising for the search for new prevention and pharmacological treatment strategies for DM2 management.

  13. FFA-induced hepatic insulin resistance in vivo is mediated by PKCδ, NADPH oxidase, and oxidative stress.

    PubMed

    Pereira, Sandra; Park, Edward; Mori, Yusaku; Haber, C Andrew; Han, Ping; Uchida, Toyoyoshi; Stavar, Laura; Oprescu, Andrei I; Koulajian, Khajag; Ivovic, Alexander; Yu, Zhiwen; Li, Deling; Bowman, Thomas A; Dewald, Jay; El-Benna, Jamel; Brindley, David N; Gutierrez-Juarez, Roger; Lam, Tony K T; Najjar, Sonia M; McKay, Robert A; Bhanot, Sanjay; Fantus, I George; Giacca, Adria

    2014-07-01

    Fat-induced hepatic insulin resistance plays a key role in the pathogenesis of type 2 diabetes in obese individuals. Although PKC and inflammatory pathways have been implicated in fat-induced hepatic insulin resistance, the sequence of events leading to impaired insulin signaling is unknown. We used Wistar rats to investigate whether PKCδ and oxidative stress play causal roles in this process and whether this occurs via IKKβ- and JNK-dependent pathways. Rats received a 7-h infusion of Intralipid plus heparin (IH) to elevate circulating free fatty acids (FFA). During the last 2 h of the infusion, a hyperinsulinemic-euglycemic clamp with tracer was performed to assess hepatic and peripheral insulin sensitivity. An antioxidant, N-acetyl-L-cysteine (NAC), prevented IH-induced hepatic insulin resistance in parallel with prevention of decreased IκBα content, increased JNK phosphorylation (markers of IKKβ and JNK activation, respectively), increased serine phosphorylation of IRS-1 and IRS-2, and impaired insulin signaling in the liver without affecting IH-induced hepatic PKCδ activation. Furthermore, an antisense oligonucleotide against PKCδ prevented IH-induced phosphorylation of p47(phox) (marker of NADPH oxidase activation) and hepatic insulin resistance. Apocynin, an NADPH oxidase inhibitor, prevented IH-induced hepatic and peripheral insulin resistance similarly to NAC. These results demonstrate that PKCδ, NADPH oxidase, and oxidative stress play a causal role in FFA-induced hepatic insulin resistance in vivo and suggest that the pathway of FFA-induced hepatic insulin resistance is FFA → PKCδ → NADPH oxidase and oxidative stress → IKKβ/JNK → impaired hepatic insulin signaling.

  14. FFA2 Contribution to Gestational Glucose Tolerance Is Not Disrupted by Antibiotics

    PubMed Central

    Li, Xiaoran; Fisch, Robert; Bughara, Moneb; Wicksteed, Barton; Kovatcheva-Datchary, Petia; Layden, Brian T.

    2016-01-01

    During the insulin resistant phase of pregnancy, the mRNA expression of free fatty acid 2 receptor (Ffar2) is upregulated and as we recently reported, this receptor contributes to insulin secretion and pancreatic beta cell mass expansion in order to maintain normal glucose homeostasis during pregnancy. As impaired gestational glucose levels can affect metabolic health of offspring, we aimed to explore the role of maternal Ffar2 expression during pregnancy on the metabolic health of offspring and also the effects of antibiotics, which have been shown to disrupt gut microbiota fermentative activity (the source of the FFA2 ligands) on gestational glucose homeostasis. We found that maternal Ffar2 expression and impaired glucose tolerance during pregnancy had no effect on the growth rates, ad lib glucose and glucose tolerance in the offspring between 3 and 6 weeks of age. To disrupt short chain fatty acid production, we chronically treated WT mice and Ffar2-/- mice with broad range antibiotics and further compared their glucose tolerance prior to pregnancy and at gestational day 15, and also quantified cecum and plasma SCFAs. We found that during pregnancy antibiotic treatment reduced the levels of SCFAs in the cecum of the mice, but resulted in elevated levels of plasma SCFAs and altered concentrations of individual SCFAs. Along with these changes, gestational glucose tolerance in WT mice, but not Ffar2-/- mice improved while on antibiotics. Additional data showed that gestational glucose tolerance worsened in Ffar2-/- mice during a second pregnancy. Together, these results indicate that antibiotic treatment alone is inadequate to deplete plasma SCFA concentrations, and that modulation of gut microbiota by antibiotics does not disrupt the contribution of FFA2 to gestational glucose tolerance. PMID:27959892

  15. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights.

    PubMed

    Hines, Daniel J; Kaplan, David L

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) has been the most successful polymeric biomaterial used in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in the formulation of drug release devices. Mathematical modeling is a useful tool for identifying, characterizing, and predicting mechanisms of controlled release. The advantages and limitations of poly(lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled-release technology that utilize PLGA. Mathematical modeling applied toward controlled-release rates from PLGA-based devices also will be discussed to provide a complete picture of a state-of-the-art understanding of the control that can be achieved with this polymeric system, as well as the limitations.

  16. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  17. Gastrin: an acid-releasing, proliferative and immunomodulatory peptide?

    PubMed

    Calatayud, Sara; Alvarez, Angeles; Víctor, Víctor M

    2010-01-01

    Gastrin release is affected by gastric inflammatory conditions. Antral G cells respond to inflammatory mediators by increasing gastrin secretion. Accumulating experimental evidence suggests that gastrin exerts immunomodulatory and proinflammatory effects. Gastrin could be a contributing factor to these pathologies, which may constitute a new justification for pharmacological blockade of gastrin action.

  18. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  19. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  20. Simulating the Fate and Transport of an Acid Mine Drainage Release

    EPA Science Inventory

    On August 5, 2015, approximately 3 million gallons of acid mine drainage were released from the Gold King Mine into Cement Creek in the San Juan River watershed (CO, NM, UT). The release further mobilized additional metals, which resulted in a large mass of solids and dissolved m...

  1. Capture and release of mixed acid gasses with binding organic liquids

    DOEpatents

    Heldebrant, David J.; Yonker, Clement R.

    2010-09-21

    Reversible acid-gas binding organic liquid systems that permit separation and capture of one or more of several acid gases from a mixed gas stream, transport of the liquid, release of the acid gases from the ionic liquid and reuse of the liquid to bind more acid gas with significant energy savings compared to current aqueous systems. These systems utilize acid gas capture compounds made up of strong bases and weak acids that form salts when reacted with a selected acid gas, and which release these gases when a preselected triggering event occurs. The various new materials that make up this system can also be included in various other applications such as chemical sensors, chemical reactants, scrubbers, and separators that allow for the specific and separate removal of desired materials from a gas stream such as flue gas.

  2. Studies on renin release from isolated superfused glomeruli: effects of temperature, urea, ouabain and ethacrynic acid.

    PubMed Central

    Baumbach, L; Leyssac, P P; Skinner, S L

    1976-01-01

    1. The effects of different energy substrates, of low temperature, of urea, and of ouabain and ethacrynic acid were studied on the rate of renin release from viable juxtaglomerular cells during superfusion of isolated rat glomeruli. 2. Neither lactate nor glutamate altered renin release rate from that observed using glucose as the sole energy substrate. Succinate 10 mM elevated release transiently but did not influence the release caused by reductions in osmolality through lowering sucrose concentration. 3. Peak renin release was more prolonged and returned more slowly to control following reductions in osmolality in phosphate-Ringer than in bicarbonate-Ringer. 4. At 37 degrees C, the peak of renin released induced by hypo-osmolality was smaller and delayed, and returned earlier to control than at 30 degrees C. Reduction in temperature from 30 to 4 degrees C resulted in a 32-fold increase in basal release rate. At 4 degrees C a 20 m-osmole/kg reduction in tonicity caused an additional 2-5-fold increase in release rate. 6. Increasing superfusate osmolality with urea did not affect basal renin release but 100 mM urea suppressed the releasing effect of a 15 mM reduction in NaCl concentration. 7. Ouabain (10(-4) M) caused a small (33 +/- 9%, P less than 0-025) transient increase in renin release. Ethacrynic acid (10(-3) M) provoked a progressive increase in release reaching 100 +/- 15% above control within 50 min. In the presence of both inhibitors the release provoked by hyposmolality was prolonged. 8. It is concluded that renin release in vitro is a function of actively regulated cell volume and it is proposed that a similar mechanism could underline both barorecptor and macula densa controls of renin secretion in vivo. PMID:940062

  3. A Status Report on Middle Grade Agricultural Education and FFA Programs in the United States.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; McCaslin, N. L.

    1994-01-01

    Census of 52 Future Farmers of America (FFA) executive secretaries found the following: 30 states have middle-grade agricultural education; 19 have middle-grade FFA membership; 14 have a core agriculture curriculum; 17 have state-level competitions; most do not favor national middle-grade competitions; and few disadvantages apart from potential…

  4. Bridging Horizons. An Advisor's Guide to FFA Involvement for Members with Disabilities.

    ERIC Educational Resources Information Center

    Ploss, Adrienne J.; Field, William E.; Frick, Martin J.

    This guide is designed to provide Future Farmers of America (FFA) advisors with information to assist them in their efforts to include all youth in FFA, including those with disabilities. It addresses benefits of involving youth with disabilities and federal, state, and local legislation and regulations concerning people with disabilities.…

  5. Examining Camper Learning Outcomes and Knowledge Retention at Oklahoma FFA Leadership Camp

    ERIC Educational Resources Information Center

    Brown, Nicholas R.; Terry, Robert, Jr.; Kelsey, Kathleen D.

    2014-01-01

    The National FFA Organization is committed to providing non-formal learning activities focusing on leadership education. Summer camps are a major component of FFA activities and concentrate on personal growth, leadership development, and recreational activities for youth. This repeated measures study determined the level of cognitive gain and the…

  6. Fitting Vo-Ag and FFA Together Best for Students and Teachers.

    ERIC Educational Resources Information Center

    Snyder, H. Leon

    1979-01-01

    The Future Farmers of America (FFA) is more than a leadership development organization and when used as an intracurricular activity, it can serve as a teaching tool. The FFA adds advantages to the program in areas such as supervised experience, award motivation, providing real world experience, public relations, travel, and competition. (LRA)

  7. Barriers to Participation in the National FFA Organization According to Urban Agriculture Students

    ERIC Educational Resources Information Center

    Martin, Michael J.; Kitchel, Tracy

    2014-01-01

    Urban youth engaged in after-school organizations have more positive attributes compared to their unengaged contemporaries. The FFA is one particular intra-curricular organization with after-school components; yet, urban students do not participate in FFA at the same levels as rural students. The purpose of this descriptive study was to explore…

  8. Stimulation by surangin B of endogenous amino acid release from synaptosomes.

    PubMed

    Deng, Yanshen; Nicholson, Russell A

    2003-09-15

    The effect of surangin B, an insecticidal natural product coumarin, on presynaptic release of endogenous amino acids was investigated using a purified synaptosomal fraction isolated from mouse brain. Surangin B stimulated the release of glutamic acid (GLU), gamma-aminobutyric acid (GABA), serine, alanine and the aminosulfonic acid taurine from synaptosomes at micromolar concentrations. In all cases, these responses were reduced by removing calcium from the saline and surangin B-evoked release of GLU, GABA, aspartic acid (ASP) and alanine was significantly inhibited by the sodium channel blocker tetrodotoxin. Rotenone (a complex I inhibitor) and carbonyl cyanide chlorophenylhydrazone (CCCP; an uncoupler), were more potent releasers of amino acids from synaptosomes than surangin B, however, carboxin (a complex II-selective inhibitor), was extremely weak to ineffective in this regard. The stimulatory effect of surangin B and complex III-selective inhibitors on release of GLU, GABA, ASP and alanine by synaptosomes was significantly reduced by N,N,N',N'-tetramethyl-p-phenylenediamine, suggesting that blockade of complex III in intraterminal mitochondria is an important effect of this coumarin. Our results demonstrate that surangin B, in common with CCCP and inhibitors of complex I and III, cause release of both neurotransmitter and non-neurotransmitter amino acids from nerve endings in vitro. However, in contrast to most classical agents which interfere selectively with mitochondrial function, the release of endogenous amino acids from synaptosomes by surangin B also involves a moderate extracellular calcium ion-dependent component and relies partially on sodium ion entry into the nerve ending.

  9. Preparation of Coated Valproic Acid and Sodium Valproate Sustained-release Matrix Tablets

    PubMed Central

    Phaechamud, T.; Mueannoom, W.; Tuntarawongsa, S.; Chitrattha, S.

    2010-01-01

    The aim of this research was to investigate the technique for preparation of coated valproic acid and sodium valproate sustained-release matrix tablets. Different diluents were tested and selected as the effective absorbent for oily valproic acid. Effect of the amount of absorbent and hydroxypropylmethylcellulose on drug release from valproic acid-sodium valproate matrix tablets prepared with wet granulation technique was evaluated in pH change system. Colloidal silicon dioxide effectively adsorbed liquid valproic acid during wet granulation and granule preparation. The amounts of colloidal silicon dioxide and hydroxypropylmethylcellulose employed in tablet formulations affected drug release from the tablets. The drug release was prominently sustained for over 12 h using hydroxypropylmethylcellulose-based hydrophilic matrix system. The mechanism of drug release through the matrix polymer was a diffusion control. The drug release profile of the developed matrix tablet was similar to Depakine Chrono®, providing the values of similarity factor (f2) and difference factor (f1) of 85.56 and 2.37, respectively. Eudragit® L 30 D-55 was used as effective subcoating material for core matrix tablets before over coating with hydroxypropylmethylcellulose film with organic base solvent. Drug release profile of coated matrix tablet was almost similar to that of Depakine Chrono®. PMID:20838520

  10. Review of immediate-release omeprazole for the treatment of gastric acid-related disorders.

    PubMed

    Castell, Donald

    2005-11-01

    Immediate-release omeprazole (Zegerid, Santarus) is the first immediate-release oral proton pump inhibitor to reach the market. As a powder formulation for oral suspension, it is indicated for the treatment of gastroesophageal reflux disease, erosive oesophagitis, duodenal ulcer and gastric ulcer, and is the only proton pump inhibitor approved for the reduction of risk of upper gastrointestinal bleeding in critically ill patients. Administration of immediate-release omeprazole at bedtime results in a rapid and sustained elevation of gastric pH, and seems to provide better night time control of gastric acidity than that observed with conventional morning dosing of delayed-release proton pump inhibitors. The immediate-release formulation may provide a good treatment option for patients who require flexible dosing, quick onset of action and nocturnal gastric acid control.

  11. Dynamic release of amino acid transmitters induced by valproate in PTZ-kindled epileptic rat hippocampus.

    PubMed

    Li, Zhi-Ping; Zhang, Xu-Ying; Lu, Xiang; Zhong, Ming-Kang; Ji, Yong-Hua

    2004-03-01

    In the present communication, the dynamic release of amino acid (AA) transmitters induced by valproate (VPA) in pentylenetetrazol (PTZ)-kindled freely moving rats hippocampus has been determined. The results showed that glutamate and aspartate release were significantly increased during the seizure/interical periods, and markedly decreased after the application of 200mg/kg valproate. In contrast, gamma-aminobutyric acid and taurine release were markedly decreased during interical period, and significantly increased during the seizure period. Glycine release was similar to the case of glutamate and aspartate release. The increase of either gamma-aminobutyric acid/taurine or glycine releases during the seizure period could be inhibited by the application of valproate likewise. The results indicate that: (a) the imbalance between excitatory and inhibitory neurotransmitters is really involved in epilepsy; (b) the modulation of valproate on the major amino acid neurotransmitters certainly plays one of important roles on antiepilepsy efficacy; (c) the pentylenetetrazol-kindled epileptogenesis model is a fit one for approaching the mechanisms of valproate modulating amino acid neurotransmitters.

  12. Source of the arachidonic acid released on stimulation of rat basophilic leukemia cells

    SciTech Connect

    Garcia-Gil, M.; Siraganian, R.P.

    1986-05-15

    Triggering of rat basophilic leukemia cells for histamine secretion is accompanied by arachidonic acid release. The source of this arachidonic acid released after IgE or calcium ionophore A23187 stimulation was studied. The 48-hr culture of the cells with (/sup 14/C)arachidonic acid resulted in labeling of the phospholipids to constant specific activity. After IgE stimulation, 8.8% of the cellular (/sup 14/C)arachidonate was released; this was predominantly from phosphatidylinositol (PI)/phosphatidylserine (PS) (66.3%), less from phosphatidylethanolamine (PE) (25.9%), and minimally from phosphatidylcholine (PC). In contrast, after ionophore stimulation the cells released 16.4% of cellular (/sup 14/C)arachidonate, most of this was from PE (55.4%) followed by about equal amounts from PS/PI and PC (24% and 20%, respectively). Therefore, the source of the released arachidonic acid depends on the stimulus. In contrast, the results are different when the cells are cultured for only 2 hr with (/sup 14/C)arachidonic acid. The label in phospholipids was in PC (44%), PE (38%), and PI/PS (20%); the stimulation of the cells with IgE or ionophore resulted in the release of the (/sup 14/C)arachidonate from PC (81% and 96%, respectively). This suggests the presence of several pools of phospholipids that are labeled at different rates and have variable proximity and/or accessibility to the phospholipase(s) enzyme(s) activated during cell secretion.

  13. Preparation of acetylsalicylic acid-acylated chitosan as a novel polymeric drug for drug controlled release.

    PubMed

    Liu, Changkun; Wu, Yiguang; Zhao, Liyan; Huang, Xinzheng

    2015-01-01

    The acetylsalicylic acid-acylated chitosan (ASACTS) with high degree of substitution (DS) was successfully synthesized, and characterized with FTIR, (1)H NMR and elemental analysis methods. The optimum synthesis conditions were obtained which gave the highest DS (about 60%) for ASACTS. Its drug release experiments were carried out in simulated gastric and intestine fluids. The results show that the drugs in the form of acetylsalicylic acid (ASA) and salicylic acid (SA) were released in a controlled manner from ASACTS only in simulated gastric fluid. The release profile can be best fitted with logistic and Weibull model. The research results reveal that ASACTS can be a potential polymeric drug for the controlled release of ASA and SA in the targeted gastric environment.

  14. Proteins and insulin release: A dual role of amino-acids and intestinal hormones

    PubMed Central

    Jarrett, R. J.; Graver, H. J.; Cohen, N. M.

    1969-01-01

    In two subjects concurrent infusion of amino-acids and the hormones secretin and pancreozymin provoked much higher plasma insulin levels than did administration of amino-acids or hormones individually. It is suggested that this may be a physiological phenomenon, augmenting the release of insulin from the pancreas after a meal containing protein. PMID:5356549

  15. Digestion of thyroglobulin with purified thyroid lysosomes: preferential release of iodoamino acids

    SciTech Connect

    Tokuyama, T.; Yoshinari, M.; Rawitch, A.B.; Taurog, A.

    1987-08-01

    (/sup 131/I)Thyroglobulin (( /sup 131/I)Tg), prepared by either enzymatic iodination of human goiter Tg in vitro or isolation from the thyroids of rats previously injected with /sup 131/I, was digested with a solubilized enzyme mixture prepared from purified hog thyroid lysosomes. The digestion was performed at 37 C for 24 h under nitrogen at pH 5.0 in the presence of 4 mM dithiothreitol. Under these conditions the release of free (/sup 131/I) iodoamino acids (MIT, DIT, T4, and T3) was quantitatively very similar to that observed with a standard pronase digestion procedure. To determine whether other amino acids in Tg were released as quantitatively as the iodoamino acids, free amino acids in the lysosomal digest were measured, and total free amino acid release was compared with a similar analysis performed after digestion of (/sup 131/I)Tg with 6 N HCl. Total amino acid release was much less complete than iodoamino acid release, indicating preferential release of iodoamino acids from Tg by lysosomal digestion. Analysis of the lysosomal digest by HPLC on a size exclusion column indicated that Tg was degraded to peptides with a mol wt less than 4000. Assuming that the in vitro lysosomal digestion system represents a valid model for the physiological proteolytic system that degrades Tg, the results of the present study suggest that a substantial portion of the Tg in the thyroid is not degraded to free amino acids and that peptide fragments of Tg are normally present in the thyroid. In such a case, the fate and possible physiological activity of these fragments require further elucidation.

  16. In vitro release of arachidonic acid and in vivo responses to respirable fractions of cotton dust

    SciTech Connect

    Thomson, T.A.; Edwards, J.H.; Al-Zubaidy, T.S.; Brown, R.C.; Poole, A.; Nicholls, P.J.

    1986-04-01

    It was considered that the fall in lung function seen after exposure to cotton dust may be attributable in part to the activity of arachidonic acid metabolites, such as leucotrienes as well as to the more established release of histamine by cotton dust. However, we found that cotton and barley dusts elicited poor release of arachidonic acid from an established macrophage like cell line compared with that observed with other organic dusts. In the experimental animal, pulmonary cellular responses to both cotton and barley dust were similar to those evoked by moldy hay and pigeon dropping dusts, although after multiple doses a more severe response was seen to cotton and barley. Since both moldy hay and pigeon droppings elicit a greater arachidonic acid release than cotton or barley, a role for arachidonic acid in inducing the cellular response is less likely than other factors. There are limitations to our conclusions using this system, i.e., the arachidonic acid may be released in a nonmetabolized form, although it is noted that the two dusts with the greatest arachidonic acid release produce their clinical responses in humans largely by hypersensitivity mechanisms.

  17. Release of short chain fatty acids from cream lipids by commercial lipases and esterases.

    PubMed

    Saerens, K; Descamps, D; Dewettinck, K

    2008-02-01

    Lipases and esterases are frequently used in dairy production processes to enhance the buttery flavour of the end product. Short chain fatty acids, and especially butanoic acid, play a key role in this and different enzymes with specificity towards short chain fatty acids are commercially available as potent flavouring tools. We have compared six lipases/esterases associated with buttery flavour production. Although specificity to short chain fatty acids was ascribed to each enzyme, clear differences in free fatty acid profiles were found when these enzymes were applied on cream. Candida cylindraceae lipase was the most useful enzyme for buttery flavour production in cream with the highest yield of free fatty acids (57 g oleic acid 100 g(-1) fat), no release of long chain fatty acids and specificity towards butanoic acid.

  18. Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules

    NASA Astrophysics Data System (ADS)

    Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro

    2016-08-01

    The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.

  19. Factors affecting ferulic acid release from Brewer's spent grain by Fusarium oxysporum enzymatic system.

    PubMed

    Xiros, Charilaos; Moukouli, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2009-12-01

    In this study, the factors affecting ferulic acid (FA) release from Brewer's spent grain (BSG), by the crude enzyme extract of Fusarium oxysporum were investigated. In order to evaluate the importance of the multienzyme preparation on FA release, the synergistic action of feruloyl esterase (FAE, FoFaeC-12213) and xylanase (Trichoderma longibrachiatum M3) monoenzymes was studied. More than double amount of FA release (1 mg g(-1) dry BSG) was observed during hydrolytic reactions by the crude enzyme extract compared to hydrolysis by the monoenzymes (0.37 mg g(-1) dry BSG). The protease content of the crude extract and the inhibitory effect of FA as an end-product were also evaluated concerning their effect on FA release. The protease treatment prior to hydrolysis by monoenzymes enhanced FA release about 100%, while, for the first time in literature, FA in solution found to have a significant inhibitory effect on FAE activity and on total FA release.

  20. The release of endogenous amino acids from the rat visual cortex.

    PubMed

    Clark, R M; Collins, G G

    1976-11-01

    The release of endogenous taurine, GABA, glycine, aspartate, glutamate, glutamine and alanine from the rat visual cortex was measured using a cortical cup technique. The electrocorticogram (ECoG) was monitored throughout most experiments. 2. Spreading depression, evoked by the dropwise placement of 10% KCl solution on to the brain outside the cup was associated with a significant increase in the release of GABA and glutamine but a marked fall in that of glutamate. The evoked release of GABA and glutamate but not of glutamine was Ca2+ dependent. 3. A solution containing 50 mM-K+ placed within the cup elicited a significant increase in the release of taurine and GABA, whereas 100 mM-K+ additionally released aspartate and glutamate. The K+-evoked release of these amino acids with the exceptions of taurine and glutamine was Ca2+-dependent. 4. Three series of experiments were carried out in which the preparations were stimulated electrically. Bipolar stimulation (100 Hz, 1 msec pulse width, 2-5 mA for 5 min) with the electrode within the cup was followed by significant increases in taurine, GABA and glutamate release; using a 5 mA current, there was an additional release of aspartate and alanine. Only the evoked release of GABA and glutamate was Ca2+ dependent. 5. In the second and third series of experiments, the electrode was sited adjacent to the cup or on the contralateral cortex respectively. Following stimulation (100 Hz, 1 msec pulse width, 2-5 mA for 5 min) there was a significant increase in taurine and GABA release and a significant fall in the release of aspartate and glutamate. With the exception of taurine, these changes in release were Ca2+ dependent. Reducing the stimulus current to 1-5 mA or the period of stimulation to 2-5 min initiated similar but statistically insignificant changes in release. A range (10-100 Hz) of stimulation frequencies was examined: the evoked release of GABA was linearly related to frequency whereas that of taurine was frequency

  1. An investigation into the mechanisms of drug release from taste-masking fatty acid microspheres.

    PubMed

    Qi, Sheng; Deutsch, David; Craig, Duncan Q M

    2008-09-01

    Fatty acid microspheres based on stearic and palmitic acids are known to form effective taste masking systems, although the mechanisms by which the drug is preferentially released in the lower gastrointestinal tract are not known. The objective of the present study was to identify the mechanisms involved, with a particular view to clarify the role of acid soap formation in the dissolution process. Microspheres were prepared by a spray chilling process. Using benzoic acid as a model drug and an alkaline dissolution medium, a faster drug release was observed in the mixed fatty acid formulation (50:50 stearic:palmitic acid (w/w)) compared to the single fatty acid component systems. Thermal and powder X-ray diffraction studies indicated a greater degree of acid soap formation for the mixed formulation in alkaline media compared to the single fatty acid systems. Particle size and porosity studies indicated a modest reduction in size for the mixed systems and an increase in porosity on immersion in the dissolution medium. It is proposed that the mixed fatty acid system form a mixed crystal system which in turn facilitates interaction with the dissolution medium, thereby leading to a greater propensity for acid soap formation which in turn forms a permeable liquid crystalline phase through which the drug may diffuse. The role of dissolution of palmitic acid into the dissolution medium is also discussed as a secondary mechanism.

  2. 1-Acetylpyrene-salicylic acid: photoresponsive fluorescent organic nanoparticles for the regulated release of a natural antimicrobial compound, salicylic acid.

    PubMed

    Barman, Shrabani; Mukhopadhyay, Sourav K; Behara, Krishna Kalyani; Dey, Satyahari; Singh, N D Pradeep

    2014-05-28

    Photoresponsive 1-acetylpyrene-salicylic acid (AcPy-SA) nanoparticles (NPs) were developed for the regulated release of a natural antimicrobial compound, salicylic acid. The strong fluorescent properties of AcPy-SA NPs have been extensively used for potential in vitro cell imaging. The phototrigger capability of our newly prepared AcPy-SA NPs was utilized for the efficient release of an antimicrobial compound, salicylic acid. The photoregulated drug release of AcPy-SA NPs has been shown by the subsequent switching off and on of a visible-light source. In vitro biological studies reveal that AcPy-SA NPs of ∼68 nm size deliver the antimicrobial drug salicylic acid into the bacteria cells (Pseudomonas aeruginosa) and efficiently kill the cells upon exposure to visible light (≥410 nm). Such photoresponsive fluorescent organic NPs will be highly beneficial for targeted and regulated antimicrobial drug release because of their biocompatible nature, efficient cellular uptake, and light-induced drug release ability.

  3. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    NASA Technical Reports Server (NTRS)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  4. Prilling of fatty acids as a continuous process for the development of controlled release multiparticulate dosage forms.

    PubMed

    Vervaeck, A; Saerens, L; De Geest, B G; De Beer, T; Carleer, R; Adriaensens, P; Remon, J P; Vervaet, C

    2013-11-01

    In this study, prilling was evaluated as a technique for the development of multiparticulate dosage forms using the fatty acids, stearic acid, and behenic acid as potential matrix formers to control the release of metoprolol tartrate (MPT), a highly water soluble drug. The in vitro drug release was dependent on the drug load, type of fatty acid, and pH of the dissolution medium. Higher drug loads resulted in faster release with behenic acid releasing drug over longer periods relative to stearic acid. The in vitro drug release was pH-dependent at low drug load with the release being slower at lower pH. Due to ionization of the fatty acid at pH 7.4, drug release was susceptible to the ionic strength at this pH value. Solid state characterization indicated that the crystalline state of the fatty acids was not affected by thermal processing via prilling, while the crystallinity of MPT was decreased. During storage, the amorphous MPT fraction recrystallized in the entire matrix. Drug release from behenic acid matrices was increased during storage at 40 °C; however, no polymorphism of behenic acid was detected. The bioavailability of MPT, after oral administration to dogs as prills containing 30% and 40% MPT using behenic acid as matrix former, was not significantly different from a commercial sustained release reference formulation, although the 40% MPT prills showed a burst release.

  5. Development and validation of dissolution testings in acidic media for rabeprazole sodium delayed-release capsules

    PubMed Central

    Tan, Yinhe; Si, Xiaoqing; Zhong, Lulu; Feng, Xin; Yang, Xinmin; Huang, Min; Wu, Chuanbin

    2016-01-01

    Abstract Rabeprazole sodium (RAB) dissolved in acidic media is accompanied by its degradation in the course of dissolution testing. To develop and establish the accumulative release profiles of ACIPHEX® Sprinkle (RAB) delayed-release capsules (ACIPHEX® Sprinkle) in acidic media using USP apparatus 2 (paddle apparatus) as a dissolution tester, the issues of determination of accumulative release amount of RAB in these acidic media and interference of hydroxypropylmethyl cellulose phthalate were solved by adding appropriate hydrochloric acid (HCl) into dissolution samples coupled with centrifugation so as to remove the interference and form a solution of degradation products of RAB, which is of a considerably stable ultraviolet (UV) absorbance at the wavelength of 298 nm within 2.0 h. Therefore, the accumulative release amount of RAB in dissolution samples at each sample time points could be determined by UV-spectrophotometry, and the accumulative release profiles of ACIPHEX® Sprinkle in the media of pH 1.0, pH 6.0, and pH 6.8 could be established. The method was validated per as the ICH Q2 (R1) guidelines and demonstrated to be adequate for quality control of ACIPHEX® Sprinkle and the accumulative release profiles can be used as a tool to guide the formulation development and quality control of a generic drug for ACIPHEX® Sprinkle. PMID:27066697

  6. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings.

    PubMed

    Nowatzki, Paul J; Koepsel, Richard R; Stoodley, Paul; Min, Ke; Harper, Alan; Murata, Hironobu; Donfack, Joseph; Hortelano, Edwin R; Ehrlich, Garth D; Russell, Alan J

    2012-05-01

    Biofilm-associated infections are a major complication of implanted and indwelling medical devices like urological and venous catheters. They commonly persist even in the presence of an oral or intravenous antibiotic regimen, often resulting in chronic illness. We have developed a new approach to inhibiting biofilm growth on synthetic materials through controlled release of salicylic acid from a polymeric coating. Herein we report the synthesis and testing of a ultraviolet-cured polyurethane acrylate polymer composed, in part, of salicyl acrylate, which hydrolyzes upon exposure to aqueous conditions, releasing salicylic acid while leaving the polymer backbone intact. The salicylic acid release rate was tuned by adjusting the polymer composition. Anti-biofilm performance of the coatings was assessed under several biofilm forming conditions using a novel combination of the MBEC Assay™ biofilm multi-peg growth system and bioluminescence monitoring for live cell quantification. Films of the salicylic acid-releasing polymers were found to inhibit biofilm formation, as shown by bioluminescent and GFP reporter strains of Pseudomonas aeruginosa and Escherichia coli. Urinary catheters coated on their inner lumens with the salicylic acid-releasing polymer significantly reduced biofilm formation by E. coli for up to 5 days under conditions that simulated physiological urine flow.

  7. Active food packaging based on molecularly imprinted polymers: study of the release kinetics of ferulic acid.

    PubMed

    Otero-Pazos, Pablo; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Benito-Peña, Elena; González-Vallejo, Victoria; Moreno-Bondi, M Cruz; Angulo, Immaculada; Paseiro-Losada, Perfecto

    2014-11-19

    A novel active packaging based on molecularly imprinted polymer (MIP) was developed for the controlled release of ferulic acid. The release kinetics of ferulic acid from the active system to food simulants (10, 20, and 50% ethanol (v/v), 3% acetic acid (w/v), and vegetable oil), substitutes (95% ethanol (v/v) and isooctane), and real food samples at different temperatures were studied. The key parameters of the diffusion process were calculated by using a mathematical modeling based on Fick's second law. The ferulic acid release was affected by the temperature as well as the percentage of ethanol of the simulant. The fastest release occurred in 95% ethanol (v/v) at 20 °C. The diffusion coefficients (D) obtained ranged between 1.8 × 10(-11) and 4.2 × 10(-9) cm(2)/s. A very good correlation between experimental and estimated data was obtained, and consequently the model could be used to predict the release of ferulic acid into food simulants and real food samples.

  8. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  9. Abnormalities in dihomo-gamma-linolenic acid release in the pathogenesis of hypertension.

    PubMed

    Mtabaji, J P; Manku, M S; Horrobin, D F

    1993-06-01

    Spontaneously hypertensive rats (SHR) respond to angiotensin and norepinephrine with an exaggerated pressor response. We have investigated the possibility that increased vascular reactivity in SHR may be related to a reduced synthesis of prostaglandin E1 (PGE1) resulting from a defect in the release of its precursor, dihomo-gamma-linoleic acid (DGLA). Isolated perfused mesenteric vascular beds of SHR and age matched Wistar-Kyoto rats (WKY) were perfused with Kreb's bicarbonate buffer. The effluent was collected and the fatty acid composition determined by gas chromatography. In SHR the release of DGLA, arachidonic acid, eicosapentaenoic acid, and virtually all other fatty acids detected in the effluent were reduced when compared to their normotensive controls. This difference could not be explained by low tissue fatty acid levels because these were higher in SHR. Evening primrose oil (EPO) when added to the diet increased the release of DGLA but not of other prostanoid precursors. EPO also reduced vascular reactivity and reduced blood pressure in SHR. It is suggested that the defect in the release of DGLA may be involved in the pathogenesis of hypertension because it occurs early before hypertension has actually occurred.

  10. Differential modulation of citrate synthesis and release by fatty acids in perfused working rat hearts.

    PubMed

    Vincent, Genevieve; Bouchard, Bertrand; Khairallah, Maya; Des Rosiers, Christine

    2004-01-01

    The objective of this study was to test the effect of increasing fatty acid concentrations on substrate fluxes through pathways leading to citrate synthesis and release in the heart. This was accomplished using semirecirculating work-performing rat hearts perfused with substrate mixtures mimicking the in situ milieu (5.5 mM glucose, 8 nM insulin, 1 mM lactate, 0.2 mM pyruvate, and 0.4 mM oleate-albumin) and 13C methods. Raising the fatty acid concentration from 0.4 to 1 mM with long-chain oleate or medium-chain octanoate resulted in a lowering ( approximately 20%) of cardiac output and efficiency with unaltered O2 consumption. At the metabolic level, beyond the expected effects of high fatty acid levels on the contribution of pyruvate decarboxylation (reduced >3-fold) and beta-oxidation (enhanced approximately 3-fold) to citrate synthesis, there was also a 2.4-fold lowering of anaplerotic pyruvate carboxylation. Despite the dual inhibitory effect of high fatty acids on pyruvate decarboxylation and carboxylation, tissue citrate levels were twofold higher, but citrate release rates remained unchanged at 11-14 nmol/min, representing <0.5% of citric acid cycle flux. A similar trend was observed for most metabolic parameters after oleate or octanoate addition. Together, these results emphasize a differential modulation of anaplerotic pyruvate carboxylation and citrate release in the heart by fatty acids. We interpret the lack of effects of high fatty acid concentrations on citrate release rates as suggesting that, under physiological conditions, this process is maximal, probably limited by the activity of its mitochondrial or plasma membrane transporter. Limited citrate release at high fatty acid concentrations may have important consequences for the heart's fuel metabolism and function.

  11. Effect of progesterone on the release of arachidonic acid from human endometrial cells stimulated by histamine

    SciTech Connect

    Wilson, T.; Liggins, G.C.; Aimer, G.P.; Watkins, E.J.

    1986-02-01

    Progesterone at concentrations of 10(-7)M and 10(-8)M inhibits release of (/sup 3/H)-arachidonic acid from stimulated, perfused, endometrial cells. The effect is independent of the mechanism of stimulation. Cortisol (10(-5)M but not 10(-7)M) has a similar effect in this system but estradiol (10(-7)M) is without effect. There was a positive correlation (p less than 0.05) between the magnitude of inhibition by progesterone and the day of cycle. The inhibitory action of progesterone on the release of arachidonic acid was greater in endometrial cells than in decidual cells and was apparent after fifteen minutes. The activities of commercial and endometrial cell-free preparations of phospholipase A2 and phospholipase C were unaffected by the presence of progesterone. We conclude that progesterone modulates release of (/sup 3/H)-arachidonic acid from endometrial cells by a rapid, indirect action on phospholipase activity.

  12. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  13. Calcium dependent release of gamma-aminobutyric acid (GABA) from human cerebral cortex.

    PubMed

    Haugstad, T S; Hegstad, E; Langmoen, I A

    1992-07-06

    The release of the amino acids GABA, taurine, glycine, glutamine and leucine from human neocortex was investigated in vitro by utilizing brain tissue removed during 8 standard temporal lobectomies for epilepsy or tumor. Slices (0.5 mm thick) were cut from each biopsy and randomly placed in three different chambers. After 90 min preincubation, the three sets of slices were incubated for 60 s in wells containing, respectively, (A) regular ACSF (control), (B) ACSF with 50 mM K+ (to depolarize the cell membrane) and (C) ACSF with 50 mM K+, 0 mM Ca2+ and 4 mM Mg2+ (depolarization during blocked synaptic transmission). The content of amino acids in the wells was determined by high-performance liquid chromatography after pre-column derivatization of the amino acids with o-phthalaldehyde. Membrane depolarization (well B) increased the GABA release to 650% (620 pmol/mg) of control (well A, 95 pmol/mg). Blocking synaptic transmission (well C) reduced the evoked release by 50% (360 pmol/mg). The release of glycine, taurine, glutamine and leucine during membrane depolarization was not significantly different from the control values. The data provide evidence for a Ca(2+)-dependent release of GABA, supporting a possible role of this amino acid as a neurotransmitter in human neocortex.

  14. A study of marine pollution caused by the release of metals into seawater following acid spills.

    PubMed

    Cabon, Jean-Yves; Giamarchi, Philippe; Le Floch, Stephane

    2010-07-01

    This study examined the potential metal pollution induced by the accidental spill of different acids into seawater. The acids sink to the bottom according to their densities and subsequently react with marine sediments. The acids selected for this study were acetic, hydrochloric, nitric, sulfuric, and phosphoric acids; the metallic elements selected were Cr, Cu, Fe, Mn, Pb and Zn. The sediment was collected in Brest Harbour. The percentages of metals released from this sediment in the presence of various concentrations of acids in seawater were important; concentrations of approximately 7 mg L(-1) for Mn and 60 mg L(-1) for Zn were observed under our experimental conditions. We also examined the rate of release of these metals from the sediment into the seawater in the presence of the different acids and under different experimental conditions. We found that most of the metallic elements were released from the sediments into the seawater during the first fifteen minutes of exposure. After this time, a high degree of pollution was induced if acids leached into seawater were not rapidly diluted.

  15. Polymeric prodrug-functionalized polypropylene films for sustained release of salicylic acid.

    PubMed

    Magaña, Hector; Palomino, Kenia; Cornejo-Bravo, Jose M; Díaz-Gómez, Luis; Concheiro, Angel; Zavala-Lagunes, Edgar; Alvarez-Lorenzo, Carmen; Bucio, Emilio

    2016-09-10

    Medical devices decorated with salicylic acid-based polymer chains (polymeric prodrug) that slowly release this anti-inflammatory and anti-biofilm drug at the implantation site were designed. A "grafting from" method was implemented to directly grow chains of a polymerizable derivative of salicylic acid (2-methacryloyloxy-benzoic acid, 2MBA) onto polypropylene (PP). PP was modified both at bulk and on the surface with poly(2MBA) by means of an oxidative pre-irradiation method ((60)Co source), in order to obtain a grafted polymer in which salicylic acid units were linked by means of labile ester bonds. The grafting percent depended on absorbed dose, reaction time, temperature and monomer concentration. The functionalized films were analyzed regarding structure (FTIR-ATR, SEM-EDX, fluorescence microscopy), temperature stability (TGA), interaction with aqueous medium (water contact angle and swelling), pH-responsive release and cytocompatibility (fibroblasts). In the obtained poly(2MBA)-grafted biomaterial, poly(2MBA) behaved as a polymeric prodrug that regulates salicylic acid release once in contact with aqueous medium, showing pH-dependent release rate.

  16. Substrate specificity of the agonist-stimulated release of polyunsaturated fatty acids from vascular endothelial cells

    SciTech Connect

    Rosenthal, M.D.; Garcia, M.C.; Sprecher, H. )

    1989-11-01

    Stimulation of vascular endothelial cells with agonists such as histamine and thrombin results in release of arachidonic acid from membrane lipids and subsequent eicosanoid synthesis. As shown previously, the agonist-stimulated deacylation is specific for arachidonate, eicosapentaenoate, and 5,8,11-eicosatrienoate. This study has utilized radiolabeled fatty acids differing in chain length and position of double bonds to further elucidate the fatty acyl specificity of agonist-stimulated deacylation. Replicate wells of confluent human umbilical vein endothelial cells were incubated with 14C-labeled fatty acids and then challenged with histamine, thrombin, or the calcium ionophore A23187. Comparison of the results obtained with isomeric eicosatetraenoic fatty acids with initial double bonds at carbons 4, 5, or 6 indicated that the deacylation induced by all three agonists exhibited marked specificity for the cis-5 double bond. Lack of stringent chain length specificity was indicated by agonist-stimulated release of 5,8,11,14- tetraenoic fatty acids with 18, 19, 20, and 21 carbons. Release of 5,8,14-(14C)eicosatrienoate was two-to threefold that of 5,11,14-(14C)eicosatrienoate, thus indicating that the cis-8 double bond may also contribute to the stringent recognition by the agonist-sensitive phospholipase. The present study has also demonstrated that histamine, thrombin, and A23187 do not stimulate release of docosahexaenoate from endothelial cells.

  17. Release Kinetic in Yogurt from Gallic Acid Microparticles with Chemically Modified Inulin.

    PubMed

    García, Paula; Vergara, Cristina; Robert, Paz

    2015-10-01

    Gallic acid (GA) was encapsulated with native (NIn), cross-linked (CIn) and acetylated (AIn) inulin by spray-drying. Inulin microparticles were characterized by encapsulation efficiency (EE) and their release profile in yogurt. The EE was significantly higher for GA-CIn (98%) compared with GA-NIn (81%) and GA-AIn (77%) microparticles, showing the effect of the modification of inulin on interaction of GA-polymer. GA release profile data in yogurt for GA-CIn, GA-NIn and GA-AIn were fitted to Peppas and Higuchi models in order to obtain the GA release rate constant. Although the GA release rate constants were significantly different among systems, these differences were slight and the GA release was fast (80% < 2 h) in the three systems, showing that inulin-systems did not control GA release in yogurt. The mechanism of GA release followed a Fickian diffusion and relaxation of chains for all microparticles. According to the release profile, these microparticles would be best suited for use in instant foods.

  18. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug.

    PubMed

    Wang, Wenlong; Chen, Shu; Zhang, Liang; Wu, Xi; Wang, Jiexin; Chen, Jian-Feng; Le, Yuan

    2015-01-01

    Poly(lactic acid) (PLA) is a kind of non-toxic biological materials with excellent absorbability, biocompatibility and biodegradability, which can be used for drug release, tissue engineering and surgical treatment applications. In this study, we prepared chitosan modified PLA nanoparticles as carriers for encapsulation of docetaxel by anti-solvent precipitation method. The morphology, particle size, zeta potential and composition of the PLA/chitosan were characterized by SEM, DLS, FTIR and XPS. As-prepared PLA/chitosan particles exhibited average size of 250 nm and showed very narrow distribution with polydispersity index of 0.098. Their large surface charge-ability was confirmed by zeta potential value of 53.9 mV. Docetaxel was released from PLA/chitosan nanoparticles with 40% initial burst release in 5 h and 70% cumulative release within 24 h, while from PLA nanoparticles 65% of docetaxel was released in 5h. In vitro drug release study demonstrated that PLA/chitosan nanoparticles prolonged drug release and decreased the burst release over the unmodified PLA nanoparticles. These results illustrated high potential of chitosan modified PLA nanoparticles for usage as anticancer drug carriers.

  19. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    SciTech Connect

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-03-15

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of /sup 125/I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid.

  20. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release.

    PubMed

    Aelenei, Neculai; Popa, Marcel Ionel; Novac, Ovidiu; Lisa, Gabriela; Balaita, Lacramioara

    2009-05-01

    Chitosan, a natural polycationic polysaccharide, was coupled with two polyanionic polymers: Na-alginate and carboxymethylcellulose (CMC) and with tannic acid (TA) obtaining three species of self-assembled complexes: chitosan/alginate/TA (sample 1), chitosan/TA (sample 2) and chitosan/CMC/TA (sample 3). The microparticle formation was achieved by dropwise addition of one solution into other by using a coaxial airflow sprayer. These systems were characterized with regard to particle size distribution, thermal stability, tannic acid entrapment efficiency. Sample 2 showed quite a different behavior compared to the other two samples; the particle diameter is located in the nanometric region, the quantity of incorporated tannic acid is higher than in the other two samples and the material shows better thermal stability. The release of tannic acid from these complexes was studied in water (pH = 5.89), phosphates buffer (pH = 7.04) and acetate buffer (pH = 4.11). These studies revealed two distinct periods in tannic acid delivery process: an initial period, varying between 4 and 10 h, characterized by a high release rate with a delivered tannic acid amount of approximately 80% of the incorporated polyphenol and a second period, which starts after 20 to 30 h of delivery and it ends after approximately 120 h, when the release process takes place with low and constant rate and the kinetic curve is linear--characteristic for a zero order kinetic.

  1. Drug Release Characteristics and Tissue Distribution of Rifapentine Polylactic Acid Sustained-Release Microspheres in Rabbits after Paravertebral Implantation

    PubMed Central

    Zhang, Zheng; Wu, Linbo; Li, Haijian; Long, Zhicheng; Song, Xinghua

    2016-01-01

    Background Rates of drug-resistant tuberculosis (TB) and TB associated with human immunodeficiency virus (HIV) infection have increased dramatically, intensifying challenges in TB control. New formulations of TB treatment drugs that control drug release and increase local drug concentrations will have a significant impact on mitigating the toxic side effects and increasing the clinical efficacy of anti-TB drugs. Objectives The aim was to observe the sustained release characteristics of rifapentine polylactic acid sustained-release microspheres in vivo and the accumulation of rifapentine in other tissues following paravertebral implantation. Methods This study is a basic animal experimental study that began on July 17, 2014 in the Fifth Affiliated hospital of Xinjiang Medical University. One hundred and eight New Zealand white rabbits (weighing 2.8 - 3.0 kg, male and female, China) were randomly divided into three groups of 36 rabbits each. Blood and tissue samples from the liver, lungs, kidneys, vertebrae, and paravertebral muscle were collected at different time points post-surgery. High performance liquid chromatography (HPLC) analysis with a biological internal standard was used to determine the drug concentrations in samples. Results In group A, no significant differences in rifapentine concentrations in the liver were detected between any two time points (P > 0.05). However, the differences in rifapentine concentrations between day 10 and day 21 were statistically significant (P < 0.05); for days 21, 35, 46, and 60, the differences in rifapentine concentrations between two sequential time points were not statistically significant (P > 0.05). In group B, the differences in rifapentine concentration between days 3 and 10 in vertebral bone and in paravertebral muscles were statistically significant (P < 0.05). Rifapentine was detected in the vertebral bone tissue in the group C animals. The rifapentine concentrations between two sequential time points were

  2. Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism

    PubMed Central

    Francis, Michael B.

    2016-01-01

    ABSTRACT Classically, dormant endospores are defined by their resistance properties, particularly their resistance to heat. Much of the heat resistance is due to the large amount of dipicolinic acid (DPA) stored within the spore core. During spore germination, DPA is released and allows for rehydration of the otherwise-dehydrated core. In Bacillus subtilis, 7 proteins are encoded by the spoVA operon and are important for DPA release. These proteins receive a signal from the activated germinant receptor and release DPA. This DPA activates the cortex lytic enzyme CwlJ, and cortex degradation begins. In Clostridium difficile, spore germination is initiated in response to certain bile acids and amino acids. These bile acids interact with the CspC germinant receptor, which then transfers the signal to the CspB protease. Activated CspB cleaves the cortex lytic enzyme, pro-SleC, to its active form. Subsequently, DPA is released from the core. C. difficile encodes orthologues of spoVAC, spoVAD, and spoVAE. Of these, the B. subtilis SpoVAC protein was shown to be capable of mechanosensing. Because cortex degradation precedes DPA release during C. difficile spore germination (opposite of what occurs in B. subtilis), we hypothesized that cortex degradation would relieve the osmotic constraints placed on the inner spore membrane and permit DPA release. Here, we assayed germination in the presence of osmolytes, and we found that they can delay DPA release from germinating C. difficile spores while still permitting cortex degradation. Together, our results suggest that DPA release during C. difficile spore germination occurs though a mechanosensing mechanism. IMPORTANCE Clostridium difficile is transmitted between hosts in the form of a dormant spore, and germination by C. difficile spores is required to initiate infection, because the toxins that are necessary for disease are not deposited on the spore form. Importantly, the C. difficile spore germination pathway

  3. The influence of lactic acid on adenosine release from skeletal muscle in anaesthetized dogs.

    PubMed Central

    Ballard, H J

    1991-01-01

    1. In anaesthetized and artificially ventilated dogs, a gracilis muscle was vascularly isolated and perfused at a constant flow rate of 11.9 +/- 2.2 ml min-1 100 g-1 (mean +/- S.E.M., n = 16; equivalent to 170.2 +/- 21.3% of its resting free flow). 2. Stimulation (3 Hz) of the obturator nerve produced twitch contractions of the gracilis muscle, reduced venous pH from 7.366 +/- 0.027 to 7.250 +/- 0.031 (n = 5), increased oxygen consumption from 0.62 +/- 0.24 to 2.76 +/- 0.46 ml min-1 100 g-1 (n = 5) and increased adenosine release from -0.40 +/- 0.14 (net uptake) to 1.36 +/- 0.50 nmol min-1 100 g-1 (n = 8). 3. Infusion of lactic acid (4.2 mM) into the artery reduced venous pH to 7.281 +/- 0.026 (n = 5) and increased adenosine release to 0.96 +/- 0.40 nmol min-1 100 g-1 (n = 8), but did not significantly alter oxygen consumption (0.80 +/- 0.19 ml min-1 100 g-1; n = 5). Stimulation (3 Hz) in the presence of lactic acid infusion produced no further significant changes in venous pH or adenosine release, but increased oxygen consumption to 2.53 +/- 0.37 ml min-1 100 g-1 (n = 5). 4. Infusion of a range of lactic acid concentrations (> or = 1.83 mM) produced dose-dependent increases in adenosine release. The maximum lactic acid concentration tested (5.95 mM) reduced venous pH to 7.249 +/- 0.023 (n = 5) and increased adenosine release to 2.64 +/- 1.26 nmol min-1 100 g-1 (n = 6). 5. A strong correlation existed between the adenosine release and the venous pH (r = -0.92); points obtained during muscle stimulation and/or lactic acid infusion fell on a single correlation line. 6. The vasoactivity of adenosine administered by close-arterial injection was unaltered by infusion of either lactic acid (7.2 mM) or saline. 7. These results suggest that the release of adenosine from skeletal muscle can be induced by a decrease in pH (probably at an intracellular site), and that this mechanism may contribute to the release of adenosine during muscle contractions. PMID:1841964

  4. PRELIMINARY RESULTS: RELEASE OF METALS FROM ACID-MINE DRAINAGE CONTAMINATED STREAMBED SEDIMENTS UNDER ANOXIC CONDITIONS

    EPA Science Inventory

    Many miles of streams are contaminated with acid-mine drainage (AMD) from abandoned metal mines in the western U.S. Treatment of these streams may include dredging of the existing sediments, with subsequent burial. Burial of previously toxic sediments may result in release of met...

  5. Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids

    PubMed Central

    Benjamin, A. M.; Quastel, J. H.

    1972-01-01

    1. Amino acids, particularly glutamate, γ-aminobutyrate, aspartate and glycine, were released from rat brain slices on incubation with protoveratrine (especially in a Ca2+-deficient medium) or with ouabain or in the absence of glucose. Release was partially or wholly suppressed by tetrodotoxin. 2. Tetrodotoxin did not affect the release of glutamine under various incubation conditions, nor did protoveratrine accelerate it. 3. Protoveratrine caused an increased rate of formation of glutamine in incubated brain slices. 4. Increased K+ in the incubation medium caused release of γ-aminobutyrate, the process being partly suppressed by tetrodotoxin. 5. Incubation of brain slices in a glucose-free medium led to increased production of aspartate and to diminished tissue contents of glutamates, glutamine and glycine. 6. Use of tetrodotoxin to suppress the release of amino acids from neurons in slices caused by the joint action of protoveratrine and ouabain (the latter being added to diminish reuptake of amino acids), it was shown that the major pools of glutamate, aspartate, glycine, serine and probably γ-aminobutyrate are in the neurons. 7. The major pool of glutamine lies not in the neurons but in the glia. 8. The tricarboxylic cycle inhibitors, fluoroacetate and malonate, exerted different effects on amino acid contents in, and on amino acid release from, brain slices incubated in the presence of protoveratrine. Fluoroacetate (3mm) diminished the content of glutamine, increased that of glutamate and γ-aminobutyrate and did not affect respiration. Malonate (2mm) diminished aspartate and γ-aminobutyrate content, suppressed respiration and did not affect glutamine content. It is suggested that malonate acts mainly on the neurons, and that fluoroacetate acts mainly on the glia, at the concentrations quoted. 9. Glutamine was more effective than glutamate as a precursor of γ-aminobutyrate. 10. It is suggested that glutamate released from neurons is partly taken up by

  6. Locations of amino acids in brain slices from the rat. Tetrodotoxin-sensitive release of amino acids.

    PubMed

    Benjamin, A M; Quastel, J H

    1972-07-01

    1. Amino acids, particularly glutamate, gamma-aminobutyrate, aspartate and glycine, were released from rat brain slices on incubation with protoveratrine (especially in a Ca(2+)-deficient medium) or with ouabain or in the absence of glucose. Release was partially or wholly suppressed by tetrodotoxin. 2. Tetrodotoxin did not affect the release of glutamine under various incubation conditions, nor did protoveratrine accelerate it. 3. Protoveratrine caused an increased rate of formation of glutamine in incubated brain slices. 4. Increased K(+) in the incubation medium caused release of gamma-aminobutyrate, the process being partly suppressed by tetrodotoxin. 5. Incubation of brain slices in a glucose-free medium led to increased production of aspartate and to diminished tissue contents of glutamates, glutamine and glycine. 6. Use of tetrodotoxin to suppress the release of amino acids from neurons in slices caused by the joint action of protoveratrine and ouabain (the latter being added to diminish reuptake of amino acids), it was shown that the major pools of glutamate, aspartate, glycine, serine and probably gamma-aminobutyrate are in the neurons. 7. The major pool of glutamine lies not in the neurons but in the glia. 8. The tricarboxylic cycle inhibitors, fluoroacetate and malonate, exerted different effects on amino acid contents in, and on amino acid release from, brain slices incubated in the presence of protoveratrine. Fluoroacetate (3mm) diminished the content of glutamine, increased that of glutamate and gamma-aminobutyrate and did not affect respiration. Malonate (2mm) diminished aspartate and gamma-aminobutyrate content, suppressed respiration and did not affect glutamine content. It is suggested that malonate acts mainly on the neurons, and that fluoroacetate acts mainly on the glia, at the concentrations quoted. 9. Glutamine was more effective than glutamate as a precursor of gamma-aminobutyrate. 10. It is suggested that glutamate released from neurons is

  7. Erosive effects of different acids on bovine enamel: release of calcium and phosphate in vitro.

    PubMed

    Hannig, Christian; Hamkens, Arne; Becker, Klaus; Attin, Rengin; Attin, Thomas

    2005-06-01

    The present study intended to investigate minimal erosive effects of different acids on enamel during short time incubation via determination of calcium and phosphate dissolution. Bovine enamel specimens were eroded for 1-5 min with eight different acids of pH 2, 2.3 and 3 (citric (CA), maleic (MA), lactic (LA), tartaric (TA), phosphoric (PA), oxalic (OA), acetic (AA) and hydrochloric acid (HCl)). Calcium (Ca) and phosphate (P) release were determined photometrically using arsenazo III (calcium) and malachite green (phosphate) as substrates. Each subgroup contained eight enamel specimens. Amount of titratable acid was determined for all acidic solutions. MA, LA, TA, AA and HCl caused linear release of Ca and P, PA of Ca, CA of P. For CA, MA, LA, TA, AA, PA and HCl mineral loss was shown to be pH-dependent. Ca dissolution varied between 28.6+/-4.4 (LA, pH 2) and 2.4+/-0.7 nmol mm(-2)min(-1) (HCl, pH 3), P dissolution ranged between 17.2+/-2.6 (LA, pH 2) and 1.4+/-0.4 nmol mm(-2)min(-1) (HCl, pH 3). LA was one of the most erosive acids. AA was very erosive at pH 3. HCl and MA were shown to have the lowest erosive effects. There was only a weak correlation (r=0.28) between P and Ca release and the amount of titratable acid. The method of the present study allows investigation of minimal erosive effects via direct determination of P and Ca dissolution. During short time exposition at constant pH level, erosive effects mainly depend on pH and type of acid but not on amount of titratable acid.

  8. Timolol maleate release from hyaluronic acid-containing model silicone hydrogel contact lens materials.

    PubMed

    Korogiannaki, Myrto; Guidi, Giuliano; Jones, Lyndon; Sheardown, Heather

    2015-09-01

    This study was designed to assess the impact of a releasable wetting agent, such as hyaluronic acid (HA), on the release profile of timolol maleate (TM) from model silicone hydrogel contact lens materials. Polyvinylpyrrolidone (PVP) was used as an alternative wetting agent for comparison. The model lenses consisted of a hydrophilic monomer, either 2-hydroxyethyl methacrylate or N,N-dimethylacrylamide and a hydrophobic silicone monomer of methacryloxypropyltris (trimethylsiloxy) silane. The loading of the wetting and the therapeutic agent occurred during the synthesis of the silicone hydrogels through the method of direct entrapment. The developed materials were characterized by minimal changes in the water uptake, while lower molecular weight of HA improved their surface wettability. The transparency of the examined silicone hydrogels was found to be affected by the miscibility of the wetting agent in the prepolymer mixture as well as the composition of the developed silicone hydrogels. Sustained release of TM from 4 to 14 days was observed, with the drug transport occurring presumably through the hydrophilic domains of the silicone hydrogels. The release profile was strongly dependent on the hydrophilic monomer composition, the distribution of hydrophobic (silane) domains, and the affinity of the therapeutic agent for the silicone hydrogel matrix. Noncovalent entrapment of the wetting agent did not change the in vitro release duration and kinetics of TM, however the drug release profile was found to be controlled by the simultaneous release of TM and HA or PVP. In the case of HA, depending on the HA:drug ratio, the release rate was decreased and controlled by the release of HA, likely due to electrostatic interactions between protonated TM and anionic HA. Overall, partitioning of the drug within the hydrophilic domains of the silicone hydrogels as well as interactions with the wetting agent determined the drug release profile.

  9. Enhanced histamine release from lung mast cells of guinea pigs exposed to sulfuric acid aerosols

    SciTech Connect

    Fujimaki, Hidekazu ); Katayama, Noboru; Wakamori, Kazuo )

    1992-06-01

    To clarify the relationship between air pollution and mast cell response, the effects of sulfuric acid aerosols on histamine release from lung mast cells of guinea pigs were investigated. Guinea pigs were exposed to 0.3, 1.0 and 3.2 mg/m{sup 3} sulfuric acid (H{sub 2}SO{sub 4}) aerosols or 4 ppm nitrogen dioxide (NO{sub 2}) for 2 and 4 weeks. After the exposure, lung mast cell suspensions were isolated by collagenase treatment and antigen- or A23187-induced histamine release was measured. Antigen-induced histamine release from mast cells was significantly enhanced by the exposure to 1.0 and 3.2 mg/m{sup 3} H{sub 2}SO{sub 4} for 2 weeks, but exposure to H{sub 2}SO{sub 4} for 4 weeks did not show the enhancement of antigen-induced histamine release. A23187-induced histamine release was significantly enhanced by the exposure to 1.0 mg/m{sup 3} H{sub 2}SO{sub 4} or 4 ppm NO{sub 2} for 2 weeks, but suppression of histamine release from lung mast cells stimulated with A23187 was observed by the exposure to 3.2 mg/m{sup 3} H{sub 2}So{sub 4} for 4 weeks. The exposure to 0.3 mg/m{sup 3} H{sub 2}So{sub 4} showed no changes in antigen- and A23187-induced histamine release. The combination of 1.0 mg/m{sup 3} H{sub 2}So{sub 4} with 4 ppm NO{sub 2} for 2 weeks resulted in no changes in antigen- and A23187-induced histamine release. These results suggested that functional properties of lung mast cells may be altered by a low concentration of H{sub 2}So{sub 4} aerosol exposure.

  10. Release and effect of gamma-aminobutyric acid (GABA) on rat pineal melatonin production in vitro.

    PubMed

    Rosenstein, R E; Chuluyan, H E; Pereyra, E N; Cardinali, D P

    1989-06-01

    1. 3H-gamma-Aminobutyric acid (GABA) release elicited by a depolarizing K+ stimulus or by noradrenergic transmitter was examined in rat pineals in vitro. 2. The release of 3H-GABA was detectable at a 20 mM K+ concentration in medium and increased steadily up to 80 mM K+. 3. In a Ca2+-free medium 3H-GABA release elicited by 30 mM K+, but not that elicited by 50 mM K+, became blunted. 4. Norepinephrine (NE; 10(-6)-10(-4) M) stimulated 3H-GABA release from rat pineal explants in a dose-dependent manner. 5. The activity of 10(-5) M NE on pineal GABA release was suppressed by equimolecular amounts of prazosin or phentolamine (alpha 1- and alpha 1/alpha 2-adrenoceptor blockers, respectively) and was unaffected by propranolol (beta-adrenoceptor blocker). 6. The alpha 1-adrenoceptor agonist phenylephrine (10(-7)-10(-5) M) and the beta-adrenoceptor agonist isoproterenol (10(-5) M) mimicked the GABA releasing activity of NE, while 10(-7) M isoproterenol failed to affect it; the alpha 2-adrenoceptor agonist clonidine (10(-7)-10(-5) M) did not modify 3H-GABA release. 7. The addition of 10(-4) M GABA or of the GABA transaminase inhibitor gamma-acetylenic GABA or aminooxyacetic acid inhibited the melatonin content and/or release to the medium in rat pineal organotypic cultures. 8. GABA at concentrations of 10(-5) M or greater partially inhibited the NE-induced increase in melatonin production by pineal explants. 9. The depressant effect of GABA on melatonin production was inhibited by the GABA type A receptor antagonist bicuculline; bicuculline alone increased the pineal melatonin content. Baclofen, a GABA type B receptor agonist, did not affect the pineal melatonin content or release. 10. The decrease in serotonin (5-HT) content of rat pineal explants brought about by NE was not modified by GABA; GABA by itself increased 5-HT levels. 11. These results indicate that (a) GABA is released from rat pineals by a depolarizing stimulus of K+ through a mechanism which is partially Ca2

  11. Omega 3 fatty acids increase spontaneous release of cytosolic components from tumor cells

    SciTech Connect

    Jenski, L.J.; Sturdevant, L.K.; Ehringer, W.D.; Stillwell, W. )

    1991-05-01

    Mice fed menhaden (fish) oil or coconut oil-rich diets were inoculated intraperitoneally with a rapidly growing leukemia, T27A. After one week, the tumor cells were harvested, and 51Cr was used to label intracellular molecules. Spontaneous release of 51Cr was used as a measure of plasma membrane permeability. Compared to cells from mice fed coconut oil (rich in saturated fatty acids), tumor cells from mice fed menhaden oil (rich in long chain polyunsaturated omega 3 fatty acids) showed an increased level of spontaneous 51Cr release, which was exacerbated by increased temperature and reduced by extracellular protein. At physiological salt concentrations, the released 51Cr was detected in particles of approximately 2700 daltons. Enhanced permeability correlated with the incorporation of dietary (fish oil) omega 3 polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic acid into the tumor cells. The results demonstrate that omega 3 fatty acids are incorporated into cellular constituents of tumor cells and change properties associated with the plasma membrane. This result suggests that dietary manipulation may be used to enhance tumor cell permeability and contribute to tumor eradication.

  12. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

    PubMed Central

    Francis, Michael B.; Allen, Charlotte A.

    2015-01-01

    ABSTRACT Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant

  13. Reduced Burst Release and Enhanced Oral Bioavailability in Shikimic Acid-Loaded Polylactic Acid Submicron Particles by Coaxial Electrospray.

    PubMed

    Wang, Miaomiao; Wang, Yuanwen; Omari-Siaw, Emmanuel; Wang, Shengli; Zhu, Yuan; Xu, Ximing

    2016-08-01

    In this study, using the coaxial electrospray method, we prepared submicron particles of the water-soluble drug shikimic acid (SA) with polylactic acid (PLA) as a polymer, to reduce the burst release and enhance the oral bioavailability. In vitro release study performed in HCl solution (pH 1.2) showed that the coaxial electrospray submicron particles could reduce burst release effect and presented a sustained release profile, compared with free SA and the particles prepared by electrospray method. The absorption of SA in the intestinal tract, studied using an in situ perfusion method in rats, also revealed jejunum as the main absorptive segment followed by duodenum and ileum. Moreover, the SA-loaded particles greatly enhanced the absorption of SA in the tested intestinal segments. The intestinal absorption rate was not enhanced with increasing drug concentration (5-15 μg/mL) which suggested that active transport or facilitated diffusion could play vital role in SA absorption. In addition, the SA-loaded PLA coaxial electrospray particle exhibited a prolonged plasma circulation with enhanced bioavailability after oral administration. In all, the coaxial electrospray technique could provide notable advantages for the oral delivery of SA, thereby enhancing its clinical application.

  14. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    NASA Astrophysics Data System (ADS)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2016-10-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  15. Asynchronous Reductive Release of Iron and Organic Carbon from Hematite-Humic Acid Complexes

    NASA Astrophysics Data System (ADS)

    Adhikari, D.; Poulson, S.; Sumaila, S.; Dynes, J.; McBeth, J. M.; Yang, Y.

    2015-12-01

    Association with solid-phase iron plays an important role in the accumulation and stabilization of soil organic matter (SOM). Ferric minerals are subject to redox reactions, which can compromise the stability of iron-bound SOM. To date, there is limited information available concerning the fate of iron-bound SOM during redox reactions. In this study, we investigated the release kinetics of hematite-bound organic carbon (OC) during the abiotic reduction of hematite-humic acid (HA) complexes by dithionite, as an analog for the fate of iron-bound SOM in natural redox reactions. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to examine the ratio of the aromatic, phenolic and carboxylic/imide functional groups of the adsorbed OC before and after reduction. Our results indicate that the reductive release of iron obeyed first-order kinetics with release rate constants of 6.67×10-3 to 13.0×10-3 min-1. The iron-bound OC was released rapidly during the initial stage with release rate constants of 0.011 to 1.49 min-1, and then became stable with residual fractions of 4.6% to 58.2% between 120 and 240 min. The release rate of aromatic OC was much faster than for the non-aromatic fraction of HA, and 90% of aromatic OC was released within the first hour for most samples. The more rapid release of aromatic OC was attributed to its potential distribution on the outer layer because of steric effects and the possible reduction of quinoids. Our findings show that in the reductive reaction the mobilization of iron-bound organic carbon was asynchronous with the reduction of iron, and aromatic carbon was released more readily than other organic components. This study illustrates the importance of evaluating the stability of iron-bound SOM, especially under aerobic-anaerobic transition conditions.

  16. In Vitro Investigation of Self-Assembled Nanoparticles Based on Hyaluronic Acid-Deoxycholic Acid Conjugates for Controlled Release Doxorubicin: Effect of Degree of Substitution of Deoxycholic Acid

    PubMed Central

    Wei, Wen-Hao; Dong, Xue-Meng; Liu, Chen-Guang

    2015-01-01

    Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin–mediated cancer therapy. PMID:25837468

  17. In vitro investigation of self-assembled nanoparticles based on hyaluronic acid-deoxycholic acid conjugates for controlled release doxorubicin: effect of degree of substitution of deoxycholic acid.

    PubMed

    Wei, Wen-Hao; Dong, Xue-Meng; Liu, Chen-Guang

    2015-03-31

    Self-assembled nanoparticles based on a hyaluronic acid-deoxycholic acid (HD) chemical conjugate with different degree of substitution (DS) of deoxycholic acid (DOCA) were prepared. The degree of substitution (DS) was determined by titration method. The nanoparticles were loaded with doxorubicin (DOX) as the model drug. The human cervical cancer (HeLa) cell line was utilized for in vitro studies and cell cytotoxicity of DOX incorporated in the HD nanoparticles was accessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In addition, cellular uptake of fluorescently labeled nanoparticles was also investigated. An increase in the degree of deoxycholic acid substitution reduced the size of the nanoparticles and also enhanced their drug encapsulation efficiency (EE), which increased with the increase of DS. A higher degree of deoxycholic acid substitution also lead to a lower release rate and an initial burst release of doxorubicin from the nanoparticles. In summary, the degree of substitution allows the modulation of the particle size, drug encapsulation efficiency, drug release rate, and cell uptake efficiency of the nanoparticles. The herein developed hyaluronic acid-deoxycholic acid conjugates are a good candidate for drug delivery and could potentiate therapeutic formulations for doxorubicin-mediated cancer therapy.

  18. Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.

    PubMed Central

    Casellas, F; Mourelle, M; Papo, M; Guarner, F; Antolin, M; Armengol, J R; Malagelada, J R

    1996-01-01

    AIM--To measure the intracolonic release of nitric oxide end products (nitrates plus nitrites) and eicosanoids in response to intraluminal irritation with deoxycholic acid (DCA). PATIENTS--Seven patients with irritable bowel syndrome. METHODS--The left colon was perfused with a solution with or without 3 mM deoxycholic acid. Aspirates were assayed for eicosanoids by specific radioimmuno-assay, and for nitrates plus nitrites by the Griess reaction. To confirm that stimulated colonic mucosa can produce nitric oxide (NO), ancillary studies were performed in vitro using samples of normal mucosa obtained from five surgically resected colons. Samples were incubated for 30 minutes in Kreb's solution, 3 mM DCA or DCA with 1 mM L-nitro-arginine-methyl-ester (L-NAME) to inhibit the NO synthase. Finally, NO synthase activity was measured in five samples of human colonic mucosa. RESULTS--Intracolonic release of nitrates plus nitrites was basally undetectable in six of seven patients. Bile acid considerably increased the release of prostaglandin E2 and nitrates plus nitrites (p < 0.01). By contrast, no increase in thromboxane and leukotriene was seen. In vitro mucosal incubation with DCA increased the production of NO synthase products, which was blocked by L-NAME. Activity of Ca+2 independent NO synthase was detectable in four of five samples of human colonic mucosa. CONCLUSION--The human colonic mucosa responds to bile acid induced irritation by a surge in NO generation via NO synthase. PMID:8707118

  19. Pathological regulation of arachidonic acid release in cystic fibrosis: the putative basic defect.

    PubMed Central

    Carlstedt-Duke, J; Brönnegård, M; Strandvik, B

    1986-01-01

    The regulation of arachidonic acid release from membrane phospholipids was investigated in lymphocytes from patients with cystic fibrosis as well as control patients. No effect of either dexamethasone or fetal calf serum was seen on arachidonic acid release from cystic fibrosis lymphocytes, in contrast to control lymphocytes. In the latter cells, arachidonic acid release was inhibited by dexamethasone, fetal calf serum, or both. There were no differences in glucocorticoid receptor in lymphocytes from the two groups with regard to Kd and number of binding sites per cell. Furthermore, dexamethasone inhibited the incorporation of thymidine into lymphocytes from either group, indicating a normal functional glucocorticoid receptor. The defective regulation of arachidonic acid, resulting in an increased turnover, can explain many of the findings in cystic fibrosis, and we hypothesize that it is the basic defect causing the disease. The defect occurs at a level after the glucocorticoid receptor, which is functionally normal, and involves either the glucocorticoid-dependent phospholipase-inhibitory protein lipomodulin (lipocortin) or phospholipase A2. PMID:3097647

  20. A hybrid SVM-FFA method for prediction of monthly mean global solar radiation

    NASA Astrophysics Data System (ADS)

    Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Zamani, Mazdak; Motamedi, Shervin; Ch, Sudheer

    2016-07-01

    In this study, a hybrid support vector machine-firefly optimization algorithm (SVM-FFA) model is proposed to estimate monthly mean horizontal global solar radiation (HGSR). The merit of SVM-FFA is assessed statistically by comparing its performance with three previously used approaches. Using each approach and long-term measured HGSR, three models are calibrated by considering different sets of meteorological parameters measured for Bandar Abbass situated in Iran. It is found that the model (3) utilizing the combination of relative sunshine duration, difference between maximum and minimum temperatures, relative humidity, water vapor pressure, average temperature, and extraterrestrial solar radiation shows superior performance based upon all approaches. Moreover, the extraterrestrial radiation is introduced as a significant parameter to accurately estimate the global solar radiation. The survey results reveal that the developed SVM-FFA approach is greatly capable to provide favorable predictions with significantly higher precision than other examined techniques. For the SVM-FFA (3), the statistical indicators of mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2) are 3.3252 %, 0.1859 kWh/m2, 3.7350 %, and 0.9737, respectively which according to the RRMSE has an excellent performance. As a more evaluation of SVM-FFA (3), the ratio of estimated to measured values is computed and found that 47 out of 48 months considered as testing data fall between 0.90 and 1.10. Also, by performing a further verification, it is concluded that SVM-FFA (3) offers absolute superiority over the empirical models using relatively similar input parameters. In a nutshell, the hybrid SVM-FFA approach would be considered highly efficient to estimate the HGSR.

  1. Simultaneous detection of gastric acid and histamine release to unravel the regulation of acid secretion from the guinea pig stomach.

    PubMed

    Bitziou, Eleni; Patel, Bhavik Anil

    2012-08-01

    Gastric acid secretion is regulated by three primary components that activate the parietal cell: histamine, gastrin, and acetylcholine (ACh). Although much is known about these regulatory components individually, little is known on the interplay of these multiple activators and the degree of regulation they pose on the gastric acid secretion mechanism. We utilized a novel dual-sensing approach, where an iridium oxide sensor was used to monitor pH and a boron-doped diamond electrode was used for the detection of histamine from in vitro guinea pig stomach mucosal sections. Under basal conditions, gastrin was shown to be the main regulatory component of the total acid secretion and directly activated the parietal cell rather than by mediating gastric acid secretion through the release of histamine from the enterochromaffin-like cell, although both pathways were active. Under stimulated conditions with ACh, the gastrin and histamine components of the total acid secretion were not altered compared with levels observed under basal conditions, suggestive that ACh had no direct effect on the enterochromaffin-like cell and G cell. These data identify a new unique approach to investigate the regulation pathways active during acid secretion and the degree that they are utilized to drive total gastric acid secretion. The findings of this study will enhance our understanding on how these signaling mechanisms vary under pathophysiology or therapeutic management.

  2. In vitro release of organophosphorus acid anhydrolase from functionalized mesoporous silica against nerve agents.

    SciTech Connect

    Chen, Baowei; Shah, Saumil S.; Shin, Yongsoon; Lei, Chenghong; Liu, Jun

    2011-10-02

    We report here that under different physiological conditions, biomolecular drugs can be stockpiled in a nanoporous support and afterward can be instantly released when needed for acute responses, and the biomolecular drug molecules can also be gradually released from the nanoporous support over a long time for a complete recovery. Organophosphorus acid anhydrolase (OPAA) was spontaneously and largely entrapped in functionalized mesoporous silica (FMS) due to the dominant electrostatic interaction. The OPAA-FMS composite exhibited a burst release in a pH 9.0 NaHCO(3)-Na(2)CO(3) buffer system and a gradual release in pH 7.4 simulated body fluid. The binding of OPAA to NH(2)-FMS can result in less tyrosinyl and tryptophanyl exposure OPAA molecules to aqueous environment. The bound OPAA in FMS displayed lower activity than the free OPAA in solution prior to the enzyme entrapment. However, the released enzyme maintained the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. The in vitro results in the rabbit serum demonstrate that both OPAA-FMS and the released OPAA may be used as a medical countermeasure against the organophosphorus nerve agents.

  3. In vitro release of organophosphorus acid anhydrolase from functionalized mesoporous silica against nerve agents

    PubMed Central

    Chen, Baowei; Shah, Saumil S.; Shin, Yongsoon; Lei, Chenghong; Liu, Jun

    2011-01-01

    We report here that under different physiological conditions, biomolecular drugs can be stockpiled in a nanoporous support and afterwards can be instantly released when needed for acute responses, and the biomolecular drug molecules can also be gradually released from the nanoporous support over a long time for a complete recovery. Organophosphorus acid anhydrolase (OPAA) was spontaneously and largely entrapped in functionalized mesoporous silica (FMS) due to the dominant electrostatic interaction. The OPAA-FMS composite exhibited a burst release in pH 9.0, NaHCO3-Na2CO3 buffer system and a gradual release in pH 7.4, simulated body fluid. The binding of OPAA to NH2-FMS can result in less Trp exposure of OPAA molecules to aqueous environment. The bound OPAA in FMS displayed lower activity than the free OPAA in solution prior to the enzyme entrapment. However, the released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. The in vitro results in the rabbit serum demonstrate that both OPAA-FMS and the released OPAA may be used as the medical measures against the organophosphorus nerve agents. PMID:22019765

  4. Development and in-vitro evaluation of sustained-release meclofenamic acid microspheres.

    PubMed

    Khidr, S H; Niazy, E M; el-Sayed, Y M

    1998-01-01

    Meclofenamic acid (MFA) sustained-release microspheres were prepared by the solvent evaporation method using cellulose propionate (CP) polymer and acetone as the polymer solvent. Polyethylene glycol (PEG) was used as a channelling agent to improve the release properties of MFA at 1:2:1 drug to polymer to PEG ratio. The microspheres prepared at three different speeds (600, 800 and 1000 rpm) were characterized with regard to their surface morphology, average drug content, particle size distribution and release profiles in phosphate buffer, pH 8.0 at 37 degrees C. The microspheres were stored under accelerated conditions for 3 months and the effect of storage on the different characteristics was studied. Spherical particles with essentially smooth surface and few residual drug crystals on the surface were formed. Smaller particles were formed at higher agitation speeds. The release rate of MFA from these microspheres was not affected by the molecular weight of CP polymer. PEG 2000 was found to have a more enhancing effect on the rate of the release than PEG 4000. The physical properties of the microspheres and their release characteristics were not altered by storing the product at 40 degrees C/80% relative humidity (R.H.) for 3 months.

  5. Controlled release of ethacrynic acid from poly(lactide-co-glycolide) films for glaucoma treatment.

    PubMed

    Wang, Yong; Challa, Pratap; Epstein, David L; Yuan, Fan

    2004-08-01

    Ethacrynic acid (ECA) is a potential glaucoma drug that can reduce intraocular pressure. However, conventional methods of ECA administration may cause toxicity to normal eye tissues and are inconvenient to patients. Therefore, we developed and characterized an ECA loaded poly(lactide-co-glycolide) (PLGA) copolymer film, and quantified the therapeutic efficacy of the film implanted in the rabbit eye. In the aqueous medium, the release of ECA from the PLGA50:50 film was time dependent and more than 90% of ECA was released within a week. This release profile was consistent with the kinetics of water uptake and microstructural changes of PLGA50:50 films as revealed by an electron microscopy examination. ECA release and PLGA degradation caused a gradual pH decrease in the release medium. The total pH decrease was 0.4 unit in 3 days. We also observed that the initial rate of ECA release was positively correlated with the weight ratio of ECA versus PLGA and inversely correlated with the molar ratio of lactide versus glycolide in PLGA films. At the end of a 3-day incubation, the cumulative release of ECA from PLGA50:50, PLGA85:15 and PLGA100:00 films were 78.8%, 9.35% and 3.60%, respectively. When the PLGA50:50 film loaded with ECA was implanted into the sclera of rabbit eyes, the intraocular pressure was significantly reduced and the reduction was maintained for at least 10 days. These data indicate that PLGA films have a potential to be used as a controlled ECA release device for glaucoma treatment.

  6. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  7. Drug delivery and therapeutic impact of extended-release acetylsalicylic acid.

    PubMed

    Bliden, Kevin P; Patrick, Jeff; Pennell, Andrew T; Tantry, Udaya S; Gurbel, Paul A

    2016-01-01

    Current treatment guidelines recommend once-daily, low-dose acetylsalicylic acid (ASA; aspirin) for secondary prevention of cardiovascular events. However, the anti-thrombotic benefits of traditional ASA formulations may not extend over a 24-h period, especially in patients at high risk for a recurrent cardiovascular event. A next-generation, extended-release ASA formulation (ER-ASA) has been developed to provide 24-h anti-thrombotic coverage with once-daily dosing. The pharmacokinetics of ER-ASA indicates slower absorption and prolonged ASA release versus immediate-release ASA, with a favorable safety profile. ER-ASA minimizes systemic ASA absorption and provides sustained antiplatelet effects over a 24-h period.

  8. Release of propranolol and diclofenac from low Mw DL-poly(lactic acid).

    PubMed

    Mamouzelos, N J; Proikakis, C S; Tarantili, P A; Andreopoulos, A G

    2002-01-01

    The controlled release of two drugs, i.e. the sodium salt of diclofenac and propranolol was studied, by using low molecular weight D,L-Poly(lactic acid) as a matrix. Tablets of the above polymer containing those drugs were immersed into buffers with various pH values and delivery was recorded as a function of time, via UV-spectroscopy. The results showed that the polymer is appropriate for such biomedical applications, as generally, it ensures complete drug delivery within 45-60 days, which is acceptable for most cases. On the other hand, the release rate depends on many parameters including the interactions among drug, matrix and the surrounding liquid, which adds complexity to the process and requires careful investigation for proper design of a controlled release system.

  9. Effects of C18 Fatty Acids on Intracellular Ca(2+) Mobilization and Histamine Release in RBL-2H3 Cells.

    PubMed

    Kim, Myung Chul; Kim, Min Gyu; Jo, Young Soo; Song, Ho Sun; Eom, Tae In; Sim, Sang Soo

    2014-06-01

    To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and α-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular Ca(2+) mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular Ca(2+) mobilization, whereas linoleic acid and α-linolenic acid gradually increased this mobilization. In the absence of extracellular Ca(2+), stearic acid (100 µM) did not cause any increase of intracellular Ca(2+) mobilization. Both linoleic acid and α-linolenic acid increased intracellular Ca(2+) mobilization, but the increase was smaller than that in the presence of extracellular Ca(2+). These results suggest that C18 fatty acid-induced intracellular Ca(2+) mobilization is mainly dependent on extracellular Ca(2+) influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular Ca(2+) mobilization, but did not affect both linoleic acid and α-linolenic acid-induced intracellular Ca(2+) mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and α-linolenic acid on intracellular Ca(2+) mobilization may differ. Linoleic acid and α-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ω-6)-induced intracellular Ca(2+) mobilization and histamine release were more prominent than α-linolenic acid (C18:3: ω-3). These data support the view that the intake of more α-linolenic acid than linoleic acid is useful in preventing inflammation.

  10. Effects of C18 Fatty Acids on Intracellular Ca2+ Mobilization and Histamine Release in RBL-2H3 Cells

    PubMed Central

    Kim, Myung Chul; Kim, Min Gyu; Jo, Young Soo; Song, Ho Sun; Eom, Tae In

    2014-01-01

    To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and α-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular Ca2+ mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular Ca2+ mobilization, whereas linoleic acid and α-linolenic acid gradually increased this mobilization. In the absence of extracellular Ca2+, stearic acid (100 µM) did not cause any increase of intracellular Ca2+ mobilization. Both linoleic acid and α-linolenic acid increased intracellular Ca2+ mobilization, but the increase was smaller than that in the presence of extracellular Ca2+. These results suggest that C18 fatty acid-induced intracellular Ca2+ mobilization is mainly dependent on extracellular Ca2+ influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular Ca2+ mobilization, but did not affect both linoleic acid and α-linolenic acid-induced intracellular Ca2+ mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and α-linolenic acid on intracellular Ca2+ mobilization may differ. Linoleic acid and α-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ω-6)-induced intracellular Ca2+ mobilization and histamine release were more prominent than α-linolenic acid (C18:3: ω-3). These data support the view that the intake of more α-linolenic acid than linoleic acid is useful in preventing inflammation. PMID:24976764

  11. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    PubMed

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms.

  12. Acid-Cleavable Unimolecular Micelles from Amphiphilic Star Copolymers for Triggered Release of Anticancer Drugs.

    PubMed

    Zhang, Shan; Xu, Jianbin; Chen, Heng; Song, Zhangfa; Wu, Yalan; Dai, Xingyi; Kong, Jie

    2017-03-01

    In this contribution, amphiphilic star copolymers (H40-star-PCL-a-PEG) with an H40 hyperbranched polyester core and poly(ε-caprolactone)-a-poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring-opening polymerization and a copper (I)-catalyzed alkyne-azide cycloaddition click reaction. The acid-cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid-cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid-cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  13. Ursodeoxycholic acid inhibits TNFα-induced IL-8 release from monocytes.

    PubMed

    O'Dwyer, Aoife M; Lajczak, Natalia K; Keyes, Jennifer A; Ward, Joseph B; Greene, Catherine M; Keely, Stephen J

    2016-08-01

    Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 μg/ml) for 24 h, in the absence or presence of UDCA (25-100 μM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD.

  14. Nitric oxide releases Cl− from acidic organelles in retinal amacrine cells

    PubMed Central

    Krishnan, Vijai; Gleason, Evanna

    2015-01-01

    Determining the factors regulating cytosolic Cl− in neurons is fundamental to our understanding of the function of GABA- and glycinergic synapses. This is because the Cl− distribution across the postsynaptic plasma membrane determines the sign and strength of postsynaptic voltage responses. We have previously demonstrated that nitric oxide (NO) releases Cl− into the cytosol from an internal compartment in both retinal amacrine cells and hippocampal neurons. Furthermore, we have shown that the increase in cytosolic Cl− is dependent upon a decrease in cytosolic pH. Here, our goals were to confirm the compartmental nature of the internal Cl− store and to test the hypothesis that Cl− is being released from acidic organelles (AO) such as the Golgi, endosomes or lysosomes. To achieve this, we made whole cell voltage clamp recordings from cultured chick retinal amacrine cells and used GABA-gated currents to track changes in cytosolic Cl−. Our results demonstrate that intact internal proton gradients are required for the NO-dependent release of internal Cl−. Furthermore, we demonstrate that increasing the pH of AO leads to release of Cl− into the cytosol. Intriguingly, the elevation of organellar pH results in a reversal in the effects of NO. These results demonstrate that cytosolic Cl− is closely linked to the regulation and maintenance of organellar pH and provide evidence that acidic compartments are the target of NO. PMID:26106295

  15. Stimuli responsive charge-switchable lipids: Capture and release of nucleic acids.

    PubMed

    Hersey, Joseph S; LaManna, Caroline M; Lusic, Hrvoje; Grinstaff, Mark W

    2016-03-01

    Stimuli responsive lipids, which enable control over the formation, transformation, and disruption of supramolecular assemblies, are of interest for biosensing, diagnostics, drug delivery, and basic transmembrane protein studies. In particular, spatiotemporal control over a supramolecular structure can be achieved using light activated compounds to induce significant supramolecular rearrangements. As such, a family of cationic lipids are described which undergo a permanent switch in charge upon exposure to 365 nm ultraviolet (UV) light to enable the capture of negatively charged nucleic acids within the self-assembled supramolecular structure of the lipids and subsequent release of these macromolecules upon exposure to UV light and disruption of the assemblies. The lipids are composed of either two different tripeptide head groups, Lysine-Glycine-Glycine (KGG) and Glycine-Glycine-Glycine (GGG) and three different hydrocarbon chain lengths (C6, C10, or C14) terminated by a UV light responsive 1-(2-nitrophenyl)ethanol (NPE) protected carboxylic acid. The photolysis of the NPE protected lipid is measured as a function of time, and the resulting changes in net molecular charge are observed using zeta potential analysis for each head group and chain length combination. A proof of concept study for the capture and release of both linear DNA (calf thymus) and siRNA is presented using an ethidium bromide quenching assay where a balance between binding affinity and supramolecular stability are found to be the key to optimal nucleic acid capture and release.

  16. Novel Salted Anionic-Cationic Polymethacrylate Polymer Blends for Sustained Release of Acidic And Basic Drugs.

    PubMed

    Obeidat, Wasfy M; Qasim, Duaa; Nokhodchi, Ali; Al-Jabery, Ahmad; Sallam, Al-Sayed

    2016-05-02

    Since a unique matrix tablet formulation that independently controls the release of various drug types is in a great demand, the objective of this research was to develop a sustained release matrix tablet as a universal dosage form using a binary mixture of the salt forms of Eudragit polymers rather than their interpolyelectrolyte complexes. Tablets were prepared by wet granulation and compressed at different compression forces, depending on drug type. Dissolution tests were conducted using USP XXII rotating paddle apparatus at 50 rpm at 37°C in consecutive pH stages. Tablets containing Ibuprofen (IB) as a model acidic drug and Metronidazole (MD) as a model basic drug showed controlled/sustained release behavior. For IB tablets containing 80% Ibuprofen and 5% (w/w) polymeric combination; the time for 50% of the drug release was about 24 hours compared to 8.5 hours for plain tablets containing 80% IB. In case of MD, the drug release extended to about 7 hours for tablets containing 80% MD and 5% (w/w) polymeric combination, compared to about 1 hour for plain tablets containing 80% MD. In terms of extending the release of medications, the dissolution profiles of the tablets containing polymeric salts forms were found to be statistically superior to tablets prepared by direct compression of the polymers in their powdered base forms, and superior to tablets containing the same polymers granulated using isopropyl alcohol. The findings indicated the significance of combining the polymers in their salt forms in controlling the release of various drug types from matrices.

  17. Heavy metal release from different ashes during serial batch tests using water and acid.

    PubMed

    Ludwig, Bernard; Khanna, Partap; Prenzel, Jürgen; Beese, Friedrich

    2005-01-01

    Most ashes contain a significant amount of heavy metals and when released from disposed or used ash materials, they can form a major environmental concern for underground waters. The use of water extracts to assess the easily mobilisable content of heavy metals may not provide an appropriate measure. This study describes the patterns of heavy metal release from ash materials in context with results from the German standard extraction method DIN-S4 (DIN 38 414 S4). Samples of four different ashes (municipal solid waste incineration ash, wood ash, brown coal ash and hard coal ash) were subjected to a number of serial batch tests with liquid renewal, some of which involved the addition of acid to neutralize carbonates and oxides. Release of heavy metals showed different patterns depending on the element, the type of material, the method of extraction and the type of the extractant used. Only a small fraction of the total heavy metal contents occurred as water soluble salts; of special significance was the amount of Cr released from the wood ash. The reaction time (1, 24 or 72 h between each extraction step with water) had only a small effect on the release of heavy metals. However, the release of most of the heavy metals was governed by the dissolution processes following proton inputs, indicating that pH-dependent tests such as CEN TC 292 or others are required to estimate long-term effects of heavy metal releases from ashes. Based on the chemical characteristics of ash materials in terms of their form and solubility of heavy metals, recommendations were made on the disposal or use of the four ash materials.

  18. Nigella sativa L. Seed Extract Modulates the Neurotransmitter Amino Acids Release in Cultured Neurons In Vitro

    PubMed Central

    El-Naggar, Tarek; Gómez-Serranillos, María Pilar; Palomino, Olga María; Arce, Carmen; Carretero, María Emilia

    2010-01-01

    Nigella sativa L. (NS) has been used for medicinal purposes since ancient times. This study aimed to investigate the cytotoxicity of NS dry methanolic extract on cultured cortical neurons and its influence on neurotransmitter release, as well as the presence of excitatory (glutamate and aspartate) and inhibitory amino acids (gamma-aminobutyric acid—GABA—and glycine) in NS extract. Cultured rat cortical neurons were exposed to different times and concentrations of NS dry methanolic extract and cell viability was then determined by a quantitative colorimetric method. NS did not induce any toxicity. The secretion of different amino acids was studied in primary cultured cortical neurons by high-performance liquid chromatography (HPLC) using a derivation before injection with dansyl chloride. NS modulated amino acid release in cultured neurons; GABA was significantly increased whereas secretion of glutamate, aspartate, and glycine were decreased. The in vitro findings support the hypothesis that the sedative and depressive effects of NS observed in vivo could be based on changes of inhibitory/excitatory amino acids levels. PMID:20625485

  19. Identification and biochemical characterization of plant acylamino acid-releasing enzyme.

    PubMed

    Yamauchi, Yasuo; Ejiri, Yukinori; Toyoda, Yasuyuki; Tanaka, Kiyoshi

    2003-08-01

    Plant acylamino acid-releasing enzyme (AARE) catalyzing the N-terminal hydrolysis of N(alpha)-acylpeptides to release N(alpha)-acylated amino acids, was biochemically characterized using recombinant and native AAREs. A cDNA encoding a deduced Arabidopsis thaliana AARE (AtAARE) was cloned and sequenced. The deduced amino acid sequence encoded a 764 amino acid protein of 83.9 kDa, which was 31.8% identical with that of rat AARE. In particular, the proposed catalytic residues (Ser, Asp, and His) of AARE, called the "catalytic triad residues, " were completely conserved. Recombinant AtAARE was expressed in Escherichia coli and confirmed to be a functional AARE. Native AAREs were prepared from A. thaliana and cucumber (Cucumis sativus, L.) plants. Both native AAREs were tetrameric proteins of 350 kDa comprising four subunits of 82 kDa, and showed typical enzymological properties of other AAREs, i.e. sensitivity to diisopropyl fluorophosphate, an optimum pH of around 7.0, and an optimum temperature of 37 degrees C. Both the native and recombinant AAREs were immunochemically homologous. Intracelluar fractionation analysis showed that the AARE was mainly present in the stroma of chloroplasts. Native AARE degraded the glycated ribulose-1,5-bisphoshate carboxylase/oxygenase protein but not the native protein. Thus, plant AARE might be involved in not only catalysis of the N-terminal hydrolysis of N(alpha)-acylpeptides but also the elimination of glycated proteins.

  20. GABA, taurine and learning: release of amino acids from slices of chick brain following filial imprinting.

    PubMed

    McCabe, B J; Horn, G; Kendrick, K M

    2001-01-01

    The intermediate and medial hyperstriatum ventrale (IMHV) is a forebrain region in the domestic chick that is a site of information storage for the learning process of imprinting. We enquired whether imprinting is associated with learning-related increases in calcium-dependent, potassium-stimulated release of neurotransmitter amino acids from the IMHV. Chicks were hatched and reared in darkness until 15-30 h after hatching. They then either remained in darkness or were trained for 2 h by exposure to an imprinting stimulus. One hour later, the chicks were given a preference test and a preference score was calculated from the results of this test, as a measure of imprinting. Chicks were killed 2 h after training. Slices from the left and right IMHV of trained and untrained chicks were superfused with Krebs' solution either with or without calcium and the superfusate assayed for arginine, aspartate, citrulline, GABA, glutamate, glycine and taurine using high-performance liquid chromatography. For calcium-containing superfusates from the left IMHV, preference score was significantly correlated with potassium-stimulated release of (i) GABA (r=0.51, 23 d.f., P=0.008) and (ii) taurine (r=0.77, 23 d.f., P<0.0001). There was no significant difference between the mean values of trained and untrained chicks for either compound. However, examination of the variance of the data indicated that release of both GABA and taurine increased as a result of learning. No significant correlation between preference score and release was found for any of the amino acids from the right IMHV, nor for control tissue from the left IMHV superfused with calcium-free solution. These results demonstrate that the learning process of imprinting is associated with increases in releasable pools of GABA and taurine and/or membrane excitability in the left IMHV.

  1. Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.

    PubMed

    Kulikova, Veronika; Shabalin, Konstantin; Nerinovski, Kirill; Dölle, Christian; Niere, Marc; Yakimov, Alexander; Redpath, Philip; Khodorkovskiy, Mikhail; Migaud, Marie E; Ziegler, Mathias; Nikiforov, Andrey

    2015-11-06

    NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5'-nucleotidases (5'-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5'-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5'-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other's NAD supply by providing alternative precursors.

  2. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release

    PubMed Central

    Chu, David S.H.; Johnson, Russell N.; Pun, Suzie H.

    2011-01-01

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK10, containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(l)-lysine for nucleic acid binding, (ii) pHCath(d)K10, containing the FKFL linker with oligo-(d)-lysine, and (iii) pH(d)Cath(d)K10, containing all (d) amino acids. Cathepsin B degraded copolymers pHCathK10 and pHCath(d)K10 within one hour while no degradation of pH(d)Cath(d)K10 was observed. Polyplexes formed with pHCathK10 copolymers show DNA release by 4 hrs of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(d)K10 and pH(d)Cath(d)K10 show no DNA release within 8 hrs. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK10 was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. PMID:22036879

  3. Unsaturated Fatty Acids Drive Disintegrin and Metalloproteinase (ADAM)-dependent Cell Adhesion, Proliferation, and Migration by Modulating Membrane Fluidity*

    PubMed Central

    Reiss, Karina; Cornelsen, Isabell; Husmann, Matthias; Gimpl, Gerald; Bhakdi, Sucharit

    2011-01-01

    The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers. PMID:21642425

  4. Unsaturated fatty acids drive disintegrin and metalloproteinase (ADAM)-dependent cell adhesion, proliferation, and migration by modulating membrane fluidity.

    PubMed

    Reiss, Karina; Cornelsen, Isabell; Husmann, Matthias; Gimpl, Gerald; Bhakdi, Sucharit

    2011-07-29

    The disintegrin-metalloproteinases ADAM10 and ADAM17 mediate the release of several cell signaling molecules and cell adhesion molecules such as vascular endothelial cadherin or L-selectin affecting endothelial permeability and leukocyte transmigration. Dysregulation of ADAM activity may contribute to the pathogenesis of vascular diseases, but the mechanisms underlying the control of ADAM functions are still incompletely understood. Atherosclerosis is characterized by lipid plaque formation and local accumulation of unsaturated free fatty acids (FFA). Here, we show that unsaturated FFA increase ADAM-mediated substrate cleavage. We demonstrate that these alterations are not due to genuine changes in enzyme activity, but correlate with changes in membrane fluidity as revealed by measurement of 1,6-diphenyl-1,3,5-hexatriene fluorescence anisotropy and fluorescence recovery after photobleaching analyses. ELISA and immunoblot experiments conducted with granulocytes, endothelial cells, and keratinocytes revealed rapid increase of ectodomain shedding of ADAM10 and ADAM17 substrates upon membrane fluidization. Large amounts of unsaturated FFA may be liberated from cholesteryl esters in LDL that is entrapped in atherosclerotic lesions. Incubation of cells with thus modified LDL resulted in rapid cleavage of ADAM substrates with corresponding functional consequences on cell proliferation, cell migration, and endothelial permeability, events of high significance in atherogenesis. We propose that FFA represent critical regulators of ADAM function that may assume relevance in many biological settings through their influence on mobility of enzyme and substrate in lipid bilayers.

  5. Niflumic acid differentially modulates two types of skeletal ryanodine-sensitive Ca(2+)-release channels.

    PubMed

    Oba, T

    1997-11-01

    The effects of niflumic acid on ryanodine receptors (RyRs) of frog skeletal muscle were studied by incorporating sarcoplasmic reticulum (SR) vesicles into planar lipid bilayers. Frog muscle had two distinct types of RyRs in the SR: one showed a bell-shaped channel activation curve against cytoplasmic Ca2+ or niflumic acid, and its mean open probability (Po) was increased by perchlorate at 20-30 mM (termed "alpha-like" RyR); the other showed a sigmoidal activation curve against Ca2+ or niflumic acid, with no effect on perchlorate (termed "beta-like" RyR). The unitary conductance and reversal potential of both channel types were unaffected after exposure to niflumic acid when clamped at 0 mV. When clamped at more positive potentials, the beta-like RyR channel rectified this, increasing the unitary current. Treatment with niflumic acid did not inhibit the response of both channels to Ca2+ release channel modulators such as caffeine, ryanodine, and ruthenium red. The different effects of niflumic acid on Po and the unitary current amplitude in both types of channels may be attributable to the lack or the presence of inactivation sites and/or distinct responses to agonists.

  6. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase

    PubMed Central

    Sahonero-Canavesi, Diana X.; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M.; Geiger, Otto

    2016-01-01

    Summary Phospholipids are well known for their membrane forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  7. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth.

  8. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  9. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids.

    PubMed

    Önen Bayram, F Esra; Sipahi, Hande; Acar, Ebru Türköz; Kahveci Ulugöl, Reyhan; Buran, Kerem; Akgün, Hülya

    2016-05-23

    Oxidative stress that corresponds to a significant increase in free radical concentration in cells can cause considerable damage to crucial biological macromolecules if not prevented by cellular defense mechanisms. The low-molecular-weight thiol glutathione (GSH) constitutes one of the main intracellular antioxidants. It is synthesized via cysteine, an amino acid found only in limited amounts in cells because of its neurotoxicity. Thus, to ensure an efficient GSH synthesis in case of an oxidative stress, cysteine should be provided extracellularly. Yet, given its nucleophilic properties and its rapid conversion into cystine, its corresponding disulfide, cysteine presents some toxicity and therefore is usually supplemented in a prodrug approach. Here, some thiazolidine-4-carboxylic acids were synthesized and evaluated for their antioxidant properties via the DDPH and CUPRAC assays. Then, the cysteine releasing capacity of the obtained compounds was investigated in aqueous and organic medium in order to correlate the relevant antioxidant properties of the molecules with their cysteine releasing pattern. As a result, the structures' antioxidative properties were not only attributed to cysteine release but also to the thiazolidine cycle itself.

  10. Nanosized silica modified with carboxylic acid as support for controlled release of herbicides.

    PubMed

    Prado, Alexandre G S; Moura, Aline O; Nunes, Alecio R

    2011-08-24

    Hexagonal mesoporous silica modified with carboxylic acid (SiAc) has been obtained by reaction between chloroacetic acid and 3-aminopropyltrimethoxysilane, which was immobilized on porous material by a sol-gel process in the presence of an n-dodecylamine template. SiAc was characterized by TG, FT-IR, (29)Si NMR, (13)C NMR, SEM, surface charge density, surface area and porous diameter, which proved that the carboxylic group was chemically bonded to an inorganic structure, and the material presented a nanometric structure with spheres <50 nm and porous diameter of 10 nm. Herbicides 2,4-D and picloram were anchored on SiAc porous gel to produce the materials named SiD and SiPi, respectively. The controlled release of picloram from the SiAc was less than that of 2,4-D. After 26 days of releasing, 4.43 × 10(-5) mol L(-1) of picloram was delivered by SiPi, and 5.0 × 10(-5) L(-1) was released from the SiD in 30 days.

  11. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols

    PubMed Central

    Bomar, Lindsey; Brugger, Silvio D.; Yost, Brian H.; Davies, Sean S.

    2016-01-01

    ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. PMID:26733066

  12. beta-Cyclodextrin hydrogels containing naphthaleneacetic acid for pH-sensitive release.

    PubMed

    Yang, Xia; Kim, Jin-Chul

    2010-06-01

    beta-Cyclodextrin (beta-CD) hydrogel was prepared in a strong alkali condition using epichlorohydrin (EPI) as a cross-linker, where the molar ratios of EPI to beta-CD were 8:1, 10:1, and 15:1. In order to endow a pH sensitivity to the hydrogel, naphthaleneacetic acid (NAA) was loaded in the hydrogel by taking advantage of its hydrophobic interaction with the cavities of beta-CD. The releases of blue dextran (a water-soluble dye) from the hydrogels were promoted, as the pHs of the media increased. When the molar ratio of EPI to beta-CD was lower, the degrees of release were higher, and the pH dependency of the release became more prominent. In fact, the swelling ratio of the hydrogels having a lower molar ratio of EPI to beta-CD was higher. The higher swelling ratio would account for the higher degree of release and the marked pH sensitivity.

  13. Hydroxypropyl methyl cellulose grafted with polyacrylamide: application in controlled release of 5-amino salicylic acid.

    PubMed

    Das, Raghunath; Pal, Sagar

    2013-10-01

    In the present study, hydroxypropyl methyl cellulose grafted with polyacrylamide (HPMC-g-PAM) hydrogel was evaluated in vitro as a potential carrier for controlled release of 5-amino salicylic acid (5-ASA). The graft copolymer was developed by grafting PAM chains onto HPMC backbone using potassium persulphate as initiator. The swelling behaviour of hydrogel based tablet was investigated as a function of pH and time in various buffer solutions similar to that of gastric and intestinal fluids. The % equilibrium swelling was found to be higher in case of simulated intestinal fluid (pH=7.4) and lower in simulated gastric fluid (pH=1.2), making an ideal matrix as required for colon specific drug delivery. The drug release study was performed at various pH values akin to the condition of GI tract. The release kinetics of 5-ASA showed non-Fickian diffusion behaviour. This indicates that the release is controlled by a combination of polymer relaxation or erosion of the matrix and diffusion of the drug from the swollen matrix.

  14. p-Coumaric Acid Attenuates UVB-Induced Release of Stratifin from Keratinocytes and Indirectly Regulates Matrix Metalloproteinase 1 Release from Fibroblasts.

    PubMed

    Seok, Jin Kyung; Boo, Yong Chool

    2015-05-01

    Ultraviolet (UV) radiation-induced loss of dermal extracellular matrix is associated with skin photoaging. Recent studies demonstrated that keratinocyte-releasable stratifin (SFN) plays a critical role in skin collagen metabolism by inducing matrix metalloproteinase 1 (MMP1) expression in target fibroblasts. In the present study, we examined whether SFN released from UVB-irradiated epidermal keratinocytes increases MMP1 release from dermal fibroblasts, and whether these events are affected by p-coumaric acid (p-CA), a natural phenolic compound with UVB-shielding and antioxidant properties. HaCaT cells were exposed to UVB in the absence and presence of p-CA, and the conditioned medium was used to stimulate fibroblasts in medium transfer experiments. The cells and media were analyzed to determine the expressions/releases of SFN and MMP1. UVB exposure increased SFN release from keratinocytes into the medium. The conditioned medium of UVB-irradiated keratinocytes increased MMP1 release from fibroblasts. The depletion of SFN using a siRNA rendered the conditioned medium of UVB-irradiated keratinocytes ineffective at stimulating fibroblasts to release MMP1. p-CA mitigated UVB-induced SFN expression in keratinocytes, and attenuated the MMP1 release by fibroblasts in medium transfer experiments. In conclusion, the present study demonstrated that the use of UV absorbers such as p-CA would reduce UV-induced SFN-centered signaling events involved in skin photoaging.

  15. Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles.

    PubMed

    Yang, Jian-Mao; Zha, Liu-sheng; Yu, Deng-Guang; Liu, Jianyun

    2013-02-01

    This study investigated drug/zein composite fibers prepared using a modified coaxial electrospinning process. With unspinnable acetic acid as sheath liquid and an electrospinnable co-dissolving solution of zein and ferulic acid (FA) as core fluid, the modified coaxial process could run smoothly and continuously without any clogging. Compared with those from the single-fluid electrospinning process, the FA-loaded zein fibers from the modified process were rounder and possessed higher quality in terms of diameter and distribution, as verified by scanning electron microscopic observations of their surface and cross-section. Differential scanning calorimetry and X-ray diffraction showed that fibers from both processes similarly formed a composite with the FA present in the zein matrix in an amorphous state. The driving force of encapsulation of FA into zein fibers was hydrogen bonding, as evidenced by the attenuated total reflectance Fourier transform infrared spectra. However, in vitro dissolution tests demonstrated that the fibers from the coaxial process exhibited better sustained-release profiles with a smaller initial burst effect and less tailing-off release compared with those from the single process. The modified coaxial electrospinning process is a useful tool for generating nanofibers with higher quality and improved functional performance.

  16. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere

    PubMed Central

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems. PMID:27252713

  17. Enhanced Nitrogen Availability in Karst Ecosystems by Oxalic Acid Release in the Rhizosphere.

    PubMed

    Pan, Fujing; Liang, Yueming; Zhang, Wei; Zhao, Jie; Wang, Kelin

    2016-01-01

    In karst ecosystems, a high level of CaCO3 enhances the stabilization of soil organic matter (SOM) and causes nitrogen (N) and/or phosphorus (P) limitation in plants. Oxalic acid has been suggested to be involved in the nutrient-acquisition strategy of plants because its addition can temporarily relieve nutrient limitation. Therefore, understanding how oxalic acid drives N availability may help support successful vegetation restoration in the karst ecosystems of southwest China. We tested a model suggested by Clarholm et al. (2015) where oxalate reacts with Ca bridges in SOM, thus exposing previously protected areas to enzymatic attacks in a way that releases N for local uptake. We studied the effects of oxalic acid, microbial biomass carbon (MBC), and β-1,4-N-acetylglucosaminidase (NAG) on potential N mineralization rates in rhizosphere soils of four plant species (two shrubs and two trees) in karst areas. The results showed that rhizosphere soils of shrubs grown on formerly deforested land had significantly lower oxalic acid concentrations and NAG activity than that of trees in a 200-year-old forest. The levels of MBC in rhizosphere soils of shrubs were significantly lower than those of trees in the growing season, but the measure of shrubs and trees were similar in the non-growing season; the potential N mineralization rates showed a reverse pattern. Positive relationships were found among oxalic acid, MBC, NAG activity, and potential N mineralization rates for both shrubs and trees. This indicated that oxalic acid, microbes, and NAG may enhance N availability for acquisition by plants. Path analysis showed that oxalic acid enhanced potential N mineralization rates indirectly through inducing microbes and NAG activities. We found that the exudation of oxalic acid clearly provides an important mechanism that allows plants to enhance nutrient acquisition in karst ecosystems.

  18. Controlled release of acetylsalicylic acid from polythiophene/carrageenan hydrogel via electrical stimulation.

    PubMed

    Pairatwachapun, Sanita; Paradee, Nophawan; Sirivat, Anuvat

    2016-02-10

    Blends between polythiophene (PTh) and a carrageenan hydrogel were fabricated as the matrix for the electric field assisted drug release. The pristine carrageenan and the blend films were prepared by the solution casting using acetylsalicylic acid (ASA) as the anionic model drug and Mg(2+), Ca(2+), and Ba(2+) as the crosslinking agents. The ASA was released by the Fickian diffusion mechanism. The diffusion coefficient decreased with increasing crosslinking ratio or decreasing crosslinking ionic radii. The diffusion coefficients were greater with the applied electrical potentials by an order of magnitude relative to those without electric field. Moreover, the diffusion coefficients with PTh as the drug carrier were higher than those without PTh. Thus, the presence of the conductive polymer in the hydrogel blend coupled with applied electric field is shown here to drastically enhance the drug delivery rate.

  19. Study of the release of a microencapsulated acid dye in polyamide dyeing using mixed cationic liposomes.

    PubMed

    de Sousa, Isabel S C; Castanheira, Elisabete M S; Rocha Gomes, Jaime I N; Real Oliveira, M Elisabete C D

    2011-06-01

    The main objective of this work was to increase the retarding effect of the acid dye Telon(®) Blue RR (C.I. Acid Blue 62; DyStar, Frankfurt, Germany) release on polyamide fibres dyeing by encapsulation of the dye in liposomes as an alternative to synthetic auxiliaries, in order to reduce effluent pollution. The retarding effect achieved with the use of mixed cationic liposomes of dioctadecyldimethylammonium bromide (DODAB)/soybean lecithin (containing a 10% molar fraction of DODAB) was better in comparison with either pure soybean lecithin liposomes or synthetic auxiliaries. The retarding effect of liposomes on the dye release was analysed through changes in the absorption and fluorescence spectra of the acid dye at different conditions. The effect of temperature (in the range of 25 °C - 70 °C) on the spectroscopic behaviour of the dye in the absence and in presence of polyamide was also studied, in order to simulate the dyeing conditions. Exhaustion curves obtained in dyeing experiments showed that, below 45 °C, the retarding effect of the mixed liposomes (lecithin/DODAB (9:1)) was similar to that of the auxiliaries, but better than the one of pure lecithin liposomes. At higher temperatures (above 45 °C), the system lecithin/DODAB presents a better performance, achieving a higher final exhaustion level when compared with the commercial leveling agent without losing the smoothing effect of lecithin.

  20. Sustained release of calcium hydroxide from poly(DL-lactide-co-glycolide) acid microspheres for apexification.

    PubMed

    Cerda-Cristerna, Bernardino Isaac; Breceda-Leija, Alejandro; Méndez-González, Verónica; Chavarría-Bolaños, Daniel; Flores-Reyes, Héctor; Garrocho-Rangel, Arturo; Komabayashi, Takashi; Wadajkar, Aniket S; Pozos-Guillén, Amaury J

    2016-09-01

    Calcium hydroxide (CH) loaded poly(DL-lactide-co-glycolide) acid (PLGA) microspheres (MS) might be used for apexification requiring a sustained release of Ca(2+). The aim of this study was to formulate and characterize CH-PLGA-MS. The CH-loaded MS were prepared by either oil-in-water (O/W) or water-in-oil/in-water (W/O/W) emulsion solvent evaporation technique. MS produced by the O/W technique exhibited a larger diameter (18.63 ± 7.23 μm) than the MS produced by the W/O/W technique (15.25 ± 7.37 μm) (Mann-Whitney U test P < 0.001). The CH encapsulation efficiency (E e) and Ca(2+) release were calculated from data obtained by absorption techniques. Ca(2+) release profile was evaluated for 30 days. To know the E e, the CH-loaded MS were dissolved in 1 M NaOH to release all its content and a Ca(2+) colorimetric marker was added to this solution. The reagent marked the Ca(2+) in blue color, which was then measured by a UV-Vis system (650 nm). The percentage of E e was calculated on the basis of the theoretical loading. The E e of the O/W-produced MS was higher (24 %) than the corresponding percentage of the W/O/W-produced MS (11 %). O/W- and W/O/W-produced MS released slower and lower Ca(2+) than a control CH paste with polyethylene glycol 400 (Kruskal-Wallis test). O/W-produced MS released higher Ca(2+) than W/O/W-produced MS (statistically significant differences; P < 0.05). In conclusion, the CH-PLGA-MS were successfully formulated; the technique of formulation influenced the size, encapsulation efficiency and release profile. The MS were better sustained release system than the CH paste.

  1. Chitosan gels for the vaginal delivery of lactic acid: relevance of formulation parameters to mucoadhesion and release mechanisms.

    PubMed

    Bonferoni, Maria Cristina; Giunchedi, Paolo; Scalia, Santo; Rossi, Silvia; Sandri, Giuseppina; Caramella, Carla

    2006-01-01

    The aim of this work was to assess the effect of formulation parameters of a mucoadhesive vaginal gel based on chitosan and lactic acid, and to highlight its release mechanisms. Two molecular weight chitosans were used to prepare gels with 2 lactic acid concentrations. Both chitosan molecular weight and lactic acid concentration had a significant and mutually dependent influence on mucoadhesion, measured on pig vaginal mucosa. Similarly, the lactate release profiles were found to be dependent on lactic acid content and polymer molecular weight. One gel formulation based on the stoichiometric lactate to chitosan ratio was subjected to release test in media with 2 different counterions and increasing ionic strength. This test demonstrated that the lactate release is mainly due to ionic displacement.

  2. Formulation and evaluation of novel controlled release of topical pluronic lecithin organogel of mefenamic acid.

    PubMed

    Jhawat, Vikas; Gupta, Sumeet; Saini, Vipin

    2016-11-01

    In the present study, pluronic lecithin based organogels (PLO gels) were formulated as topical carrier for controlled delivery of mefenamic acid. Ten organogel formulations were prepared by a method employing lecithin as lipophilic phase and pluronic F-127 as hydrophilic phase in varying concentrations to study various parameters using in vitro diffusion study and in vivo studies. All formulations were found to be off-white, homogenous, and reluctant to be washed easily and have pH value within the range of 5.56-5.80 which is nonirritant. Polymer concentration increased in formulations of F1 to F5 (lecithin) and F6 to F10 (pluronic) resulted in decrease of the gelation temperature, increase of viscosity and reduction of spreadability of gels having polymer tendency to form rigid 3D network. Organogels with higher viscosity were found to be more stable and retard the drug release from the gel. The formulations of F2 and F3 were selected for kinetic studies and stability studies, as they found to have all physical parameters within acceptable limits, highest percent drug content and exhibited highest drug release in eight hours. The order of drug release from various formulations was found to be F2 > F3 > F10 > F4 > F1 > F9 > F8 > F5 > F7 > F6. The optimized formulation F2 was found to follow zero order rate kinetics showing controlled release of the drug from the formulations. In vivo anti-inflammatory activity of optimized mefenamic acid organogel (F2) against a standard marketed preparation (Volini gel) was found satisfactory and significant.

  3. A Nationwide Examination of Middle School Enrollment in Agricultural Education and Membership in the National FFA Organization.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; And Others

    The purpose of this study was to determine the status of middle and junior high school agricultural education and FFA (Future Farmers of America) programs. In spring 1991. questionnaires were sent to all state FFA Executive Secretaries (n=53); 52 returned questionnaires. Three teachers in each of 9 states identified as having middle or junior high…

  4. Relationship of Length of Vocational Agriculture Teacher Contract to Supervised Occupational Experience Program Scope and FFA Chapter Activity Level.

    ERIC Educational Resources Information Center

    Arrington, Larry R.

    A study examined the relationship of length of vocational agriculture teacher contract to supervised occupational experience program scope and Future Farmers of America (FFA) chapter activity level. A questionnaire measuring the activity level of the FFA chapter and soliciting information on various extraneous variables was administered to the…

  5. Effect of Pressure on the Release of Radioactive Glycine and Gamma-Aminobutyric Acid from Spinal Cord Synaptosomes

    DTIC Science & Technology

    1987-11-01

    include Security Classification) Effect of Pressure on the Release of Radioactive Glycine and-Aminobutyric Acid from Spinal Cord Synaptosomes 12. PERSONAL... Spinal Cord ; Synaptosomes 19. ABSTRACT (Continue on reverse if necessary and identify by block number) AkcoSSSiOf For @TIC NTIS GRA&I (o.pyr DTIC TAR...Neurochemistry Effect of Pressure on the Release of Radioactive Glycine and 7-Aminobutyric Acid from Spinal Cord Synaptosomes Sara C. Gilman, Joel S. Colton

  6. Water-soluble nitric-oxide-releasing acetylsalicylic acid (ASA) prodrugs.

    PubMed

    Rolando, Barbara; Lazzarato, Loretta; Donnola, Monica; Marini, Elisabetta; Joseph, Sony; Morini, Giuseppina; Pozzoli, Cristina; Fruttero, Roberta; Gasco, Alberto

    2013-07-01

    A series of water-soluble (benzoyloxy)methyl esters of acetylsalicylic acid (ASA), commonly known as aspirin, are described. The new derivatives each have alkyl chains containing a nitric oxide (NO)-releasing nitrooxy group and a solubilizing moiety bonded to the benzoyl ring. The compounds were synthesized and evaluated as ASA prodrugs. After conversion to the appropriate salt, most of the derivatives are solid at room temperature and all possess good water solubility. They are quite stable in acid solution (pH 1) and less stable at physiological pH. In human serum, these compounds are immediately metabolized by esterases, producing a mixture of ASA, salicylic acid (SA), and of the related NO-donor benzoic acids, along with other minor products. Due to ASA release, the prodrugs are capable of inhibiting collagen-induced platelet aggregation of human platelet-rich plasma. Simple NO-donor benzoic acids 3-hydroxy-4-(3-nitrooxypropoxy)benzoic acid (28) and 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoic acid (48) were also studied as representative models of the whole class of benzoic acids formed following metabolism of the prodrugs in serum. These simplified derivatives did not trigger antiaggregatory activity when tested at 300 μM. Only 28 displays quite potent NO-dependent vasodilatatory action. Further in vivo evaluation of two selected prodrugs, {[2-(acetyloxy)benzoyl]oxy}methyl-3-[(3-[aminopropanoyl)oxy]-4-[3-(nitrooxy)propoxy]benzoate⋅HCl (38) and {[2-(acetyloxy)benzoyl]oxy}methyl 3-(morpholin-4-ylmethyl)-4-[3-(nitrooxy)propoxy]benzoate oxalate (49), revealed that their anti-inflammatory activities are similar to that of ASA when tested in the carrageenan-induced paw edema assay in rats. The gastrotoxicity of the two prodrugs was also determined to be lower than that of ASA in a lesion model in rats. Taken together, these results indicated that these NO-donor ASA prodrugs warrant further investigation for clinical application.

  7. Career Development, Supervised Agricultural Experience, and FFA. The Connecticut Vocational Agriculture Education Curriculum.

    ERIC Educational Resources Information Center

    Mannebach, Alfred J.; And Others

    This curriculum guide was developed to help teachers and administrators in Connecticut Regional Vocational Agriculture Centers to update and upgrade their vocational agriculture curriculum in the areas of career development, supervised agricultural experience (SAE), and Future Farmers of America (FFA). The curriculum incorporates the competencies…

  8. Needed: Educational Objectives and Administrative Criteria for the National FFA Contests.

    ERIC Educational Resources Information Center

    Smith, Mack W.; Kahler, Alan A.

    1987-01-01

    The purpose of the study was to establish overall educational objectives and administrative criteria for the national Future Farmers of America (FFA) contests. Through a series of three questionnaires, input was received from a Delphi panel of 33 members that generated and identified objectives and criteria. (CH)

  9. A Historical Review of Leadership Development in the FFA and 4-H

    ERIC Educational Resources Information Center

    Hoover, Tracy S.; Scholl, Jan F.; Dunigan, Anne H.; Mamontova, Nadezhda

    2007-01-01

    FFA and 4-H are two youth-based organizations that cite leadership development as a key foundational component. The purpose of this study was to review and document the historical development of leadership events and activities in both programs. Evidence can be found of leadership development in schools, conferences, and camps. Leadership-related…

  10. Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1.

    PubMed

    Zheng, Yunan; Lajoie, Marc J; Italia, James S; Chin, Melissa A; Church, George M; Chatterjee, Abhishek

    2016-05-24

    Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins expressed in E. coli using UAG-suppression competes with termination mediated by release factor 1 (RF1). Recently, unconditional deletion of RF1 was achieved in a genomically recoded E. coli (C321), devoid of all endogenous UAG stop codons. Here we evaluate the efficiency of ncAA incorporation in this strain using optimized suppression vectors. Even though the absence of RF1 does not benefit the suppression efficiency of a single UAG codon, multi-site incorporation of a series of chemically distinct ncAAs was significantly improved.

  11. [8-hydroxy-dihydroberberine ameliorated insulin resistance induced by high FFA and high glucose in 3T3-L1 adipocytes].

    PubMed

    Xu, Li-jun; Lu, Fu-er; Yi, Ping; Wang, Zeng-si; Wei, Shi-chao; Chen, Guang; Dong, Hui; Zou, Xin

    2009-11-01

    The purpose of the study is to investigate the effect of 8-hydroxy-dihydroberberine on insulin resistance induced by high free fatty acid (FFA) and high glucose in 3T3-L1 adipocytes and its possible molecular mechanism. Palmic acid or glucose in combination with insulin was used to induce insulin resistance in 3T3-L1 adipocytes. 8-Hydroxy-dihydroberberine and berberine were added to the cultured medium separately, which were considered as treated group and positive control group. The rate of glucose uptake was determined by 2-deoxy-[3H]-D-glucose method. The amount of glucose consumption in the medium was measured by glucose oxidase method. Cell growth and proliferation of 3T3-L1 adipocytes were detected with Cell Counting Kit-8 (CCK-8) assay. After incubated with palmic acid for 24 hours or glucose with insulin for 18 hours, the rate of glucose transport in 3T3-L1 adipocytes was inhibited by 67% and 58%, respectively. The amount of glucose consumption in 3T3-L1 adipose cells was decreased by 41% after cells were incubated with palmic acid for 24 h. However, the above changes were reversed by pretreatment with 8-hydroxy-dihydroberberine for 24 and 48 h. Significant difference existed between groups. Insulin resistance in 3T3-L1 adipocytes, which is induced by high FFA and high glucose, could be ameliorated by 8-hydroxy-dihydroberberine.

  12. Phenylboronic acid as a glucose-responsive trigger to tune the insulin release of glycopolymer nanoparticles.

    PubMed

    Chai, Zhihua; Ma, Liya; Wang, Yanxia; Ren, Xuejun

    2016-01-01

    An amphiphilic glycopolymer, poly(D-gluconamidoethyl methacrylate -r-3-methacrylamido phenylboronic acid), which could self-assemble to form nanoparticles with a narrow size distribution, was synthesized. Transmission electron microscopy showed that the nanoparticles were spherical in shape with diameters of about 120 nm. The phenylboronic acid rendered the glycopolymer nanoparticles glucose sensitive, which was evident from swelling behavior of the nanoparticles at different glucose concentrations and was found to be dependent on the glucose level. Insulin was efficiently encapsulated within the nanoparticles (up to 15%), and the release of insulin increased with an increase in the level of glucose in the medium. Cell viability tests proved that the glycopolymer nanoparticles had good cytocompatibility, due to which the glycopolymers have the potential to be used in biomedical fields.

  13. Abnormal endogenous amino acid release in brain slices from vitamin B-6 restricted neonatal rats.

    PubMed

    Guilarte, T R

    1991-01-02

    The basal and potassium-evoked efflux of glutamate, glycine, taurine, and gamma-aminobutyric acid (GABA) was measured in brain slices from vitamin B-6 restricted and sufficient 14-day-old rats. The results indicate a reduced level of basal glutamate, taurine, and GABA efflux in hippocampal slices and taurine and GABA in cortical slices from vitamin B-6 restricted animals. In the presence of depolarizing potassium concentrations, there was a reduced level of GABA efflux in hippocampal and cortical slices, and a marked reduction in the release of glutamate in cortical slices from B-6 restricted rats. The abnormalities in the secretion process of these neuroactive amino acids may be related to the neurological sequelae associated with neonatal vitamin B-6 restriction.

  14. cAMP increases mitochondrial cholesterol transport through the induction of arachidonic acid release inside this organelle in Leydig cells.

    PubMed

    Castillo, Ana Fernanda; Cornejo Maciel, Fabiana; Castilla, Rocío; Duarte, Alejandra; Maloberti, Paula; Paz, Cristina; Podestá, Ernesto J

    2006-11-01

    We have investigated the direct effect of arachidonic acid on cholesterol transport in intact cells or isolated mitochondria from steroidogenic cells and the effect of cyclic-AMP on the specific release of this fatty acid inside the mitochondria. We show for the first time that cyclic-AMP can regulate the release of arachidonic acid in a specialized compartment of MA-10 Leydig cells, e.g. the mitochondria, and that the fatty acid induces cholesterol transport through a mechanism different from the classical pathway. Arachidonic acid and arachidonoyl-CoA can stimulate cholesterol transport in isolated mitochondria from nonstimulated cells. The effect of arachidonoyl-CoA is inhibited by the reduction in the expression or in the activity of a mitochondrial thioesterase that uses arachidonoyl-CoA as a substrate to release arachidonic acid. cAMP-induced arachidonic acid accumulation into the mitochondria is also reduced when the mitochondrial thioesterase activity or expression is blocked. This new feature in the regulation of cholesterol transport by arachidonic acid and the release of arachidonic acid in specialized compartment of the cells could offer novel means for understanding the regulation of steroid synthesis but also would be important in other situations such as neuropathological disorders or oncology disorders, where cholesterol transport plays an important role.

  15. Initial uptake and insulin releasing action of chloromercuribenzene-p-sulphonic acid (CMBS) in suspensions of pancreatic islet cells.

    PubMed

    Idahl, L A; Lernmark, A; Söderberg, M; Winblad, B

    1980-04-01

    The effects of chloromercuribenzene-p-sulphonic acid on dispersed cells prepared from beta-cell-rich ob/ob-mouse islets were studied. 1) Chloromercuribenzene-p-sulphonic acid at concentrations of 0.1 mmol/l or higher diminished cell viability which was partially counteracted by increasing concentrations of bovine serum albumin. 2) The uptake of 203Hg-chloromercuribenzene-p-sulphonic acid after incubation for 4 seconds or longer showed that most of the non-toxic concentrations of chloromercuribenzene-p-sulphonic acid was bound to the cell within 40 seconds. Maximal uptake was achieved after 3 minutes of incubation. The uptake of radioactive chloromercuribenzene-p-sulphonic acid was inhibited by bovine serum albumin. 3) The dynamics of insulin release from perifused dispersed beta-cells embedded in fibrin showed a maximal 40--50-fold stimulation by 0.03 mmol/l chloromercuribenzene-p-sulphonic acid within 10 minutes of perifusion. 4) Scanning electron microscopy of beta-cells revealed no major changes in the cell surface under conditions of maximal binding and insulin releasing effects of chloromercuribenzene-p-sulphonic acid. These data support the concept that the ability of chloromercuribenzene-p-sulphonic acid to induce insulin release is related to its initial binding to the beta-cell surface. The binding of chloromercuribenzene-p-sulphonic acid and the subsequent release of insulin seem to occur without major changes in beta-cell surface morphology.

  16. Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae.

    PubMed

    Coghe, Stefan; Benoot, Koen; Delvaux, Filip; Vanderhaegen, Bart; Delvaux, Freddy R

    2004-02-11

    The release of ferulic acid and the subsequent thermal or enzymatic decarboxylation to 4-vinylguaiacol are inherent to the beer production process. Phenolic, medicinal, or clove-like flavors originating from 4-vinylguaiacol frequently occur in beer made with wheat or wheat malt. To evaluate the release of ferulic acid and the transformation to 4-vinylguaiacol, beer was brewed with different proportions of barley malt, wheat, and wheat malt. Ferulic acid as well as 4-vinylguaiacol levels were determined by HPLC at several stages of the beer production process. During brewing, ferulic acid was released at the initial mashing phase, whereas moderate levels of 4-vinylguaiacol were formed by wort boiling. Higher levels of the phenolic flavor compound were produced during fermentations with brewery yeast strains of the Pof(+) phenotype. In beer made with barley malt, ferulic acid was mainly released during the brewing process. Conversely, 60-90% of ferulic acid in wheat or wheat malt beer was hydrolyzed during fermentation, causing higher 4-vinylguaiacol levels in these beers. As cereal enzymes are most likely inactivated during wort boiling, the additional release of ferulic acid during fermentation suggests the activity of feruloyl esterases produced by brewer's yeast.

  17. Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes.

    PubMed

    El-Aassar, M R; El Fawal, G F; Kamoun, Elbadawy A; Fouda, Moustafa M G

    2015-01-01

    In this work, hydrogel membrane composed of; kappa carrageenan (κC) and hyaluronic acid (HA) crosslinked with epichlorohydrine is produced. The optimum condition has been established based on their water absorption properties. Tensile strength (TS) and elongation (E%) for the formed films are evaluated. The obtained films were characterized by FTIR, scanning electron microscopy (SEM) and thermal analysis. All membranes were loaded with l-carnosine as a drug model. The swelling properties and kinetics of the release of the model drug from the crosslinked hydrogel membrane were monitored in buffer medium at 37°C. The equilibrium swelling of films showed fair dependency on the high presence of HA in the hydrogel. Moreover, the cumulative release profile increased significantly and ranged from 28% to 93%, as HA increases. SEM explored that, the porosity increased by increasing HA content; consequently, drug release into the pores and channels of the membranes is facilitated. In addition, water uptake % increased as well. A slight change in TS occurred by increasing the HA% to κC, while the highest value of strain for κC membrane was 498.38% by using 3% HA. The thermal stability of the κC/HA was higher than that of HA.

  18. Modified hydroxypropyl methyl cellulose: Efficient matrix for controlled release of 5-amino salicylic acid.

    PubMed

    Das, Raghunath; Pal, Sagar

    2015-01-01

    Hydroxypropyl methyl cellulose has been modified by grafting synthetic polyacrylamide chains [g-HPMC (M)] in presence of microwave irradiation, which has used as carrier for controlled release of 5-amino salicylic acid (5-ASA). The FTIR and UV-vis-NIR studies reveal the excellent compatibility between g-HPMC (M) and 5-ASA. Field emission scanning electron microscopy (FESEM) and UV-vis-NIR analyses suggest that physical interaction predominates between the drug and matrix. % equilibrium swelling ratio (% ESR) of g-HPMC (M) decreased with addition of salt solutions and follow the order: Na(+)>K(+)>Mg(2+)>Ca(2+)>Al(3+). The in vitro 5-ASA release studies indicate that g-HPMC (M) delivers the drug preferentially in colonic region in more sustained way than that of HPMC. The 5-ASA release follows first order kinetics and non-Fickian diffusion mechanism. These favorable features make the graft copolymer a potential matrix for colon specific delivery of 5-ASA.

  19. Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware

    NASA Astrophysics Data System (ADS)

    Fukuta, Yamato; Fujita, Hiroyuki; Toshiyoshi, Hiroshi

    2003-06-01

    We have developed a novel technique of sacrificial layer etching for micro electro mechanical systems (MEMS). Our technique uses vapor of hydrofluoric acid (HF) to etch sacrificial silicon oxide and to make freestanding silicon microstructures. The advantages of this technique are: (1) no subsequent water rinse is needed, (2) freestanding silicon microstructures can be successfully released without sticking to the substrate, (3) equipment for our vapor phase HF etching simply consists of Teflon beakers only. Conditions for the technique have been optimized by estimating etching rate with test patterns made of silicon-on-insulator (SOI) wafers and by observing water droplets condensation on the sample surface with thermally oxidized silicon chips. By this technique we have successfully obtained freestanding microstructures of SOI wafers. Microcantilevers of as long as 5000 μm (a 5-μm-wide, 10-μm-thick, and 5000-μm-long cantilever over a 0.6-μm-gap) have been successfully released without adhering to the base substrate or contacting the neighboring cantilevers. We have also fabricated and actuated electrostatic comb-drive actuators of 60 and 200 comb pairs to demonstrate high processing yield of our nonstick releasing technique.

  20. Folic acid conjugated magnetic drug delivery system for controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Andhariya, Nidhi; Upadhyay, Ramesh; Mehta, Rasbindu; Chudasama, Bhupendra

    2013-01-01

    Targeting tumors by means of their vascular endothelium is a promising strategy, which utilizes targets that are easily accessible, stable, and do not develop resistance against therapeutic agents. Folate receptor is a highly specific tumor marker, frequently over expressed in cancer tumors. In the present study, an active drug delivery system, which can effectively target cancer cells by means of folate receptor-mediated endocytosis, have ability to escape from opsonization and capability of magnetic targeting to withstand the drag force of the body fluid have been designed and synthesized. The core of the drug delivery system is of mono-domain magnetic particles of magnetite. Magnetite nanoparticles are shielded with PEG, which prevents their phagocytosis by reticuloendothelial system. These PEG shielded magnetite nanoparticles are further decorated with an antitumor receptor—folic acid and loaded with an antineoplastic agent doxorubicin. An in vitro drug loading and release kinetics study reveals that the drug delivery system can take 52 % of drug load and can release doxorubicin over a sustained period of 7 days. The control and sustained release over a period of several days may find its practical utilities in chemotherapy where frequent dosing is not possible.

  1. Is increased arachidonic acid release a cause or a consequence of replicative senescence?

    PubMed

    Lorenzini, A; Hrelia, S; Bordoni, A; Biagi, P; Frisoni, L; Marinucci, T; Cristofalo, V J

    2001-01-01

    Arachidonic acid (AA) has been related to both stimulation and inhibition of cellular proliferation. During replicative senescence of human fibroblasts, increased levels of AA have been thought to play a causal role in the limited proliferative capacity of the cells. To clarify the role of AA in the proliferation of normal fibroblasts and in cellular senescence, we examined uptake from and release of AA into the culture media and its effects on DNA synthesis. Our results indicate that some aspects of AA metabolism in normal human fibroblasts aged in culture are significantly different in comparison to early passage cells. Particularly, AA release following different mitogenic stimulation is higher in senescent than in young cells. Notwithstanding this significant difference, AA, at the concentration used, has no inhibitory effect on fibroblast DNA synthesis. Moreover AA and prostaglandins are responsible for the proliferative block in neither senescent cells nor mediate ceramide inhibition of DNA synthesis. So our results suggest that the increasing AA release is not causal, but rather the result of in vitro aging.

  2. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid)☆

    PubMed Central

    Knöös, Patrik; Onder, Sebla; Pedersen, Lina; Piculell, Lennart; Ulvenlund, Stefan; Wahlgren, Marie

    2013-01-01

    Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs. PMID:25755999

  3. Tracking of Drug Release and Material Fate for Naturally Derived Omega-3 Fatty Acid Biomaterials.

    PubMed

    Faucher, Keith M; Artzi, Natalie; Beck, Moshe; Beckerman, Rita; Moodie, Geoff; Albergo, Theresa; Conroy, Suzanne; Dale, Alicia; Corbeil, Scott; Martakos, Paul; Edelman, Elazer R

    2016-03-01

    In vitro and in vivo studies were conducted on omega-3 fatty acid-derived biomaterials to determine their utility as an implantable material for adhesion prevention following soft tissue hernia repair and as a means to allow for the local delivery of antimicrobial or antibiofilm agents. Naturally derived biomaterials offer several advantages over synthetic materials in the field of medical device development. These advantages include enhanced biocompatibility, elimination of risks posed by the presence of toxic catalysts and chemical crosslinking agents, and derivation from renewable resources. Omega-3 fatty acids are readily available from fish and plant sources and can be used to create implantable biomaterials either as a stand-alone device or as a device coating that can be utilized in local drug delivery applications. In-depth characterization of material erosion degradation over time using non-destructive imaging and chemical characterization techniques provided mechanistic insight into material structure: function relationship. This in turn guided rational tailoring of the material based on varying fatty acid composition to control material residence time and hence drug release. These studies demonstrate the utility of omega-3 fatty acid derived biomaterials as an absorbable material for soft tissue hernia repair and drug delivery applications.

  4. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii.

    PubMed

    Zuo, Zhaojiang; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2012-02-01

    Acetic acid widely spreads in atmosphere, aquatic ecosystems containing residues and anoxic soil. It can inhibit aquatic plant germination and growth, and even cause programmed cell death (PCD) of yeast. In the present study, biochemical and physiological responses of the model unicellular green algae Chlamydomonas reinhardtii were examined after acetic acid stress. H(2)O(2) burst was found in C. reinhardtii after acetic acid stress at pH 5.0 for 10 min. The photosynthetic pigments were degraded, gross photosynthesis and respiration were disappeared gradually, and DNA fragmentation was also detected. Those results indicated that C. reinhardtii cells underwent a PCD but not a necrotic, accidental cell death event. It was noticed that C. reinhardtii cells in PCD released abundant volatile organic compounds (VOCs) upon acetic acid stress. Therefore, we analyzed the VOCs and tested their effects on other normal cells. The treatment of C. reinhardtii cultures with VOCs reduced the cell density and increased antioxidant enzyme activity. Therefore, a function of VOCs as infochemicals involved in cell-to-cell communication at the conditions of applied stress is suggested.

  5. Bacterial production of free fatty acids from freshwater macroalgal cellulose.

    PubMed

    Hoover, Spencer W; Marner, Wesley D; Brownson, Amy K; Lennen, Rebecca M; Wittkopp, Tyler M; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E; Chaston, Sheena D; McMahon, Katherine D; Pfleger, Brian F

    2011-07-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing microorganisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (∼90 μg/mL FFA) cultures grown on rich Luria-Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds.

  6. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    PubMed Central

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M.; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Graham, Linda E.; Chaston, Sheena D.; McMahon, Katherine D.

    2013-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing micro-organisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl–acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (~90 μg/mL FFA) cultures grown on rich Luria–Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds. PMID:21643704

  7. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    NASA Astrophysics Data System (ADS)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  8. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid.

    PubMed Central

    Lin, L L; Lin, A Y; Knopf, J L

    1992-01-01

    Cytosolic phospholipase A2 (cPLA2) binds to natural membrane vesicles in a Ca(2+)-dependent fashion, resulting in the selective release of arachidonic acid, thus implicating cPLA2 in the hormonally regulated production of eicosanoids. Here we report that the treatment of Chinese hamster ovary (CHO) cells overexpressing cPLA2 with ATP or thrombin resulted in an increased release of arachidonic acid as compared with parental CHO cells, demonstrating the hormonal coupling of cPLA2. In contrast, CHO cells overexpressing a secreted form of mammalian PLA2 (sPLA2-II) failed to show any increased hormonal responsiveness. Interestingly, we have noted that the activation of cPLA2 with a wide variety of agents stimulates the phosphorylation of cPLA2 on serine residues. Pretreatment of cells with staurosporin blocked the ATP-mediated phosphorylation of cPLA2 and strongly inhibited the activation of the enzyme. Increased cPLA2 activity was also observed in lysates prepared from ATP-treated cells and was sensitive to phosphatase treatment. These results suggest that in addition to Ca2+, the phosphorylation of cPLA2 plays an important role in the agonist-induced activation of cPLA2. Images PMID:1631101

  9. Multifunctional Environmental Smart Fertilizer Based on l-Aspartic Acid for Sustained Nutrient Release.

    PubMed

    Lü, Shaoyu; Feng, Chen; Gao, Chunmei; Wang, Xinggang; Xu, Xiubin; Bai, Xiao; Gao, Nannan; Liu, Mingzhu

    2016-06-22

    Fertilizer is one of the most important elements of modern agriculture. However, conventional fertilizer, when applied to crops, is vulnerable to losses through volatilization, leaching, nitrification, or other means. Such a loss limits crop yields and pollutes the environment. In an effort to enhance nutrient use efficiency and reduce environmental pollution, an environmental smart fertilizer was reported in the current study. Poly(aspartic acid) and a degradable macro-cross-linker based on l-aspartic acid were synthesized and introduced into the fertilizer as a superabsorbent to improve the fertilizer degradability and soil moisture-retention capacity. Sustained release behavior of the fertilizer was achieved in soil. Cumulative release of nitrogen and phosphorus was 79.8% and 64.4% after 30 days, respectively. The water-holding and water-retention capacities of soil with the superabsorbent are obviously higher than those of the control soil without superabsorbent. For the sample of 200 g of soil with 1.5 g of superabsorbent, the water-holding capacity is 81.8%, and the water-retention capacity remains 22.6% after 23 days. All of the current results in this study indicated that the as-prepared fertilizer has a promising application in sustainable modern agriculture.

  10. Fatty acids for controlled release applications: A comparison between prilling and solid lipid extrusion as manufacturing techniques.

    PubMed

    Vervaeck, A; Monteyne, T; Siepmann, F; Boone, M N; Van Hoorebeke, L; De Beer, T; Siepmann, J; Remon, J P; Vervaet, C

    2015-11-01

    The aim of the present study was to evaluate the solid state characteristics, drug release and stability of fatty acid-based formulations after processing via prilling and solid lipid extrusion. Myristic acid (MA), stearic acid (SA) and behenic acid (BA) were used as matrix formers combined with metoprolol tartrate (MPT) as model drug. The prilling process allowed complete dissolution of MPT in the molten fatty acid phase, generating semi-crystalline MPT and the formation of hydrogen bonds between drug and fatty acids in the solid prills. In contrast, as solid lipid extrusion (SLE) induced only limited melting of the fatty acids, molecular interaction with the drug was inhibited, yielding crystalline MPT. Although the addition of a low melting fatty acid allowed more MPT/fatty acid interaction during extrusion, crystalline MPT was detected after processing. Mathematical modeling revealed that the extrudates exhibited a higher apparent drug/water mobility than prills of the same composition, probably due to differences in the inner systems' structure. Irrespective of the processing method, mixed fatty acid systems (e.g. MA/BA) exhibited a lower matrix porosity, resulting in a slower drug release rate. Solid state analysis of these systems indicated that the crystalline structure of the fatty acids was maintained after SLE, while prilling generated a reduced MA crystallinity. Binary MPT/fatty acid systems processed via extrusion showed better stability during storage at 40 °C than the corresponding prills. Although mixed fatty acid systems were stable at 25 °C, stability problems were encountered during storage at 40 °C: a faster release was obtained from the prills, whereas drug release from the extrudates was slower.

  11. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy

    PubMed Central

    2013-01-01

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources. PMID:23298332

  12. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy.

    PubMed

    Jurkić, Lela Munjas; Cepanec, Ivica; Pavelić, Sandra Kraljević; Pavelić, Krešimir

    2013-01-08

    Silicon (Si) is the most abundant element present in the Earth's crust besides oxygen. However, the exact biological roles of silicon remain unknown. Moreover, the ortho-silicic acid (H4SiO4), as a major form of bioavailable silicon for both humans and animals, has not been given adequate attention so far. Silicon has already been associated with bone mineralization, collagen synthesis, skin, hair and nails health atherosclerosis, Alzheimer disease, immune system enhancement, and with some other disorders or pharmacological effects. Beside the ortho-silicic acid and its stabilized formulations such as choline chloride-stabilized ortho-silicic acid and sodium or potassium silicates (e.g. M2SiO3; M= Na,K), the most important sources that release ortho-silicic acid as a bioavailable form of silicon are: colloidal silicic acid (hydrated silica gel), silica gel (amorphous silicon dioxide), and zeolites. Although all these compounds are characterized by substantial water insolubility, they release small, but significant, equilibrium concentration of ortho-silicic acid (H4SiO4) in contact with water and physiological fluids. Even though certain pharmacological effects of these compounds might be attributed to specific structural characteristics that result in profound adsorption and absorption properties, they all exhibit similar pharmacological profiles readily comparable to ortho-silicic acid effects. The most unusual ortho-silicic acid-releasing agents are certain types of zeolites, a class of aluminosilicates with well described ion(cation)-exchange properties. Numerous biological activities of some types of zeolites documented so far might probably be attributable to the ortho-silicic acid-releasing property. In this review, we therefore discuss biological and potential therapeutic effects of ortho-silicic acid and ortho-silicic acid -releasing silicon compounds as its major natural sources.

  13. Release of cetyl pyridinium chloride from fatty acid chelate temporary dental cement

    PubMed Central

    Hurt, Andrew; Coleman, Nichola J.; Tüzüner, Tamer; Bagis, Bora; Korkmaz, Fatih Mehmet; Nicholson, John W.

    2016-01-01

    Abstract Objective To determine whether the antimicrobial nature of a fatty acid chelate temporary dental cement can be enhanced by the addition of 5% cetyl pyridinium chloride (CPC). Materials and methods The temporary cement, Cavex Temporary was employed, and additions of CPC were made to either the base or the catalyst paste prior to mixing the cement. Release of CPC from set cement specimens was followed using reverse-phase HPLC for a period of up to 2 weeks following specimen preparation. Potential interactions between Cavex and CPC were examined by Fourier transform infrared spectroscopy (FTIR) and antimicrobial effects were determined using zone of inhibition measurements after 24 h with disc-shaped specimens in cultured Streptococcus mutans. Results FTIR showed no interaction between CPC and the components of the cement. CPC release was found to follow a diffusion mechanism for the first 6 h or so, and to equilibrate after approximately 2 weeks, with no significant differences between release profiles when the additive was incorporated into the base or the catalyst paste. Diffusion was rapid, and had a diffusion coefficient of approximately 1 × 10−9 m2 s−1 in both cases. Total release was in the range 10–12% of the CPC loading. Zones of inhibition around discs containing CPC were significantly larger than those around the control discs of CPC-free cement. Conclusions The antimicrobial character of this temporary cement can be enhanced by the addition of CPC. Such enhancement is of potential clinical value, though further in vivo work is needed to confirm this. PMID:27335898

  14. Multilayer Capsules of Bovine Serum Albumin and Tannic Acid for Controlled Release by Enzymatic Degradation.

    PubMed

    Lomova, Maria V; Brichkina, Anna I; Kiryukhin, Maxim V; Vasina, Elena N; Pavlov, Anton M; Gorin, Dmitry A; Sukhorukov, Gleb B; Antipina, Maria N

    2015-06-10

    With the purpose to replace expensive and significantly cytotoxic positively charged polypeptides in biodegradable capsules formed via Layer-by-Layer (LbL) assembly, multilayers of bovine serum albumin (BSA) and tannic acid (TA) are obtained and employed for encapsulation and release of model drugs with different solubility in water: hydrophilic-tetramethylrhodamine-isothiocyanate-labeled BSA (TRITC-BSA) and hydrophobic 3,4,9,10-tetra-(hectoxy-carbonyl)-perylene (THCP). Hydrogen bonding is proposed to be predominant within thus formed BSA/TA films. The TRITC-BSA-loaded capsules comprising 6 bilayers of the protein and polyphenol are benchmarked against the shells composed of dextran sulfate (DS) and poly-l-arginine (PARG) on degradability by two proteolytic enzymes with different cleavage site specificity (i.e., α-chymotrypsin and trypsin) and toxicity for murine RAW264.7 macrophage cells. Capsules of both types possess low cytotoxicity taken at concentrations equal or below 50 capsules per cell, and evident susceptibility to α-chymotrypsin resulted in release of TRITC-BSA. While the BSA/TA-based capsules clearly display resistance to treatment with trypsin, the assemblies of DS/PARG extensively degrade. Successful encapsulation of THCP in the TRITC-BSA/TA/BSA multilayer is confirmed, and the release of the model drug is observed in response to treatment with α-chymotrypsin. The thickness, surface morphology, and enzyme-catalyzed degradation process of the BSA/TA-based films are investigated on a planar multilayer comprising 40 bilayers of the protein and polyphenol deposited on a silicon wafer. The developed BSA/TA-based capsules with a protease-specific degradation mechanism are proposed to find applications in personal care, pharmacology, and the development of drug delivery systems including those intravenous injectable and having site-specific release capability.

  15. Net release of individual fatty acids from white adipose tissue during lipolysis in vitro: evidence for selective fatty acid re-uptake.

    PubMed Central

    Raclot, T; Oudart, H

    2000-01-01

    During lipolysis, adipose tissue triacylglycerols (TAG) undergo concurrent breakdown and synthesis because some of the newly hydrolysed and released non-esterified ('free') fatty acids (NEFA) can subsequently be taken up and re-esterified. The present study examines whether and how the release of individual fatty acids is affected by the re-uptake of some of the newly hydrolysed fatty acids in vitro during lipolysis. To alter fatty acid release and re-uptake, adipose tissue fragments and isolated adipocytes from rats were incubated under various conditions, i.e. several cell concentrations or adipose fragment quantities, with or without glucose. In the various conditions tested, the NEFA/glycerol molar ratio ranged from 1.5 to 2.9. Whatever the incubation conditions, including those resulting in very low, medium or high fatty acid re-uptake (as assessed by the NEFA/glycerol ratio), the percentage weight of fatty acids in NEFA was significantly different from that in TAG for 20-24 of the 35 fatty acids that were considered. Thus the greater the fatty acid re-uptake, the higher the proportion of polyunsaturated fatty acids and the lower the proportion of long-chain saturated and monounsaturated fatty acids in NEFA. Moreover, the relative mobilization (%NEFA/%TAG) of the least readily mobilized fatty acid (C(22:1,n-11)) was 6.2-fold lower than that of the most readily mobilized fatty acid (C(20:5,n-3)) under conditions of very low fatty acid re-uptake, and 14.8-fold lower under conditions of high fatty acid re-uptake, indicating a widening of the range of relative mobilizations. We conclude that the composition of the NEFA pool is affected by the rate of fatty acid re-uptake. This provides strong evidence for the selective re-uptake of adipose tissue fatty acids during lipolysis. PMID:10794723

  16. Evaluation of folic acid release from spray dried powder particles of pectin-whey protein nano-capsules.

    PubMed

    Assadpour, Elham; Jafari, Seid-Mahdi; Maghsoudlou, Yahya

    2017-02-01

    Our main goal was to evaluate release kinetics of nano-encapsulated folic acid within a double W1/O/W2 emulsion. First, W1/O nano-emulsions loaded with folic acid were prepared and re-emulsified into an aqueous phase (W2) containing single whey protein concentrate (WPC) layer or double layer complex of WPC-pectin to form W1/O/W2 emulsions. Final double emulsions were spray dried and their microstructure was analyzed in terms of scanning electron microscopy (SEM), and Fourier Transform Infrared spectroscopy (FTIR). Also the release trends of folic acid were determined and fitted with experimental models of zero and first order, Higuchi, and Hixson-Crowell. It was revealed that folic acid nano-capsules made with Span as the surfactant had the lowest release rate in acidic conditions (pH=4) and highest release in the alkaline conditions (pH=11). The best model fitting for folic acid release data was observed for single layer WPC encapsulated powders with the highest R(2). Our FTIR data showed there was no chemical interaction between WPC and pectin in double layered capsules and based on SEM results, single WPC layered capsules resulted in smooth and uniform particles which by incorporating pectin, some wrinkles and shrinkage were found in the surface of spray dried powder particles.

  17. Boric acid inhibits stored Ca2+ release in DU-145 prostate cancer cells.

    PubMed

    Barranco, Wade T; Kim, Danny H; Stella, Salvatore L; Eckhert, Curtis D

    2009-08-01

    Boron (B) is a developmental and reproductive toxin. It is also essential for some organisms. Plants use uptake and efflux transport proteins to maintain homeostasis, and in humans, boron has been reported to reduce prostate cancer. Ca2+ signaling is one of the primary mechanisms used by cells to respond to their environment. In this paper, we report that boric acid (BA) inhibits NAD+ and NADP+ as well as mechanically induced release of stored Ca2+ in growing DU-145 prostate cancer cells. Cell proliferation was inhibited by 30% at 100 microM, 60% at 250 microM, and 97% at 1,000 microM BA. NAD+-induced Ca2+ transients were partly inhibited at 250 microM BA and completely at 1,000 microM BA, whereas both NADP+ and mechanically induced transients were inhibited by 1,000 microM BA. Expression of CD38 protein increased in proportion to BA exposure (0-1,000 microM). In vitro mass spectrometry analysis showed that BA formed adducts with the CD38 products and Ca2+ channel agonists cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP). Vesicles positive for the Ca2+ fluorophore fluo-3 acetoxymethyl ester accumulated in cells exposed to 250 and 1,000 microM BA. The BA analog, methylboronic acid (MBA; 250 and 1,000 microM), did not inhibit cell proliferation or NAD+, NADP+, or mechanically stimulated Ca2+ store release. Nor did MBA increase CD38 expression or cause the formation of intracellular vesicles. Thus, mammalian cells can distinguish between BA and its synthetic analog MBA and exhibit graded concentration-dependent responses. Based on these observations, we hypothesize that toxicity of BA stems from the ability of high concentrations to impair Ca2+ signaling.

  18. Bimane: A Visible Light Induced Fluorescent Photoremovable Protecting Group for the Single and Dual Release of Carboxylic and Amino Acids.

    PubMed

    Chaudhuri, Amrita; Venkatesh, Yarra; Behara, Krishna Kalyani; Singh, N D Pradeep

    2017-03-10

    A series of ester conjugates of carboxylic and amino acids were synthesized based on bimane fluorescent photoremovable protecting group (FPRPG). The photorelease of single and dual (same as well as different) carboxylic and amino acids is demonstrated from a single bimane molecule on irradiation with visible light (λ ≥ 410 nm). The detailed mechanistic study of photorelease revealed that the release of two caged acids is simultaneous but in a stepwise pathway.

  19. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation.

    PubMed

    Tumova, Jana; Malisova, Lucia; Andel, Michal; Trnka, Jan

    2015-10-01

    Unsaturated free fatty acids (FFA) are able to prevent deleterious effects of saturated FFA in skeletal muscle cells although the mechanisms involved are still not completely understood. FFA act as endogenous ligands of peroxisome proliferator-activated receptors (PPAR), transcription factors regulating the expression of genes involved in lipid metabolism. The aim of this study was to determine whether activation of PPARδ, the most common PPAR subtype in skeletal muscle, plays a role in mediating the protective effect of unsaturated FFA on saturated FFA-induced damage in skeletal muscle cells and to examine an impact on mitochondrial respiration. Mouse C2C12 myotubes were treated for 24 h with different concentrations of saturated FFA (palmitic acid), unsaturated FFA (oleic, linoleic and α-linolenic acid), and their combinations. PPARδ agonist GW501516 and antagonist GSK0660 were also used. Both mono- and polyunsaturated FFA, but not GW501516, prevented palmitic acid-induced cell death. Mono- and polyunsaturated FFA proved to be effective activators of PPARδ compared to saturated palmitic acid; however, in combination with palmitic acid their effect on PPARδ activation was blocked and stayed at the levels observed for palmitic acid alone. Unsaturated FFA at moderate physiological concentrations as well as GW501516, but not palmitic acid, mildly uncoupled mitochondrial respiration. Our results indicate that although unsaturated FFA are effective activators of PPARδ, their protective effect on palmitic acid-induced toxicity is not mediated by PPARδ activation and subsequent induction of lipid regulatory genes in skeletal muscle cells. Other mechanisms, such as mitochondrial uncoupling, may underlie their effect.

  20. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid.

    PubMed

    Aytac, Zeynep; Kusku, Semran Ipek; Durgun, Engin; Uyar, Tamer

    2016-06-01

    Cyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and (1)H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers.

  1. FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †

    PubMed Central

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.

    2011-01-01

    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226

  2. Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Tomić, S. Lj.; Mićić, M. M.; Filipović, J. M.; Suljovrujić, E. H.

    2007-05-01

    The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.

  3. Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid.

    PubMed

    Su, Chia-Hung

    2013-02-01

    The catalytic performance and recoverability of several homogeneous acid catalysts (hydrochloric, sulfuric, and nitric acids) for the esterification of enzyme-hydrolyzed free fatty acid (FFA) and methanol were studied. Although all tested catalysts drove the reaction to a high yield, hydrochloric acid was the only catalyst that could be considerably recovered and reused. The kinetics of the esterification reaction catalyzed by hydrochloric acid was investigated under varying catalyst loading (0.1-1M), reaction temperature (303-343K), and methanol/FFA molar ratio (1:1-20:1). In addition, a pseudo-homogeneous kinetic model incorporating the above factors was developed. A good agreement (r(2)=0.98) between the experimental and calculated data was obtained, thus proving the reliability of the model. Furthermore, the reusability of hydrochloric acid in FFA esterification can be predicted by the developed model. The recoverable hydrochloric acid achieved high yields of FFA esterification within five times of reuse.

  4. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages

    PubMed Central

    Rossi, A; Pergola, C; Koeberle, A; Hoffmann, M; Dehm, F; Bramanti, P; Cuzzocrea, S; Werz, O; Sautebin, L

    2010-01-01

    BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed. PMID:20880396

  5. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization.

    PubMed

    Bates, Ryan C; Fees, Colby P; Holland, William L; Winger, Courtney C; Batbayar, Khulan; Ancar, Rachel; Bergren, Todd; Petcoff, Douglas; Stith, Bradley J

    2014-02-01

    We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization.

  6. Development of antiproliferative nanohybrid compound with controlled release property using ellagic acid as the active agent

    PubMed Central

    Hussein, Mohd Zobir; Al Ali, Samer Hasan; Zainal, Zulkarnain; Hakim, Muhammad Nazrul

    2011-01-01

    An ellagic acid (EA)–zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8′ position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host–guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA. PMID:21796241

  7. Hydrophilic polymer drug from a derivative of salicylic acid: synthesis, controlled release studies and biological behavior.

    PubMed

    Rodríguez, Gema; Gallardo, Alberto; Fernández, Mar; Rebuelta, Mercedes; Buján, Julia; Bellón, Juan María; Honduvilla, Natalio G; Escudero, Cristina; San Román, Julio

    2004-06-25

    Hydrophilic polymeric drugs bearing "Triflusal" (4-trifluoromethylsalicylic acid), a drug widely used as antithrombogenic agent (Disgren), have been prepared by free radical copolymerization of methacryloyloxyethyl [2-(acetyloxy)-4-(trifluoromethyl)] benzoate (HTRF) and N,N'-dimethylacrylamide (DMA). The reactivity ratios of both monomers have been determined by 1H NMR spectra by applying non-linear least square treatments to the copolymerization equation (terminal model), and the kinetic parameters obtained indicated that the microstructure of copolymer chains is homogeneous, with a random distribution of the active HTRF units along the copolymer chains. That means that for the copolymer system THDMA22 used in this work, HTRF units are mainly isolated in relatively long DMA sequences. Therefore, in this structure the intramolecular interactions between adjacent HTRF units are negligible. Release of Triflusal from THDMA22 has been studied in vitro using buffered solutions at pH = 2, 7.4 and 10 and 37 degrees C. The system showed an interesting pseudo-zero order release profile at pH = 7.4 during several months. It has been also evaluated the pharmacological activity and the behavior of the system in contact with biological media. In this sense, we have carried out some in vitro studies about the antiaggregant properties and biocompatibility of THDMA22. Results demonstrate that this copolymer inhibits platelet aggregation in its macromolecular form and presents a good biocompatibility with Human Osteoblastic Cells (HOS).

  8. Doxorubicin hydrochloride-oleic acid conjugate loaded nanostructured lipid carriers for tumor specific drug release.

    PubMed

    Zhao, Shuangni; Minh, Le Van; Li, Na; Garamus, Vasil M; Handge, Ulrich A; Liu, Jianwen; Zhang, Rongguang; Willumeit-Römer, Regine; Zou, Aihua

    2016-09-01

    The hydrophilic drug Doxorubicin hydrochloride (DOX) paired with oleic acid (OA) was successfully incorporated into nanostructured lipid carriers (NLCs) by a high-pressure homogenization (HPH) method. Drug nanovehicles with proper physico-chemical characteristics (less than 200nm with narrow size distribution, spherical shape, layered internal organization, and negative electrical charge) were prepared and characterized by dynamic light scattering, zeta potential measurements, transmission electron microscopy, small-angle X-ray scattering and differential scanning calorimetry. The drug loading and entrapment efficiency of DOX-OA/NLCs were 4.09% and 97.80%, respectively. A pH-dependent DOX release from DOX-OA/NLCs, i.e., fast at pH 3.8 and 5.7 and sustained at pH 7.4, was obtained. A cytotoxicity assay showed that DOX-OA/NLCs had comparable cytotoxicity to pure DOX and were favorably taken up by HCT 116 cells. The intracellular distribution of DOX was also studied using a confocal laser scanning microscope. All of these results demonstrated that DOX-OA/NLCs could be a promising drug delivery system with tumor-specific DOX release for cancer treatment.

  9. Arachidonic acid release and prostaglandin F(2alpha) formation induced by anandamide and capsaicin in PC12 cells.

    PubMed

    Someya, Akiyoshi; Horie, Syunji; Murayama, Toshihiko

    2002-08-23

    Anandamide, an endogenous agonist of cannabinoid receptors, activates various signal transduction pathways. Anandamide also activates vanilloid VR(1) receptor, which was a nonselective cation channel with high Ca(2+) permeability and had sensitivity to capsaicin, a pungent principle in hot pepper. The effects of anandamide and capsaicin on arachidonic acid metabolism in neuronal cells have not been well established. We examined the effects of anandamide and capsaicin on arachidonic acid release in rat pheochromocytoma PC12 cells. Both agents stimulated [3H]arachidonic acid release in a concentration-dependent manner from the prelabeled PC12 cells even in the absence of extracellular CaCl(2). The effect of anandamide was neither mimicked by an agonist nor inhibited by an antagonist for cannabinoid receptors. The effects of anandamide and capsaicin were inhibited by phospholipase A(2) inhibitors, but not by an antagonist for vanilloid VR(1) receptor. In PC12 cells preincubated with anandamide or capsaicin, [3H]arachidonic acid release was marked and both agents were no more effective. Co-addition of anandamide or capsaicin synergistically enhanced [3H]arachidonic acid release by mastoparan in the absence of CaCl(2). Anandamide stimulated prostaglandin F(2alpha) formation. These findings suggest that anandamide and capsaicin stimulated arachidonic acid metabolism in cannabinoid receptors- and vanilloid VR(1) receptor-independent manner in PC12 cells. The possible mechanisms are also discussed.

  10. Noble Gases and Nitrogen Released from a Lunar Soil Pyroxene Separate by Acid Etching

    NASA Astrophysics Data System (ADS)

    Rider, P. E.

    1993-07-01

    We report initial results from a series of experiments designed to measure recently implanted solar wind (SW) ions in lunar soil mineral grains [1]. An acid-etching technique similar to the CSSE method developed at ETH Zurich was used to make abundance and isotope measurements of the SW noble gas and nitrogen compositions. Among the samples examined was a pyroxene separate from soil 75081. It was first washed with H2O to remove contamination from the sample finger walls and grain surfaces. H2O also acted as a weak acid, releasing gases from near-surface sites. Treatment with H2SO3 followed the water washes. Acid pH (~1.8 to ~1.0) and temperature (~23 degrees C to ~90 degrees C) and duration of acid attack (several minutes to several days) were varied from step to step. Finally, the sample was pyrolyzed in several steps to remove the remaining gases, culminating with a high-temperature pyrolysis at 1200 degrees C. Measurements of the light noble gases were mostly consistent with those from previous CSSE experiments performed on pyroxene [2,3]. It should be noted, however, that the Zurich SEP component was not easily distinguishable in the steps where it was expected to be observed. We suspect our experimental protocol masked the SEP reservoir, preventing us from seeing its distinctive signature. The most interesting results from this sample are its Kr and Xe isotopic and elemental compositions. Pyroxene apparently retains heavy noble gases as well as ilmenite (and plagioclase [4]). The heavy noble gas element ratios from this sample along with those previously reported [5,6] are, however, considerably heavier than the theoretically determined "solar system" values [7,8]. Explanations for the difference include the possibility that the derivations are incorrect, that there is another component of lunar origin mixing with the solar component, or that some type of loss mechanism is altering the noble gas reservoirs of the grains. The Kr and Xe isotopic compositions for

  11. New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release.

    PubMed

    Paun, Gabriela; Neagu, Elena; Tache, Andreia; Radu, G L

    2014-01-01

    A new type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane have been developed for the encapsulation and controlled release of gallic acid. The morphology of the composite membrane was investigated by infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), whereas swelling gallic acid and release properties were investigated by UV-visible spectroscopy. The release behavior with pH changes was also explored. The composite membrane based on chitosan/2-hydroxypropyl-β-cyclodextrin with gallic acid included showed improved antioxidant capacities compared to plain chitosan membrane. The information obtained in this study will facilitate the design and preparation of composite membrane based on chitosan and could open a wide range of applications, particularly its use as an antioxidant in food, food packaging, biomedical (biodegradable soft porous scaffolds for enhance the surrounding tissue regeneration), pharmaceutical and cosmetics industries.

  12. Arterio-venous balance studies of skeletal muscle fatty acid metabolism: what can we believe?

    PubMed Central

    Guo, ZengKui

    2013-01-01

    The arterio-venous balance (A-V balance/difference) technique has been used by a number of groups, including ours, to study skeletal muscle fatty acid metabolism. Several lines of evidence indicate that, like glycogen, intramyocellular triglycerides (imcTG) are an energy source for local use. As such, the report that increased release of free fatty acids (FFA) via lipolysis from skeletal muscle, but not from adipose tissue, is responsible for the increased systemic lipolysis during IL-6 infusion in healthy humans is somewhat unexpected (26). It appears that given the complex anatomy of human limbs, as to be discussed in this review, it is virtually impossible to determine whether any fatty acids being released into the venous circulation of an arm or leg derive from the lipolysis of intermuscular fat residing between muscle groups, intramuscular fat residing within muscle groups (between epimysium and perimysium, or bundles), or the intramyocellular triglyceride droplets (imcTG). In many cases, it may even be difficult to be confident that there is no contribution of FFA from subcutaneous adipose tissue. This question is fundamentally important as one attempts to interpret the results of skeletal muscle fatty acid metabolism studies using the A-V balance technique. In this Perspectives article, we examine the reported results of fatty acid kinetics obtained using the techniques to evaluate the degree of and how to minimize contamination when attempting to sample skeletal muscle-specific fatty acids. PMID:23941872

  13. Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus

    PubMed Central

    Singewald, Nicolas; Kaehler, Stefan T; Hemeida, Ramadan; Philippu, Athineos

    1998-01-01

    The interactions between 5-hydroxytryptaminergic neurones and excitatory amino acid utilizing neurones were studied in the locus coeruleus of conscious, freely moving rats. The locus coeruleus was superfused with artificial cerebrospinal fluid through a push-pull cannula and 5-hydroxytryptamine (5-HT) was determined in the superfusate that was continuously collected in time periods of 10 min. Superfusion of the locus coeruleus with the NMDA receptor antagonist AP5 (10 μM), kynurenic acid (1 mM), or the AMPA/kainate receptor antagonist DNQX (10 μM) reduced the 5-HT release in the locus coeruleus. Superfusion with the agonists NMDA (50 μM), kainic acid (50 μM) or AMPA (10 μM) enhanced the release rate of 5-HT. AP5 (10 μM) blocked the stimulant effect of NMDA, while tetrodotoxin (1 μM) failed to influence the NMDA-induced release of 5-HT. In the presence of 10 μM DNQX, the releasing effect of 50 μM kainic acid was abolished. Pain elicited by tail pinch, as well as noise-induced stress, increased the release of 5-HT. Superfusion of the locus coeruleus with 10 μM AP5 reduced the tail pinch-induced 5-HT release. AP5 (10 μM) did not affect the noise-induced release of 5-HT which was reduced, when the locus coeruleus was superfused simultaneously with this concentration of AP5 and 1 μM kynurenic acid. DNQX (10 mM) failed to influence the release of 5-HT induced by tail pinch or noise. The findings suggest that 5-hydroxytryptaminergic neurones of the locus coeruleus are tonically modulated by excitatory amino acids via NMDA and AMPA/kainate receptors. The release of 5-HT elicited by tail pinch and noise is mediated to a considerable extent through endogenous excitatory amino acids acting on NMDA receptors, while AMPA/kainate receptors are not involved in this process. PMID:9517395

  14. Study of the release of gallic acid from (-)-epigallocatechin gallate in old oolong tea by mass spectrometry.

    PubMed

    Lee, Ren-Jye; Lee, Viola S Y; Tzen, Jason T C; Lee, Maw-Rong

    2010-04-15

    Liquid chromatography combined with multiple-stage mass spectrometry (LC/MS(n)) was used to study the pathway of the release of gallic acid (GA) from epigallocatechin gallate (EGCG) in infusion of old oolong tea. The possibility of releasing GA from EGCG in old tea preparations was supported by an in vitro observation of GA degraded from EGCG under heating conditions mimicking the drying process. Negative electrospray ionization with the data-dependent mode of MS(n) was used to study the formation pathway of GA in old oolong tea. The MS(n) data show that GA was released from the dimer of EGCG, not directly degraded from EGCG.

  15. Effect of gamma-aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina.

    PubMed

    Cunningham, J R; Neal, M J

    1983-03-01

    The light-evoked release of [3H]acetylcholine (ACh) from the rabbit retina in vivo was measured and taken as an index of cholinergic amacrine cell activity. The light-evoked release of [3H]ACh was reduced by locally applied gamma-aminobutyric acid (GABA), muscimol and 3-aminopropanesulphonic acid (3-APS). The concentrations of these drugs which reduced the light-evoked release of [3H]ACh by 50% (EC50) were 900, 0.3 and 5 microM respectively. In contrast, (-)-baclofen (5 mM), but not (+)-baclofen, significantly increased the light-evoked release of [3H]ACh. The GABA antagonist, bicuculline increased the resting release of [3H]ACh but abolished the inhibitory action of muscimol on the light-evoked release of [3H]ACh. Glycine and taurine also reduced the light-evoked release of [3H]ACh from the retina, their EC50 values being 1.5 and 0.3 mM respectively. This action was blocked by strychnine, but not by bicuculline. In contrast to the GABA antagonist, strychnine did not affect the spontaneous resting release of [3H]ACh. Retinal [3H]ACh release was not affected by dopamine, 5-hydroxytryptamine (5-HT) morphine, substance P, somatostatin, cholecystokinin sulphate, thyrotropin releasing hormone, luteinizing hormone releasing hormone or angiotensin. Electroretinographic changes produced by amino acids and GABA agonists involved mainly the b-wave and were not correlated with their effects on ACh release. Thus, GABA increased the b-wave amplitude, 3-APS had no effect, whilst muscimol, taurine and glycine either had no effect, or reduced the b-wave amplitude. No obvious changes in the e.r.g. were produced by baclofen, dopamine, 5-HT, morphine or any of the peptides studied with the exception of somatostatin, which reduced the amplitude of the b-wave. It is concluded that cholinergic amacrine cell activity in the rabbit retina may be affected by inputs from other amacrines using GABA or glycine (taurine) as their transmitters, but probably not by inputs from peptidergic or

  16. Contrast of volatile fatty acid driven and inorganic acid or base driven phosphorus release and uptake in enhanced biological phosphorus removal.

    PubMed

    Randall, Andrew A

    2012-04-01

    Addition of an inorganic acid or base was detrimental to net phosphorus removals in short-term batch experiments, suggesting there might be system upset when pH changes. In contrast, addition of volatile fatty acids (VFAs) increased anaerobic phosphorus release and aerobic phosphorus uptake while maintaining or improving net phosphorus removals. The effect of pH change differed if the acid or base added was inorganic versus organic. Volatile fatty acids that resulted in poly-3-hydroxy-butyrate rather than poly-3-hydroxy-valerate resulted in greater net phosphorus removals, and this corresponded to differences in consumption of reducing equivalents. Acetic acid resulted in improved net phosphorus removal compared to sodium acetate, suggesting that acid forms of VFAs might be superior as supplemental VFAs. It is hypothesized that anaerobic phosphorus release following addition of inorganic acid is primarily a result of phosphorus and proton (H+) symport (excretion from the cell) for pH homeostasis, whereas addition of VFAs results in phosphorus and H+ release to maintain the proton motive force.

  17. Controlled release of drug and better bioavailability using poly(lactic acid-co-glycolic acid) nanoparticles.

    PubMed

    Pandey, Sanjeev K; Patel, Dinesh K; Maurya, Akhilendra K; Thakur, Ravi; Mishra, Durga P; Vinayak, Manjula; Haldar, Chandana; Maiti, Pralay

    2016-08-01

    Tamoxifen (Tmx) embedded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-Tmx) is prepared to evaluate its better DNA cleavage potential, cytotoxicity using Dalton's lymphoma ascite (DLA) cells and MDA-MB231 breast cancer cells. PLGA-Tmx nanoparticles are prepared through emulsified nanoprecipitation technique with varying dimension of 17-30nm by changing the concentrations of polymer, emulsifier and drug. Nanoparticles dimension are measured through electron and atomic force microscopy. Interactions between tamoxifen and PLGA are verified through spectroscopic and calorimetric methods. PLGA-Tmx shows excellent DNA cleavage potential as compared to pure Tmx raising better bioavailability. In vitro cytotoxicity studies indicate that PLGA-Tmx reduces DLA cells viability up to ∼38% against ∼15% in pure Tmx. Hoechst stain is used to detect apoptotic DLA cells through fluorescence imaging of nuclear fragmentation and condensation exhibiting significant increase of apoptosis (70%) in PLGA-Tmx vis-à-vis pure drug (58%). Enhanced DNA cleavage potential, nuclear fragmentation and condensation in apoptotic cells confirm greater bioavailability of PLGA-Tmx as compared to pure Tmx in terms of receptor mediated endocytosis. Hence, the sustained release kinetics of PLGA-Tmx nanoparticles shows much better anticancer efficacy through enhanced DNA cleavage potential and nuclear fragmentation and, thereby, reveal a novel vehicle for the treatment of cancer.

  18. Clostridium thermocellum releases coumaric acid during degradation of untreated grasses by the action of an unknown enzyme.

    PubMed

    Herring, Christopher D; Thorne, Philip G; Lynd, Lee R

    2016-03-01

    Clostridium thermocellum is an anaerobic thermophile with the ability to digest lignocellulosic biomass that has not been pretreated with high temperatures. Thermophilic anaerobes have previously been shown to more readily degrade grasses than wood. Part of the explanation for this may be the presence of relatively large amounts of coumaric acid in grasses, with linkages to both hemicellulose and lignin. We found that C. thermocellum and cell-free cellulase preparations both release coumaric acid from bagasse and switchgrass. Cellulase preparations from a mutant strain lacking the scaffoldin cipA still showed activity, though diminished. Deletion of all three proteins in C. thermocellum with ferulic acid esterase domains, either singly or in combination, did not eliminate the activity. Further work will be needed to identify the novel enzyme(s) responsible for the release of coumaric acid from grasses and to determine whether these enzymes are important factors of microbial biomass degradation.

  19. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue.

    PubMed Central

    Jhamandas, K.; Marien, M.

    1987-01-01

    The present study examined the effect of a selective delta-opioid receptor agonist [D-Ala2-D-Leu5] enkephalin (DADL) on the spontaneous and the L-glutamic acid (L-Glu)-evoked release of endogenous dopamine from superfused slices of rat caudate-putamen. The amount of dopamine in slice superfusates was measured by a sensitive method employing high-performance liquid chromatography with electrochemical detection (h.p.l.c.-e.d.) after a two-step separation procedure. The spontaneous release of endogenous dopamine was partially dependent on Ca2+, enhanced in Mg2+-free superfusion medium, partially reduced by tetrodotoxin (TTX, 0.3 microM), partially reduced by the putative excitatory amino acid receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (DL-APH, 1 mM), and increased 10 fold by the dopamine uptake blocker, nomifensine (10 microM). DADL (5 and 50 nM) did not significantly affect spontaneous dopamine release. L-Glu (0.1-10 mM) produced a concentration-dependent release of endogenous dopamine from slices of caudate-putamen. This effect was Ca2+-dependent, strongly inhibited by 1.2 mM Mg2+, attenuated by DL-APH (1 mM), attenuated by TTX (0.3 microM), and enhanced by nomifensine (10 microM). In the presence of nomifensine DADL (50 nM) reduced significantly the L-Glu-evoked release of endogenous dopamine by 20%. The inhibitory effect of DADL was blocked by 10 microM naloxone. These results indicate that L-Glu stimulates the Ca2+-dependent release of endogenous dopamine in the caudate-putamen by activation of N-methy-D-aspartate-type of excitatory amino acid receptors. This release can be selectively modified by the delta-opioid agonist DADL in a naloxone-sensitive manner. PMID:2884003

  20. Decapeptides as effective agonists from L-amino acids biologically equivalent to the luteinizing hormone-releasing hormone.

    PubMed Central

    Folkers, K; Bowers, C Y; Tang, P F; Kubota, M

    1986-01-01

    Apparently, no agonist has been found that is comparable in potency to the luteinizing hormone-releasing hormone (LHRH) for release of LH and follicle-stimulating hormone (FSH) without substitutions with unnatural or D forms of natural amino acids. Of 139 known "agonist analogs" of LHRH, two were active in the range of 65%. The four LHRHs known to occur in nature involve a total of six amino acids (Tyr, His, Leu, Trp, Arg, Gln) in positions 5, 7, and 8. There are 16 possible peptides with these six amino acids in positions 5, 7, and 8, of which 4 are the known LHRHs, and 2 more were synthesized. We have synthesized the 10 new peptides and assayed 11 in vivo and in vitro, and we found not only 1 but a total of 5 that have activity equivalent to or greater than that of LHRH for the release of LH and/or FSH under at least one assay condition. These five are as follows: [His5,Trp7,Gln8]LHRH; [His5,Trp7,Leu8]LHRH; [His5,Trp7]LHRH; [Trp7]LHRH; [His5]LHRH. Two of these five agonists variably released relatively more FSH than LH. One or more of these five agonists may occur in nature and one may be follicle-stimulating hormone-releasing hormone. The two peptides with Gln8 and Leu8, if occurring in nature, may have different receptors according to radioreceptor assays and to the ratio of LH/FSH release in vivo. These structures are a basis for the design of antagonists without Arg8 toward avoiding histamine release. Complete inhibition of LH and FSH release in vivo may be induced by joint use of Arg8 and Gln8 or Leu8 antagonists. These potent agonists, related to LHRH, may be therapeutically useful in disorders of reproduction, the central nervous system, and for the control of hormone-dependent carcinomas. PMID:3081889

  1. Acid-catalysed thermal cycloreversion of a diarylethene: a potential way for triggered release of stored light energy?

    PubMed

    Gurke, J; Quick, M; Ernsting, N P; Hecht, S

    2017-02-09

    Upon addition of catalytic amounts of acid, a closed diarylethene derivative carrying a fluorenol moiety undergoes facile thermal ring opening. The underlying thermodynamics and kinetics of the entire system have been analysed experimentally as well as computationally. Our work suggests that general acid catalysis provides a useful tool to bypass thermal barriers, by opening new reaction pathways, and to efficiently trigger the release of light energy stored in photoswitches.

  2. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome.

    PubMed

    Maulvi, Furqan A; Soni, Tejal G; Shah, Dinesh O

    2015-01-01

    Current dry eye treatment includes delivering comfort enhancing agents to the eye via eye drops, but low residence time of eye drops leads to low bioavailability. Frequent administration leads to incompliance in patients, so there is a great need for medical device such as contact lenses to treat dry eye. Studies in the past have demonstrated the efficacy of hyaluronic acid (HA) in the treatment of dry eyes using eye drops. In this paper, we present two methods to load HA in hydrogel contact lenses, soaking method and direct entrapment. The contact lenses were characterized by studying their optical and physical properties to determine their suitability as extended wear contact lenses. HA-laden hydrogel contact lenses prepared by soaking method showed release up to 48 h with acceptable physical and optical properties. Hydrogel contact lenses prepared by direct entrapment method showed significant sustained release in comparison to soaking method. HA entrapped in hydrogels resulted in reduction in % transmittance, sodium ion permeability and surface contact angle, while increase in % swelling. The impact on each of these properties was proportional to HA loading. The batch with 200-μg HA loading showed all acceptable values (parameters) for contact lens use. Results of cytotoxicity study indicated the safety of hydrogel contact lenses. In vivo pharmacokinetics studies in rabbit tear fluid showed dramatic increase in HA mean residence time and area under the curve with lenses in comparison to eye drop treatment. The study demonstrates the promising potential of delivering HA through contact lenses for the treatment of dry eye syndrome.

  3. Alpha(1)-acid glycoprotein is contained in bovine neutrophil granules and released after activation.

    PubMed

    Rahman, Mizanur M D; Miranda-Ribera, Alba; Lecchi, Cristina; Bronzo, Valerio; Sartorelli, Paola; Franciosi, Federica; Ceciliani, Fabrizio

    2008-09-15

    The present study was designed to investigate the capability of bovine neutrophil granulocytes to produce the minor acute phase protein alpha(1)-acid glycoprotein (AGP, Orososmucoid). Bovine neutrophils contain a high MW (50-60kDa) AGP isoform (PMN-AGP), as determined by Western blotting and confirmed by fluorescence microscopy. The presence of AGP in bovine neutrophils has been confirmed by fluorescence immunocytometry. In addition, bovine neutrophils contain also a 42-45kDa isoform, which has the same MW as plasma-, liver-delivered, AGP. cDNA sequence of plasma- and PMN-AGP revealed that (i) the two proteins are products of the same gene; (ii) the differences in molecular weight are due do different post-translational modifications. This result was confirmed by deglycosylation of the two glycoforms. Exocytosis studies showed that isolated neutrophils exposed to several challengers, including Zymosan activated serum (ZAS) and phorbol 12-myristate 13-acetate (PMA), which mimic the inflammatory activation, released PMN-AGP as early as 15min. AGP's mRNA is physiologically expressed by mature resting neutrophils. Real-time PCR on LPS, ZAS and PMA challenged cells revealed that the level of expression apparently does not increase after inflammatory activation. Collectively, the findings reported in this paper proved that PMN-AGP: (i) is a hyperglycosylated glycoform of plasma AGP, (ii) is stored in granules, and (iii) is released by neutrophils in response to activation. Due to its anti-inflammatory activity, PMN-AGP may work as a fine tuning of the neutrophils functions in the inflammatory focus, i.e. it can reduce the damages caused by an excess of inflammatory response.

  4. Acute health effects in a community after a release of hydrofluoric acid

    SciTech Connect

    Wing, J.S.; Brender, J.D.; Sanderson, L.M.; Perrotta, D.M.; Beauchamp, R.A. )

    1991-05-01

    {approximately} 3,000 persons were evacuated from a Texas community after 24,036 kg (53,000 lb) of caustic hydrofluoric acid (HF) were released from a nearby petrochemical plant. Emergency room and hospital records of 939 persons who were seen at two area hospitals were reviewed. Most persons who presented at the emergency rooms were female (56%) or black (60%), and their mean age was 33.9 y. The most frequently reported symptoms were eye irritation (41.5%), burning throat (21%), headache (20.6%), and shortness of breath (19.4%). Physical examination results were normal for 49% of the cases; however, irritation of the eyes, nose, throat, skin, and lungs were noted on other exams. Decreased pulmonary function was demonstrated by pulmonary function tests (forced expiratory volume in the first second, less than 80% of predicted value, 42.3%); hypoxemia (pO2 less than 80 mm Hg, 17.4%) and hypocalcemia (less than 8.5 mg/dl, 16.3%) were also noted. Ninety-four (10%) of the cases were hospitalized, and more than 83% of all cases were discharged with a primary diagnosis of HF exposure. There are several reports of individuals who are acutely and chronically exposed to HF; however, we are unaware of other published reports that describe exposure of a community to HF. This incident represented a unique opportunity to study the immediate health impact on a community of residents who were exposed to a hazardous materials release. Results of this analysis suggest that (a) initial health problems should be followed up, (b) any long-term health effects of HF exposure must be assessed, and (c) the health impact on the population at risk should be determined.

  5. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats.

    PubMed

    Yang, Zhi-Hong; Takeo, Jiro; Katayama, Masashi

    2013-06-01

    We have analyzed the effect of palmitoleic acid on short-term food intake in male rats. Administration of omega-7 palmitoleic acid by oral gavage significantly decreased food intake compared to palmitic acid, omega-9 oleic acid, or a vehicle control. Palmitoleic acid exhibited a dose-dependent effect in this context and did not cause general malaise. A triglyceride form of palmitoleate also decreased food intake, whereas olive oil, which is rich in oleic acid, did not. Palmitoleic acid accumulated within the small intestine in a dose-dependent fashion and elevated levels of the satiety hormone cholecystokinin (CCK). Both protein and mRNA levels of CCK were affected in this context. The suppression of food intake by palmitoleic acid was attenuated by intravenous injection of devazepide, a selective peripheral CCK receptor antagonist. Palmitoleic acid did not alter the expression of peroxisome proliferator-activated receptor alpha (PPARα) target genes, and a PPARα antagonist did not affect palmitoleic acid-induced satiety. This suggests that the PPARα pathway might not be involved in suppressing food intake in response to palmitoleic acid. We have shown that orally administered palmitoleic acid induced satiety, enhanced the release of satiety hormones in rats.

  6. Effects of rice harvest moisture on kernel damage and milled rice surface free fatty acid levels.

    PubMed

    Parker, Amanda M; Proctor, Andrew; Eason, Robert L; Jain, Vishal

    2007-01-01

    Surface free fatty acid (FFA) on milled rice is a key factor in determining rice quality and acceptability to the brewing industry. Rice FFA oxidizes, causing off-flavors and odors to develop, compromising the brewing quality of milled rice. The effect of harvest moisture (13%, 16%, and 20%), harvester type (1688 Case and 9500 John Deere), and rice variety (Cocodrie and Bengal) on harvest damaged rough rice and milled rice surface FFA after drying to 12% moisture and 6 mo rough rice storage was examined. The Case harvester produced more damaged kernels than the John Deere harvester, but this was not reflected in surface FFA development. There were no significant FFA differences in variety or harvester type. Rice harvested at a higher moisture content (20%) produced significantly greater FFA values, with a peak near 0.1%, than rice harvested at lower moisture contents (13% and 16%), which had FFA values near 0.08%. Retention of bran by damaged kernels at high harvest moisture probably was responsible for promoting surface FFA development, but if bran was lost at lower harvest moistures, surface FFA, development was limited. Harvest moisture affected milled rice FFA, although rough rice was dried to 12% immediately after harvesting.

  7. Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host

    PubMed Central

    Ruffing, Anne M.

    2014-01-01

    Microbial free fatty acids (FFAs) have been proposed as a potential feedstock for renewable energy. The ability to directly convert carbon dioxide into FFAs makes cyanobacteria ideal hosts for renewable FFA production. Previous metabolic engineering efforts using the cyanobacterial hosts Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have demonstrated this direct conversion of carbon dioxide into FFAs; however, FFA yields in these hosts are limited by the negative impact of FFA production on the host cell physiology. This work investigates the use of Synechococcus sp. PCC 7002 as a cyanobacterial host for FFA production. In comparison to S. elongatus PCC 7942, Synechococcus sp. PCC 7002 strains produced and excreted FFAs at similar concentrations but without the detrimental effects on host physiology. The enhanced tolerance to FFA production with Synechococcus sp. PCC 7002 was found to be temperature-dependent, with physiological effects such as reduced photosynthetic yield and decreased photosynthetic pigments observed at higher temperatures. Additional genetic manipulations were targeted for increased FFA production, including thioesterases and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Overexpression of non-native RuBisCO subunits (rbcLS) from a psbAI promoter resulted in more than a threefold increase in FFA production, with excreted FFA concentrations reaching >130 mg/L. This work illustrates the importance of host strain selection for cyanobacterial biofuel production and demonstrates that the FFA tolerance of Synechococcus sp. PCC 7002 can allow for high yields of excreted FFA. PMID:25152890

  8. Modulation of ischemia-evoked release of excitatory and inhibitory amino acids by adenosine A1 receptor agonist.

    PubMed

    Goda, H; Ooboshi, H; Nakane, H; Ibayashi, S; Sadoshima, S; Fujishima, M

    1998-09-18

    Adenosine has been reported to have beneficial effects against ischemic brain damage, although the mechanisms are not fully clarified. To examine the role of adenosine on the ischemia-evoked release of neurotransmitters, we applied a highly selective agonist for adenosine A1 receptor, 2-chloro-N6-cyclopentyladenosine (CCPA), into the ischemic brain using in vivo brain dialysis, which directly delivered the agonist to the local brain area. Concentrations of extracellular amino acids (glutamate, aspartate, gamma-aminobutyric acid (GABA) and taurine) and regional blood flow in the striatum of spontaneously hypertensive rats (SHRs) were monitored during cerebral ischemia elicited by bilateral carotid artery occlusion for 40 min and recirculation. Striatal blood flow and basal levels of amino acids were not affected by direct perfusion of CCPA (10 microM or 100 microM). During ischemia, concentrations of glutamate, aspartate, GABA and taurine increased up to 37-, 30-, 96- and 31-fold, respectively, when vehicle alone was administered. Administration of CCPA did not affect the changes in regional blood flow during ischemia and reperfusion. Perfusion of CCPA (100 microM), however, significantly attenuated the ischemia-evoked release of aspartate (by 70%) and glutamate (by 73%). The ischemia-induced increase of GABA tended to be decreased by CCPA, although it was not statistically significant. In contrast, both low and high concentrations of CCPA had little effect on the release of taurine during ischemia. These results suggest that stimulation of adenosine A1 receptors selectively attenuated the ischemia-evoked release of excitatory amino acids, but not of inhibitory amino acids without affecting blood flow. This modulation of the release of amino acids by adenosine A1 receptor agonists may play a protective role against ischemic neuronal damage.

  9. Comparison of alkali treatments for efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith.

    PubMed

    Jiang, Kankan; Li, Lulu; Long, Liangkun; Ding, Shaojun

    2016-05-01

    Two separate temperature and time ranges were respectively conducted for optimizing release of p-coumaric acid and enzymatic saccharification of sorghum pith by NaOH pretreatment using response surface methodology. Two desirable pretreatment conditions were selected as follows: 37°C, 2% NaOH and 12h, and 100°C, 1.75% NaOH and 37min in the low and high temperature ranges, respectively. Under these conditions, the enzymatic glucose yields were 85.6% and 90.4% respectively, whereas p-coumaric acid yields were 95.1% and 98.1% respectively. The final recovery of esterified p-coumaric acid reached 82.8% and 87.4% respectively after further separation with HP-20 resin. Interestingly, strong linear correlations exist between p-coumaric acid release with glucan saccharification yield and lignin dissolution. These results indicate that sorghum pith could be an attractive source for natural p-coumaric acid and efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith can be achieved by mild NaOH pretreatment.

  10. Controlled release camptothecin tablets based on pluronic and poly(acrylic acid) copolymer. Effect of fabrication technique on drug stability, tablet structure, and release mode.

    PubMed

    Bromberg, Lev; Hatton, T Alan; Barreiro-Iglesias, Rafael; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2007-06-01

    Poly(ethylene oxide)-b-poly(propylene oxide)-b-(polyethylene oxide)-g-poly(acrylic acid), a graft-comb copolymer of Pluronic 127 and poly(acrylic acid) (Pluronic-PAA), was explored as an excipient for tablet dosage form of camptothecin (CPT). The tablets were prepared by either direct compression of the drug-polymer physical blend, suspension in ethanol followed by evaporation, or compression after kneading and characterized with respect to their physical structures, drug stability, and release behavior. Porosity and water uptake rate were strongly dependent on the fabrication procedure, ranking in the order: direct compression of physical blend > compression after suspension/evaporation in ethanol > compression after kneading. Tablets prepared by compression of physical blends swelled in water with a rapid surface gel layer formation that impeded swelling and disintegration of the tablets core. These tablets were able to sustain the CPT release for a period of time longer than those observed with the tablets made by either suspension/evaporation or kneading, which disintegrated within a few minutes. Despite the tablet disintegration, the CPT release was impeded for at least 6 hr, which was attributed to the ability of the Pluronic-PAA copolymers to form micellar aggregates at the hydrated surface of the particles. Physical mixing did not alter the fraction of CPT being in the pharmaceutically active lactone form, whilst the preparation of the tablets by the other two methods caused a significant reduction in the lactone form content. Tablets prepared from the physical blends demonstrated CPT release rates increasing with the pH due to the PAA ionization leading to the increase in the rate and extent of the tablet swelling. The results obtained demonstrate the potential of the Pluronic-PAA copolymers for the oral administration of chemotherapeutic agents.

  11. Preparation and characterization of 1-naphthylacetic acid-silica conjugated nanospheres for enhancement of controlled-release performance

    NASA Astrophysics Data System (ADS)

    Ao, Mingming; Zhu, Yuncong; He, Shun; Li, Deguang; Li, Pingliang; Li, Jianqiang; Cao, Yongsong

    2013-01-01

    Chemical pesticides have been widely used to increase the yield and quality of agricultural products as they are efficient, effective, and easy to apply. However, the rapid degradation and low utilization ratio of conventional pesticides has led to environmental pollution and resource waste. Nano-sized controlled-release formulations (CRFs) can provide better penetration through the plant cuticle and deliver the active ingredients efficiently to the targeted tissue. In this paper we reported novel conjugated nanospheres derived from 1-naphthylacetic acid (NNA), 3-aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate and their application as a controlled-release plant growth regulator. The NNA and APTES conjugate was prepared through a covalent cross-linking reaction and subsequent hydrolyzation and polycondensation to synthesize NNA-silica nanospheres. The release data indicated that the release of NNA was by non-Fickian transport and increased as particle size decreased. It was also found that the acidity-alkalinity was enhanced and as the temperature increased, the release of the active ingredient was faster. The nanoconjugate displayed a better efficacy in promoting root formation than NNA technical. The present study provides a novel synthesis route for CRFs comprising a pesticide, with long-duration sustained-release performance and good environmental compatibility. This method may be extended to other pesticides that possess a carboxyl group.

  12. Radiation Synthesis of Poly(Starch/Acrylic acid) pH Sensitive Hydrogel for Rutin Controlled Release.

    PubMed

    Abdel Ghaffar, A M; Radwan, Rasha R; Ali, H E

    2016-11-01

    The copolymerization of starch with acrylic acid AAc using direct gamma radiation technique was performed. The effect of AAc concentrations on the gel (%) and swelling behavior were investigated. It is found that as AAc concentrations increase both gel(%) and swelling behavior increase. The Poly(starch/acrylic acid) (1:10wt%) hydrogel were selected due to its high swelling properties. From the in-vitro release study of the rutin-loaded hydrogel it is observed that it is strong pH-dependent release behavior, thus offering a maximum release as pH increased. The dextran sulphate sodium (DSS)-induced rat colitis model was treated with rutin-loaded Poly(starch/acrylic acid) (1:10wt%) hydrogel and free rutin solution by oral administration. Colitic control group showed a significant elevation in colon/body weight ratio, myeloperoxgidase activity, tumor necrosis factor, nitric oxide and malondialdehyde levels. However, glutathione level was reduced. It was found that the rutin-loaded hydrogel was more efficient than free rutin as evidenced by improvement of all measured parameters. These effects were confirmed histopathologically and may be attributed to its ability to control delivery of rutin to colon with minor early release of rutin before colon. The Poly(starch/acrylic acid) (1:10wt%) can represent a pivotal anti-inflammatory approach for patients with inflammatory bowel disease in order to increase efficacy and reduce toxicity.

  13. Increased plasma ammonia may inhibit cellular release of branched-chain amino acids in systemic portal encephalopathy.

    PubMed

    Jahn, H A; Schohn, D C; Koehl, C; Schmitt, R L

    1983-12-01

    Plasma amino acid patterns were determined before and after hemofiltration (HF) and hemodialysis (HD) in 6 patients with portal systemic encephalopathy (PSE) and compared with the plasma AA patterns of 16 patients with chronic renal failure (CRF) treated either by HF or HD. The branched-chain amino acids (BCAA) increased paradoxically in PSE patients during HF but not with HD. There were no differences in BCAA's with HF as compared to HD in the CRF patients. The amount of amino acids lost was the same with both treatment modalities and in both patient groups. Much of the amino acids lost were released from the intracellular space. The BCAA release was significantly higher in PSE patients during HF. No correlation was found between plasma insulin, glucagon, and cortisol levels and BCAA release. An inverse correlation was found between the amount of BCAA's released from the intracellular space and the plasma ammonia levels. It is suggested that a selective cellular transport mechanism for BCAA exists which is inhibited by high plasma ammonia levels in PSE.

  14. Poly-(L-lactic acid) and citric acid-crosslinked gelatin composite matrices as a drug-eluting stent coating material with endothelialization, antithrombogenic, and drug release properties.

    PubMed

    Inoue, Motoki; Sasaki, Makoto; Katada, Yasuyuki; Fujiu, Katsuhito; Manabe, Ichiro; Nagai, Ryozo; Taguchi, Tetsushi

    2013-07-01

    Biodegradable composite matrices comprising poly-(L-lactic acid) (PLLA) and citric acid-crosslinked alkali-treated gelatin (AlGelatin) with endothelialization, antithrombogenic, and drug release properties were prepared. The characterization of composite matrices with various mixing ratios was performed by evaluating their swelling ratio, endothelial cell culture, antithrombogenic tests, and drug release behavior. Tamibarotene (Am80), which specifically inhibits smooth muscle cell proliferation, was employed as the drug. The swelling ratio of composite matrices decreased as the PLLA content decreased. The number of endothelial cells cultured on the surfaces of composite matrices was maximal at the PLLA/AlGelatin-TSC ratio of 80/20. Antithrombogenic tests revealed that the levels of platelets and fibrin network formation decreased as the AlGelatin-TSC content increased. The Am80 release test indicated that the release rate decreased as PLLA content increased. Using the resulting composite matrix, Am80-eluting stents possessing a smooth surface and a coating thickness of ∼15 μm were successfully obtained. Am80 was continuously released from the resulting stent at ∼40%, up to 28 days without burst release. Therefore, Am80-eluting stent with its antithrombogenic and endothelialization properties has great potential for clinical use.

  15. Release of triamcinolone acetonide from mucoadhesive polymer composed of chitosan and poly(acrylic acid) in vitro.

    PubMed

    Ahn, Jae-Soon; Choi, Hoo-Kyun; Chun, Myong-Kwan; Ryu, Jei-Man; Jung, Jae-Hee; Kim, Yue-Un; Cho, Chong-Su

    2002-03-01

    Transmucosal drug delivery (TMD) system using mucoadhesive polymer has been recently interested due to the rapid onset of action, high blood level, avoidance of the first-pass effect and the exposure of the drug to the gastrointestinal tract. A novel mucoadhesive polymer complex composed of chitosan and poly(acrylic acid) (PAA) was prepared by template polymerization of acrylic acid in the presence of chitosan for the TMD system. Triamcinolone acetonide (TAA) was loaded into the chitosan/PAA polymer complex film. TAA was evenly dispersed in chitosan, PAA polymer complex film without interaction with polymer complex. Release behavior of TAA from the mucoadhesive polymer film was dependent on time, pH, loading content of drug, and chitosan PAA ratio. The analysis of the drug release from the mucoadhesive film showed that TAA might be released from the chitosan/PAA polymer complex film through non-Fickian diffusion mechanism.

  16. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    PubMed Central

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  17. Peptides released from acid goat whey by a yeast-lactobacillus association isolated from cheese microflora.

    PubMed

    Didelot, Sandrine; Bordenave-Juchereau, Stephanie; Rosenfeld, Eric; Piot, Jean-Marie; Sannier, Frederic

    2006-05-01

    Seven lactobacilli and a variety of microflora extracted from twenty five commercial cheeses were grown on unsupplemented acid goat whey and screened for their capacity to hydrolyse whey proteins [alpha-lactalbumin (alpha-la) and beta-lactoglobulin (beta-lg)] and to generate peptides. Fermentations were performed aerobically or anaerobically at 37 degrees C using crude or pre-heated whey (10 min at 65, 75 or 85 degrees C). Under aerobic conditions, growth of lactobacilli was poor and protein hydrolysis did not occur. Anaerobic conditions slightly increased lactobacilli growth but neither beta-lg hydrolysis nor peptide generation were observed. More than 50% of alpha-la was digested into a truncated form of alpha-la (+/- 12 kDa) in crude whey and whey pre-heated at 65 degrees C. Twenty-five microflora extracted from raw milk cheeses were screened for their proteolytic activities on acid goat whey under the conditions previously described. Eight of them were able to hydrolyse up to 50% of alpha-la mainly during aerobic growth on crude or pre-heated whey. The corresponding hydrolysates were enriched in peptides. The hydrolysate involving microflora extracted from Comté cheese after or at 18 months ripening was the only one to exhibit hydrolysis of both alpha-la and beta-lg. Microbiological analysis showed that microorganisms originating from Comté cheese and capable of growth on unsupplemented whey consisted of Candida parapsilosis and Lactobacillus paracasei. Fermentation kinetic profiles suggested that peptides were released from alpha-la hydrolysis. The co-culture of both microorganisms was required for alpha-la hydrolysis that occurred concomitantly with the pH decrease. During whey fermentation, Cand. parapsilosis excrete at least one protease responsible for alpha-la hydrolysis, and Lb. paracasei is responsible for medium acidification that is required for protease activation.

  18. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines.

    PubMed

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  19. Saturated fatty acids activate caspase-4/5 in human monocytes, triggering IL-1β and IL-18 release.

    PubMed

    Pillon, Nicolas J; Chan, Kenny L; Zhang, Shitian; Mejdani, Marios; Jacobson, Maya R; Ducos, Alexandre; Bilan, Philip J; Niu, Wenyan; Klip, Amira

    2016-11-01

    Obesity is associated with metabolic tissue infiltration by monocyte-derived macrophages. Saturated fatty acids contribute to proinflammatory gene induction in tissue-embedded immune cells. However, it is unknown how circulating monocytes, the macrophage precursors, react to high-fat environments. In macrophages, saturated fatty acids activate inflammatory pathways and, notably, prime caspase-associated inflammasomes. Inflammasome-activated IL-1β contributes to type 2 diabetes. We hypothesized that 1) human monocytes from obese patients show caspase activation, and 2) fatty acids trigger this response and consequent release of IL-1β/IL-18. Human peripheral blood monocytes were sorted by flow cytometry, and caspase activity was measured with a FLICA dye-based assay. Blood monocytes from obese individuals exhibited elevated caspase activity. To explore the nature and consequence of this activity, human THP1 monocytes were exposed to saturated or unsaturated fatty acids. Caspase activity was revealed by isoform-specific cleavage and enzymatic activity; cytokine expression/release was measured by qPCR and ELISA. Palmitate, but not palmitoleate, increased caspase activity in parallel to the release of IL-1β and IL-18. Palmitate induced eventual monocyte cell death with features of pyroptosis (an inflammation-linked cell death program involving caspase-4/5), scored through LDH release, vital dye influx, cell volume changes, and nuclear morphology. Notably, selective gene silencing or inhibition of caspase-4/5 reduced palmitate-induced release of IL-1β and IL-18. In summary, monocytes from obese individuals present elevated caspase activity. Mechanistically, palmitate activates a pyroptotic program in monocytes through caspase-4/5, causing inflammatory cytokine release, additional to inflammasomes. These caspases represent potential, novel, therapeutic targets to taper obesity-associated inflammation.

  20. Hyaluronic acid scaffold for skin defects in congenital syndactyly release surgery: a novel technique based on the regenerative model.

    PubMed

    Landi, A; Garagnani, L; Leti Acciaro, A; Lando, M; Ozben, H; Gagliano, M C

    2014-11-01

    Syndactyly release may require skin grafting to fill the skin defects, which might lead to complications or poor cosmetic outcomes. A simple graftless technique for syndactyly release with a hyaluronic acid (HA) scaffold used to cover the bare areas is described. Between 2008 and 2011, release of 26 webs in 23 patients was performed. All skin defects were covered with Hyalomatrix(®) PA. One patient was excluded due to early post-operative infection that required HA scaffold removal before its integration. Web creep, secondary deformities, scar quality, and patient and parental satisfaction were assessed. Mean follow-up of the group of 22 patients was 24 months. There were no secondary deformities and minimal degree of web creep. All patients had close to normal pigmentation and good pliability at the sites of scaffold application. The results confirm the use of a HA scaffold as a promising alternative to skin grafting in syndactyly release surgery.

  1. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    PubMed Central

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  2. Uptake and release of adrenal ascorbic acid in the guinea pig after injection of ACTH

    SciTech Connect

    Kipp, D.E.; Rivers, J.M.

    1987-09-01

    The effect of a single injection of ACTH (3 IU/100 g body weight) on the distribution of ascorbic acid (AA) and radiolabeled AA in 20 tissues was studied in adult male guinea pigs consuming 500 mg AA/kg diet. Saline- or ACTH-injected animals were simultaneously injected with (1-/sup 14/C)AA, and killed at 0.5, 1, 2, 4 and 6 h after injection. There was no significant difference between treatments in the weight of any tissue over the 6-h experimental period. As anticipated, the concentration of AA in the adrenals of animals injected with ACTH was 33% of that of animals injected with saline at 4 h. Unexpectedly, the concentration of radiolabeled AA in the adrenals at 0.5 h after ACTH injection was 172% of that after saline injection. The concentration of radiolabeled AA in the adrenal of the saline-injected animals increased slowly over time to reach a level similar to that of ACTH-injected animals by 6 h. There was no effect of ACTH on the level of AA or uptake in any of the other tissues examined. These results demonstrate that a single dose of ACTH markedly influences the retention of AA in the adrenal gland without similarly altering retention of AA in other tissues. Furthermore, ACTH treatment causes both accelerated uptake and release of AA into the adrenals.

  3. Dynamic modeling of in vitro lipid digestion: individual fatty acid release and bioaccessibility kinetics.

    PubMed

    Giang, T M; Gaucel, S; Brestaz, P; Anton, M; Meynier, A; Trelea, I C; Le Feunteun, S

    2016-03-01

    The aim of this study was to gain knowledge about the role of triacylglycerol (TAG) composition in fatty acids (FA) of o/w emulsions on both the pancreatic lipolysis kinetics and the bioaccessibility of released products (i.e. contained within the bile salt micellar phase). A mathematical model was developed and its predictions were compared to a set of experimental data obtained during an in vitro digestion of a whey protein stabilized emulsion. Modeling results show that FA residues of TAG were hydrolyzed at specific rates, inducing different bioaccessibility kinetics. The estimated lipolysis rate constants of the studied FA (C8:0, C10:0≫C18:1 n-9≫C12:0>C14:0>C16:0≈C16:1 n-7>C22:6 n-3) were in close agreement with the available literature on the substrate specificity of pancreatic lipase. Results also suggest that lipolysis products are very rapidly solubilized in the bile salt mixed micelles with no fractionation according to the FA carbon chain.

  4. Macroporous chitosan hydrogels: Effects of sulfur on the loading and release behaviour of amino acid-based compounds.

    PubMed

    Elviri, Lisa; Asadzadeh, Maliheh; Cucinelli, Roberta; Bianchera, Annalisa; Bettini, Ruggero

    2015-11-05

    Chitosan is a biodegradable, biocompatible polymer of natural origin widely applied to the preparation of functional hydrogels suitable for controlled release of drugs, peptides and proteins. Non-covalent interactions, expecially ionic interactions, are the main driver of the loading and release behaviour of amino acids or peptides from chitosan hydrogels. With the aim to improve the understanding of the mechanisms governing the behaviour of chitosan hydrogels on peptide uptake and delivery, in this paper the attention was focused on the role played by sulfur on the interactions of chitosan hydrogels with sulfur-containing amino acids (AA) and peptides. Hence, loading and release experiments on cysteine, cystine and glutathione (SH containing amino acid, dipeptide and tripeptide, respectively) as well as on glycine and valine as apolar amino acids were carried out. For these puroses, chitosan hydrogels were prepared in an easy and reproducible manner by a freeze-gelation process on a poly-L-lysine coated support. The hydrogel surface pore size, uniformity and distribution were tested. Optimal results (D50 = 26 ± 4 μm) were obtained by using the poly-L-lysine positively-charged surface. The loading results gathered evidenced that the sulfur-containing molecules presented an increased absorption both in terms of rate and extent by chitosan hydrogels with respect to nonpolar amino acids, mainly due to ionic and hydrogen bond interactions. ATR-FTIR analysis carried out on chitosan hydrogels, with and without the AA related compounds to study putative interactions, supported these apparent sulfur-dependent results. Finally, chitosan hydrogels displayed excellent retention capabilities (AA release <5%) for all AA, strongly supporting the use of chitosan hydrogels as matrix for controlled drug release.

  5. [Effects of several low-molecular-weight organic acids on the release kinetic of endosulfan from red soil].

    PubMed

    Zhao, Zhen-hua; Wu, Yu; Jiang, Xin; Xia, Li-ling; Ni, Li-xiao

    2009-10-15

    The kinetic release behaviors of a-endosulfan from red soil with three kinds of low-molecular-weight organic acids (LMWOA: oxalate, tartrate and citrate) solution and water leaching were investigated by kinetic device designed by ourselves and batch method. The results show that: the release percentage of endosulfan from red soil by tartrate and citrate solution (10 mmol/L) can increase by 7%-18% more than that by distilled water and oxalate solution, especially for tartrate solution. There is no significant difference between distilled water and oxalate solution for the release percentage of endosulfan (p > 0.05). There are two stages of quick and slow for the release of endosulfan from red soil, and the leaching speed is quicker especially for the initial 200 mL leaching solution. When using distilled water or oxalate solution as leaching solution, the best equations that described the kinetic release behavior of endosulfan from red soil were parabola diffuse equation and double constant equation, and weren't the apparent first dynamics equation that represented the simple surface diffusion mechanism. The kinetic release behavior of endosulfan in tartrate or citrate leaching system can be described by Elovich equation (R2 > 0.99, p < 0.0001), it implied that the simple surface diffusion mechanism is not the primary factor that effected the release of endosulfan, which three-dimensional molecule structure is complex, from red soil in aqueous phase leaching systems, and it maybe related to the outward diffuse mechanism from soil particle, activation and deactivation function of soil particles surface, the dissolution of soil mineral surface and structure change of inherent organic matter that coating onto the soil mineral surface induced by LMW organic acid. It suggested that the tartrate and citrate induced the complication of the release mechanisms of the pesticides from red soil.

  6. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012.

    PubMed

    Li, Li; Zhai, Zihan; Liu, Jianguo; Hu, Jianxin

    2015-06-01

    China has been documented as one of the few remaining producers of perfluorooctanoic acid and its salts (PFOA/PFO) and the world's major contamination hotspot. However, limited information has been available for evaluating their environmental releases in China and the contribution to global PFOA/PFO burden. Here we present the first source-specific inventory for environmental releases of PFOA/PFO in China from 2004 to 2012, using a bottom-up approach for industrial sources and an inverse approach for domestic sources. Our results show that China became the current world's largest PFOA/PFO emitter, with cumulative environmental releases reaching 250tonnes (t) over the period of nine years. The eastern region was identified as the hotspot of environmental releases. Most of the national environmental releases were due to the activities of the fluorochemical industry (94.0%) rather than domestic use of PFOA/PFO-related consumer products (6.0%). Fluoropolymer manufacturing and processing, a dominating industrial source, contributed 83.7% of the national environmental releases. In contrast to the general decline trends in annual industrial environmental releases of PFOA/PFO in most industrialized countries, the trend increased in China because of the expansion of production as a result of the global geographical transition in fluorochemical industry. Based on these results, we recommend that the future reduction options are required in industrial sector in China.

  7. Preparation and pH controlled release of polyelectrolyte complex of poly(L-malic acid-co-D,L-lactic acid) and chitosan.

    PubMed

    Wang, Jie; Ni, Caihua; Zhang, Yanan; Zhang, Meng; Li, Wang; Yao, Bolong; Zhang, Liping

    2014-03-01

    The copolymer of poly(L-malic acid-co-D,L-lactic acid) (PML) was synthesized through a direct polycondensation of L-malic acid (MA) and D,L-lactic acid (LA). Then, a new polyelectrolyte complex (PEC) based on the complexation between the copolymer (PML) and chitosan (CS) was prepared. The PEC formed stable nano particles in aqueous solutions with pH 3-5, and the nano particles had the diameters in a range of 316-590 nm (varied with the components of PML and CS). Doxorubicin (DOX) as a model drug was loaded on the nano particles through the physical adsorption and complexation, and part of DOX formed the secondary particles by self-aggregation. The high drug loading efficiency (16.5%) and the sustained release patterns in acidic media were observed, and the release accelerated in alkaline solutions. The nano particles could be potentially applied as pH sensitive drug vehicles for controlled release.

  8. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization.

    PubMed

    Battig, Mark R; Soontornworajit, Boonchoy; Wang, Yong

    2012-08-01

    Polymeric delivery systems have been extensively studied to achieve localized and controlled release of protein drugs. However, it is still challenging to control the release of multiple protein drugs in distinct stages according to the progress of disease or treatment. This study successfully demonstrates that multiple protein drugs can be released from aptamer-functionalized hydrogels with adjustable release rates at predetermined time points using complementary sequences (CSs) as biomolecular triggers. Because both aptamer-protein interactions and aptamer-CS hybridization are sequence-specific, aptamer-functionalized hydrogels constitute a promising polymeric delivery system for the programmable release of multiple protein drugs to treat complex human diseases.

  9. Regulation of an ATP-conductive large-conductance anion channel and swelling-induced ATP release by arachidonic acid

    PubMed Central

    Dutta, Amal K; Okada, Yasunobu; Sabirov, Ravshan Z

    2002-01-01

    Mouse mammary C127 cells responded to hypotonic stimulation with activation of the volume-dependent ATP-conductive large conductance (VDACL) anion channel and massive release of ATP. Arachidonic acid downregulated both VDACL currents and swelling-induced ATP release in the physiological concentration range with Kd of 4– 6 μm. The former effect observed in the whole-cell or excised patch mode was more prominent than the latter effect observed in intact cells. The arachidonate effects were direct and not mediated by downstream metabolic products, as evidenced by their insensitivity to inhibitors of arachidonate-metabolizing oxygenases, and by the observation that they were mimicked by cis-unsaturated fatty acids, which are not substrates for oxygenases. A membrane-impermeable analogue, arachidonyl coenzyme A was effective only from the cytosolic side of membrane patches suggesting that the binding site is localized intracellularly. Non-charged arachidonate analogues as well as trans-unsaturated and saturated fatty acids had no effect on VDACL currents and ATP release, indicating the importance of arachidonate's negative charge and specific hydrocarbon chain conformation in the inhibitory effect. VDACL anion channels were inhibited by arachidonic acid in two different ways: channel shutdown (Kd of 4– 5 μm) and reduced unitary conductance (Kd of 13–14 μm) without affecting voltage dependence of open probability. ATP4--conducting inward currents measured in the presence of 100 mm ATP in the bath were reversibly inhibited by arachidonic acid. Thus, we conclude that swelling-induced ATP release and its putative pathway, the VDACL anion channel, are under a negative control by intracellular arachidonic acid signalling in mammary C127 cells. PMID:12154180

  10. Functional specificity of amino acid at position 246 in the tRNA mimicry domain of bacterial release factor 2.

    PubMed

    Uno, M; Ito, K; Nakamura, Y

    1996-01-01

    The termination of protein synthesis in bacteria requires codon-specific polypeptide release factors RF-1 (UAG/UAA specific) and RF-2 (UGA/UAA specific). We have proposed that release factors mimic tRNA and recognize the stop codon for polypeptide release (Nakamura et al (1996) Cell 87, 147-150). In contrast to the textbook view, genetic experiments have indicated that Escherichia coli RF-2 terminates translation very weakly at UAA while Salmonella RF-2 decodes this signal efficiently. Moreover, an excess of E coli RF-2 was toxic to cells while an excess of Salmonella RF-2 was not. These two RF-2 proteins are identical except for 16 out of 365 amino acids. Fragment swap experiments and site-directed mutagenesis revealed that a residue at position 246 is solely responsible for these two phenotypes. Upon substituting Ala (equivalent to Salmonella RF-2) for Thr-246 of E coli RF-2, the protein acquired increased release activity for UAA as well as for UGA. These results led us to conclude that E coli RF-2 activity is potentially weak and that the amino acid at position 246 plays a crucial role, not for codon discrimination, but for stop codon recognition or polypeptide release, presumably constituting an essential moiety of tRNA mimicry or interacting with peptidyltransferase centers of the ribosome.

  11. Stimulation of [3H] GABA and beta-[3H] alanine release from rat brain slices by cis-4-aminocrotonic acid.

    PubMed

    Chebib, M; Johnston, G A

    1997-02-01

    cis-4-Aminocrotonic acid (CACA; 100 microM), an analogue of GABA in a folded conformation, stimulated the passive release of [3H] GABA from slices of rat cerebellum, cerebral cortex, retina, and spinal cord and of beta-[3H]alanine from slices of cerebellum and spinal cord without influencing potassium-evoked release. In contrast, CACA (100 microM) did not stimulate the passive release of [3H]taurine from slices of cerebellum and spinal cord or of D-[3H]aspartate from slices of cerebellum and did not influence potassium-evoked release of [3H]-taurine from the cerebellum and spinal cord and D-[3H]-aspartate from the cerebellum. These results suggest that the effects of CACA on GABA and beta-alanine release are due to CACA acting as a substrate for a beta-alanine-sensitive GABA transport system, consistent with CACA inhibiting the uptake of beta-[3H]alanine into slices of rat cerebellum and cerebral cortex. The observed Ki for CACA against beta-[3H]alanine uptake in the cerebellum was 750 +/- 60 microM. CACA appears to be 10-fold weaker as a substrate for the transporter system than as an agonist for the GABAc receptor. The effects of CACA on GABA and beta-alanine release provide indirect evidence for a GABA transporter in cerebellum, cerebral cortex, retina, and spinal cord that transports GABA, beta-alanine, CACA, and nipecotic acid that has a similar pharmacological profile to that of the GABA transporter, GAT-3, cloned from rat CNS. The structural similarities of GABA, beta-alanine, CACA, and nipecotic acid are demonstrated by computer-aided molecular modeling, providing information on the possible conformations of these substances being transported by a common carrier protein.

  12. Mechanistic studies on the degradation and protein release characteristics of poly(lactic-co-glycolic-co-hydroxymethylglycolic acid) nanospheres.

    PubMed

    Samadi, N; van Nostrum, C F; Vermonden, T; Amidi, M; Hennink, W E

    2013-04-08

    The purpose of this study was to gain mechanistic insights into the effect of different formulation parameters on the degradation and release behavior of protein-loaded nanoparticulate carrier systems based on an aliphatic polyester with pendant hydroxyl groups, poly(lactic-co-glycolic-hydroxymethyl glycolic acid) (pLGHMGA). Bovine serum albumin (BSA) was used as a model protein. BSA-loaded pLGHMGA nanospheres of 400-700 nm were prepared using a solvent evaporation method using pLGHMGA of different molecular weights and different compositions. Also, the concentration of pLGHMGA in the organic phase was varied. The nanospheres showed a continuous mass loss accompanied by continuous decrease in number average molecular weight, which indicates that the degradation of the nanospheres is by bulk degradation with a rapid release of water-soluble low molecular weight fragments. On the basis of NMR analysis, it is concluded that intramolecular transesterification precedes extensive hydrolysis of the polymer and degradation of the nanospheres. BSA-loaded freeze-dried nanospheres showed a significant burst release of 40-50% of the BSA loading. In contrast, nonfreeze-dried samples showed a small burst of around 10-20%, indicating that freeze-drying induced pore formation. Nonlyophilized nanospheres prepared from pLGHMGA with 64/18/18 lactic/glycolic/hydroxymethylglycolic acid (L/G/HMG) ratio showed a relatively fast release of BSA for the next 30 days. Nanospheres prepared from a more hydrophobic pLGHMGA (74/13/13, L/G/HMG) showed a two-phase release. Circular dichroism analysis showed that the secondary structure of the released protein was preserved. This study shows a correlation between release behavior and particle erosion rate, which can be modulated by the copolymer composition.

  13. Rapid Trimming of Cell Surface Polysialic Acid (PolySia) by Exovesicular Sialidase Triggers Release of Preexisting Surface Neurotrophin.

    PubMed

    Sumida, Mizuki; Hane, Masaya; Yabe, Uichiro; Shimoda, Yasushi; Pearce, Oliver M T; Kiso, Makoto; Miyagi, Taeko; Sawada, Makoto; Varki, Ajit; Kitajima, Ken; Sato, Chihiro

    2015-05-22

    As acidic glycocalyx on primary mouse microglial cells and a mouse microglial cell line Ra2, expression of polysialic acid (polySia/PSA), a polymer of the sialic acid Neu5Ac (N-acetylneuraminic acid), was demonstrated. PolySia is known to modulate cell adhesion, migration, and localization of neurotrophins mainly on neural cells. PolySia on Ra2 cells disappeared very rapidly after an inflammatory stimulus. Results of knockdown and inhibitor studies indicated that rapid surface clearance of polySia was achieved by secretion of endogenous sialidase Neu1 as an exovesicular component. Neu1-mediated polySia turnover was accompanied by the release of brain-derived neurotrophic factor normally retained by polySia molecules. Introduction of a single oxygen atom change into polySia by exogenous feeding of the non-neural sialic acid Neu5Gc (N-glycolylneuraminic acid) caused resistance to Neu1-induced polySia turnover and also inhibited the associated release of brain-derived neurotrophic factor. These results indicate the importance of rapid turnover of the polySia glycocalyx by exovesicular sialidases in neurotrophin regulation.

  14. Wheat bran promotes enrichment within the human colonic microbiota of butyrate‐producing bacteria that release ferulic acid

    PubMed Central

    Duncan, Sylvia H.; Russell, Wendy R.; Quartieri, Andrea; Rossi, Maddalena; Parkhill, Julian; Flint, Harry J.

    2016-01-01

    Summary Cereal fibres such as wheat bran are considered to offer human health benefits via their impact on the intestinal microbiota. We show here by 16S rRNA gene‐based community analysis that providing amylase‐pretreated wheat bran as the sole added energy source to human intestinal microbial communities in anaerobic fermentors leads to the selective and progressive enrichment of a small number of bacterial species. In particular, OTUs corresponding to uncultured Lachnospiraceae (Firmicutes) related to E ubacterium xylanophilum and B utyrivibrio spp. were strongly enriched (by five to 160 fold) over 48 h in four independent experiments performed with different faecal inocula, while nine other Firmicutes OTUs showed > 5‐fold enrichment in at least one experiment. Ferulic acid was released from the wheat bran during degradation but was rapidly converted to phenylpropionic acid derivatives via hydrogenation, demethylation and dehydroxylation to give metabolites that are detected in human faecal samples. Pure culture work using bacterial isolates related to the enriched OTUs, including several butyrate‐producers, demonstrated that the strains caused substrate weight loss and released ferulic acid, but with limited further conversion. We conclude that breakdown of wheat bran involves specialist primary degraders while the conversion of released ferulic acid is likely to involve a multi‐species pathway. PMID:26636660

  15. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    PubMed Central

    Siddiqui, Nabil A.; Billa, Nashiru; Roberts, Clive J.; Asantewaa Osei, Yaa

    2016-01-01

    Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes. PMID:27740594

  16. A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks

    PubMed Central

    Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M.

    2016-01-01

    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover. PMID:27438600

  17. TCF2 attenuates FFA-induced damage in islet β-cells by regulating production of insulin and ROS.

    PubMed

    Quan, Xiaojuan; Zhang, Lin; Li, Yingna; Liang, Chunlian

    2014-07-30

    Free fatty acids (FFAs) are cytotoxic to pancreatic islet β-cells and play a crucial role in the diabetes disease process. A recent study revealed a down-regulation of transcription factor 2 (TCF2) levels during FFA-mediated cytotoxicity in pancreatic β-cells. However, its function during this process and the underlying mechanism remains unclear. In this study, treatment with palmitic acid (PA) at high levels (400 and 800 μM) decreased β-cell viability and TCF2 protein expression, along with the glucose-stimulated insulin secretion (GSIS). Western and RT-PCR analysis confirmed the positive regulatory effect of TCF2 on GSIS through promotion of the key regulators pancreatic duodenal homeobox-1 (PDX1) and glucose transporter 2 (GLUT2) in β-cells. In addition, both PI3K/AKT and MEK/ERK showed decreased expression in PA (800 μM)-treated β-cells. Overexpression of TCF2 could effectively restore the inhibitory effect of PA on the activation of PI3K/AKT and MEK/ERK as well as β-cell viability, simultaneously, inhibited PA-induced reactive oxygen species (ROS) generation. After blocking the PI3K/AKT and MAPK/ERK signals with their specific inhibitor, the effect of overexpressed TCF2 on β-cell viability and ROS production was obviously attenuated. Furthermore, a protective effect of TCF2 on GSIS by positive modulation of JNK-PDX1/GLUT2 signaling was also confirmed. Accordingly, our study has confirmed that TCF2 positively modulates insulin secretion and further inhibits ROS generation via the PI3K/AKT and MEK/ERK signaling pathways. Our work may provide a new therapeutic target to achieve prevention and treatment of diabetes.

  18. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    NASA Astrophysics Data System (ADS)

    Sperber, C. v.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-03-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields plant available inorganic phosphate (Pi) and less phosphorylated inositol derivates as products. The hydrolysis of organic P-compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as substrate were prepared. During the hydrolysis of IP6 by phytase, four Pi are released, and one oxygen atom from water is incorporated into each Pi. This incorporation of oxygen from water into Pi is subject to an apparent inverse isotopic fractionation (ϵ ∼ 6 to 10‰), which is similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ∼ 7‰) where less than three Pi are released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ∼ -12‰), again similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ɛ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking substrate-dependency of

  19. The oxygen isotope composition of phosphate released from phytic acid by the activity of wheat and Aspergillus niger phytase

    NASA Astrophysics Data System (ADS)

    von Sperber, C.; Tamburini, F.; Brunner, B.; Bernasconi, S. M.; Frossard, E.

    2015-07-01

    Phosphorus (P) is an essential nutrient for living organisms. Under P-limiting conditions plants and microorganisms can exude extracellular phosphatases that release inorganic phosphate (Pi) from organic phosphorus compounds (Porg). Phytic acid (myo-inositol hexakisphosphate, IP6) is an important form of Porg in many soils. The enzymatic hydrolysis of IP6 by phytase yields available Pi and less phosphorylated inositol derivates as products. The hydrolysis of organic P compounds by phosphatases leaves an isotopic imprint on the oxygen isotope composition (δ18O) of released Pi, which might be used to trace P in the environment. This study aims at determining the effect of phytase on the oxygen isotope composition of released Pi. For this purpose, enzymatic assays with histidine acid phytases from wheat and Aspergillus niger were prepared using IP6, adenosine 5'-monophosphate (AMP) and glycerophosphate (GPO4) as substrates. For a comparison to the δ18O of Pi released by other extracellular enzymes, enzymatic assays with acid phosphatases from potato and wheat germ with IP6 as a substrate were prepared. During the hydrolysis of IP6 by phytase, four of the six Pi were released, and one oxygen atom from water was incorporated into each Pi. This incorporation of oxygen from water into Pi was subject to an apparent inverse isotopic fractionation (ϵ ~ 6 to 10 ‰), which was similar to that imparted by acid phosphatase from potato during the hydrolysis of IP6 (ϵ ~ 7 ‰), where less than three Pi were released. The incorporation of oxygen from water into Pi during the hydrolysis of AMP and GPO4 by phytase yielded a normal isotopic fractionation (ϵ ~ -12 ‰), similar to values reported for acid phosphatases from potato and wheat germ. We attribute this similarity in ϵ to the same amino acid sequence motif (RHGXRXP) at the active site of these enzymes, which leads to similar reaction mechanisms. We suggest that the striking

  20. [Effects of treatment with a composite preparation (2-chloroethylphosphonic acid and methacide) or butylated hydroxyanisole on ethylene release in apples].

    PubMed

    Chernykh, A S; Bulantseva, E A; Shaposhnikov, G L; Serebrianyĭ, A M; Protsenko, M A; Sal'kova, E G

    2004-01-01

    We studied the effect of a Russian composite preparation (2-chloroethylphosphonic acid and methacide) and butylated hydroxyanisole on ethylene release in whole fruit and peel disks of two apple cultivars, Antonovka obyknovennaya (Antonovka) and Simirenko's rennet (Simirenko). Treatment with the composite preparation was followed by an increase in ethylene release from whole apples and peel disks. The development of microbial infection (fruit rot) in whole apples became less pronounced after the treatment. Treatment of whole apples with the antioxidant butylated hydroxyanisole (BHA) increased the intensity of ethylene release during the first subsequent days; thereafter, ethylene release decreased and was 10-15% lower than in the control on days 10-12. In model experiments, BHA decreased ethylene release from apple peel disks below control levels as early as on day 1 after the treatment. Antonovka apples gave quick responses to the treatment. In the late-ripening Simirenko apples, the response persisted for a longer period. Our results suggest that treatment with physiologically active preparations affects ethylene release, ripening, and preservation of apples in storage.

  1. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid.

    PubMed

    Lubkowski, Krzysztof; Smorowska, Aleksandra; Grzmil, Barbara; Kozłowska, Agnieszka

    2015-03-18

    The preparation and characterization of a controlled-release multicomponent (NPK) fertilizer with the coating layer consisting of a biodegradable copolymer of poly(butylene succinate) and a butylene ester of dilinoleic acid (PBS/DLA) is reported. The morphology and structure of the resulting polymer-coated materials and the thickness of the covering layers were examined using X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis. The mechanical properties of these materials were determined with a strength-testing machine. Nutrient release was measured in water using spectrophotometry, potentiometry, and conductivity methods. The results of the nutrient release experiments from these polymer-coated materials were compared with the requirements for controlled-release fertilizers. A conceptual model is presented describing the mechanism of nutrient release from the materials prepared in this study. This model is based on the concentrations of mineral components inside the water-penetrated fertilizer granules, the diffusion properties of the nutrients in water, and a diffusion coefficient through the polymer layer. The experimental kinetic data on nutrient release were interpreted using the sigmoidal model equation developed in this study.

  2. Application of Nano Fe(III)-Tannic Acid Complexes in Modifying Aqueous Acrylic Latex for Controlled-Release Coated Urea.

    PubMed

    Shen, Yazhen; Du, Changwen; Zhou, Jianmin; Ma, Fei

    2017-02-08

    Acrylic latexes are valuable waterborne materials used in controlled-release fertilizers. Controlled-release urea coated with these latexes releases a large amount of nutrients, making it difficult to meet the requirement of plants. Herein, Fe(III)-tannic acid (TA) complexes were blended with acrylic latex and subsequently reassembled on a surface of polyacrylate particles. These complexes remarkably retarded the release of urea (the preliminary solubility was decreased from 22.3 to 0.8%) via decreasing the coating tackiness (Tg was increased from 4.17 to 6.42 °C), increasing the coating strength (tensile stress was improved from 3.88 to 4.45 MPa), and promoting the formation of denser structures (surface tension was decreased from 37.37 to 35.94 mN/m). Overall, our findings showed that a simple blending of Fe(III)-TA complexes with acrylic latex produces excellent coatings that delay the release of urea, which demonstrates great potential for use in controlled-release fertilizers coated with waterborne polymers.

  3. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids

    PubMed Central

    Knöös, Patrik

    2015-01-01

    A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated. PMID:26473964

  4. Niflumic acid-induced increase in potassium currents in frog motor nerve terminals: effects on transmitter release.

    PubMed

    Miralles, F; Marsal, J; Peres, J; Solsona, C

    1996-04-01

    The actions of the nonsteroidal antiinflammatory drug niflumic acid were studied on frog neuromuscular preparations by conventional electrophysiological techniques. Niflumic acid reduced the amplitude and increased the latency of endplate potentials in a concentration-dependent manner. Neuromuscular junctions pretreated with niflumic acid (0.05-0.5 mM) showed much less depression than control when they were stimulated with trains of impulses. Inhibition of acetylcholine release was reverted by raising the extracellular Ca(2+) concentration but not by simply washing out the preparations with niflumic acid-free solutions. Pretreatment with indomethacin (0.1 mM), another nonsteroidal antiinflammatory drug, did not affect the niflumic acid-induced inhibition of evoked responses. Niflumic acid (0.1 mM) did not change the amplitude of miniature endplate potentials and had a dual action on the frequency of miniatures: it decreased their frequency at 0.1 mM whereas it produced an enormous increase in the rate of spontaneous discharge at 0.5 mM. Niflumic acid (0.1 - 1 mM) reversibly increased the amplitude and affected the kinetics of presynaptic voltage-activated K+ current and Ca(2+)-activated K(+) current in a concentration-dependent manner. Niflumic acid (0.1 - 1 mM) irreversibly decreased the amplitude and reversibly affected the kinetics of the nodal Na(+) current. Indomethacin (0.1 mM) had no effect on presynaptic currents. In conclusion, niflumic acid reduces acetylcholine release by increasing presynaptic K+ currents. This may shorten the depolarizing phase of the presynaptic action potential and may reduce the entry of Ca(2+) with each impulse.

  5. Nonoxidative Free Fatty Acid Disposal Is Greater in Young Women than Men

    PubMed Central

    Koutsari, Christina; Basu, Rita; Rizza, Robert A.; Nair, K. Sreekumaran; Khosla, Sundeep

    2011-01-01

    Context: Large increases in systemic free fatty acid (FFA) availability in the absence of a corresponding increase in fatty acid oxidation can create a host of metabolic abnormalities. These adverse responses are thought to be the result of fatty acids being shunted into hepatic very low-density lipoprotein-triglyceride production and/or intracellular lipid storage and signaling pathways because tissues are forced to increase nonoxidative FFA disposal. Objective: The objective of the study was to examine whether variations in postabsorptive nonoxidative FFA disposal within the usual range predict insulin resistance and hypertriglyceridemia. Design: We measured: systemic FFA turnover using a continuous iv infusion of [9–10, 3H]palmitate; substrate oxidation with indirect calorimetry combined with urinary nitrogen excretion; whole-body and peripheral insulin sensitivity with the labeled iv glucose tolerance test minimal model. Setting: the study was conducted at the Mayo Clinic General Clinical Research Center. Participants: Participants included healthy, postabsorptive, nonobese adults (21 women and 21 men). Interventions: There were no interventions. Main Outcome Measures: Nonoxidative FFA disposal (micromoles per minute), defined as the FFA disappearance rate minus fatty acid oxidation. Results: Women had 64% greater nonoxidative FFA disposal rate than men but a better lipid profile and similar insulin sensitivity. There was no significant correlation between nonoxidative FFA disposal and whole-body sensitivity, peripheral insulin sensitivity, or fasting serum triglyceride concentrations in men or women. Conclusions: Healthy nonobese women have greater rates of nonoxidative FFA disposal than men, but this does not appear to relate to adverse health consequences. Understanding the sex-specific interaction between adipose tissue lipolysis and peripheral FFA removal will help to discover new approaches to treat FFA-induced abnormalities. PMID:21123445

  6. Yeast acetic acid-induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1.

    PubMed

    Guaragnella, Nicoletta; Bobba, Antonella; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2010-01-04

    To investigate the role of cytochrome c (cyt c) release in yeast acetic acid-induced programmed cell death (AA-PCD), wild type (wt) and cells lacking metacaspase (Deltayca1), cytochrome c (Deltacyc1,7) and both (Deltacyc1,7Deltayca1) were compared for AA-PCD occurrence, hydrogen peroxide (H(2)O(2)) production and caspase activity. AA-PCD occurs in Deltacyc1,7 and Deltacyc1,7Deltayca1 cells slower than in wt, but similar to that in Deltayca1 cells, in which no cytochrome c release occurs. Both H(2)O(2) production and caspase activation occur in these cells with early and extra-activation in Deltacyc1,7 cells. We conclude that alternative death pathways can be activated in yeast AA-PCD, one dependent on cyt c release, which requires YCA1, and the other(s) independent on it.

  7. Decapeptides as effective agonists from L-amino acids biologically equivalent to the luteinizing hormone-releasing hormone

    SciTech Connect

    Folkers, K.; Bowers, C.Y.; Tang, P.L.; Kubota, M.

    1986-02-01

    Apparently, no agonist has been found that is comparable in potency to the luteinizing hormone-releasing hormone (LHRH) for release of LH and follicle-stimulating hormone (FSH) without substitutions with unnatural or D forms of natural amino acids. Of 139 known agonist analogs of LHRH, two were active in the range of 65%. The four LHRHs known to occur in nature involve a total of six amino acids (Tyr, His, Leu, Trp, Arg, Gln) in positions 5, 7, and 8. There are 16 possible peptides with these six amino acids in positions 5, 7, and 8, of which 4 are the known LHRHs, and 2 more were synthesized. The authors have synthesized the 10 new peptides and assayed 11 in vivo and in vitro, and they found not only 1 but a total of 5 that have activity equivalent to or greater than that of LHRH for the release of LH and/or FSH under at least one assay condition. These five are as follows: (HisV,TrpX,GlnY)LHRH; (HisV,TrpX,LeuY)LHRH; (HisV,TrpX)LHRH; (TrpX)LHRH; (HisV)LHRH. These structures are a basis for the design of antagonists without ArgY toward avoiding histamine release. Complete inhibition of LH and FSH release in vivo may be induced by joint use of ArgY and GlnY or LeuY antagonists. These potent agonists, related to LHRH, may be therapeutically useful in disorders of reproduction, the central nervous system, and for the control of hormone-dependent carcinomas. Radioreceptor assays and radioimmunoassays were utilized.

  8. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.

    PubMed

    Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D

    2011-03-01

    Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase.

  9. Controlled release of folic acid through liquid-crystalline folate nanoparticles.

    PubMed

    Misra, Rahul; Katyal, Henna; Mohanty, Sanat

    2014-11-01

    The present study explores folate nanoparticles as nano-carriers for controlled drug delivery. Cross-linked nanoparticles of liquid crystalline folates are composed of ordered stacks. This paper shows that the folate nanoparticles can be made with less than 5% loss in folate ions. In addition, this study shows that folate nanoparticles can disintegrate in a controlled fashion resulting in controlled release of the folate ions. Release can be controlled by the size of nanoparticles, the extent of cross-linking and the choice of cross-linking cation. The effect of different factors like agitation, pH, and temperature on folate release was also studied. Studies were also carried out to show the effect of release medium and role of ions in the release medium on disruption of folate assembly.

  10. Drying of micro-encapsulated lactic acid bacteria — Effects of trehalose and immobilization on cell survival and release properties

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Chen, Xiguang

    2009-03-01

    Lactic acid bacteria (LAB) were encapsulated with alginate, gelatin and trehalose additives by the extrusion method and dried at 4 °C. The microcapsules were generally spherical and had a wrinkled surface with a size of 1.7 mm ± 0.2 mm. Trehalose as a carbohydrate source in the culture medium could reduce acid production and performed no function in the positive proliferation of LAB. Using trehalose as a carbohydrate source and protective medium simultaneously had a benefit in the protection of LAB cells during the storage at 4 °C. The density of live LAB cells could be 107 CFU g-1 after 8 weeks of storage. Cells of LAB could be continuously released from the capsules from the acidic (pH 1.2) to neutral conditions (pH 6.8). The release amounts and proliferation speeds of LAB cells in neutral medium were much larger and faster than those in acidic conditions. Additionally, immobilization of LAB could improve the survival of cells when they were exposed to acidic medium (pH 1.2) with a survival rate of 76 %.

  11. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area.

  12. Preparation of polyelectrolyte complex nanoparticles of chitosan and poly(2-acry1amido-2-methylpropanesulfonic acid) for doxorubicin release.

    PubMed

    Zhang, Liping; Wang, Jie; Ni, Caihua; Zhang, Yanan; Shi, Gang

    2016-01-01

    A new kind of polyelectrolyte complex (PEC) based on cationic chitosan (CS) and anionic poly(2-acry1amido-2-methylpropanesulfonic acid) (PAMPS) was prepared using a polymer-monomer pair reaction system. Chitosan was mixed with 2-acry1amido-2-methylpropanesulfonic acid) (AMPS) in an aqueous solution, followed by polymerization of AMPS. The complex was formed by electrostatic interaction of NH3(+) groups of CS and SO3(-) groups of AMPS, leading to a formation of complex nanoparticles of CS-PAMPS. A series of nanoparticles were obtained by changing the weight ratio of CS to AMPS, the structure and properties of nanoparticles were investigated. It was observed that the nanoparticles possessed spherical morphologies with average diameters from 255 nm to 390 nm varied with compositions of the nanoparticles. The nanoparticles were used as drug vehicles for doxorubicin, displaying relative high drug loading rate and encapsulation rate. The vitro release profiles revealed that the drug release could be controlled by adjusting pH of the release media. The nanoparticles demonstrated apparent advantages such as simple preparation process, free of organic solvents, size controllable, good biodegradability and biocompatibility, and they could be potentially used in drug controlled release field.

  13. Catalytic synthesis of biodiesel from high free fatty acid-containing feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recyclable and reusable heterogeneous diarylammonium catalysts are highly effective in catalyzing the esterification of the free fatty acid (FFA) present in greases to methyl esters to reduce the FFA content from 12-40 wt% to 0.5 – 1 wt%. The resulting ester-glyceride mixture (pretreated grease) co...

  14. Conjugating an anticancer drug onto thiolated hyaluronic acid by acid liable hydrazone linkage for its gelation and dual stimuli-response release.

    PubMed

    Fu, Chaoping; Li, Hailiang; Li, Nannan; Miao, Xiangwan; Xie, Minqiang; Du, Wenjun; Zhang, Li-Ming

    2015-09-05

    A prodrug gelation strategy was developed for the sustained and dual stimuli-response release of doxorubicin hydrochloride (DOX·HCl), a commonly used anticancer drug. For this purpose, the chemical conjugation of DOX·HCl onto thiolated hyaluronic acid (HA) was carried out by an acid liable hydrazone linkage and verified by (1)H NMR analyses. When exposed to the air, such a polysaccharide conjugate showed unique self-gelation ability in aqueous solution. The gelation time and extent depended mainly on the content of thiol groups on thiolated HA. The resultant hydrogel exhibited a dominant elastic response and a thixotropic property. In particular, it could release sustainably conjugated DOX·HCl in dual pH- and reduction-responsive modes. The cumulative drug release was found to be significantly accelerated under the conditions mimicking the intracellular environments of cancer cells. The in vitro cytotoxicity assays for the human nasopharyngeal carcinoma CNE2 cells treated with various release media confirmed the effectiveness of this conjugate hydrogel for cancer cell inhibition.

  15. Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions.

    PubMed

    Youngquist, J Tyler; Korosh, Travis C; Pfleger, Brian F

    2016-10-13

    Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing oleochemicals. Many groups have established strains of Escherichia coli capable of producing various chain-length mixtures of FFA by heterologous expression of acyl-ACP thioesterases. For example, high levels of dodecanoic acid are produced by an E. coli strain expressing the Umbellularia californica FatB2 thioesterase, BTE. Prior studies achieved high dodecanoic acid yields and productivities under phosphate-limiting media conditions. In an effort to understand the metabolic and physiological changes that led to increased FFA production, the transcriptome of this strain was assessed as a function of nutrient limitation and growth rate. FFA generation under phosphate limitation led to consistent changes in transporter expression, osmoregulation, and central metabolism. Guided by these results, targeted knockouts led to a further ~11 % in yield in FFA.

  16. New insights into fatty acid modulation of pancreatic beta-cell function.

    PubMed

    Haber, Esther P; Procópio, Joaquim; Carvalho, Carla R O; Carpinelli, Angelo R; Newsholme, Philip; Curi, Rui

    2006-01-01

    Insulin resistance states as found in type 2 diabetes and obesity are frequently associated with hyperlipidemia. Both stimulatory and detrimental effects of free fatty acids (FFA) on pancreatic beta cells have long been recognized. Acute exposure of the pancreatic beta cell to both high glucose concentrations and saturated FFA results in a substantial increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release but palmitate can augment insulin release in the presence of nonstimulatory concentrations of glucose. These results imply that changes in physiological plasma levels of FFA are important for regulation of beta-cell function. Although it is widely accepted that fatty acid (FA) metabolism (notably FA synthesis and/or formation of LC-acyl-CoA) is necessary for stimulation of insulin secretion, the key regulatory molecular mechanisms controlling the interplay between glucose and fatty acid metabolism and thus insulin secretion are not well understood but are now described in detail in this review. Indeed the correct control of switching between FA synthesis or oxidation may have critical implications for beta-cell function and integrity both in vivo and in vitro. LC-acyl-CoA (formed from either endogenously synthesized or exogenous FA) controls several aspects of beta-cell function including activation of certain types of PKC, modulation of ion channels, protein acylation, ceramide- and/or NO-mediated apoptosis, and binding to and activating nuclear transcriptional factors. The present review also describes the possible effects of FAs on insulin signaling. We have previously reported that acute exposure of islets to palmitate up-regulates some key components of the intracellular insulin signaling pathway in pancreatic islets. Another aspect considered in this review is the potential source of fatty acids

  17. Review article: putting immediate-release proton-pump inhibitors into clinical practice--improving nocturnal acid control and avoiding the possible complications of excessive acid exposure.

    PubMed

    Katz, P O

    2005-12-01

    Nocturnal gastro-oesphageal reflux is an under-appreciated clinical challenge. This condition may cause symptoms such as nocturnal heartburn, or it may be asymptomatic. In addition, patients may experience sleep disturbances that can potentially lead to complications such as erosive oesophagitis and Barrett's oesophagus, and may be a risk factor for development of oesophageal adenocarcinoma. Delayed-release proton-pump inhibitors (PPIs) have traditionally been effective in treating both daytime and night-time reflux symptoms, but are limited in control of nocturnal acidity by their pharmacodynamic characteristics. This narrative review addresses the prevalence, impact and pharmacologic approaches used to control nocturnal acidity. Methods to optimize nocturnal acid control include careful attention to dosing schedule, using higher doses of PPIs, adding an histamine H2-receptor antagonist at bedtime to once or twice daily delayed-release PPI, or using immediate-release omeprazole (Zegerid powder for oral suspension; Santarus, Inc., San Diego, CA, USA). This new formulation appears to provide sustained control of intragastric pH at steady state, and when dosed at bedtime, and may be effective in improving control of nocturnal pH and treating night-time GERD.

  18. Effects of Ultrasound Irradiation on the Release Profile of 5-fluorouracil from Magnetic Polylactic co-glycolic Acid Nanocapsules

    PubMed Central

    Abed, Z.; Beik, J.; Khoee, S.; Khoei, S.; Shakeri-Zadeh, A.; Shiran, M.B.

    2016-01-01

    Background: Drug nano-carriers are one of the most important tools for targeted cancer therapy so that undesired side effects of chemotherapy drugs are minimized. In this area, the use of ultrasound can be helpful in controlling drug release from nanoparticles to achieve higher treatment efficiency. Objective: Here, we studies the effects of ultrasound irradiation on the release profile of 5-fluorouracil (5-Fu) loaded magnetic poly lactic co-glycolic acid (PLGA) nanocapsules. Methods: 5-Fu loaded magnetic PLGA nanocapsules were synthesized by multiple emulsification method. Particle size was measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The pattern of drug release was assessed with and without 3 MHz ultrasound waves at intensities of 0.3, 0.5 and 1 w/cm2 for exposure time of 5 and 10 min in phosphate-buffered saline (PBS). Results: The size of nanoparticles was about 70 nm. Electron microscope images revealed the spherical shape of nanoparticles. The results demonstrated that the intensity and exposure time of ultrasound irradiation have significant effects on the profile of drug release from nanoparticles. Conclusion: It may be concluded that the application of ultrasound to control the release profile of drug loaded nanocapsules would be a promising method to develop a controlled drug delivery strategy in cancer therapy. PMID:27853726

  19. Subsecond kinetics of synaptosomal sup 3 H-. gamma. -aminobutyric acid release, and the relationship to presynaptic Ca sup +2 channels

    SciTech Connect

    Turner, T.J.

    1989-01-01

    A subcellular preparation of rat brain enriched in nerve terminals was used to study the biochemistry and pharmacology of Ca{sup +2} entry and presynaptic neurotransmitter release. Synaptosomes maintained a membrane potential and supported a biphasic depolarization-stimulated {sup 45}Ca{sup +2} uptake. Replacing external Na{sup +} with the impermeant cation choline eliminated the slower of the two phases, leaving an uptake process that terminated within one second. A portion of the remaining rapid phase of {sup 45}Ca{sup +2} uptake is dihydropyridine-sensitive. Because synaptosomal Ca{sup +2} uptake is mediated by multiple pathways, the release of neurotransmitter was studied as a means to focus on Ca{sup +2} entry at nerve terminals important to excitation-secretion coupling. A superfusion method was developed to measure synaptosomal neurotransmitter release on a time scale approaching the real time course of synaptic events. Synaptosomes prelabeled with {sup 3}H-{gamma}-aminobutyric acid ({sup 3}H-GABA) were retained on glass fiber filters in a superfusion chamber accessed by three solenoid-driven values. The minimal dead volume of the chamber and the relatively high solution flow rate affords time resolution for release of at least 60 msec. This time resolution was necessary to observe three distinct components of GABA release.

  20. Effect of zoledronic Acid on bone mineral density in men with prostate cancer receiving gonadotropin-releasing hormone analog.

    PubMed

    Kapoor, Anoop; Gupta, Ankur; Desai, Nilay; Ahn, Hongshik

    2011-01-01

    Background. Loss of bone density with androgen deprivation therapy for prostate cancer is well recognized. We assessed the effects of quarterly infusion of zoledronic acid on bone mineral density (BMD) and markers of bone turnover over a one-year period in men receiving gonadotropin-releasing hormone analog (GnRH-a) for prostate cancer. Methods. 41 subjects were randomly assigned to treatment with zoledronic acid (4 mg) IV infusion or placebo every 3 months. The primary endpoint was the change in the lumbar spine BMD after 12 months of treatment. Results. The change in vertebral BMD in the zoledronic acid group (+7.93 ± 1.4%) was significantly (P < .05) greater than the change in the placebo group (+0.82 ± 1.7%) as was the change in left femoral neck BMD (+5.05 ± 1.4% for the zoledronic acid group versus -0.48 ± 1.4% for the placebo group). The decrease in biochemical markers of bone turnover was significantly (P < .05) greater in the zoledronic acid group compared to the placebo group. Conclusion. Quarterly infusion of zoledronic acid for 1 year improved vertebral and left femoral neck BMD with a decrease in bone turnover markers in men on GnRH-a treatment. Zoledronic acid treatment appears to be promising in men with low BMD receiving GnRH-a treatment.

  1. Accumulating Evidence Supports a Taste Component for Free Fatty Acids in Humans

    PubMed Central

    Mattes, Richard D.

    2011-01-01

    The requisite criteria for what constitutes a taste primary have not been established. Recent advances in understanding of the mechanisms and functions of taste have prompted suggestions for an expanded list of unique taste sensations, including fat, or more specifically, free fatty acids (FFA). A set of criteria are proposed here and the data related to FFA are reviewed on each point. It is concluded that the data are moderate to strong that there are: A) adaptive advantages to FFA detection in the oral cavity; B) adequate concentrations of FFA to serve as taste stimuli; C) multiple complimentary putative FFA receptors on taste cells; D) signals generated by FFA that are conveyed by gustatory nerves; E) sensations generated by FFA that can be detected and scaled by psychophysical methods in humans when non-gustatory cues are masked; and F) physiological responses to oral fat/FFA exposure. On no point is there strong evidence challenging these observations. The reviewed findings are suggestive, albeit not definitive, that there is a taste component for FFA. PMID:21557960

  2. Changes in the serum composition of free-fatty acids during an intravenous glucose tolerance test.

    PubMed

    Soriguer, Federico; García-Serrano, Sara; García-Almeida, Jose M; Garrido-Sánchez, Lourdes; García-Arnés, Juan; Tinahones, Francisco J; Cardona, Isabel; Rivas-Marín, Jose; Gallego-Perales, Jose L; García-Fuentes, Eduardo

    2009-01-01

    Recent studies suggest that measuring the free-fatty acids (FFA) during an intravenous glucose tolerance test (IVGTT) may provide information about the metabolic associations between serum FFA and carbohydrate and insulin metabolism. We evaluated the FFA profile during an IVGTT and determined whether this test changes the composition and concentration of FFA. An IVGTT was given to 38 severely obese persons before and 7 months after undergoing bariatric surgery and also to 12 healthy, nonobese persons. The concentration and composition of the FFA were studied at different times during the test. The concentration of FFA fell significantly faster during the IVGTT in the controls and in the severely obese persons with normal-fasting glucose (NFG) than in the severely obese persons with impaired-fasting glucose (IFG) or type 2 diabetes mellitus (T2DM) (P < 0.05). Significant differences were found in the time to minimum serum concentrations of FFA (control = NFG < IFG < T2DM) (P < 0.001). These variables improved after bariatric surgery in the three groups. The percentage of monounsaturated and n-6 polyunsaturated FFA in the control subjects and in the obese persons, both before and after surgery, decreased significantly during the IVGTT. In conclusion, during an IVGTT, severely obese persons with IFG or T2DM experienced a lower fall in the FFA than the severely obese persons with NFG and the controls, becoming normal after bariatric surgery.

  3. Differential release of mediators from human basophils: Differences in arachidonic acid metabolism following activation by unrelated stimuli

    SciTech Connect

    Warner, J.A.; Peters, S.P.; Lichtenstein, L.M.; Hubbard, W.; Yancey, K.B.; Stevenson, H.C.; Miller, P.J.; MacGlashan, D.W. Jr.

    1989-06-01

    We have examined the release of histamine and LTC4 from purified human basophils challenged with several different stimuli, both physiological and nonphysiological. Basophils (n = 16) challenged with 0.1 micrograms/ml anti-IgE released 38 +/- 4% of their available histamine and 39 +/- 12 ng LTC4/10(6) basophils within 15-30 min. F-Met peptide (n = 8) caused the release of 54 +/- 8% histamine and 42 +/- 25 ng LTC4/10(6) basophils within a period of 2-5 min. C5a caused the release of 22 +/- 3% histamine from selected donors but failed to initiate any LTC4 release unless combined with D2O or 5 mM extracellular calcium. The two nonphysiological stimuli A23187 and TPA caused extensive histamine release, 67 +/- 8 and 82 +/- 11%, respectively, and while A23187 initiated a large and rapid release of leukotriene, TPA failed to release any LTC4 even when combined with D2O or 2-5 mM extracellular calcium. Increased concentrations of extracellular calcium enhanced anti-IgE and f-Met peptide induced release of LTC4 but inhibited the A23187 induced release of leukotriene. A single peak of immunoreactive leukotriene C4 that comigrated with the authentic standard was identified using HPLC followed by radioimmunoassay. No LTD4 or LTE4 could be detected. Purified human basophils incubated with 0.2 microM (3H)AA incorporated 290 pmol/10(6) cells, or 32 +/- 5% of the available label within 60 min. The (3H)AA was taken principally into the phospholipids (73 +/- 5%), with 20 +/- 3% as neutral lipid, and only 5 +/- 2% remaining as the free acid. Three phospholipid subclasses, phosphatidylcholine, PC (24 +/- 2%), phosphatidylinositol, PI (22 +/- 1%), and phosphatidylethanolamine, PE (15 +/- 3%), accounted for the majority of the incorporated (3H)AA while the remainder of the phospholipids accounted for less than 5% of the total cpm.

  4. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus

    PubMed Central

    Rodríguez-Carrio, Javier; López, Patricia; Sánchez, Borja; González, Sonia; Gueimonde, Miguel; Margolles, Abelardo; de los Reyes-Gavilán, Clara G.; Suárez, Ana

    2017-01-01

    Metabolic impairments are a frequent hallmark of systemic lupus erythematosus (SLE). Increased serum levels of free fatty acids (FFA) are commonly found in these patients, although the underlying causes remain elusive. Recently, it has been suggested that factors other than inflammation or clinical features may be involved. The gut microbiota is known to influence the host metabolism, the production of short-chain fatty acids (SCFA) playing a potential role. Taking into account that lupus patients exhibit an intestinal dysbiosis, we wondered whether altered FFA levels may be associated with the intestinal microbial composition in lupus patients. To this aim, total and specific serum FFA levels, fecal SCFA levels, and gut microbiota composition were determined in 21 SLE patients and 25 healthy individuals. The Firmicutes to Bacteroidetes (F/B) ratio was strongly associated with serum FFA levels in healthy controls (HC), even after controlling for confounders. However, this association was not found in lupus patients, where a decreased F/B ratio and increased FFA serum levels were noted. An altered production of SCFA was related to the intestinal dysbiosis in lupus, while SCFA levels paralleled those of serum FFA in HC. Although a different serum FFA profile was not found in SLE, specific FFA showed distinct patterns on a principal component analysis. Immunomodulatory omega-3 FFA were positively correlated to the F/B ratio in HC, but not in SLE. Furthermore, divergent associations were observed for pro- and anti-inflammatory FFA with endothelial activation biomarkers in lupus patients. Overall, these findings support a link between the gut microbial ecology and the host metabolism in the pathological framework of SLE. A potential link between intestinal dysbiosis and surrogate markers of endothelial activation in lupus patients is supported, FFA species having a pivotal role. PMID:28167944

  5. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus.

    PubMed

    Rodríguez-Carrio, Javier; López, Patricia; Sánchez, Borja; González, Sonia; Gueimonde, Miguel; Margolles, Abelardo; de Los Reyes-Gavilán, Clara G; Suárez, Ana

    2017-01-01

    Metabolic impairments are a frequent hallmark of systemic lupus erythematosus (SLE). Increased serum levels of free fatty acids (FFA) are commonly found in these patients, although the underlying causes remain elusive. Recently, it has been suggested that factors other than inflammation or clinical features may be involved. The gut microbiota is known to influence the host metabolism, the production of short-chain fatty acids (SCFA) playing a potential role. Taking into account that lupus patients exhibit an intestinal dysbiosis, we wondered whether altered FFA levels may be associated with the intestinal microbial composition in lupus patients. To this aim, total and specific serum FFA levels, fecal SCFA levels, and gut microbiota composition were determined in 21 SLE patients and 25 healthy individuals. The Firmicutes to Bacteroidetes (F/B) ratio was strongly associated with serum FFA levels in healthy controls (HC), even after controlling for confounders. However, this association was not found in lupus patients, where a decreased F/B ratio and increased FFA serum levels were noted. An altered production of SCFA was related to the intestinal dysbiosis in lupus, while SCFA levels paralleled those of serum FFA in HC. Although a different serum FFA profile was not found in SLE, specific FFA showed distinct patterns on a principal component analysis. Immunomodulatory omega-3 FFA were positively correlated to the F/B ratio in HC, but not in SLE. Furthermore, divergent associations were observed for pro- and anti-inflammatory FFA with endothelial activation biomarkers in lupus patients. Overall, these findings support a link between the gut microbial ecology and the host metabolism in the pathological framework of SLE. A potential link between intestinal dysbiosis and surrogate markers of endothelial activation in lupus patients is supported, FFA species having a pivotal role.

  6. Free Fatty Acid Receptors and Cancer: From Nutrition to Pharmacology.

    PubMed

    Hopkins, Mandi M; Meier, Kathryn E

    2017-01-01

    The effects of fatty acids on cancer cells have been studied for decades. The roles of dietary long-chain n-3 polyunsaturated fatty acids, and of microbiome-generated short-chain butyric acid, have been of particular interest over the years. However, the roles of free fatty acid receptors (FFARs) in mediating effects of fatty acids in tumor cells have only recently been examined. In reviewing the literature, the data obtained to date indicate that the long-chain FFARs (FFA1 and FFA4) play different roles than the short-chain FFARs (FFA2 and FFA3). Moreover, FFA1 and FFA4 can in some cases mediate opposing actions in the same cell type. Another conclusion is that different types of cancer cells respond differently to FFAR activation. Currently, the best-studied models are prostate, breast, and colon cancer. FFA1 and FFA4 agonists can inhibit proliferation and migration of prostate and breast cancer cells, but enhance growth of colon cancer cells. In contrast, FFA2 activation can in some cases inhibit proliferation of colon cancer cells. Although the available data are sometimes contradictory, there are several examples in which FFAR agonists inhibit proliferation of cancer cells. This is a unique response to GPCR activation that will benefit from a mechanistic explanation as the field progresses. The development of more selective FFAR agonists and antagonists, combined with gene knockout approaches, will be important for unraveling FFAR-mediated inhibitory effects. These inhibitory actions, mediated by druggable GPCRs, hold promise for cancer prevention and/or therapy.

  7. Direct behavioral evidence that unique bile acids released by larval sea lamprey (Petromyzon marinus) function as a migratory pheromone

    USGS Publications Warehouse

    Bjerselius , Rickard; Li, Weiming; Teeter, John H.; Seelye, James G.; Johnson, Peter B.; Maniak, Peter J.; Grant, Gerold C.; Polkinghorne, Christine N.; Sorensen, Peter W.

    2000-01-01

    Four behavioral experiments conducted in both the laboratory and the field provide evidence that adult sea lamprey (Petromyzon marinus) select spawning rivers based on the odor of larvae that they contain and that bile acids released by the larvae are part of this pheromonal odor. First, when tested in a recirculating maze, migratory adult lamprey spent more time in water scented with larvae. However, when fully mature, adults lost their responsiveness to larvae and preferred instead the odor of mature individuals. Second, when tested in a flowing stream, migratory adults swam upstream more actively when the water was scented with larvae. Third, when migratory adults were tested in a laboratory maze containing still water, they exhibited enhanced swimming activity in the presence of a 0.1 nM concentration of the two unique bile acids released by larvae and detected by adult lamprey. Fourth, when adults were exposed to this bile acid mixture within flowing waters, they actively swam into it. Taken together, these data suggest that adult lamprey use a bile acid based larval pheromone to help them locate spawning rivers and that responsiveness to this cue is influenced by current flow, maturity, and time of day. Although the precise identity and function of the larval pheromone remain to be fully elucidated, we believe that this cue will ultimately prove useful as an attractant in sea lamprey control.

  8. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.; Albersheim, P.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonic acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.

  9. Effect of low-molecular-weight organic acids on kinetics release and fractionation of phosphorus in some calcareous soils of western Iran.

    PubMed

    Taghipour, M; Jalali, M

    2013-07-01

    Organic acid has been related to nutrient mobilization, mainly in phosphorus (P) insoluble utilization, and therefore enhances P bioavailability. In this study, we examined the effect of low-molecular-weight organic acids (malic, citric, and oxalic acids) on P release of some calcareous soils from western Iran. Fractionation and speciation of P in the soil solution were studied at the initial and final P release. Significantly different quantities of P were extracted by the organic acids. On average the maximum (1,554.9 mg kg(-1)) and the minimum (1,260.5 mg kg(-1)) P were extracted by 10 mM oxalic and malic acid, respectively. Power equation described well P release. In the initial stage of P release, the solution samples in soils were supersaturated with respect to hydroxyapatite and β-TCP. At the end of P release, all solutions were undersaturated with phosphate minerals. The percentage of Fe-Al oxide fraction generally increased after P release, while carbonate and residual P fractions were decreased in all organic acids. Compared with the native soils, adding malic and citric acids had no effect on Fe-Al oxide fraction, but oxalic acid significantly reduced this fraction.

  10. Arachidonic acid triggers [Ca2+]i increases in rat round spermatids by a likely GPR activation, ERK signalling and ER/acidic compartments Ca2+ release.

    PubMed

    Paillamanque, Joaquin; Sanchez-Tusie, Ana; Carmona, Emerson M; Treviño, Claudia L; Sandoval, Carolina; Nualart, Francisco; Osses, Nelson; Reyes, Juan G

    2017-01-01

    Arachidonic acid (AA), a compound secreted by Sertoli cells (SC) in a FSH-dependent manner, is able to induce the release of Ca2+ from internal stores in round spermatids and pachytene spermatocytes. In this study, the possible site(s) of action of AA in round spermatids, the signalling pathways associated and the intracellular Ca2+ stores targeted by AA-induced signalling were pharmacologically characterized by measuring intracellular Ca2+ using fluorescent Ca2+ probes. Our results suggest that AA acts by interacting with a fatty acid G protein coupled receptor, initiating a G protein signalling cascade that may involve PLA2 and ERK activation, which in turn opens intracellular ryanodine-sensitive channels as well as NAADP-sensitive channels in acidic intracellular Ca2+ stores. The results presented here also suggest that AMPK and PKA modulate this AA-induced Ca2+ release from intracellular Ca2+ stores in round spermatids. We propose that unsaturated free fatty acid lipid signalling in the seminiferous tubule is a novel regulatory component of rat spermatogenesis.

  11. Arachidonic acid triggers [Ca2+]i increases in rat round spermatids by a likely GPR activation, ERK signalling and ER/acidic compartments Ca2+ release

    PubMed Central

    Paillamanque, Joaquin; Sanchez-Tusie, Ana; Carmona, Emerson M.; Treviño, Claudia L.; Sandoval, Carolina; Nualart, Francisco; Osses, Nelson

    2017-01-01

    Arachidonic acid (AA), a compound secreted by Sertoli cells (SC) in a FSH-dependent manner, is able to induce the release of Ca2+ from internal stores in round spermatids and pachytene spermatocytes. In this study, the possible site(s) of action of AA in round spermatids, the signalling pathways associated and the intracellular Ca2+ stores targeted by AA-induced signalling were pharmacologically characterized by measuring intracellular Ca2+ using fluorescent Ca2+ probes. Our results suggest that AA acts by interacting with a fatty acid G protein coupled receptor, initiating a G protein signalling cascade that may involve PLA2 and ERK activation, which in turn opens intracellular ryanodine-sensitive channels as well as NAADP-sensitive channels in acidic intracellular Ca2+ stores. The results presented here also suggest that AMPK and PKA modulate this AA-induced Ca2+ release from intracellular Ca2+ stores in round spermatids. We propose that unsaturated free fatty acid lipid signalling in the seminiferous tubule is a novel regulatory component of rat spermatogenesis. PMID:28192519

  12. Beyond the FFA: The Role of the Ventral Anterior Temporal Lobes in Face Processing

    PubMed Central

    Collins, Jessica A.; Olson, Ingrid R.

    2014-01-01

    Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge. PMID:24937188

  13. Modulating Membrane Composition Alters Free Fatty Acid Tolerance in Escherichia coli

    PubMed Central

    Lennen, Rebecca M.; Pfleger, Brian F.

    2013-01-01

    Microbial synthesis of free fatty acids (FFA) is a promising strategy for converting renewable sugars to advanced biofuels and oleochemicals. Unfortunately, FFA production negatively impacts membrane integrity and cell viability in Escherichia coli, the dominant host in which FFA production has been studied. These negative effects provide a selective pressure against FFA production that could lead to genetic instability at industrial scale. In prior work, an engineered E. coli strain harboring an expression plasmid for the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase was shown to have highly elevated levels of unsaturated fatty acids in the cell membrane. The change in membrane content was hypothesized to be one underlying cause of the negative physiological effects associated with FFA production. In this work, a connection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase expression, and unsaturated membrane content was established. A strategy for restoring normal membrane saturation levels and increasing tolerance towards endogenous production of FFAs was implemented by modulating acyl-ACP pools with a second thioesterase (from Geobacillus sp. Y412MC10) that primarily targets medium chain length, unsaturated acyl-ACPs. The strategy succeeded in restoring membrane content and improving viability in FFA producing E. coli while maintaining FFA titers. However, the restored fitness did not increase FFA productivity, indicating the existence of additional metabolic or regulatory barriers. PMID:23349781

  14. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli.

    PubMed

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Microbial synthesis of free fatty acids (FFA) is a promising strategy for converting renewable sugars to advanced biofuels and oleochemicals. Unfortunately, FFA production negatively impacts membrane integrity and cell viability in Escherichia coli, the dominant host in which FFA production has been studied. These negative effects provide a selective pressure against FFA production that could lead to genetic instability at industrial scale. In prior work, an engineered E. coli strain harboring an expression plasmid for the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase was shown to have highly elevated levels of unsaturated fatty acids in the cell membrane. The change in membrane content was hypothesized to be one underlying cause of the negative physiological effects associated with FFA production. In this work, a connection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase expression, and unsaturated membrane content was established. A strategy for restoring normal membrane saturation levels and increasing tolerance towards endogenous production of FFAs was implemented by modulating acyl-ACP pools with a second thioesterase (from Geobacillus sp. Y412MC10) that primarily targets medium chain length, unsaturated acyl-ACPs. The strategy succeeded in restoring membrane content and improving viability in FFA producing E. coli while maintaining FFA titers. However, the restored fitness did not increase FFA productivity, indicating the existence of additional metabolic or regulatory barriers.

  15. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  16. Obtaining the palygorskite:chitosan composite for modified release of 5-aminosalicylic acid.

    PubMed

    Santana, Ana Cristina Sousa Gramoza Vilarinho; Sobrinho, José Lamartine Soares; Silva Filho, Edson Cavalcanti da; Nunes, Livio Cesar Cunha

    2017-04-01

    This study's aim was to obtain composites from palygorskite (PLG) and chitosan (CS) in order to modify 5-aminosalicylic (5-ASA) release. Initially, the PLG:CS composite was obtained using glutaraldehyde (GLA) as a reticular agent. Then, PLG, CS and PLG:CS were characterized by means of analytical techniques such as CHN elemental analysis, surface area analysis, XRD, FTIR, DSC and TG, SEM, adsorption tests and release profiles. Based on analytical data, the formation of the PLG:CS composite which showed the presence about 19% of CS, decrease in specific surface area, morphological analysis modified, visible change of crystallinity, of FTIR and thermal analysis. In relation to the drug-composite interaction, PLG:CS exhibited a significant increase in adsorption with 5-ASA at 58.24% in relation to PLG and CS which were at 16.29% and 23.96% respectively. The release profiles show that the PLG:CS composite changed the 5-ASA release speed in analyzed simulated fluids (intestinal and stomach) unlike other systems. Thus, the PLG:CS composite with proven synergy of the PLG and CS inherent properties showing 5-ASA effective modified release. Hence, this composite has potential benefits for the vectorization of drugs.

  17. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.

    PubMed

    Taghipour, Marzieh; Jalali, Mohsen

    2016-07-01

    In this study, batch experiments were conducted to investigate the effects of nanoparticles (NPs) (MgO, ZnO, TiO2) and clay minerals (bentonite, zeolite) on the release of chromium (Cr) from leather factory waste (LFW) and LFW treated soil using organic acids. Chromium release from all treatments was studied in the presence of citric acid, oxalic acid and CaCl2 solutions. The results showed that, in all treatments, organic acids released more Cr than inorganic salt (CaCl2). The release of Cr by citric acid was higher than that by oxalic acid. In LFW treated soil and LFW, the release of Cr from the all treatments with NPs was less than that from the clay mineral treatments. On the other hand, in the presence of organic acids, Cr release by NPs and clay minerals decreased. Two kinetic models including pseudo-first- and pseudo-second-order model were tested to describe the time dependent Cr release data. Among the kinetic models used, the pseudo-second-order model generally gave the best fits to experimental data. Before and after release experiments, Cr in LFW, treated LFW, control soil and LFW treated soils were fractionated. In all treatments, the greatest amounts of Cr were found in the residual fraction (RES). The organic acids were effective in reducing the exchangeable (EXC), bound to organic matter (OM) and bound to carbonate (CAR) fractions of Cr in all treatments, whereas, after release of Cr from treated soils, Cr remained mainly in the RES fraction. The application of NPs and clay minerals in soil led to a significant transformation of Cr from mobile fractions to the RES fraction. Therefore, organic ligands played a dominant role in mobility and bioavailability of Cr and the removal of Cr by adsorbents.

  18. An Examination of Middle School Enrollment in Agricultural Education and Membership in the National FFA Organization in the United States. Summary of Research 73.

    ERIC Educational Resources Information Center

    Rossetti, Rosemarie; And Others

    The status of middle and junior high school agricultural education and Future Farmers of America (FFA) programs in the United States was the focus of a study. Data were collected through a census of the FFA executive secretaries and a survey of a purposive sample of 27 successful middle or junior high school agricultural education programs in 9…

  19. Particulate matter initiates inflammatory cytokine release by activation of capsaicin and acid receptors in a human bronchial epithelial cell line.

    PubMed

    Veronesi, B; Oortgiesen, M; Carter, J D; Devlin, R B

    1999-01-01

    Recent experiments have shown that human bronchial epithelial cells (i.e., BEAS-2B) release pro-inflammatory cytokines (i.e., IL-6 and TNFalpha) in a receptor-mediated fashion in response to the neuropeptides, substance P (SP), calcitonin gene-related protein (CGRP), and the prototype botanical irritant capsaicin. In the present experiments, we examined the relevance of these receptors to particulate matter (PM)-associated cellular inflammation. BEAS-2B cells, exposed to residual oil fly ash particles (ROFA), responded with an immediate (<30 s) increase in intracellular calcium levels ([Ca2+]i), increases of key inflammatory cytokine transcripts (i.e., IL-6, IL-8, TNFalpha) within 2 h exposure, and subsequent release of IL-6 and IL-8 cytokine protein after 4 h exposure. Pretreatment of BEAS-2B cells with pharmacological antagonists selective for the SP or CGRP receptors reduced the ROFA-stimulated IL-6 cytokine production by approximately 25 and 50%, respectively. However, pretreatment of these cells with capsazepine (CPZ), an antagonist for capsaicin (i.e., vanilloid) receptors, inhibited the immediate increases in [Ca2+]i, diminished transcript (i.e., IL-6, IL-8, TNFalpha) levels and reduced IL-6 cytokine release to control levels. BEAS-2B cells exposed to ROFA in calcium-free media failed to demonstrate increases of [Ca2+]i and showed reduced levels of cytokine transcript (i.e., IL-6, IL-8, TNFalpha) and IL-6 release, suggesting that ROFA-stimulated cytokine formation was partially dependent on extracellular calcium sources. A final set of experiments compared the inflammatory properties of the soluble and acidic insoluble components of ROFA. BEAS-2B cells, exposed to ROFA or ROFA that had been filtered through a 0.2-micrometer pore filter, produced equivocal IL-6. BEAS-2B cells exposed to pH 5.0 media for 15 min released moderate amounts of IL-6, 4 h later. This cytokine release could be blocked by amiloride, a pH receptor antagonist, but not by CPZ. BEAS-2B

  20. Factors Related to the Success of New Mexico Vocational Agriculture Teachers as FFA Advisors. Summary of Research.

    ERIC Educational Resources Information Center

    Vaughan, Paul R.; Bender, Ralph E.

    This study was designed to (1) identify competencies in which a New Mexico vocational agriculture teacher's perceived level of proficiency was related to the degree of success of his Future Farmers of America (FFA) chapter, (2) identify characteristics possessed by New Mexico vocational agriculture teachers which showed a significant relationship…

  1. Controllable drug release of electrospun thermoresponsive poly(N-isopropylacrylamide)/poly(2-acrylamido-2- methylpropanesulfonic acid) nanofibers.

    PubMed

    Lin, Xiuling; Tang, Dongyan; Cui, Weiwei; Cheng, Yan

    2012-07-01

    Electrospinning micro- and nanofibers are being increasingly investigated for drug delivery. The components and their stimuli-responsive properties of fibers are important factors influencing the drug release behavior. The aim of this study is to fabricate thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm)/poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) nanofibers by single-spinneret electrospinning technique. The electrospun nanofibers are used as a drug carrier by cospinning with nifedipine (NIF), and the release behaviors of NIF from the thermoresponsive nanofibers can be controlled by the response of nanofibers with temperature. The morphology of the nanofibers and its composites with NIF was determined by scanning electron microscopy (SEM). The hydrogen bond interactions between PNIPAAm/PAMPS and the water-insoluble drug of NIF were introduced and confirmed by Fourier-transform infrared spectroscopy and energy dispersive spectrometer. The thermoresponsive properties of nanofibers were investigated by contact angle (CA) measurements. The release behaviors of NIF from the PNIPAAm/PAMPS nanofibers were observed by SEM and demonstrated by UV-vis spectroscopy. It was found that uniform fibers of NIF and PNIPAAm/PAMPS could be fabricated without particles on the surface. The release of NIF from nanofibers could be controlled effectively by the changes of hydrogen bonds between PNIPAAm/PAMPS and NIF, and by adjusting temperatures of the thermoresponsive nanofibers.

  2. Fatty acyl specificity of the receptor-mediated release of polyunsaturated fatty acids from vascular endothelial cells

    SciTech Connect

    Rosenthal, M.D.

    1987-05-01

    Histamine and bradykinin appear to exhibit the same fatty acid specificity as thrombin. Incubation of human umbilical vein endothelial cells with 10 ..mu..M histamine for 10 min in buffered saline containing 50 ..mu..M fat-free albumin stimulates the release of previously incorporated (/sup 14/C)arachidonate but not (/sup 14/C)22:4(n-6) or (/sup 14/C)20:3(n-6). Similarly calf pulmonary artery endothelial cells release (/sup 14/C)arachidonate but not (/sup 14/C)22:4(n-6) in response to either bradykinin (1 /sup +/g/ml) or histamine (10..mu..M). In both types of endothelial cells, the calcium ionophore A23187 (10 ..mu..M) exhibits the same pattern of fatty acyl specificity as the receptor-mediated agonists. By contrast, mellitin (2-4 ..mu..g/ml) stimulates the release of free 22:4(n-6) and oleate in addition to arachidonate; release of 22:4(n-6) is 30-70% that of arachidonate. These results suggest that histamine, bradykinin and thrombin stimulate a common calcium-dependent fatty acyl-specific phospholipase activity.

  3. Quantification and evidence for mechanically metered release of pygidial secretions in formic acid-producing carabid beetles.

    PubMed

    Will, Kipling W; Gill, Aman S; Lee, Hyeunjoo; Attygalle, Athula B

    2010-01-01

    This study is the first to measure the quantity of pygidial gland secretions released defensively by carabid beetles (Coleoptera: Carabidae) and to accurately measure the relative quantity of formic acid contained in their pygidial gland reservoirs and spray emissions. Individuals of three typical formic acid producing species were induced to repeatedly spray, ultimately exhausting their chemical compound reserves. Beetles were subjected to faux attacks using forceps and weighed before and after each ejection of chemicals. Platynus brunneomarginatus (Mannerheim) (Platynini), P. ovipennis (Mannerheim) (Platynini) and Calathus ruficollis Dejean (Sphodrini), sprayed average quantities with standard error of 0.313 +/- 0.172 mg, 0.337 +/- 0.230 mg, and 0.197 +/- 0.117 mg per spray event, respectively. The quantity an individual beetle released when induced to spray tended to decrease with each subsequent spray event. The quantity emitted in a single spray was correlated to the quantity held in the reservoirs at the time of spraying for beetles whose reserves are greater than the average amount emitted in a spray event. For beetles with a quantity less than the average amount sprayed in reserve there was no significant correlation. For beetles comparable in terms of size, physiological condition and gland reservoir fullness, the shape of the gland reservoirs and musculature determined that a similar effort at each spray event would mechanically meter out the release so that a greater amount was emitted when more was available in the reservoir. The average percentage of formic acid was established for these species as 34.2%, 73.5% and 34.1% for for P. brunneomarginatus, P. ovipennis and C. ruficollis, respectively. The average quantities of formic acid released by individuals of these species was less than two-thirds the amount shown to be lethal to ants in previously published experiments. However, the total quantity from multiple spray events from a single individual

  4. Quantification and Evidence for Mechanically Metered Release of Pygidial Secretions in Formic Acid-Producing Carabid Beetles

    PubMed Central

    Will, Kipling W.; Gill, Aman S.; Lee, Hyeunjoo; Attygalle, Athula B.

    2010-01-01

    This study is the first to measure the quantity of pygidial gland secretions released defensively by carabid beetles (Coleoptera: Carabidae) and to accurately measure the relative quantity of formic acid contained in their pygidial gland reservoirs and spray emissions. Individuals of three typical formic acid producing species were induced to repeatedly spray, ultimately exhausting their chemical compound reserves. Beetles were subjected to faux attacks using forceps and weighed before and after each ejection of chemicals. Platynus brunneomarginatus (Mannerheim) (Platynini), P. ovipennis (Mannerheim) (Platynini) and Calathus ruficollis Dejean (Sphodrini), sprayed average quantities with standard error of 0.313 ± 0.172 mg, 0.337 ± 0.230 mg, and 0.197 ± 0.117 mg per spray event, respectively. The quantity an individual beetle released when induced to spray tended to decrease with each subsequent spray event. The quantity emitted in a single spray was correlated to the quantity held in the reservoirs at the time of spraying for beetles whose reserves are greater than the average amount emitted in a spray event. For beetles with a quantity less than the average amount sprayed in reserve there was no significant correlation. For beetles comparable in terms of size, physiological condition and gland reservoir fullness, the shape of the gland reservoirs and musculature determined that a similar effort at each spray event would mechanically meter out the release so that a greater amount was emitted when more was available in the reservoir. The average percentage of formic acid was established for these species as 34.2%, 73.5% and 34.1% for for P. brunneomarginatus, P. ovipennis and C. ruficollis, respectively. The average quantities of formic acid released by individuals of these species was less than two-thirds the amount shown to be lethal to ants in previously published experiments. However, the total quantity from multiple spray events from a single individual could

  5. 18:1 n7 fatty acids inhibit growth and decrease inositol phosphate release in HT-29 cells compared to n9 fatty acids.

    PubMed

    Awad, A B; Herrmann, T; Fink, C S; Horvath, P J

    1995-05-04

    Studies have shown that trans fatty acids may play a role in the development of chronic diseases such as heart disease and cancer. The objective of the present project was to examine the effect of supplementation with 18:1 isomers, both positional and geometrical, as compared to 18:0 on the growth, membrane fatty acid composition and the phosphoinositide cycle of HT-29 human colon cancer cells. Cells were supplemented with 30 microM stearic acid (18:0), elaidic acid (18:1, n9, trans), oleic acid (18:1, n9, cis), vaccenic acid (18:1, n7, cis) or trans-vaccenic acid (18:1, n7, trans) as sodium salts complexed to fatty acid-free bovine serum. Cells were grown in these media for 9 days. Cell growth was examined by counting the number of cells and expressed as percentage of control (18:0 supplemented cells). The phosphoinositide (PI) cycle was examined by measuring the inositol phosphate (IP) released from phosphoinositides in the absence (basal) or presence of stimuli (0.1 mM carbachol, 0.1 mM A23187 or 20 mM NaF). The results obtained indicated that cis and trans n7 fatty acids inhibited the growth of HT-29 cells by 11% and 23%, respectively, as compared to 18:0 supplementation. 18:1, n9 had no effect on tumor growth. Supplementation with all forms of 18:1 resulted in an increase in IP and IP2 production as compared to 18:0 supplemented cells without influencing IP3. The presence of the double bond at the 9 position in the supplemented fatty acid increases total IP production by 59% and in the cis form by 37% above the control. The breakdown of phosphoinositides in the absence and presence of several stimuli supports the observed finding on IP. Trans fatty acid supplementation resulted in lower hydrolysis of PI as compared to cis fatty acids. It is concluded that the observed inhibition of tumor growth by the vaccenic acids may be mediated by their effect(s) on the PI cycle which may be associated with their incorporation into membrane lipids.

  6. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development--a review.

    PubMed

    Herrera, Emilio

    2002-04-01

    During pregnancy, the mother adapts her metabolism to support the continuous draining of substrates by the fetus. Her increase in net body weight (free of the conceptus) corresponds to the accumulation of fat depots during the first two-thirds of gestation, switching to an accelerated breakdown of these during the last trimester. Under fasting conditions, adipose tissue lipolytic activity is highly enhanced, and its products, free fatty acids (FFA) and glycerol, are mainly driven to maternal liver, where FFA are converted to ketone bodies and glycerol to glucose, which easily cross the placenta and sustain fetal metabolism. Lipolytic products reaching maternal liver are also used for triglyceride synthesis that are released in turn to the circulation, where together with an enhanced transfer of triglycerides among the different lipoprotein fractions, and a decrease in extrahepatic lipoprotein lipase activity, increase the content of triglycerides in all the lipoprotein fractions. Long chain polyunsaturated fatty acids (LCPUFA) circulate in maternal plasma associated to lipoprotein triglycerides, and in a minor proportion in the form of FFA. Despite the lack of a direct placental transfer of triglycerides, diffusion of their fatty acids to the fetus is ensured by means of lipoprotein receptors, lipoprotein lipase activity and intracellular lipase activities in the placenta. Maternal plasma FFA are also an important source of LCPUFA to the fetus, and their placental uptake occurs via a selective process of facilitated membrane translocation involving a plasma membrane fatty acid-binding protein. This mechanism together with a selective cellular metabolism determine the actual rate of placental transfer and its selectivity, resulting even in an enrichment of certain LCPUFA in fetal circulation as compared to maternal. The degree to which the fetus is capable of fatty acid desaturation and elongation is not clear, although both term and preterm infants can synthesize

  7. GPR40/FFA1 and Neutral Sphingomyelinase Are Involved in Palmitate-Boosted Inflammatory Response of Microvascular Endothelial Cells to LPS

    PubMed Central

    Lu, Zhongyang; Li, Yanchun; Jin, Junfei; Zhang, Xiaoming; Hannun, Yusuf A.; Huang, Yan

    2015-01-01

    Objectives Increased levels of both saturated fatty acids (SFAs) and lipopolysaccharide (LPS) are associated with type 2 diabetes. However, it remains largely unknown how SFAs interact with LPS to regulate inflammatory responses in microvascular endothelial cells (MIC ECs) that are critically involved in atherosclerosis as a diabetic complication. In this study, we compared the effects of LPS, palmitic acid (PA), the most abundant saturated fatty acid, or the combination of LPS and PA on interleukin (IL)-6 expression by MIC ECs and explored the underlying mechanisms. Methods Human cardiac MIC ECs were treated with LPS, PA and LPS plus PA and the regulatory pathways including receptors, signal transduction, transcription and post-transcription, and sphingolipid metabolism for IL-6 expression were investigated. Results G protein-coupled receptor (GPR)40 or free fatty acid receptor 1 (FFA1), but not toll-like receptor 4, was involved in PA-stimulated IL-6 expression. PA not only stimulated IL-6 expression by itself, but also remarkably enhanced LPS-stimulated IL-6 expression via a cooperative stimulation on mitogen-activated protein kinase and nuclear factor kappa B signaling pathways, and both transcriptional and post-transcriptional activation. Furthermore, PA induced a robust neutral sphingomyelinase (nSMase)-mediated sphingomyelin hydrolysis that was involved in PA-augmented IL-6 upregulation. Conclusion PA boosted inflammatory response of microvascular endothelial cells to LPS via GPR40 and nSMase. PMID:25795558

  8. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  9. Biodegradable Ferulic Acid-containing Poly(anhydride-ester): Degradation Products with Controlled Release and Sustained Antioxidant Activity

    PubMed Central

    Ouimet, Michelle A.; Griffin, Jeremy; Carbone-Howell, Ashley L.; Wu, Wen-Hsuan; Stebbins, Nicholas D.; Di, Rong; Uhrich, Kathryn E.

    2013-01-01

    Ferulic acid (FA) is an antioxidant and photoprotective agent used in biomedical and cosmetic formulations to prevent skin cancer and senescence. Although FA exhibits numerous health benefits, physicochemical instability leading to decomposition hinders its efficacy. To minimize inherent decomposition, a FA-containing biodegradable polymer was prepared via solution polymerization to chemically incorporate FA into a poly(anhydride-ester). The polymer was characterized using nuclear magnetic resonance and infrared spectroscopies. The molecular weight and thermal properties were also determined. In vitro studies demonstrated that the polymer was hydrolytically degradable, thus providing controlled release of the chemically incorporated bioactive with no detectable decomposition. The polymer degradation products were found to exhibit antioxidant and antibacterial activity comparable to free FA and in vitro cell viability studies demonstrated that the polymer is non-cytotoxic towards fibroblasts. This renders the polymer a potential candidate for use as a controlled release system for skin care formulations. PMID:23327626

  10. Biodegradable ferulic acid-containing poly(anhydride-ester): degradation products with controlled release and sustained antioxidant activity.

    PubMed

    Ouimet, Michelle A; Griffin, Jeremy; Carbone-Howell, Ashley L; Wu, Wen-Hsuan; Stebbins, Nicholas D; Di, Rong; Uhrich, Kathryn E

    2013-03-11

    Ferulic acid (FA) is an antioxidant and photoprotective agent used in biomedical and cosmetic formulations to prevent skin cancer and senescence. Although FA exhibits numerous health benefits, physicochemical instability leading to decomposition hinders its efficacy. To minimize inherent decomposition, a FA-containing biodegradable polymer was prepared via solution polymerization to chemically incorporate FA into a poly(anhydride-ester). The polymer was characterized using nuclear magnetic resonance and infrared spectroscopies. The molecular weight and thermal properties were also determined. In vitro studies demonstrated that the polymer was hydrolytically degradable, thus providing controlled release of the chemically incorporated bioactive with no detectable decomposition. The polymer degradation products were found to exhibit antioxidant and antibacterial activity comparable to that of free FA, and in vitro cell viability studies demonstrated that the polymer is noncytotoxic toward fibroblasts. This renders the polymer a potential candidate for use as a controlled release system for skin care formulations.

  11. Lipidomic analyses of the mouse brain after antidepressant treatment: evidence for endogenous release of long-chain fatty acids?

    PubMed

    Lee, Lynette Hui-Wen; Shui, Guanghou; Farooqui, Akhlaq A; Wenk, Markus R; Tan, Chay-Hoon; Ong, Wei-Yi

    2009-08-01

    Recently, there has been considerable interest in a possible link between changes in brain polyunsaturated fatty acids, neural membrane phospholipid degradation, serotonergic neurotransmission, and depression. The present study aims to examine effects of antidepressants on lipids in different regions of the brain at individual molecular species level, using the novel technique of lipidomics. Balb/C mice received daily intraperitoneal (i.p.) injections of 10 mg/kg of the antidepressants maprotiline, fluoxetine and paroxetine for 4 wk. The prefrontal cortex, hippocampus, striatum and cerebellum were harvested, and lipid profiles compared to those of saline-injected mice. Treatment with maprotiline and paroxetine, but not fluoxetine, resulted in significant decreases in phosphatidylcholine (PC) species, PC36:1, PC38:3, PC40:2p, PC40:6, PC40:5, PC42:7p, PC42:6p and PC42:5p in the prefrontal neocortex. The decreases in phospholipids were accompanied by increases in lysophospholipid species, lysoPC16:0, lysoPC18:2 and lysoPC18:0 in the prefrontal cortex, indicating increase in phospholipase A2 activity and possible release of long-chain fatty acids. Maprotiline and paroxetine treatment also resulted in decreases in sphingomyelin and increases in several ceramide species in the prefrontal cortex. It is postulated that endogenous release of long-chain fatty acids may be related to the mechanism of action of maprotiline and paroxetine.

  12. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

    PubMed

    Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.

  13. Amino acids release in two red tide events in Chinese coastal waters

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Chen, J.; Jin, H.

    2013-12-01

    During two red tide events and in situ experiments the East China Sea and the Pearl River Estuary, we analyzed DOC, POC, dissolved free amino acids (DFAA), dissolved combined amino acids (DCAA) and particulate hydrolysable amino acids (PHAA) and nutrients in samples from red tides areas as well as surrounding waters. The results show that POC and PHAA in red tide waters increased dramatically by about one order compared with those in surrounding waters. DCAA, DFAA and DOC also increased in red tide waters but only less than 2 folds increasing were observed. DFAA was only accounted for less than 5% of total amino acids (DFAA+DCAA+PHAA) and varied distinctly for all samples. Particulate organic carbon presented as amino acids (PHAA-C/POC) was accounted for about 35-60% of POC while dissolved organic carbon presented as amino acids (DCAA-C/DOC) was accounted for about 20-30% of DOC. Organic carbon pool shifted from DOC dominating at normal waters to POC dominating during red tides. During red tide most inorganic nitrogen nutrients (NO3+NO2) was seemly transformed into amino acids (here we called PHAA-N, DCAA-N, DFAA-N), in particular PHAA. Molecular composition of amino acids in organic matter suggested that POC mainly derived from phytoplankton in red tide waters, but the percentages of zooplanton and bacterial derived POC or DOC increased after one week of red tide. Our observations suggest that amino acids actually act as intergradation of nitrogen nutrients regeneration. We hypothesize that although zooplankton grazing and bacterial activities could lead to transformation of amino acids from phytoplankton into zooplankton and bacterial as well as from particulate organic matter into dissolved organic matter, nitrogen still present in its organic pool thus delay the regeneration of inorganic nitrogen.

  14. Assessment of Heat Resistance of Bacterial Spores from Food Product Isolates by Fluorescence Monitoring of Dipicolinic Acid Release

    PubMed Central

    Kort, Remco; O'Brien, Andrea C.; van Stokkum, Ivo H. M.; Oomes, Suus J. C. M.; Crielaard, Wim; Hellingwerf, Klaas J.; Brul, Stanley

    2005-01-01

    This study is aimed at the development and application of a convenient and rapid optical assay to monitor the wet-heat resistance of bacterial endospores occurring in food samples. We tested the feasibility of measuring the release of the abundant spore component dipicolinic acid (DPA) as a probe for heat inactivation. Spores were isolated from the laboratory type strain Bacillus subtilis 168 and from two food product isolates, Bacillus subtilis A163 and Bacillus sporothermodurans IC4. Spores from the lab strain appeared much less heat resistant than those from the two food product isolates. The decimal reduction times (D values) for spores from strains 168, A163, and IC4 recovered on Trypticase soy agar were 1.4, 0.7, and 0.3 min at 105°C, 120°C, and 131°C, respectively. The estimated Z values were 6.3°C, 6.1°C, and 9.7°C, respectively. The extent of DPA release from the three spore crops was monitored as a function of incubation time and temperature. DPA concentrations were determined by measuring the emission at 545 nm of the fluorescent terbium-DPA complex in a microtiter plate fluorometer. We defined spore heat resistance as the critical DPA release temperature (Tc), the temperature at which half the DPA content has been released within a fixed incubation time. We found Tc values for spores from Bacillus strains 168, A163, and IC4 of 108°C, 121°C, and 131°C, respectively. On the basis of these observations, we developed a quantitative model that describes the time and temperature dependence of the experimentally determined extent of DPA release and spore inactivation. The model predicts a DPA release rate profile for each inactivated spore. In addition, it uncovers remarkable differences in the values for the temperature dependence parameters for the rate of spore inactivation, DPA release duration, and DPA release delay. PMID:16000762

  15. Enhancement of intragastric acid stability of a fat emulsion meal delays gastric emptying and increases cholecystokinin release and gallbladder contraction.

    PubMed

    Marciani, Luca; Wickham, Martin; Singh, Gulzar; Bush, Debbie; Pick, Barbara; Cox, Eleanor; Fillery-Travis, Annette; Faulks, Richard; Marsden, Charles; Gowland, Penny A; Spiller, Robin C

    2007-06-01

    Preprocessed fatty foods often contain calories added as a fat emulsion stabilized by emulsifiers. Emulsion stability in the acidic gastric environment can readily be manipulated by altering emulsifier chemistry. We tested the hypothesis that it would be possible to control gastric emptying, CCK release, and satiety by varying intragastric fat emulsion stability. Nine healthy volunteers received a test meal on two occasions, comprising a 500-ml 15% oil emulsion with 2.5% of one of two emulsifiers that produced emulsions that were either stable (meal A) or unstable (meal B) in the acid gastric environment. Gastric emptying and gallbladder volume changes were assessed by MRI. CCK plasma levels were measured and satiety scores were recorded. Meal B layered rapidly owing to fat emulsion breakdown. The gastric half-emptying time of the aqueous phase was faster for meal B (72 +/- 13 min) than for meal A (171 +/- 35 min, P < 0.008). Meal A released more CCK than meal B (integrated areas, respectively 1,095 +/- 244 and 531 +/- 111 pmol.min.l(-1), P < 0.02), induced a greater gallbladder contraction (P < 0.02), and decreased postprandial appetite (P < 0.05), although no significant differences were observed in fullness and hunger. We conclude that acid-stable emulsions delayed gastric emptying and increased postprandial CCK levels and gallbladder contraction, whereas acid-instability led to rapid layering of fat in the gastric lumen with accelerated gastric emptying, lower CCK levels, and reduced gallbladder contraction. Manipulation of the acid stability of fat emulsion added to preprocessed foods could maximize satiety signaling and, in turn, help to reduce overconsumption of calories.

  16. Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): modifying serotonin's downstream effects on glutamate and GABA (gamma amino butyric acid) release.

    PubMed

    Stahl, Stephen M

    2015-08-01

    Vortioxetine is an antidepressant with multiple pharmacologic modes of action at targets where serotonin neurons connect with other neurons. These actions modify the release of both glutamate and GABA (gamma amino butyric acid) within various brain circuits.

  17. Long-term release of a thiobenzamide from a backbone functionalized poly(lactic acid)

    PubMed Central

    Long, Tyler R.; Wongrakpanich, Amaraporn; Do, Anh-Vu; Salem, Aliasger K.; Bowden, Ned B.

    2015-01-01

    Hydrogen sulfide is emerging as a critically important molecule in medicine, yet there are few methods for the long-term delivery of molecules that degrade to release H2S. In this paper the first long-term release of a thiobenzamide that degrades to release H2S is described. A series of polymers were synthesized by the copolymerization of L-lactide and a lactide functionalized with 4-hydroxythiobenzamide. A new method to attach functional groups to a derivative of L-lactide is described based on the addition of a thiol to an α,β-unsaturated lactide using catalytic I2. This reaction proceeded under mild conditions and did not ring-open the lactone. The copolymers had molecular weights from 8 to 88 kg mol−1 with PDIs below 1.50. Two sets of microparticles were fabricated from a copolymer; the average diameters of the microparticles were 0.53 and 12 μm. The degradation of the smaller microparticles was investigated in buffered water to demonstrate the slow release of thiobenzamide over 4 weeks. Based on the ability to synthesize polymers with different loadings of thiobenzamide and that thiobenzamide is a known precursor to H2S, these particles provide a polymer-based method to deliver H2S over days to weeks. PMID:26870159

  18. Effect Of Imposed Anaerobic Conditions On Metals Release From Acid-Mine Drainage Contaminated Streambed Sediments

    EPA Science Inventory

    Remediation of streams influenced by mine-drainage may require removal and burial of metal-containing bed sediments. Burial of aerobic sediments into an anaerobic environment may release metals, such as through reductive dissolution of metal oxyhydroxides. Mining-impacted aerob...

  19. Enzymatically cross-linked hyaluronic acid/graphene oxide nanocomposite hydrogel with pH-responsive release.

    PubMed

    Song, Fangfang; Hu, Weikang; Xiao, Longqiang; Cao, Zheng; Li, Xiaoqiong; Zhang, Chao; Liao, Liqiong; Liu, Lijian

    2015-01-01

    Hyaluronic acid (HA) is made up of repeating disaccharide units (β-1,4-d-glucuronic acid and β-1,3-N-acetyl-d-glucosamine) and is a major constituent of the extracellular matrix. HA and its derivatives which possess excellent biocompatibility and physiochemical properties have been studied in drug delivery and tissue engineering applications. Tyramine-based HA hydrogel with good compatibility to cell and tissue has been reported recently. However, inferior mechanical property may limit the biomedical application of the HA hydrogel. In this study, HA/graphene oxide (GO) nanocomposite (NC) hydrogel was prepared through a horseradish peroxidase catalyzed in situ cross-linking process. As compared with pure HA hydrogels, incorporation of GO to the HA matrix could significantly enhance the mechanical properties (storage moduli 1800 Pa) of the hydrogel and prolong the release of rhodamine B (RB) as the model drug from the hydrogel (33 h) as well. In addition, due to the multiple interactions between GO and RB, the NC hydrogels showed excellent pH-responsive release behavior. The release of RB from the NC hydrogel was prolonged at low pH (pH 4.0) in the presence of GO, which could be attributed to the enhanced interactions between GO and HA as well as with RB. In situ three-dimensional encapsulation of mouse embryonic fibroblasts (BALB 3T3 cells) in the NC hydrogels and cytotoxicity results indicated the cytocompatibility of both the enzymatic cross-linking process and HA/GO NC hydrogels (cell viability 90.6 ± 4.25%). The enzymatically catalyzed fabrication of NC hydrogels proved to be an easy and mild approach, and had great potential in the construction of both tissue engineering scaffolds and stimuli-responsive drug release matrices.

  20. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.

  1. Studies of manufacturing controlled-release graphene acid and catalyzing synthesis of chalcone with Claisen-Schmidt condensation reaction

    NASA Astrophysics Data System (ADS)

    Li, Jihui; Feng, Jia; Li, Mei; Wang, Qiaolian; Su, Yumin; Jia, Zhixin

    2013-07-01

    In the paper, graphene acid (GA) was manufactured, using flake graphite as raw material, and the acidity and the structure of GA were characterized as well as. Then, chalcone was synthesized in the presence of GA, using acetophenone and benzaldehyde as the reactant. The results showed that the acidity of GA was for pH = 1.12 in aqueous solution, and it was structured by the graphene sheets with the spaces between the graphene sheet and the graphene sheet and sulfuric acid (H2SO4) and acetic acid (CH3CO2H) inside the spaces. At the same time, the results also exhibited that the chalcone yield was able to reach 60.36% when GA dosage was 5 g, and the chalcone yields could attain apart 60.36, 52.05 and 31.16% when 5 g of GA was used thrice. This shows that GA is not only a high-performance catalyst, but also a controlled-release catalyst.

  2. Arachidonic acid activates release of calcium ions from reticulum via ryanodine receptor channels in C2C12 skeletal myotubes.

    PubMed

    Muslikhov, E R; Sukhanova, I F; Avdonin, P V

    2014-05-01

    Arachidonic acid causes an increase in free cytoplasmic calcium concentration ([Ca2+]i) in differentiated skeletal multinucleated myotubes C2C12 and does not induce calcium response in C2C12 myoblasts. The same reaction of myotubes to arachidonic acid is observed in Ca2+-free medium. This indicates that arachidonic acid induces release of calcium ions from intracellular stores. The blocker of ryanodine receptor channels of sarcoplasmic reticulum dantrolene (20 µM) inhibits this effect by 68.7 ± 6.3% (p < 0.001). The inhibitor of two-pore calcium channels of endolysosomal vesicles trans-NED19 (10 µM) decreases the response to arachidonic acid by 35.8 ± 5.4% (p < 0.05). The phospholipase C inhibitor U73122 (10 µM) has no effect. These data indicate the involvement of ryanodine receptor calcium channels of sarcoplasmic reticulum in [Ca2+]i elevation in skeletal myotubes caused by arachidonic acid and possible participation of two-pore calcium channels from endolysosomal vesicles in this process.

  3. Deletion of fabN in Enterococcus faecalis results in unsaturated fatty acid auxotrophy and decreased release of inflammatory cytokines.

    PubMed

    Diederich, Ann-Kristin; Duda, Katarzyna A; Romero-Saavedra, Felipe; Engel, Regina; Holst, Otto; Huebner, Johannes

    2016-05-01

    The Gram-positive bacterium Enterococcus faecalis can cause life-threatening infections and is resistant to several commonly used antibiotics. The type II fatty acid pathway in bacteria is discussed as a potential target for antimicrobial therapy. However, it was shown that inhibition or deletion of its enzymes can be rescued in Gram-positive bacteria by supplementation with fatty acids. Here we show that by deletion of the fabN gene, which is essential for unsaturated fatty acid (UFA) synthesis in E. faecalis, growth is impaired but can be rescued by supplementation with oleic acid or human serum. Nonetheless, we demonstrate alterations of the UFA profile after supplementation with oleic acid in the ΔfabN mutant using a specific glycolipid. In addition, we demonstrate that cytokine release in vitro is almost abolished after stimulation of mouse macrophages by the mutant in comparison to the wild type. The results indicate that fabN is not a suitable target for antimicrobials as UFA auxotrophy can be overcome. However, deletion of fabN resulted in a decreased inflammatory response indicating that fabN and resulting UFA synthesis are relevant for virulence.

  4. Controlled release of linalool using nanofibrous membranes of poly(lactic acid) obtained by electrospinning and solution blow spinning: A comparative study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The controlled-release of natural plant oils such as linalool is of interest in therapeutics, cosmetics, and antimicrobial and larvicidal products. The present study reports the release characteristics of linalool encapsulated at three concentrations (10, 15 and 20 wt.%) in poly(lactic acid) nanofib...

  5. Stimulation of insulin release by phospholipase D. A potential role for endogenous phosphatidic acid in pancreatic islet function.

    PubMed

    Metz, S A; Dunlop, M

    1990-09-01

    Although exogenous phosphatidic acid (PA) has been shown to promote insulin release, the effects of endogenous PA on endocrine function are largely unexplored. In order to generate PA in situ, intact adult-rat islets were treated with exogenous phospholipases of the D type (PLD), and their effects on phospholipid metabolism and on insulin release were studied in parallel. Chromatographically purified PLD from Streptomyces chromofuscus stimulated the accumulation of PA in [14C]arachidonate- or [14C]myristate-prelabelled islets, and also promoted insulin secretion over an identical concentration range. During 30 min incubations, insulin release correlated closely with the accumulation of [14C]arachidonate-labelled PA (r2 = 0.98; P less than 0.01) or [14C]myristate-labelled PA (r2 = 0.97; P less than 0.01). Similar effects were seen both in freshly isolated and in overnight-cultured intact islets. In contrast, PLDs (from cabbage or peanut) which do not support phospholipid hydrolysis at the pH of the extracellular medium also did not promote insulin release. The effects on secretion of the active PLD preparation were inhibited by modest cooling (to 30 degrees C); dantrolene or Co2+ also inhibited PLD-induced secretion without decreasing PLD-induced PA formation. Additionally, the removal of PLD left the subsequent islet responsiveness to glucose intact, further supporting an exocytotic non-toxic mechanism. PLD-induced insulin release did not appear to require influx of extracellular Ca2+, nor could the activation of protein kinase C clearly be implicated. During incubations of 30 min, PLD selectively generated PA; however, more prolonged incubations (60 min) also led to production of some diacyglycerol and free arachidonic acid concomitant with progressive insulin release. These data suggest that PLD activation has both rapid and direct effects (via PA) and more delayed, secondary, effects (via other effects of PA or the generation of other lipid signals). Taken in

  6. Preparation and controlled-release studies of a protocatechuic acid-magnesium/aluminum-layered double hydroxide nanocomposite

    PubMed Central

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2013-01-01

    In the study reported here, magnesium/aluminum (Mg/Al)-layered double hydroxide (LDH) was intercalated with an anticancer drug, protocatechuic acid, using ion-exchange and direct coprecipitation methods, with the resultant products labeled according to the method used to produce them: “PANE” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the ion-exchange method) and “PAND” (ie, protocatechuic acid-Mg/Al nanocomposite synthesized using the direct method), respectively. Powder X-ray diffraction and Fourier transform infrared spectroscopy confirmed the intercalation of protocatechuic acid into the inter-galleries of Mg/Al-LDH. The protocatechuic acid between the interlayers of PANE and PAND was found to be a monolayer, with an angle from the z-axis of 8° for PANE and 15° for PAND. Thermogravimetric and differential thermogravimetric analysis results revealed that the thermal stability of protocatechuic acid was markedly enhanced upon intercalation. The loading of protocatechuic acid in PANE and PAND was estimated to be about 24.5% and 27.5% (w/w), respectively. The in vitro release study of protocatechuic acid from PANE and PAND in phosphate-buffered saline at pH 7.4, 5.3, and 4.8 revealed that the nanocomposites had a sustained release property. After 72 hours incubation of PANE and PAND with MCF-7 human breast cancer and HeLa human cervical cancer cell lines, it was found that the nanocomposites had suppressed the growth of these cancer cells, with a half maximal inhibitory concentration of 35.6 μg/mL for PANE and 36.0 μg/mL for PAND for MCF-7 cells, and 19.8 μg/mL for PANE and 30.3 μg/mL for PAND for HeLa cells. No half maximal inhibitory concentration for either nanocomposite was found for 3T3 cells. PMID:23737666

  7. 5-Fluorouracil acetic acid/beta-cyclodextrin conjugates: drug release behavior in enzymatic and rat cecal media.

    PubMed

    Udo, Koichi; Hokonohara, Kazuhiro; Motoyama, Keiichi; Arima, Hidetoshi; Hirayama, Fumitoshi; Uekama, Kaneto

    2010-03-30

    5-Fluorouracil-1-acetic acid (5-FUA) was prepared and covalently conjugated to beta-cyclodextrin (beta-CyD) through ester or amide linkage, and the drug release behavior of the conjugates in enzymatic solutions and rat cecal contents were investigated. The 5-FUA/beta-CyD ester conjugate was slowly hydrolyzed to 5-FUA in aqueous solutions (half lives (t(1/2))=38 and 17h at pH 6.8 and 7.4, respectively, at 37 degrees C), whereas the amide conjugate was hardly hydrolyzed at these physiological conditions, but hydrolyzed only in strong alkaline solutions (>0.1M NaOH) at 60 degrees C. Both ester and amide conjugates were degraded in solutions of a sugar-degrading enzyme, alpha-amylase, to 5-FUA/maltose and triose conjugates, but the release of 5-FUA was only slight in alpha-amylase solutions. In solutions of an ester-hydrolyzing enzyme, carboxylic esterase, the ester conjugate was hydrolyzed to 5-FUA at the same rate as that in the absence of the enzyme, whereas the amide conjugate was not hydrolyzed by the enzyme. On the other hand, 5-FUA was rapidly released when the ester conjugate was firstly hydrolyzed by alpha-amylase, followed secondly by carboxylic esterase. The results indicated that the ester conjugate was hydrolyzed to 5-FUA in a consecutive manner, i.e. it was firstly hydrolyzed to the small saccharide conjugates, such as the maltose conjugate, by alpha-amylase, and the resulting small saccharide conjugates having less steric hindrance was susceptible to the action of carboxylic esterase, giving 5-FUA. The in vitro release behavior of the ester conjugate was clearly reflected in the hydrolysis in rat cecal contents and in the in vivo release after oral administration to rats.

  8. Sulfur mustard-induced increase in intracellular free calcium level and arachidonic acid release from cell membrane

    SciTech Connect

    Ray, R.; Legere, R.H.; Majerus, B.J.; Petrali, J.P.

    1995-12-31

    The mechanism of action of the alkylating agent bis-(2-chloroethyl)sulfide (sulfur mustard, SM) was studied using the in thai vitro mouse neuroblastoma-rat glioma hybrid NG 108-1 S clonal p cell line model. Following 0.3 mM SM exposure, cell viability remained high (>80% of untreated control) up to 9 hr and then declined steadily to about 40% of control after 20-24 hr. During the early period of SM exposure, when there was no significant cell viability loss, the following effects were observed. The cellular glutathione level decreased 20% after 1 hr and 34% after 6 hr. Between 2 and 6 hr, there was a time-dependent increase (about 10 to 30%) in intracellular free calcium (Ca2+), which was localized to the limiting membrane of swollen endoplasmic reticula and mitochondria, to euchromatin areas of the nucleus, and to areas of the cytosol and plasma membrane. Moreover,there was also a time-dependent increase in the release of isotopically labeled arachidonic acid ((3H)AA) from cellular membranes. Increase in (3H)AA release was 28% at 3 hr and about 60-80% between 6 and 9 hr. This increase in I3HIAA release was inhibited by quinacrine (20 uM), which is a phospholipase (PLA2) inhibitor. At 16 hr after SM exposure, there was a large increase (about 200% of control) in I3HIAA release, which was coincident with a 50% loss of cell viability. These results suggest a Ca2+-mediated toxic mechanism of SM via PLA2 activation and arachidonate release.

  9. Chicoric acid, a new compound able to enhance insulin release and glucose uptake.

    PubMed

    Tousch, Didier; Lajoix, Anne-Dominique; Hosy, Eric; Azay-Milhau, Jacqueline; Ferrare, Karine; Jahannault, Céline; Cros, Gérard; Petit, Pierre

    2008-12-05

    Caffeic acid and chlorogenic acid (CGA), a mono-caffeoyl ester, have been described as potential antidiabetic agents. Using in vitro studies, we report the effects of a dicaffeoyl ester, chicoric acid (CRA) purified from Cichorium intybus, on glucose uptake and insulin secretion. Our results show that CRA and CGA increased glucose uptake in L6 muscular cells, an effect only observed in the presence of stimulating concentrations of insulin. Moreover, we found that both CRA and CGA were able to stimulate insulin secretion from the INS-1E insulin-secreting cell line and rat islets of Langerhans. In the later case, the effect of CRA is only observed in the presence of subnormal glucose levels. Patch clamps studies show that the mechanism of CRA and CGA was different from that of sulfonylureas, as they did not close K(ATP) channels. Chicoric acid is a new potential antidiabetic agent carrying both insulin sensitizing and insulin-secreting properties.

  10. Oxidation of formic acid by oxyanions of chlorine and its implications to the Viking Labeled Release experiment

    NASA Astrophysics Data System (ADS)

    Martinez, P.; Navarro-gonzalez, R.

    2013-05-01

    The Viking Landers that arrived on Mars in 1976 carried out three biological experiments designed to investigate if there was microbial life. These were the Gas-Exchange, Pyrolitic Release and Labeled Release experiments. The three experiments yielded positive responses but the Labeled Release experiment had a kinetic response indicative of microbial activity. The experiment consisted of adding a broth of nutrients (formic acid, glycolic acid, glycine, D- and L-alanine and D- and L-lactic acid uniformly marked with 14C) to martian soil samples. The results were surprising; the nutrients were consumed releasing radioactive gases in a manner that is compatible by terrestrial microorganisms. The existence of Martian life was contradicted by soil chemical analysis that indicated the absence of organic compounds above the detection limits of parts per billion (ppb). Instead the positive response of the Labeled Release Experiment was attributed to the existence of peroxides and/or superoxides in the Martian soils that destroyed the nutrients upon contact. Recently, the Phoenix mission that landed in the Martian Arctic in 2008 revealed the presence of a highly oxidized form of the element chlorine in the soil: perchlorate. Perchlorate is thought to have formed in the Martian atmosphere by the oxidation of chloride from volcanic sources with ozone. Therefore perchlorate is formed by the stepwise oxidation of hypochlorite, chlorite and chlorate. These oxyanions of chlorine are powerful oxidizers that may exist in the Martian soil and may have reacted with the nutrients of the Labeled Release Experiment. This paper aims to better understand these results by designing experiments to determine the kinetics of decomposition of formic acid to carbon dioxide with different oxidized forms of chlorine by headspace technique in gas chromatography coupled to mass spectrometry (GC / MS). Previous studies done in the laboratory showed that only hypochlorite quantitatively reacted with

  11. Copper release from dental prosthetic crowns, dental materials, and human teeth into acetic acid.

    PubMed

    Kalicanin, Biljana M; Nikolić, Ruzica S

    2010-01-01

    This article examines the dilution of the ion of copper from human teeth and dental prosthetic crowns in 4% CH(3)COOH during a period of 24 hr at room temperature. The content of the diluted copper in an acetate extract, as well as the overall content of this metal in the samples, was determined by means of a potentiometric stripping analysis. The comparative measurements were carried out using the furnace atomic absorption spectrophotometry technique, which is recommended by the International Standards (ISO 6872:2008; ISO 24234:2004) as a method for quality control of dental-prosthetic material (dental ceramic, metal restorative materials, dental amalgams) in the process of checking for heavy metals. During a 24-hr period in 4% CH(3)COOH at a temperature of 25 degrees C, approximately 72% of the overall copper was released from the tooth. The percentage of the released copper from baby teeth is higher, ranging from 88 to 92%, which is probably a consequence of the bone tissue being in development, its infirmity, and inadequate stability. On these conditions, approximately 72% of the overall copper was released from the dental-ceramic prosthetic crowns.

  12. The Cl− channel blocker niflumic acid releases Ca2+ from an intracellular store in rat pulmonary artery smooth muscle cells

    PubMed Central

    Cruickshank, Stuart F; Baxter, Lynne M; Drummond, Robert M

    2003-01-01

    The effect of the Cl− channel blockers niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), and anthracene-9-carboxylic acid (A-9-C), on Ca2+ signalling in rat pulmonary artery smooth muscle cells was examined. Intracellular Ca2+ concentration ([Ca2+]i) was monitored with either fura-2 or fluo-4, and caffeine was used to activate the ryanodine receptor, thereby releasing Ca2+ from the sarcoplasmic reticulum (SR). NFA and NPPB significantly increased basal [Ca2+]i and attenuated the caffeine-induced increase in [Ca2+]i. These Cl− channel blockers also increased the half-time (t1/2) to peak for the caffeine-induced [Ca2+]i transient, and slowed the removal of Ca2+ from the cytosol following application of caffeine. Since DIDS and A-9-C were found to adversely affect fura-2 fluorescence, fluo-4 was used to monitor intracellular Ca2+ in studies involving these Cl− channel blockers. Both DIDS and A-9-C increased basal fluo-4 fluorescence, indicating an increase in intracellular Ca2+, and while DIDS had no significant effect on the t1/2 to peak for the caffeine-induced Ca2+ transient, it was significantly increased by A-9-C. In the absence of extracellular Ca2+, NFA significantly increased basal [Ca2+]i, suggesting that the release of Ca2+ from an intracellular store was responsible for the observed effect. Depleting the SR with the combination of caffeine and cyclopiazonic acid prevented the increase in basal [Ca2+]i induced by NFA. Additionally, incubating the cells with ryanodine also prevented the increase in basal [Ca2+]i induced by NFA. These data show that Cl− channel blockers have marked effects on Ca2+ signalling in pulmonary artery smooth muscle cells. Furthermore, examination of the NFA-induced increase in [Ca2+]i indicates that it is likely due to Ca2+ release from an intracellular store, most probably the SR. PMID:14623766

  13. The Cl(-) channel blocker niflumic acid releases Ca(2+) from an intracellular store in rat pulmonary artery smooth muscle cells.

    PubMed

    Cruickshank, Stuart F; Baxter, Lynne M; Drummond, Robert M

    2003-12-01

    The effect of the Cl- channel blockers niflumic acid (NFA), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), and anthracene-9-carboxylic acid (A-9-C), on Ca2+ signalling in rat pulmonary artery smooth muscle cells was examined. Intracellular Ca2+ concentration ([Ca2+]i) was monitored with either fura-2 or fluo-4, and caffeine was used to activate the ryanodine receptor, thereby releasing Ca2+ from the sarcoplasmic reticulum (SR). NFA and NPPB significantly increased basal [Ca2+]i and attenuated the caffeine-induced increase in [Ca2+]i. These Cl- channel blockers also increased the half-time (t1/2) to peak for the caffeine-induced [Ca2+]i transient, and slowed the removal of Ca2+ from the cytosol following application of caffeine. Since DIDS and A-9-C were found to adversely affect fura-2 fluorescence, fluo-4 was used to monitor intracellular Ca2+ in studies involving these Cl- channel blockers. Both DIDS and A-9-C increased basal fluo-4 fluorescence, indicating an increase in intracellular Ca2+, and while DIDS had no significant effect on the t1/2 to peak for the caffeine-induced Ca2+ transient, it was significantly increased by A-9-C. In the absence of extracellular Ca2+, NFA significantly increased basal [Ca2+]i, suggesting that the release of Ca2+ from an intracellular store was responsible for the observed effect. Depleting the SR with the combination of caffeine and cyclopiazonic acid prevented the increase in basal [Ca2+]i induced by NFA. Additionally, incubating the cells with ryanodine also prevented the increase in basal [Ca2+]i induced by NFA. These data show that Cl- channel blockers have marked effects on Ca2+ signalling in pulmonary artery smooth muscle cells. Furthermore, examination of the NFA-induced increase in [Ca2+]i indicates that it is likely due to Ca2+ release from an intracellular store, most probably the SR.

  14. Organic materials retain high proportion of protons, iron and aluminium from acid sulphate soil drainage water with little subsequent release.

    PubMed

    Dang, Tan; Mosley, Luke M; Fitzpatrick, Rob; Marschner, Petra

    2016-12-01

    When previously oxidised acid sulphate soils are leached, they can release large amounts of protons and metals, which threaten the surrounding environment. To minimise the impact of the acidic leachate, protons and metals have to be retained before the drainage water reaches surrounding waterways. One possible amelioration strategy is to pass drainage water through permeable reactive barriers. The suitability of organic materials for such barriers was tested. Eight organic materials including two plant residues, compost and five biochars differing in feedstock and production temperature were finely ground and filled into PVC cores at 3.5 g dry wt/core. Field-collected acidic drainage water (pH 3, Al 22 mg L(-1) and Fe 48 mg L(-1)) was applied in six leaching events followed by six leaching events with reverse osmosis (RO) water (45 mL/event). Compost and biochars increased the leachate pH by up to 4.5 units and had a high retention capacity for metals. The metal and proton release during subsequent leaching with RO water was very small, cumulatively only 0.05-0.8 % of retained metals and protons. Retention was lower in the two plant residues, particularly wheat straw, which raised leachate pH by 2 units only in the first leaching event with drainage water, but had little effect on leachate pH in the following leaching events. It can be concluded that organic materials and particularly biochars and compost have the potential to be used in acid drainage treatment to remove and retain protons and metals.

  15. Inhibitory activity of the white wine compounds, tyrosol and caffeic acid, on lipopolysaccharide-induced tumor necrosis factor-alpha release in human peripheral blood mononuclear cells.

    PubMed

    Giovannini, L; Migliori, M; Filippi, C; Origlia, N; Panichi, V; Falchi, M; Bertelli, A A E; Bertelli, A

    2002-01-01

    The objective of this study was to assess whether tyrosol and caffeic acid are able to inhibit lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha release. TNF is one of the most important cytokines involved in inflammatory reactions. The results show that both tyrosol and caffeic acid are able to inhibit LPS-induced TNF-alpha release from human monocytes, even at low doses. Their mechanisms of action are discussed and we conclude that high doses of the two compounds are not required to achieve effective inhibition of inflammatory reactions due to TNF-alpha release.

  16. Chitosan-functionalised poly(2-hydroxyethyl methacrylate) core-shell microgels as drug delivery carriers: salicylic acid loading and release.

    PubMed

    Mahattanadul, Natshisa; Sunintaboon, Panya; Sirithip, Piyawan; Tuchinda, Patoomratana

    2016-09-01

    This work presents the evaluation of chitosan-functionalised poly(2-hydroxyethyl methacrylate) (CS/PHEMA) core-shell microgels as drug delivery carriers. CS/PHEMA microgels were prepared by emulsifier-free emulsion polymerisation with N,N '-methylenebisacrylamide (MBA) as a crosslinker. The study on drug loading, using salicylic acid (SA) as a model drug, was performed. The results showed that the encapsulation efficiency (EE) increased as drug-to-microgel ratio was increased. Higher EE can be achieved with the increase in degree of crosslinking, by increasing the amount of MBA from 0.01 g to 0.03 g. In addition, the highest EE (61.1%) was observed at pH 3. The highest release of SA (60%) was noticed at pH 2.4, while the lowest one (49.4%) was obtained at pH 7.4. Moreover, the highest release of SA was enhanced by the presence of 0.2 M NaCl. The pH- and ionic-sensitivity of CS/PHEMA could be useful as a sustained release delivery device, especially for oral delivery.

  17. A protein/antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications.

    PubMed

    Shi, Xuetao; Wang, Yingjun; Ren, Li; Huang, Wei; Wang, Dong-An

    2009-05-21

    Novel poly(lactic-co-glycolic acid) (PLGA)-hybridizing-lecithin scaffolds loaded with drug or protein were prepared with water/oil/water techniques and sintering microspheres technique. In such fabricated composite scaffolds (abbreviated "PLGA/Lec-SMS"), the introduction of lecithin component has been proven capable of largely enhancing Gentamicin (GS) and protein (Bovine Serum Albumin) encapsulation efficiency. The in vitro GS and BSA releasing profiles of PLGA/Lec-SMS system were plotted basing over 60 days' and 18 days' data collection, respectively. It indicates a sustained releasing tendency despite a burst at the very beginning. The antibacterial properties of GS-laden scaffolds were determined in vitro, and the antibacterial activity of scaffolds was enhanced by incorporating lecithin into PLGA bulks. Additionally, mesenchymal stem cells (MSCs) were seeded onto PLGA-SMS and PLGA/Lec-SMS in vitro. The outcome confirmed PLGA/Lec(5%)-SMS functions to improve MSC proliferation and also to enhance general ALP production and calcium secretion which is the vital markers for osteogenesis. In conclusion, this newly designed antibiotic releasing PLGA/Lec-SMS is promising for bone-repairing therapeutics.

  18. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs.

  19. Protein tyrosine phosphatases regulate arachidonic acid release, StAR induction and steroidogenesis acting on a hormone-dependent arachidonic acid-preferring acyl-CoA synthetase.

    PubMed

    Cano, Florencia; Poderoso, Cecilia; Cornejo Maciel, Fabiana; Castilla, Rocío; Maloberti, Paula; Castillo, Fernanda; Neuman, Isabel; Paz, Cristina; Podestá, Ernesto J

    2006-06-01

    The activation of the rate-limiting step in steroid biosynthesis, that is the transport of cholesterol into the mitochondria, is dependent on PKA-mediated events triggered by hormones like ACTH and LH. Two of such events are the protein tyrosine dephosphorylation mediated by protein tyrosine phosphatases (PTPs) and the release of arachidonic acid (AA) mediated by two enzymes, ACS4 (acyl-CoA synthetase 4) and Acot2 (mitochondrial thioesterase). ACTH and LH regulate the activity of PTPs and Acot2 and promote the induction of ACS4. Here we analyzed the involvement of PTPs on the expression of ACS4. We found that two PTP inhibitors, acting through different mechanisms, are both able to abrogate the hormonal effect on ACS4 induction. PTP inhibitors also reduce the effect of cAMP on steroidogenesis and on the level of StAR protein, which facilitates the access of cholesterol into the mitochondria. Moreover, our results indicate that exogenous AA is able to overcome the inhibition produced by PTP inhibitors on StAR protein level and steroidogenesis. Then, here we describe a link between PTP activity and AA release, since ACS4 induction is under the control of PTP activity, being a key event for AA release, StAR induction and steroidogenesis.

  20. Kinetic energy releases of small amino acids upon interaction with keV ions

    NASA Astrophysics Data System (ADS)

    Bari, S.; Alvarado, F.; Postma, J.; Sobocinski, P.; Hoekstra, R.; Schlathölter, T.

    2009-01-01

    In chromatin, DNA is tightly packed into one complex together with histone and non-histone proteins. These proteins are known to protect the DNA against indirect and to some extent even direct radiation damage. Radiation action upon amino acids is thus one of the primary steps in biological radiation action. In this paper we investigate the ionization and fragmentation of the gas-phase amino acids glycine, alanine and valine upon interaction with keV α-particles. High resolution coincidence time-of-flight mass spectrometry is used to determine the dominant fragmentation channels as well as fragment kinetic energies.

  1. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive.

  2. Vacuolar Release of 1-(Malonylamino)cyclopropane-1-Carboxylic Acid, the Conjugated Form of the Ethylene Precursor 1

    PubMed Central

    Pedreño, Maria A.; Bouzayen, Mondher; Pech, Jean Claude; Marigo, Gérard; Latché, Alain

    1991-01-01

    The mechanisms underlying the vacuolar retention or release of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), the conjugated form of the ethylene precursor, has been studied in grape (Vitis vinifera) cells grown in vitro using the technique of compartmental analysis of radioisotope elution. Following its accumulation in the vacuole, M[2,3-14C]ACC could be released from cells when the vacuolar pH was artificially lowered by external buffers from its initial value of 6.2 to below the critical pH of 5.5. Successive release and retention of vacuolar MACC could be achieved by switching the vacuolar pH from values lower and higher than 5.5. The rate constant of efflux was highly correlated with the vacuolar pH. In plant tissues having low vacuolar pH under natural conditions, e.g. apple fruits (pH 4.2) and mung bean hypocotyls (pH 5.3), an efflux of M[2,3-14C]ACC also occurred. Its rate constant closely corresponded to the theorical values derived from the correlation established for grape cells. Evidence is presented that the efflux proceeded by passive lipophilic membrane diffusion only when MACC was in the protonated form. In contrast to other organic anions like malic acid, the mono and diionic species could not permeate the tonoplast, thus indicating the strict dependence of MACC retention upon the ionic status of the molecule and the absence of carrier-mediated efflux. PMID:16668574

  3. Novel High Efficient Coatings for Anti-Microbial Surgical Sutures Using Chlorhexidine in Fatty Acid Slow-Release Carrier Systems

    PubMed Central

    Obermeier, Andreas; Schneider, Jochen; Wehner, Steffen; Matl, Florian Dominik; Schieker, Matthias; von Eisenhart-Rothe, Rüdiger; Stemberger, Axel; Burgkart, Rainer

    2014-01-01

    Sutures can cause challenging surgical site infections, due to capillary effects resulting in bacteria permeating wounds. Anti-microbial sutures may avoid these complications by inhibiting bacterial pathogens. Recently, first triclosan-resistances were reported and therefore alternative substances are becoming clinically relevant. As triclosan alternative chlorhexidine, the “gold standard” in oral antiseptics was used. The aim of the study was to optimize novel slow release chlorhexidine coatings based on fatty acids in surgical sutures, to reach a high anti-microbial efficacy and simultaneously high biocompatibility. Sutures were coated with chlorhexidine laurate and chlorhexidine palmitate solutions leading to 11, 22 or 33 µg/cm drug concentration per length. Drug release profiles were determined in aqueous elutions. Antibacterial efficacy against Staphylococcus aureus was assessed in agar diffusion tests. Biocompatibility was evaluated via established cytotoxicity assay (WST-1). A commercially triclosan-containing suture (Vicryl Plus), was used as anti-microbial reference. All coated sutures fulfilled European Pharmacopoeia required tensile strength and proved continuous slow drug release over 96 hours without complete wash out of the coated drug. High anti-microbial efficacy for up to 5 days was observed. Regarding biocompatibility, sutures using 11 µg/cm drug content displayed acceptable cytotoxic levels according to ISO 10993-5. The highest potential for human application were shown by the 11 µg/cm chlorhexidine coated sutures with palmitic acid. These novel coated sutures might be alternatives to already established anti-microbial sutures such as Vicryl Plus in case of triclosan-resistance. Chlorhexidine is already an established oral antiseptic, safety and efficacy should be proven for clinical applications in anti-microbial sutures. PMID:24983633

  4. RNA-Seq analysis and targeted mutagenesis for improved free fatty acid production in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background High-energy-density biofuels are typically derived from the fatty acid pathway, thus establishing free fatty acids (FFAs) as important fuel precursors. FFA production using photosynthetic microorganisms like cyanobacteria allows for direct conversion of carbon dioxide into fuel precursors. Recent studies investigating cyanobacterial FFA production have demonstrated the potential of this process, yet FFA production was also shown to have negative physiological effects on the cyanobacterial host, ultimately limiting high yields of FFAs. Results Cyanobacterial FFA production was shown to generate reactive oxygen species (ROS) and lead to increased cell membrane permeability. To identify genetic targets that may mitigate these toxic effects, RNA-seq analysis was used to investigate the host response of Synechococcus elongatus PCC 7942. Stress response, nitrogen metabolism, photosynthesis, and protein folding genes were up-regulated during FFA production while genes involved in carbon and hydrogen metabolisms were down-regulated. Select genes were targeted for mutagenesis to confirm their role in mitigating FFA toxicity. Gene knockout of two porins and the overexpression of ROS-degrading proteins and hypothetical proteins reduced the toxic effects of FFA production, allowing for improved growth, physiology, and FFA yields. Comparative transcriptomics, analyzing gene expression changes associated with FFA production and other stress conditions, identified additional key genes involved in cyanobacterial stress response. Conclusions A total of 15 gene targets were identified to reduce the toxic effects of FFA production. While single-gene targeted mutagenesis led to minor increases in FFA production, the combination of these targeted mutations may yield additional improvement, advancing the development of high-energy-density fuels derived from cyanobacteria. PMID:23919451

  5. Depression of serum calcium by increased plasma free fatty acids in the rat: a mechanism for hypocalcemia in acute pancreatitis.

    PubMed

    Warshaw, A L; Lee, K H; Napier, T W; Fournier, P O; Duchainey, D; Axelrod, L

    1985-10-01

    Some patients with hypertriglyceridemia and acute pancreatitis have marked hypocalcemia and high levels of plasma free fatty acids (FFAs). This study tests the hypothesis that increased plasma FFAs can significantly reduce the calcium level in vivo, a phenomenon which is different from local formation of calcium soaps due to lipolysis of adipose tissue lipids. Free fatty acid elevation was induced in rats by the administration of heparin and by the infusion of triglycerides. The results show that, compared with controls, induction of elevated FFA (from 1.57 +/- 0.08 mEq/L to 5.64 +/- 0.35, mean +/- SEM) causes the concentration of calcium to fall rapidly (from 9.04 +/- 0.06 mg/dl to 8.42 +/- 0.10, p less than 0.001). There is a significant (p less than 0.001) positive correlation between spontaneous baseline concentration of FFA and the responsiveness of calcium concentration to FFA challenge. At near-normal levels of FFA there is a significant (p less than 0.001) correlation between the magnitude of increased FFA concentration and decreased calcium concentration. Additional studies in vivo and in vitro show that elevated plasma triglycerides per se did not interfere with measurement of calcium concentration; however, FFA-albumin complexes bind calcium and lower its measured value. These findings suggest that (a) changes in the concentration of FFA occurring spontaneously may affect measured serum calcium concentration; (b) the observed depression of serum calcium concentration may be due in part to intravascular sequestration of calcium by FFA, but increased flux of circulating calcium-FFA complexes into extravascular and intracellular sites may also be important; (c) the markedly increased FFA concentration in some patients with acute pancreatitis may contribute significantly to hypocalcemia and calcium flux in these patients. As parathyroid hormone secretion, function, or integrity may be impaired in pancreatitis, the depressant effect of FFA could be even

  6. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  7. Hydroxyeicosatetraenoic acids released through the cytochrome P-450 pathway regulate 3T6 fibroblast growth.

    PubMed

    Nieves, Diana; Moreno, Juan José

    2006-12-01

    Eicosanoids participate in the regulation of cellular proliferation. Thus, we observed that prostaglandin E(2) interaction with membrane receptors is involved in the control of 3T6 fibroblast growth induced by serum. However, our results suggested that another arachidonic acid pathway might be implicated in these events. Our results show that 3T6 fibroblasts synthesized hydroxyeicosatetraenoic acids (HETEs) such as 12-HETE through the cytochrome P-450 (CYP450) pathway. However, 3T6 fibroblasts did not produce leukotriene B(4) (LTB(4)), and lipoxygenase inhibitors and LT antagonists failed to inhibit 3T6 fibroblast growth induced by FBS. In contrast, we observed that CYP450 inhibitors such as SKF-525A, 17-octadecynoic acid, 1-aminobenzotriazole, and 6-(2-propargyloxyphenyl)hexanoic acid reduced 12(S)-HETE levels, 3T6 fibroblast growth, and DNA synthesis induced by FBS. The impairment of DNA synthesis and 3T6 fibroblast growth induced by SKF-525A were reversed by exogenous addition of HETEs. Moreover, we report that 5-HETE, 12(S)-HETE, and 15(S)-HETE are mitogenic on 3T6 fibroblast in the absence of another growth factor, and this effect was dependent on the activation of the phosphatidylinositol-3-kinase pathway. In conclusion, our results show that HETEs, probably produced by CYP450, are involved in the control of 3T6 fibroblast growth.

  8. Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Aspergillus niger ferulic acid esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interactio...

  9. The influence of the copolymer composition on the diltiazem hydrochloride release from a series of pH-sensitive poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels.

    PubMed

    Díez-Peña, Eva; Frutos, Paloma; Frutos, Gloria; Quijada-Garrido, Isabel; Barrales-Rienda, José Manuel

    2004-04-20

    A series of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (P[(N-iPAAm)-co-(MAA)]) hydrogels was investigated to determine the composition that exhibits a better pH-modulated release of diltiazem hydrochloride (DIL.HCl). For this purpose hydrogel slabs were loaded with DIL.HCl by the immersion method, and its release under acidic medium (0.1N HCl, pH 1.2) and in phosphate buffer pH 7.2, using United States Pharmacopeia (USP) 24 Apparatus 1, was investigated. According to the results from the slabs, copolymers with 85% mol N-iPAAm content were selected to prepare tablets with different particle size. The effect of pH and particle size changes on DIL.HCl release from these last hydrogel tablets was investigated by a stepwise pH variation of the dissolution medium. The amount of DIL.HCl released from high N-iPAAm content copolymer slabs under acidic pH medium was not only very low but it was also released at a slow rate. In the 85% N-iPAAm tablets, significant differences between and within release profiles were found as a function of particle size and pH, respectively. A relationship between particle size and release rate has been found. The lower DIL.HCl release at acidic pH from enriched N-iPAAm copolymers is interpreted by a cooperative thermal- and pH-collapse. Although for the whole range of copolymer composition a dependence of the equilibrium of swelling on the pH was found, DIL.HCl release experiments indicated that hydrogels with 85% mol N-iPAAm are the more adequate to be used for modulated drug delivery systems. Additionally, the particle size of the tablet can be used to tailor the release rate.

  10. Treatment of Type 2 Diabetes by Free Fatty Acid Receptor Agonists

    PubMed Central

    Watterson, Kenneth R.; Hudson, Brian D.; Ulven, Trond; Milligan, Graeme

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently been developed as potential treatments for type 2 diabetes (T2D). In particular, clinical studies show that Fasiglifam, an agonist of the long-chain FFA receptor, FFA1, improved glycemic control and reduced HbA1c levels in T2D patients, with a reduced risk of hypoglycemia. However, this ligand was removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3 activation. In this review, we therefore show that FFA receptor agonism is a potential clinical target for T2D treatment and discuss ongoing drug development programs within industry and academia aimed at improving the safety and effectiveness of these potential treatments. PMID:25221541

  11. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification.

    PubMed

    Zhang, Hongdan; Wu, Shubin

    2014-12-03

    Acetic acid ethanol-based organosolv pretreatment of sugar cane bagasse was performed to enhance enzymatic hydrolysis. The effect of different parameters (including temperature, reaction time, solvent concentration, and acid catalyst dose) on pretreatment prehydrolyzate and subsequent enzymatic digestibility was determined. During the pretreatment process, 11.83 g of xylose based on 100 g of raw material could be obtained. After the ethanol-based pretreatment, the enzymatic hydrolysis was enhanced and the highest glucose yield of 40.99 g based on 100 g of raw material could be obtained, representing 93.8% of glucose in sugar cane bagasse. The maximum total sugar yields occurred at 190 °C, 45 min, 60:40 ethanol/water, and 5% dosage of acetic acid, reaching 58.36 g (including 17.69 g of xylose and 40.67 g of glucose) based on 100 g of raw material, representing 85.4% of total sugars in raw material. Furthermore, characterization of the pretreated sugar cane bagasse using X-ray diffraction and scanning electron microscopy analyses were also developed. The results suggested that ethanol-based organosolv pretreatment could enhance enzymatic digestibilities because of the delignification and removal of xylan.

  12. Associations of free fatty acids with insulin secretion and action among African-American and European-American girls and women.

    PubMed

    Goree, Laura Lee T; Darnell, Betty E; Oster, Robert A; Brown, Marian A; Gower, Barbara A

    2010-02-01

    Ethnic differences in insulin secretion and action between African Americans (AAs) and European Americans (EAs) may influence mobilization of free fatty acids (FFAs). We tested the hypotheses that FFA concentrations would be associated with measures of insulin secretion and action before and during a glucose challenge test. Subjects were 48 prepubertal girls, 60 premenopausal women, and 46 postmenopausal women. Fasting insulin (insulin(0)), the acute insulin response to glucose (AIR(g)), the insulin sensitivity index (S(I)), basal and nadir FFA (FFA(0), FFA(nadir)), and nadir time (TIME(nadir)) were determined during an intravenous glucose tolerance test (IVGTT). Stepwise multiple linear regression (MLR) analysis was conducted to identify associations of FFA(0), FFA(nadir), and TIME(nadir) with ethnicity, age group, insulin measures, indexes of body composition from dual-energy X-ray absorptiometry, and measures of fat distribution from computed tomography scan. In this population, insulin(0) and AIR(g) were higher among AAs vs. EAs, whereas S(I) was lower, independent of age group. MLR analyses indicated that FFA(0) was best predicted by lean tissue mass (LTM), leg fat mass, ethnicity (lower in AAs), S(I), and insulin(0). FFA(nadir) was best predicted by FFA(0), age group, and intra-abdominal adipose tissue (IAAT). TIME(nadir) was best predicted by leg fat mass, AIR(g), and S(I). In conclusion, indexes of insulin secretion and action were associated with FFA dynamics in healthy girls and women. Lower FFA(0) among AAs was independent of insulin(0) and S(I). Whether lower FFA(0) is associated with substrate oxidation or risk for obesity remains to be determined.

  13. In vitro analysis of flufenamic acid activity against Candida albicans biofilms.

    PubMed

    Chavez-Dozal, Alba A; Jahng, Maximillian; Rane, Hallie S; Asare, Kingsley; Kulkarny, Vibhati V; Bernardo, Stella M; Lee, Samuel A

    2014-01-01

    In a recent high-throughput screen against specific Candida albicans drug targets, several compounds that exhibited non-specific antifungal activity were identified, including the non-steroidal anti-inflammatory drug flufenamic acid (FFA). This study sought to determine the effect of different doses of FFA, alone or in combination with fixed concentrations of the standard antifungal agents amphotericin B (AmB), caspofungin (CAS) or fluconazole (FLU), for the prevention and treatment of C. albicans biofilms. Biofilms were formed in a 96-well microplate followed by evaluation of antifungal activity using the XTT assay. FFA concentrations of ≥512mg/L demonstrated >80% prevention of biofilm formation. FFA concentrations of 1024mg/L demonstrated >85% reduction of mature biofilms. When FFA (≥8mg/L) was used in combination with FLU (32mg/L), antifungal activity increased to 99% for the prevention of biofilm formation. Similarly, when a FFA concentration of ≥8mg/L was used in combination with either AmB (0.25mg/L) or CAS (0.125mg/L), antifungal activity also increased up to 99% for the prevention of biofilm formation. The inhibitory effect of FFA on C. albicans biofilms has not been reported previously, therefore these findings suggest that FFA in combination with traditional antifungals might be useful for the treatment and prevention of C. albicans biofilms.

  14. Flufenamic acid prevents behavioral manifestations of salicylate-induced tinnitus in the rat

    PubMed Central

    Ustundag, Yasemin; Bulut, Funda; Demir, Caner Feyzi; Bal, Ali

    2016-01-01

    Introduction Tinnitus is defined as a phantom auditory sensation, the perception of sound in the absence of external acoustic stimulation. Given that flufenamic acid (FFA) blocks TRPM2 cation channels, resulting in reduced neuronal excitability, we aimed to investigate whether FFA suppresses the behavioral manifestation of sodium salicylate (SSA)-induced tinnitus in rats. Material and methods Tinnitus was evaluated using a conditioned lick suppression model of behavioral testing. Thirty-one Wistar rats, randomly divided into four treatment groups, were trained and tested in the behavioral experiment: (1) control group: DMSO + saline (n = 6), (2) SSA group: DMSO + SSA (n = 6), (3) FFA group: FFA (66 mg/kg bw) + saline (n = 9), (4) FFA + SSA group: FFA (66 mg/kg bw) + SSA (400 mg/kg bw) (n = 10). Localization of TRPM2 to the plasma membrane of cochlear nucleus neurons was demonstrated by confocal microscopy. Results Pavlovian training resulted in strong suppression of licking, having a mean value of 0.05 ±0.03 on extinction day 1, which is below the suppression training criterion level of 0.20 in control tinnitus animals. The suppression rate for rats having both FFA (66 mg/kg bw) and SSA (400 mg/kg bw) injections was significantly lower than that for the rats having SSA injections (p < 0.01). Conclusions We suggest that SSA-induced tinnitus could possibly be prevented by administration of a TRPM2 ion channel antagonist, FFA at 66 mg/kg bw. PMID:26925138

  15. Serum fatty acid binding protein 4, free fatty acids and metabolic risk markers

    PubMed Central

    Karakas, Sidika E.; Almario, Rogelio U.; Kim, Kyoungmi

    2009-01-01

    Fatty acid binding protein (FABP) 4 chaperones free fatty acids (FFA) in the adipocytes during lipolysis. Serum FFA relates to Metabolic Syndrome (METS) and serum FABP4 is emerging as a novel risk marker. In 36 overweight/obese women, serum FABP4 and FFA were measured hourly during 5-hour oral glucose tolerance test (OGTT). Insulin resistance was determined using frequently sampled intravenous GTT (FS-IVGTT). Serum lipids and inflammation markers were measured at fasting. During OGTT, serum FABP4 decreased by 40%, reaching its nadir at 3h (from 45.3±3.1 to 31.9±1.6 ng/mL) and stayed below the baseline at 5 h (35.9±2.2 ng/mL) (p < 0.0001 for both, compared to the baseline). Serum FFA decreased by 10 fold, reaching a nadir at 2h (from 0.611±0.033 to 0.067±0.004 mmol/L), then rebounded to 0.816±0.035 mmol/ L at 5h (p < 0.001 for both, compared to baseline). Both fasting-FABP4 and nadir-FABP4 correlated with obesity. Nadir-FABP4 correlated also with insulin resistance parameters from FS-IVGTT and with inflammation. Nadir-FFA, but not fasting-FFA, correlated with the METS-parameters. In conclusion, fasting-FABP4 related to metabolic risk markers more strongly than fasting-FFA. Nadir-FABP4 and nadir-FFA measured after glucose loading may provide better risk assessment than the fasting values. PMID:19394980

  16. Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism

    PubMed Central

    Zheng, Chuanlin; Halaly, Tamar; Acheampong, Atiako Kwame; Takebayashi, Yumiko; Jikumaru, Yusuke; Kamiya, Yuji; Or, Etti

    2015-01-01

    In warm-winter regions, induction of dormancy release by hydrogen cyanamide (HC) is mandatory for commercial table grape production. Induction of respiratory stress by HC leads to dormancy release via an uncharacterized biochemical cascade that could reveal the mechanism underlying this phenomenon. Previous studies proposed a central role for abscisic acid (ABA) in the repression of bud meristem activity, and suggested its removal as a critical step in the HC-induced cascade. In the current study, support for these assumptions was sought. The data show that ABA indeed inhibits dormancy release in grape (Vitis vinifera) buds and attenuates the advancing effect of HC. However, HC-dependent recovery was detected, and was affected by dormancy status. HC reduced VvXERICO and VvNCED transcript levels and induced levels of VvABA8’OH homologues. Regulation of these central players in ABA metabolism correlated with decreased ABA and increased ABA catabolite levels in HC-treated buds. Interestingly, an inhibitor of ethylene signalling attenuated these effects of HC on ABA metabolism. HC also modulated the expression of ABA signalling regulators, in a manner that supports a decreased ABA level and response. Taken together, the data support HC-induced removal of ABA-mediated repression via regulation of ABA metabolism and signalling. Expression profiling during the natural dormancy cycle revealed that at maximal dormancy, the HC-regulated VvNCED1 transcript level starts to drop. In parallel, levels of VvA8H-CYP707A4 transcript and ABA catabolites increase sharply. This may provide initial support for the involvement of ABA metabolism also in the execution of natural dormancy. PMID:25560179

  17. Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release.

    PubMed

    Kaffashi, Babak; Davoodi, Saeed; Oliaei, Erfan

    2016-07-11

    In this study, the antibacterial bionanocomposites of poly(ε-caprolactone) (PCL) with different concentrations of triclosan (TC) loaded polylactic acid (PLA) nanoparticles (30wt% triclosan) (LATC30) were fabricated via a melt mixing process in order to lower the burst release of PCL and to extend the antibacterial activity during its performance. Due to the PLA's higher glass transition temperature (Tg) and less flexibility compared with PCL; the PLA nanoparticles efficiently trapped the TC particles, reduced the burst release of TC from the bionanocomposites; and extended the antibacterial property of the samples up to two years. The melt mixing temperature was adjusted to a temperature lower than the melting point of LATC30 nanoparticles; therefore, these nanoparticles were dispersed in the PCL matrix without any chemical reaction and/or drug extraction. The sustained release behavior of TC from PCL remained unchanged since no significant changes occurred in the samples' crystallinity compared with that in the neat PCL. The elastic moduli of samples were enhanced once LATC30 is included. This is necessary since the elastic modulus is decreased with water absorption. The rheological behaviors of samples showed appropriate properties for melt electro-spinning. A stable process was established as the relaxation time of the bionanocomposites was increased. The hydrophilic properties of samples were increased with increasing LATC30. The proliferation rate of the fibroblast (L929) cells was enhanced as the content of nanoparticles was increased. A system similar to this could be implemented to prepare long-term antibacterial and drug delivery systems based on PCL and various low molecular weight drugs. The prepared bionanocomposites are considered as candidates for the soft connective tissue engineering and long-term drug delivery.

  18. Modulation of arachidonic acid release and membrane fluidity by albumin in vascular smooth muscle and endothelial cells.

    PubMed

    Beck, R; Bertolino, S; Abbot, S E; Aaronson, P I; Smirnov, S V

    1998-11-02

    Albumin is the major plasma protein circulating in blood. Albumin potently decreases capillary permeability, although the mechanisms are not understood completely. Albumin also effectively binds arachidonic acid (AA), which increases capillary permeability. To investigate the interactions of BSA and AA with the cell membrane, the effect of these substances on [3H]AA release and membrane fluidity was studied in vascular myocytes and endothelial cells. BSA (0.2 and 1 mg . mL-1) stimulated a significant release of [3H]AA from both intact rat aorta and cultured smooth muscle cells. This effect was not mimicked by gamma-globulin or myoglobin (both 1 mg . mL-1) in intact tissue. BSA, but not gamma-globulin and myoglobin, decreased the membrane fluidity (assessed as changes in the steady-state fluorescence anisotropy of 1,6-diphenyl-1,3, 5-hexatriene) in a concentration-dependent manner with a half-maximum concentration between 0.007 and 0.4 mg . mL-1 in both freshly isolated and cultured rat aortic myocytes and human umbilical vein endothelial cells. AA (1 to 200 micromol/L) caused the opposite effect, increasing membrane fluidity and antagonizing the effect of BSA. BSA modified at its arginine residues, which are thought to be important in AA binding, did not stimulate [3H]AA release and was significantly less potent than native BSA in altering the membrane fluidity. The effect of BSA can be explained by a high-affinity binding of AA to the protein and extraction of AA from the cell membrane. The interaction between BSA and AA could play a role in the regulation of vascular permeability.

  19. Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan.

    PubMed

    Lim, S T; Martin, G P; Berry, D J; Brown, M B

    2000-05-15

    Rapid mucociliary clearance of intranasally administered drugs is often a key factor in determining the bioavailability of such therapeutic agents. The use of mucoadhesive microparticles provide a potential strategy for improving retention of drugs within the nasal cavity, and thereby improve the resultant pharmacokinetic profile. This study describes the comparison of a number of novel, potentially mucoadhesive microspheres, prepared by solvent evaporation, composed of hyaluronic acid (HA), chitosan glutamate (CH) and a combination of the two with microcapsules of HA and gelatin prepared by complex coacervation. The microspheres had a mean particle size of 19.91+/-1.57 microm (HA), 28.60+/-1.34 microm (HA/CH), 29.47+/-3.58 microm (CH). The incorporation of a model drug, gentamicin sulphate (%) was 46.90+/-0.53 (HA), 28.04+/-1.21 (HA/CH) and 13.32+/-1.04 (CH). The in vitro release profiles of microsphere formulations prepared by solvent evaporation were determined. The release of gentamicin from HA and HA/CH was 50% longer than CH and was best modelled as a release from a matrix. The degree of mucoadhesion of each formulation was investigated by determining the mucociliary transport rate (MTR) of the microparticles across an isolated frog palate. Acacia/gelatin microcapsules were used as a positive control. The rank order of mucoadhesion for the microspheres and the microparticles was HA=HA/CH>CH>HA/gelatin>CHins. The entrapment of gentamicin did not affect the mucoadhesive properties (P>0.05, Mann--Whitney U-test). The combination of HA with chitosan may afford additional advantages in combining the mucoadhesive potential of HA with the penetration enhancing effect of chitosan.

  20. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility*

    PubMed Central

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-01-01

    Within the secreted phospholipase A2 (sPLA2) family, group X sPLA2 (sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies using Pla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2 (cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2. Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizer in vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization. PMID:26828067

  1. Group X Secreted Phospholipase A2 Releases ω3 Polyunsaturated Fatty Acids, Suppresses Colitis, and Promotes Sperm Fertility.

    PubMed

    Murase, Remi; Sato, Hiroyasu; Yamamoto, Kei; Ushida, Ayako; Nishito, Yasumasa; Ikeda, Kazutaka; Kobayashi, Tetsuyuki; Yamamoto, Toshinori; Taketomi, Yoshitaka; Murakami, Makoto

    2016-03-25

    Within the secreted phospholipase A2(sPLA2) family, group X sPLA2(sPLA2-X) has the highest capacity to hydrolyze cellular membranes and has long been thought to promote inflammation by releasing arachidonic acid, a precursor of pro-inflammatory eicosanoids. Unexpectedly, we found that transgenic mice globally overexpressing human sPLA2-X (PLA2G10-Tg) displayed striking immunosuppressive and lean phenotypes with lymphopenia and increased M2-like macrophages, accompanied by marked elevation of free ω3 polyunsaturated fatty acids (PUFAs) and their metabolites. Studies usingPla2g10-deficient mice revealed that endogenous sPLA2-X, which is highly expressed in the colon epithelium and spermatozoa, mobilized ω3 PUFAs or their metabolites to protect against dextran sulfate-induced colitis and to promote fertilization, respectively. In colitis, sPLA2-X deficiency increased colorectal expression of Th17 cytokines, and ω3 PUFAs attenuated their production by lamina propria cells partly through the fatty acid receptor GPR120. In comparison, cytosolic phospholipase A2(cPLA2α) protects from colitis by mobilizing ω6 arachidonic acid metabolites, including prostaglandin E2 Thus, our results underscore a previously unrecognized role of sPLA2-X as an ω3 PUFA mobilizerin vivo, segregated mobilization of ω3 and ω6 PUFA metabolites by sPLA2-X and cPLA2α, respectively, in protection against colitis, and the novel role of a particular sPLA2-X-driven PUFA in fertilization.

  2. Quinolinic acid released from polymeric brain implants causes behavioral and neuroanatomical alterations in a rodent model of Huntington's disease.

    PubMed

    Haik, K L; Shear, D A; Schroeder, U; Sabel, B A; Dunbar, G L

    2000-06-01

    Quinolinic acid (QA) is an N-methyl-d-aspartate agonist that has been shown to produce neurotoxic effects that mimic certain neurodegenerative diseases when administered to laboratory animals. Intrastriatal injections of QA in rats have been used extensively to produce some of the neuropathological and behavioral deficits that are analogous to Huntington's disease (HD). However, acute intrastriatal injections of QA produce symptoms that are not analogous to the progressive nature of HD. Thus far, models using chronic administration of QA that produce HD-like behavioral and neuroanatomical changes have necessitated the use of a relatively bulky and fragile microdialytic pump apparatus. The present study tested an alternative way of chronically administering QA. Specifically, this study tested whether gradual release of QA from ethylene vinylacetate (EVA) polymers could produce symptoms analogous to HD. Rats received either no implants or bilateral intrastriatal implants of polymers with or without QA. Subsequent tests for spontaneous motor activity (SMA), grip strength, balance, and learning ability in a radial-arm-water-maze task revealed QA-induced impairments in balance and learning ability, but did not affect grip strength or SMA. Histological analysis revealed QA-induced enlargement of lateral ventricles, striatal atrophy, and striatal neuronal loss, with relative sparing of NADPH-diaphorase-positive neurons. These results suggest that QA released from polymers can produce behavioral and neuropathological profiles analogous to early stages of HD and that EVA polymers offer a useful means of chronically delivering QA in rodent models of neurodegeneration.

  3. "Opening" the ferritin pore for iron release by mutation of conserved amino acids at interhelix and loop sites.

    PubMed

    Jin, W; Takagi, H; Pancorbo, B; Theil, E C

    2001-06-26

    Ferritin concentrates, stores, and detoxifies iron in most organisms. The iron is a solid, ferric oxide mineral (< or =4500 Fe) inside the protein shell. Eight pores are formed by subunit trimers of the 24 subunit protein. A role for the protein in controlling reduction and dissolution of the iron mineral was suggested in preliminary experiments [Takagi et al. (1998) J. Biol. Chem. 273, 18685-18688] with a proline/leucine substitution near the pore. Localized pore disorder in frog L134P crystals coincided with enhanced iron exit, triggered by reduction. In this report, nine additional substitutions of conserved amino acids near L134 were studied for effects on iron release. Alterations of a conserved hydrophobic pair, a conserved ion pair, and a loop at the ferritin pores all increased iron exit (3-30-fold). Protein assembly was unchanged, except for a slight decrease in volume (measured by gel filtration); ferroxidase activity was still in the millisecond range, but a small decrease indicates slight alteration of the channel from the pore to the oxidation site. The sensitivity of reductive iron exit rates to changes in conserved residues near the ferritin pores, associated with localized unfolding, suggests that the structure around the ferritin pores is a target for regulated protein unfolding and iron release.

  4. Improved Release of Celecoxib from High Drug Loading Amorphous Solid Dispersions Formulated with Polyacrylic Acid and Cellulose Derivatives.

    PubMed

    Xie, Tian; Taylor, Lynne S

    2016-03-07

    Amorphous solid dispersions (ASDs) have been extensively exploited as a strategy for improving the dissolution performance of poorly water-soluble drugs. However, factors underpinning the observed dissolution profiles are not clearly understood, and the choice of polymeric carriers is largely empirical. In the current study, the dissolution performance of a high drug loading ASD containing the poorly water-soluble, anti-inflammatory agent, celecoxib, was optimized by using binary polymers combinations. Polyacrylic acid (PAA), a highly water-soluble polymer, was used to substantially increase the dissolution rate of the drug, while hydroxypropyl methyl cellulose (HPMC) or HPMC acetate succinate (HPMCAS) were added to stabilize the solid amorphous matrix against crystallization upon hydration, as well as to maintain supersaturation. Quantitative measurements of the impact of the polymers on the solution nucleation and growth rates of celecoxib revealed that, while the cellulose derivatives are effective nucleation inhibitors, it is more difficult to completely prevent crystal growth in solutions containing seed crystals, in particular at high supersaturations. Therefore, it is critical to prevent the formation of crystals in the dissolving matrix during dissolution. By using certain ratios of HPMC and PAA, both rapid release as well as crystallization inhibition could be achieved, even at high drug loadings. Utilizing combinations of polymers may therefore be useful to tailor release profiles while providing optimized crystallization inhibition.

  5. Complexation With Human Serum Albumin Facilitates Sustained Release of Morin From Polylactic-Co-Glycolic Acid Nanoparticles.

    PubMed

    Ghosh, Pooja; Patwari, Jayita; Dasgupta, Swagata

    2017-03-02

    Understanding the interaction of proteins with nanoparticles has become an important area of research in biomedical and pharmaceutical fields. Morin is a flavonol which shows several properties including antioxidant, anticancer, and anti-inflammatory activities. However, the major limitation is its poor aqueous solubility. Therefore, morin-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (MPNPs) were prepared to improve the solubility of morin. The resulting MPNPs were characterized by spectroscopic and microscopic techniques. The nanoparticles were spherical with an average size of 237 ± 17 nm. UV-visible, fluorescence, and circular dichroism (CD) spectroscopy were employed to study the interaction of the MPNPs with human serum albumin (HSA). Our study revealed that a static fluorescence quenching mechanism was involved in the interaction between HSA and MPNPs. Hydrophobic interactions also play an important role in stabilizing the HSA-MPNP complex. CD results suggest that there is an alteration of the secondary structure of HSA in the presence of MPNPs. MPNPs exhibit antioxidant properties which are supported by the DPPH assay. We have further checked the effect of HSA on the antioxidant property of morin and MPNPs. HSA binding with MPNPs was also found to influence the in vitro release property of morin from MPNPs wherein a delayed release response is observed.

  6. Acid/Base-mediated uptake and release of halide anions with a preorganized aryl-triazole foldamer.

    PubMed

    Zhao, Wei; Wang, Ying; Shang, Jie; Che, Yanke; Jiang, Hua

    2015-05-18

    A new approach for the construction of artificial receptors capable of selectively uptake and release of halides to mimic the biological halide ions pumps is developed, in which the preorganized aryl-triazole foldamer was designed to bear a resorcinolic group in the central strand as a switch regulator. By using 1,8-diazabicyclo[5.4.0]undec-7-ene/picric acid as the trigger, the foldamer can be switched between "w"-shape and helical conformation. Due to the large, half-open cavity as well as the additional electrostatic repulsion between oxyanions and guest halide, the foldamer in "w"-shape possesses a much weaker affinity for chloride, bromide, and iodide anions than those in the helical conformation in 6:94 (v/v) [D6 ]DMSO/CDCl3 . When the foldamer and chloride ions have the same initial concentrations of 1 mM, 70 % chloride ions in the solution could be reversibly bound or released upon switching.

  7. Dose-related effects of lauric acid on antropyloroduodenal motility, gastrointestinal hormone release, appetite, and energy intake in healthy men.

    PubMed

    Little, Tanya J; Feltrin, Kate L; Horowitz, Michael; Smout, Andre J P M; Rades, Thomas; Meyer, James H; Pilichiewicz, Amelia N; Wishart, Judith; Feinle-Bisset, Christine

    2005-10-01

    We recently reported that intraduodenal infusion of lauric acid (C12) (0.375 kcal/min, 106 mM) stimulates isolated pyloric pressure waves (IPPWs), inhibits antral and duodenal pressure waves (PWs), stimulates release of cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1), and suppresses energy intake and that these effects are much greater than those seen in response to isocaloric decanoic acid (C10) infusion. Administration of C12 was, however, associated with nausea, confounding interpretation of the results. The aim of this study was to evaluate the effects of different intraduodenal doses of C12 on antropyloroduodenal (APD) motility, plasma CCK and GLP-1 concentrations, appetite, and energy intake. Thirteen healthy males were studied on 4 days in double-blind, randomized fashion. APD pressures, plasma CCK and GLP-1 concentrations, and appetite perceptions were measured during 90-min ID infusion of C12 at 0.1 (14 mM), 0.2 (28 mM), or 0.4 (56 mM) kcal/min or saline (control; rate 4 ml/min). Energy intake was determined at a buffet meal immediately following infusion. C12 dose-dependently stimulated IPPWs, decreased antral and duodenal motility, and stimulated secretion of CCK and GLP-1 (r > 0.4, P < 0.05 for all). C12 (0.4 kcal/min) suppressed energy intake compared with control, C12 (0.1 kcal/min), and C12 (0.2 kcal/min) (P < 0.05). These effects were observed in the absence of nausea. In conclusion, intraduodenal C12 dose-dependently modulated APD motility and gastrointestinal hormone release in healthy male subjects, whereas effects on energy intake were only apparent with the highest dose infused (0.4 kcal/min), possibly because only at this dose was modulation of APD motility and gastrointestinal hormone secretion sufficient for a suppressant effect on energy intake.

  8. Sustained release of anticancer agent phytic acid from its chitosan-coated magnetic nanoparticles for drug-delivery system

    PubMed Central

    Barahuie, Farahnaz; Dorniani, Dena; Saifullah, Bullo; Gothai, Sivapragasam; Hussein, Mohd Zobir; Pandurangan, Ashok Kumar; Arulselvan, Palanisamy; Norhaizan, Mohd Esa

    2017-01-01

    Chitosan (CS) iron oxide magnetic nanoparticles (MNPs) were coated with phytic acid (PTA) to form phytic acid-chitosan-iron oxide nanocomposite (PTA-CS-MNP). The obtained nanocomposite and nanocarrier were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry, transmission electron microscopy, and thermogravimetric and differential thermogravimetric analyses. Fourier transform infrared spectra and thermal analysis of MNPs and PTA-CS-MNP nanocomposite confirmed the binding of CS on the surface of MNPs and the loading of PTA in the PTA-CS-MNP nanocomposite. The coating process enhanced the thermal stability of the anticancer nanocomposite obtained. X-ray diffraction results showed that the MNPs and PTA-CS-MNP nanocomposite are pure magnetite. Drug loading was estimated using ultraviolet-visible spectroscopy and showing a 12.9% in the designed nanocomposite. Magnetization curves demonstrated that the synthesized MNPs and nanocomposite were superparamagnetic with saturation magnetizations of 53.25 emu/g and 42.15 emu/g, respectively. The release study showed that around 86% and 93% of PTA from PTA-CS-MNP nanocomposite could be released within 127 and 56 hours by a phosphate buffer solution at pH 7.4 and 4.8, respectively, in a sustained manner and governed by pseudo-second order kinetic model. The cytotoxicity of the compounds on HT-29 colon cancer cells was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The HT-29 cell line was more sensitive against PTA-CS-MNP nanocomposite than PTA alone. No cytotoxic effect was observed on normal cells (3T3 fibroblast cells). This result indicates that PTA-CS-MNP nanocomposite can inhibit the proliferation of colon cancer cells without causing any harm to normal cell. PMID:28392693

  9. Age-dependent changes in amino acid phenotype and the role of glutamate release from hypothalamic proopiomelanocortin neurons.

    PubMed

    Dennison, Christina S; King, Connie M; Dicken, Matthew S; Hentges, Shane T

    2016-04-15

    Hypothalamic proopiomelanocortin (POMC) neurons are important regulators of energy balance. Recent studies indicate that in addition to their peptides, POMC neurons can release either the amino acid (AA) transmitter gamma-aminobutyric acid (GABA) or glutamate. A small subset of POMC neurons appears to have a dual AA phenotype based on coexpression of mRNA for the vesicular glutamate transporter (vGlut2) and the GABA synthetic enzyme Gad67. To determine whether the colocalization of GABAergic and glutamatergic markers may be indicative of a switch in AA transmitter phenotype, fluorescent in situ hybridization was used to detect vGlut2 and Gad mRNA in POMC neurons during early postnatal development. The percentage of POMC neurons expressing vGlut2 mRNA in POMC neurons progressively decreased from ∼40% at day 1 to less than 10% by 8 weeks of age, whereas Gad67 was only expressed in ∼10% of POMC neurons at day 1 and increased until ∼45% of POMC neurons coexpressed Gad67 at 8 weeks of age. To determine whether the expression of vGlut2 may play a role in energy balance regulation, genetic deletion of vGlut2 in POMC neurons was accomplished using Cre-lox technology. Male, but not female, mice lacking vGlut2 in POMC neurons were unable to maintain energy balance to the same extent as control mice when fed a high-fat diet. Altogether, the results indicate that POMC neurons are largely glutamatergic early in life and that the release of glutamate from these cells is involved in sex- and diet-specific regulation of energy balance.

  10. Hyaluronic acid attenuates osteoarthritis development in the anterior cruciate ligament-transected knee: Association with excitatory amino acid release in the joint dialysate.

    PubMed

    Jean, Yen-Hsuan; Wen, Zhi-Hong; Chang, Yi-Chen; Lee, Herng-Sheng; Hsieh, Shih-Peng; Wu, Ching-Tang; Yeh, Chun-Chang; Wong, Chih-Shung

    2006-05-01

    We previously reported increased release of the excitatory amino acid (EAA) neurotransmitters, glutamate and aspartate, during the early stage of experimental osteoarthritis (OA). Our present objective was to study the effect of intraarticular injection of hyaluronic acid (HA) on OA development, and to analyze concomitant changes in EAA levels in dialysates of anterior cruciate ligament-transected (ACLT) knee joints. OA was induced in Wistar rats by ACLT of one hindlimb; the knee of the other hindlimb was used as the sham-operated control. HA group (n = 12) were injected intraarticularly in the ACLT knee with 1 mg of HA once a week for 5 consecutive weeks, starting at 8 weeks after surgery. Saline group (n = 12) were injected as above with normal saline. The sham-operated group, underwent arthrotomy, but not ACLT, and received no treatment (n = 14). Twenty weeks after surgery, knee joint dialysates were collected by microdialysis and EAA levels assayed by high-performance liquid chromatography, and gross morphological examination and histopathological evaluation were performed on the medial femoral condyles and synovia. Rats receiving intraarticular HA injections showed a significantly lower degree of cartilage degeneration on the medial femoral condyle at both the macroscopic level and on the Mankin grading scale than rats receiving saline injections. Intraarticular HA treatment also suppressed synovitis. Moreover, glutamate and aspartate levels were significantly reduced in the HA group compared to the saline group. Intraarticular injection of HA limits articular cartilage and synovium damage and OA formation, and, in parallel, reduces EAA levels in ACLT joint dialysates. This study suggests that the underlying mechanism of the anti-inflammatory effect of HA is to inhibit glutamate and aspartate release in ACLT knee joints, which attenuates the early development of OA.

  11. Enhancement of osteoinduction by continual simvastatin release from poly(lactic-co-glycolic acid)-hydroxyapatite-simvastatin nano-fibrous scaffold.

    PubMed

    Jiang, Liming; Sun, Haizhu; Yuan, Anliang; Zhang, Kai; Li, Daowei; Li, Chen; Shi, Ce; Li, Xiangwei; Gao, Kai; Zheng, Changyu; Yang, Bai; Sun, Hongchen

    2013-11-01

    Simvastatin is considered as a stimulator for bone formation. However, the half-life for simvastatin is generally 2 hours, which means, it is difficult to maintain biologically active simvastatin in vivo. To overcome this limitation, we created a system to slowly release simvastatin in vitro and in vivo. We constructed a poly(lactic-co-glycolic acid)/hydroxyapatite nano-fibrous scaffold to carry simvastatin. Releasing assays showed that simvastatin was released from poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin quickly within - 15 days, and small amounts continued to be released through day 56 (experiments terminated). MTT assays demonstrated that both poly(lactic-co-glycolic acid)/hydroxyapatite and poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin promoted MC3T3-E1 cell proliferation. However, Alkaline phosphatase assays showed that only poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin scaffold significantly promoted the osteogenic differentiation of MC3T3-E1 cells in vitro on day 14. To further test in vivo, we created calvaria bone defect models and implanted either poly(lactic-co-glycolic acid)/hydroxyapatite or poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin. After 4 or 8 weeks post-implantation, the results indicated that poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin scaffold induced bone formation more efficiently than poly(lactic-co-glycolic acid)/hydroxyapatite alone. Our data demonstrates that poly(lactic-co-glycolic acid)/hydroxyapatite/simvastatin has the potential to aid in healing bone defects and promoting bone regeneration in the future although we still need to optimize this complex to efficiently promote bone regeneration.

  12. Homologous down-regulation of growth hormone-releasing hormone receptor messenger ribonucleic acid levels.

    PubMed

    Aleppo, G; Moskal, S F; De Grandis, P A; Kineman, R D; Frohman, L A

    1997-03-01

    Repeated stimulation of pituitary cell cultures with GH-releasing hormone (GHRH) results in diminished responsiveness, a phenomenon referred to as homologous desensitization. One component of GHRH-induced desensitization is a reduction in GHRH-binding sites, which is reflected by the decreased ability of GHRH to stimulate a rise in intracellular cAMP. In the present study, we sought to determine if homologous down-regulation of GHRH receptor number is due to a decrease in GHRH receptor synthesis. To this end, we developed and validated a quantitative RT-PCR assay system that was capable of assessing differences in GHRH-R messenger RNA (mRNA) levels in total RNA samples obtained from rat pituitary cell cultures. Treatment of pituitary cells with GHRH, for as little as 4 h, resulted in a dose-dependent decrease in GHRH-R mRNA levels. The maximum effect was observed with 0.1 and 1 nM GHRH, which reduced GHRH-R mRNA levels to 49 +/- 4% (mean +/- SEM) and 54 +/- 11% of control values, respectively (n = three separate experiments; P < 0.05). Accompanying the decline in GHRH-R mRNA levels was a rise in GH release; reaching 320 +/- 31% of control values (P < 0.01). Because of the possibility that the rise in medium GH level is the primary regulator of GHRH-R mRNA, we pretreated pituitary cultures for 4 h with GH to achieve a concentration comparable with that induced by a maximal stimulation with GHRH (8 micrograms GH/ml medium). Following pretreatment, cultures were stimulated for 15 min with GHRH and intracellular cAMP accumulation was measured by RIA. GH pretreatment did not impair the ability of GHRH to induce a rise in cAMP concentrations. However, as anticipated, GHRH pretreatment (10 nM) significantly reduced subsequent GHRH-stimulated cAMP to 46% of untreated controls. These data suggest that GHRH, but not GH, directly reduces GHRH-R mRNA levels. To determine whether this effect was mediated through cAMP, cultures were treated with forskolin, a direct stimulator of

  13. The GABAergic control of gonadotropin-releasing hormone secretion in male rats during sexual maturation involves effects on hypothalamic excitatory and inhibitory amino acid systems.

    PubMed

    Feleder, C; Jarry, H; Leonhardt, S; Wuttke, W; Moguilevsky, J A

    1996-10-01

    In order to evaluate the possible participation of the hypothalamic excitatory and inhibitory amino acid neurotransmitter systems in the GnRH release response to GABAergic drugs, hypothalami (preoptic and mediobasal area) of immature (26 days of age) and adult male rats were perifused with GABA-A and -B agonists and antagonists. GnRH and amino acid neurotransmitter concentrations (glutamate, taurine, GABA) were measured in perfusate samples collected every 15 min during 150 min. In immature rats, muscimol and baclofen (GABA-A and GABA-B agonists, respectively) increased GnRH, glutamate and GABA release and decreased taurine output, while in adults these agonists showed opposite effects on GnRH and glutamate release, and increased GABA and taurine output. On the other hand, in immature rats bicuculline and phaclofen (GABA-A and GABA-B antagonists, respectively) decreased GnRH, glutamate and GABA release, increasing taurine outflow. In adult animals, these antagonists enhanced GnRH and glutamate release, decreasing taurine and GABA outflow. These results indicate that GABA stimulates GnRH release in immature male rats and confirm the inhibitory role of this amino acid neurotransmitter in adult animals. This effect might be associated, at least partially, with the modifications observed in the excitatory and inhibitory amino acid release. On the other hand, in immature rats, stimulation of GABA-A and GABA-B receptors increased GABA release. Although ultrastructural studies have not produced any evidence of GABA-GABA neurointeractions, our results suggest the existence of a positive feedback mechanism of GABA autoregulation active during the prepubertal stage. Participation of this mechanism in the onset of puberty cannot be discarded.

  14. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  15. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  16. Release of leukotriene B4 and 5-hydroxyeicosatetraenoic acid during phagocytosis of artificial immune complexes by peripheral neutrophils in chronic inflammatory bowel disease.

    PubMed Central

    Nielsen, O H; Elmgreen, J; Thomsen, B S; Ahnfelt-Rønne, I; Wiik, A

    1986-01-01

    The capacity of peripheral neutrophils for activation of the arachidonic acid (AA) metabolism was studied during phagocytosis of IgG containing immune complexes (ICs) binding to Fc-receptors. Release of approximately 9% of the intracellular pool of radiolabelled AA in phospholipids, and release of the pro-inflammatory mediators, leukotriene B4 (LTB4), constituting 1.8%, and 5-hydroxyeicosatetraenoic acid (5-HETE), constituting 2.9% of the total radioactivity released, were demonstrated in 15 patients with untreated Crohn's disease, 15 patients with ulcerative colitis, and in 15 healthy volunteers. The concentrations of LTB4 and 5-HETE released were within the range of chemotactic activity for the two lipoxygenase products. Multiple large IgG containing ICs were revealed in neutrophils after phagocytosis by immunofluorescence. A minor defect in the IC uptake in patients with Crohn's disease observed in the absence of complement only, did not result in a subnormal activation of arachidonic acid release or metabolism. The study suggests that complexes of the IgG-class previously demonstrated in chronic inflammatory bowel disease, particularly in Crohn's disease, may activate inflammatory neutrophils leading to release of significant amounts of the pro-inflammatory lipoxygenase metabolites, LTB4 and 5-HETE. PMID:3024887

  17. Whey protein/polysaccharide-stabilized oil powders for topical application-release and transdermal delivery of salicylic acid from oil powders compared to redispersed powders.

    PubMed

    Kotzé, Magdalena; Otto, Anja; Jordaan, Anine; du Plessis, Jeanetta

    2015-08-01

    Oil-in-water (o/w) emulsions are commonly converted into solid-like powders in order to improve their physical and chemical stabilities. The aim of this study was to investigate whether whey protein/polysaccharide-stabilized o/w emulsions could be converted into stable oil powders by means of freeze-drying. Moreover, during this study, the effects of pH and polymer type on release and trans(dermal) delivery of salicylic acid, a model drug, from these oil powders were investigated and compared to those of the respective template emulsions and redispersed oil powders. Physical characterization of the various formulations was performed, such as droplet size analysis and oil leakage, and relationships drawn with regards to release and trans(dermal) delivery. The experimental outcomes revealed that the oil powders could be redispersed in water without changing the release characteristics of salicylic acid. pH and polymer type affected the release of salicylic acid from the oil powders, template emulsions, and redispersed powders similarly. Contrary, the transdermal delivery from the oil powders and from their respective redispersed oil powders was differently affected by pH and polymer type. It was hypothesized that the release had been influenced by the electrostatic interactions between salicylic acid and emulsifiers, whereas the transdermal performance could have been determined by the particle or aggregate sizes of the formulations.

  18. Acid peptidase activity released from in vitro produced porcine embryos: a candidate marker to predict developmental competence.

    PubMed

    Telugu, Bhanu Prakash V L; Spate, Lee; Prather, Randall S; Green, Jonathan A

    2009-04-01

    The ability to efficiently create high quality embryos, competent to produce normal viable offspring in vitro, facilitates diverse technological advancements in animal agriculture and assisted reproduction. Current methods for evaluation of embryos are predominantly based on morphological characteristics which are prone to potential bias of the scorer. Metabolic and genetic markers have also been explored for quality assessment, but they are cost prohibitive or require longer periods of time for evaluation. We hypothesized that secreted enzymes could provide another means of embryo quality assessment. In this report, we provide evidence that medium conditioned by porcine embryos often has proteolytic activity that operates in acidic conditions (acid peptidase activity or APA). The APA could be inhibited by pepstatin A, suggesting that the activity is derived from one or more aspartic peptidases. We also provide evidence that single embryos, incubated for as few as 24 hr, released enough APA that it was possible to measure it accurately at day 5 of culture. We also observed that such activity on day 6 could be positively correlated with advanced developmental stage and embryo quality. In addition, those embryos that were graded identically by morphological evaluations often differed in the amount of APA--with some being significantly higher than the experimental threshold value. Therefore, the APA of embryos might serve as an additional marker for evaluation of embryos.

  19. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    NASA Astrophysics Data System (ADS)

    Yuan, Zhefan; Huang, Jingyi; Liu, Jing; Cheng, Sixue; Zhuo, Renxi; Li, Feng

    2011-08-01

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-(ω-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l - 1.

  20. Inorganic Nitrate Mimics Exercise-Stimulated Muscular Fiber-Type Switching and Myokine and γ-Aminobutyric Acid Release.

    PubMed

    Roberts, Lee D; Ashmore, Tom; McNally, Ben D; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Lindsay, Ross; Siervo, Mario; Williams, Elizabeth A; Murray, Andrew J; Griffin, Julian L

    2017-03-01

    Exercise is an effective intervention for the prevention and treatment of type 2 diabetes. Skeletal muscle combines multiple signals that contribute to the beneficial effects of exercise on cardiometabolic health. Inorganic nitrate increases exercise efficiency, tolerance, and performance. The transcriptional regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) coordinates the exercise-stimulated skeletal muscle fiber-type switch from glycolytic fast-twitch (type IIb) to oxidative slow-twitch (type I) and intermediate (type IIa) fibers, an effect reversed in insulin resistance and diabetes. We found that nitrate induces PGC1α expression and a switch toward type I and IIa fibers in rat muscle and myotubes in vitro. Nitrate induces the release of exercise/PGC1α-dependent myokine FNDC5/irisin and β-aminoisobutyric acid from myotubes and muscle in rats and humans. Both exercise and nitrate stimulated PGC1α-mediated γ-aminobutyric acid (GABA) secretion from muscle. Circulating GABA concentrations were increased in exercising mice and nitrate-treated rats and humans; thus, GABA may function as an exercise/PGC1α-mediated myokine-like small molecule. Moreover, nitrate increased circulating growth hormone levels in humans and rodents. Nitrate induces physiological responses that mimic exercise training and may underlie the beneficial effects of this metabolite on exercise and cardiometabolic health.

  1. Poly(anhydride-ester) and poly(N-vinyl-2-pyrrolidone) blends: salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation.

    PubMed

    Ouimet, Michelle A; Fogaça, Renata; Snyder, Sabrina S; Sathaye, Sameer; Catalani, Luiz H; Pochan, Darrin J; Uhrich, Kathryn E

    2015-03-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3-4 d in contrast to 3 h, and that blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly the inflammatory cytokine, TNF-α, in vitro without negative effects.

  2. Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage.

    PubMed

    Chen, Ya-ting; Li, Jin-tian; Chen, Lin-xing; Hua, Zheng-shuang; Huang, Li-nan; Liu, Jun; Xu, Bi-bo; Liao, Bin; Shu, Wen-sheng

    2014-05-20

    The oxidative dissolution of sulfide minerals (principally pyrite) is responsible for the majority of acid metalliferous drainage from mine sites, which represents a significant environmental problem worldwide. Understanding the complex biogeochemical processes governing natural pyrite oxidation is critical not only for solving this problem but also for understanding the industrial bioleaching of sulfide minerals. To this end, we conducted a simulated experiment of natural pyrite oxidative dissolution. Pyrosequencing analysis of the microbial community revealed a distinct succession across three stages. At the early stage, a newly proposed genus, Tumebacillus (which can use sodium thiosulfate and sulfite as the sole electron donors), dominated the microbial community. At the midstage, Alicyclobacillus (the fifth most abundant genus at the early stage) became the most dominant genus, whereas Tumebacillus was still ranked as the second most abundant. At the final stage, the microbial community was dominated by Ferroplasma (the tenth most abundant genus at the early stage). Our geochemical and mineralogical analyses indicated that exchangeable heavy metals increased as the oxidation progressed and that some secondary sulfate minerals (including jarosite and magnesiocopiapite) were formed at the final stage of the oxidation sequence. Additionally, we propose a comprehensive model of biogeochemical processes governing the oxidation of sulfide minerals.

  3. Biowaiver monograph for immediate-release solid oral dosage forms: acetylsalicylic acid.

    PubMed

    Dressman, Jennifer B; Nair, Anita; Abrahamsson, Bertil; Barends, Dirk M; Groot, D W; Kopp, Sabine; Langguth, Peter; Polli, James E; Shah, Vinod P; Zimmer, Markus

    2012-08-01

    A biowaiver monograph for acetylsalicylic acid (ASA) is presented. Literature and experimental data indicate that ASA is a highly soluble and highly permeable drug, leading to assignment of this active pharmaceutical ingredient (API) to Class I of the Biopharmaceutics Classification System (BCS). Limited bioequivalence (BE) studies reported in the literature indicate that products that have been tested are bioequivalent. Most of the excipients used in products with a marketing authorization in Europe are not considered to have an impact on gastrointestinal motility or permeability. Furthermore, ASA has a wide therapeutic index. Thus, the risks to the patient that might occur if a nonbioequivalent product were to be incorrectly deemed bioequivalent according to the biowaiver procedure appear to be minimal. As a result, the BCS-based biowaiver procedure can be recommended for approval of new formulations of solid oral dosage forms containing ASA as the only API, including both multisource and reformulated products, under the following conditions: (1) excipients are chosen from those used in ASA products already registered in International Conference on Harmonization and associated countries and (2) the dissolution profiles of the test and the comparator products comply with the BE guidance.

  4. Effect of a fluoride-releasing self-etch acidic primer on the shear bond strength of orthodontic brackets.

    PubMed

    Bishara, Samir E; Ajlouni, Raed; Laffoon, John F; Warren, John J

    2002-06-01

    Conventional adhesive systems use three different agents--an enamel conditioner, a primer solution, and an adhesive resin--during the bonding of orthodontic brackets to enamel. A unique characteristic of some new bonding systems in operative dentistry is that they combine the conditioning and priming agents into a single application. Combining conditioning and priming saves time and should be more cost-effective to the clinician and indirectly to the patient. The purpose of this study was to assess and compare the effects of self-etching primers, including a fluoride-releasing primer, on the shear bond strength of orthodontic brackets. The brackets were bonded to extracted human teeth according to one of four protocols. In group 1 (control), teeth were etched with 37% phosphoric acid; after the sealant was applied, the brackets were bonded with Transbond XT (3M Unitek, Monrovia, Calif) and light cured for 20 seconds. In group 2, a self-etch acidic primer (3M ESPE, St Paul, Minn) was applied as suggested by the manufacturer, and the brackets were then bonded with Transbond XT as in the first group. In group 3, an experimental self-etch primer EXL #547 (3M ESPE) was applied to the teeth as suggested by the manufacturer, and the brackets were then bonded as in groups 1 and 2. In group 4, a fluoride-releasing self-etch primer, One-Up Bond F (J. Mortia, USA Inc. Irvine, Calif) that also has a novel dye-sensitized photo polymerization initiator system was applied as suggested by the manufacturer, and the brackets were then bonded as in the other groups. The present in vitro findings indicated that the shear bond strengths of the four groups were significantly different (P = .001). Duncan multiple range tests indicated that One-Up Bond F (mean +/- SD strength, 5.1+/-2.5 MPa) and Prompt L-Pop (strength, 7.1+/-4.4 MPa) had significantly lower shear bond strengths than both the EXL #547 self-etch primer (strength, 9.7+/-3.7 MPa) or the phosphoric acid etch and the

  5. Valproic acid inhibits excess dopamine release in response to a fear-conditioned stimulus in the basolateral complex of the amygdala of methamphetamine-sensitized rats.

    PubMed

    Miyagi, Junko; Oshibuchi, Hidehiro; Kasai, Akiko; Inada, Ken; Ishigooka, Jun

    2014-05-05

    Valproic acid, an established antiepileptic and antimanic drug, has recently emerged as a promising emotion-stabilizing agent for patients with psychosis. Although dopamine transmission in the amygdala plays a key role in emotional processing, there has been no direct evidence about how valproic acid acts on the dopaminergic system in the brain during emotional processing. In the present study, we tested the effect of valproic acid on a trait marker of vulnerability to emotional stress in psychosis, which is excess dopamine release in response to a fear-conditioned stimulus (CS) in the basolateral complex of the amygdala of methamphetamine-sensitized rats. Extracellular dopamine was collected from the amygdala of freely moving methamphetamine-sensitized rats by in vivo microdialysis and was measured using high-performance liquid chromatography. During microdialysis, valproic acid was intraperitoneally injected followed by CS exposure. Valproic acid treatment decreased baseline levels of dopamine and also attenuated the excess dopamine release in response to the CS in the amygdala of methamphetamine-sensitized rats. The results prove that valproic acid inhibits spontaneous dopamine release and also attenuates excess dopaminergic signaling in response to emotional stress in the amygdala. These findings suggest that the mechanisms of the emotion-stabilizing effect of valproic acid in psychosis involve modulation of dopaminergic transmission in emotional processing.

  6. Bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids: aqueous solubility and release characteristics from solutions and suspensions using a rotating dialysis cell model.

    PubMed

    Østergaard, Jesper; Larsen, Susan W; Parshad, Henrik; Larsen, Claus

    2005-11-01

    In the search for poorly soluble bupivacaine salts potentially enabling prolonged postoperative pain relief after local joint administration in the form of suspensions the solubility of bupivacaine salts of diflunisal and other aromatic hydroxycarboxylic acids were investigated together with the release characteristics of selected 1:1 salts from solutions and suspensions using a rotating dialysis cell model. The poorest soluble bupivacaine salts were obtained from the aromatic ortho-hydroxycarboxylic acids diflunisal, 5-iodosalicylic acid, and salicylic acid (aqueous solubilities: 0.6-1.9 mM at 37 degrees C). Diffusant appearance rates in the acceptor phase upon instillation of solutions of various salts in the donor cell applied to first-order kinetics. Calculated permeability coefficients for bupivacaine and the counterions diflunisal, 5-iodosalicylic acid, and mandelic acid were found to be correlated with the molecular size of the diffusants. Release experiments at physiological pH involving suspensions of the bupivacaine-diflunisal salt revealed that at each sampling point the diflunisal concentration exceeded that of bupivacaine in the acceptor phase. However, after an initial lag period, a steady state situation was attained resulting in equal and constant fluxes of the two diffusants controlled by the permeability coefficients in combination with the solubility product of the salt. Due to the fact that the saturation solubility of the bupivacaine-salicylic acid salt in water exceeded that of bupivacaine at pH 7.4, suspensions of the latter salt were unable to provide simultaneous release of the cationic and anionic species at pH 7.4. The release profiles were characterised by a rapid release of salicylate accompanied by a much slower appearance of bupivacaine in the acceptor phase caused by precipitation of bupivacaine base from the solution upon dissolution of the salt in the donor cell.

  7. Activation of A-type gamma-aminobutyric acid receptors excites gonadotropin-releasing hormone neurons.

    PubMed

    DeFazio, R Anthony; Heger, Sabine; Ojeda, Sergio R; Moenter, Suzanne M

    2002-12-01

    Gamma-aminobutyric acid (GABA), acting through GABA(A) receptors (GABA(A)R), is hypothesized to suppress reproduction by inhibiting GnRH secretion, but GABA actions directly on GnRH neurons are not well established. In green fluorescent protein-identified adult mouse GnRH neurons in brain slices, gramicidin-perforated-patch-clamp experiments revealed the reversal potential (E(GABA)) for current through GABA(A)Rs was depolarized relative to the resting potential. Furthermore, rapid GABA application elicited action potentials in GnRH neurons but not controls. The consequence of GABA(A)R activation depends on intracellular chloride levels, which are maintained by homeostatic mechanisms. Membrane proteins that typically extrude chloride (KCC-2 cotransporter, CLC-2 channel) were absent from the GT1-7 immortalized GnRH cell line and GnRH neurons in situ or were not localized to the proper cell compartment for function. In contrast, GT1-7 cells and some GnRH neurons expressed the chloride-accumulating cotransporter, NKCC-1. Patch-clamp experiments showed that blockade of NKCC hyperpolarized E(GABA) by lowering intracellular chloride. Regardless of reproductive state, rapid GABA application excited GnRH neurons. In contrast, bath application of the GABA(A)R agonist muscimol transiently increased then suppressed firing; suppression persisted 4-15 min. Rapid activation of GABA(A)R thus excites GnRH neurons whereas prolonged activation reduces excitability, suggesting the physiological consequence of synaptic activation of GABA(A)R in GnRH neurons is excitation.

  8. Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion

    SciTech Connect

    Nigam, S.; Fiore, S.; Luscinskas, F.W.; Serhan, C.N. )

    1990-06-01

    The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of (1-14C)arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of (1-14C)arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of (1-14C)arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke (1-14C)AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with (1-14C)arachidonic acid and (3H)palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of (1-14C)arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of (1-14C)arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of (3H)LTB4 to its receptor on neutrophils.

  9. Influence of Volatile Anesthesia on the Release of Glutamate and other Amino Acids in the Nucleus Accumbens in a Rat Model of Alcohol Withdrawal: A Pilot Study

    PubMed Central

    Seidemann, Thomas; Spies, Claudia; Morgenstern, Rudolf; Wernecke, Klaus-Dieter; Netzhammer, Nicolai

    2017-01-01

    Background Alcohol withdrawal syndrome is a potentially life-threatening condition, which can occur when patients with alcohol use disorders undergo general anesthesia. Excitatory amino acids, such as glutamate, act as neurotransmitters and are known to play a key role in alcohol withdrawal syndrome. To understand this process better, we investigated the influence of isoflurane, sevoflurane, and desflurane anesthesia on the profile of excitatory and inhibitory amino acids in the nucleus accumbens (NAcc) of alcohol-withdrawn rats (AWR). Methods Eighty Wistar rats were randomized into two groups of 40, pair-fed with alcoholic or non-alcoholic nutrition. Nutrition was withdrawn and microdialysis was performed to measure the activity of amino acids in the NAcc. The onset time of the withdrawal syndrome was first determined in an experiment with 20 rats. Sixty rats then received isoflurane, sevoflurane, or desflurane anesthesia for three hours during the withdrawal period, followed by one hour of elimination. Amino acid concentrations were measured using chromatography and results were compared to baseline levels measured prior to induction of anesthesia. Results Glutamate release increased in the alcohol group at five hours after the last alcohol intake (p = 0.002). After 140 min, desflurane anesthesia led to a lower release of glutamate (p < 0.001) and aspartate (p = 0.0007) in AWR compared to controls. GABA release under and after desflurane anesthesia was also significantly lower in AWR than controls (p = 0.023). Over the course of isoflurane anesthesia, arginine release decreased in AWR compared to controls (p < 0.001), and aspartate release increased after induction relative to controls (p20min = 0.015 and p40min = 0.006). However, amino acid levels did not differ between the groups as a result of sevoflurane anesthesia. Conclusions Each of three volatile anesthetics we studied showed different effects on excitatory and inhibitory amino acid concentrations. Under

  10. Content and in vitro release of endogenous amino acids in the area of the nucleus of the solitary tract of the rat.

    PubMed

    Meeley, M P; Underwood, M D; Talman, W T; Reis, D J

    1989-12-01

    We sought to identify amino acid neurotransmitter candidates within the nucleus of the solitary tract in rats. Twenty endogenous amino acids were quantified by reverse-phase HPLC with fluorescence detection (30-fmol limit). Micropunches (1 mm) of the intermediate area of the solitary nucleus were prepared, and the amino acid content determined. Of all the components measured, the putative transmitters Glu, Gly, gamma-aminobutyric acid, taurine, Asp, and Ala appeared in greatest concentrations. Bilateral micropunches superfused in vitro with buffered medium containing 56 mM potassium released Glu, gamma-aminobutyric acid, and Gly in a significant manner (p less than 0.05) compared with basal levels. With Glu, 78% was calcium-dependent and, therefore, presumably from nerve endings; 99% of gamma-aminobutyric acid and 42% of Gly were dependent on calcium. After removal of the nodose ganglion, a bilateral decrease in the calcium-dependent release of Glu and gamma-aminobutyric acid, but not Gly, was observed; decreases were significant ipsilateral to the site of ablation. We conclude that (a) Glu is a transmitter of primary afferents in the nucleus of the solitary tract; (b) glutamatergic afferents may interact with gamma-aminobutyric acid system(s) in this region; (c) Gly also may participate in the mediation and/or modulation of cardiovascular or other visceral reflexes; and (d) amino acid neurotransmission may play an integral role in the neurogenic control of arterial pressure.

  11. Extracellular Loop 2 of the Free Fatty Acid Receptor 2 Mediates Allosterism of a Phenylacetamide Ago-Allosteric ModulatorS⃞

    PubMed Central

    Smith, Nicola J.; Ward, Richard J.; Stoddart, Leigh A.; Hudson, Brian D.; Kostenis, Evi; Ulven, Trond; Morris, Joanne C.; Tränkle, Christian; Tikhonova, Irina G.; Adams, David R.

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu173 or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB. PMID:21498659

  12. Controlled release of acidic drugs in compendial and physiological hydrogen carbonate buffer from polymer blend-coated oral solid dosage forms.

    PubMed

    Wulff, R; Rappen, G-M; Koziolek, M; Garbacz, G; Leopold, C S

    2015-09-18

    The objective of this study was to investigate the suitability of "Eudragit® RL/Eudragit® L55" (RL/L55) blend coatings for a pH-independent release of acidic drugs. A coating for ketoprofen and naproxen mini tablets was developed showing constant drug release rate under pharmacopeial two-stage test conditions for at least 300 min. To simulate drug release from the mini tablets coated with RL/L55 blends in the gastrointestinal (GI) tract, drug release profiles in Hanks buffer pH 6.8 were recorded and compared with drug release profiles in compendial media. RL/L55 blend coatings showed increased drug permeability in Hanks buffer pH 6.8 compared to phosphate buffer pH 6.8 due to its higher ion concentration. However, drug release rates of acidic drugs were lower in Hanks buffer pH 6.8 because of the lower buffer capacity resulting in reduced drug solubility. Further dissolution tests were performed in Hanks buffer using pH sequences simulating the physiological pH conditions in the GI tract. Drug release from mini tablets coated with an RL/L55 blend (8:1) was insensitive to pH changes of the medium within the pH range of 5.8-7.5. It was concluded that coatings of RL/L55 blends show a high potential for application in coated oral drug delivery systems with a special focus on pH-independent release of acidic drugs.

  13. Nonsteroidal anti-inflammatory drug flufenamic acid is a potent activator of AMP-activated protein kinase.

    PubMed

    Chi, Yuan; Li, Kai; Yan, Qiaojing; Koizumi, Schuichi; Shi, Liye; Takahashi, Shuhei; Zhu, Ying; Matsue, Hiroyuki; Takeda, Masayuki; Kitamura, Masanori; Yao, Jian

    2011-10-01

    Flufenamic acid (FFA) is a nonsteroidal anti-inflammatory drug (NSAID). It has anti-inflammatory and antipyretic properties. In addition, it modulates multiple channel activities. The mechanisms underlying the pharmacological actions of FFA are presently unclear. Given that AMP-activated protein kinase (AMPK) has both anti-inflammatory and channel-regulating functions, we examined whether FFA induces AMPK activation. 1) Exposure of several different types of cells to FFA resulted in an elevation of AMPKα phosphorylation at Thr172. This effect of FFA was reproduced by functionally and structurally similar mefenamic acid, tolfenamic acid, niflumic acid, and meclofenamic acid. 2) FFA-induced activation of AMPK was largely abolished by the treatment of cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (an intracellular Ca(2+) chelator) or depletion of extracellular Ca(2+), whereas it was mimicked by stimulation of cells with the Ca(2+) ionophore 5-(methylamino)-2-({(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl]-1,7-dioxaspiro[5.5]undec-2-yl}methyl)-1,3-benzoxazole-4-carboxylic acid (A23187) or ionomycin. 3) FFA triggered a rise in intracellular Ca(2+), which was abolished by cyclosporine, a blocker of mitochondrial permeability transition pore. Cyclosporine also abolished FFA-induced activation of AMPK. 4) Inhibition of Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ) with 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid acetate (STO-609) or down-regulation of CaMKKβ with short interfering RNA largely abrogated FFA-induced activation of AMPK. 5) FFA significantly suppressed nuclear factor-κB activity and inducible nitric-oxide synthase expression triggered by interleukin-1β and tumor necrosis factor α. This suppression was also largely abrogated by STO-609. Taken together, we conclude that FFA induces AMPK activation through the Ca(2+)-CaMKKβ pathway

  14. Omega-3 free fatty acids inhibit tamoxifen-induced cell apoptosis.

    PubMed

    Wu, Shufan; Guo, Yang; Wu, Yikuan; Zhu, Shenglong; He, Zhao; Chen, Yong Q

    2015-04-03

    Fish oil, which contains omega-3 fatty acids mainly in the form of triglycerides, has benefits for reducing breast cancer risk, similar to tamoxifen action. However, it remains to be elucidated whether the combination of omega-3 free fatty acid (ω-3FFA) with tamoxifen leads to improved treatment in breast cancer. In this study, we observed that ω-3FFA induces MCF-7 cell apoptosis to suppress cell growth. The treatment of breast cancer cells with ω-3FFA attenuated tamoxifen-induced cell apoptosis. ω-3FFA and tamoxifen significantly increased Erk1/2 and Akt phosphorylation levels in a dose and time dependent manner. Compared to ω-3FFA alone, the combination of tamoxifen with ω-3FFA significantly increased Erk1/2 and Akt phosphorylation levels. Because Erk1/2 and Akt activation has been linked to tamoxifen-related anti-estrogen resistance in breast cancer patients, these results indicate that ω-3FFA may interfere with the effects of tamoxifen in the prevention of breast cancer risk.

  15. Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating.

    PubMed

    Yau, Hau-Jie; Baranauskas, Gytis; Martina, Marco

    2010-10-15

    The electrophysiological phenotype of individual neurons critically depends on the biophysical properties of the voltage-gated channels they express. Differences in sodium channel gating are instrumental in determining the different firing phenotypes of pyramidal cells and interneurons; moreover, sodium channel modulation represents an important mechanism of action for many widely used CNS drugs. Flufenamic acid (FFA) is a non-steroidal anti-inflammatory drug that has been long used as a blocker of calcium-dependent cationic conductances. Here we show that FFA inhibits voltage-gated sodium currents in hippocampal pyramidal neurons; this effect is dose-dependent with IC(50) = 189 μm. We used whole-cell and nucleated patch recordings to investigate the mechanisms of FFA modulation of TTX-sensitive voltage-gated sodium current. Our data show that flufenamic acid slows down the inactivation process of the sodium current, while shifting the inactivation curve ~10 mV toward more hyperpolarized potentials. The recovery from inactivation is also affected in a voltage-dependent way, resulting in slower recovery at hyperpolarized potentials. Recordings from acute slices demonstrate that FFA reduces repetitive- and abolishes burst-firing in CA1 pyramidal neurons. A computational model based on our data was employed to better understand the mechanisms of FFA action. Simulation data support the idea that FFA acts via a novel mechanism by reducing the voltage dependence of the sodium channel fast inactivation rates. These effects of FFA suggest that it may be an effective anti-epileptic drug.

  16. Copper release kinetics from a long-term contaminated acid soil using a stirred flow chamber: effect of ionic strength and pH.

    PubMed

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Garrido-Rodríguez, Beatriz; Peña Rodríguez, Susana; Arias-Estévez, Manuel

    2012-02-01

    The effect of pH and ionic strength on copper release in a long-term Cu-polluted soil was studied using a stirred flow chamber. The presence of Ca(2+) and Na(+) was also evaluated. More copper was released as the ionic strength increased, and it was significantly higher in the presence of Ca(2+) than in the presence of Na(+). The maximum amount of Cu that could be released under experimental conditions increased logarithmically as the ionic strength increased, and the release rate parameters were not significantly correlated with ionic strength values. The maximum amount of Cu that could be released was similar for solutions with pH values between 5.5 and 8.5. For solutions with a pH value below 4.5, the amount of Cu released increased exponentially as the pH decreased. The release rate parameters and Cu release pattern were affected by pH, especially for more acidic solutions (pH values of 2.5 and 3.5).

  17. Improved small molecule drug release from in situ forming poly(lactic-co-glycolic acid) scaffolds incorporating poly(β-amino ester) and hydroxyapatite microparticles.

    PubMed

    Fisher, Paul D; Palomino, Pablo; Milbrandt, Todd A; Hilt, J Zach; Puleo, David A

    2014-01-01

    In situ forming implants are an attractive choice for controlled drug release into a fixed location. Currently, rapidly solidifying solvent exchange systems suffer from a high initial burst, and sustained release behavior is tied to polymer precipitation and degradation rate. The present studies investigated addition of hydroxyapatite (HA) and drug-loaded poly(β-amino ester) (PBAE) microparticles to in situ forming poly(lactic-co-glycolic acid) (PLGA)-based systems to prolong release and reduce burst. PBAEs were synthesized, imbibed with simvastatin (osteogenic) or clodronate (anti-resorptive), and then ground into microparticles. Microparticles were mixed with or without HA into a PLGA solution, and the mixture was injected into buffer, leading to precipitation and creating solid scaffolds with embedded HA and PBAE microparticles. Simvastatin release was prolonged through 30 days, and burst release was reduced from 81 to 39% when loaded into PBAE microparticles. Clodronate burst was reduced from 49 to 32% after addition of HA filler, but release kinetics were unaffected after loading into PBAE microparticles. Scaffold dry mass remained unchanged through day 15, with a pronounced increase in degradation rate after day 30, while wet scaffolds experienced a mass increase through day 25 due to swelling. Porosity and pore size changed throughout degradation, likely due to a combination of swelling and degradation. The system offers improved release kinetics, multiple release profiles, and rapid solidification compared to traditional in situ forming implants.

  18. Improved small molecule drug release from in situ forming poly(lactic-co-glycolic acid) scaffolds incorporating poly(β-amino ester) and hydroxyapatite microparticles

    PubMed Central

    Fisher, Paul D.; Palomino, Pablo; Milbrandt, Todd A.; Hilt, J. Zach; Puleo, David A.

    2014-01-01

    In situ forming implants are an attractive choice for controlled drug release into a fixed location. Currently, rapidly solidifying solvent exchange systems suffer from a high initial burst, and sustained release behavior is tied to polymer precipitation and degradation rate. The present studies investigated addition of hydroxyapatite (HA) and drug-loaded poly(β-amino ester) (PBAE) microparticles to in situ forming poly(lactic-co-glycolic acid) (PLGA)–based systems to prolong release and reduce burst. PBAEs were synthesized, imbibed with simvastatin (osteogenic) or clodronate (anti-resorptive), and then ground into microparticles. Microparticles were mixed with or without HA into a PLGA solution, and the mixture was injected into buffer, leading to precipitation and creating solid scaffolds with embedded HA and PBAE microparticles. Simvastatin release was prolonged through 30 days, and burst release was reduced from 81% to 39% when loaded into PBAE microparticles. Clodronate burst was reduced from 49% to 32% after addition of HA filler, but release kinetics were unaffected after loading into PBAE microparticles. Scaffold dry mass remained unchanged through day 15, with a pronounced increase in degradation rate after day 30, while wet scaffolds experienced a mass increase through day 25 due to swelling. Porosity and pore size changed throughout degradation, likely due to a combination of swelling and degradation. The system offers improved release kinetics, multiple release profiles, and rapid solidification compared to traditional in situ forming implants. PMID:24903524

  19. Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices.

    PubMed

    Alkondon, M; Pereira, E F; Barbosa, C T; Albuquerque, E X

    1997-12-01

    In the present study we investigated electrophysiologically the nicotinic responses of pyramidal neurons and interneurons visualized by infrared-assisted videomicroscopy and fluorescence in the CA1 field of hippocampal slices obtained from 8- to 24-day-old rats. Application of nicotinic agonists to CA1 neurons evoked at least four types of nicotinic responses. Of major interest was the ability of these agonists to induce the release of gamma-aminobutyric acid (GABA) from interneurons. Slowly decaying ACh whole-cell currents and GABA-mediated postsynaptic currents could be recorded from pyramidal neurons and interneurons, whereas fast-decaying nicotinic currents and fast current transients were recorded only from interneurons. Nicotinic responses were sensitive to blockade by d-tubocurarine (10 microM), which indicated that they were mediated by nicotinic acetylcholine receptors (nAChRs). The slowly decaying currents, the postsynaptic currents and the fast current transients were insensitive to blockade by the alpha-7 nAChR-specific antagonist methyllycaconitine (up to 1 microM) or alpha-bungarotoxin (100 nM). On the other hand, the slowly decaying nicotinic currents recorded from the interneurons were blocked by the alpha4beta2 nAChR-specific antagonist dihydro-beta-erythroidine, and the fast-desensitizing nicotinic currents were evoked by the alpha-7 nAChR-specific agonist choline. In experimental conditions similar to those used to record nicotinic responses from neurons in slice (i. e., in the absence of tetrodotoxin), we observed that nicotinic agonists can also induce the release of GABA from hippocampal neurons in culture. In summary, these results provide direct evidence for more than one subtype of functional nAChR in CA1 neurons and suggest that activation of nAChRs present in GABAergic interneurons can evoke inhibitory activity in CA1 pyramidal neurons, thereby modulating processing of information in the hippocampus.

  20. Ammodytoxins efficiently release arachidonic acid and induce apoptosis in a motoneuronal cell line in an enzymatic activity-dependent manner.

    PubMed

    Jenko-Pražnikar, Zala; Petan, Toni; Pungerčar, Jože

    2013-03-01

    Secreted phospholipases A2 (sPLA2s) are phospholipolytic enzymes and receptor ligands whose action affects cell death and survival. We have previously shown that ammodytoxin A (AtxA), a snake venom sPLA2, is rapidly internalized into motoneuronal NSC34 cells, inducing characteristic neurotoxic sPLA2 cell damage and apoptosis. In this study, we have analyzed the role of sPLA2 enzymatic activity, including arachidonic acid (AA) release, in the induction of motoneuronal apoptosis by AtxA and homologous recombinant sPLA2s with different enzymatic properties: an AtxA mutant (V31W) with very high enzymatic activity, enzymatically inactive S49-sPLA2 (ammodytin L, AtnL), its mutant (LW) with restored enzymatic activity, and non-toxic, enzymatically active sPLA2 (AtnI2). Addition of AA, AtxA, AtxA-V31W and AtnL-LW, but not AtnL and AtnI2, to NSC34 cells resulted in caspase-3 activation, DNA fragmentation and disruption of mitochondrial membrane potential, leading to a significant and rapid decrease in motoneuronal cell viability that was not observed in C2C12 myoblasts and HEK293 cells. AtxA, AtxA-V31W and AtnL-LW, but not AtnL and AtnI2, also liberated large amounts of AA specifically from motoneuronal cells, and this ability correlated well with the ability to induce apoptotic changes and decrease cell viability. The enzymatic activity of AtxA and similar sPLA2s is thus necessary, but not sufficient, for inducing motoneuronal apoptosis. This suggests that specific binding to the motoneuronal cell surface, followed by internalization and enzymatic activity-dependent induction of apoptosis, possibly as a consequence of extensive extra- and intracellular AA release, is necessary for Atx-induced motoneuronal cell death.

  1. Pegylated and folic acid functionalized carbon nanotubes as pH controlled carriers of doxorubicin. Molecular dynamics analysis of the stability and drug release mechanism.

    PubMed

    Wolski, Pawel; Nieszporek, Krzysztof; Panczyk, Tomasz

    2017-03-29

    This work deals with an analysis of the covalent functionalization of a carbon nanotube using polyethylene glycol chains terminated by folic acid fragments. The analysis is focused on theoretical predictions, using molecular dynamics simulations, of the properties of such constructs as pH controlled carriers of the anticancer drug doxorubicin. The analyzed systems are expected to hold the doxorubicin in the inner cavity of the carbon nanotube at neutral pH and unload the drug at slightly acidic pH. This property comes from incorporation into the nanotube of some dye molecules (p-phenylenediamine or neutral red) which undergo protonation at slightly acidic pH. We found that both dyes lead to the formation of a stable, co-absorbed phase of a doxorubicin-dye mixture inside the nanotube at physiological pH. At acidic pH we observed a spontaneous release of dyes from the nanotube, leading finally to the state with only doxorubicin encapsulated in the nanotube interior. Thus, the analyzed constructs can be considered as carriers of doxorubicin that are selective to tumor microenvironments (which exhibit reduced pH due to hypoxia and overexpression of folate receptors). However, we also found that the release of doxorubicin from the nanotube at acidic pH is kinetically blocked, at least in the case of the system sizes studied here. Thus, we also discussed some possible ways of reducing the activation barriers against doxorubicin release at acidic pH.

  2. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release

    PubMed Central

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels we