Science.gov

Sample records for acid flow rate

  1. Effects of dose, flow rate, and bile acid on diclofenac disposition in the perfused rat liver.

    PubMed

    Uraki, Misato; Kawase, Atsushi; Matsushima, Yuka; Iwaki, Masahiro

    2016-06-01

    An in situ perfused rat liver system is useful for studying the hepatic disposition of drugs and their metabolites. However, the effects of the perfusion conditions on drug disposition are unclear. We examined the effects of conditions such as flow rate (13 or 26 mL/min) and bile acid on disposition of diclofenac (DF) as a model drug and DF metabolites [diclofenac-1-O-acyl glucuronide (DF-Glu) or 4'-hydroxydiclofenac (DF-4'OH)] in the absence of albumin. DF, DF-Glu, and DF-4'OH concentrations in the perfusate and cumulative amounts of DF-Glu excreted in bile were measured using high-performance liquid chromatography methods. DF in the perfusate was rapidly eliminated as the perfusate flow rate increased. The area under the plasma concentration-time curve from 0 to 60 min (AUC0-60) for DF-Glu and DF-4'OH in a perfusate containing bile acid was lower at a flow rate of 26 and 13 mL/min, respectively. The bile flow rate at 26 mL/min with 24 μM of bile acid in the perfusate was significantly higher (ca. 3.5 times) compared with that at 13 mL/min without bile acid. Cumulative biliary DF-Glu excretion was also dramatically affected by the flow rate and addition of bile acid. This study indicated that the flow rate and bile acid in the perfused rat liver were key factors for bile flow rate and DF, DF-Glu, and DF-4'OH disposition in the absence of albumin. PMID:25656736

  2. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    PubMed Central

    2012-01-01

    The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p < 0.001) from 76.8 ± 1.8% to 85.7 ± 1.2%. Analysis of covariance method followed by Tukey post-hoc test of 92 tests did not show a significant change in removal efficiency between liquid flow rates of 1.5, 2.5 and 3.5 L/min (p = 0.811). On the other hand, with fixed pressure loss across the tower, by increasing the liquid/gas (L/G) mass ratio, the average removal efficiency decreased significantly (p = 0.001) from 89.9% at L/G of <2 to 83.1% at L/G of 2–3 and further to 80.2% at L/G of >3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream. PMID:23369487

  3. Ionic Strength Effect on the Rate of Reduction of Hexacyanoferrate(III) by Ascorbic Acid: A Flow Injection Kinetic Experiment

    NASA Astrophysics Data System (ADS)

    Nobrega, Joanquim A.; Rocha, Fabio R. P.

    1997-05-01

    Flow injection analysis (FIA) is a well recognized tool for solutions management. In spite of the use of this technique mainly for quantitative determination of analytes in solution, FIA systems can also be used for obtaining physical chemistry data. This work describes the use of a flow diagram to perform a kinetic experiment: the effect of ionic strength on the rate of reduction of hexacyanoferrate(III) by ascorbic acid. The rate determining step of this reaction involves the collision between two anionic species. The increase of the ionic strength of the medium alters the ionic atmosphere and changes the charge densities around the anions. Consequently, there is an increment of the rate constants for higher ionic strengths. In the proposed system, the flow is stopped by commutation when the center of the sample zone attained the flow cell and a gradual decrease in signal, related to the redox reaction, is registered as function of time. This allowed the determination of the rate constants as a function of the ionic strength. The product of the charges of the ions involved in the rate determining step was estimated in 3.2 that is close to the expected value considering the proposed mechanism.

  4. Export of Abscisic Acid, 1-Aminocyclopropane-1-Carboxylic Acid, Phosphate, and Nitrate from Roots to Shoots of Flooded Tomato Plants (Accounting for Effects of Xylem Sap Flow Rate on Concentration and Delivery).

    PubMed Central

    Else, M. A.; Hall, K. C.; Arnold, G. M.; Davies, W. J.; Jackson, M. B.

    1995-01-01

    We determined whether root stress alters the output of physiologically active messages passing from roots to shoots in the transpiration stream. Concentrations were not good measures of output. This was because changes in volume flow of xylem sap caused either by sampling procedures or by effects of root stress on rates of whole-plant transpiration modified concentrations simply by dilution. Thus, delivery rate (concentration x sap flow rate) was preferred to concentration as a measure of solute output from roots. To demonstrate these points, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid, phosphate, nitrate, and pH were measured in xylem sap of flooded and well-drained tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) plants expressed at various rates from pressurized detopped roots. Concentrations decreased as sap flow rates were increased. However, dilution of solutes was often less than proportional to flow, especially in flooded plants. Thus, sap flowing through detopped roots at whole-plant transpiration rates was used to estimate solute delivery rates in intact plants. On this basis, delivery of ACC from roots to shoots was 3.1-fold greater in plants flooded for 24 h than in well-drained plants, and delivery of phosphate was 2.3-fold greater. Delivery rates of abscisic acid and nitrate in flooded plants were only 11 and 7%, respectively, of those in well-drained plants. PMID:12228364

  5. Dual-Flow-Rate Valve

    NASA Technical Reports Server (NTRS)

    Allbritain, R. H.

    1986-01-01

    Flow-control device precisely adjusted for two rates. Heart of twoposition valve is sliding poppet. At far-right position, poppet allows low flow. At far-left position, allows high flow. Valve supplies high-pressure gas at either of two preselected flow rates. Valve adjustable between 0.12 and 1.2 lb/s (0.054 and 0.54 kg/s) of hydrogen at 3,300 lb/in.2 (23 MN/m2) and 80 degrees F (27 degrees C). Two flow rates preadjusted between these limits in increments of 0.01 lb/s (0.0045 kg/s).

  6. Columbus Payloads Flow Rate Anomalies

    NASA Technical Reports Server (NTRS)

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.

    2011-01-01

    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.

  7. Chromatographic estimation of iothalamate and p-aminohippuric acid to measure glomerular filtration rate and effective renal plasma flow in humans.

    PubMed

    Agarwal, R

    1998-01-23

    Iothalamate (IOT) clearance and p-aminohippuric acid (PAH) clearance are used for estimation of glomerular filtration rate (GFR) and effective renal plasma flow (ERPF). A simple and rapid method is described for simultaneous determination of IOT and PAH in the same chromatogram in the serum and urine of humans. The mobile phase consisted of methanol-50 mM sodium monobasic phosphate with 0.5 mM tetrabutyl ammonium hydrogen sulfate (18:82, v/v), pumped at a rate of 0.8 ml/min on a C18 reversed-phase column. Samples of serum and urine were deproteinized with two volumes of acetonitrile containing the internal standard, p-aminobenzoic acid (PABA). The UV detector was set at 254 nm and peak height ratios of PAH or IOT to PABA were calculated with an integrator. Precision and accuracy were within 15% for both PAH and IOT. The recovery of PAH in urine and serum were 94% and 91%, respectively. For IOT the corresponding recoveries were 93% and 92%, respectively. This method clearly distinguishes acetyl-PAH from PAH and has been validated in healthy volunteers. PMID:9498664

  8. Oral contraceptives alter circadian rhythm parameters of cortisol, melatonin, blood pressure, heart rate, skin blood flow, transepidermal water loss, and skin amino acids of healthy young women.

    PubMed

    Reinberg, A E; Touitou, Y; Soudant, E; Bernard, D; Bazin, R; Mechkouri, M

    1996-08-01

    Sixteen healthy women users and nonusers of oral contraceptives (OC) volunteered to document a set of circadian rhythms. Nine were taking OC providing ethynyl estradiol (0.03-0.05 mg/24h, 21 days/month) combined with DL- or L-norgestrel or norethisterone. There was no group difference (p > 0.05) in median age (22 years), weight (57 kg), and height (162) cm). Data were obtained at fixed hours, 5 times/24h, during a 48-h span, in November. (Day activity from approximately 08:00 to approximately 23:00 h and night rest). Environmental conditions were controlled, using air-conditioned rooms of constant temperature (26 degrees +/- 0.5) and relative humidity 45% +/- 1. Both cosinor and ANOVA were used for statistical analyses. All circadian rhythms were validated with one exception: that of salivary melatonin was not detected in OC users. The 24h mean (M) exhibited group differences for certain variables: M was greater in OC than non-OC users for systolic blood pressure (p < 0.0001), heart rate (p < 0.01), skin blood flow (p < 0.04), and transepidermal water loss (p < 0.02). M was lower in OC than non-OC users in salivary cortisol (p < 0.04) and skin amino acids (p < 0.003). No group difference was detected in any other documented rhythms: diastolic blood pressure, grip strength of both hands, oral temperature, self-rated fatigue, and the skin variables of urea, lactate, triglycerides, and acid phosphatase activity. PMID:8874983

  9. The Salivary IgA Flow Rate Is Increased by High Concentrations of Short-Chain Fatty Acids in the Cecum of Rats Ingesting Fructooligosaccharides

    PubMed Central

    Yamamoto, Yuko; Takahahi, Toru; To, Masahiro; Nakagawa, Yusuke; Hayashi, Takashi; Shimizu, Tomoko; Kamata, Yohei; Saruta, Juri; Tsukinoki, Keiichi

    2016-01-01

    Salivary immunoglobulin A (IgA) serves as a major effector in mucosal immunity by preventing submucosal invasion of pathogens. However, the mechanism by which consumption of fermentable fibers increases IgA in saliva was not fully elucidated. This study investigated the effects of fructooligosaccharides (FOS) intake and time after feeding on IgA levels in the saliva and cecal digesta and on the concentration of short-chain fatty acids (SCFA) in the cecum in rats. Five-week-old rats were fed a fiber-free diet or a diet with 50 g/kg FOS for zero, one, four, and eight weeks. Ingestion of FOS at one and eight weeks led to a higher IgA flow rate of saliva per weight of submandibular gland tissue (p < 0.05), which positively correlated with the concentration of SCFA in the cecal digesta (rs = 0.86, p = 0.0006, n = 12), but showed no correlation with the concentration of IgA in the cecal digesta (rs = 0.15, p = 0.3, n = 48). These results suggested that ingestion of FOS increased salivary IgA secretion through high levels of SCFA in the large intestine, which was produced by fermentation of FOS. Thus, continuously ingesting FOS for more than one week could increase secretion of salivary IgA. PMID:27548207

  10. The Salivary IgA Flow Rate Is Increased by High Concentrations of Short-Chain Fatty Acids in the Cecum of Rats Ingesting Fructooligosaccharides.

    PubMed

    Yamamoto, Yuko; Takahahi, Toru; To, Masahiro; Nakagawa, Yusuke; Hayashi, Takashi; Shimizu, Tomoko; Kamata, Yohei; Saruta, Juri; Tsukinoki, Keiichi

    2016-01-01

    Salivary immunoglobulin A (IgA) serves as a major effector in mucosal immunity by preventing submucosal invasion of pathogens. However, the mechanism by which consumption of fermentable fibers increases IgA in saliva was not fully elucidated. This study investigated the effects of fructooligosaccharides (FOS) intake and time after feeding on IgA levels in the saliva and cecal digesta and on the concentration of short-chain fatty acids (SCFA) in the cecum in rats. Five-week-old rats were fed a fiber-free diet or a diet with 50 g/kg FOS for zero, one, four, and eight weeks. Ingestion of FOS at one and eight weeks led to a higher IgA flow rate of saliva per weight of submandibular gland tissue (p < 0.05), which positively correlated with the concentration of SCFA in the cecal digesta (rs = 0.86, p = 0.0006, n = 12), but showed no correlation with the concentration of IgA in the cecal digesta (rs = 0.15, p = 0.3, n = 48). These results suggested that ingestion of FOS increased salivary IgA secretion through high levels of SCFA in the large intestine, which was produced by fermentation of FOS. Thus, continuously ingesting FOS for more than one week could increase secretion of salivary IgA. PMID:27548207

  11. Flow rate measuring devices for gas flows

    NASA Astrophysics Data System (ADS)

    Bonfig, K. W.

    1985-07-01

    Flowrate measuring devices are described: volume meter with fixed or mobile walls; turbine meter; throttling procedure; ultrasonic and Doppler methods; vortex method; rotary flowmeter; and swinging body flow measuring procedure. Flowrate can also be measured from the force exerted on bodies immersed in a fluid or based on thermodynamical principles. The characteristics and operating envelope of each device/method are given.

  12. Flow rate logging seepage meter

    NASA Technical Reports Server (NTRS)

    Reay, William G. (Inventor); Walthall, Harry G. (Inventor)

    1996-01-01

    An apparatus for remotely measuring and logging the flow rate of groundwater seepage into surface water bodies. As groundwater seeps into a cavity created by a bottomless housing, it displaces water through an inlet and into a waterproof sealed upper compartment, at which point, the water is collected by a collection bag, which is contained in a bag chamber. A magnet on the collection bag approaches a proximity switch as the collection bag fills, and eventually enables the proximity switch to activate a control circuit. The control circuit then rotates a three-way valve from the collection path to a discharge path, enables a data logger to record the time, and enables a pump, which discharges the water from the collection bag, through the three-way valve and pump, and into the sea. As the collection bag empties, the magnet leaves the proximity of the proximity switch, and the control circuit turns off the pump, resets the valve to provide a collection path, and restarts the collection cycle.

  13. Gas flow meter and method for measuring gas flow rate

    DOEpatents

    Robertson, Eric P.

    2006-08-01

    A gas flow rate meter includes an upstream line and two chambers having substantially equal, fixed volumes. An adjustable valve may direct the gas flow through the upstream line to either of the two chambers. A pressure monitoring device may be configured to prompt valve adjustments, directing the gas flow to an alternate chamber each time a pre-set pressure in the upstream line is reached. A method of measuring the gas flow rate measures the time required for the pressure in the upstream line to reach the pre-set pressure. The volume of the chamber and upstream line are known and fixed, thus the time required for the increase in pressure may be used to determine the flow rate of the gas. Another method of measuring the gas flow rate uses two pressure measurements of a fixed volume, taken at different times, to determine the flow rate of the gas.

  14. Measuring Your Peak Flow Rate

    MedlinePlus

    ... meter. Proper cleaning with mild detergent in hot water will keep your peak flow meter working accurately and may keep you healthier. Related Content News: American Lung Association Applauds EPA’s Update to Cross-State Air Pollution Rule News: American Lung Association Invests More Than $ ...

  15. Flow Rate Measurements Using Flow-Induced Pipe Vibration

    SciTech Connect

    R. P. Evans; Jonathan D. Blotter; Alan G. Stephens

    2004-03-01

    This paper focuses on the possibility of a non-intrusive, low cost, flow rate measurement technique. The technique is based on signal noise from an accelerometer attached to the surface of the pipe. The signal noise is defined as the standard deviation of the frequency averaged time series signal. Experimental results are presented that indicate a nearly quadratic relationship between the signal noise and mass flow rate in the pipe. It is also shown that the signal noise - flow rate relationship is dependant on the pipe material and diameter.

  16. Flow rate limitation in open capillary channel flows.

    PubMed

    Haake, Dennis; Rosendahl, Uwe; Ohlhoff, Antje; Dreyer, Michael E

    2006-09-01

    This paper reports the experimental and theoretical investigations of forced liquid flows through open capillary channels under reduced gravity conditions. An open capillary channel is a structure that establishes a liquid flow path at low Bond numbers, when the capillary pressure caused by the surface tension force dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. In case of steady flow through the channel, the capillary pressure of the free surface balances the pressure difference between the liquid and the surrounding constant-pressure gas phase. Because of convective and viscous momentum transport, the pressure along the flow path decreases and causes the free surface to bend inward. The maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the geometry of the channel and the properties of the liquid. In this paper we present a comparison of the theoretical and experimental critical flow rates and surface profiles for convective dominated flows. For the prediction of the critical flow rate a one-dimensional theoretical model taking into account the entrance pressure loss and the frictional pressure loss in the channel is developed. PMID:17124140

  17. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  18. Stability of flow focusing: The minimum attainable flow rate

    NASA Astrophysics Data System (ADS)

    Montanero, J. M.; Rebollo, N.; Acero, A.; Ferrera, C.; Herrada, M. A.; Ganan-Calvo, A. M.

    2011-11-01

    We analyze both theoretically and experimentally the stability of the steady jetting regime reached when liquid jets are focused by coaxial gas streams. In the low-viscosity case, viscous dissipation in the feeding capillary and liquid meniscus seem to be the origin of the instability. For high-viscosity liquids, the breakdown of the jetting regime takes place when the pressure drop cannot overcome the resistance force offered by surface tension. The characteristic flow rates for which the tapering menisci become unstable do not depend on the pressure drop applied to the system to produce the micro-jet. They increase (decrease) with viscosity for very low (high) viscosity liquids. Experiments confirmed the validity of the above conclusions. For each applied pressure drop, there is a minimum liquid flow rate below which the liquid meniscus drips. The minimum flow rates become practically independent of the applied pressure drop for sufficiently large values of this quantity. There exists an optimum value of the capillary-to-orifice distance for which the minimum flow rate attains a limiting value, which constitutes the lowest flow rate attainable with a given configuration in the steady jetting regime. A two-dimensional stability map with a high degree of validity is plotted on the plane defined by the Reynolds and capillary numbers based on the limiting flow rate.

  19. Ultrasonic rate measurement of multiphase flow

    SciTech Connect

    Dannert, D.A.; Horne, R.N.

    1993-01-01

    On of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow, regime. Spinner tools are inaccurate at extremely high or low, flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether gas/ oil, gas/water or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. This goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter. It has many advantages besides the ones previously mentioned and is in full in that chapter.

  20. Ultrasonic rate measurement of multiphase flow

    NASA Astrophysics Data System (ADS)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  1. Electromagnetic flow rate meter. [for liquid metals

    NASA Technical Reports Server (NTRS)

    Banks, B. A. (Inventor)

    1974-01-01

    A liquid metal, whose flow rate is to be determined, is directed through a chamber made of electrically-insulating material on which there is impressed a magnetic field perpendicular to the direction of flow of the liquid metal. The magnetic field is made to increase in strength in a downstream direction of the flow of liquid metal. At least a pair of electrodes are disposed in the chamber traversely and perpendicular to the direction of flow and an ammeter is connected between the electrodes. Electrodes may be disposed in the top or the bottom of the chamber and each may be segmented. Oppositely disposed electrodes may be used with at least one dividing wall extending from each electrode to cause reversal of the direction of flow of the liquid metal. The magnetic field may be provided by electromagnets or permanent magnets such as shaded pole permanent magnets.

  2. Reserve, flowing electrolyte, high rate lithium battery

    NASA Astrophysics Data System (ADS)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  3. Evaluation of IOM personal sampler at different flow rates.

    PubMed

    Zhou, Yue; Cheng, Yung-Sung

    2010-02-01

    The Institute of Occupational Medicine (IOM) personal sampler is usually operated at a flow rate of 2.0 L/min, the rate at which it was designed and calibrated, for sampling the inhalable mass fraction of airborne particles in occupational environments. In an environment of low aerosol concentrations only small amounts of material are collected, and that may not be sufficient for analysis. Recently, a new sampling pump with a flow rate up to 15 L/min became available for personal samplers, with the potential of operating at higher flow rates. The flow rate of a Leland Legacy sampling pump, which operates at high flow rates, was evaluated and calibrated, and its maximum flow was found to be 10.6 L/min. IOM samplers were placed on a mannequin, and sampling was conducted in a large aerosol wind tunnel at wind speeds of 0.56 and 2.22 m/s. Monodisperse aerosols of oleic acid tagged with sodium fluorescein in the size range of 2 to 100 microm were used in the test. The IOM samplers were operated at flow rates of 2.0 and 10.6 L/min. Results showed that the IOM samplers mounted in the front of the mannequin had a higher sampling efficiency than those mounted at the side and back, regardless of the wind speed and flow rate. For the wind speed of 0.56 m/s, the direction-averaged (the average value of all orientations facing the wind direction) sampling efficiency of the samplers operated at 2.0 L/min was slightly higher than that of 10.6 L/min. For the wind speed of 2.22 m/s, the sampling efficiencies at both flow rates were similar for particles < 60 microm. The results also show that the IOM's sampling efficiency at these two different flow rates follows the inhalable mass curve for particles in the size range of 2 to 20 microm. The test results indicate that the IOM sampler can be used at higher flow rates. PMID:19953412

  4. Controlling a wide range of flow rates

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1979-01-01

    Servo-operated valve and two flowmeters allow accurate control over 1,900:1 flow-rate range. It was developed as part of laboratory instrument for measuring properties of confined fluids under conditions analogous to those encountered in deep drilling operations.

  5. Rates of Flow: Some Useful Equations.

    ERIC Educational Resources Information Center

    Robertson, I. S.

    1979-01-01

    Presents a step-by-step approach to be used in solving different forms of physics problems, starting from familiar grounds and finding well known results on the way. Uses the rate of heat flow and the resulting changes of temperature with time of a copper block as an example. (GA)

  6. Flow rate measurement in aggressive conductive fluids

    NASA Astrophysics Data System (ADS)

    Dubovikova, Nataliia; Kolesnikov, Yuri; Karcher, Christian

    2014-03-01

    Two non-contact experimental methods of flow rate measurements for aggressive conductive liquids are described. The techniques are based on electromagnetic forces and Faraday's law: Lorentz force is induced inside moving conductive liquid under influence of variable magnetic field of permanent magnets. They are mounted along a liquid metal channel or (in case of the second method) inserted into rotated metal wheels. The force acts in the opposite of fluids' velocity direction and hence it is possible to measure reaction force of it that takes place according to Newton's law on magnetic field source - permanent magnets. And by knowing the force, which linearly depends on velocity, one can calculate mean flow rate of liquid. In addition experimental "dry" calibration and its results are described for one of the measurements' techniques.

  7. Controlled growth of filamentous fatty acid vesicles under flow.

    PubMed

    Hentrich, Christian; Szostak, Jack W

    2014-12-16

    The earliest forms of cellular life would have required a membrane compartment capable of growth and division. Fatty acid vesicles are an attractive model of protocell membranes, as they can grow into filamentous vesicles that readily divide while retaining their contents. In order to study vesicle growth, we have developed a method for immobilizing multilamellar fatty acid vesicles on modified glass surfaces and inducing filamentous membrane growth under flow. Filament formation strictly depended on the presence of freshly neutralized fatty acid micelles in the flow chamber. Using light microscopy, we observed a strong dependence of initial growth velocity on initial vesicle size, suggesting that new fatty acid molecules were incorporated into the membrane over the entire external surface of the vesicle. We examined the influences of flow rate, fatty acid concentration, and salt concentration on filamentous growth and observed drastic shape changes, including membrane pearling, of preexisting membrane tubules in response to osmotic stress. These results illustrate the versatility of flow studies for exploring the process of fatty acid vesicle growth following exposure to free fatty acids. PMID:25402759

  8. Controlled Growth of Filamentous Fatty Acid Vesicles under Flow

    PubMed Central

    2014-01-01

    The earliest forms of cellular life would have required a membrane compartment capable of growth and division. Fatty acid vesicles are an attractive model of protocell membranes, as they can grow into filamentous vesicles that readily divide while retaining their contents. In order to study vesicle growth, we have developed a method for immobilizing multilamellar fatty acid vesicles on modified glass surfaces and inducing filamentous membrane growth under flow. Filament formation strictly depended on the presence of freshly neutralized fatty acid micelles in the flow chamber. Using light microscopy, we observed a strong dependence of initial growth velocity on initial vesicle size, suggesting that new fatty acid molecules were incorporated into the membrane over the entire external surface of the vesicle. We examined the influences of flow rate, fatty acid concentration, and salt concentration on filamentous growth and observed drastic shape changes, including membrane pearling, of preexisting membrane tubules in response to osmotic stress. These results illustrate the versatility of flow studies for exploring the process of fatty acid vesicle growth following exposure to free fatty acids. PMID:25402759

  9. Electromechanically Actuated Valve for Controlling Flow Rate

    NASA Technical Reports Server (NTRS)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  10. Deconvolution of wellbore pressure and flow rate

    SciTech Connect

    Kuchuk, F.J. ); Carter, R.G. . Langley Research Center); Ayestaran, L. )

    1990-03-01

    Determination of the influence function of a well/reservoir system from the deconvolution of wellbore flow rate and pressure is presented. Deconvolution is fundamental and is particularly applicable to system identification. A variety of different deconvolution algorithms are presented. The simplest algorithm is a direct method that works well for data without measurement noise but that fails in the presence of even small amounts of noise. The authors show, however, that a modified algorithm that imposes constraints on the solution set works well, even with significant measurement errors.

  11. Solids flow rate measurement in dense slurries

    SciTech Connect

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  12. Adjustable flow rate controller for polymer solutions

    DOEpatents

    Jackson, Kenneth M.

    1981-01-01

    An adjustable device for controlling the flow rate of polymer solutions which results in only little shearing of the polymer molecules, said device comprising an inlet manifold, an outlet manifold, a plurality of tubes capable of providing communication between said inlet and outlet manifolds, said tubes each having an internal diameter that is smaller than that of the inlet manifold and large enough to insure that viscosity of the polymer solution passing through each said tube will not be reduced more than about 25 percent, and a valve associated with each tube, said valve being capable of opening or closing communication in that tube between the inlet and outlet manifolds, each said valve when fully open having a diameter that is substantially at least as great as that of the tube with which it is associated.

  13. Flow-injection chemiluminescence determination of chlorinated isocyanuric acids.

    PubMed

    Safavi, Afsaneh; Karimi, Mohammad Ali

    2003-02-01

    A rapid and sensitive flow-injection chemiluminescence method is described for the determination of dichloro- and trichloroisocyanuric acids based on the chemiluminescence produced during their reaction with luminol in alkaline medium. The effects of analytical and flow-injection variables on these chemiluminescence systems and determination of both oxidants are discussed. The optimized method yielded 3sigma detection limits of 8x10(-8) and 5x10(-8) mol L(-1) for the sodium dichloroisocyanurate and trichloroisocyanuric acid, respectively. The optimum conditions were found to be as follows: NaOH, 1x10(-1) mol L(-1); luminol, 5x10(-3) mol L(-1); KI, 2x10(-3) mol L(-1) and flow rate, 3.5 mL min(-1). PMID:12589508

  14. Quantitative Estimation of Tissue Blood Flow Rate.

    PubMed

    Tozer, Gillian M; Prise, Vivien E; Cunningham, Vincent J

    2016-01-01

    The rate of blood flow through a tissue (F) is a critical parameter for assessing the functional efficiency of a blood vessel network following angiogenesis. This chapter aims to provide the principles behind the estimation of F, how F relates to other commonly used measures of tissue perfusion, and a practical approach for estimating F in laboratory animals, using small readily diffusible and metabolically inert radio-tracers. The methods described require relatively nonspecialized equipment. However, the analytical descriptions apply equally to complementary techniques involving more sophisticated noninvasive imaging.Two techniques are described for the quantitative estimation of F based on measuring the rate of tissue uptake following intravenous administration of radioactive iodo-antipyrine (or other suitable tracer). The Tissue Equilibration Technique is the classical approach and the Indicator Fractionation Technique, which is simpler to perform, is a practical alternative in many cases. The experimental procedures and analytical methods for both techniques are given, as well as guidelines for choosing the most appropriate method. PMID:27172960

  15. Bipolar Membranes for Acid Base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  16. 46 CFR 162.018-7 - Flow rating tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Flow rating tests. 162.018-7 Section 162.018-7 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied Compressed Gas § 162.018-7 Flow rating tests. (a) Flow rating of valves shall be conducted in accordance with UG-131 of section VIII...

  17. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  18. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  19. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  20. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  1. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  2. Water evaporation rates across hydrophobic acid monolayers at equilibrium spreading pressure.

    PubMed

    Tsuji, Minami; Nakahara, Hiromichi; Moroi, Yoshikiyo; Shibata, Osamu

    2008-02-15

    The effect of alkanoic acid [CH(3)(CH(2))(n-2)COOH; HCn] and perfluoroalkanoic acid [CF(3)(CF(2))(n-2)COOH; FCn] monolayers on the water evaporation rate was investigated by thermogravimetry tracing the decrease in amount of water with time. The evaporation rate from the surface covered by a monolayer was measured as a function of temperature and hydrophobic chain length of the acids, where the monolayer was under an equilibrium spreading pressure. From thermal behavior of the crystallized acids, their solid states are C-type in crystalline state over the temperature range from 298.2 to 323.2 K. The dry air was flowed through a furnace tube of a thermogravimetry apparatus at the flow rate of 80 mL min(-1), where the evaporation rate becomes almost constant irrespective of the flow rate. The temperature dependence of the evaporation rate was analyzed kinetically to evaluate the activation energy and thermodynamics values for the activated complex, which demonstrated that these values were almost the same for both alkanoic acids and perfluoroalkanoic acids, although the effect of perfluoroalkanoic acids on the evaporation rate was smaller than that of corresponding hydrogenated fatty acids. The difference in the evaporation rate between FCn and HCn was examined by atomic force microscopy (AFM), Brewster angle microscopy (BAM), surface potential (DeltaV) at equilibrium spreading pressure, and Langmuir curve (pi-A isotherm), and their results were consistent and supported the difference. PMID:18048050

  3. Nutrient transport as affected by rate of overland flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is currently available concerning the effects of varying flow rate on nutrient transport by overland flow. The objective of this study was to measure the effects of overland flow rate on nutrient transport following the application of beef cattle or swine manure to plots containin...

  4. Ionospheric Heating Rates Associated with Solar Wind Forcing: Ejecta flow, High Speed Flow and Slow Flow

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Kasprzak, B.; Richardson, I.; Paige, T.; Evans, D.

    2001-12-01

    We present estimates of global ionospheric Joule and particle heating as a function of solar wind flow types over solar cycles 21, 22 and the first half of solar cycle 23. Richardson et al., [JGR, 2000] used a variety of techniques to categorize the solar wind flow as ejecta, high-speed stream or slow flow. Their work provides the basis for our catigorization of heating by flow type. The estimates of Joule heating are based on output of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure, and fits to the Polar Cap Index [Chun et al., GRL, 1999]. Estimates of particle heating are derived from polar orbiting satellites. Although ejecta only account for 19% of the solar wind flow, they account for 27% of the Joule heating. High-speed stream flow accounts for 47% of the flow occurrence and 44% of the Joule heating. We will show similar comparisons for particle heating. Our solar cycle statistics indicate that Joule heating produces a yearly average hemispheric heating rate of 53 GW while particles produce a hemispheric heating rate of 38 GW. Joule heating exhibits more variability than particle heating. During solar cycle maximum years Joule heating accounts for twice the heating associated with particles heating.

  5. Device accurately measures and records low gas-flow rates

    NASA Technical Reports Server (NTRS)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  6. Changes in rabbit lacrimal gland fluid osmolarity with flow rate.

    PubMed

    Gilbard, J P; Dartt, D A

    1982-12-01

    To determine whether the osmolarity of rabbit lacrimal gland fluid (LGF) changes with flow rate, microvolumes (approximately 0.2 microliters) were collected directly from he cannulated glandular excretory duct of anesthetized rabbits. Low flow rates were obtained by collection of LGF 5 min after instillation of proparacaine: higher flow rates were obtained by stimulation with 0.45, 0.9, 3.8, or 15 micrograms of acetylcholine administered by local arterial injection. At low flow rates (less than 0.11 microliters/min), LGF osmolarity was 334 +/- 4 mOsm/L (n = 19). As flow rate increased to maximal rates (13.0 to 19.1 microliters/min), LGF osmolarity decreased to a value of 299 +/- 2 mOsm/L (n = 7). In keratoconjunctivitis sicca, increase in LGF osmolarity, as well as tear film evaporation, may contribute to elevated tear film osmolarity. PMID:7141824

  7. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  8. Specific Impulse and Mass Flow Rate Error

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2005-01-01

    Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.

  9. Flow rates through earthen, geomembrane & composite cut-off walls

    SciTech Connect

    Tachavises, C.; Benson, C.H.

    1997-12-31

    Flow rates through soil-bentonite (SIB), geomembrane (GM), and composite geomembrane-soil (CGS) cut-off walls were determined using a numerical model of ground water flow. Various geological and wall conditions were simulated. Results of the simulations show that flow rates past all wall types are affected by hydraulic conductivities of the aquifer and underlying confining layer. Flow rates past GM walls with perfect joints are very low, provided the confining layer has low hydraulic conductivity. However, if a small fraction of the joints are defective, GM walls can be ineffective in blocking flow. CGS walls with a low hydraulic conductivity shell are less sensitive to joint defects. CGS walls with good shells typically have lower flow rates than SB and GM walls, even if the CGS wall contains defective joints.

  10. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    SciTech Connect

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  11. Performance of a low cost interdigitated flow design on a 1 kW class all vanadium mixed acid redox flow battery

    NASA Astrophysics Data System (ADS)

    Reed, David; Thomsen, Edwin; Li, Bin; Wang, Wei; Nie, Zimin; Koeppel, Brian; Sprenkle, Vincent

    2016-02-01

    Three flow designs were operated in a 3-cell 1 kW class all vanadium mixed acid redox flow battery. The influence of electrode surface area and flow rate on the coulombic, voltage, and energy efficiency and the pressure drop in the flow circuit will be discussed and correlated to the flow design. Material cost associated with each flow design will also be discussed.

  12. Performance of high flow rate samplers for respirable particle collection.

    PubMed

    Lee, Taekhee; Kim, Seung Won; Chisholm, William P; Slaven, James; Harper, Martin

    2010-08-01

    The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m(-3) in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins-Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size ((50)d(ae)) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 microm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2-11 times based on gravimetric analysis. Dust loading inside the

  13. Performance of High Flow Rate Samplers for Respirable Particle Collection

    PubMed Central

    Lee, Taekhee; Kim, Seung Won; Chisholm, William P.; Slaven, James; Harper, Martin

    2010-01-01

    The American Conference of Governmental Industrial hygienists (ACGIH) lowered the threshold limit value (TLV) for respirable crystalline silica (RCS) exposure from 0.05 to 0.025 mg m−3 in 2006. For a working environment with an airborne dust concentration near this lowered TLV, the sample collected with current standard respirable aerosol samplers might not provide enough RCS for quantitative analysis. Adopting high flow rate sampling devices for respirable dust containing silica may provide a sufficient amount of RCS to be above the limit of quantification even for samples collected for less than full shift. The performances of three high flow rate respirable samplers (CIP10-R, GK2.69, and FSP10) have been evaluated in this study. Eleven different sizes of monodisperse aerosols of ammonium fluorescein were generated with a vibrating orifice aerosol generator in a calm air chamber in order to determine the sampling efficiency of each sampler. Aluminum oxide particles generated by a fluidized bed aerosol generator were used to test (i) the uniformity of a modified calm air chamber, (ii) the effect of loading on the sampling efficiency, and (iii) the performance of dust collection compared to lower flow rate cyclones in common use in the USA (10-mm nylon and Higgins–Dewell cyclones). The coefficient of variation for eight simultaneous samples in the modified calm air chamber ranged from 1.9 to 6.1% for triplicate measures of three different aerosols. The 50% cutoff size (50dae) of the high flow rate samplers operated at the flow rates recommended by manufacturers were determined as 4.7, 4.1, and 4.8 μm for CIP10-R, GK2.69, and FSP10, respectively. The mass concentration ratio of the high flow rate samplers to the low flow rate cyclones decreased with decreasing mass median aerodynamic diameter (MMAD) and high flow rate samplers collected more dust than low flow rate samplers by a range of 2–11 times based on gravimetric analysis. Dust loading inside the high

  14. Single chamber fuel cells: Flow geometry, rate and composition considerations

    SciTech Connect

    Stefan, Ionel C.; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2003-11-17

    Four different single chamber fuel cell designs were compared using propane-air gas mixtures. Gas flow around the electrodes has a significant influence on the open circuit voltage and the power density of the cell. The strong influence of flow geometry is likely due to its effect on gas composition, particularly on the oxygen chemical potential at the two electrodes as a result of gas mixing. The chamber design which exposes the cathode first to the inlet gas was found to yield the best performance at lower flow rates, while the open tube design with the electrodes equally exposed to the inlet gas worked best at higher flow rates.

  15. Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate

    PubMed Central

    Abulon, Dina Joy K

    2015-01-01

    Purpose We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge) operated from 500 cuts per minute (cpm) up to 5,000 cpm. Duty cycle modes tested included biased open, 50/50, and biased closed. Flow rates were calculated by assessing the change in weight of porcine eyes during vitreous aspiration. Volumetric flow rate was measured with a computer-connected electronic scale. Results At lower cut rates, the biased open mode produced higher flow than did the 50/50 mode, which produced higher flow than did the biased closed mode. In the biased closed and 50/50 modes, vitreous flow rates tended to increase with increasing cut rate. Vitreous flow rates in the biased open duty cycle mode remained relatively constant across cut rates. Conclusion Vitreous flow rates through dual pneumatic vitrectomy probes could be manipulated by changing the duty cycle modes on the vitrectomy system. Differences in duty cycle behavior suggest that high-speed cut rates of 5,000 cpm may optimize vitreous aspiration. PMID:25709386

  16. Turbine flow sensor for volume-flow rate verification in MR.

    PubMed

    Frayne, R; Holdsworth, D W; Smith, R F; Kasrai, R; Larsen, J P; Rutt, B K

    1994-09-01

    A turbine flow sensor for MR flow experiments has been evaluated using reference volume-flow rate measurements obtained using an electromagnetic (EM) flow meter measurements and simultaneous phase contrast (PC) MR acquisitions. After calibration, the device was found to have accuracy (compared with the EM flow meter), linearity, and precision of better than +/- 1%, +/- 3.5%, 3.5%, respectively, in constant flow mode (0 to 30 ml s-1). The frequency response of the flow sensor was flat (within +/- 10%) up to 13.9 Hz. Volume-flow rate measurements on constant and simulated physiologic flow waveforms were in close agreement with both the electromagnetic (EM) flow meter and the gated MR PC estimates. PMID:7984075

  17. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  18. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  19. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  20. Fluid/Vapor Separator for Variable Flow Rates

    NASA Technical Reports Server (NTRS)

    Lee, J. M.; Chuang, C.; Frederking, T. H.; Brown, G. S.; Kamioka, Y.; Vorreiter, J.

    1984-01-01

    Shutter varies gas throughput of porous plug. Variable area exposed on porous plug allows to pass varying rates of vapor flow while blocking flow of liquid helium II from cryogenic bath. Applications in refining operations, industrial chemistry, and steam-powered equipment.

  1. Studies on pressure losses and flow rate optimization in vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria

    2014-02-01

    Premature voltage cut-off in the operation of the vanadium redox flow battery is largely associated with the rise in concentration overpotential at high state-of-charge (SOC) or state-of-discharge (SOD). The use of high constant volumetric flow rate will reduce concentration overpotential, although potentially at the cost of consuming excessive pumping energy which in turn lowers system efficiency. On the other hand, any improper reduction in flow rate will also limit the operating SOC and lead to deterioration in battery efficiency. Pressure drop losses are further exacerbated by the need to reduce shunt currents in flow battery stacks that requires the use of long, narrow channels and manifolds. In this paper, the concentration overpotential is modelled as a function of flow rate in an effort to determine an appropriate variable flow rate that can yield high system efficiency, along with the analysis of pressure losses and total pumping energy. Simulation results for a 40-cell stack under pre-set voltage cut-off limits have shown that variable flow rates are superior to constant flow rates for the given system design and the use of a flow factor of 7.5 with respect to the theoretical flow rate can reach overall high system efficiencies for different charge-discharge operations.

  2. Mass flow rate measurement in abrasive jets using acoustic emission

    NASA Astrophysics Data System (ADS)

    Ivantsiv, V.; Spelt, J. K.; Papini, M.

    2009-09-01

    The repeatability of abrasive jet machining operations is presently limited by fluctuations in the mass flow rate due to powder compaction, stratification and humidity effects. It was found that the abrasive mass flow rate for a typical abrasive jet micromachining setup could be determined by using data from the acoustic emission of the abrasive jet impacting a flat plate. Two methods for extracting the mass flow rate from the acoustic emission were developed and compared. In the first method, the number of particle impacts per unit time was determined by a direct count of peaks in the acoustic emission signal. The second method utilizes the power spectrum density of the acoustic emission in a specific frequency range. Both measures were found to correlate strongly with the mass flow rate measured by weighing samples of blasted powder for controlled time periods. It was found that the peak count method permits measurement of the average frequency of the impacts and the mass flow rate, but can only be applied to flow rates in which the impact frequency is approximately one order of magnitude less than the frequency of the target plate ringing. The power spectrum density method of signal processing is applicable to relatively fine powders and to flow rates at which the average impact frequency is of the same order of magnitude as that of the ringing due to the impact. The acoustic emission technique can be used to monitor particle flow variations over a wide range of time periods and provides a straightforward and accurate means of process control.

  3. Estimating rates of debris flow entrainment from ground vibrations

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; Coe, J. A.; Coviello, V.; Smith, J. B.; McCoy, S. W.; Arattano, M.

    2015-08-01

    Debris flows generate seismic waves as they travel downslope and can become more dangerous as they entrain sediment along their path. We present field observations that show a systematic relation between the magnitude of seismic waves and the amount of erodible sediment beneath the flow. Specifically, we observe that a debris flow traveling along a channel filled initially with sediment 0.34 m thick generates about 2 orders of magnitude less spectral power than a similar-sized flow over the same channel without sediment fill. We adapt a model from fluvial seismology to explain this observation and then invert it to estimate the level of bed sediment (and rate of entrainment) beneath a passing series of surges. Our estimates compare favorably with previous direct measurements of entrainment rates at the site, suggesting the approach may be a new indirect way to obtain rare field constraints needed to test models of debris flow entrainment.

  4. Flow rate limitation in open wedge channel under microgravity

    NASA Astrophysics Data System (ADS)

    Wei, YueXing; Chen, XiaoQian; Huang, YiYong

    2013-08-01

    A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.

  5. Rate-based ABR flow control using two timescale SPSA

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Shalabh; Fu, Michael C.; Marcus, Steven I.

    1999-08-01

    In this paper, a two timescale simultaneous perturbation stochastic approximation algorithm is developed and applied to closed loop rate based available bit rate flow control. The relevant convergence results are stated and explained. Numerical experiments demonstrate fast convergence even in the presence of significant delays and a large number of parameterized policy levels.

  6. Granular flow through an aperture: pressure and flow rate are independent.

    PubMed

    Aguirre, María Alejandra; Grande, Juan Gabriel; Calvo, Adriana; Pugnaloni, Luis A; Géminard, Jean-Christophe

    2011-06-01

    We simultaneously measure the flow rate and the normal force on the base, near the outlet, during the discharge through an orifice of a dense packing of monosized disks driven by a conveyor belt. We find that the normal force on the base decreases even when a constant flow rate is measured. In addition, we show, by changing the mass of the disks, that pressure can be changed while the flow rate remains constant. Conversely, we are able, by changing the belt velocity, to set different flow rates for the same pressure. The experiment confirms that, contrary to what has been implicitly assumed in numerous works, the flow rate through an aperture is not controlled by the pressure in the outlet region. PMID:21797356

  7. MASS ACCRETION RATE OF ROTATING VISCOUS ACCRETION FLOW

    SciTech Connect

    Park, Myeong-Gu

    2009-11-20

    The mass accretion rate of transonic spherical accretion flow onto compact objects such as black holes is known as the Bondi accretion rate, which is determined only by the density and the temperature of gas at the outer boundary. A rotating accretion flow has angular momentum, which modifies the flow profile from the spherical Bondi flow, and hence its mass accretion rate, but most work on disc accretion has taken the mass flux to be given with the relation between that parameter and external conditions left uncertain. Within the framework of a slim alpha disk, we have constructed global solutions of the rotating, viscous, hot accretion flow in the Paczynski-Wiita potential and determined its mass accretion rate as a function of density, temperature, and angular momentum of gas at the outer boundary. We find that the low angular momentum flow resembles the spherical Bondi flow and its mass accretion rate approaches the Bondi accretion rate for the same density and temperature at the outer boundary. The high angular momentum flow on the other hand is the conventional hot accretion disk with advection, but its mass accretion rate can be significantly smaller than the Bondi accretion rate with the same boundary conditions. We also find that solutions exist only within a limited range of dimensionless mass accretion rate m-dotident toM-dot/M-dot{sub B}, where M-dot is the mass accretion rate and M-dot{sub B} is the Bondi accretion rate: when the temperature at the outer boundary is equal to the virial temperature, solutions exist only for 0.05approxrate is roughly independent of the radius of the outer boundary but inversely proportional to the angular momentum at the outer boundary and proportional to the viscosity parameter, m-dotapprox =9.0 alphalambda{sup -1} when 0.1 approx

  8. Induction and measurement of minute flow rates through nanopipes

    NASA Astrophysics Data System (ADS)

    Sinha, Shashank; Pia Rossi, Maria; Mattia, D.; Gogotsi, Yury; Bau, Haim H.

    2007-01-01

    A simple technique to simultaneously induce fluid flow through an individual nanopipe and measure the flow rate and the pressure difference across the pipe is described. Two liquid drops of different sizes are positioned at the two ends of the nanopipe. Due to the higher capillary pressure of the smaller drop, flow is driven from the smaller drop to the bigger drop. The instantaneous pressures of the two drops are estimated from the drops' shapes and sizes. The flow rate is estimated by monitoring the sizes of the drops as functions of time with a microscope and a video camera. A theory that correlates the drops' sizes and the flow rate is derived. Measurements are carried out with an ionic salt and glycerin to estimate the effective tube radius of the nanopipes with diameters ranging from 200 to 300nm. The tubes' diameters are independently measured with a scanning electron microscope. The method is also verified by tracking the motion of fluorescent particles through the nanopipe. The paper provides a simple technique for studying extremely low flow rates in nanofluidic systems. When working with low-evaporation fluids such as ionic salts, the measurements can be carried out with an electron microscope.

  9. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  10. Heart Rate Response and Lactic Acid Concentration in Squash Players.

    ERIC Educational Resources Information Center

    Beaudin, Paula; And Others

    1978-01-01

    It was concluded that playing squash is an activity that results in heart rate responses of sufficient intensity to elicit aerobic training effects without producing high lactic acid concentration in the blood. (MM)

  11. Packet Scheduling Mechanism to Improve Quality of Short Flows and Low-Rate Flows

    NASA Astrophysics Data System (ADS)

    Yokota, Kenji; Asaka, Takuya; Takahashi, Tatsuro

    In recent years elephant flows are increasing by expansion of peer-to-peer (P2P) applications on the Internet. As a result, bandwidth is occupied by specific users triggering unfair resource allocation. The main packet-scheduling mechanism currently employed is first-in first-out (FIFO) where the available bandwidth of short flows is limited by elephant flows. Least attained service (LAS), which decides transfer priority of packets by the total amount of transferred data in all flows, was proposed to solve this problem. However, routers with LAS limit flows with large amount of transferred data even if they are low-rate. Therefore, it is necessary to improve the quality of low-rate flows with long holding times such as voice over Internet protocol (VoIP) applications. This paper proposes rate-based priority control (RBPC), which calculates the flow rate and control the priority by using it. Our proposed method can transfer short flows and low-rate flows in advance. Moreover, its fair performance is shown through simulations.

  12. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.

    PubMed

    Park, H M; Lee, W M

    2008-07-01

    Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially. PMID:18584093

  13. Effects of Mass Flow Rate on the Thermal-Flow Characteristics of Microwave CO2 Plasma.

    PubMed

    Hong, Chang-Ki; Na, Young-Ho; Uhm, Han-Sup; Kim, Youn-Jea

    2015-03-01

    In this study, the thermal-flow characteristics of atmospheric pressure microwave CO2 plasma were numerically investigated by simulation. The electric and gas flow fields in the reaction chamber with a microwave axial injection torch operated at 2.45 GHz were simulated. The microwave launcher had the standard rectangular waveguide WR340 geometry. The simulation was performed by using the COMSOL Multiphysics plasma model with various mass flow rates of CO2. The electric fields, temperature profiles and the density of electrons were graphically depicted for different CO2 inlet mass flow rates. PMID:26413663

  14. Comparison of saturation flow rates at signalized intersections

    SciTech Connect

    Stokes, R.W.

    1988-11-01

    The intersection, being the focal point of conflicts and congestion in the roadway network, is a critical area in the efficient use of the urban street system. As a result, the capacity of the intersection, particularly the signalized intersection, has been the subject of much research in recent years. Procedures for estimating signalized intersection capacity are typically based on the use of an ideal, maximum traffic flow rate (saturation flow) that is adjusted to reflect site-specific conditions that may not be ideal. Regardless of the specific procedure used in signalized intersection capacity analyses, saturates flow is used as the base flow rate. Various capacity influencing factors are then used to modify this base flow value to reflect prevailing conditions. This article presents a brief review of studied conducted to estimate saturation flows at signalized intersections. Given the sensitivity of signalized intersection capacity analysis procedures to saturation flow values, the information presented here should be of interest to the practitioner, as well as the theorist.

  15. Determination of Acidity Constants by Gradient Flow-Injection Titration

    ERIC Educational Resources Information Center

    Conceicao, Antonio C. L.; Minas da Piedade, Manuel E.

    2006-01-01

    A three-hour laboratory experiment, designed for an advanced undergraduate course in instrumental analysis that illustrates the application of the gradient chamber flow-injection titration (GCFIT) method with spectrophotometric detection to determine acidity constants is presented. The procedure involves the use of an acid-base indicator to obtain…

  16. Entropy production rates from viscous flow calculations. I - A turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Moore, J.; Moore, J. G.

    1983-03-01

    A procedure for obtaining entropy production rates from viscous flow calculations is described. The method is based on process thermodynamics; it allows loss production to be calculated in 'irreversible equilibrium processes'. The two-dimensional turbulent boundary layer of Samuel and Joubert is considered. Mean rates of entropy production are evaluated from measured data using rates of dissipation and rates of increase of turbulence kinetic energy. Calculations performed with the Moore Cascade Flow Program give good agreement with mean rates of entropy production and reveal details of the distribution of entropy production throughout the boundary layer.

  17. Low-Flow-Rate Dry-Powder Feeder

    NASA Technical Reports Server (NTRS)

    Ramsey, Keith E.

    1994-01-01

    Apparatus feeds small, precise flow of dry powder through laser beam of optical analyzer measuring patterns of light created by forward scattering (Fraunhofer diffraction) of laser beam from powder particles. From this optical measurement, statistical distribution of sizes of powder particles computed. Rates of flow optimized for measurement of particle-size distributions. Developed for analyzing particle-size distributions of solid-propellant powders. Also adapted to pharmaceutical industry, in manufacture of metal powder, and in other applications where particle-size distributions of materials used to control rates of chemical reactions and/or physical characteristics of processes.

  18. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme.

    PubMed

    Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen

    2009-01-01

    This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error. PMID:22346708

  19. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme

    PubMed Central

    Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen

    2009-01-01

    This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error. PMID:22346708

  20. High strain-rate plastic flow in Fe and Al

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Eggert, Jon; Rudd, Robert; Bolme, Cynthia; Collins, Gilbert

    2011-06-01

    Understanding the nature and time-dependence of material deformation at high strain rates is an important goal in condensed matter physics. Under dynamic loading, the rate of plastic strain is determined by the flow of dislocations through the crystal lattice and is a complex function of time, distance, sample purity, temperature, internal stresses, microstructure and strain rate. Under shock compression time-dependent plasticity is typically inferred by fitting elastic precursor stresses as a function of propagation distance with a phenomenologically based dislocation kinetics model. We employ a laser-driven ramp wave loading technique to compress 6-70 micron thick samples of bcc-Fe and fcc-Al over a strain rate range of 1e6-1e8 1/s. Our data show that for fixed sample thickness, stresses associated the onset of plasticity are highly dependent on the strain rate of compression and do not readily fit into the elastic stress - distance evolution descriptive of instantaneous shock loading. We find that the elastic stress at the onset of plasticity is well correlated with the strain rate at the onset of plastic flow for both shock- and ramp-wave experiments. Our data, combined with data from other dynamic compression platforms, reveal a sharp increase in the peak elastic stress at high strain rates, consistent with a transition in dislocation flow dominated by phonon drag. smith248@llnl.gov

  1. Measuring gas flow rates in the Milky Way

    NASA Astrophysics Data System (ADS)

    Wakker, Bart

    2010-09-01

    Gas flows out of and into the Milky Way are a crucial element in its evolution. Supernovae heat gas in the disk and lift it into the halo. Tidal streams and instabilities in the hot Galactic corona result in an inflow of low-metallicity gas. These flows can be observed in the form of the high-velocity clouds {HVCs}. Their location, brightness, distances, ionization structure and metallicities can be used to determine the conditions in the gaseous disk and halo as well as the rate of mass flow corresponding to the different processes. So far, sufficient information to derive an associated mass flow rate is available for just 5 HVCs. We propose to observe 20 AGNs toward most of the other HVC complexes as well as toward a few small clouds, in order to derive a metallicity for almost every HVC complex, which will complement distance measurements that have been or will be obtained in our ongoing program. Combining all the data, we can derive {a} the rate of the circulation of gas between disk and halo, constraining the Galactic supernova rate and {b} the accretion rate of low-metallicity material that feeds star formation over 10 Gyr, which will constrain both models of galactic chemical evolution and models of the conditions in the hot galactic corona.

  2. Theoretical Analysis of Maximum Flow Declination Rate versus Maximum Area Declination Rate in Phonation

    ERIC Educational Resources Information Center

    Titze, Ingo R.

    2006-01-01

    Purpose: Maximum flow declination rate (MFDR) in the glottis is known to correlate strongly with vocal intensity in voicing. This declination, or negative slope on the glottal airflow waveform, is in part attributable to the maximum area declination rate (MADR) and in part to the overall inertia of the air column of the vocal tract (lungs to…

  3. A model for reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Evans, J. S.

    1984-01-01

    To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.

  4. Fundamental Study on Temperature Dependence of Deposition Rate of Silicic Acid - 13270

    SciTech Connect

    Shinmura, Hayata; Niibori, Yuichi; Mimura, Hitoshi

    2013-07-01

    The dynamic behavior of the silicic acid is one of the key factors to estimate the condition of the repository system after the backfill. This study experimentally examined the temperature dependence of dynamic behavior of supersaturated silicic acid in the co-presence of solid phase, considering Na ions around the repository, and evaluated the deposition rate constant, k, of silicic acid by using the first-order reaction equation considering the specific surface area. The values of k were in the range of 1.0x10{sup -11} to 1.0x10{sup -9} m/s in the temperature range of 288 K to 323 K. The deposition rate became larger with increments of temperature under the Na ion free condition. Besides, in the case of Na ions 0.6 M, colloidal silicic acid decreased dramatically at a certain time. This means that the diameter of the colloidal silicic acid became larger than the pore size of filter (0.45 μm) due to bridging of colloidal silicic acid. Furthermore, this study estimated the range of altering area and the aperture of flow-path in various value of k corresponding to temperature by using advection-dispersion model. The concentration in the flow-path became lower with increments of temperature, and when the value of k is larger than 1.0x10{sup -11} m/s, the deposition range of supersaturated silicic acid was estimated to be less than 20 m around the repository. In addition, the deposition of supersaturated silicic acid led the decrement of flow-path aperture, which was remarkable under the condition of relatively high temperature. Such a clogging in flow paths is expected as a retardation effect of radionuclides. (authors)

  5. Study of the crevicular fluid flow rate in smokers.

    PubMed

    Rosa, G M; Lucas, G Q; Lucas, O N

    2000-01-01

    The purpose of this study was to investigate if smoking--a risk factor in periodontal disease-affects the crevicular fluid (CF) flow rate. Twenty-nine dental students were included in the control group--non-smokers- (NS) and 34 in the experimental group--smokers- (S). All subjects were enrolled in a rigorous dental hygiene program (RDHP). The Greene-Vermillion plaque index, and Löe-Silness gingival index (GI) were recorded. CF was obtained and measured with the Periotron 8000. These recordings were made before and after the RDHP. The results show that the CF mean flow rate was slightly lower in the S group than in the NS group, for both recordings. The analysis of the relation between the CF flow rate and the GI recorded in the dental surfaces, revealed a significantly lower flow rate in the S group for GI 1 (p < 0.01) and GI 3 (p < 0.05). The difference observed between the S and NS groups, may be due to the vasoconstrictor action of the cigarette components (nicotine and/or metabolites) on the gingival vasculature. PMID:11885468

  6. 93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. TEMPERATURE AND FLOW RATE CONTROLS FOR SYSTEM 1 AND SYSTEM 2, FACING WEST IN MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Effects of argon gas flow rate on laser-welding.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2012-01-01

    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti. PMID:22447067

  8. Calibration of high flow rate thoracic-size selective samplers.

    PubMed

    Lee, Taekhee; Thorpe, Andrew; Cauda, Emanuele; Harper, Martin

    2016-01-01

    High flow rate respirable size selective samplers, GK4.126 and FSP10 cyclones, were calibrated for thoracic-size selective sampling in two different laboratories. The National Institute for Occupational Safety and Health (NIOSH) utilized monodisperse ammonium fluorescein particles and scanning electron microscopy to determine the aerodynamic particle size of the monodisperse aerosol. Fluorescein intensity was measured to determine sampling efficiencies of the cyclones. The Health Safety and Laboratory (HSL) utilized a real time particle sizing instrument (Aerodynamic Particle Sizer) and polydisperse glass sphere particles and particle size distributions between the cyclone and reference sampler were compared. Sampling efficiency of the cyclones were compared to the thoracic convention defined by the American Conference of Governmental Industrial Hygienists (ACGIH)/Comité Européen de Normalisation (CEN)/International Standards Organization (ISO). The GK4.126 cyclone showed minimum bias compared to the thoracic convention at flow rates of 3.5 l min(-1) (NIOSH) and 2.7-3.3 l min(-1) (HSL) and the difference may be from the use of different test systems. In order to collect the most dust and reduce the limit of detection, HSL suggested using the upper end in range (3.3 l min(-1)). A flow rate of 3.4 l min(-1) would be a reasonable compromise, pending confirmation in other laboratories. The FSP10 cyclone showed minimum bias at the flow rate of 4.0 l min(-1) in the NIOSH laboratory test. The high flow rate thoracic-size selective samplers might be used for higher sample mass collection in order to meet analytical limits of quantification. PMID:26891196

  9. Calibration of high flow rate thoracic-size selective samplers

    PubMed Central

    Lee, Taekhee; Thorpe, Andrew; Cauda, Emanuele; Harper, Martin

    2016-01-01

    High flow rate respirable size selective samplers, GK4.126 and FSP10 cyclones, were calibrated for thoracic-size selective sampling in two different laboratories. The National Institute for Occupational Safety and Health (NIOSH) utilized monodisperse ammonium fluorescein particles and scanning electron microscopy to determine the aerodynamic particle size of the monodisperse aerosol. Fluorescein intensity was measured to determine sampling efficiencies of the cyclones. The Health Safety and Laboratory (HSL) utilized a real time particle sizing instrument (Aerodynamic Particle Sizer) and poly-disperse glass sphere particles and particle size distributions between the cyclone and reference sampler were compared. Sampling efficiency of the cyclones were compared to the thoracic convention defined by the American Conference of Governmental Industrial Hygienists (ACGIH)/Comité Européen de Normalisation (CEN)/International Standards Organization (ISO). The GK4.126 cyclone showed minimum bias compared to the thoracic convention at flow rates of 3.5 l min−1 (NIOSH) and 2.7–3.3 l min−1 (HSL) and the difference may be from the use of different test systems. In order to collect the most dust and reduce the limit of detection, HSL suggested using the upper end in range (3.3 l min−1). A flow rate of 3.4 l min−1 would be a reasonable compromise, pending confirmation in other laboratories. The FSP10 cyclone showed minimum bias at the flow rate of 4.0 l min−1 in the NIOSH laboratory test. The high flow rate thoracic-size selective samplers might be used for higher sample mass collection in order to meet analytical limits of quantification. PMID:26891196

  10. Inflow rates and interrupted flow effects on concentrated flow erosion and intake rate in two soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface irrigation is the most widely used irrigation practice world wide, but its water use efficiency is low. Interrupted supply of water to furrows may reduce intake rate (IR) upstream and improve irrigation efficiency in many soils, but has an insignificant effect in others. Similarly, intermitt...

  11. Ultrasonic Enrichment of Flowing Blood Cells in Capillars: Influence of the Flow Rate

    NASA Astrophysics Data System (ADS)

    Carreras, Pilar; Gonzalez, Itziar; Ahumada, Oscar

    Red blood cells subjected to standing waves collect at the pressure nodes during their flow motion. Blood is a non-newtonian fluid whose density and other properties are defined by its flow velocity. Their drift motion is governed by the radiation force together with hydrodynamic conditions. This work presents a study of the blood cell enrichment performed in a rectangular capillar at f=1 MHz as a function of their flow motion. The cells collect along the central axis of the capillary in very few seconds, with a clearance in other lateral areas. Optimal flow rates below 100uL/min were found in the experiments.

  12. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    PubMed Central

    Camilli, Richard; Di Iorio, Daniela; Bowen, Andrew; Reddy, Christopher M.; Techet, Alexandra H.; Yoerger, Dana R.; Whitcomb, Louis L.; Seewald, Jeffrey S.; Sylva, Sean P.; Fenwick, Judith

    2012-01-01

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and acoustic Doppler sonar operating onboard a remotely operated vehicle for noncontact measurement of flow cross-section and velocity from the well’s two leak sites. Over 2,500 sonar cross-sections and over 85,000 Doppler velocity measurements were recorded during the acquisition process. These data were then applied to turbulent jet and plume flow models to account for entrained water and calculate a combined hydrocarbon flow rate from the two leak sites at seafloor conditions. Based on the chemical composition of end-member samples collected from within the well, this bulk volumetric rate was then normalized to account for contributions from gases and condensates at initial leak source conditions. Results from this investigation indicate that on May 31, 2010, the well’s oil flow rate was approximately 0.10 ± 0.017 m3 s-1 at seafloor conditions, or approximately 85 ± 15 kg s-1 (7.4 ± 1.3 Gg d-1), equivalent to approximately 57,000 ± 9,800 barrels of oil per day at surface conditions. End-member chemical composition indicates that this oil release rate was accompanied by approximately an additional 24 ± 4.2 kg s-1 (2.1 ± 0.37 Gg d-1) of natural gas (methane through pentanes), yielding a total hydrocarbon release rate of 110 ± 19 kg s-1 (9.5 ± 1.6 Gg d-1). PMID:21903931

  13. Demystifying ratings: How flow control shocks credit quality

    SciTech Connect

    Martin, J.H.

    1998-07-01

    Financial operations of many solid waste systems, waste-to-energy facilities in particular, have been shocked by the lack of congressional, and state and local legislation to resolve the loss of legal flow control. Flow control is a system's legal authority to direct waste into its own facilities. In contrast is economic flow control, where the market factors prevail and waste is brought to a facility based on competitive pricing. The loss of legal flow control threatens solid waste systems and impinges their underlying credit quality. Credit quality is expressed as the bond rating, a statement about the borrowers ability and willingness to repay debt in full and on time. While the courts have identified acceptable alternatives to enable municipal systems to diversity revenues (creating revenue flexibility), such alternatives may not be palatable as they represent additional taxation or fees. The paper highlights how the loss of legal flow control has shocked the operations, management and credit quality of solid waste systems. These shocks have stimulated public and private partnerships in order to facilitate economic flow control. Municipal credit solutions, credit impacts and credit trends are explained to identify how solid waste systems have responded in an operating climate exacerbated by regulatory changes (environmental and accounting) as well as utility deregulations. Analytical considerations are presented for evaluating the credit quality of solid waste bonds.

  14. Vacuum rated flow controllers for inert gas ion engines

    NASA Technical Reports Server (NTRS)

    Pless, L. C.

    1987-01-01

    Electrical propulsion systems which use a gas as a propellant require a gas flowmeter/controller which is capable of operating in a vacuum environment. The presently available instruments in the required flow ranges are designed and calibrated for use at ambient pressure. These instruments operate by heating a small diameter tube through which the gas is flowing and then sensing the change in temperature along the length of the tube. This temperature change is a function of the flow rate and the gas heat capacity. When installed in a vacuum, the change in the external thermal characteristics cause the tube to overheat and the temperature sensors are then operating outside their calibrated range. In addition, the variation in heat capacity with temperature limit the accuracy obtainable. These problems and the work in progress to solve them are discussed.

  15. Age related flow rate nomograms in a normal pediatric population.

    PubMed

    Gaum, L D; Wese, F X; Liu, T P; Wong, A K; Hardy, B E; Churchill, B M

    1989-01-01

    Uroflow studies in a normal pediatric population were analysed statistically. Single studies for 511 subjects (272 boys and 239 girls) were reviewed. Nomograms relating peak flow to volume voided and age were established. An acceptable lower limit for peak flow was obtained from the data and a volume voided range was calculated so that both criteria could be used with 90% probability to define the normal voiding situation. The mean values of peak flow rate increased with volume voided in both sexes and also with age in the male population. Different sets of nomograms, which are necessary for daily clinical evaluation, are given. They define the normal values in the normal population. PMID:2763925

  16. A transport equation for reaction rate in turbulent flows

    NASA Astrophysics Data System (ADS)

    Sabelnikov, V. A.; Lipatnikov, A. N.; Chakraborty, N.; Nishiki, S.; Hasegawa, T.

    2016-08-01

    New transport equations for chemical reaction rate and its mean value in turbulent flows have been derived and analyzed. Local perturbations of the reaction zone by turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The mean-reaction-rate transport equation is shown to involve two unclosed dominant terms and a joint closure relation for the sum of these two terms is developed. Obtained analytical results and, in particular, the closure relation are supported by processing two widely recognized sets of data obtained from earlier direct numerical simulations of statistically planar 1D premixed flames associated with both weak large-scale and intense small-scale turbulence.

  17. Degradation rates of glycerol polyesters at acidic and basic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  18. Multi-rate flowing Wellbore electric conductivity logging method

    SciTech Connect

    Tsang, Chin-Fu; Doughty, Christine

    2003-04-22

    The flowing wellbore electric conductivity logging method involves the replacement of wellbore water by de-ionized or constant-salinity water, followed by constant pumping with rate Q, during which a series of fluid electric conductivity logs are taken. The logs can be analyzed to identify depth locations of inflow, and evaluate the transmissivity and electric conductivity (salinity) of the fluid at each inflow point. The present paper proposes the use of the method with two or more pumping rates. In particular it is recommended that the method be applied three times with pumping rates Q, Q /2, and 2Q. Then a combined analysis of the multi-rate data allows an efficient means of determining transmissivity and salinity values of all inflow points along a well with a confidence measure, as well as their inherent or far-field pressure heads. The method is illustrated by a practical example.

  19. Modeling the dissipation rate in rotating turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Raj, Rishi; Gatski, Thomas B.

    1990-01-01

    A variety of modifications to the modeled dissipation rate transport equation that have been proposed during the past two decades to account for rotational strains are examined. The models are subjected to two crucial test cases: the decay of isotropic turbulence in a rotating frame and homogeneous shear flow in a rotating frame. It is demonstrated that these modifications do not yield substantially improved predictions for these two test cases and in many instances give rise to unphysical behavior. An alternative proposal, based on the use of the tensor dissipation rate, is made for the development of improved models.

  20. Pressure-strain-rate events in homogeneous turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Brasseur, James G.; Lee, Moon J.

    1988-01-01

    A detailed study of the intercomponent energy transfer processes by the pressure-strain-rate in homogeneous turbulent shear flow is presented. Probability density functions (pdf's) and contour plots of the rapid and slow pressure-strain-rate show that the energy transfer processes are extremely peaky, with high-magnitude events dominating low-magnitude fluctuations, as reflected by very high flatness factors of the pressure-strain-rate. A concept of the energy transfer class was applied to investigate details of the direction as well as magnitude of the energy transfer processes. In incompressible flow, six disjoint energy transfer classes exist. Examination of contours in instantaneous fields, pdf's and weighted pdf's of the pressure-strain-rate indicates that in the low magnitude regions all six classes play an important role, but in the high magnitude regions four classes of transfer processes, dominate. The contribution to the average slow pressure-strain-rate from the high magnitude fluctuations is only 50 percent or less. The relative significance of high and low magnitude transfer events is discussed.

  1. Decrease in the etch rate of polymers in the oxygen afterglow with increasing gas flow rate

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Wydeven, T.

    1988-01-01

    This paper reports the variation of the etch rate of polymers in the afterglow of a radio frequency discharge in oxygen as a function of total flow rate in the range 2-10 cu cm (STP)/min. The measurements were made at ambient temperature with the O(P-3) concentration held essentially constant. Results are reported on three polymers: cis-polybutadiene, a polybutadiene with 33 percent 1,2 double bonds, and a polybutadiene with 40 percent 1,2 double bonds. It has been observed that the etch rate of these polymers decreases significantly with increasing flow rate, strongly suggesting that the vapor-phase products of polymer degradation contribute to the degradation process.

  2. Interference well testing—variable fluid flow rate

    NASA Astrophysics Data System (ADS)

    Kutasov, I. M.; Eppelbaum, L. V.; Kagan, M.

    2008-03-01

    At present when conducting an interference well test a constant flow rate (at the 'active' well) is utilized and the type-curve matching technique (where only 2-3 values of pressure drops are matched) is used to estimate the porosity-total compressibility product and formation permeability. For oil and geothermal reservoirs with low formation permeability the duration of the test may require a long period of time and it can be difficult to maintain a constant flow rate. The qualitative term 'long' period of time means that (at a given distance between the 'active' and 'observational' well) more test time (for low permeability formations) is needed to obtain tangible pressure drops in the 'observational' well. In this study we present working equations which will allow us to process field data when the flow rate at the 'active' well is a function of time. The shut-in period is also considered. A new method of field data processing, where all measured pressure drops are utilized, is proposed. The suggested method allows us to make use of the statistical theory to obtain error estimates on the regression parameters. It is also shown that when high precision (resolution) pressure gauges are employed the pressure time derivative equations can be used for the determination of formation hydraulic diffusivity. An example is presented to demonstrate the data processing procedure.

  3. Simultaneous determination of iron (II) and ascorbic acid in pharmaceuticas based on flow sandwich technique.

    PubMed

    Vakh, Christina; Freze, Elena; Pochivalov, Alexsey; Evdokimova, Ekaterina; Kamencev, Mihail; Moskvin, Leonid; Bulatov, Andrey

    2015-01-01

    The simple and easy performed flow system based on sandwich technique has been developed for the simultaneous separate determination of iron (II) and ascorbic acid in pharmaceuticals. The implementation of sandwich technique assumed the injection of sample solution between two selective reagents and allowed the carrying out in reaction coil two chemical reactions simultaneously: iron (II) with 1,10-phenanthroline and ascorbic acid with sodium 2,6-dichlorophenolindophenol. For achieving of excellent repeatability and considerable reagent saving the various parameters such as flow rate, sample and reagent volumes, reaction coil length were also optimized. The limits of detection (LODs) obtained by using the developed flow sandwich-type approach were 0.2 mg L(-1) for iron (II) and 0.7 mg L(-1) for ascorbic acid. The suggested approach was validated according to the following parameters: linearity and sensitivity, precision, recoveries and accuracy. The sampling frequency was 41 h(-1). PMID:25862995

  4. Sources of acidic storm flow in an Appalachian Headwater Stream

    NASA Astrophysics Data System (ADS)

    Swistock, Bryan R.; Dewalle, David R.; Sharpe, William E.

    1989-10-01

    A study was conducted to quantify the source of increased dissolved aluminum concentrations during acidic storm flows on a small Pennsylvania stream. Data for six episodes during fall 1986 and spring 1987 showed depressions in stream pH and increases in sulfates, conductivity, dissolved organic carbon, and dissolved aluminum. Flow separation analyses were conducted using 18O as a tracer in a three-component mass balance tracer model. Results showed that soil water and groundwater are the dominant flow sources, accounting for approximately 20 and 75% of total flow during storms, respectively. Channel precipitation generally provided less than 5% of total flows. Hydrograph separation using aluminum agreed with 18O results, while other chemical parameters produced unsatisfactory results. The data support Hewlett's (1982) variable source area concept of storm flow generation with inputs of older, deep circulating groundwater from low-elevation source areas early in an event and later inputs of younger soil water and possibly shallow groundwater from expanding source areas at higher elevations. The results suggest that the most toxic runoff events for aquatic life occur during large storms when the greatest inputs of soil water cause elevated stream dissolved aluminum concentrations. Reductions in storm flow acidity and dissolved aluminum concentrations on this catchment will be most dependent upon changes in soil water and/or groundwater chemistry.

  5. Sensitivity of Flow and Sediment Transport in Meandering Rivers to Scale Effects and Flow Rate

    SciTech Connect

    Shams, Mehrzad; Ahmadi, Goodarz; Smith, Duane H.

    2008-06-01

    Sensitivity of flow and sediment transport in a meandering river to variations in scaling and flow rate was studied. The FLUENT™ code was used for evaluating the river flow characteristics, including the mean velocity field and the Reynolds stress components, as well as for particle trajectory analysis. Particular attention was given to the sensitivity of the sedimentation patterns of different size particles in the river bend for various scales. Simulation studies were performed for both a model river and a physical river. The physical river was geometrically similar to the model river, with a scaling ratio of 1:100, but with identical Froude number. The flow and particle deposition patterns in the physical and model rivers were compared. It was shown that the mean flow quantities exhibit dynamic similarity, but the turbulence parameters and the particle sedimentation features in the physical river were different from the model. The secondary flows and particle transport patterns were also found to be sensitive to variation in the scale and flow rate.

  6. Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    1998-01-01

    Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations

  7. Measuring Black Smoker Fluid Flow Rates Using Image Correlation Velocimetry

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Wilcock, W. S.; McDuff, R. E.

    2006-12-01

    Motivated by a desire to find non-invasive methods for obtaining time-series measurements of fluid flow rates through mid-ocean ridge black smokers, we are developing an image-based velocimetry technique that will provide this information through the analysis of video sequences showing the turbulent structures of black smoker effluent jets. Our ultimate goal is to develop an autonomous seafloor instrument suitable for use with a cabled seafloor observatory that can provide extended time-series measurements of black smoker discharge rates with little user intervention. The method we are developing is based on the two-dimensional cross-correlation of an array of overlapping subimages from two sequential image frames within a sequence. For each pair of images this yields a two- dimensional representation of the instantaneous velocity field in the imaged flow. For each video sequence, the set of these "image velocity fields" from all image pairs is temporally averaged to yield a smoothed representation of the time-averaged image flow field. A transformation is then applied to convert the image flow fields into a relative discharge rate. We have developed a computational algorithm to implement this technique and have successfully applied it to video sequences collected in the late 1980s and early 1990s showing the discharge of black smokers in the Main Endeavour field of the Juan de Fuca Ridge over the course of weeks and months. We are able to resolve velocity fields that are qualitatively consistent with those predicted by plume theory from 5 seconds of video (150 image pairs), but it is difficult to calibrate or assess the precision of the technique with field data alone. In order to address these issues, as well as refine the computational algorithm, we have conducted laboratory simulations of black smoker jets with known discharge rates over a range of Reynolds numbers. We have recorded these simulations to obtain video image sequences that are similar to those

  8. Oxygen Mass Flow Rate Generated for Monitoring Hydrogen Peroxide Stability

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    2002-01-01

    Recent interest in propellants with non-toxic reaction products has led to a resurgence of interest in hydrogen peroxide for various propellant applications. Because peroxide is sensitive to contaminants, material interactions, stability and storage issues, monitoring decomposition rates is important. Stennis Space Center (SSC) uses thermocouples to monitor bulk fluid temperature (heat evolution) to determine reaction rates. Unfortunately, large temperature rises are required to offset the heat lost into the surrounding fluid. Also, tank penetration to accomodate a thermocouple can entail modification of a tank or line and act as a source of contamination. The paper evaluates a method for monitoring oxygen evolution as a means to determine peroxide stability. Oxygen generation is not only directly related to peroxide decomposition, but occurs immediately. Measuring peroxide temperature to monitor peroxide stability has significant limitations. The bulk decomposition of 1% / week in a large volume tank can produce in excess of 30 cc / min. This oxygen flow rate corresponds to an equivalent temperature rise of approximately 14 millidegrees C, which is difficult to measure reliably. Thus, if heat transfer were included, there would be no temperature rise. Temperature changes from the surrounding environment and heat lost to the peroxide will also mask potential problems. The use of oxygen flow measurements provides an ultra sensitive technique for monitoring reaction events and will provide an earlier indication of an abnormal decomposition when compared to measuring temperature rise.

  9. Decreased blood flow rate disrupts endothelial repair in vivo.

    PubMed Central

    Vyalov, S.; Langille, B. L.; Gotlieb, A. I.

    1996-01-01

    Both local hemodynamics and endothelial injury have been implicated in vascular disorders including bypass graft failure and atherogenesis, but little is known about the effect of local blood flow conditions on repair of endothelial injury. We decreased blood flow rates and shear stresses in common carotid arteries of rabbits by ligating the ipsilateral external carotid artery. After 24 hours, endothelial cells were less elongated, contained fewer central microfilament bundles, and showed less polarity of the centrosome toward the heart than endothelial cells in unmanipulated carotid arteries. To examine wound repair, we made narrow longitudinal intimal wounds at the time of flow reduction using a nylon monofilament device. In arteries with normal blood flows, endothelial cells at the edge of the wound initially spread and elongated in the direction of the wound. The dense peripheral band of actin was attenuated and central microfilaments became more prominent. Endothelial cells remained in close contact with their neighbors in the monolayer. The centrosome of cells adjacent to the wound was redistributed toward the wound side of the nucleus at 6 and 12 hours. Complete closure occurred by 24 hours, at which time the elongated endothelial cells covering the wound were organized in a herringbone pattern with their downstream ends at the center of the wound. With decreased flow and shear stress, the cells at the wound edge spread less than those in normal vessels at 12 hours after wounding and were randomly oriented and polygonal in shape. Also, re-endothelialization proceeded more slowly and there was a marked reduction of central microfilaments in cells at the wound edge. At 24 hours, the wounds were still open, the endothelial cells covering the central portion of the wound did not maintain intimate contact with their neighbors, and orientation of the centrosome toward the wound was reduced. We hypothesize that loss of cell-cell contact during repair at low flow

  10. Kinetic modeling on photooxidative degradation of C.I. Acid Orange 7 in a tubular continuous-flow photoreactor.

    PubMed

    Behnajady, M A; Modirshahla, N

    2006-03-01

    The decolorization of C.I. Acid Orange 7 (AO7), an anionic monoazo dye of acid class, was investigated using UV radiation in the presence of H2O2 in a tubular continuous-flow photoreactor as a function of oxidant and dye concentrations, reactor length and volumetric flow rate. The removal efficiency of AO7 depends on the operational parameters and increases as the initial concentration of H2O2 is increased but it decreases when the flow rate and initial concentration of AO7 are increased. The decolorization rate follows pseudo-first order kinetic with respect to the dye concentration. A rate equation for decolorization of AO7 was achieved by kinetic modeling. This model allows predicting concentration of AO7 in different photoreactor lengths for different volumetric flow rates and initial concentrations of H2O2 and AO7. The calculated results obtained from kinetic model were in good agreement with experimental data. PMID:16005938

  11. Low-Flow-Rate Dry-Powder Feeder

    NASA Technical Reports Server (NTRS)

    Ramsey, Keith E.

    1994-01-01

    Apparatus feeds small, precise flow of dry powder through laser beam of optical analyzer, measuring patterns of light created by forward scattering (Fraunhofer diffraction) of laser beam from powder particles. From measurement, statistical distribution of sizes of powder particles computed. Developed for analyzing particle-size distributions of solid-propellant powders. Also adapted to use in pharmaceutical industry, in manufacture of metal powder, and in other applications in which particle-size distributions of materials used to control rates of chemical reactions and/or physical characteristics of processes.

  12. Fluorimetric determination of total ascorbic acid by a stopped-flow mixing technique.

    PubMed

    Pérez-Ruiz, T; Martínez-Lozano, C; Tomás, V; Fenoll, J; Fenol, J

    2001-08-01

    A simple, rapid and automatic fluorimetric method for the determination of total ascorbic acid is described. The method makes use of the stopped-flow mixing technique in order to achieve the rapid oxidation of ascorbic acid by dissolved oxygen to dehydroascorbic acid, which then reacts with o-phenylenediamine to form a fluorescent quinoxaline. The initial rate and fluorescence signal of this system are directly proportional to the ascorbic acid concentration. The calibration graph was linear over the range 0.1-30 microg ml(-1) (kinetic method) and 0.25-34 microg ml(-1) (equilibrium method). The precision (% RSD) was close to 0.5%. The method has been used for the determination of ascorbic acid in pharmaceutical formulations, fruit juices, soft drinks and blood serum. PMID:11534621

  13. A numerical procedure for analysis of finite rate reacting flows

    NASA Technical Reports Server (NTRS)

    Shang, H. M.; Chen, Y. S.; Chen, Z. J.; Chen, C. P.; Wang, T. S.

    1993-01-01

    Combustion processes in rocket propulsion systems are characterized by the existence of multiple, vastly differing time and length scales, as well as flow-speeds at wide variation of Mach numbers. The chemical kinetics processes in the highly active reaction zone are characterized by much smaller scales compared to fluid convective and diffusive time scales. An operator splitting procedure for transient finite rate chemistry problems has been developed using a pressure based method, which can be applied to all speed flows without difficulties. The splitting of chemical kinetics terms formed the fluid-mechanical terms of the species equation ameliorated the difficulties associated with the disparate time scales and stiffness in the set of equations which describes highly exothermic combustion. A combined efficient ordinary differential equations (ODE) solver was used to integrate the effective chemical source terms over the residence time at each grid cell. One and two dimensional reacting flow situations were carried out to demonstrate and verify the current procedure. Different chemical kinetics with different degrees of nonlinearity have also been incorporated to test the robustness and generality of the proposed method.

  14. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    PubMed

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique. PMID:27382718

  15. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    SciTech Connect

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  16. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  17. Pervaporative irrigation: a flow rate driven by environmental conditions

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Mougros, C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    Pervaporative irrigation allows in-situ treatment of low quality water (e.g. saline water) whilst simultaneously distributing water throughout the soil. The system is also low energy, requiring only that a positive head of water is maintained in a supply tank. To irrigate using this method a pervaporative polymer membrane is formed into a pipe, buried in the soil and filled with water. Water is transported across the membrane by the process of pervaporation whilst the transport of contaminants is retarded, thus reducing the risk of soil degradation due to the use of low water quality. Uniquely these systems also inherently provide a feedback mechanism by which crops can affect the irrigation rate. Such a system has significant possibilities to provide an irrigation pipe from which water is only applied when required, hence reducing the volume of water used. However such systems are currently not fully understood and, to be implemented effectively, the behaviour of the membrane in different environmental conditions must be quantified. From experimental results this work has identified the significance of vapour flows in predicting the flux from the irrigation system in dry soils. In a 15cm layer of sand, the presence of a desiccant above the soil doubled the flux from the pipe, but more than 70% of this mass was adsorbed by the desiccant. Experiments also show that the flux into typical top soil was greater than into sand because of the greater capacity of the top soil for water adsorption. This adsorption maintained a lower humidity in the soil, hence providing a larger gradient across the irrigation membrane and inducing a higher flux. Although there is some evidence that seeds can absorb water from vapour flows the possibility that plants also do this has not yet been explored. This technology provides future opportunities to explore the interaction of plants both with vapour flows, and with a system where the irrigation rate is influenced by the crop uptake and

  18. compartment transfer rates in horizontal flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Maier, Uli; Oswald, Sascha; Thullner, Martin; Grathwohl, Peter

    2010-05-01

    A conceptual computer model has been constructed to simulate the compartment transfer rates in horizontal flow constructed wetlands. The model accounts for flow and transport in the variably saturated porous medium as well as biogeochemical change reactions. The most concentrated contaminants such as BTEX, MTBE and gasoline hydrocarbons and dissolved as well as mineral phase electron acceptors are considered. Also of major interest are reduced species with high oxygen demand such as ammonium. The influence of marsh plants on microbial activity, gas transport, water balance and contaminant fate in general is matter of current investigation. The constructed wetlands consist of a coarse sand or fine gravel porous medium. Marsh plants were introduced after installation, however, a number of control basins are operated unplanted. Water levels and through flow rates are adjusted to optimize the remediation efficiency. The system is likely to be neither reaction nor mixing limited, thus both, values of dispersivity and degradation kinetics may be crucial for remediation efficiency. Biogeochemical modelling is able to delineate in detail (i) the zonation of processes, (ii) temporal variation (breakthrough curves) and (iii) mass balance information. The contributions of biodegradation and volatilisation and the influence of plants (compartment transfer) can generally best be evaluated by the component's mass balance. More efficient mixing is expected in the wetlands with open water body which leads to both, more biodegradation and volatilisation. An important task is to quantify the role of plants and root systems for contaminant attenuation in constructed wetlands. The long term goal of investigation is to allow for predictions for the design of large scale compartment transfer wetlands that may be applied to remediate the site as a whole.

  19. Development of a flow rate monitoring method for the wearable ventricular assist device driver.

    PubMed

    Ohnuma, Kentaro; Homma, Akihiko; Sumikura, Hirohito; Tsukiya, Tomonori; Takewa, Yoshiaki; Mizuno, Toshihide; Mukaibayashi, Hiroshi; Kojima, Koichi; Katano, Kazuo; Taenaka, Yoshiyuki; Tatsumi, Eisuke

    2015-06-01

    Our research institute has been working on the development of a compact wearable drive unit for an extracorporeal ventricular assist device (VAD) with a pneumatically driven pump. A method for checking the pump blood flow on the side of the drive unit without modifying the existing blood pump and impairing the portability of it will be useful. In this study, to calculate the pump flow rate indirectly from measuring the flow rate of the driving air of the VAD air chamber, we conducted experiments using a mock circuit to investigate the correlation between the air flow rate and the pump flow rate as well as its accuracy and error factors. The pump flow rate was measured using an ultrasonic flow meter at the inflow and outflow tube, and the air flow was measured using a thermal mass flow meter at the driveline. Similarity in the instantaneous waveform was confirmed between the air flow rate in the driveline and the pump flow rate. Some limitations of this technique were indicated by consideration of the error factors. A significant correlation was found between the average pump flow rate in the ejecting direction and the average air flow rate in the ejecting direction (R2 = 0.704-0.856), and the air flow rate in the filling direction (R2 = 0.947-0.971). It was demonstrated that the average pump flow rate was estimated exactly in a wide range of drive conditions using the air flow of the filling phase. PMID:25500948

  20. Dissolution rates of carbonated hydroxyapatite in hydrochloric acid.

    PubMed

    Hankermeyer, Christine R; Ohashi, Kevin L; Delaney, David C; Ross, John; Constantz, Brent R

    2002-02-01

    Osteoclasts have been shown to dissolve efficiently and effectively the mineral phase of bone by locally controlling the environment surrounding the cell. Although this mineral phase has been identified and well characterized as carbonated hydroxyapatite, there is little understanding of the factors that affect the dissolution properties of this mineral phase. Mimicking the mechanism by which osteoclasts dissolve the mineral phase of bone may provide insight into methods for the decalcification of atherosclerotic mineral deposits in the vascular system. Accordingly, a detailed characterization of the effects of various chemical and mechanical parameters on the dissolution of carbonated hydroxyapatite mineral was investigated in this study. Increases in the mineral dissolution rate (2-10 times) were associated with increases in dissolving solution [H+], osmolality, temperature, and flow rate. Mineral dissolution rate increases (5-8 times) were associated with greater surface area of the mineral and mechanical agitation of the dissolving solution. PMID:11771694

  1. Development of digital flow control system for multi-channel variable-rate sprayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...

  2. Fluid flow meter for measuring the rate of fluid flow in a conduit

    NASA Technical Reports Server (NTRS)

    White, P. R. (Inventor)

    1986-01-01

    A tube fluid flow rate meter consists of a reservoir divided by flexible diaphragm into two separate isolated compartments. The incoming and outgoing tubes open into the compartments. The orifice is sized to allow maximum tube fluid flow. Opposing compression springs are secured within the two compartments on opposite sides of the orifice to maintain orifice position when the tube fluid pressure is zero. A tapered element is centered in, and extends through the orifice into the compartment, leaving an annular opening between the element and the perimeter of the oriface. The size varies as the diaphragm flexes with changes in the tube fluid pressure to change the fluid flow through the opening. The light source directs light upon the element which in turn scatters the light through the opening into the compartment. The light detector in the compartment senses the scattered light to generate a signal indicating the amount of fluid.

  3. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. PMID:25159449

  4. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  5. Computational techniques for flows with finite-rate condensation

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.

    1993-01-01

    A computational method to simulate the inviscid two-dimensional flow of a two-phase fluid was developed. This computational technique treats the gas phase and each of a prescribed number of particle sizes as separate fluids which are allowed to interact with one another. Thus, each particle-size class is allowed to move through the fluid at its own velocity at each point in the flow field. Mass, momentum, and energy are exchanged between each particle class and the gas phase. It is assumed that the particles do not collide with one another, so that there is no inter-particle exchange of momentum and energy. However, the particles are allowed to grow, and therefore, they may change from one size class to another. Appropriate rates of mass, momentum, and energy exchange between the gas and particle phases and between the different particle classes were developed. A numerical method was developed for use with this equation set. Several test cases were computed and show qualitative agreement with previous calculations.

  6. Individual and simultaneous determination of uric acid and ascorbic acid by flow injection analysis.

    PubMed

    Almuaibed, A M; Townshend, A

    1992-11-01

    Flow injection methods for the individual and simultaneous determination of ascorbic acid and uric acid are proposed. A spectrophotometer and a miniamperometric detector are connected in sequence. The calibration graphs for uric acid obtained by measuring its absorbance at 293 nm and its current at +0.6 V are linear up to at least 80 and 70 mug/ml, respectively, with an rsd (n = 10) of 1 % for both methods at mid-range concentrations. The calibration graph for ascorbic acid with amperometric detection is linear up to 80 mg/l. with an rsd (n = 10) of 0.8% at 30 mg/l. The simultaneous determination of uric acid and ascorbic acid is based on measurement of the absorbance of uric acid at 393 nm and amperometric determination of both analytes at +0.6 V. The average relative errors of the analysis of binary mixtures of uric acid and ascorbic acid are 2.2 and 4.2%, respectively. PMID:18965554

  7. Emulsification in turbulent flow 2. Breakage rate constants.

    PubMed

    Vankova, Nina; Tcholakova, Slavka; Denkov, Nikolai D; Vulchev, Vassil D; Danner, Thomas

    2007-09-15

    Systematic experimental study of the effects of several factors on the breakage rate constant, k(BR), during emulsification in turbulent flow is performed. These factors are the drop size, interfacial tension, viscosity of the oil phase, and rate of energy dissipation in the flow. As starting oil-water premixes we use emulsions containing monodisperse oil drops, which have been generated by the method of membrane emulsification. By passing these premixes through a narrow-gap homogenizer, working in turbulent regime of emulsification, we study the evolution of the number concentration of the drops with given diameter, as a function of the emulsification time. The experimental data are analyzed by a kinetic scheme, which takes into account the generation of drops of a given size (as a result of breakage of larger drops) and their disappearance (as a result of their own breakage process). The experimental results for k(BR) are compared with theoretical expressions from the literature and their modifications. The results for all systems could be described reasonably well by an explicit expression, which is a product of: (a) the frequency of collisions between drops and turbulent eddies of similar size, and (b) the efficiency of drop breakage, which depends on the energy required for drop deformation. The drop deformation energy contains two contributions, originating from the drop surface extension and from the viscous dissipation inside the breaking drop. In the related subsequent paper, the size distribution of the daughter drops formed in the process of drop breakage is analyzed for the same experimental systems. PMID:17553511

  8. Controls on matrix flow, preferential flow and deep drainage rates in an alluvial Vertisol.

    NASA Astrophysics Data System (ADS)

    Arnold, Sven; Larsen, Joshua; Reading, Lucy; Finch, Warren; Bulovic, Nevenka; McIntyre, Neil

    2016-04-01

    Deep drainage is the process that describes water percolating from the land surface to a depth below the root zone where it may contribute to groundwater recharge. Quantitative estimation of deep drainage through Vertisols is challenging, largely due to the unknown relative contributions from: (i) flow through the soil matrix; and (ii) flow along preferential pathways in particular soil cracks, and how to model the transience of the relative contributions. The Condamine River Alluvium, a significant aquifer in semi-arid eastern Australia, is mostly covered by uniform dark cracking clays such as Black and Grey Vertisols. The aim of this study was to identify the environmental conditions (rainfall, antecedent soil moisture, etc) controlling matrix and preferential flow in selected Vertisol profiles at the time scale of individual rainfall events. Field experiments (including 16 probes recording soil moisture at one hour intervals across eight depths between 100 mm and 4000 mm) provide extensive soil moisture data, supplemented by weather station data collected at 15-minute intervals. In addition, laboratory experiments were used to infer the water retention curves. These data were used to (i) derive deep drainage rates using the zero-flux plane method, and (ii) calibrate a soil moisture balance model that represents both matrix and preferential flow. The model was used to estimate the parts of the vertical water flux attributed to soil matrix and preferential flow. High antecedent soil moisture was associated with low fluxes at shallow depths, however at deeper depths both low and high antecedent soil moisture were associated with larger fluxes. Further, both rainfall amount and intensity controlled the interplay between matrix and preferential flow. The results reveal new insights into deep drainage processes in Vertisols and provide the basis for developing a practical approach for deep drainage estimation.

  9. Analysis of flow decay potential on Galileo. [oxidizer flow rate reduction by iron nitrate precipitates

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Frisbee, R. H.; Yavrouian, A. H.

    1987-01-01

    The risks posed to the NASA's Galileo spacecraft by the oxidizer flow decay during its extended mission to Jupiter is discussed. The Galileo spacecraft will use nitrogen tetroxide (NTO)/monomethyl hydrazine bipropellant system with one large engine thrust-rated at a nominal 400 N, and 12 smaller engines each thrust-rated at a nominal 10 N. These smaller thrusters, because of their small valve inlet filters and small injector ports, are especially vulnerable to clogging by iron nitrate precipitates formed by NTO-wetted stainless steel components. To quantify the corrosion rates and solubility levels which will be seen during the Galileo mission, corrosion and solubility testing experiments were performed with simulated Galileo materials, propellants, and environments. The results show the potential benefits of propellant sieving in terms of iron and water impurity reduction.

  10. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SO2, NOX, and flow rate. 75.33 Section 75.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification of the required SO2, NOX, and flow rate monitoring system(s) at a particular unit or stack...

  11. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SO2, NOX, and flow rate. 75.33 Section 75.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification of the required SO2, NOX, and flow rate monitoring system(s) at a particular unit or stack...

  12. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SO2, NOX, and flow rate. 75.33 Section 75.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification of the required SO2, NOX, and flow rate monitoring system(s) at a particular unit or stack...

  13. 40 CFR 75.33 - Standard missing data procedures for SO2, NOX, and flow rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SO2, NOX, and flow rate. 75.33 Section 75.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....33 Standard missing data procedures for SO2, NOX, and flow rate. (a) Following initial certification of the required SO2, NOX, and flow rate monitoring system(s) at a particular unit or stack...

  14. Study of coolant activation and dose rates with flow rate and power perturbations in pool-type research reactors

    SciTech Connect

    Mirza, N.M.; Mirza, S.M.; Ahmad, N. )

    1991-12-01

    This paper reports on a computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs that has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m{sup 3}/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at {approximately} 500 m{sup 3}/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to {sup 24}Na and {sup 56}Mn, and it increases by {approximately} 2% when the flow rate decreases from 1000 to 145 m{sup 3}/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.

  15. Unsteady flow characteristic of low-specific-speed centrifugal pump under different flow-rate conditions

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao

    2015-02-01

    To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG κ-ɛ turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.

  16. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  17. A New Method for Flow Rate Measurement in Millimeter-Scale Pipes

    PubMed Central

    Ji, Haifeng; Gao, Xuemin; Wang, Baoliang; Huang, Zhiyao; Li, Haiqing

    2013-01-01

    Combining the Capacitively Coupled Contactless Conductivity Detection (C4D) technique and the principle of cross correlation flow measurement, a new method for flow rate measurement in millimeter-scale pipes was proposed. The research work included two parts. First, a new five-electrode C4D sensor was developed. Second, with two conductivity signals obtained by the developed sensor, the flow rate measurement was implemented by using the principle of cross correlation flow measurement. The experimental results showed that the proposed flow rate measurement method was effective, the developed five-electrode C4D sensor was successful, and the measurement accuracy was satisfactory. In five millimeter-scale pipes with different inner diameters of 0.5, 0.8, 1.8, 3.0 and 3.9 mm respectively, the maximum relative difference of the flow rate measurement between the reference flow rate and the measured flow rate was less than 5%. PMID:23353139

  18. High emission rate of sulfuric acid from Bezymianny volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Zelenski, Michael; Taran, Yuri; Galle, Bo

    2015-09-01

    High concentrations of primary sulfuric acid (H2SO4) in fumarolic gases and high emission rate of sulfuric acid aerosol in the plume were measured at Bezymianny volcano, an active dome-growing andesitic volcano in central Kamchatka. Using direct sampling, filter pack sampling, and differential optical absorption spectroscopy measurements, we estimated an average emission of H2SO4 at 243 ± 75 t/d in addition to an average SO2 emission of 212 ± 65 t/d. The fumarolic gases of Bezymianny correspond to arc gases released by several magma bodies at different stages of degassing and contain 25-92% of entrained air. H2SO4 accounts for 6-87 mol% of the total sulfur content, 42.8 mol% on average, and SO2 is the rest. The high H2SO4 in Bezymianny fumaroles can be explained by catalytic oxidation of SO2 inside the volcanic dome. Because sulfate aerosol is impossible to measure remotely, the total sulfur content in a plume containing significant H2SO4 may be seriously underestimated.

  19. Amino-acid uptake by mussels, Mytilus edulis, from natural sea water in a flow-through system

    NASA Astrophysics Data System (ADS)

    Siebers, D.; Winkler, A.

    1984-03-01

    Natural Wadden Sea water taken from the North Sea (island of Sylt) was pumped at rates of 150 and 300 l h-1 through a 4 l plexiglass tube mounted on a wooden tripod on the beach. The tube was densely filled with numerous cleaned mussels, Mytilus edulis. HPLC analysis of sea water showed that total dissolved amino acids are patchily distributed, varying by 100 % within 15 min, though proportions of individual amino acids were remarkably constant. Total amino-acid concentrations were 1528±669 nM (N=3) in October 1983 and 1198±597 nM (N=7) in July 1984. Samples taken at the entrance and the outlet of the experimental mussel bed revealed that the mussels had taken up 29 to 66 % of the amino acids dissolved in sea water. Uptake was observed for all amino acids detected in the chromatograms. 78 % of uptake resulted from the 5 most concentrated amino acids: serine, alanine, glycine/threonine, ornithine, aspartic acid. The nutritional profit obtained from uptake of dissolved amino acids amounted to 12 % (N=5, range 5 23 %, flow rate 150 l h-1) and to 24 % (N=3, range 13 38 %, flow rate 300 l h-1) of metabolic rate. The present data suggest that amino-acid concentration predominantly determines the magnitude of the nutritional profit obtained from uptake, and to a smaller extent the flow rate. These findings are in contrast to results of previous studies on Asterias rubens, interacting in small-volume closed systems with the natural bacterial sea water flora (Siebers, 1982). In these experiments, bacteria, due to rapid uptake, outcompeted the sea stars in absorption of dissolved amino acids. The present results suggest that bivalve mussels, can, due to their large gill surface areas and the great amounts of water pumped through their mantle cavity, successfully compete with bacteria in uptake of dissolved organic matter. Mussels, therefore, suggestedly play an important role in cycling dissolved organic matter.

  20. Flow rate decline of steam wells in fractured geothermal reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Witherspoon, P.A.

    1985-01-01

    Decline curves are commonly used at The Geysers geothermal field to assess the generating capacity of a producing lease. It is generally assumed that wells will initially be drilled using 40-acre (400 m) spacing, with infill drilling used later to provide additional producing wells as needed. It is commonly believed that the final well spacing should not be less than 10 acres (200 m). Decline curves are used with this approach to estimate the number of make-up wells during a project lifetime (up to 30 years), as well as the appropriate plant size (MWe). A rather simple two-dimensional model was used to investigate the factors that control flow rate decline in steam wells. The effects of parameters such as fracture spacing and permeability are considered, as well as the effects of permeability, porosity and initial liquid saturation in the rock matrix. Also, the conventional P/z method that is commonly used in analyzing gas well production is investigated in terms of its applicability to fractured vapor dominated systems.

  1. Influence of the Flow Rate of Oxidising Atmosphere on the Flame Spread Rate on the Surface of Organic Setlled Dust

    NASA Astrophysics Data System (ADS)

    Martinka, Jozef; Balog, Karol; Hrušovský, Ivan; Valentová, Veronika

    2013-01-01

    The presented paper deals with determining the influence of the flow rate of oxidising atmosphere on the flame spread along the surface of the organic settled dust layer. We determined the rate of the flame spread on the surface of the organic settled dust layer (whole grain rye and spelt flour) with absolute moisture of 10 % wt., for the flow rates of oxidising atmosphere 1, 3, 5 and 10 cm/s. Pure oxygen was used as an oxidising atmosphere. The obtained results suggest that there exists a power relationship of the flame spread rate along the surface of organic settled dust layer to the flow rate of the oxidising mixture. The method described is suitable for the relative comparison of the organic settled dust layer from the point of its ability to spread the flame and the influence of the air flow rate on this process.

  2. The effect of temperature and flow rate on aluminum etch rates in RF plasmas

    SciTech Connect

    Danner, D.A.; Hess, D.W.

    1986-01-01

    The effect of sample temperature and etch gas flow rate on the etching of aluminum in BCl/sub 3//Cl/sub 2/ and CCl/sub 4//Cl/sub 2/ mixtures in a parallel-plate plasma etcher was investigated. Through the use of a thermally conductive epoxy to ensure good heat-transfer, sample heating due to exothermic chemical reactions and plasma heating was found to result in a temperature difference of more than 100/sup 0/C between bonded and unbonded samples. Thus, considerable increases in etch rate were observed for the unbonded samples. Etch nonuniformities during both the inhibition period and metal etching were studied, using different plasma conditions and a nozzle to deliver chlorine directly to the aluminum surface. Oxide etching depended upon ion flux and/or energy and upon the concentration of BCl/sub X/ or CCl/sub X/ species, while Cl/sub 2/ concentration at the sample surface determined the relative aluminum etch rates across the aluminum sample.

  3. Volumetric flow rate comparisons for water and product on pasteurization systems.

    PubMed

    Schlesser, J E; Stroup, W H; McKinstry, J A

    1994-04-01

    A flow calibration tube system was assembled to determine the volumetric flow rates for water and various dairy products through a holding tube, using three different flow promotion methods. With the homogenizer, the volumetric flow rates of water and reconstituted skim milk were within 1.5% of each other. With the positive displacement pump, the flow rate for reconstituted skim milk increased compared with that for water as the pressure increased or temperature decreased. The largest increase in flow rate was at 310-kPa gauge and 20 degrees C. On a magnetic flow meter system, the volumetric flow rates of water and reconstituted skim milk were within .5% of the flow rate measured from the volume collected in a calibrated tank. The flow rate of whole milk was similar to that of skim milk on the three flow promoters evaluated. Ice milk mix increased the flow rate of the positive displacement pump, but not the homogenizer and magnetic flow meter system. PMID:8201053

  4. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey Pinelands: field rates

    SciTech Connect

    Poovarodom, S.; Tate, R.L. III; Bloom, R.A.

    1988-04-01

    Using the buried-bag procedure, the authors quantified nitrogen mineralization rates in the xeric, acidic Lakehurst, and Atsion sands of the New Jersey Pine Barrens. Average annual nitrogen yields in the upper 15 cm for the Lakehurst and the Atsion sands were 38.4 and 53.0 kg N/ha, corresponding to 4.5 and 2.5% of the total nitrogen, respectively. Net nitrogen mineralization in both soils exhibited distinct seasonal patterns with maxima in summer and minimum rates in the winter. Nitrification accounted for only 5% of the total N mineralized in both soils. This is consistent with the finding of low populations of autotrophic nitrifiers in these soils.

  5. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method.

    PubMed

    Song, Dean; Liu, Huijuan; Qiang, Zhimin; Qu, Jiuhui

    2014-05-15

    Free chlorine is extensively used for water and wastewater disinfection nowadays. However, it still remains a big challenge to determine the rate constants of rapid chlorination reactions although competition kinetics and stopped-flow spectrophotometric (SFS) methods have been employed individually to investigate fast reaction kinetics. In this work, we proposed an SFS competition kinetics method to determine the rapid chlorination rate constants by using a common colorimetric reagent, N,N-diethyl-p-phenylenediamine (DPD), as a reference probe. A kinetic equation was first derived to estimate the reaction rate constant of DPD towards chlorine under a given pH and temperature condition. Then, on that basis, an SFS competition kinetics method was proposed to determine directly the chlorination rate constants of several representative compounds including tetracycline, ammonia, and four α-amino acids. Although Cl2O is more reactive than HOCl, its contribution to the overall chlorination kinetics of the test compounds could be neglected in this study. Finally, the developed method was validated through comparing the experimentally measured chlorination rate constants of the selected compounds with those obtained or calculated from literature and analyzing with Taft's correlation as well. This study demonstrates that the SFS competition kinetics method can measure the chlorination rate constants of a test compound rapidly and accurately. PMID:24602867

  6. Interplay of Natural Organic Matter with Flow Rate and Particle Size on Colloid Transport: Experimentation, Visualization, and Modeling.

    PubMed

    Yang, Xinyao; Zhang, Yimeng; Chen, Fangmin; Yang, Yuesuo

    2015-11-17

    The investigation on factors that affect the impact of natural organic matter (NOM) on colloid transport in complex hydraulic flow systems remains incomplete. Using our previously established approach, the interplay of flow rate and particle size on the NOM effect was quantified, using flow rates of 1 and 2 mL/min and particle sizes of 50 and 200 nm to represent small nanoparticles (1-100 nm) and large non-nano-microspheres (100-1000 nm) in the low-flow groundwater environment. Latex particles, Suwannee River humic acid (SRHA), and iron oxide-coated sand were used as model particles, NOM, and the aquifer medium, respectively. The quantitative results show NOM blocked more sites for large particles at a high flow rate: 1 μg of SRHA blocked 5.95 × 10(9) microsphere deposition sites at 2 mL/min but only 7.38 × 10(8) nanoparticle deposition sites at 1 mL/min. The particle size effect dominated over the flow rate, and the overall effect of the two is antagonistic. Granule-scale visualization of the particle packing on the NOM-presented sand surface corroborates the quantification results, revealing a more dispersed status of large particles at a high flow rate. We interpret this phenomenon as a polydispersivity effect resulting from the differential size of the particles and NOM: high flow and a high particle size enlarge the ratio of particle-blocked to NOM-blocked areas and thus the NOM blockage. To our knowledge, this is the first model-assisted quantification on the interplay of NOM, flow rate, and particle size on colloid transport. These findings are significant for nanorisk assessment and nanoremediation practices. PMID:26469806

  7. Nonintrusive Flow Rate Determination Through Space Shuttle Water Coolant Loop Floodlight Coldplate

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph; Johnson, Harry; Margasahayam, Ravi

    1997-01-01

    Using a Nonintrusive Flow Measurement System (NFMS), the flow rates through the Space Shuttle water coolant coldplate were determined. The objective of this in situ flow measurement was to prove or disprove a potential block inside the affected coldplate had contributed to a reduced flow rate and the subsequent ice formation on the Space Shuttle Discovery. Flow through the coldplate was originally calculated to be 35 to 38 pounds per hour. This application of ultrasonic technology advanced the envelope of flow measurements through use of 1/4-inch-diameter tubing, which resulted in extremely low flow velocities (5 to 30 pounds per hour). In situ measurements on the orbiters Discovery and Atlantis indicated both vehicles, on the average, experienced similar flow rates through the coldplate (around 25 pounds per hour), but lower rates than the designed flow. Based on the noninvasive checks, further invasive troubleshooting was eliminated. Permanent monitoring using the NFMS was recommended.

  8. [Synchonization of the blood flow rate in arterial with the changing rate of space of blood pressure with time].

    PubMed

    Zhang, Shenghua; Qin, Renjia

    2012-10-01

    In physiology-related books, there are many relationship curves about blood flow rate in arteries and blood pressure changes with time, but there are not much explanation about such relationship. This is the very the question that the present article tries to answer. We clarified the relations between blood flow rate and blood pressure gradient using the experimental curves as the basis, using Poiseuille Law and relative knowledge of phisics and mathematics, and using analysis and reasoning. Based on the study, it can be concluded that in every course of cardiac cycle, the blood flow rate of any section in artery blood vessel is roughly synchronized with changing rate of space and time of the blood pressure, but blood flow rate is not synchronized with blood pressure. PMID:23198422

  9. A COMPREHENSIVE STUDY OF HOURLY AND DAILY SEWAGE FLOW RATES IN FLORIDA PUBLIC SCHOOLS.

    ERIC Educational Resources Information Center

    FOGARTY, WILLIAM J.; REEDER, MILTON E.

    A DETERMINATION OF THE HOURLY AND DAILY SEWAGE FLOW RATES IN FLORIDA PUBLIC SCHOOLS WAS MADE TO IDENTIFY THE FLOW CHARACTERISTICS AND TO PROVIDE A MORE PRECISE BASIS FOR THE ESTABLISHMENT OF DESIGN CRITERIA FOR SEWAGE DISPOSAL FACILITIES IN SCHOOLS. WATER FLOW DATA WAS COLLECTED FOR 158 SCHOOLS AND SEWAGE FLOW DATA FROM 42 SCHOOLS. THE FINDINGS…

  10. A methodology to reduce uncertainties in the high-flow portion of a rating curve

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...

  11. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  12. Eruption rate, area, and length relationships for some Hawaiian lava flows

    NASA Technical Reports Server (NTRS)

    Pieri, David C.; Baloga, Stephen M.

    1986-01-01

    The relationships between the morphological parameters of lava flows and the process parameters of lava composition, eruption rate, and eruption temperature were investigated using literature data on Hawaiian lava flows. Two simple models for lava flow heat loss by Stefan-Boltzmann radiation were employed to derive eruption rate versus planimetric area relationship. For the Hawaiian basaltic flows, the eruption rate is highly correlated with the planimetric area. Moreover, this observed correlation is superior to those from other obvious combinations of eruption rate and flow dimensions. The correlations obtained on the basis of the two theoretical models, suggest that the surface of the Hawaiian flows radiates at an effective temperature much less than the inner parts of the flowing lava, which is in agreement with field observations. The data also indicate that the eruption rate versus planimetric area correlations can be markedly degraded when data from different vents, volcanoes, and epochs are combined.

  13. Changes in salivary flow rate following Chlorella-derived multicomponent supplementation

    PubMed Central

    Otsuki, Takeshi; Shimizu, Kazuhiro; Zempo-Miyaki, Asako; Maeda, Seiji

    2016-01-01

    Decreases in saliva secretion compromise food mastication and swallowing, reduce mucosal immune function, and increase the risk for oral diseases like dental caries. Chlorella is a green alga that contains a variety of nutrients including amino acids, vitamins, and minerals. In our previous study, Chlorella-derived multicomponent supplementation did not affect salivary flow rates in healthy young individuals, but Chlorella-derived supplementation attenuated a decrease in saliva secretion that was observed during a kendo training camp. Hence, we hypothesized that Chlorella-derived supplementation increases saliva secretion in individuals with lower rates of saliva flow. Sixty-four subjects took Chlorella-derived tablets for four weeks. Before and after supplementation, saliva samples were collected by chewing cotton. In the complete study group, there was no difference in saliva production before and after supplementation (1.91 ± 0.11 ml/min before vs 2.01 ± 0.12 ml/min after). Analysis of subgroups based on saliva production before supplementation found an increase in saliva secretion in the lower saliva flow group (1.18 ± 0.06 vs 1.38 ± 0.08 ml/min), but no change in the higher saliva flow group (2.63 ± 0.11 vs 2.64 ± 0.15 ml/min). These results suggest that Chlorella-derived multicomponent supplementation increases saliva production in individuals with lower levels of saliva secretion. PMID:27499578

  14. Changes in salivary flow rate following Chlorella-derived multicomponent supplementation.

    PubMed

    Otsuki, Takeshi; Shimizu, Kazuhiro; Zempo-Miyaki, Asako; Maeda, Seiji

    2016-07-01

    Decreases in saliva secretion compromise food mastication and swallowing, reduce mucosal immune function, and increase the risk for oral diseases like dental caries. Chlorella is a green alga that contains a variety of nutrients including amino acids, vitamins, and minerals. In our previous study, Chlorella-derived multicomponent supplementation did not affect salivary flow rates in healthy young individuals, but Chlorella-derived supplementation attenuated a decrease in saliva secretion that was observed during a kendo training camp. Hence, we hypothesized that Chlorella-derived supplementation increases saliva secretion in individuals with lower rates of saliva flow. Sixty-four subjects took Chlorella-derived tablets for four weeks. Before and after supplementation, saliva samples were collected by chewing cotton. In the complete study group, there was no difference in saliva production before and after supplementation (1.91 ± 0.11 ml/min before vs 2.01 ± 0.12 ml/min after). Analysis of subgroups based on saliva production before supplementation found an increase in saliva secretion in the lower saliva flow group (1.18 ± 0.06 vs 1.38 ± 0.08 ml/min), but no change in the higher saliva flow group (2.63 ± 0.11 vs 2.64 ± 0.15 ml/min). These results suggest that Chlorella-derived multicomponent supplementation increases saliva production in individuals with lower levels of saliva secretion. PMID:27499578

  15. Ascorbic acid and rates of cognitive decline in Alzheimer's disease.

    PubMed

    Bowman, Gene L; Dodge, Hiroko; Frei, Balz; Calabrese, Carlo; Oken, Barry S; Kaye, Jeffrey A; Quinn, Joseph F

    2009-01-01

    The brain maintains high levels of ascorbic acid (AA) despite a concentration gradient favoring diffusion from brain to peripheral tissues. Dietary antioxidants, including AA, appear to modify the risk of Alzheimer's disease (AD). The objective of this study was to test the hypothesis that neurodegeneration in AD is modified by brain levels of AA. Thirty-two patients with mild to moderate AD participated in a biomarker study involving standardized clinical assessments over one year. Cerebrospinal fluid (CSF) and serum were collected at baseline for AA and albumin content. Cognitive measures were collected at baseline and one year. CSF and plasma AA failed to predict cognitive decline independently, however, CSF: plasma AA ratio did. After adding CSF Albumin Index (an established marker of blood-brain barrier integrity) to the regression models the effect of CSF: plasma AA ratio as a predictor of cognitive decline was weakened. CSF: plasma AA ratio predicts rate of decline in AD. This relationship may indicate that the CSF: plasma AA ratio is an index of AA availability to the brain or may be an artifact of a relationship between blood-brain barrier impairment and neurodegeneration. PMID:19158425

  16. Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value

    NASA Astrophysics Data System (ADS)

    Chen, Bingyan; Zhu, Changping; Chen, Longwei; Fei, Juntao; Gao, Ying; Wen, Wen; Shan, Minglei; Ren, Zhaoxing

    2014-12-01

    The organic compounds of p-nitrophenol (PNP) solution was treated by the active species generated in a stirred reactor by an atmospheric pressure plasma jet (APPJ). The emission intensities of hydroxyl (OH), oxygen (O), nitric oxide (NO), hydrogen (H) and molecular (N2) were measured by optical emission spectroscopy (OES). The relations between the flow rates of the PNP solution and degradation, the degradation effects and initial pH value of the solution were also investigated. Experimental results show that there exist intense emissions of O (777.1 nm), N2 (337.1 nm), OH (306-310 nm) and NO band (200-290 nm) in the region of plasma. Given the treatment time and gas flow rate, the degradation increased as a function of discharge energy and solution flow rate, respectively. The solution flow rate for the most efficient degradation ranged from 1.414 m/s to 1.702 m/s, and contributed very little when it exceeded 2.199 m/s. This indicates the existence of diffusion-controlled reactions at a low solution flow rate and activation-controlled reactions at a high solution flow rate. Moreover, increasing or decreasing the initial pH value of neutral PNP solution (pH=5.95) could improve the degradation efficiency. Treated by APPJ, the PNP solutions with different initial pH values of 5.95, 7.47 and 2.78 turned more acidic in the end, while the neutral solution had the lowest degradation efficiency. This work clearly demonstrates the close coupling of active species, photolysis of ultraviolet, the organic solution flow rate and the initial pH value, and thus is helpful in the study of the mechanism and application of plasma in wastewater treatment.

  17. An electronic flow control system for a variable-rate tree sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...

  18. Towards Multiphase Periodic Boundary Conditions with Flow Rate Constraint

    NASA Astrophysics Data System (ADS)

    Sawko, Robert; Thompson, Chris P.

    2011-09-01

    This paper presents the development of a solver for a two-phase, stratified flow with periodic boundary conditions. Governing equations are supplemented with a specification of constant mass fluxes for each phase. The method allows an estimate steady state phase fraction and pressure drop in the streamwise direction. The analytical solution for two-phase laminar flow is presented and serves as a validation of the numerical technique. For turbulent conditions, Reynolds-Averaged Navier-Stokes equations are employed and closed with a two-equation model. Experimental data is taken as a reference for the purpose of validation. In both flow conditions the method delivers accurate results although in the case of turbulent flow it requires the specification of interfacial viscosity showing that a direct generalisation of two-equation model is unsatisfactory. Further research avenues are outlined.

  19. Tracheal Mucus Flow Rates in Experimental Bronchitis in Rats

    PubMed Central

    Lightowler, Norah M.; Williams, J. R. B.

    1969-01-01

    The flow of mucus in the trachea of rats previously exposed to an atmosphere of SO2 in air was measured and correlated with the histological changes in the trachea, bronchi and lungs. Reduction in the speed of mucus flow in the exposed trachea was found with increasing severity of bronchopulmonary changes. ImagesFigs. 9-12Figs. 6-7Figs. 2-5 PMID:5772066

  20. Esophageal blood flow in the cat. Normal distribution and effects of acid perfusion

    SciTech Connect

    Hollwarth, M.E.; Smith, M.; Kvietys, P.R.; Granger, D.N.

    1986-03-01

    The radioactive microsphere technique was used to estimate blood flow to different regions of the esophagus and to adjacent regions of the stomach before and after perfusion of the esophagus with hydrochloric acid (pH 1.5) for 5 min. Under resting conditions total blood flow, as well as blood flow to the mucosal-submucosal layer and the muscular layer, to both sphincters was significantly higher than to the esophageal body. Blood flow to the adjacent regions of the stomach was significantly higher than esophageal blood flow. Acid perfusion resulted in a large increase in total blood flow in both sphincters and the lower esophageal body. Gastric blood flow was not altered by acid perfusion. The esophageal hyperemia resulted primarily from an increase in blood flow to the muscular layer; mucosal-submucosal blood flow was increased only in the lower esophageal sphincter. The present study indicates that short periods (5 min) of gastroesophageal reflux may increase esophageal blood flow.

  1. Study on solid-liquid two-phase unsteady flow characteristics with different flow rates in screw centrifugal pump

    NASA Astrophysics Data System (ADS)

    Li, R. N.; Y Wang, H.; Han, W.; Ma, W.; Shen, Z. J.

    2013-12-01

    The screw centrifugal pump is used as an object, and the unsteady numerical simulation of solid-liquid two-phase flow is carried out under different flow rate conditions in one circle by choosing the two-phase flow of sand and water as medium, using the software FLUENT based on the URANS equations, combining with sliding mesh method, and choosing the Mixture multiphase flow model and the SIMPLE algorithm. The results show that, with the flow rate increasing, the change trends for the pressure on volute outlet are almost constant, the fluctuation trends of the impeller axial force have a little change, the pressure and the axial force turn to decrease on the whole, the radial force gradually increases when the impeller maximum radius passes by half a cycle near the volute outlet, and the radial force gradually decreases when the maximum radius passes by the other half a cycle in a rotation cycle. The distributions of the solid particles are very uneven under a small flow rate condition on the face. The solid particles under a big flow rate condition are distributed more evenly than the ones under a small flow rate condition on the back. The theoretical basis and reference are provided for improving its working performance.

  2. Theoretical models of mercury dissolution from dental amalgams in neutral and acidic flows

    NASA Astrophysics Data System (ADS)

    Keanini, Russell G.; Ferracane, Jack L.; Okabe, Toru

    2001-06-01

    This article reports an experimental and theoretical investigation of mercury dissolution from dental amalgams immersed in neutral (noncorrosive) and acidic (corrosive) flows. Atomic absorption spectrophotometric measurements of Hg loss indicate that in neutral flow, surface oxide films formed in air prior to immersion persist and effectively suppress significant mercury release. In acidic (pH 1) flows, by contrast, oxide films are unstable and dissolve; depending on the amalgam’s material composition, particularly its copper content, two distinct mercury release mechanisms are initiated. In low copper amalgam, high initial mercury release rates are observed and appear to reflect preferential mercury dissolution from unstable Sn8Hg ( γ 2) grains within the amalgam matrix. In high copper amalgam, mercury release rates are initially low, but increase with time. Microscopic examination suggests that this feature reflects corrosion of copper from grains of Cu6Sn5 ( η') and consequent exposure of Ag2Hg3 ( γ 1) grains; the latter serve as internal mercury release sites and become more numerous as corrosion proceeds. Three theoretical models are proposed in order to explain observed dissolution characteristics. Model I, applicable to high and low copper amalgams in neutral flow, assumes that mercury dissolution is mediated by solid diffusion within the amalgam, and that a thin oxide film persists on the amalgam’s surface and lumps diffusive in-film transport into an effective convective boundary condition. Model II, applicable to low copper amalgam in acidic flow, assumes that the amalgam’s external oxide film dissolves on a short time scale relative to the experimental observation period; it neglects corrosive suppression of mercury transport. Model III, applicable to high copper amalgam in acidic flow, assumes that internal mercury release sites are created by corrosion of copper in η' grains and that corrosion proceeds via an oxidation-reduction reaction

  3. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    PubMed

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa. PMID:8350082

  4. Effect of different river flow rates on biomarker responses in common carp (Cyprinus carpio).

    PubMed

    Hackenberger, Branimir K; Velki, Mirna; Lončarić, Zeljka; Hackenberger, Davorka K; Ečimović, Sandra

    2015-02-01

    The present study investigated effects of different river flow rates on basal activities of selected biomarkers and the occurrence of oxidative stress in the common carp (Cyprinus carpio). Juvenile carp were exposed to different river flow rates (5-120 cm/s) by caging for 3 weeks. After this period, one half of the fish were sacrificed and used for analysis. The other half received a single intraperitoneal injection of 3-methylcholanthrene (3-MC) and after 6 days were sacrificed and used for analysis. In order to investigate whether the physical activity of carp in the environment will influence the condition status of carp, following biomarkers were measured - activities of glutathione S-transferase (GST), catalase (CAT) and ethoxyresorufin-O-deethylase (EROD) and concentration of protein carbonyls (PC). The results showed that different flow rates significantly influenced biochemical biomarkers. The basal activity of GST did not change significantly after exposure to different river flow rates, whereas the activity of CAT increased with increasing river flow rates. The application of 3-MC caused significant increases in GST and CAT activities, but there were no difference between 3-MC control and 3-MC different flow rates. The occurrence of oxidative stress as a result of exposure to increased physical activity, i.e. increased river flow rates, was confirmed by measurement of PC levels - the level of PC increased with increasing river flow rates. Measurement of EROD basal activity showed that at lower river flow rates the EROD activity increased and at higher river flow rates decreased towards control levels demonstrating a close relationship between oxidative stress, PC levels and EROD activity. Obviously, biomarker responses in carp of different condition status can differ substantially. It can be concluded that flow rate may be an important factor in biomonitoring of rivers using biomarkers and since at different locations river water flow rate can vary

  5. Extensional flow of hyaluronic acid solutions in an optimized microfluidic cross-slot devicea

    PubMed Central

    Haward, S. J.; Jaishankar, A.; Oliveira, M. S. N.; Alves, M. A.; McKinley, G. H.

    2013-01-01

    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers. PMID:24738010

  6. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan

    2015-10-01

    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  7. Effects of mean flow on duct mode optimum suppression rates

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Wells, W. R.

    1976-01-01

    The nature of the solution to the convected acoustic wave equation and associated boundary conditions for rectangular ducts containing uniform mean flow is examined in terms of the complex mapping between the wall admittance and characteristic mode eigenvalues. It is shown that the Cremer optimum suppression criteria must be modified to account for the effects of flow below certain critical values of the nondimensional frequency parameter of duct height divided by sound wavelength. The implications of these results on the design of low frequency suppressors are considered.

  8. Low Phytic Acid Barley Responses to Phosphorus Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  9. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments.

    PubMed

    Ge, Liang; Leo, Hwa-Liang; Sotiropoulos, Fotis; Yoganathan, Ajit P

    2005-10-01

    Time-accurate, fully 3D numerical simulations and particle image velocity laboratory experiments are carried out for flow through a fully open bileaflet mechanical heart valve under steady (nonpulsatile) inflow conditions. Flows at two different Reynolds numbers, one in the laminar regime and the other turbulent (near-peak systole flow rate), are investigated. A direct numerical simulation is carried out for the laminar flow case while the turbulent flow is investigated with two different unsteady statistical turbulence modeling approaches, unsteady Reynolds-averaged Navier-Stokes (URANS) and detached-eddy simulation (DES) approach. For both the laminar and turbulent cases the computed mean velocity profiles are in good overall agreement with the measurements. For the turbulent simulations, however, the comparisons with the measurements demonstrate clearly the superiority of the DES approach and underscore its potential as a powerful modeling tool of cardiovascular flows at physiological conditions. The study reveals numerous previously unknown features of the flow. PMID:16248308

  10. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  11. Estimation of the velocities and discharge rates of groundwater flows by helium and tritium distributions

    SciTech Connect

    Ivanov, V.V.; Antonenko, E.F.; Obukhova, S.N.

    1995-11-01

    Modeling is used to show that bends in the curves of groundwater flows and confluence of different-age flows demonstrate themselves in spatial variability in concentration fields of {sup 4}He, {sup 3}H, and {sup 14}C isotopes. The results are used to reveal typical flows in a section of Switzerland and to estimate their velocities and discharge rates.

  12. Incorporating a Time Horizon in Rate-of-Return Estimations: Discounted Cash Flow Model in Electric Transmission Rate Cases

    SciTech Connect

    Chatterjee, Bishu; Sharp, Peter A.

    2006-07-15

    Electric transmission and other rate cases use a form of the discounted cash flow model with a single long-term growth rate to estimate rates of return on equity. It cannot incorporate information about the appropriate time horizon for which analysts' estimates of earnings growth have predictive powers. Only a non-constant growth model can explicitly recognize the importance of the time horizon in an ROE calculation. (author)

  13. A Model for Variable Levee Formation Rates in an Active Lava Flow

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Baloga, S. M.; Mouginis-Mark, P.; Crisp, J.

    2004-01-01

    Channelized lava flows on Mars and the Earth often feature levees and collateral margins that change in volume along the path of the flow. Consistent with field observations of terrestrial flows, this suggests that the rate of levee formation varies with distance and other factors. Previous models have assumed a constant rate of levee growth, specified by a single parameter, lambda. The rate of levee formation for lava flows is a good indicator of the mass eruption rate and rheology of the flow. Insight into levee formation will help us better understand whether or not the effusion rate was constant during an eruption, and once local topography is considered, allows us to look at cooling and/or rheology changes downslope. Here we present a more realistic extension of the levee formation model that treats the rate of levee growth as a function of distance along the flow path. We show how this model can be used with a terrestrial flow and a long lava flow on Mars. The key statement of the new formulation is the rate of transfer from the active component to the levees (or other passive components) through an element dx along the path of the flow. This volumetric transfer equation is presented.

  14. Gas, liquids flow rates hefty at Galveston Bay discovery

    SciTech Connect

    Petzet, G.A.

    1998-01-19

    Extended flow tests indicate a large Vicksburg (Oligocene) gas, condensate, and oil field is about to be developed in western Galveston Bay. Internal estimates indicates that ultimate recovery from the fault block in which the discovery well was drilled could exceed 1 tcf of gas equivalent of proved, possible, and probable reserves. The paper discusses the test program for this field and other prospects in the Galveston Bay area.

  15. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  16. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging

    PubMed Central

    Deng, Shijie; Wang, Peng; Liu, Shengnan; Zhao, Tianze; Xu, Shanzhi; Guo, Mingjiang; Yu, Xinglong

    2016-01-01

    A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of μL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems. PMID:27347960

  17. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging.

    PubMed

    Deng, Shijie; Wang, Peng; Liu, Shengnan; Zhao, Tianze; Xu, Shanzhi; Guo, Mingjiang; Yu, Xinglong

    2016-01-01

    A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of μL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems. PMID:27347960

  18. Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow

    NASA Astrophysics Data System (ADS)

    Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha

    We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.

  19. Distributed measurement of flow rate in conduits using heated fiber optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis

    2016-04-01

    In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.

  20. 30 CFR 75.1101-19 - Nozzles; flow rate and direction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Nozzles; flow rate and direction. 75.1101-19...; flow rate and direction. The nozzles of each dry powder chemical system shall be capable of discharging... minimize the effect of ventilation upon fire control....

  1. 30 CFR 75.1101-19 - Nozzles; flow rate and direction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Nozzles; flow rate and direction. 75.1101-19...; flow rate and direction. The nozzles of each dry powder chemical system shall be capable of discharging... minimize the effect of ventilation upon fire control....

  2. Determining seed cotton mass flow rate by pressure drop across a blowbox

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A seed cotton mass flow rate sensor would offer useful feedback for gin managers and provide a critical input for advanced process control systems. Several designs of seed cotton mass flow rate sensors have been evaluated in the laboratory, but none have found acceptance in commercial gins. The obje...

  3. Determining Seed Cotton Mass Flow Rate by Pressure Drop Across a Blowbox: Gin Testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate measurement of the mass flow rate of seed cotton is needed for control and monitoring purposes in gins. A system was developed that accurately predicted mass flow rate based on the static pressure drop measured across the blowbox and the air velocity and temperature entering the blowbox. Ho...

  4. Determining seed cotton mass flow rate by pressure drop across a blowbox

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A seed cotton mass flow rate sensor would offer useful feedback for gin managers and provide a critical input for advanced process control systems. Several designs of seed cotton mass flow rate sensors have been evaluated in the laboratory, but none have found acceptance in commercial gins. The ob...

  5. A simple recirculating flow system for the calibration of polar organic chemical integrative samplers (POCIS): effect of flow rate on different water pollutants.

    PubMed

    Di Carro, Marina; Bono, Luca; Magi, Emanuele

    2014-03-01

    A calibration system for POCIS was developed and used to calculate the sampling rates of eight analytes belonging to pesticides, non-steroidal anti-inflammatory drugs and perfluorinated compounds: atrazine, propazine, terbutylazine, diclofenac, ibuprofen, ketoprofen, perfluorooctanoic acid and perfluorooctanesulfonate. Experiments with a linear velocity of 2.0, 5.1, 10.2 and 15.3 cm/s were carried out for 96 h using two different analyte concentrations. POCIS extracts were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using multiple reaction monitoring to maximize sensitivity. Results highlighted that the calculated sampling rates are rather constant at the considered concentrations and flow rates. Obtained values of sampling rates were then employed to calculate Time-Weighted Average concentration of the analytes in river and drinking waters. PMID:24468338

  6. Measuring the rate of local evaporation from the liquid surface under the action of gas flow

    NASA Astrophysics Data System (ADS)

    Lyulin, Yu. V.; Feoktistov, D. V.; Afanas'ev, I. A.; Chachilo, E. S.; Kabov, O. A.; Kuznetsov, G. V.

    2015-07-01

    The dynamics of evaporation from the surface of a liquid layer under the action of a gas flow has been studied. Correlation dependences of the rate of liquid evaporation on the gas flow rate and temperature for the ethanol-air system have been obtained and compared to other published experimental data. It is established that, for the two-phase systems studied, the evaporation rate growth with increasing temperature exhibits an almost identical character independently of the thermal properties of particular liquids and gases. In contrast, the character of the evaporation rate growth with increasing gas flow velocity significantly depends on these properties.

  7. Application of Lorentz force techniques for flow rate measurement

    NASA Astrophysics Data System (ADS)

    Ebert, Reschad Johann; Resagk, Christian

    2014-11-01

    We report on the progress of the Lorentz force velocimetry (LFV): a contactless non-invasive flow velocity measurement technique. This method has been developed and demonstrated for various applications in our institute and in industry. At applications for weakly conducting fluids such as electrolytes with conductivities in the range of 1 - 10 S/m the challenging bottleneck is the detection of the tiny Lorentz forces in the noisy environment of the test channel. For the force measurement a state-of-the-art electromagnetic force compensation balance is used. Due to this device the mass of the Lorentz force generating magnets is limited. For enabling larger magnet systems and for higher force signals we have developed and tested a buoyancy based weight force compensation method which will be presented here. Additionally, results of LFV measurements at non-symmetric fluid profiles will be shown. By that an evaluation of the feasibility of this measurement principle for disturbed fluid profiles that are relevant for developing the LFV for weakly conducting fluids towards industrial applications can be made. Additionally a prospective setup for using the LFV for molten salt flows will be explained.

  8. The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Antaki, P. J.; Kassar, G. M.

    1981-01-01

    Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described

  9. Measurement of Retinal Blood Flow Rate in Diabetic Rats: Disparity Between Techniques Due to Redistribution of Flow

    PubMed Central

    Leskova, Wendy; Watts, Megan N.; Carter, Patsy R.; Eshaq, Randa S.; Harris, Norman R.

    2013-01-01

    Purpose. Reports of altered retinal blood flow in experimental models of type I diabetes have provided contrasting results, which leads to some confusion as to whether flow is increased or decreased. The purpose of our study was to evaluate early diabetes-induced changes in retinal blood flow in diabetic rats, using two distinctly different methods. Methods. Diabetes was induced by injection of streptozotocin (STZ), and retinal blood flow rate was measured under anesthesia by a microsphere infusion technique, or by an index of flow based on the mean circulation time between arterioles and venules. Measurements in STZ rats were compared to age-matched nondiabetic controls. In addition, the retinal distribution of fluorescently-labeled red blood cells (RBCs) was viewed by confocal microscopy in excised flat mounts. Results. Retinal blood flow rate was found to decrease by approximately 33% in the STZ rats compared to controls (P < 0.001) as assessed by the microsphere technique. However, in striking contrast, the mean circulation time through the retina was found to be almost 3× faster in the STZ rats (P < 0.01). This contradiction could be explained by flow redistribution through the superficial vessels of the diabetic retina, with this possibility supported by our observation of significantly fewer RBCs flowing through the deeper capillaries. Conclusions. We conclude that retinal blood flow rate is reduced significantly in the diabetic rat, with a substantial decrease of flow through the capillaries due to shunting of blood through the superficial layer, allowing rapid transit from arterioles to venules. PMID:23572104

  10. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, I.H.

    1990-10-16

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity. 5 figs.

  11. High flow rate nozzle system with production of uniform size droplets

    DOEpatents

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  12. Sensitivity to edge and flow rate in the control of speed and altitude

    NASA Technical Reports Server (NTRS)

    Wolpert, Lawrence

    1991-01-01

    A number of studies have examined the potential efficacy of global flow rate and edge rate for specifying changes in self-motion. These have ranged from passive judgements of simulated accelerating self-motion to the active control of altitude in the presence of changes in flow and edge rates. A number of these studies are summarized and an attempt is made to reconcile their respective findings.

  13. Drop-box Weir for Measuring Flow Rates Under Extreme Flow Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment and large rocks often are transported in runoff during extreme events. The sediment can deposit in a runoff-measuring structure and give erroneous readings. The drop-box weir (DBW) is one of only a few flow-measuring devices capable of measuring sediment-laden flows. Recent studies have ...

  14. TREATOGENIC ACTIVITY OF TRICHOLORACETIC ACID IN THE RATE

    EPA Science Inventory

    Trichloroacetic acid (TCA) is a by-product of the chlorine disinfection of water containing natural organic material. t is detectable in finished drinking water at levels comparable to the trihalomethanes (930-160 ug/L). CA is also formed in vivo after ingestion of hypochelorite ...

  15. Effects of Upstream Turbulence on Measurement Uncertainty of Flow Rate by Venturi

    NASA Astrophysics Data System (ADS)

    Lee, Jungho; Yoon, Seok Ho; Yu, Cheong-Hwan; Park, Sang-Jin; Chung, Chang-Hwan

    2010-06-01

    Venturi has been widely used for measuring flow rate in a variety of engineering applications since pressure loss is relatively small compared with other measuring method. The current study focuses on making detailed estimation of measured uncertainties as the upstream turbulence affects uncertainty levels of the water flows in the closed-loop testing. Upstream turbulences can be controlled by selecting 9 different swirl generators. Measurement uncertainty of flow rate has been estimated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard. The best way to reduce error in measuring flow rate was investigated for evaluating its measurement uncertainty. The results of flow rate uncertainty analysis show that the case with systematic error has higher than that without systematic error. Especially the result with systematic error exhibits that the uncertainty of flow rate was gradually increased by upstream turbulence. Uncertainty of flow rate measurement can be mainly affected by differential pressure and discharge coefficient. Flow disturbance can be also reduced by increasing of the upstream straight length of Venturi.

  16. Financial modeling in medicine: cash flow, basic metrics, the time value of money, discount rates, and internal rate of return.

    PubMed

    Lexa, Frank James; Berlin, Jonathan W

    2005-03-01

    In this article, the authors cover tools for financial modeling. Commonly used time lines and cash flow diagrams are discussed. Commonly used but limited terms such as payback and breakeven are introduced. The important topics of the time value of money and discount rates are introduced to lay the foundation for their use in modeling and in more advanced metrics such as the internal rate of return. Finally, the authors broach the more sophisticated topic of net present value. PMID:17411805

  17. Relationship between the electrochemical activity of Raney nickel and the rate of hydrogenation of maleic acid

    SciTech Connect

    Pervii, E.N.; Sofronkov, A.N.; Fedyshina, N.M.

    1986-02-10

    The purpose of this investigation was to determine the conditions in which a direct correlation exists between the rate of hydrogenation of maleic acid and the electrochemical activity of catalysts of hydrogen ionization. The rate of maleic acid hydrogenation in presence of Raney nickel catalyst was studied by a combination of volumetric and potentiometric methods.

  18. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    PubMed

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. PMID:27012633

  19. Quartz Measurement in Coal Dust with High-Flow Rate Samplers: Laboratory Study

    PubMed Central

    LEE, TAEKHEE; LEE, EUN GYUNG; KIM, SEUNG WON; CHISHOLM, WILLIAM P.; KASHON, MICHAEL; HARPER, MARTIN

    2015-01-01

    A laboratory study was performed to measure quartz in coal dust using high-flow rate samplers (CIP10-R, GK2.69 cyclone, and FSP10 cyclone) and low-flow rate samplers [10-mm nylon and Higgins–Dewell type (BGI4L) cyclones] and to determine whether an increased mass collection from high-flow rate samplers would affect the subsequent quartz measurement by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analytical procedures. Two different sizes of coal dusts, mass median aerodynamic diameter 4.48 μm (Coal Dust A) and 2.33 μm (Coal Dust B), were aerosolized in a calm air chamber. The mass of coal dust collected by the samplers was measured gravimetrically, while the mass of quartz collected by the samplers was determined by FTIR (NIOSH Manual of Analytical Method 7603) and XRD (NIOSH Manual of Analytical Method 7500) after one of two different indirect preparations. Comparisons between high-flow rate samplers and low-flow rate samplers were made by calculating mass concentration ratios of coal dusts, net mass ratios of coal dusts, and quartz net mass. Mass concentrations of coal dust from the FSP10 cyclone were significantly higher than those from other samplers and mass concentrations of coal dust from 10-mm nylon cyclone were significantly lower than those from other samplers, while the CIP10-R, GK2.69, and BGI4L samplers did not show significant difference in the comparison of mass concentration of coal dusts. The BGI4L cyclone showed larger mass concentration of ~9% compared to the 10-mm nylon cyclone. All cyclones provided dust mass concentrations that can be used in complying with the International Standard Organization standard for the determination of respirable dust concentration. The amount of coal dust collected from the high-flow rate samplers was found to be higher with a factor of 2–8 compared to the low-flow rate samplers but not in direct proportion of increased flow rates. The high-flow rate samplers collected more quartz compared to

  20. Investigation of flow rate in a quasi-2D hopper with two symmetric outlets

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhi; Zhang, Sheng; Yang, Guanghui; Lin, Ping; Tian, Yuan; Wan, Jiang-Feng; Yang, Lei

    2016-03-01

    In this study the flow rate in a quasi-2D hopper with two symmetric outlets was investigated numerically. When two outlets merge into one, the flow rate is obviously bigger than that with a large enough distance between them. To explain the influence of the interaction between these two outlets, it was found that the velocity field above one outlet will be affected by the neighboring outlet by reducing the stagnant zone. With increasing distance, this interaction becomes weaker. Finally the formula of flow rate considering various outlet sizes and distances is fitted to the simulation data.

  1. Onset Mechanism of Strain Rate Induced Flow Stress Up-turn

    SciTech Connect

    Fan, Yue; Osetskiy, Yury N; Yip, Sidney; Yildiz-Botterud, Bilge

    2012-01-01

    The strain-rate response of flow stress in a plastically deforming crystal is formulated through a stresssensitive dislocation mobility model that can be evaluated by atomistic simulation. For the flow stress of a model crystal of bcc Fe containing a 1/2 <111> screw dislocation, this approach describes naturally a non-Arrhenius upturn at high strain rate, an experimentally established transitional behavior for which the underlying mechanism has not been clarified. Implications of our findings regarding the previous explanations of strain-rate effects on flow stress are discussed.

  2. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  3. The effect of organic acids on plagioclase dissolution rates and stoichiometry

    NASA Astrophysics Data System (ADS)

    Welch, Susan A.; Ullman, William J.

    1993-06-01

    The rates of plagioclase dissolution in solutions containing organic acids are up to ten times greater than the rates determined in solutions containing inorganic acids at the same acidity. Initial rates of dissolution are poorly reproduced in replicate experiments. After a day, however, the rates of plagioclase dissolution calculated from the rates of silicon release are reproducible and constant for up to nineteen days. Steady-state rates of dissolution are highest (up to 1.3 × 10 -8 mol/m 2/sec) in acidic solutions (pH ≈ 3) and decrease (to 1 × 10 -11 mol/m 2/sec) as acidity decreases toward neutral pH. The polyfunctional acids, oxalate, citrate, succinate, pyruvate, and 2-ketoglutarate, are the most effective at promoting dissolution. Acetate and propionate are not as effective as the other organic acids but are nonetheless more effective than solutions containing only inorganic acids. The degree of ligand-promoted enhancement of dissolution rate (rate in organic-containing solution/rate in inorganic solution at the same pH) decreases as acidity increases, indicating that the ligand-promoted dissolution mechanism becomes relatively more important as the rate of proton-promoted dissolution decreases. The stoichiometry of release to solution indicates that dissolution is selective even after the rates of dissolution become constant. As in previously published studies, Na and Ca are rapidly released from the plagioclase feldspar, leaving a surface enriched in Si and/or Al. The ratio of Al/Si released to solution indicates that the stoichiometry of the residual plagioclase surface is a function of pH and the nature of the organic ligand. The ligands which remove Al in preference to Si from the dissolving mineral surface are also those which enhance overall plagioclase dissolution rates.

  4. Flow variability of an aerial variable-rate nozzle at constant pressures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable-rate ground application systems have been in use for the past 15 years, but due to high application speeds, flow requirements, and aerodynamic considerations, variable-rate aerial nozzles have not been available until now. In 2006, Spray Target, Inc. released the VeriRate™ variable-rate aer...

  5. An efficient, explicit finite-rate algorithm to compute flows in chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    An explicit finite-rate code was developed to compute hypersonic viscous chemically reacting flows about three-dimensional bodies. Equations describing the finite-rate chemical reactions were fully coupled to the gas dynamic equations using a new coupling technique. The new technique maintains stability in the explicit finite-rate formulation while permitting relatively large global time steps.

  6. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? – ?r)/(?s – ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  7. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (<450 kg, 0.5 m3). Video results show lava is very sensitive to relatively small variations in these variables under experimental conditions. For example, experiments 1.1 Ga Keewenan basalt from the Mid-Continent Rift and 200 Ma basalt from the Palisades Sill show very different flow rates and flow morphologies for meter-scale flows on dry sand slopes between 5° and 20°, with all other variables held constant. Similar differences result from varying the effusion rate (~10-4m3s-1) or temperature (1050°-1250°C) on a constant slope. In addition, videos document the development of a wide range of reproducible lava flow structures found in natural lava flows including folds, shear zones, lava tubes, inflated lobes, break-outs, and bubbles (limu o'Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  8. Influence of impactor operating flow rate on particle size distribution of four jet nebulizers.

    PubMed

    Zhou, Yue; Brasel, Trevor L; Kracko, Dean; Cheng, Yung-Sung; Ahuja, Amitkumar; Norenberg, Jeffrey P; Kelly, H William

    2007-01-01

    When a nebulizer is evaluated by the Andersen Cascade Impactor (ACI), the flow rate is generally maintained at 28.3 L/min, as recommended by the manufacturer. However, the nebulizer flow rate that a patient inhales is only around 18 L/min. Because the drive flow of a nebulizer is approximately 6-8 L/min, the nebulized drug is mixed with outside air when delivered. Evaluating impactor performance at the 28.3 L/min flow rate is less than ideal because an additional 10 L/min of outside air is mixed with the drug, thereby affecting the drug size distribution and dose before inhalation and deposition in the human lung. In this study we operated the ACI at an 18.0 L/min flow rate to test whether the effect of the changing ambient humidity was being exaggerated by the 28.3 L/min flow rate. The study was carried out at three different relative humidity levels and two different impactor flow rates with four commercially available nebulizers. The mass median aerodynamic diameter (MMAD) and the geometric standard deviation (GSD) of the droplets were found to increase when the impactor was operated at a flow rate of 18 L/min compared to that of 28.3 L/min. The higher MMAD and GSD could cause the patient to inhale less of the drug than expected if the nebulizer was evaluated by the ACI at the operating flow rate of 28.3 L/min. PMID:17763140

  9. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    PubMed

    Terblanche, John S; Chown, Steven L

    2010-05-01

    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (p<0.05), the direction of effects was inconsistent. Indeed, inter-individual variation in CGE cycle frequency exceeded flow rate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume. PMID:20399350

  10. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  11. Power flow controller with a fractionally rated back-to-back converter

    DOEpatents

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish

    2016-03-08

    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  12. The Effect of Electric Current and Strain Rate on Serrated Flow of Sheet Aluminum Alloy 5754

    NASA Astrophysics Data System (ADS)

    Zhao, Kunmin; Fan, Rong; Wang, Limin

    2016-03-01

    Electrically assisted tensile tests are carried out on sheet aluminum alloy AA5754 at electric current densities ranging from 0 to 30.4 A/mm2 and strain rates ranging from 10-3 to 10-1 s-1. The strain rate sensitivity and the serrated flow behavior are investigated in accordance with dynamic strain aging mechanism. The strain rate sensitivity changes from negative to positive and keeps increasing with current density. The tendency toward serrated flow is characterized by the onset of Portevin-Le Chatelier (PLC) instabilities, which are influenced by strain rate, temperature, and electric current. The evolutions of three types of serrated flow are observed and analyzed with respect to strain rate and current density. The magnitude of serration varies with strain rate and current density. The serrated flow can be suppressed by a high strain rate, a high temperature, or a strong electric current. The threshold values of these parameters are determined and discussed. Conventional oven-heated tensile tests are conducted to distinguish the electroplasticity. The flow stress reduces more in electrically assisted tension compared to oven-heated tension at the same temperature level. The electric current helps suppress the serrated flow at the similar temperature level of oven-heating.

  13. Effects of gas flow rate on deposition rate and number of Si clusters incorporated into a-Si:H films

    NASA Astrophysics Data System (ADS)

    Toko, Susumu; Torigoe, Yoshihiro; Keya, Kimitaka; Seo, Hyunwoong; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2016-01-01

    The suppression of cluster incorporation into a-Si:H films is the key to better film stability, because incorporated clusters contribute to the formation of SiH2 bonds and hence lead to light-induced degradation of the films. To deposit stable a-Si:H solar cells at a high deposition rate (DR), we studied the effects of the gas flow rate on DR and the number of Si clusters incorporated into a-Si:H films with discharge power as a parameter, using a multihollow discharge-plasma chemical vapor deposition method. We succeeded in depositing high-quality a-Si:H films with the incorporation of few clusters at DR of 0.1 nm/s. We also found that, under a low gas flow rate and a high discharge power, high-density clusters exist in plasma and hence DR is reduced as a result of radical loss to the clusters.

  14. Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction.

    PubMed

    Walser, Buddy; Giordano, Rose M; Stebbins, Charles L

    2006-06-01

    Omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have beneficial effects on the heart and vasculature. We tested the hypothesis that 6 weeks of dietary supplementation with DHA (2.0 g/day) and EPA (3.0 g/day) enhances exercise-induced increases in brachial artery diameter and blood flow during rhythmic exercise. In seven healthy subjects, blood pressure, heart rate and brachial artery diameter, blood flow, and conductance were assessed before and during the last 30 s of 90 s of rhythmic handgrip exercise (30% of maximal handgrip tension). Blood pressure (MAP), heart rate (HR), and brachial artery vascular conductance were also determined. This paradigm was also performed in six other healthy subjects who received 6 weeks of placebo (safflower oil). Placebo treatment had no effect on any variable. DHA and EPA supplementation enhanced contraction-induced increases in brachial artery diameter (0.28+/-0.04 vs. 0.14+/-0.03 mm), blood flow (367+/-65 vs. 293+/-55 ml min-1) and conductance (3.86+/-0.71 vs. 2.89+/-0.61 ml min-1 mmHg-1) (P<0.05). MAP and HR were unchanged. Results indicate that treatment with DHA and EPA enhances brachial artery blood flow and conductance during exercise. These findings may have implications for individuals with cardiovascular disease and exercise intolerance (e.g., heart failure). PMID:16770472

  15. Effects of nitrogen flow rate on the properties of indium oxide thin films.

    PubMed

    Cho, Shinho; Kim, Moonhwan

    2013-11-01

    Indium oxide thin films are deposited on glass substrates at nitrogen flow rates of 0-50% by rf reactive magnetron sputtering and are characterized for their structural, morphological, electrical, and optical properties. The experimental results showed that the control of nitrogen flow rate has a significant effect on the properties of the In2O3 thin films. The change in the preferred growth orientation from (222) to (400) planes is observed above a nitrogen flow rate of 10%. The average optical transmittance in the wavelength range of 400-1100 nm is increased from 85.4% at 0% to 86.7% at 50%, where the smallest value of the optical band gap energy is obtained. In addition to the improvement in crystallinity of the films, the nitrogen flow rate plays a crucial role in the fabrication of high-quality indium oxide films and devices. PMID:24245335

  16. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  17. Direct Measurement of Planar Flow Rate in Excised Canine Larynx Model

    PubMed Central

    Oren, Liran; Khosla, Sid; Dembinski, Doug; Ying, Jun; Gutmark, Ephraim

    2014-01-01

    Objective During phonation, skewing of the glottal flow waveform (Q) during phonation refers to a phenomenon that occurs when the flow decelerates more rapidly than it accelerates. This skewing is clinically important because it increases the glottal efficiency, which is defined by the acoustic intensity (units are sound pressure level or SPL) divided by the subglottal pressure. Current theoretical models predict that the only mechanism to cause skewing of Q involves changes in the vocal tract inertance. The purpose of the current work is to show that other factors at the vocal fold level can also cause skewing of Q and to determine if the acoustic intensity is correlated with MFDR. Study design Basic Science Methods Intraglottal geometry and velocity measurements were taken in five canine larynges at the mid-membranous plane using two-dimensional particle imaging velocimetry (PIV). The flow rate at the glottal exit was computed from the PIV measurements for low, medium, and high subglottal pressures. Results Vortices form in the superior aspect of the divergent glottis during closing. These vortices produce negative pressure that increases both the maximum value of Q and the rapid deceleration of the flow. The skewing of the flow rate is increased as the intraglottal vortices are increased by increasing the subglottal pressure. The increase in the acoustic intensity is highly correlated with certain properties of the flow rate waveform, such as maximum flow rate. Conclusion Flow skewing and the acoustic intensity can be increased by increasing the intraglottal vortices. PMID:25093928

  18. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe

    2016-03-01

    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  19. Are gingival and periodontal conditions related to salivary gland flow rates in healthy individuals?

    PubMed

    Crow, H C; Ship, J A

    1995-11-01

    Some have suggested that gingival and periodontal health is related to salivary gland function; however, there are few data to support this hypothesis. The purpose of this study was to determine if correlations existed between major salivary gland flow rates and gingival and periodontal conditions in people of different ages. The results suggest that there is no consistent relationship between major salivary gland flow rates and gingival and periodontal conditions in healthy people. PMID:7499648

  20. Lateral flow microarrays: a novel platform for rapid nucleic acid detection based on miniaturized lateral flow chromatography

    PubMed Central

    Carter, Darren J.; Cary, R. Bruce

    2007-01-01

    Widely used nucleic acid assays are poorly suited for field deployment where access to laboratory instrumentation is limited or unavailable. The need for field deployable nucleic acid detection demands inexpensive, facile systems without sacrificing information capacity or sensitivity. Here we describe a novel microarray platform capable of rapid, sensitive nucleic acid detection without specialized instrumentation. The approach is based on a miniaturized lateral flow device that makes use of hybridization-mediated target capture. The miniaturization of lateral flow nucleic acid detection provides multiple advantages over traditional lateral flow devices. Ten-microliter sample volumes reduce reagent consumption and yield analyte detection times, excluding sample preparation and amplification, of <120 s while providing sub-femtomole sensitivity. Moreover, the use of microarray technology increases the potential information capacity of lateral flow. Coupled with a hybridization-based detection scheme, the lateral flow microarray (LFM) enables sequence-specific detection, opening the door to highly multiplexed implementations for broad-range assays well suited for point-of-care and other field applications. The LFM system is demonstrated using an isothermal amplification strategy for detection of Bacillus anthracis, the etiologic agent of anthrax. RNA from as few as two B. anthracis cells was detected without thermocycling hardware or fluorescence detection systems. PMID:17478499

  1. Performance of TSI 3760 condensation nuclei counter at reduced pressures and flow rates

    SciTech Connect

    Zhiqun Zhang; Liu, B.Y.H. )

    1991-01-01

    This article describes an experimental study of the performance of the TSI model 3760 clean room condensation nuclei counter (CNC) at various pressures and flow rates. Studies were made to determine the counting efficiency of the instrument in the pressure range of 0.1-1 atom and flow rate range of 0.15-1.4 L/min. The counting efficiency curves were found to be shifted to larger particle sizes as the pressure or flow rate was reduced. The low pressure and low flow rate limits of the instrument were also determined. The numerical model developed in a previous study was used to predict the performance of the CNC. The numerical results were compared with the experimental data and found to agree well in the pressure range of 0.2-1.0 atm and flow rate range of 0.3-1.4 L/min. Discrepancies were found to be more significant at the lower pressures and flow rates.

  2. Flow rate dictates permeability enhancement during fluid pressure oscillations in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Candela, Thibault; Brodsky, Emily E.; Marone, Chris; Elsworth, Derek

    2015-04-01

    Seismic waves have been observed to increase the permeability in fractured aquifers. A detailed, predictive understanding of the process has been hampered by a lack of constraint on the primary physical controls. What aspect of the oscillatory forcing is most important in determining the magnitude of the permeability enhancement? Here we present laboratory results showing that flow rate is the primary control on permeability increases in the laboratory. We fractured Berea sandstone samples under triaxial stresses of tens of megapascals and applied dynamic fluid stresses via pore pressure oscillations. In each experiment, we varied either the amplitude or the frequency of the pressure changes. Amplitude and frequency each separately correlated with the resultant permeability increase. More importantly, the permeability changes correlate with the flow rate in each configuration, regardless of whether flow rate variations were driven by varying amplitude or frequency. We also track the permeability evolution during a single set of oscillations by measuring the phase lags (time delays) of successive oscillations. Interpreting the responses with a poroelastic model shows that 80% of the permeability enhancement is reached during the first oscillation and the final permeability enhancement scales exponentially with the imposed change in flow rate integrated over the rock volume. The establishment of flow rate as the primary control on permeability enhancement from seismic waves opens the door to quantitative studies of earthquake-hydrogeological coupling. The result also suggests that reservoir permeability could be engineered by imposing dynamic stresses and changes in flow rate.

  3. Flow rate dictates permeability enhancement during fluid pressure oscillations in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Brodsky, E. E.; Candela, T.; Elsworth, D.; Marone, C.

    2014-12-01

    Seismic waves have been observed to increase the permeability in fractured aquifers. A detailed, predictive understanding of the process has been hampered by a lack of constraint on the primary physical controls. What aspect of the oscillatory forcing is most important in determining the magnitude of the permeability enhancement? Here we present laboratory results showing that flow rate is the primary control on permeability increases in the laboratory. We fractured Berea sandstone samples under triaxial stresses of tens of megapascals, and applied dynamic fluid-stresses via pore pressure oscillations. In each experiment, we varied either the amplitude or the frequency of the pressure changes. Amplitude and frequency each separately correlated with the resultant permeability increase. More importantly, the permeability changes correlate with the flow rate in each configuration, regardless of whether flow rate variations were driven by varying amplitude or frequency. We also track the permeability evolution during a single set of oscillations by measuring the phase lags (time delays) of successive oscillations. Interpreting the responses with a poroelastic model shows that 80% of the permeability enhancement is reached during the first oscillation and the final permeability enhancement scales exponentially with the imposed change in flow rate integrated over the rock volume. The establishment of flow rate as the primary control on permeability enhancement from seismic waves opens the door to quantitative studies of earthquake-hydrogeological coupling. The result also suggests that reservoir permeability could be engineered by imposing dynamic stresses and changes in flow rate.

  4. Pressure difference-flow rate variation in a femoral artery branch casting of man for steady flow

    NASA Technical Reports Server (NTRS)

    Cho, Y. I.; Back, L. H.; Crawford, D. W.

    1983-01-01

    In-vitro, steady flow in a casting of the profunda femoris branch of the femoral artery of man was studied by measuring pressure differences in the main lumen and also in the branch over a large Reynolds number range from 200 to 1600. Effects of viscous and inviscid flows in this femoral artery branch were demonstrated quantitatively. The critical ratio of the flow rate in the branch to the upstream main lumen in this casting was found to be 0.4, above which the inviscid flow analysis indicated a pressure rise and below which it yielded a pressure drop in the main lumen across the branch junction. Pressure rises were experimentally found to occur both in the main lumen and in the branch for certain ranges of the aforementioned ratio.

  5. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Meijer, Eelco F. J.; Nam, Ahhyun S.; Jones, Dennis; Bouma, Brett E.; Padera, Timothy P.; Vakoc, Benjamin J.

    2016-07-01

    Direct in vivo imaging of lymph flow is key to understanding lymphatic system function in normal and disease states. Optical microscopy techniques provide the resolution required for these measurements, but existing optical techniques for measuring lymph flow require complex protocols and provide limited temporal resolution. Here, we describe a Doppler optical coherence tomography platform that allows direct, label-free quantification of lymph velocity and volumetric flow rates. We overcome the challenge of very low scattering by employing a Doppler algorithm that operates on low signal-to-noise measurements. We show that this technique can measure lymph velocity at sufficiently high temporal resolution to resolve the dynamic pulsatile flow in collecting lymphatic vessels.

  6. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography.

    PubMed

    Blatter, Cedric; Meijer, Eelco F J; Nam, Ahhyun S; Jones, Dennis; Bouma, Brett E; Padera, Timothy P; Vakoc, Benjamin J

    2016-01-01

    Direct in vivo imaging of lymph flow is key to understanding lymphatic system function in normal and disease states. Optical microscopy techniques provide the resolution required for these measurements, but existing optical techniques for measuring lymph flow require complex protocols and provide limited temporal resolution. Here, we describe a Doppler optical coherence tomography platform that allows direct, label-free quantification of lymph velocity and volumetric flow rates. We overcome the challenge of very low scattering by employing a Doppler algorithm that operates on low signal-to-noise measurements. We show that this technique can measure lymph velocity at sufficiently high temporal resolution to resolve the dynamic pulsatile flow in collecting lymphatic vessels. PMID:27377852

  7. In vivo label-free measurement of lymph flow velocity and volumetric flow rates using Doppler optical coherence tomography

    PubMed Central

    Blatter, Cedric; Meijer, Eelco F. J.; Nam, Ahhyun S.; Jones, Dennis; Bouma, Brett E.; Padera, Timothy P.; Vakoc, Benjamin J.

    2016-01-01

    Direct in vivo imaging of lymph flow is key to understanding lymphatic system function in normal and disease states. Optical microscopy techniques provide the resolution required for these measurements, but existing optical techniques for measuring lymph flow require complex protocols and provide limited temporal resolution. Here, we describe a Doppler optical coherence tomography platform that allows direct, label-free quantification of lymph velocity and volumetric flow rates. We overcome the challenge of very low scattering by employing a Doppler algorithm that operates on low signal-to-noise measurements. We show that this technique can measure lymph velocity at sufficiently high temporal resolution to resolve the dynamic pulsatile flow in collecting lymphatic vessels. PMID:27377852

  8. Effect of banana on cold stress test & peak expiratory flow rate in healthy volunteers.

    PubMed

    Sarkar, C; Bairy, K L; Rao, N M; Udupa, E G

    1999-07-01

    The effect of banana on cold stress induced hypertension, peak expiratory flow rate and plasma ACE activity in healthy human volunteers was tested. Systolic blood pressure (P < 0.005), diastolic blood pressure (P < 0.025) and mean arterial blood pressure (P < 0.005) were significantly decreased during cold stress after banana treatment compared to controls subjected to cold stress. There was no significant changes in heart rate and peak expiratory flow rate but only significant decrease in plasma ACE activity after banana treatment. Banana decreased the rise of systolic blood pressure and diastolic blood pressure in healthy volunteers subjected to cold stress test without much effect on heart rate and peak expiratory flow rate. PMID:10709336

  9. Multi-wave ultrasonic Doppler method for measuring high flow-rates using staggered pulse intervals

    NASA Astrophysics Data System (ADS)

    Muramatsu, Ei; Murakawa, Hideki; Sugimoto, Katsumi; Asano, Hitoshi; Takenaka, Nobuyuki; Furuichi, Noriyuki

    2016-02-01

    The ultrasonic pulsed Doppler method (UDM) can obtain a velocity profile along the path of an ultrasonic beam. However, the UDM measurement volume is relatively large and it is known that the measurement volume affects the measurement accuracy. In this study, the effect of the measurement volume on velocity and flow rate measurements is analytically and experimentally evaluated. The velocities measured using UDM are considered to be ensemble-averaged values over the measurement volume in order to analyze the velocity error due to the measurement volume, while the flow rates are calculated from the integration of the velocity profile across the pipe. The analytical results show that the channel width, i.e. the spatial resolution along the ultrasonic beam axis, rather than the ultrasonic beam diameter, strongly influences the flow rate measurement. To improve the accuracy of the flow rate, a novel method using a multi-wave ultrasonic transducer consisting of two piezo-electric elements with different basic frequencies is proposed to minimize the size of the measurement volume in the near-wall region of a pipe flow. The velocity profiles in the near-wall region are measured using an 8 MHz sensor with a small diameter, while those far from the transducer are measured using a hollow 2 MHz sensor in the multi-wave transducer. The applicability of the multi-wave transducer was experimentally investigated using the water flow-rate calibration facility at the National Institute of Advanced Industrial Science and Technology (AIST). As a result, the errors in the flow rate were found to be below  -1%, while the multi-wave method is shown to be particularly effective for measuring higher flow rates in a large-diameter pipe.

  10. Effects of coil location and injection flow rate in an inductively coupled RF plasma torch

    NASA Astrophysics Data System (ADS)

    Wei, D.; Apelian, D.; Farouk, B.

    1985-07-01

    A numerical model has been developed to investigate the effects of central carrier gas flow rate and coil location in an inductively coupled RF plasma torch. Solution algorithm is based on the primitive variable formulation of the Navier-Stokes equations and includes a pseudo two-dimensional electromagnetic field model. Computational results have shown that with increasing carrier gas flow rate, the plasma plume is penetrated and the back flow due to the magnetic pumping effects is diminished. This facilitates the delivery of powder particles into the discharge region. However, the plasma plume is also disturbed significantly thus enhancing power loss.

  11. The effects of changes in flow rate on erosion volumes in young incising river systems

    NASA Astrophysics Data System (ADS)

    Day, S. S.; Gran, K. B.

    2010-12-01

    The effects of changes in flow rate on erosion volumes in young incising river systems Rainfall events, and the way in which water drains from the landscape after them, can have an impact on erosion rates in a river system. We are running a series of experiments to test how increased rate of flow either from rapid large rainfall events or more common events exacerbated by runoff can impact erosion in a watershed. These experiments will use a small basin (1 m^2) with a flat erodible bed. Water runs over the surface as overland flow and a stream network evolves following a single rapid base level drop. Sediment concentrations are measured every 10 minutes to track the volume of sediment leaving the basin. Topography is scanned with a high-resolution laser scanner at the beginning, end, and 5-10 times throughout each run. These scans will be used to both track volumetric sediment flux and determine spatially where erosion is occurring as the landscape evolves. Metrics including drainage density, stream length and width can be derived from the topographic scans. The water enters the basin as an even sheet flow from the top of the basin and flows to a narrow opening at the bottom of the tank. To test how changes to the flow rate impact basin evolution we will change the flow rate of each run. The rates will vary from 1 to 38 liters/minute. In addition, to test how changes in flow rate compare to changes in volume we will be varying the volume from 189 to 568 liters. There will be a total of 24 separate runs performed during the course of this experiment. This setup emulates the flat agricultural lands in southern Minnesota where rivers are actively evolving in response to a sudden base level drop on the Minnesota River. First order streams such as ravines and gullies incise into this flat landscape partly in response to overland flow draining toward the river. Changes to local hydrology, which cause water to be routed into these features more rapidly, may cause incision

  12. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    NASA Astrophysics Data System (ADS)

    Kang, Woo Seok; Hur, Min; Lee, Jae-Ok; Song, Young-Hoon

    2014-03-01

    This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films.

  13. Passive treatment of acid mine drainage in down-flow limestone systems

    SciTech Connect

    Watzlaf, G.R.

    1997-12-31

    Passive down-flow systems, consisting of compost and/or limestone layers, may be well suited for treatment of acidic mine drainage containing ferric iron and/or aluminum. Two columns were constructed and operated in the laboratory. The first column simulated a downward, vertical-flow anaerobic wetland, also referred to as successive alkalinity-producing systems (SAPS), and has received mine drainage for 97 weeks. The 0.16-m diameter column was vertically oriented and (from bottom to top) consisted of a 0.30-m thick layer of limestone, a 0.76-m thick layer of spent mushroom compost, and 0.91 m of free standing water. Water flowed vertically downward through the system. A second column, filled with only limestone, received water from the same source as the first column. This limestone column contained a 1.06-m thick layer of limestone and 0.91 m of free standing water and has received water for 55 weeks. Actual acid mine drainage (pH = 3.1, acidity = 200 mg/L (as CaCO{sub 3}), SO{sub 4}{sup 2-} = 600 mg/L, Total Fe = 10 mg/L, Mn = 14 mg/L, and Al = 18 mg/L) was collected every two weeks from a nearby abandoned deep mine and applied to these columns at a rate of 3.8 mL/min. For the compost/limestone column, effluent pH remained above 6.2 (6.2-7.9); however, pH at a depth of 0.38 m in the compost (halfway) dropped to < 4 after 28 weeks (net acidic). At the bottom of the compost pH remained > 4.5 for all 97 weeks. Alkalinity was generated by a combination of limestone dissolution and sulfate reduction. Over the 97 week period, the column generated an average of 330 mg/L of alkalinity, mostly due to limestone dissolution. Bacterial sulfate reduction displayed an ever decreasing trend, initially accounting for more than 200 mg/L of alkalinity and after 40 weeks only accounting for about 50 mg/L.

  14. Comparative Evaluation of the Effect of Menstruation, Pregnancy and Menopause on Salivary Flow Rate, pH and Gustatory Function

    PubMed Central

    Shetty, Vishwaprakash; Dave, Aparna; Arora, Manpreet; Hans, Vibha; Madan, Ajay

    2014-01-01

    Objective: There are five situations in a women’s life during which hormone fluctuations make them more susceptible to oral health problems – during puberty, at certain points in the monthly menstrual cycle, when using birth control pills, during pregnancy, and at menopause. The present study aimed at evaluating the effect of menstruation, pregnancy and menopause on salivary flow rate, pH and gustatory function. Materials and Methods: The study was carried out on 120 patients including 30 controls (with normal menstrual cycle of 28 to 30 d) and 90 cases (30 patients within three days of menstruation, 30 pregnant and 30 postmenopausal). Paraffin-stimulated saliva samples were obtained by expectoration to calculate salivary flow rate, pH was measured electrometically and patients were prospectively evaluated for gustatory function. Then, whole mouth taste test was performed in which the quality identification and intensity ratings of taste solutions were measured. Results: No statistically significant difference was found between the groups with respect to salivary flow rate but pH values were significantly lower in post menopausal women (p<0.05). Regarding correct quality identification the results were non-significant. Intensity for taste perception for sucrose was significantly lower in postmenopausal women than intensity of taste perception for other tastes (p<0.05). Also, postmenopausal women reported change in their dietary habits as all of them expressed liking for sweeter food. Conclusion: Reduced salivary flow rate and pH in postmen­opausal women may make them more prone to the occurrence of oral health problems. Also, pregnant and postmenopausal women appeared to have a reduced perception of sucrose, which can alter eating habits, such as intake of more sweet foods whereas no significant difference is observed in taste perception of NaCl, citric acid and quinine hydrochloride between the subjects. PMID:25478455

  15. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Höft, H.; Becker, M. M.; Kettlitz, M.

    2016-03-01

    The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.

  16. A measurement method of the flow rate in a pipe using a microphone array

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Beum; Kim, Yang-Hann

    2002-09-01

    A method of measuring the flow rate in a pipe is proposed. The method utilizes one-dimensional acoustic pressure signals that are generated by a loud speaker. A microphone array mounted flush with the inner pipe wall is used to measure the signals. A formula for the flow rate, which is a function of the change of wave number, is derived from a simple mathematical model of sound field in the pipe conveying a viscous fluid. The change of the wave number, which is one of the results caused by flow, is estimated from the recursive relation among the measured microphone array signals. Since measurement errors, due to extraneous measurement noise and mismatch of response characteristics between microphones, exist in the estimated flow rate, a method of compensating the errors is proposed. By using this measurement method, the flow rate can be obtained more accurately than that of our previous method. To verify applicability of the measurement method, numerical simulation and experiments are performed. The estimated flow rates are within 5% error bound. copyright 2002 Acoustical Society of America.

  17. Evaluation of the effect of transcutaneous electrical nerve stimulation (TENS) on whole salivary flow rate

    PubMed Central

    Pal-Singh, Mohit; Mathur, Hemant; Astekar, Sowmya; Gulati, Pranay; Lakhani, Shruta

    2015-01-01

    Background: Saliva plays a critical role in maintaining oral homeostasis; it modulates the ecosystem through lubrication of the alimentary bolus, protection against microorganisms, buffer and repair of the oral mucosa, and helps in dental re-mineralization. Various local and systemic factors such as medications, radiation therapy, systemic conditions, etc. can lead to reduction in salivary flow. A decrease in salivary function, known as Xerostomia, increases a patient’s risk for caries and other oral infections. Palliative management of Xerostomia includes wetting agents such as ice chips, drugs and saliva substitutes. Systemic agents stimulate salivary flow but often have unfavorable side effects. Newer modalities like transcutaneous electrical nerve stimulation (TENS), which has fewer side effects, have been used to stimulate salivary flow. The aim of the present study was to assess and evaluate the effect of TENS on whole salivary flow rates in healthy adult subjects. Study design: A total of 80 healthy adult subjects were enrolled in the study. Unstimulated and stimulated saliva (using TENS) was collected for 5 minutes and the mean salivary flow rates were calculated. Data obtained was analyzed using the SPSS (Statistical package for social sciences) version 15. Students ‘t’ test was employed for comparative analysis. Results: Sixty-five of the 80 subjects demonstrated an increase in the salivary flow rate on application of TENS. Twelve subjects demonstrated a mild reduction in the salivary flow rates. Seven subjects experienced transient mild twitching of facial musculature as side effects. Conclusion: Significant increase in salivary flow rates was observed on application of TENS with minimal or no side effects. Key words:Stimulated saliva, whole salivary flow, TENS. PMID:25810824

  18. Flow rates and warming efficacy with Hotline and Ranger blood/fluid warmers.

    PubMed

    Horowitz, Peter E; Delagarza, Miguel A; Pulaski, Jaime J; Smith, Robert A

    2004-09-01

    The heating capabilities of a water bath blood/fluid warmer, Hotline, have proven superior to those of other devices. The dry heat warmer Ranger has not previously been compared with the Hotline. We evaluated these devices in terms of flow rates and efficacy of warming. We delivered room temperature (21 degrees C) saline and 10 degrees C packed red blood cells (RBCs) by using 90 mm Hg (gravity equivalent) and 300 mm Hg bag pressure and various sizes of IV catheters. The outflow from each device was connected to an inline thermistor, and simultaneous measurements of outflow temperature and flow volume per minute were recorded. Additional data points were obtained with a roller pump that delivered flows of 1-6 L/h through each device. We calculated the effect of these flow rates and outflow temperatures on the mean body temperature (MBT) of a 70-kg patient. The Hotline and Ranger had similar flow rates at 90 and 300 mm Hg pressure infusion when studied with various sizes of IV catheters. Hotline was able to deliver warmer RBCs and saline at slower flow rates (1-4 L/h), but because changes in MBT were almost identical, there was no clinically important advantage, and almost no heat was transferred at these slower flow rates. At more rapid flow rates (>4 L/h), the Ranger warmed RBCs and saline better and produced smaller decreases in MBT than the Hotline. The use of the Hotline for rapid infusions, especially of cold RBCs, is not recommended because of low outflow temperatures and decreases in MBT that were three times larger than those seen with the Ranger. PMID:15333412

  19. Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults.

    PubMed

    Hans, Rinki; Thomas, Susan; Garla, Bharat; Dagli, Rushabh J; Hans, Manoj Kumar

    2016-01-01

    Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way ANOVA, and post hoc Tukey's test were applied in the statistical tests. Results. It was found that salivary pH decreased for all the beverages immediately after consumption and the salivary flow rate increased after their consumption. The oral clearance rate of sweetened milk was found to be the least at 6.5 minutes and that of pepsi was found to be 13 minutes. However, the oral clearance rates of fruit drink and coffee were found to be equal at 15 minutes. Conclusion. Although it was found out that liquids cleared rapidly from the oral cavity, they had a significant cariogenic and erosive potential. Hence, it is always advised to minimise the consumption of beverages, especially amongst children and young adults to maintain a good oral health. PMID:27051556

  20. Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults

    PubMed Central

    Hans, Rinki; Thomas, Susan; Garla, Bharat; Dagli, Rushabh J.

    2016-01-01

    Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way ANOVA, and post hoc Tukey's test were applied in the statistical tests. Results. It was found that salivary pH decreased for all the beverages immediately after consumption and the salivary flow rate increased after their consumption. The oral clearance rate of sweetened milk was found to be the least at 6.5 minutes and that of pepsi was found to be 13 minutes. However, the oral clearance rates of fruit drink and coffee were found to be equal at 15 minutes. Conclusion. Although it was found out that liquids cleared rapidly from the oral cavity, they had a significant cariogenic and erosive potential. Hence, it is always advised to minimise the consumption of beverages, especially amongst children and young adults to maintain a good oral health. PMID:27051556

  1. Improving Flow Response of a Variable-rate Aerial Application System by Interactive Refinement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to evaluate response of a variable-rate aerial application controller to changing flow rates and to improve its response at correspondingly varying system pressures. System improvements have been made by refinement of the control algorithms over time in collaboration with ...

  2. Influence of flow rate on aerosol particle size distributions from pressurized and breath-actuated inhalers.

    PubMed

    Smith, K J; Chan, H K; Brown, K F

    1998-01-01

    Particle size distribution of delivered aerosols and the total mass of drug delivered from the inhaler are important determinants of pulmonary deposition and response to inhalation therapy. Inhalation flow rate may vary between patients and from dose to dose. The Andersen Sampler (AS) cascade impactor operated at flow rates of 30 and 55 L/min and the Marple-Miller Impactor (MMI) operated at flow rates of 30, 55, and 80 L/min were used in this study to investigate the influence of airflow rate on the particle size distributions of inhalation products. Total mass of drug delivered from the inhaler, fine particle mass, fine particle fraction, percentage of nonrespirable particles, and amount of formulation retained within the inhaler were determined by ultraviolet spectrophotometry for several commercial bronchodilator products purchased in the marketplace, including a pressurized metered-dose inhaler (pMDI), breath-actuated pressurized inhaler (BAMDI), and three dry powder inhalers (DPIs), two containing salbutamol sulphate and the other containing terbutaline sulphate. Varying the flow rate through the cascade impactor produced no significant change in performance of the pressurized inhalers. Increasing the flow rate produced a greater mass of drug delivered and an increase in respirable particle mass and fraction from all DPIs tested. PMID:10346666

  3. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    NASA Technical Reports Server (NTRS)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  4. Silica Measurement with High Flow Rate Respirable Size Selective Samplers: A Field Study.

    PubMed

    Lee, Taekhee; Harper, Martin; Kashon, Michael; Lee, Larry A; Healy, Catherine B; Coggins, Marie A; Susi, Pam; O'Brien, Andrew

    2016-04-01

    High and low flow rate respirable size selective samplers including the CIP10-R (10 l min(-1)), FSP10 (11.2 l min(-1)), GK2.69 (4.4 l min(-1)), 10-mm nylon (1.7 l min(-1)), and Higgins-Dewell type (2.2 l min(-1)) were compared via side-by-side sampling in workplaces for respirable crystalline silica measurement. Sampling was conducted at eight different occupational sites in the USA and five different stonemasonry sites in Ireland. A total of 536 (268 pairs) personal samples and 55 area samples were collected. Gravimetric analysis was used to determine respirable dust mass and X-ray diffraction analysis was used to determine quartz mass. Ratios of respirable dust mass concentration, quartz mass concentration, respirable dust mass, and quartz mass from high and low flow rate samplers were compared. In general, samplers did not show significant differences greater than 30% in respirable dust mass concentration and quartz mass concentration when outliers (ratio <0.3 or >3.0) were removed from the analysis. The frequency of samples above the limit of detection and limit of quantification of quartz was significantly higher for the CIP10-R and FSP10 samplers compared to low flow rate samplers, while the GK2.69 cyclone did not show significant difference from low flow rate samplers. High flow rate samplers collected significantly more respirable dust and quartz than low flow rate samplers as expected indicating that utilizing high flow rate samplers might improve precision in quartz measurement. Although the samplers did not show significant differences in respirable dust and quartz concentrations, other practical attributes might make them more or less suitable for personal sampling. PMID:26608952

  5. Silica Measurement with High Flow Rate Respirable Size Selective Samplers: A Field Study

    PubMed Central

    Lee, Taekhee; Harper, Martin; Kashon, Michael; Lee, Larry A.; Healy, Catherine B.; Coggins, Marie A.; Susi, Pam; O’Brien, Andrew

    2016-01-01

    High and low flow rate respirable size selective samplers including the CIP10-R (10 l min−1), FSP10 (11.2 l min−1), GK2.69 (4.4 l min−1), 10-mm nylon (1.7 l min−1), and Higgins-Dewell type (2.2 l min−1) were compared via side-by-side sampling in workplaces for respirable crystalline silica measurement. Sampling was conducted at eight different occupational sites in the USA and five different stonemasonry sites in Ireland. A total of 536 (268 pairs) personal samples and 55 area samples were collected. Gravimetric analysis was used to determine respirable dust mass and X-ray diffraction analysis was used to determine quartz mass. Ratios of respirable dust mass concentration, quartz mass concentration, respirable dust mass, and quartz mass from high and low flow rate samplers were compared. In general, samplers did not show significant differences greater than 30% in respirable dust mass concentration and quartz mass concentration when outliers (ratio <0.3 or >3.0) were removed from the analysis. The frequency of samples above the limit of detection and limit of quantification of quartz was significantly higher for the CIP10-R and FSP10 samplers compared to low flow rate samplers, while the GK2.69 cyclone did not show significant difference from low flow rate samplers. High flow rate samplers collected significantly more respirable dust and quartz than low flow rate samplers as expected indicating that utilizing high flow rate samplers might improve precision in quartz measurement. Although the samplers did not show significant differences in respirable dust and quartz concentrations, other practical attributes might make them more or less suitable for personal sampling. PMID:26608952

  6. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    SciTech Connect

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert

    2009-08-01

    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  7. Improving the cold flow properties of biodiesel by skeletal isomerization of fatty acid chains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is defined as the mono-alkyl fatty acid esters made from vegetable oil or animal fat lipids. Despite its many advantages, biodiesel from most lipid feedstocks has generally poor cold flow properties. The present study evaluates the fuel related properties of branched-chain fatty acid methy...

  8. Protodeboronation of Heteroaromatic, Vinyl, and Cyclopropyl Boronic Acids: pH-Rate Profiles, Autocatalysis, and Disproportionation.

    PubMed

    Cox, Paul A; Leach, Andrew G; Campbell, Andrew D; Lloyd-Jones, Guy C

    2016-07-27

    pH-rate profiles for aqueous-organic protodeboronation of 18 boronic acids, many widely viewed as unstable, have been studied by NMR and DFT. Rates were pH-dependent, and varied substantially between the boronic acids, with rate maxima that varied over 6 orders of magnitude. A mechanistic model containing five general pathways (k1-k5) has been developed, and together with input of [B]tot, KW, Ka, and KaH, the protodeboronation kinetics can be correlated as a function of pH (1-13) for all 18 species. Cyclopropyl and vinyl boronic acids undergo very slow protodeboronation, as do 3- and 4-pyridyl boronic acids (t0.5 > 1 week, pH 12, 70 °C). In contrast, 2-pyridyl and 5-thiazolyl boronic acids undergo rapid protodeboronation (t0.5 ≈ 25-50 s, pH 7, 70 °C), via fragmentation of zwitterionic intermediates. Lewis acid additives (e.g., Cu, Zn salts) can attenuate (2-pyridyl) or accelerate (5-thiazolyl and 5-pyrazolyl) fragmentation. Two additional processes compete when the boronic acid and the boronate are present in sufficient proportions (pH = pKa ± 1.6): (i) self-/autocatalysis and (ii) sequential disproportionations of boronic acid to borinic acid and borane. PMID:27355973

  9. Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings

    DOEpatents

    Ellingson, William A.; Forster, George A.

    1999-11-02

    Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

  10. Measurement of Fatty Acid Oxidation Rates in Animal Tissues and Cell Lines

    PubMed Central

    Huynh, Frank K.; Green, Michelle F.; Koves, Timothy R.; Hirschey, Matthew D.

    2014-01-01

    While much oncological research has focused on metabolic shifts in glucose and amino acid oxidation, recent evidence suggests that fatty acid oxidation (FAO) may also play an important role in the metabolic reprogramming of cancer cells. Here, we present a simple method for measuring FAO rates using radiolabeled palmitate, common laboratory reagents, and standard supplies. This protocol is broadly applicable for measuring FAO rates in cultured cancer cells as well as in both malignant and nontransformed animal tissues. PMID:24862277

  11. Endogenous flow of amino acids in the avian ileum as influenced by increasing dietary peptide concentrations.

    PubMed

    Ravindran, Velmurugu; Morel, Patrick C H; Rutherfurd, Shane M; Thomas, Donald V

    2009-03-01

    The aim of the present study was to establish whether feeding broiler chickens with diets containing increasing dietary peptide concentrations would cause increases in ileal endogenous amino acid flow. The flow of N and most amino acids increased quadratically (P < 0.05 to 0.001) with increasing dietary concentrations of peptides. The exceptions were the flow of threonine, serine, glycine, tyrosine and cystine, which increased linearly (P < 0.001) with dietary peptide levels. Another notable exception to the general trend was the flow of proline, which was significantly higher (P < 0.01) in birds fed the protein-free diet. The amino acid profile of endogenous protein, expressed as proportion of crude protein, indicated that the ratios of threonine, glutamic acid, proline, glycine, leucine, histidine, arginine and cystine were influenced (P < 0.05) with increasing dietary peptide concentrations. In general, compared with the protein-free diet, the ratios of threonine and arginine in endogenous protein were lower (P < 0.05) and those of glutamic acid, glycine and histidine were greater (P < 0.05) in diets with high concentrations of peptides. The ratio of proline was found to decrease (P < 0.05) with increasing dietary peptide concentrations. These changes in the amino acid profile of endogenous protein are probably reflective of changes in the output of one or more of the components of endogenous protein. Overall, the present results demonstrated that increasing dietary peptide concentrations increased the flow of endogenous amino acid flow at the terminal ileum of broiler chickens in a dose-dependent manner and also caused changes in the composition of endogenous protein. The observed changes in endogenous amino flow will influence the maintenance requirements for amino acids and also have implications for the calculation of true digestibility coefficient of feedstuffs. PMID:18662428

  12. Milk Flow Rates From Bottle Nipples Used for Feeding Infants Who Are Hospitalized

    PubMed Central

    Park, Jinhee; Thoyre, Suzanne M.; Estrem, Hayley; Nix, W. Brant

    2015-01-01

    Purpose This study tested the milk flow rates and variability in flow of currently available nipples used for bottle-feeding infants who are hospitalized. Method Clinicians in 3 countries were surveyed regarding nipples available to them for feeding infants who are hospitalized. Twenty-nine nipple types were identified, and 10 nipples of each type were tested by measuring the amount of infant formula expressed in 1 min using a breast pump. Mean milk flow rate (mL/min) and coefficient of variation were used to compare nipples within brand and within category (i.e., Slow, Standard, Premature). Results Flow rates varied widely between nipples, ranging from 2.10 mL/min for the Enfamil Cross-Cut to 85.34 mL/min for the Dr. Brown's Y-Cut Standard Neck. Variability of flow rates among nipples of the same type ranged from a coefficient of variation of 0.05 for Dr. Brown's Level 1 Standard- and Wide-Neck to 0.42 for the Enfamil Cross-Cut. Mean coefficient of variation by brand ranged from 0.08 for Dr. Brown's to 0.36 for Bionix. Conclusions Milk flow is an easily manipulated variable that may contribute to the degree of physiologic instability experienced by infants who are medically fragile during oral feeding. This study provides clinicians with information to guide appropriate selection of bottle nipples for feeding infants who are hospitalized. PMID:26172340

  13. Mechanism for measurement of flow rate of cerebrospinal fluid in hydrocephalus shunts.

    PubMed

    Rajasekaran, Sathish; Kovar, Spencer; Qu, Peng; Inwald, David; Williams, Evan; Qu, Hongwei; Zakalik, Karol

    2014-01-01

    The measurement of the flow rate of cerebrospinal fluid (CSF) or existence of CSF flow inside the shunt tube after shunt implant have been reported as tedious process for both patients and doctors; this paper outlines a potential in vitro flow rate measurement method for CSF in the hydrocephalus shunt. The use of implantable titanium elements in the shunt has been proposed to allow for an accurate temperature measurement along the shunt for prediction of CSF flow rate. The CSF flow velocity can be deduced by decoupling the thermal transfer in the measured differential time at a pair of measurement spots of the titanium elements. Finite element analyses on the fluidic and thermal behaviors of the shunt system have been conducted. Preliminary bench-top measurements on a simulated system have been carried out. The measured flow rates, ranging from 0.5 mm/sec to 1.0 mm/sec, which is clinically practical, demonstrate good agreements with the simulation results. PMID:25570411

  14. Colloidal asphaltene deposition in laminar pipe flow: Flow rate and parametric effects

    NASA Astrophysics Data System (ADS)

    Hashmi, S. M.; Loewenberg, M.; Firoozabadi, A.

    2015-08-01

    Deposition from a suspended phase onto a surface can aversely affect everyday transport processes on a variety of scales, from mineral scale corrosion of household plumbing systems to asphaltene deposition in large-scale pipelines in the petroleum industry. While petroleum may be a single fluid phase under reservoir conditions, depressurization upon production often induces a phase transition in the fluid, resulting in the precipitation of asphaltene material which readily aggregates to the colloidal scale and deposits on metallic surfaces. Colloidal asphaltene deposition in wellbores and pipelines can be especially problematic for industrial purposes, where cleanup processes necessitate costly operational shutdowns. In order to better understand the parametric dependence of deposition which leads to flow blockages, we carry out lab-scale experiments under a variety of material and flow conditions. We develop a parametric scaling model to understand the fluid dynamics and transport considerations governing deposition. The lab-scale experiments are performed by injecting precipitating petroleum fluid mixtures into a small metal pipe, which results in deposition and clogging, assessed by measuring the pressure drop across the pipe. Parametric scaling arguments suggest that the clogging behavior is determined by a combination of the Peclet number, volume fraction of depositing material, and the volume of the injection itself.

  15. Time decay rates for the equations of the compressible heat-conductive flow through porous media

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Tan, Zhong; Wu, Guochun

    2015-11-01

    We consider the time decay rates of smooth solutions to the Cauchy problem for the equations of the compressible heat-conductive flow through porous media. We prove the global existence and uniqueness of the solutions by the standard energy method. Moreover, we establish the optimal decay rates of the solution as well as its higher-order spatial derivatives. And the damping effect on the time decay rates of the solution is studied in detail.

  16. Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature

    NASA Technical Reports Server (NTRS)

    Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.

    1974-01-01

    A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.

  17. On rating curve variability in presence of movable bed and unsteady flow. Applications to Tuscan rivers.

    NASA Astrophysics Data System (ADS)

    Minatti, Lorenzo; Nicoletta De Cicco, Pina; Paris, Enio

    2014-05-01

    In common engineering practice, rating curves are obtained from direct stage-discharge measurements or, more often, from stage measurements coupled with flow simulations. The present work mainly focuses on the latter technique, where stage-measuring gauges are usually installed on bridges with flow conditions likely to be influenced by local geometry constraints. In such cases, backwater flow and flow transition to supercritical state may occur, influencing sediment transport capacity and triggering more intense changes in river morphology. The unsteadiness of the flow hydrograph may play an important role too, according to the velocity of its rising and falling limbs. Nevertheless, the simulations conducted to build a rating curve are often carried out with steady flow and fixed bed conditions where the afore-mentioned effects are not taken into account at all. Numerical simulations with mobile bed and different unsteady flow conditions have been conducted on some real case studies in the rivers of Tuscany (Italy), in order to assess how rating curves change with respect to the "standard" one (that is, the classical steady flow rating curve). A 1D finite volume numerical model (REMo, River Evolution Modeler) has been employed for the simulations. The model solves the 1D Shallow Water equations coupled with the sediments continuity equation in composite channels, where the overbanks are treated with fixed bed conditions while the main channel can either aggrade or be scoured. The model employs an explicit scheme with 2nd order accuracy in both space and time: this allows the correct handling of moderately stiff source terms via a local corrector step. Such capability is very important for the applications of the present work as it allows the modelling of abrupt contractions and jumps in bed bottom elevations which often occur near bridges. The outcomes of the simulations are critically analyzed in order to provide a first insight on the conditions inducing

  18. Kinetic studies of synthetic metaschoepite under acidic conditions in batch and flow experiments.

    PubMed

    Riba, Olga; Walker, Colin; Ragnarsdottir, K Vala

    2005-10-15

    The weathering and corrosion of depleted uranium (DU) forms a complex series of oxidation reactions, ultimately resulting in metaschoepite, UO3.2H2O. The present work focused on studying the dissolution rate of synthetic UO3. 2H2O using batch and flow-through reactors. Under acidic conditions (pH = 4.4-5.4), atmospheric CO2, room temperature, and 0.1 mionic strength,the log solubility product, log Ksp = 5.26 at equilibrium and a pH-dependent rate law Ro = (0.30 +/- 0.15)[H+]0.83+/-0.1 were established. For consistency, these results were incorporated into the computer program PHREEQC 2.6, and the experimental conditions were simulated. There is generally good agreement between the experimental results and the modeled results. Batch experiments revealed a fast dissolution rate of UO3.2H20 in the first hour, followed by fluctuations in uranium concentration before equilibrium was attained after 3000 h. PMID:16295856

  19. The effect on human salivary flow rate of the temperature of a gustatory stimulus.

    PubMed

    Dawes, C; O'Connor, A M; Aspen, J M

    2000-11-01

    In the first study, whole saliva was collected from ten adults during stimulation with sour, carbonated, sweet and water stimuli in the form of 5-ml of ice at about -10 degrees C or of liquids at 0, 8, 20 or 37 degrees C. Parotid saliva was also collected in response to ice or infusion into the mouth of the liquids at different temperatures. Another group of ten adults also collected whole saliva in response to water at 20 degrees C, with or without the presence in the mouth of an acrylic cube of dimensions similar to those of the ice. In a second study, 20 adults collected whole saliva in response to stimulation with 5 ml of water and of an astringent stimulus at 0, 8, 37 and 70 degrees C. In the first study, flow rates fell in the order sour, carbonated, sweet and water and flow rates in response to stimuli in the form of ice were very significantly higher than in response to the corresponding liquids at the four different temperatures. With the sour stimulus, liquids at 0 and 8 degrees C elicited higher flow rates than liquids at 20 or 37 degrees C. Although the presence in the mouth of the acrylic block increased the flow rate of whole saliva, the increase was only about 30% of that achieved with ice. In the second study, the astringent stimulus was a more effective salivary stimulus than water; flow rates were significantly higher in response to liquids at 0 and 8 degrees C than at the higher temperatures and flow rates in response to liquids at 37 degrees C were significantly lower than with the other temperatures. In summary, stimuli in the form of ice were the most effective and liquids at 37 degrees C were least effective in stimulating salivary flow. PMID:11000382

  20. Transport rates of a class of two-dimensional maps and flows

    NASA Astrophysics Data System (ADS)

    Rom-Kedar, V.

    1990-07-01

    A method is developed for estimating the transport rates of phase space areas for a class of two-dimensional diffeomorphisms and flows. The class of diffeomorphisms we considered are defined by the topological structure of their stable and unstable manifolds, and hence are universal. We show how to estimate the transport rates for a class of diffeomorphisms found by Easton and for an extension of this class of diffeomorphisms which is found via a “perturbation” of the topology of the stable and unstable manifolds. This is done by introducing symbolic dynamics and transfer matrices which in turn relate transport phenomena in phase space to Markov processes in a precise manner. In addition to the transport rates, we use the transfer matrices to obtain estimates for the topological entropy, averaged stretching rates, and the elongation rate of the unstable manifold. The flows we consider are two-dimensional, time-periodic flows which can be reduced via Poincaré section to the extended family of maps. We develop an analytical method, based on Chirikov's Whisker map, to classify a given flow according to the structure of its manifolds in its Poincaré section. This allows the techniques developed here for maps to be directly applied to time-periodic flows.

  1. An in vivo assessment of the influence of needle gauges on endodontic irrigation flow rate

    PubMed Central

    Gopikrishna, Velayutham; Sibi, Swamy; Archana, Durvasulu; Pradeep Kumar, Angabakkam Rajasekaran; Narayanan, Lakshmi

    2016-01-01

    Aim: The aim of this clinical study was to assess the influence of irrigation needle gauge on endodontic irrigation flow rates. Settings and Design: In vivo assessment. Materials and Methods: Five specialist endodontists performed intracanal irrigation procedures on 50 mesiobuccal canal of mandibular first molars using three different irrigation needle gauges. Data of time taken for irrigation was recorded by an irrigation testing system and analyzed using independent sample “T” test and one-way analysis of variance (ANOVA) test. The level of significance was set at P < 0.05. Statistical Analysis Used: The following tests were used for the statistical analysis: Independent sample “T” test, one-way ANOVA test, and post hoc multiple comparison was carried out using Tukey's honest significant difference (HSD) test using Statistical Package for the Social Sciences (SPSS) version 16 for Windows. Results: The average flow rate of 26 gauge was 0.27 mLs−1, of 27 gauge was 0.19 mLs−1, and of 30 gauge was 0.09 mls−1. There was statistical significance among the gauges (P < 0.001). 26 gauge had highest flow rate when compared with other groups followed by 27 gauge and 30 gauge respectively. The operator variability for flow rate of three endodontic irrigation needle gauges (26 gauge, 27 gauge, and 30 gauge) was found to be not significant. Conclusions: Needle gauge has significant influence on endodontic irrigation flow rate. PMID:27099430

  2. Triketocholanoic (Dehydrocholic) Acid. HEPATIC METABOLISM AND EFFECT ON BILE FLOW AND BILIARY LIPID SECRETION IN MAN

    PubMed Central

    Soloway, Roger D.; Hofmann, Alan F.; Thomas, Paul J.; Schoenfield, Leslie J.; Klein, Peter D.

    1973-01-01

    [24-14C]Dehydrocholic acid (triketo-5-β-cholanoic acid) was synthesized from [24-14C]cholic acid, mixed with 200 mg of carrier, and administered intravenously to two patients with indwelling T tubes designed to permit bile sampling without interruption of the enterohepatic circulation. More than 80% of infused radioactivity was excreted rapidly in bile as glycine- and taurine-conjugated bile acids. Radioactive products were identified, after deconjugation, as partially or completely reduced derivatives of dehydrocholic acid. By mass spectrometry, as well as chromatography, the major metabolite (about 70%) was a dihydroxy monoketo bile acid (3α,7α-dihydroxy-12-keto-5β-cholanoic acid); a second metabolite (about 20%) was a monohydroxy diketo acid (3α-hydroxy-7,12-di-keto-5β-cholanoic acid); and about 10% of radioactivity was present as cholic acid. Reduction appeared to have been sequential (3 position, then 7 position, and then 12 position) and stereospecific (only α epimers were recovered). Bile flow, expressed as the ratio of bile flow to bile acid excretion, was increased after dehydrocholic acid administration. It was speculated that the hydroxy keto metabolites are hydrocholeretics. The proportion of cholesterol to lecithin and bile acids did not change significantly after dehydrocholic acid administration. In vitro studies showed that the hydroxy keto metabolites dispersed lecithin poorly compared to cholate; however, mixtures of cholate and either metabolite had dispersant properties similar to those of cholate alone, provided the ratio of metabolite to cholate remained below a value characteristic for each metabolite. These experiments disclose a new metabolic pathway in man, provide further insight into the hydrocholeresis induced by keto bile acids, and indicate the striking change in pharmacologic and physical properties caused by replacement of hydroxyl by a keto substituent in the bile acid molecule. Images PMID:4685091

  3. Gastric mucosal blood flow during pentagastrin- and histamine-stimulated acid secretion in the rat

    PubMed Central

    Main, I. H. M.; Whittle, B. J. R.

    1973-01-01

    1. Gastric mucosal blood flow was studied in the rat by means of a [14C]-aniline clearance technique. 2. There was a significant correlation between clearance and stimulated acid secretion. 3. No significant difference was found in the relationship between clearance and acid secretion during submaximal stimulation with either pentagastrin or histamine. 4. Estimates of mucosal blood flow per unit acid secretion by [14C]-aniline clearance in the rat were similar to those reported with aminopyrine clearance in the dog and cat. PMID:4777713

  4. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate

    SciTech Connect

    Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.

    1988-06-01

    In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using /sup 18/F) and bone turnover (using /sup 85/Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by /sup 18/F correlated with an index of /sup 85/Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group.

  5. Effects of shear rate, confinement, and particle parameters on margination in blood flow.

    PubMed

    Mehrabadi, Marmar; Ku, David N; Aidun, Cyrus K

    2016-02-01

    The effects of flow and particle properties on margination of particles in red blood cell (RBC) suspensions is investigated using direct numerical simulation (DNS) of cellar blood flow. We focus on margination of particles in the flow of moderately dense suspensions of RBCs. We hypothesize that margination rate in nondilute suspensions is mainly driven by the RBC-enhanced diffusion of marginating particles in the RBC-filled region. We derive a scaling law for margination length in a straight channel. Margination length increases cubically with channel height and is independent of shear rate. We verify this scaling law for margination length by DNS of flowing RBCs and marginating particles. We also show that rigidity and size both lead to particle margination with rigidity having a more significant effect compared to size within the range of parameters in this study. PMID:26986415

  6. Effects of shear rate, confinement, and particle parameters on margination in blood flow

    NASA Astrophysics Data System (ADS)

    Mehrabadi, Marmar; Ku, David N.; Aidun, Cyrus K.

    2016-02-01

    The effects of flow and particle properties on margination of particles in red blood cell (RBC) suspensions is investigated using direct numerical simulation (DNS) of cellar blood flow. We focus on margination of particles in the flow of moderately dense suspensions of RBCs. We hypothesize that margination rate in nondilute suspensions is mainly driven by the RBC-enhanced diffusion of marginating particles in the RBC-filled region. We derive a scaling law for margination length in a straight channel. Margination length increases cubically with channel height and is independent of shear rate. We verify this scaling law for margination length by DNS of flowing RBCs and marginating particles. We also show that rigidity and size both lead to particle margination with rigidity having a more significant effect compared to size within the range of parameters in this study.

  7. Studies with sample conductivity, insertion rates, and particle deflection in a continuous flow electrophoresis system

    NASA Technical Reports Server (NTRS)

    Williams, G., Jr.

    1982-01-01

    The continuous flow electrophoresis system makes electrophoresis possible in a free-flowing film of aqueous electrolyte medium. The sample continuously enters the electrolyte at the top of the chamber and is subjected to the action of a lateral dc field. This divides the sample into fractions since each component has a distinctive electrophoretic mobility. Tests were made using monodisperse polystyrene latex microspheres to determine optimum sample conductivity, insertion rates and optimum electric field applications as baseline data for future STS flight experiments. Optimum sample flow rates for the selected samples were determined to be approximately 26 micro-liters/min. Experiments with samples in deionized water yielded best results and voltages in the 20 V/cm to 30 V/cm range were optimum. Deflections of formaldehyde fixed turkey and bovine erythrocytes were determined using the continuous flow electrophoresis system. The effects of particle interactions on sample resolution and migration in the chamber was also evaluated.

  8. Turbulent transport measurements in a cold model of GT-burner at realistic flow rates

    NASA Astrophysics Data System (ADS)

    Gobyzov, Oleg; Chikishev, Leonid; Lobasov, Alexey; Sharaborin, Dmitriy; Dulin, Vladimir; Bilsky, Artur; Tsatiashvili, Vakhtang; Avgustinovich, Valery; Markovich, Dmitriy

    2016-03-01

    In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas) was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF) and particle image velocimetry technique (PIV) at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE) components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.

  9. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    NASA Astrophysics Data System (ADS)

    Khosrownejad, S. M.; Curtin, W. A.

    2016-09-01

    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  10. Effects of varying media, temperature, and growth rates on the intracellular concentrations of yeast amino acids.

    PubMed

    Martínez-Force, E; Benítez, T

    1995-01-01

    Variations of the yeast free amino acid pool under different culture conditions were studied in two Saccharomyces strains, the laboratory haploid strain S288C and the industrial fermentative yeast IFI256. The internal amino acid pool of both strains was measured when grown in laboratory (minimal and complete) versus semiindustrial (molasses with or without added biotin and/or diammonium phosphate) media, in fermentable (glucose, fructose, sucrose) versus respirable (glycerol) carbon sources, in different temperatures (22, 30, and 37 degrees C), pHs (2.0-4.75), and growth rates (0.018-0.24 h-1) in continuous culture, and at different phases of the growth curve in batch culture (lag, exponential, early and late stationary). Results indicated that environmental conditions, particularly the presence of amino acids in the media, enormously influenced the intracellular amino acid concentration. Higher values were detected in molasses than in laboratory media and in fermentable carbon sources (glucose, fructose, sucrose) than in glycerol. Variations in the amino acid pool along the growth curve were greater at 37 degrees C than at other temperatures; in all cases, the highest values were measured at the beginning of the exponential phase. In continuous culture and at different growth rates, intracellular free amino acid concentrations increased by 3-10-fold when the growth rate was lower than 0.05 h-1, representing 20-35% of the total (free plus protein) amino acid content and indicating that amino acid yield was a partly growth-linked parameter. PMID:7654310

  11. Support Effects on Bronsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains

    SciTech Connect

    Macht, Josef; Baertsch, Chelsey D.; May-Lozano, Marcos; Soled, Stuart L.; Wang, Yong; Iglesia, Enrique

    2005-03-01

    Initial activity and acid site density of several WAl, WSi (MCM41) and one WSn sample were determined. Trans/cis 2-butene selectivity is dependent on the support. Presumably, these differences are due to subtle differences in base strengths. 2-Butanol dehydration rates (per W-atom) reached maximum values at intermediate WOx surface densities on WAl, as reported for 2-butanol dehydration reactions on WZr. Titration results indicate that Bronsted acid sites are required for 2-butanol dehydration on WAl, WSi and WSn. UV-visible studies suggest that WAl is much more difficult to reduce than WZr. The detection of reduced centers on WAl, the number of which correlates to Bronsted acid site density and catalyst activity, as well as the temperature dependence of Bronsted acid site density indicate the in-situ formation of these active sites. We infer that this mechanism is common among all supported WOx samples described in this study. Turnover rates are a function of Bronsted acid site density only. High acid site densities lead to high turnover rates. Higher active site densities may cause stronger conjugate bases, as a higher electron density has to be stabilized, and thus weaker acidity, enabling a faster rate of product desorption. The maximum achievable active site density is dependent on the support. WZr reaches a higher active site density than WAl.

  12. Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States

    USGS Publications Warehouse

    Schmidt, K.M.; Menges, C.M.

    2003-01-01

    Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.

  13. Major salivary gland flow rates in young and old, generally healthy African Americans and whites.

    PubMed

    Jones, R E; Ship, J A

    1995-02-01

    Saliva is essential to maintain and preserve oral health. Previous studies of primarily white populations demonstrated that salivary gland flow rates are age-stable in healthy adults, but there are little data on African Americans of different ages. The purpose of this study was to determine if there is a relationship between age, gender, and race in unstimulated and stimulated parotid and submandibular salivary gland flow rates and to evaluate subjective responses to questions regarding salivary dysfunction. Sixty generally healthy, middle socioeconomic class African Americans and whites between the ages of 20 to 40 and 60 to 80 years were evaluated. The results indicate, in general, that objective and subjective measurements of major salivary gland flow rates are independent of age, gender, and race. Further studies are required using larger populations. These results suggest that signs and symptoms of dry mouth in the elderly regardless of race or gender should not be considered a normal sequela of aging. PMID:7897685

  14. Flow injection potentiometric determination of bismuth(III) in anti-acid formulations.

    PubMed

    Teixeira, M F; Fatibello-Filho, O

    2001-06-19

    A flow injection potentiometric procedure is proposed for determining bismuth(III) in anti-acid formulations. In this work, a tubular electrode coated with an ion-pair formed between [Bi(EDTA)](-) and tricaprylylmethylammonium cation (Aliquat 336) in a poly(vinylchloride) (PVC) was constructed and used in a single channel flow injection system. The effect of membrane composition, pH and flow injection parameter over the Bi(III) tubular electrode response (slope (mV/decade)) was initially evaluated in quintuplicate in 0.5 mol l(-1) EDTA solution as carrier. The best response (-59.6+/-0.9 mV/decade) was attained with the 5% m/m ion-pair; 65% m/m o-nitrophenyl octyl ether (o-NPOE) and 30% m/m PVC in pH 6-9. The electrode showed a linear response to E (mV) versus log [Bi(EDTA)](-) in the bismuth(III) concentration range from 2.0x10(-5) to 1.0x10(-2) mol l(-1) and a useful lifetime of at least 5 months (more than 1000 determinations for each polymeric membrane). The detection limit was 1.2x10(-5) mol l(-1) and the R.S.D. was less than 2.0% for a solution containing 5.0x10(-4) mol l(-1) bismuth(III) (n=10). Several species such as Cd(II), Mn(II), Ni(II), Zn(II), Co(II), Cu(II), Mg(II), Cr(III) and Al(III) at 1.0x10(-3) mol l(-1) concentration in 0.5 mol l(-1) EDTA solution did not cause any interference. The frequency rate was 90 determinations per hour and the results obtained for bismuth(III) in anti-acid formulations using this flow procedure and those obtained using a spectrophotometric procedure are in agreement at the 95% confidence level. PMID:11397573

  15. Assessing effusion rate of lava flows from thermal structure: theoretical analysis and lab-scale experiments

    NASA Astrophysics Data System (ADS)

    Garel, Fanny; Kaminski, Edouard; Tait, Stephen; Limare, Angela

    2010-05-01

    Management of effusive volcanic crises has to be based on the quantitative interpretation of flow monitoring. An important issue is the ability to predict where the flow will go, and when it will stop. Geophysical fluid dynamics shows that the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux. Hence the key question is how to evaluate them during the eruption (rather than afterwards). A relationship between the surface structure temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. A theoretical formula combining some empirical parameters was developed by Harris and co-workers (review in Harris et al., 2007) and is used to estimate lava flow rate from satellite. However, the theoretical grounds of this technique, as well as its domain of validity, remain questioned. Here we propose a systematic theoretical study to help to define the validity domain of this approach and to investigate whether or not it can be refined and/or modify to better assess flow rates. We chose in our approach to study at lab-scale a flow with a rheology simpler than that of the natural lava, but taking into account all the complexity of the cooling process at the surface of the flow, by radiation and convection. We used fully controlled experimental parameters, especially the cooling conditions, the flux rate and geometry of the flow. The spreading geometry is the one of an axisymmetric viscous gravity current of newtonian viscosity (Huppert, 1982). For a given enthalpy content, the coupled cooling/spreading processes are characterized by two dimensionless numbers. A first one quantifies the efficiency of the surface cooling compared to the heat advected in the flow. The second one quantifies the relative efficiency of radiative and convective surface cooling. We identify different stages of cooling as a function of these numbers and

  16. Formation rates, stability and reactivity of sulfuric acid - amine clusters predicted by computational chemistry

    NASA Astrophysics Data System (ADS)

    Kurtén, Theo; Ortega, Ismael; Kupiainen, Oona; Olenius, Tinja; Loukonen, Ville; Reiman, Heidi; McGrath, Matthew; Vehkamäki, Hanna

    2013-04-01

    Despite the importance of atmospheric particle formation for both climate and air quality, both experiments and non-empirical models using e.g. sulfuric acid, ammonia and water as condensing vapors have so far been unable to reproduce atmospheric observations using realistic trace gas concentrations. Recent experimental and theoretical evidence has shown that this mystery is likely resolved by amines. Combining first-principles evaporation rates for sulfuric acid - dimethylamine clusters with cluster kinetic modeling, we show that even sub-ppt concentrations of amines, together with atmospherically realistic concentrations of sulfuric acid, result in formation rates close to those observed in the atmosphere. Our simulated cluster formation rates are also close to, though somewhat larger than, those measured at the CLOUD experiment in CERN for both sulfuric acid - ammonia and sulfuric acid - dimethylamine systems. A sensitivity analysis indicates that the remaining discrepancy for the sulfuric acid - amine particle formation rates is likely caused by steric hindrances to cluster formation (due to alkyl groups of the amine molecules) rather than by significant errors in the evaporation rates. First-principles molecular dynamic and reaction kinetic modeling shed further light on the microscopic physics and chemistry of sulfuric acid - amine clusters. For example, while the number and type of hydrogen bonds in the clusters typically reach their equilibrium values on a picosecond timescale, and the overall bonding patterns predicted by traditional "static" quantum chemical calculations seem to be stable, the individual atoms participating in the hydrogen bonds continuously change at atmospherically realistic temperatures. From a chemical reactivity perspective, we have also discovered a surprising phenomenon: clustering with sulfuric acid molecules slightly increases the activation energy required for the abstraction of alkyl hydrogens from amine molecules. This implies

  17. Flow rate self-sensing of a pump with double piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonghua; Kan, Junwu; Wang, Shuyun; Wang, Hongyun; Wen, Jianming; Ma, Zehui

    2013-12-01

    According to the method of segmenting electrode, the flow rate self-sensing of a conventional piezoelectric pump with the actuators of double diaphragms is presented in this paper. The novel pump is characterized by the simultaneous function of fluid transportation and the flow rate self-testing through only one piezoelectric element. The analysis indicates that direct and converse piezoelectric effect can be concurrently applied to obtain the simultaneous function through dividing the electrode of the piezoelectric element into driving unit and sensing unit. With two commercialized segmented-electrode piezoelectric diaphragms, a prototype pump is fabricated with the size of 65 mm×40 mm×12 mm and tested according to the frequency characteristics at a fixed driving voltage and the driving voltage characteristics at a fixed frequency. The results show that sensing voltages of diaphragms are increased or decreased with the change of the flow rate as a function of frequency. When the flow rate reaches the maximum value of 45.98 ml/min at 15 Hz, outlet/inlet sensing voltages also reach maximum values of 6.80 Vpp and 19.4 Vpp, respectively. It demonstrates that the pump itself could accurately reflect the optimal frequency through monitoring outlet/inlet sensing voltages. The testing results indicate the good linear relationship between outlet/inlet sensing voltages and the flow rate as a function of driving voltage. Therefore, both theoretical analysis and experiments have proved that flow rate self-sensing can be realized for the piezoelectric pumps with double actuators through segmenting their electrode. Moreover, if any electrode of double piezoelectric actuators is segmented, the pump can obtain the complete self-sensing function.

  18. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  19. Effect of flow rate on loss mechanisms in a backswept centrifugal impeller

    NASA Astrophysics Data System (ADS)

    Farge, Talib Z.; Johnson, Mark W.

    1992-06-01

    Detailed measurements of the three velocity components, total, and static pressures on five measurement planes without a low speed shrouded backswept centrifugal impeller are presented. A comparison is made between the design flowfield and the flowfields for both below and above design flow rates. The flow is dominated by a passage vortex that rotates in the opposite direction to the impeller. This vortex develops in the inducer, is strongest in the axial to radial bend, and then decays toward the outlet. The vortex is also most prominent at the lowest flow rate and is responsible for stabilizing the shroud boundary layer and hence reducing the large losses associated with the separation of this boundary layer in radial impellers. At the outlet, the wake is located on the shroud at all flow rates, but tends to be spread more evenly across the shroud than is the case in a radial machine. The impeller efficiency is also generally found to be spread more evenly across the shroud than is the case in a radial machine. The impeller efficiency is also generally found to be higher at lower flow rates in contrast to observations for radial impellers.

  20. Quantifying the flow rate of the Deepwater Horizon Macondo Well oil spill

    NASA Astrophysics Data System (ADS)

    Camilli, R.; Bowen, A.; Yoerger, D. R.; Whitcomb, L. L.; Techet, A. H.; Reddy, C. M.; Sylva, S.; Seewald, J.; di Iorio, D.; Whoi Flow Rate Measurement Group

    2010-12-01

    The Deepwater Horizon blowout in the Mississippi Canyon block 252 of the Gulf of Mexico created the largest recorded offshore oil spill. The well outflow’s multiple leak sources, turbulent multiphase flow, tendency for hydrate formation, and extreme source depth of 1500 m below the sea surface complicated the quantitative estimation of oil and gas leakage rates. We present methods and results from a U.S. Coast Guard sponsored flow assessment study of the Deepwater Horizon’s damaged blow out preventer and riser. This study utilized a remotely operated vehicle equipped with in-situ acoustic sensors (a Doppler sonar and an imaging multibeam sonar) and isobaric gas-tight fluid samplers to measure directly outflow from the damaged well. Findings from this study indicate oil release rates and total release volume estimates that corroborate estimates made by the federal government’s Flow Rate Technical Group using non-acoustic techniques. The acoustic survey methods reported here provides a means for estimating fluid flow rates in subsurface environments, and are potentially useful for a diverse range of oceanographic applications. Photograph of the Discoverer Enterprise burning natural gas collected from the Macondo well blowout preventer during flow measurement operations. Copyright Wood Hole Oceanographic Institution.

  1. Research and realization of ultrasonic gas flow rate measurement based on ultrasonic exponential model.

    PubMed

    Zheng, Dandan; Hou, Huirang; Zhang, Tao

    2016-04-01

    For ultrasonic gas flow rate measurement based on ultrasonic exponential model, when the noise frequency is close to that of the desired signals (called similar-frequency noise) or the received signal amplitude is small and unstable at big flow rate, local convergence of the algorithm genetic-ant colony optimization-3cycles may appear, and measurement accuracy may be affected. Therefore, an improved method energy genetic-ant colony optimization-3cycles (EGACO-3cycles) is proposed to solve this problem. By judging the maximum energy position of signal, the initial parameter range of exponential model can be narrowed and then the local convergence can be avoided. Moreover, a DN100 flow rate measurement system with EGACO-3cycles method is established based on NI PCI-6110 and personal computer. A series of experiments are carried out for testing the new method and the measurement system. It is shown that local convergence doesn't appear with EGACO-3cycles method when similar-frequency noises exist and flow rate is big. Then correct time of flight can be obtained. Furthermore, through flow calibration on this system, the measurement range ratio is achieved 500:1, and the measurement accuracy is 0.5% with a low transition velocity 0.3 m/s. PMID:26821309

  2. The cooling rates of pahoehoe flows: The importance of lava porosity

    NASA Technical Reports Server (NTRS)

    Jones, Alun C.

    1993-01-01

    Many theoretical models have been put forward to account for the cooling history of a lava flow; however, only limited detailed field data exist to validate these models. To accurately model the cooling of lava flows, data are required, not only on the heat loss mechanisms, but also on the surface skin development and the causes of differing cooling rates. This paper argues that the cause of such variations in the cooling rates are attributed, primarily, to the vesicle content and degassing history of the lava.

  3. The rate dependence of the saturation flow stress of Cu and 1100 Al

    SciTech Connect

    Preston, D.L.; Tonks, D.L.; Wallace, D.C.

    1991-01-01

    The strain-rate dependence of the saturation flow stress of OFHC Cu and 1100 Al from 10{sup {minus}3}s{sup {minus}1} to nearly to 10{sup 12}s{sup {minus}1} is examined. The flow stress above 10{sup 9}s{sup {minus}1} is estimated using Wallace's theory of overdriven shocks in metals. A transition to the power-law behavior {Psi} {approximately} {tau}{sub s}{sup 5} occurs at a strain rate of order 10{sup 5}s{sup {minus}1}. 10 refs., 2 figs.

  4. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOEpatents

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  5. Efficient generation in a chemical oxygen - iodine laser with a low buffer-gas flow rate

    SciTech Connect

    Azyazov, V N; Safonov, V S; Ufimtsev, N I

    2002-09-30

    The efficient generation in a chemical oxygen - iodine laser (COIL) with a low buffer-gas flow rate for Mach numbers M {<=} 1 is demonstrated. The maximum output power of the COIL was 415 W for a molecular chlorine flow rate of 20 mmol s{sup -1}, which corresponds to a chemical efficiency {eta}{sub ch} =23%. It is shown that the substitution of the buffer gas CO{sub 2} for N{sub 2} does not cause any significant variation in the dependence of the output power on the degree of dilution of the active medium. (lasers)

  6. The effect of limestone treatments on the rate of acid generation from pyritic mine gangue.

    PubMed

    Burt, R A; Caruccio, F T

    1986-09-01

    Surface water enters the Haile Gold Mine, Lancaster County, South Carolina by means of a small stream and is ponded behind a dam and in an abandoned pit. This water is affected by acidic drainage. In spite of the large exposures of potentially acid producing pyritic rock, the flux of acid to the water is relatively low. Nevertheless, the resulting pH values of the mine water are low (around 3.5) due to negligible buffering capacity. In view of the observed low release of acidity, the potential for acid drainage abatement by limestone ameliorants appears feasible.This study investigated the effects of limestone treatment on acid generation rates of the Haile mine pyritic rocks through a series of leaching experiments. Below a critical alkalinity threshold value, solutions of dissolved limestone were found consistently to accelerate the rate of pyrite oxidation by varying degrees. The oxidation rates were further accelerated by admixing solid limestone with the pyritic rock. However, after a period of about a month, the pyrite oxidation rate of the admixed samples declined to a level lower than that of untreated pyrite. Leachates produced by the pyrite and limestone mixtures contained little if any iron. Further, in the mixtures, an alteration of the pyrite surface was apparent.The observed behaviour of the treated pyrite appears to be related to the immersion of the pyrite grains within a high alkalinity/high pH environment. The high pH increases the rate of oxidation of ferrous iron which results in a higher concentration of ferric iron at the pyrite surface. This, in turn, increases the rate of pyrite oxidation. Above a threshold alkalinity value, the precipitation of hydrous iron oxides at the pyrite surface eventually outpaces acid generation and coats the pyrite surface, retarding the rate of pyrite oxidation. PMID:24214013

  7. The Effects of Bottom Blowing Gas Flow Rate Distribution During the Steelmaking Converter Process on Mixing Efficiency

    NASA Astrophysics Data System (ADS)

    Chu, Kuan-Yu; Chen, Hsing-Hao; Lai, Po-Han; Wu, Hsuan-Chung; Liu, Yung-Chang; Lin, Chi-Cheng; Lu, Muh-Jung

    2016-04-01

    Featuring the advantages of top-blown and bottom-blown oxygen converters, top and bottom combined blown converters are mainstream devices used in steelmaking converter. This study adopted the FLUENT software to develop a numerical model that simulates 3D multiphase flows of gas (air and argon), liquid steel, and slag. Ten numerical experiments were conducted to analyze the effects that the bottom blowing gas flow rate distribution patterns (uniform, linear fixed total flow rate, linear fixed maximal flow rate, and V-type) and bottom blowing gas flow distribution gradients of combined blown converters exert on slag surface stirring heights, flow field patterns, simulation system dynamic pressures, mixing time, and liquid steel-slag interface velocity. The simulation results indicated that the mixing efficiency was highest for the linear fixed total flow rate, followed by the linear fixed maximal flow rate, V-type, and uniform patterns. The bottom blowing gas flow rate distribution exhibited linear patterns and large gradients, and high bottom blowing total flow rates increased the mixing efficiency substantially. In addition, the results suggested that even when bottom blowing total flow rate was reduced, adopting effective bottom blowing gas flow rate distribution patterns and gradients could improve the mixing efficiency.

  8. Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows

    SciTech Connect

    Kustova, E. V.; Oblapenko, G. P.

    2015-01-15

    In the present paper, reaction and energy relaxation rates as well as the normal stress are studied for viscous gas flows with vibrational and chemical non-equilibrium. Using the modified Chapman-Enskog method, multi-temperature models based on the Treanor and Boltzmann vibrational distributions are developed for the general case taking into account all kinds of vibrational energy transitions, exchange reactions, dissociation, and recombination. Integral equations specifying the first-order corrections to the normal mean stress and reaction rates are derived, as well as approximate systems of linear equations for their numerical computation. Generalized thermodynamic driving forces associated with all non-equilibrium processes are introduced. It is shown that normal stresses and rates of non-equilibrium processes can be expressed in terms of the same driving forces; the symmetry of kinetic coefficients in these expressions is proven. The developed general model is applied to a particular case of a pure N{sub 2} viscous flow with slow VT relaxation. Normal stress and rates of vibrational relaxation are studied for various ratios of vibrational and translational temperatures. The cross effects between different vibrational transitions in viscous flows are evaluated, along with the influence of anharmonicity and flow compressibility on the first-order corrections to the relaxation rate. Limits of validity for the widely used Landau–Teller model of vibrational relaxation are indicated.

  9. A non-contact optical procedure for precise measurement of respiration rate and flow

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Marchionni, Paolo; Ercoli, Ilaria

    2010-04-01

    The use of standard instrumentation for the assessment of the respiration rate as of flow is an important goal in medicine. Spirometers, textile-based capacitive sensors or photopletismography are standard contact instrumentations used for such aim; the main drawback in the use of such instrumentations is the necessity to have a direct contact of the instrument with the patient. In this paper, we present an optical no-contact method for monitoring of both the respiration rate and flow. This method is based on the measurement of external chest wall movement by a laser Doppler vibrometer. The measurement procedure has already been demonstrated to be extremely well performing for what concern the monitoring of the cardiac activity. The proposed method can be operated at a distance of 1.5 m, on different point of the patient thoracic and abdominal area. We have monitored respiration rate and flow on 8 patients with a spirometer and simultaneously with the proposed noncontact measurement procedure. Bland-Altman analysis of the respiration rate measured with both instruments demonstrate a mean error on the determination of the respiration rate of < 1% and of the < 4% for the instantaneous flow. We also report a study on the optimal position on the thoracic area based on quality of the signal measured on the same population of subject.

  10. Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism.

    PubMed

    Wei, Chenyu; Pohorille, Andrew

    2014-11-13

    Flip-flop of protonated oleic acid molecules dissolved at two different concentrations in membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine is studied with the aid of molecular dynamics simulations at a time scale of several microseconds. Direct, single-molecule flip-flop events are observed at this time scale, and the flip-flop rate is estimated at 0.2-0.3 μs(-1). As oleic acid molecules move toward the center of the bilayer during flip-flop, they undergo gradual, correlated translational, and rotational motion. Rare, double-flipping events of two hydrogen-bonded oleic acid molecules are also observed. A two-dimensional free energy surface is obtained for the translational and rotational degree of freedom of the oleic acid molecule, and the minimum energy path on this surface is determined. A barrier to flip-flop of ~4.2 kcal/mol is found at the center of the bilayer. A two-dimensional diffusion model is found to provide a good description of the flip-flop process. The fast flip-flop rate lends support to the proposal that fatty acids permeate membranes without assistance of transport proteins. It also suggests that desorption rather than flip-flop is the rate-limiting step in fatty acid transport through membranes. The relation of flip-flop rates to the evolution of ancestral cellular systems is discussed. PMID:25319959

  11. Peak flow rate and recession-curve characteristics of a karst spring in the Inner Bluegrass, central Kentucky

    USGS Publications Warehouse

    Felton, G.K.; Currens, J.C.

    1994-01-01

    The flow rate at the terminal spring of a 1929 ha karst ground-water catchment has been continuously monitored for 2 years, and 108 identifiable events were analyzed. The peak flow rates followed a beta frequency distribution with parameters ?? = 0.365 and ?? = 1.135. Events were separated into high-flow and low-flow. High-flow events had characteristics attributable to pipe flow. Correlation and stepwise regression were used to develop peak flow rate prediction equations for the combined 108 events and for the 81 low-flow events. The portion of the recession curve identified as pipe flow was a watershed constant and time invariant. The base flow was seasonal, increasing in the winter to approximately 0.071 m3s-1 and decreasing in the summer to approximately 0.014 m3s-1. ?? 1994.

  12. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    NASA Astrophysics Data System (ADS)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  13. Electron-impact vibrational excitation rates in the flow field of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.-H.

    1985-01-01

    This paper examines the vibrational excitation rate processes expected in the flow field of aeroassisted orbital transfer vehicles (AOTVs). An analysis of the multiple-quantum vibrational excitation processes by electron impact is made to predict the vibrational excitation cross sections, rate coefficients, and relaxation times which control vibrational temperature. The expression for the rate of electron-vibration energy transfer is derived by solving the system of master equations which account for the multiple-level transitions. The vibrational excitation coefficients, which are the prerequisite physical quantities in solving the obtained vibrational equation, are calculated based on the theoretically predicted cross sections. These cross sections are obtained from quantum mechanical calculations, based on the concept that vibrational excitation of molecules by electron impact occurs through formation of an intermediate negative ion state. Finally, the modified Landau-Teller-type rate equation, which is suitable for the numerical calculations for the AOTV flow fields, is suggested.

  14. Development of a mechanistic model for predicting corrosion rate in multiphase oil/water/gas flows

    SciTech Connect

    Zhang, R.; Gopal, M.; Jepson, W.P.

    1997-09-01

    A mechanistic model has been developed to predict corrosion rates in multiphase (water/oil/CO{sub 2}) flow conditions. The model takes into account electrochemistry, reaction kinetics, and, mass transport effects. This paper describes the equations used to determine pH and bulk concentrations of various ions, which are then used to calculate the mass transfer rates to the corrosion surface. The result includes the determination of the mass transfer coefficients of various ionic species and corrosion rates. Details of relations used for determination of mass transfer coefficients for multiphase flows, and rates of electrochemical reaction kinetics are discussed and predicted results are compared with experimental observations. Agreement between model results and experimental data is good.

  15. Influence of fatty acid oxidation rate on glycerol release from cardiac myocytes

    SciTech Connect

    Larsen, T.S.; Severson, D.L.

    1986-03-05

    Quiescent cardiac myocytes are characterized by low rates of fatty acid oxidation due to the reduced energy demand compared with beating hearts. The accumulation of intracellular fatty acid metabolites may, therefore, result in feed-back inhibition of the cardiac lipase responsible for the mobilization of triacylglycerols (lipolysis). The objective of this study was to examine if interventions that increase fatty acid oxidation rates in myocytes have an effect on lipolysis. Addition of 100 ..mu..M dinitrophenol (DNP) to calcium-tolerant rat ventricular myocytes caused an increase in the rate of /sup 14/C-oleic acid oxidation from 1.11 +/- 0.06 to 2.38 +/- 0.17 nmol /sup 14/CO/sub 2//10/sup 6/ cells/min (115% stimulation; mean +/- S.D., n = 3). In parallel incubations, DNP increased the rate of lipolysis from 4.4 +/- 1.7 to 13.6 +/- 3.2 nmol glycerol/10/sup 6/ cells/30 min (215% stimulation). The addition of 1 mM barium to a modified Ringer's incubation medium produced an increase in the contractile activity of the myocytes, and increased the rates of oleic acid oxidation from 0.62 +/- 0.16 to 0.88 +/- 0.23 nmol/10/sup 6/ cells/min (42% stimulation; n = 6) and lipolysis from 13.1 +/- 6.5 to 22.2 +/- 6.4 nmol/10/sup 6/ cells/30 min (70% stimulation). These data show that stimulation of fatty acid oxidation in myocardial myocytes is accompanied by increased lipolytic rates, the latter probably due to release of feed-back inhibition of cardiac lipases by accumulated fatty acid metabolites.

  16. Expanding the range for predicting critical flow rates of gas wells producing from normally pressured waterdrive reservoirs

    SciTech Connect

    Upchurch, E.R. )

    1989-08-01

    The critical flow rate of a gas well is the minimum flow rate required to prevent accumulation of liquids in the tubing. Theoretical models currently available for estimating critical flow rates are restricted to wells with water/gas ratios less than 150bbl/MMcf (0.84 X 10/sup -3/ m/sup 3//m/sup 3/). For wells producing at higher water/gas ratios from normally pressured waterdrive reservoirs, a method of estimating critical flow rates is derived through use of an empirical multiphase-flow correlation.

  17. Enhancement of topical delivery of drugs via direct penetration by reducing blood flow rate in skin.

    PubMed

    Higaki, K; Nakayama, K; Suyama, T; Amnuaikit, Chomchan; Ogawara, K; Kimura, T

    2005-01-20

    The purpose of this work was to investigate the effect of blood flow in the skin on the direct penetration of topically applied drugs into the muscular layer, and to show that the skin blood flow could also be one of the important factors determining the direct penetration of drugs to the muscular layer. In vivo percutaneous absorption study was performed for antipyrine, salicylic acid or diclofenac by using rats with tape-stripped skin. Phenylephrine, which is well known to reduce the local blood flow by vasoconstrictor action, was topically applied to decrease the local blood flow in the skin. The concentrations of drugs in viable skin and muscle, and the local blood flow in the skin under the applied and the contralateral sites were determined to evaluate the effect of the local blood flow on the delivery of topically applied drugs into the muscular layer. Dose dependency for the effect of phenylephrine was, first of all, investigated for antipyrine in the range from 0.4 to 10 micromol. The distribution of antipyrine into the viable skin and muscular layer 2 h after topical application significantly increased, but the effect of phenylephrine was saturated around 2 micromol and the dose-dependent profiles for both tissues were almost superimposed. On the other hand, the fraction dose absorbed, plasma concentration and concentrations in viable skin and muscular layer under the contralateral site showed the decreasing tendency and the saturation of the effect around 2 micromol. To confirm the effect of phenylephrine on the local blood flow in the skin, the skin blood flow was measured 2 h after topical application of 2 micromol phenylephrine, and the significant decrease in the blood flow was recognized. In vivo percutaneous absorption studies were performed for salicylic acid and diclofenac, too. Extensive enhancement of penetration into the viable skin and muscular layer was observed for both drugs, although total absorption from the donor cell showed the

  18. Zero-valent iron removal rates of aqueous Cr(VI) measured under flow conditions

    SciTech Connect

    Kaplan, Daniel I.; Gilmore, Tyler J.

    2004-06-30

    The rates of Cr(VI) removal from the aqueous phase by zero-valent iron Fe(0) was measured under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a gournwater remediation technology that replaces the sand in a filter pack of a conventioanl well with a reactive material, such as Fe(0).

  19. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  20. Research on Gas-liquid Flow Rate Optimization in Foam Drilling

    NASA Astrophysics Data System (ADS)

    Gao, B. K.; Sun, D. G.; Jia, Z. G.; Huang, Z. Q.

    2010-03-01

    With the advantages of less gas consumption, higher carrying rocks ability, lower leakage and higher penetration rate, foam drilling is widely used today in petroleum industry. In the process of foam underbalanced drilling, the mixture of gas, liquid and cuttings flows upwards through the annular, so it is a typical gas-liquid-solid multi-phase flow. In order to protect the reservoir and avoid borehole wall collapsing during foam drilling, it is crucial to ensure that the bottom hole pressure is lower than the formation pressure and higher than the formation collapse pressure, and in the mean time, foam drilling fluid in the whole wellbore should be in the best foam quality stage in order to have sufficient capacity to carry cuttings. In this paper, main relations between bottom hole pressure and gas-liquid injecting rate are analyzed with the underbalanced multiphase flow models. And in order to obtain precise flow pattern and flow pressure, the whole well bore is spatial meshed and iterative method is used. So, a convenient safety window expressed by gas-liquid injecting rate is obtained instead of that by bottom hole pressure. Finally, a foam drilling example from a block in Yemen is presented; the drilling results show that this method is reliable and practical.

  1. Design and experimental study of high-speed low-flow-rate centrifugal compressors

    SciTech Connect

    Gui, F.; Reinarts, T.R.; Scaringe, R.P.; Gottschlich, J.M.

    1995-12-31

    This paper describes a design and experimental effort to develop small centrifugal compressors for aircraft air cycle cooling systems and small vapor compression refrigeration systems (20--100 tons). Efficiency improvements at 25% are desired over current designs. Although centrifugal compressors possess excellent performance at high flow rates, low-flow-rate compressors do not have acceptable performance when designed using current approaches. The new compressors must be designed to operate at a high rotating speed to retain efficiency. The emergence of the magnetic bearing provides the possibility of developing such compressors that run at speeds several times higher than current dominating speeds. Several low-flow-rate centrifugal compressors, featured with three-dimensional blades, have been designed, manufactured and tested in this study. An experimental investigation of compressor flow characteristics and efficiency has been conducted to explore a theory for mini-centrifugal compressors. The effects of the overall impeller configuration, number of blades, and the rotational speed on compressor flow curve and efficiency have been studied. Efficiencies as high as 84% were obtained. The experimental results indicate that the current theory can still be used as a guide, but further development for the design of mini-centrifugal compressors is required.

  2. Cerberus Fossae and Elysium Planitia Lavas, Mars: Source Vents, Flow Rates, Edifice Styles and Water Interactions

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Gregg, T. K. P.

    2004-01-01

    The Cerberus Fossae and Elysium Planitia regions have been suggested as some of the youngest martian surfaces since the Viking mission, although there was doubt whether the origins were predominantly volcanic or fluvial. The Mars Global Surveyor and Mars Odyssey Missions have shown that the region is certainly young in terms of the topographic preservation and the youthful crater counts (e.g. in the tens to a few hundred million yrs.). Numerous authors have shown that fluvial and volcanic features share common flow paths and vent systems, and that there is evidence for some interaction between the lava flows and underlying volatiles as well as the use by lavas and water of the same vent system. Given the youthful age and possible water-volcanism interaction environment, we'd like constraints on water and volcanic flux rates and interactions. Here, we model ranges of volcanic flow rates where we can well-constrain them, and consider the modest flow rate results results in context with local eruption styles, and track vent locations, edifice volumes, and flow sources and data.

  3. Evaluation of reaction rates in streambed sediments with seepage flow: a novel code

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2015-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species which perform many heterotrophic and autotrophic reactions. The evaluation of these reaction rates is crucial to assess the fate of nutrients in riverine environments, and it is often performed through the analysis of concentrations from water samples collected along vertical profiles. The most commonly employed evaluation tool is the Profile code developed by Berg et al. (1998), which determines reaction rates by fitting observed concentrations to a diffusion-reaction equation that neglects the presence of water flow within sediments. However, hyporheic flow is extremely common in streambeds, where solute transport is often controlled by advection rather than diffusion. There is hence a pressing need to develop new methods that can be applied even to advection-dominated sediments. This contribution fills this gap by presenting a novel approach that extends the method proposed by Berg et al. (1998). This new approach includes the influence of vertical solute transport by upwelling or downwelling water, and it is this suited to the typical flow conditions of stream sediments. The code is applied to vertical profiles of dissolved oxygen from a laboratory flume designed to mimic the complex flow conditions of real streams. The results show that it is fundamental to consider water flow to obtain reliable estimates of reaction rates in streambeds. Berg, P., N. Risgaard-Petersen, and S. Rysgaard, 1998, Interpretation of measured concentration profiles in the sediment porewater, Limnology and Oceanography, 43:1500-1510.

  4. Review of flow rate estimates of the Deepwater Horizon oil spill

    PubMed Central

    McNutt, Marcia K.; Camilli, Rich; Crone, Timothy J.; Guthrie, George D.; Hsieh, Paul A.; Ryerson, Thomas B.; Savas, Omer; Shaffer, Frank

    2012-01-01

    The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ∼50,000–70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ∼5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly. PMID:22187459

  5. Review of flow rate estimates of the Deepwater Horizon oil spill

    USGS Publications Warehouse

    McNutt, Marcia K.; Camilli, Rich; Crone, Timothy J.; Guthrie, George D.; Hsieh, Paul A.; Ryerson, Thomas B.; Savas, Omer; Shaffer, Frank

    2012-01-01

    The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ~50,000–70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ~5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly.

  6. Variability in venom volume, flow rate and duration in defensive stings of five scorpion species.

    PubMed

    van der Meijden, Arie; Coelho, Pedro; Rasko, Mykola

    2015-06-15

    Scorpions have been shown to control their venom usage in defensive encounters, depending on the perceived threat. Potentially, the venom amount that is injected could be controlled by reducing the flow speed, the flow duration, or both. We here investigated these variables by allowing scorpions to sting into an oil-filled chamber, and recording the accreting venom droplets with high-speed video. The size of the spherical droplets on the video can then be used to calculate their volume. We recorded defensive stings of 20 specimens representing 5 species. Significant differences in the flow rate and total expelled volume were found between species. These differences are likely due to differences in overall size between the species. Large variation in both venom flow speed and duration are described between stinging events of single individuals. Both venom flow rate and flow duration correlate highly with the total expelled volume, indicating that scorpions may control both variables in order to achieve a desired end volume of venom during a sting. PMID:25911958

  7. A methodology to reduce uncertainties in the high-flow portion of the rating curve for Goodwater Creek Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...

  8. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  9. An experimental and theoretical study of the flow phenomena within a vortex sink rate sensor

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Patel, D. K.

    1974-01-01

    Tests were conducted to obtain a description of the flow field within a vortex sink rate sensor and to observe the influence of viscous effects on its performance. The characteristics of the sensor are described. The method for conducting the test is reported. It was determined that for a specific mass flow rate and the geometry of the vortex chamber, the flow in the vortex chamber was only affected, locally, by the size of the sink tube diameter. Within the sink tube, all three velocity components were found to be higher for the small sink tube diameters. As the speed of rotation of the sensor was increased, the tangential velocities within the vortex chamber, as well as in the sink tube, increased in proportion to the speed of rotation.

  10. Flow rate estimation by optical coherence tomography using contrast dilution approach

    NASA Astrophysics Data System (ADS)

    Štohanzlová, Petra; Kolář, Radim

    2015-07-01

    This paper describes experiments and methodology for flow rate estimation using optical coherence tomography and dilution method in single fiber setup. The single fiber is created from custom made glass capillary and polypropylene hollow fiber. As a data source, measurements on single fiber phantom with continuous flow of carrier medium and bolus of Intralipid solution as a contrast agent were used using Thorlabs OCT OCS1300SS. The measured data were processed by methods of image processing, in order to precisely align the individual images in the sequence and extract dilution curves from the area inside the fiber. An experiment proved that optical coherence tomography can be used for flow rate estimation by the dilution method with precision around 7%.

  11. Velocity and flow rate measurement of liquid metal by contactless electromagnetic Lorentz force technique

    NASA Astrophysics Data System (ADS)

    Dubovikova, N.; Karcher, C.; Kolesnikov, Y.

    2016-07-01

    Providing flow analysis in case of aggressive and hot liquids is a complicated task, especially when liquid's composition and, hence, its physical properties, are unknown. Contactless techniques are the most promising methods for liquid metal flow rate control and some of these methods are based on electromagnetic induction of breaking force acting on an electrically conductive fluid which is moving through a magnetic field. One of the techniques is time-of-flight Lorentz force velocimetry (LFV). By using the method one can estimate volumetric flow rate without knowing of electrical conductivity, magnitude of magnetic field or characteristic dimension. The most important and crucial challenge within the technique is detection of small fluctuations of Lorentz force value. In this article we will focus on application and investigation of time-of-flight LFV.

  12. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  13. Oral glucose retention, saliva viscosity and flow rate in 5-year-old children.

    PubMed

    Negoro, M; Nakagaki, H; Tsuboi, S; Adachi, K; Hanaki, M; Tanaka, D; Takami, Y; Nakano, T; Kuwahara, M; Thuy, T T

    2000-11-01

    There are significant differences of glucose retention in site-specificity and individuals. Sixty-two 5-year-old nursery schoolchildren participated in this study on the relation between the viscosity of saliva and flow rate and glucose retention. Each child was instructed to rinse his/her mouth with a glucose solution (0.5 M, 5 ml) and then to spit out. Three minutes after rinsing, glucose retention was determined. Resting saliva was collected by a natural outflow method, then the flow rate was determined. A rotational viscometer was used to determine the viscosity. Glucose retention and flow rate were correlated at the left maxillary primary molars, and glucose retention and viscosity were correlated at the maxillary central primary incisors. It was concluded that glucose retention after glucose mouth rinsing was site-specific, and that glucose retention and the index of decayed, missing and filled primary teeth (dmft) were slightly correlated with the salivary viscosity and flow rate. PMID:11000387

  14. Effects of concentration and sniff flow rate on the rat electroolfactogram.

    PubMed

    Scott, John W; Acevedo, Humberto P; Sherrill, Lisa

    2006-07-01

    Previous reports using the electroolfactogram (EOG) to study the spatial and temporal aspects of response in the rodent olfactory epithelium had focused on high odorant concentrations that gave large responses. This investigation has used lower concentrations to test the difference between responses in the rat dorsomedial and lateral recesses with a range of nasal flow rates and a range of chemical properties. The responses to a highly polar, more hydrophilic odorant changed more steeply with flow rate than responses to a very nonpolar, hydrophobic odorant. With low flow rates there was a response delay in the lateral recess, which is consistent with the models indicating lower flow rates in that region. We observed significant volume conduction effects in which large responses in the dorsomedial region obscured smaller initial portions of the lateral responses. These effects could be removed by destroying the dorsomedial response with a high concentration of a low molecular weight ester. We caution that investigators of EOG recordings from the intact epithelium must attend to the possible presence of volume conduction, which can be assessed by attention to the selectivity of odorant response, response waveform, and response latency. PMID:16740644

  15. Effects of Concentration and Sniff Flow Rate on the Rat Electroolfactogram

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa

    2008-01-01

    Previous reports using the electroolfactogram (EOG) to study the spatial and temporal aspects of response in the rodent olfactory epithelium had focused on high odorant concentrations that gave large responses. This investigation has used lower concentrations to test the difference between responses in the rat dorsomedial and lateral recesses with a range of nasal flow rates and a range of chemical properties. The responses to a highly polar, more hydrophilic odorant changed more steeply with flow rate than responses to a very non-polar, hydrophobic odorant. With low flow rates there was a response delay in the lateral recess, which is consistent with the models indicating lower flow rates in that region. We observed significant volume conduction effects in which large responses in the dorsomedial region obscured smaller initial portions of the lateral responses. These effects could be removed by destroying the dorsomedial response with a high concentration of a low molecular weight ester. We caution that investigators of EOG recordings from the intact epithelium must attend to the possible presence of volume conduction, which can be assessed by attention to the selectivity of odorant response, response waveform, and response latency. PMID:16740644

  16. URBAN WET-WEATHER FLOW MICROBIAL CONTAMINATION: HIGH-RATE TREATMENT APPROACHES

    EPA Science Inventory

    fThis presentation is on high-rate disinfection of wet-weather flow (WWF) and pretreatment processes of suspended solids to enhance the disinfection. A discussion of pretreatment processes and of the newest disinfection technologies used for WWF is included, along with the feasib...

  17. NORMAL OF RANGE OF DIURNAL CHANGES IN PEAK EXPIRATORY FLOW RATES

    EPA Science Inventory

    Measuring peak expiratory flow rates (PEFR) several times a day can provide an objective assessment of functional changes relative to environmental or occupational exposures. his report describes the pattern of diurnal changes in PEFR in a reference population, and defines ranges...

  18. Flow, aeration, and carbon dioxide transfer rates for airlifts used in recirculating aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Airlift pumping systems reduce the electrical costs of moving water in a recirculating aquaculture system and can be concurrently designed to aerate water and remove carbon dioxide. This study determined the water flow, oxygen transfer, and CO2 removal rates for water using airlift technology in a 1...

  19. Forecasting Student Entrants, Flows and Success Rates. Technical Report. Studies in Institutional Management in Higher Education.

    ERIC Educational Resources Information Center

    Han, Stjepan; And Others

    This document is concerned with an information system to study the internal dynamics of student flows, choice of subjects and success rates, taking into account different regional affiliations and the socioeconomic backgrounds of students. Among the external factors to be considered will be the demographic dimension in terms of changes in the…

  20. ESTIMATION OF PHYTOPLANKTON DECOMPOSITION RATES USING TWO-STAGE CONTINUOUS FLOW STUDIES

    EPA Science Inventory

    A two-stage continuous flow (TSCF) system was used to quantify phytoplankton decomposition rates and to characterize the decay process as a function of phytoplankton species, phytoplankton physiological state, and the presence and character of a decomposer community. A TSCF syste...

  1. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    SciTech Connect

    Prasetyaningrum, A. Ratnawati,; Jos, B.

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  2. 40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...

  3. 40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...

  4. 40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...

  5. 40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...

  6. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. PMID:27401813

  7. Experimental Determination of The Space and Flow Rate Dependency of The Subsoil Transport Parameters

    NASA Astrophysics Data System (ADS)

    Javaux, M.; Vanclooster, M.

    Within this presentation, the influence of the flow rate and scale on the transport of a non-reactive saline tracer in a large undisturbed sandy subsoil monolith is stud- ied. The monolithique sample was extracted in a quarry at 10 m depth from the sur- face and equipped in the laboratory with tensiometers, temperature probes and time- domain-reflectometry probes. Eight solute breakthrough experiments were conducted at different flow rates allowing to elucidate the solute transport parameters in terms of a variable flow rate. The latter was controlled by means of a high precision irri- gation system in a range between 1 and 100 cm/d. Solute resident concentrations of a saline tracer was continuously monitored through 10 TDR probes of 0.4 m length, inserted in 3 vertical transects. Time series were used to estimate apparent dispersiv- ities and velocities at different locations by inversion of the analytical solution of the convection-dispersion equation for solute resident concentrations. The evolution of the apparent dispersivity with depth is studied in order to characterize the transport pro- cesses. Horizontal heterogeneity of the effective parameters is related to a mesoscale effective dispersivity factor. Furthermore, influence of the flow rate on the estimated dispersivity is also investigated.

  8. Lava Tube Flow Models at Alba Patera, Mars: Topographic Constraints on Eruption Rates

    NASA Technical Reports Server (NTRS)

    Riedel, S. J.; Sakimoto, S. E. H.; Bradley, B. A.; DeWet, A.

    2001-01-01

    Alba Patera has some of the longest lava tubes over some of the shallowest slopes on Mars. We use Mars Orbiter Laser Altimeter (MOLA) topography to model eruption rates for several Alba Patera lava tubes and compare them within Alba and with flows from other martian volcanic regions. Additional information is contained in the original extended abstract.

  9. Hot-wire sandwiched Fabry-Perot interferometer for microfluidic flow rate sensing

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-08-01

    We present a Fabry-Perot interferometer for microfluidic flow rate sensing. The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co2+-doped optical fiber cavity, acting as a "hot-wire" sensor. A microfluidic channel made from commercial silica capillary was integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system.

  10. The Impact of RELAP5 Pipe Break Flow Rates Associated With Reverse Flow Limiter Removal for Steam Generator Replacement

    SciTech Connect

    Dong Zheng; Jarvis, Julie M.; Vieira, Allen T.

    2006-07-01

    Pipe break flow rates are calculated for a main feedwater line break (FWLB) in the main steam valve vault (MSVV) for a PWR Steam Generator Replacement (SGR). A reverse flow limiter is installed in the original steam generator (OSG) feedwater nozzle to limit the blowdown flowrate in the event of a postulated FWLB. This feature is not incorporated in the replacement steam generator (RSG) design. The change in RSG nozzle design in conjunction with new operating conditions results in increased FWLB mass and energy releases which can impact environmental temperatures and pressures and flooding levels. In the United States, benchmarking for safety related analyses is necessary in consideration of 10CFR50.59 requirements. RELAP5/MOD3 is used to model the pipe break flowrates for a FWLB at different break locations. The benchmark FWLB blowdown releases are larger than the OSG design basis blowdown releases due to differences in RELAP5/MOD3 versions which are found to have different algorithms for subcooled choked flow. The SGR FWLB blowdown release rates are determined to have minimal impact on the compartment temperature and pressure response. However, the flooding levels and associated equipment qualification are potentially impacted. Modeling techniques used to minimize the impact of the SGR blowdown releases on MSVV flooding levels include modeling flashing effects, more realistic RSG temperature distribution, inventory depletion and Auxiliary Feedwater (AFW) flow initiation time, and considering loss of offsite power scenarios. A detailed flooding hazard evaluation is needed, which considers the actual main feedwater isolation times to ensure that environmentally qualified safety related components, required to mitigate the effects of a FWLB inside the MSVV, can perform their safety function prior to being submerged. (authors)

  11. Relative Reaction Rates of Sulfamic Acid and Hydroxylamine with Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-03-28

    This report describes a study of comparative reaction rates where the reductant is in excess, as in the 1B bank in the Purex process. The results of this work apply to planned plant tests to partially substitute HAN for the ferrous sulfamate reductant in the Purex 1B bank.

  12. Observation of Oil Flow Characteristics in Rolling Piston Rotary Compressor for Reducing Oil Circulation Rate

    NASA Astrophysics Data System (ADS)

    Song, S. j.; Noh, K. Y.; Min, B. C.; Yang, J. S.; Choi, G. M.; Kim, D. J.

    2015-08-01

    The oil circulation rate (OCR) of the rolling piston rotary compressor is a significant factor which affects the performance of refrigeration system. The increase of oil discharge causes decreasing of the heat transfer efficiency in the heat exchanger, pressure drop and lack of oil in lubricate part in compressor. In this study, the internal flow of compressor was visualized to figure out the oil droplet flow characteristics. The experiments and Computational Fluid Dynamics (CFD) simulations were conducted in various frequency of compressor to observe the effect of operation frequency on oil droplet flow characteristics for reducing OCR. In situ, measurement of oil droplet diameter and velocity were conducted by using high speed image visualization and Particle Image Velocimetry (PIV). The flow paths were dominated by copper wire parts driving the motor which was inserted in compressor. In order to verify the reliability of CFD simulation, the tendency of oil flow characteristics in each flow path and the compressor operating conditions were applied in CFD simulation. For reducing OCR, the structure such as vane, disk and ring is installed in the compressor to restrict the main flow path of oil particle. The effect of additional structure for reducing OCR was evaluated using CFD simulation and the results were discussed in detail.

  13. Patterns and rates of ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Modica, Edward

    1992-01-01

    Increased ground-water contamination from human activities on Long Island has prompted studies to define the pattern and rate of ground-water movement. A two-dimensional, fine-mesh, finite-element model consisting of 11,969 nodes and 22,880 elements was constructed to represent ground-water flow along a north-south section through central Long Island. The model represents average hydrologic conditions within a corridor approximately 15 miles wide. The model solves discrete approximations of both the potential and stream functions. The resulting flownet depicts flow paths and defines the vertical distribution of flow within the section. Ground-water flow rates decrease with depth. Sixty-two percent of the water flows no deeper than the upper glacial (water-table) aquifer, 38 percent enters the underlying Magothy aquifer, and only 3.1 percent enters the Lloyd aquifer. The limiting streamlines for flow to the Magothy and Lloyd aquifers indicate that aquifer recharge areas are narrow east-west bands through the center of the island. The recharge area of the Magothy aquifer is only 5.4 miles wide; that of the Lloyd aquifer is less than 0.5 miles. The distribution of ground-water traveltime and a flownet are calculated from model results; both are useful in the investigation of contaminant transport or the chemical evolution of ground water within the flow system. A major discontinuity in traveltime occurs across the streamline which separates the flow subsystems of the two confined aquifers. Water that reaches the Lloyd aquifer attains traveltimes as high as 10,000 years, whereas water that has not penetrated deeper than the Magothy aquifer attains traveltimes of only 2,000 years. The finite-element approach used in this study is particularly suited to ground-water systems that have complex hydrostratigraphy and cross-sectional symmetry.

  14. Explicit expression for the steady-state translation rate in the infinite-dimensional homogeneous ribosome flow model.

    PubMed

    Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Gene translation is a central stage in the intracellular process of protein synthesis. Gene translation proceeds in three major stages: initiation, elongation, and termination. During the elongation step, ribosomes (intracellular macromolecules) link amino acids together in the order specified by messenger RNA (mRNA) molecules. The homogeneous ribosome flow model (HRFM) is a mathematical model of translation-elongation under the assumption of constant elongation rate along the mRNA sequence. The HRFM includes $(n)$ first-order nonlinear ordinary differential equations, where $(n)$ represents the length of the mRNA sequence, and two positive parameters: ribosomal initiation rate and the (constant) elongation rate. Here, we analyze the HRFM when $(n)$ goes to infinity and derive a simple expression for the steady-state protein synthesis rate. We also derive bounds that show that the behavior of the HRFM for finite, and relatively small, values of $(n)$ is already in good agreement with the closed-form result in the infinite-dimensional case. For example, for $(n=15)$, the relative error is already less than 4 percent. Our results can, thus, be used in practice for analyzing the behavior of finite-dimensional HRFMs that model translation. To demonstrate this, we apply our approach to estimate the mean initiation rate in M. musculus, finding it to be around 0.17 codons per second. PMID:24384716

  15. Effusion rate, length, and area relationships for some lava flows on Hawaii and Mount Etna with planetary implications

    NASA Technical Reports Server (NTRS)

    Pieri, D.; Baloga, S.

    1984-01-01

    A model for the radiative cooling of thermally well mixed lava flows is presented and the relationship between effusion rate and length and area is analyzed. If radiative cooling is the prime mode of heat loss for a lava flow, one should expect to see a stronger correlation between the effusion rate and the plan area of the flow, than between effusion rate and just flow length. Different flows on a single volcano with differing initial temperatures, volatile content, and gross compositions should yield different areas for a given effusion rate. Likewise, a range of slopes for the relationship between effusion rate and flow area should result from comparisons between different volcanoes. As a test of these ideas, available data on the effusion rates, lengths, and areas of Hawaiian and Etnean flow is studied. It was found that: (1) the effusion rate/area correlation was statistically more significant than the correlation between effusion rate and length for four out of the five eruption episodes which met the necessary criteria of more than three individual flows with area, length, and effusion rate independently measured; (2) that there exists a minimum length and area for a given effusion rate, reflecting competition between overall characteristic proportionality between effusion rate and flow length, width, and area.

  16. Saliva flow rate, buffer capacity, and pH of autistic individuals.

    PubMed

    Bassoukou, Ivy Haralambos; Nicolau, José; dos Santos, Maria Teresa

    2009-03-01

    The objective of the study was to evaluate saliva flow rate, buffer capacity, pH levels, and dental caries experience (DCE) in autistic individuals, comparing the results with a control group (CG). The study was performed on 25 noninstitutionalized autistic boys, divided in two groups. G1 composed of ten children, ages 3-8. G2 composed of 15 adolescents ages 9-13. The CG was composed of 25 healthy boys, randomly selected and also divided in two groups: CG3 composed of 14 children ages 4-8, and CG4 composed of 11 adolescents ages 9-14. Whole saliva was collected under slight suction, and pH and buffer capacity were determined using a digital pHmeter. Buffer capacity was measured by titration using 0.01 N HCl, and the flow rate expressed in ml/min, and the DCE was expressed by decayed, missing, and filled teeth (permanent dentition [DMFT] and primary dentition [dmft]). Data were plotted and submitted to nonparametric (Kruskal-Wallis) and parametric (Student's t test) statistical tests with a significance level less than 0.05. When comparing G1 and CG3, groups did not differ in flow rate, pH levels, buffer capacity, or DMFT. Groups G2 and CG4 differ significantly in pH (p = 0.007) and pHi = 7.0 (p = 0.001), with lower scores for G2. In autistic individuals aged 3-8 and 9-13, medicated or not, there was no significant statistical difference in flow rate, pH, and buffer capacity. The comparison of DCE among autistic children and CG children with deciduous (dmft) and mixed/permanent decayed, missing, and filled teeth (DMFT) did not show statistical difference (p = 0.743). Data suggest that autistic individuals have neither a higher flow rate nor a better buffer capacity. Similar DCE was observed in both groups studied. PMID:18594879

  17. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D

  18. Flow injection online spectrophotometric determination of uranium after preconcentration on XAD-4 resin impregnated with nalidixic acid.

    PubMed

    Shahida, Shabnam; Ali, Akbar; Khan, Muhammad Haleem; Saeed, Muhammad Mufazzal

    2013-02-01

    In this work, spectrophotometer was used as a detector for the determination of uranium from water, biological, and ore samples with a flow injection system coupled with solid phase extraction. In order to promote the online preconcentration of uranium, a minicolumn packed with XAD-4 resin impregnated with nalidixic acid was utilized. The system operation was based on U(VI) ion retention at pH 6 in the minicolumn at flow rate of 15.2 mL min(-1). The uranium complex was removed from the resin by 0.1 mol dm(-3) HCl at flow rate of 3.2 mL min(-1) and was mixed with arsenazo III solution (0.05 % solution in 0.1 mol dm(-3) HCl, 3.2 mL min(-1)) and driven to flow through cell of spectrophotometer where its absorbance was measured at 651 nm. The influence of chemical (pH and HCl (as eluent and reagent medium) concentration) and flow (sample and eluent flow rate and preconcentration time) parameters that could affect the performance of the system as well as the possible interferents was investigated. At the optimum conditions for 60 s preconcentration time (15.2 mL of sample volume), the method presented a detection limit of 1.1 μg L(-1), a relative standard deviation (RSD) of 0.8 % at 100 μg L(-1), enrichment factor of 30, and a sample throughput of 42 h(-1), whereas for 300 s of the preconcentration time (76 mL of sample volume), a detection limit of 0.22 μg L(-1), a RSD of 1.32 % at 10 μg L(-1), enrichment factor of 150, and a sampling frequency of 11 h(-1) were reported. PMID:22580790

  19. Prediction of FV520B Steel Flow Stresses at High Temperature and Strain Rates

    NASA Astrophysics Data System (ADS)

    Han, Xiaolan; Zhao, Shengdun; Zhang, Chenyang; Fan, Shuqin; Xu, Fan

    2015-10-01

    In order to develop reliable constitutive equations for the simulation, the hot deformation behavior of FV520B steel was investigated through isothermal compression tests in a wide range of temperatures from 900 °C to 1100 °C at an interval of 50 °C and strain rate from 0.01 to 10 s-1 on Gleeble-1500D simulator. The effects of temperature and strain rate on deformation behavior were represented by Zener-Holloman parameter in an exponent-type equation of Arrhenius constitutive. The influence of strain was incorporated in the constitutive analysis by material constants expressed as a polynomial function of strain. The constitutive equation (considering the compensation of strain) could precisely predict the flow stress only at strain rate 0.01 s-1 except at the temperatures of 900 °C and 1000 °C, whereas the flow stress predicted by a modified equation (incorporating both the strain and strain rate) demonstrated a well agreement with the experimental data throughout the entire range of temperatures and strain rates. Correlation coefficient (R) of 0.988 and average absolute relative error (AARE) of 5.7% verified the validity of developed equation from statistical analysis, which further confirmed that the modified constitutive equation could accurately predict the flow stress of FV520B steel.

  20. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tewari, Aarti; Sharma, Suresh C.

    2015-04-01

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate the variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.

  1. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    SciTech Connect

    Tewari, Aarti; Sharma, Suresh C.

    2015-04-15

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate the variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.

  2. Use of Flow Cytometry to Measure Biogeochemical Rates and Processes in the Ocean

    NASA Astrophysics Data System (ADS)

    Lomas, Michael W.; Bronk, Deborah A.; van den Engh, Ger

    2011-01-01

    An important goal of marine biogeochemists is to quantify the rates at which elements cycle through the ocean's diverse microbial assemblage, as well as to determine how these rates vary in time and space. The traditional view that phytoplankton are producers and bacteria are consumers has been found to be overly simplistic, and environmental metagenomics is discovering new and important microbial metabolisms at an accelerating rate. Many nutritional strategies previously attributed to one microorganism or functional group are also or instead carried out by other groups. To tease apart which organism is doing what will require new analytical approaches. Flow cytometry, when combined with other techniques, has great potential for expanding our understanding of microbial interactions because groups can be distinguished optically, sorted, and then collected for subsequent analyses. Herein, we review the advances in our understanding of marine biogeochemistry that have arisen from the use of flow cytometry.

  3. Determining the Sun's Deep Meridional Flow Speed Using Active Latitude Drift Rates Since 1874

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2005-01-01

    Dynamo models that incorporate a deep meridional return flow indicate that this flow regulates both the period and the amplitude of the sunspot cycle. We recently examined the equatorward drift of the active latitudes (as given by the centroid of the sunspot areas in each hemisphere) and found evidence supporting this view. In those studies we fit the equatorward drift in each hemisphere for each sunspot cycle with a simple parabola - giving us a drift rate and its deceleration for each hemisphere/cycle. Here we analyze the same data (the Royal Greenwich Observatory/JSAF/NOAA daily active region summaries) to determine the drift rates in each hemisphere on a yearly basis (rotation-by- rotation measurements smoothed to remove high frequencies) and fit them with a simple model for the meridional flow that provides the meridional flow speed as a function of latitude and time from 1874 to 2005. These flow speeds can be used to test dynamo models - some of which have predictive capabilities.

  4. On the relationship between the rate of salivary flow and salivary fluoride clearance.

    PubMed

    Duckworth, Ralph M; Jones, S

    2015-01-01

    The amount of fluoride retained in the mouth following the application of dentifrices, mouthwashes, etc. may be important in determining their anticaries efficacy. In this study we investigated the relationship between the salivary flow rate and salivary fluoride clearance. Ten adults tested six mouthrinses, consisting of aqueous sodium fluoride solutions (0.013, 0.026 mol/l) with and without added sodium chloride (1.28 mol/l) or sucrose (0.44 mol/l), in a randomised order. Prior to each test, subjects swallowed, rinsed for 2 min with 2 ml water and then expectorated into a preweighed container to obtain a measure of initial saliva flow rate. Next, the procedure was repeated using one of the test rinses. Finally, samples of unstimulated whole saliva were collected for up to 3 h after each mouthrinse application and analysed for fluoride. Salivary fluoride concentrations were significantly lower after application of mouthrinses that contained either sucrose or NaCl, both of which compounds markedly enhanced salivary flow, than after the use of corresponding mouthrinses without any additive. Area under the salivary fluoride clearance curve (AUC) values were inversely correlated with salivary flow rate on an individual basis (p < 0.01). The observed behaviour could not be completely attributed to treatment dilution by saliva at the time of application. PMID:25634162

  5. Grain-size-independent plastic flow at ultrahigh pressures and strain rates.

    PubMed

    Park, H-S; Rudd, R E; Cavallo, R M; Barton, N R; Arsenlis, A; Belof, J L; Blobaum, K J M; El-dasher, B S; Florando, J N; Huntington, C M; Maddox, B R; May, M J; Plechaty, C; Prisbrey, S T; Remington, B A; Wallace, R J; Wehrenberg, C E; Wilson, M J; Comley, A J; Giraldez, E; Nikroo, A; Farrell, M; Randall, G; Gray, G T

    2015-02-13

    A basic tenet of material science is that the flow stress of a metal increases as its grain size decreases, an effect described by the Hall-Petch relation. This relation is used extensively in material design to optimize the hardness, durability, survivability, and ductility of structural metals. This Letter reports experimental results in a new regime of high pressures and strain rates that challenge this basic tenet of mechanical metallurgy. We report measurements of the plastic flow of the model body-centered-cubic metal tantalum made under conditions of high pressure (>100  GPa) and strain rate (∼10(7)  s(-1)) achieved by using the Omega laser. Under these unique plastic deformation ("flow") conditions, the effect of grain size is found to be negligible for grain sizes >0.25  μm sizes. A multiscale model of the plastic flow suggests that pressure and strain rate hardening dominate over the grain-size effects. Theoretical estimates, based on grain compatibility and geometrically necessary dislocations, corroborate this conclusion. PMID:25723227

  6. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  7. Effect of flow rate and concentration difference on reverse electrodialysis system

    NASA Astrophysics Data System (ADS)

    Kwon, Kilsugn; Han, Jaesuk; Kim, Daejoong

    2013-11-01

    Various energy conversion technologies have been developed to reduce dependency on limited fossil fuels, including wind power, solar power, hydropower, ocean power, and geothermal power. Among them, reverse electrodialysis (RED), which is one type of salinity gradient power (SGP), has received much attention due to high reliability and simplicity without moving parts. Here, we experimentally evaluated the RED performance with several parameters like flow rate of concentrated and dilute solution, concentration difference, and temperature. RED was composed of endplates, electrodes, spacers, anion exchange membrane, and cation exchange membrane. Endplates are made by a polypropylene. It included the electrodes, flow field for the electrode rinse solution, and path to supply a concentrated and dilute solution. Titanium coated by iridium and ruthenium was used as the electrode. The electrode rinse solution based on hexacyanoferrate system is used to reduce the power loss generated by conversion process form ionic current to electric current. Maximum power monotonously increases as increasing flow rate and concentration difference. Net power has optimal point because pumping power consumption increases with flow rate. This work was supported by Basic Science Research Program (Grat No. NRF-2011-0009993) through the National Research Foundation of Korea.

  8. Changes in Advective Flow Rates and Flow Paths in Response to Earthquakes Recorded by Japan Trench Subseafloor Temperature Observations

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.; Kano, Y.; Mori, J. J.; Chester, F. M.; Eguchi, N.; Toczko, S.

    2013-12-01

    In July 2012, the JFAST project (IODP Expedition 343/343T) installed a temperature observatory across the fault that generated the March 2011 Mw9.0 Tohoku earthquake. The observatory consisted of 55 temperature-sensing dataloggers with <0.001°C resolution attached to a rope extending 820 m beneath the seafloor in a fully cased 3.5' inner diameter borehole. Sensor spacing varied from 1.3 to 9 m over the lowermost ~150 m. Most measurements were taken every 10 seconds - 10 minutes depending on the instrument. Ten of the instruments also recorded pressure at <1000 Pa resolution to provide control on sensor depths. The sensor string and data were recovered after a 9-month deployment in April 2013. In addition to monitoring a frictional heat signal across the plate boundary fault from slip during the 11 March 2011 Tohoku Earthquake, signatures of advective fluid flow are observed within a damage zone at shallower depths. These advective signals appear as transient temperature anomalies above the background geotherm and have large spatially-correlative variability suggestive of fluctuations in fluid flow rate. The advective signals also correspond with locations inferred to have high permeability on the basis of prolonged decay time of drilling disturbances. The locations are also consistent with a zone of steeply-dipping open faults or fractures identified by logging data in an adjacent borehole ~30 m away along strike. The plate boundary fault at 818 mbsf inferred to have slipped during the Tohoku Earthquake shows no indication of advective fluid flow or high permeability. On December 7, 2012, in the middle of the experiment, a Mw7.4 earthquake occurred very close to the observatory. While this earthquake occurred at a depth below the plate boundary fault, it had a clear effect on the hydrogeology and temperatures monitored by the observatory. An advective signal observed at 784 mbsf immediately begins to decay following the earthquake and reappears at 763 mbsf with a

  9. The Mitral Valve Prolapsus: Quantification of the Regurgitation Flow Rate by Experimental Time-Dependant PIV

    NASA Astrophysics Data System (ADS)

    Billy, F.; Coisne, D.; Sanchez, L.; Perrault, R.

    2001-10-01

    Color Doppler is routinely used for visualisation of intra cardiac flows and quantification of valvular heart disease, Nevertheless the 2D visualization of a complex 3D phenomenon is the major limitation of this technique, In particular, in clinical setting, the flow rate calculation upstream a regurgitant orifice (i,e, mitral valve insufficiency), assumes that the velocity field in the convergent region have hemispheric shapes and introduce miscalculation specially in case of prolaps regurgitant orifices, The main objective of this study was to characterize the dynamic 3D velocity field of the convergent region upstream a prolaps model of regurgitant orifice based on 2D time dependent PIV reconstruction.

  10. Flow Rate Driven by Peristaltic Movement in Plasmodial Tube of Physarum Polycephalum

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroyasu; Nakagaki, Toshiyuki

    2008-07-01

    We report a theoretical analysis of protoplasmic streaming driven by peristaltic movement in an elastic tube of an amoeba-like organism. The Plasmodium of Physarum polycephalum, a true slime mold, is a large amoeboid organism that adopts a sheet-like form with a tubular network. The network extends throughout the Plasmodium and enables the transport and circulation of chemical signals and nutrients. This tubular flow is driven by periodically propagating waves of active contraction of the tube cortex, a process known as peristaltic movement. We derive the relationship between the phase velocity of the contraction wave and the flow rate, and we discuss the physiological implications of this relationship.

  11. Mass flow rate of granular material in silos with lateral exit holes

    NASA Astrophysics Data System (ADS)

    Medina, Abraham; Serrano, Armando; Sanchez, Florencio

    2014-11-01

    In this work we have analyzed experimentally the mass flow rate, m', of the lateral outflow of cohesionless granular material through circular orifices of diameter D and rectangular and triangular slots of hydraulic diameter DH made in vertical walls of bins. Experiments were made in order to determine also the influence of the wall thickness of the bin, w. Geometrical and physical arguments, are given to get a general correlation for m' embracing both quantities, D (DH) and w. The angle of repose is also an important factor characterizing these flows.

  12. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  13. Tuning-free controller to accurately regulate flow rates in a microfluidic network.

    PubMed

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  14. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  15. Effect of actuation sequence on flow rates of peristaltic micropumps with PZT actuators.

    PubMed

    Jang, Ling-Sheng; Shu, Kuan; Yu, Yung-Chiang; Li, Yuan-Jie; Chen, Chiun-Hsun

    2009-02-01

    Many biomedical applications require the administration of drugs at a precise and preferably programmable rate. The flow rate generated by the peristaltic micropumps used in such applications depends on the actuation sequence. Accordingly, the current study performs an analytical and experimental investigation to determine the correlation between the dynamic response of the diaphragms in the micropump and the actuation sequence. A simple analytical model of a peristaltic micropump is established to analyze the shift in the resonant frequency of the diaphragms caused by the viscous damping effect. The analytical results show that this damping effect increases as the oscillation frequency of the diaphragm increases. A peristaltic micropump with three piezoelectric actuators is fabricated on a silicon substrate and is actuated using 2-, 3-, 4- and 6-phase actuation sequences via a driving system comprising a microprocessor and a phase controller. A series of experiments is conducted using de-ionized water as the working fluid to determine the diaphragm displacement and the flow rates induced by each of the different actuation sequences under phase frequencies ranging from 50 Hz to 1 MHz. The results show that the damping effect of actuation sequences influences diaphragm resonant frequency, which in turn affects the profiles of flow rates. PMID:18821016

  16. Effect of simple shear flow on photosynthesis rate and morphology of micro algae

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, S.; Fujimoto, M.; Muramatsu, H.; Tanishita, K.

    The convective motion of micro algal suspension gives an advantageous effect on the photosynthetic rate in the bioreactor, however, the nature of convective effect on the photosynthesis has not been fully understood. The propose of this study concerns the nature of photosynthetic rate in a well-defined hydrodynamic shear flow of Spirulina platensis suspension, generated in a double rotating coaxial cylinders. The double rotating coaxial cylinders was installed in the incubator chamber with the controlled illumination intensity and temperature. Two kind of experiments, short and long term experiments, were performed to evaluate the direct effect of shear flow on the photosynthetic rate. The short term experiment indicates that the simple shear flow enables to augment the photosynthesis of Spirulina suspension and simultaneously causes the cell destruction due to the excessive shear stress. The long term experiment for 100 hours reveals that the growth rate and the morphology of Spirulina is sensitive to the external fluid mechanical stimulus. The long term application of mechanical stress on the algae may result in the adaptation of the photosynthetic function and morphology.

  17. Primary standard for liquid flow rates between 30 and 1500 nl/min based on volume expansion.

    PubMed

    Lucas, Peter; Ahrens, Martin; Geršl, Jan; Sparreboom, Wouter; Lötters, Joost

    2015-08-01

    An increasing number of microfluidic systems operate at flow rates below 1 μl/min. Applications include (implanted) micropumps for drug delivery, liquid chromatography, and microreactors. For the applications where the absolute accuracy is important, a proper calibration is required. However, with standard calibration facilities, flow rate calibrations below ~1 μl/min are not feasible because of a too large calibration uncertainty. In the current research, a traceable flow rate using a certain temperature increase rate is proposed. When the fluid properties, starting mass, and temperature increase rate are known, this principle yields a direct link to SI units, which makes it a primary standard. In this article, it will be shown that this principle enables flow rate uncertainties in the order of 2-3% for flow rates from 30 to 1500 nl/min. PMID:26352350

  18. Non-contact flow gauging for the extension and development of rating curves

    NASA Astrophysics Data System (ADS)

    Perks, Matthew; Large, Andy; Russell, Andy

    2015-04-01

    Accurate measurement of river discharge is fundamental to understanding hydrological processes, associated hazards and ecological responses within fluvial systems. Established protocols for determining river discharge are partial, predominantly invasive and logistically difficult during high flows. There is demand for new methods for accurate quantification of flow velocity under high-flow/flood conditions to in turn enable better post-event reconstruction of peak discharge. As a consequence considerable effort has been devoted to the development of innovative technologies for the representation of flow in open channels. Remotely operated fixed and mobile systems capable of providing quantitative estimates of instantaneous and time-averaged flow characteristics using non-contact methods has been a major development. Amongst the new approaches for stand-alone continuous monitoring of surface flows is Large Scale Particle Image Velocimetry (LSPIV). Here we adapt the LSPIV concept, to provide continuous discharge measurements in non-uniform channels with complex flow conditions. High Definition videos (1080p; 30fps) of the water surface are acquired at 5 minute intervals. The image is rectified to correct for perspective distortion using a new, open source tool which minimises errors resulting from oblique image capture. Naturally occurring artefacts on the water surface (e.g. bubbles, debris, etc.) are tracked with the Kanade-Lucas-Tomasi (KLT) algorithm. The data generated is in the form of a complex surface water velocity field which can be interrogated to extract a range of hydrological information such as the streamwise velocity at a cross-section of interest, or even allow the interrogation of hydrodynamic flow structures. Here we demonstrate that this approach is capable of generating river discharge data comparable to concurrent measurements made using existing, accepted technologies (e.g. ADCP). The outcome is better constraint and extension of rating curves

  19. Feasibility study of a low-energy gamma ray system for measuring quantity and flow rate of slush hydrogen

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.

    1992-01-01

    As part of a study to demonstrate the suitability of an X-ray or gamma ray probe for monitoring the quality and flow rate of slush hydrogen, mass attenuation coefficients for Cd-109 X- and gamma radiation in five chemical compounds were measured. The Ag-109 K rays were used for water and acetic acid, whereas E3 transition from the first excited state at 87.7 keV in Ag-109 provided the probe radiation for bromobenzene, alpha (exp 2) chloroisodurene, and cetyl bromide. Measurements were made for a single phase (gas, liquid, solid) as well as mixed phases (liquid plus solid) in all cases. It was shown that the mass attenuation coefficient for the selected radiations is independent of the phase of the test fluids or phase ratios in the case of mixed phase fluids. Described here are the procedure and the results for the five fluid systems investigated.

  20. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres

    PubMed Central

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P. Stephen

    2009-01-01

    Poly(lactic acid) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions, derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples. PMID:17482199

  1. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-10-01

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site`s Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  2. Factors affecting the rate of hydrolysis of phenylboronic acid in lab-scale precipitate reactor studies

    SciTech Connect

    Bannochie, C.J.; Marek, J.C.; Eibling, R.E.; Baich, M.A.

    1992-01-01

    Removing aromatic carbon from an aqueous slurry of cesium-137 and other alkali tetraphenylborates by acid hydrolysis will be an important step in preparing high-level radioactive waste for vitrification at the Savannah River Site's Defense Waste Processing Facility (DWPF). Kinetic data obtained in bench-scale precipitate hydrolysis reactors suggest changes in operating parameters to improve product quality in the future plant-scale radioactive operation. The rate-determining step is the removal of the fourth phenyl group, i.e. hydrolysis of phenylboronic acid. Efforts to maximize this rate have established the importance of several factors in the system, including the ratio of copper(II) catalyst to formic acid, the presence of nitrite ion, reactions of diphenylmercury, and the purge gas employed in the system.

  3. [*C]octanoic acid breath test to measure gastric emptying rate of solids.

    PubMed

    Maes, B D; Ghoos, Y F; Rutgeerts, P J; Hiele, M I; Geypens, B; Vantrappen, G

    1994-12-01

    We have developed a breath test to measure solid gastric emptying using a standardized scrambled egg test meal (250 kcal) labeled with [14C]octanoic acid or [13C]octanoic acid. In vitro incubation studies showed that octanoic acid is a reliable marker of the solid phase. The breath test was validated in 36 subjects by simultaneous radioscintigraphic and breath test measurements. Nine healthy volunteers were studied after intravenous administration of 200 mg erythromycin and peroral administration of 30 mg propantheline, respectively. Erythromycin significantly enhanced gastric emptying, while propantheline significantly reduced gastric emptying rates. We conclude that the [*C]octanoic breath test is a promising and reliable test for measuring the gastric emptying rate of solids. PMID:7995200

  4. Factors influencing the rate of non-enzymatic activation of carboxylic and amino acids by ATP

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1981-01-01

    The nonenzymatic formation of adenylate anhydrides of carboxylic and amino acids is discussed as a necessary step in the origin of the genetic code and protein biosynthesis. Results of studies are presented which have shown the rate of activation to depend on the pKa of the carboxyl group, the pH of the medium, temperature, the divalent metal ion catalyst, salt concentration, and the nature of the amino acid. In particular, it was found that of the various amino acids investigated, phenylalanine had the greatest affinity for the adenine derivatives adenosine and ATP. Results thus indicate that selective affinities between amino acids and nucleotides were important during prebiotic chemical evolution, and may have played a major role in the origin of protein synthesis and genetic coding.

  5. Determining Flow Type and Shear Rate in Magmas From Bubble Shapes and Orientations

    NASA Astrophysics Data System (ADS)

    Rust, A. C.; Manga, M.; Cashman, K. V.

    2001-12-01

    To compare bubble geometries in obsidian to bubbles deformed under known conditions, we measure the deformation of air bubbles in corn syrup in simple shear. We use these experimental data and results of theoretical, numerical and experimental studies to interpret the shear environments that formed the textures preserved in obsidian samples. In particular, we use the shapes and orientations of bubbles in obsidian to estimate shear rates and assess flow type (simple vs. pure shear). This technique can be used to determine shear rates in volcanic conduits, the origin of pyroclastic obsidian, and the emplacement history and dynamics of obsidian flows. The deformation of a bubble is governed by the competing stresses from shearing that deforms, and surface tension that rerounds. The ratio of these stresses is the capillary number, Ca. An initially spherical bubble placed in a low Reynolds number, steady flow field deforms with a time-dependent shape and orientation until it reaches a steady geometry or breaks into smaller bubbles. A useful measure of the magnitude of flow-induced bubble deformation is the dimensionless parameter, D=(l-b)/(l+b) where l and b are the semi-major and semi-minor axes of the sheared bubble. For small deformations (Ca<< 1), low Reynolds number flow and bubble viscosity << suspending fluid viscosity, D ~ 2 Ca in pure shear and D ~ Ca in simple shear. In pure shear flow, bubble elongations are parallel to the shear direction regardless of the magnitude of bubble deformation. However, in simple shear flow, the angle between the bubble elongation and the flow varies with Ca, which is proportional to bubble radius and shear rate. Because the relationships between Ca and bubble orientation and shape for pure and simple shear differ, we can distinguish between these flow types using bubble geometries preserved in obsidian. Furthermore, because Ca is a function of shear rate, we can use relationships between Ca and D to calculate shear rates when

  6. Intrapericardial denervation - Radial artery blood flow and heart rate responses to LBNP

    NASA Technical Reports Server (NTRS)

    Mckeever, Kenneth H.; Skidmore, Michael G.; Keil, Lanny C.; Sandler, Harold

    1990-01-01

    The effects of intrapericardial denervation on the radial artery blood flow velocity (RABFV) and heart rate (HR) responses to LBNP in rhesus monkeys were investigated by measuring the RABFV transcutaneously by a continuous-wave Doppler ultrasonic flowmeter in order to derive an index of forearm blood flow response to low (0 to -20 mm Hg) and high (0 to -60 mm Hg) ramp exposures during supine LBNP. Four of the eight subjects were subjected to efferent and afferent cardiac denervation. It was found that, during low levels of LBNP, monkeys with cardiac denervation exhibited no cardiopulmonary baroreceptor-mediated change in the RABFV or HR, unlike the intact animals, which showed steady decreases in RABFV during both high- and low-pressure protocols. It is suggested that forearm blood flow and HR responses to low-level LBNP, along with pharmacological challenge, are viable physiological tests for verifying the completeness of atrial and cardiopulmonary baroreceptor denervation.

  7. Maximum two-phase flow rates of subcooled nitrogen through a sharp-edged orifice

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    An experiment was conducted and data are presented in which subcooled liquid nitrogen was discharged through a sharp-edged orifice at flow rates near the maximum. The data covered a range of inlet stagnation pressure from slightly above saturation to twice the thermodynamic critical pressure. The data were taken along five separate inlet stagnation isotherms ranging from 0.75 to 1.035 times the thermodynamic critical temperature. The results indicate that: (1) subcooled liquids do not choke or approach maximum flow in an asymptotic manner even though the back pressure is well below saturation; (2) orifice flow coefficients are not constant as is frequently assumed. A metastable jet appears to exist which breaks down if the difference between back pressure and saturation pressure is large enough.

  8. Maximum two-phase flow rates of subcooled nitrogen through a sharp-edged orifice

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Data are presented of an experiment in which subcooled liquid nitrogen was discharged through a sharp-edged orifice at flow rates near the maximum. The data covered a range of inlet stagnation pressures from slightly above saturation to twice the thermodynamic critical pressure. The data were taken along five separate inlet stagnation isotherms ranging from 0.75 to 1.035 times the thermodynamic critical temperature. The results indicate that subcooled liquids do not choke or approach maximum flow in an asymptotic manner even though the back pressure is well below saturation; and orifice flow coefficients are not constant as is frequently assumed. A metastable jet appears to exist which breaks down if the difference between back pressure and saturation pressure is large enough.

  9. Autoregulation of renal blood flow and glomerular filtration rate in the pregnant rabbit

    SciTech Connect

    Woods, L.L.; Mizelle, H.L.; Hall, J.E.

    1987-01-01

    The authors purpose was to determine whether renal autoregulatory capability is retained in pregnancy despite the marked renal vasodilation that occurs at this time. Renal blood flow and glomerular filtration rate (GFR) were measured in anesthetized pregnant (22-27 days gestation) and nonpregnant rabbits during step reductions in renal perfusion pressure from control (100 +/- 3 mmHg) to 50 mmHg. Control renal blood flow and GFR were significantly higher in pregnant animals. Filtration fraction was also significantly elevated in pregnant animals. During step reductions in renal perfusion pressure, renal blood flow was well autoregulated down to approx.70 mmHg in both nonpregnant and pregnant animals. Likewise, GFR was also well autoregulated, falling by 10 +/- 2 and 8 +/- 3% in nonpregnant and pregnant animals, respectively, when perfusion pressure was reduced from 90 to 70 mmHg. These results suggest that renal autoregulation is preserved in pregnancy despite the fact that the renal circulation is already markedly vasodilated.

  10. Body surface related flow rate nomograms in a normal pediatric population.

    PubMed

    Wese, F X; Gaum, L D; Liu, T P; Wong, A K; Hardy, B E; Churchill, B M

    1989-01-01

    Uroflow studies for 511 normal pediatric subjects (272 boys, 239 girls) were analyzed statistically. Nomograms relating peak flow to volume voided and body surface were established. An acceptable lower limit for peak flow was obtained from the data and a volume voided range was calculated so that both criteria could be used with 90% probability to define the normal voiding situation. Body surface area was found to be a more reliable index than age in the establishment of nomograms. In the male population the 90% probability applied to a significantly greater volume voided reliability. In the female population mean peak flow rate rose with increased body surface. Finally, in both sexes the 10% lower limit was closer to the regression mean, allowing a tighter distribution around this value. PMID:2763926

  11. Dissolution of weak acids under laminar flow and rotating disk hydrodynamic conditions: application of a comprehensive convection-diffusion-migration-reaction transport model.

    PubMed

    Neervannan, Seshadri; Southard, Marylee Z; Stella, Valentino J

    2012-09-01

    A steady-state mass transfer model that incorporates convection, diffusion, ionic migration, and ionization reaction processes was extended to describe the dissolution of weak acids under laminar flow and a rotating disk hydrodynamics. The model accurately predicted the experimental dissolution rates of benzoic acid, 2-naphthoic acid, and naproxen in unbuffered and monoprotic buffers within the physiological pH range for both hydrodynamic systems. Simulations at various flow rates indicated a cube root dependency of dissolution rate on the flow rate for a given bulk pH value for the laminar hydrodynamic system, as proposed earlier by Shah and Nelson (1975. J Pharm Sci 64(9):1518-1520) for neutral compounds. The model has limitations in its ability to accurately predict the dissolution of weak acids under certain conditions that imposed steep concentration gradients, such as high pH values, and for polyprotic buffer systems that caused the numerical solution to be unstable, suggesting that alternative numerical techniques may be required to obtain a stable numerical solution at all conditions. The model presents many advantages, most notably the ability to successfully predict the complex process under physiological conditions without simplifying assumptions, and therefore accurately representing the system in a comprehensive manner. PMID:22623113

  12. Hydrodechlorination of TCE in a circulated electrolytic column at high flow rate.

    PubMed

    Fallahpour, Noushin; Yuan, Songhu; Rajic, Ljiljana; Alshawabkeh, Akram N

    2016-02-01

    Palladium-catalytic hydrodechlorination of trichloroethylene (TCE) by cathodic H2 produced from water electrolysis has been tested. For a field in-well application, the flow rate is generally high. In this study, the performance of Pd-catalytic hydrodechlorination of TCE using cathodic H2 is evaluated under high flow rate (1 L min(-1)) in a circulated column system, as expected to occur in practice. An iron anode supports reduction conditions and it is used to enhance TCE hydrodechlorination. However, the precipitation occurs and high flow rate was evaluated to minimize its adverse effects on the process (electrode coverage, clogging, etc.). Under the conditions of 1 L min(-1) flow, 500 mA current, and 5 mg L(-1) initial TCE concentration, removal efficacy using iron anodes (96%) is significantly higher than by mixed metal oxide (MMO) anodes (66%). Two types of cathodes (MMO and copper foam) in the presence of Pd/Al2O3 catalyst under various currents (250, 125, and 62 mA) were used to evaluate the effect of cathode materials on TCE removal efficacy. The similar removal efficiencies were achieved for both cathodes, but more precipitation generated with copper foam cathode (based on the experiments done by authors). In addition to the well-known parameters such as current density, electrode materials, and initial TCE concentration, the high velocities of groundwater flow can have important implications, practically in relation to the flush out of precipitates. For potential field application, a cost-effective and sustainable in situ electrochemical process using a solar panel as power supply is being evaluated. PMID:26344148

  13. The Cooling Rate of an Active Aa Lava Flow Determined Using an Orbital Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Wright, Robert; Garbeil, Harold

    2010-05-01

    The surface temperature of an active lava flow is an important physical property to measure. Through its influence on lava crystallinity, cooling exerts a fundamental control on lava rheology. Remotely sensed thermal radiance data acquired by multispectral sensors such as Landsat Thematic Mapper and the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer, are of insufficient spectral and radiometric fidelity to allow for realistic determination of lava surface temperatures from Earth orbit. This paper presents results obtained from the analysis of active lava flows using hyperspectral data acquired by NASA's Earth Observing-1 Hyperion imaging spectrometer. The contiguous nature of the measured radiance spectrum in the 0.4-2.5 micron region means that, although sensor saturation most certainly occurs, unsaturated radiance data are always available from even the hottest, and most radiant, active lava flow surfaces. The increased number of wavebands available allows for the assumption of more complex flow surface temperature distributions in the radiance-to-temperature inversion processes. The technique is illustrated by using a hyperspectral image of the active lava lake at Erta Ale volcano, Ethiopia, a well characterized calibration target. We then go on to demonstrate how this approach can be used to constrain the surface cooling rate of an active lava flow at Mount Etna, Sicily, using three images acquired during a four day period in September 2004. The cooling rate of the active channel as determined from space falls within the limits commonly assumed in numerical lava flow models. The results provide insights into the temperature-radiance mixture modeling problem that will aid in the analysis of data acquired by future hyperspectral remote sensing missions, such as NASA's proposed HyspIRI mission.

  14. Definition of hydraulic stability of KVGM-100 hot-water boiler and minimum water flow rate

    NASA Astrophysics Data System (ADS)

    Belov, A. A.; Ozerov, A. N.; Usikov, N. V.; Shkondin, I. A.

    2016-08-01

    In domestic power engineering, the methods of quantitative and qualitative-quantitative adjusting the load of the heat supply systems are widely distributed; furthermore, during the greater part of the heating period, the actual discharge of network water is less than estimated values when changing to quantitative adjustment. Hence, the hydraulic circuits of hot-water boilers should ensure the water velocities, minimizing the scale formation and excluding the formation of stagnant zones. The results of the calculations of hot-water KVGM-100 boiler and minimum water flow rate for the basic and peak modes at the fulfillment of condition of the lack of surface boil are presented in the article. The minimal flow rates of water at its underheating to the saturation state and the thermal flows in the furnace chamber were defined. The boiler hydraulic calculation was performed using the "Hydraulic" program, and the analysis of permissible and actual velocities of the water movement in the pipes of the heating surfaces was carried out. Based on the thermal calculations of furnace chamber and thermal- hydraulic calculations of heating surfaces, the following conclusions were drawn: the minimum velocity of water movement (by condition of boiling surface) at lifting movement of environment increases from 0.64 to 0.79 m/s; it increases from 1.14 to 1.38 m/s at down movement of environmental; the minimum water flow rate by the boiler in the basic mode (by condition of the surface boiling) increased from 887 t/h at the load of 20% up to 1074 t/h at the load of 100%. The minimum flow rate is 1074 t/h at nominal load and is achieved at the pressure at the boiler outlet equal to 1.1 MPa; the minimum water flow rate by the boiler in the peak mode by condition of surface boiling increases from 1669 t/h at the load of 20% up to 2021 t/h at the load of 100%.

  15. Effect of Flow Rate of Side-Type Orifice Intake on Withdrawn Water Temperature

    PubMed Central

    Li, Guangning

    2014-01-01

    Side-type orifice intake is a type of selective withdrawal facility used in managing reservoirs to mitigate the negative effects of low-temperature water. Based on the temperature data of a thermal stratified reservoir in China, an experiment was conducted in flume to study the influence of intake flow rate on withdrawn water temperature with different temperature distributions. Results indicated that withdrawn water temperature changed with different flow rates. The temperature change was determined by the water temperature gradients above and below the intake, whereas the change trend of temperature depended on the difference between the water temperature gradient above and below the intake. We likewise proposed a new equation with which the withdrawn water temperature of a thermal stratified reservoir using a side-type orifice could be calculated. These findings could be directly applied to the design and operation of side-type orifice intake in thermal stratified reservoirs. PMID:25019100

  16. The dynamic behavior of articulated pipes conveying fluid with periodic flow rate.

    NASA Technical Reports Server (NTRS)

    Bohn, M. P.; Herrmann, G.

    1973-01-01

    The plane motion of two rigid, straight articulated pipes conveying fluid is examined. In contrast to previous work, the flow rate is not taken as constant, but is allowed to have small periodic oscillations about a mean value, as would be expected in a pump-driven system. It is shown that in the presence of such disturbances, both parametric and combination resonances are possible. When the system can also admit loss of stability by static buckling or by flutter, it is found that the presence of small periodic disturbances constitutes a destabilizing effect. Floquet theory and converging infinite determinant expansions are used to illustrate a basic difference between systems which lose stability by divergence and those that lose stability by flutter. An algebraic criterion is obtained for the minimum amplitude of flow-rate oscillation required for the system to be affected by the presence of small disturbances.

  17. THEORETICAL ANALYSIS OF THE TRANSIENT PRESSURE RESPONSE FROM A CONSTANT FLOW RATE HYDRAULIC CONDUCTIVITY TEST.

    USGS Publications Warehouse

    Morin, Roger H.; Olsen, Harold W.

    1987-01-01

    Incorporating a flow pump into a conventional triaxial laboratory system allows fluid to be supplied to or withdrawn from the base of a sediment sample at small and constant rates. An initial transient record of hydraulic head versus time is observed which eventually stabilizes to a constant steady state gradient across the sample; values of hydraulic conductivity can subsequently be determined from Darcy's law. In this paper, analytical methods are presented for determining values of specific storage and hydraulic conductivity from the initial transient phase of such a constant flow rate test. These methods are based on a diffusion equation involving pore pressure and are analogous to those used to describe the soil consolidation process and also to interpret aquifer properties from pumping tests.

  18. Noise-induced convergence of the low flow rate chaos in the Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Minoru; Nakaiwa, Masaru; Akiya, Takaji; Ohmori, Takao; Yamaguchi, Tomohiko

    The effect of noise on the low flow-rate chaos in the Belousov-Zhabotinsky (BZ) reaction was studied. The chaos was simulated using the three-variable model of Györgyi and Field. Gaussian white noise was imposed on the flow-rate of the reactant solutions fed into CSTR to simulate the so-called type P noise. The range of average noise amplitudes was chosen between 0.01% and 1% related to the inverse residence time. The calculated time series were analyzed on the basis of their Fourier spectra, maximum Lyapunov exponent, Kolmogorov entropies, return maps and invariant density. We found that the noise induces partial order of the period-3-like oscillations in the low flowrate chaos.

  19. Measurement of gas yields and flow rates using a custom flowmeter

    USGS Publications Warehouse

    Circone, S.; Kirby, S.H.; Pinkston, J.C.; Stern, L.A.

    2001-01-01

    A simple gas collection apparatus based on the principles of a Torricelli tube has been designed and built to measure gas volume yields and flow rates. This instrument is routinely used to monitor and collect methane gas released during methane hydrate dissociation experiments. It is easily and inexpensively built, operates at ambient pressures and temperatures, and measures gas volumes of up to 7 L to a precision of about 15 ml (about 0.0025 mol). It is capable of measuring gas flow rates varying from more than 103 to less than 10-1 ml/min during gas evolution events that span minutes to several days. We have obtained a highly reproducible hydrate number of n=5.891 with a propagated uncertainty of ??0.020 for synthetic methane hydrate. ?? 2001 American Institute of Physics.

  20. Flow rate and slip length measurements of water in single micrometer pipes

    NASA Astrophysics Data System (ADS)

    Taborek, Peter; Kannan, Anerudh; Mallin, David; Velasco, Angel

    2014-11-01

    Measurements of pressure driven water flows in hydrophobic and hydrophilic fused quartz capillaries of 1.8 um diameter are compared. Typical flow rates of 1 picoliter/s and pressure drops up to 25 Atm were used. Water exited the capillaries into an oil reservoir where the volume of the pendant drop could be monitored using time lapse photography. The typical growth rate for the drop diameter was ~300 μm per day. The drop size saturates due to diffusion at the interface. For the untreated quartz capillary the results are consistent with a slip of zero. The hydrophilic capillaries are chemically treated with octadecyltrichlorosilane (OTS) to form hydrophobic surfaces. Successful surface preparation is confirmed with the absence of capillary rise. Our technique can detect slip lengths above 20 nm.

  1. Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis

    SciTech Connect

    Spino, M.; Chai, R.P.; Isles, A.F.; Balfe, J.W.; Brown, R.G.; Thiessen, J.J.; MacLeod, S.M.

    1985-07-01

    A study was conducted to examine renal function in 10 healthy control subjects and eight patients with cystic fibrosis in stable condition. Sequential bolus injections of /sup 99m/Tc-DTPA and /sup 125/I-OIH were administered to assess glomerular filtration rate and effective renal plasma flow, respectively. Blood was subsequently collected for 3 hours, and urine for 24 hours. Renal clearances of both radioisotope markers were virtually identical in patients and controls. Inasmuch as neither glomerular filtration rate nor effective renal plasma flow was enhanced in patients with cystic fibrosis, increased clearance of drugs in these patients is unlikely to be the result of enhanced glomerular filtration or tubular secretion.

  2. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    NASA Astrophysics Data System (ADS)

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.

    2013-12-01

    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  3. Entrained liquid fraction calculation in adiabatic disperse-annular flows at low rate in film

    NASA Astrophysics Data System (ADS)

    Yagov, V. V.; Minko, M. V.

    2016-04-01

    In this work, we continue our study [1] and extend further an approach to low reduced pressures. An approximate model of droplets entrainment from the laminar film surface and an equation for calculating entrainment intensity are proposed. To carry out direct verification of this equation using experimental data is extremely difficult because the integral effect—liquid flow rate in a film at a dynamic equilibrium between entrainment and deposition—is usually measured in the experiments. The balance between flows of droplets entrainment and deposition corresponds to the dynamic equilibrium because of turbulent diffusion. The transcendental equation, which was obtained on the basis of this balance, contains one unknown numerical factor and allows one to calculate the liquid rate. Comparing calculation results with the experimental data for the water-air and water-helium flows at low reduced pressures (less than 0.03) has shown their good agreement at the universal value of a numerical constant, if an additional dimensionless parameter, a fourth root of vaporliquid densities ratio, is introduced. The criterion that determines the boundary of using methods of this work and that of [1] in calculations and that reflects effect of pressure and state of film surface on distribution of the liquid in the annular flow is proposed; the numerical value of this criterion has been determined.

  4. Granular-flow rheology: Role of shear-rate number in transition regime

    USGS Publications Warehouse

    Chen, C.-L.; Ling, C.-H.

    1996-01-01

    This paper examines the rationale behind the semiempirical formulation of a generalized viscoplastic fluid (GVF) model in the light of the Reiner-Rivlin constitutive theory and the viscoplastic theory, thereby identifying the parameters that control the rheology of granular flow. The shear-rate number (N) proves to be among the most significant parameters identified from the GVF model. As N ??? 0 and N ??? ???, the GVF model can reduce asymptotically to the theoretical stress versus shear-rate relations in the macroviscous and graininertia regimes, respectively, where the grain concentration (C) also plays a major role in the rheology of granular flow. Using available data obtained from the rotating-cylinder experiments of neutrally buoyant solid spheres dispersing in an interstitial fluid, the shear stress for granular flow in transition between the two regimes proves dependent on N and C in addition to some material constants, such as the coefficient of restitution. The insufficiency of data on rotating-cylinder experiments cannot presently allow the GVF model to predict how a granular flow may behave in the entire range of N; however, the analyzed data provide an insight on the interrelation among the relevant dimensionless parameters.

  5. Vorticity layers in unbounded viscous flow with uniform rates of strain

    NASA Astrophysics Data System (ADS)

    Beronov, K. N.

    1997-10-01

    The Burgers vortex layer solution to the Navier-Stokes equations represents a stationary shear layer driven by a two-dimensional stagnation flow. Here it is generalized to a family of exact solutions representing stationary vorticity layers at stagnation flows with two negative strain rates. As with the Burgers layer, there are corresponding self-similar, time-dependent layer profiles. The layer solutions model the dissipative-scale vorticity structures at early times of flow evolution, when diffuse vorticity is concentrated in layers and simultaneously enhanced and aligned by the stretching of large-scale flows. The new solutions have two generic two-dimensional instabilities: The usual high-Reynolds number causes roll-up. Another instability emerges in the streamwise long-wave limit and makes the Gaussian vorticity layer the fastest-growing mode for any ratio of the negative strain rates. Mathematical arguments are given, suggesting that linear two-dimensional disturbances which are far from these limits, are eventually damped by viscosity.

  6. Prediction of acid hydrolysis of lignocellulosic materials in batch and plug flow reactors.

    PubMed

    Jaramillo, Oscar Johnny; Gómez-García, Miguel Ángel; Fontalvo, Javier

    2013-08-01

    This study unifies contradictory conclusions reported in literature on acid hydrolysis of lignocellulosic materials, using batch and plug flow reactors, regarding the influence of the initial liquid ratio of acid aqueous solution to solid lignocellulosic material on sugar yield and concentration. The proposed model takes into account the volume change of the reaction media during the hydrolysis process. An error lower than 8% was found between predictions, using a single set of kinetic parameters for several liquid to solid ratios, and reported experimental data for batch and plug flow reactors. For low liquid-solid ratios, the poor wetting and the acid neutralization, due to the ash presented in the solid, will both reduce the sugar yield. Also, this study shows that both reactors are basically equivalent in terms of the influence of the liquid to solid ratio on xylose and glucose yield. PMID:23770535

  7. The effect of random precipitation times on the scavenging rate for tropospheric nitric acid

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    1988-01-01

    A model for the effective scavenging rate of a soluble species has been developed. The model takes into account the possibility of positive as well as negative correlations between departures from the mean of the scavenging rate and species concentration. The model is demonstrated for the case of late afternoon rainout of nitric acid occurring just prior to the nighttime cessation of its chemical production. The calculations give effective scavenging rates which are about a factor of 2 to 3 greater than those calculated using the models of Rodhe and Grandell (1972) and Giorgi and Chameides (1985).

  8. Inner retinal metabolic rate of oxygen by oxygen tension and blood flow imaging in rat

    PubMed Central

    Wanek, Justin; Teng, Pang-yu; Albers, John; Blair, Norman P.; Shahidi, Mahnaz

    2011-01-01

    Abstract The metabolic function of inner retinal cells relies on the availability of nutrients and oxygen that are supplied by the retinal circulation. Assessment of retinal tissue vitality and function requires knowledge of both the rate of oxygen delivery and consumption. The purpose of the current study is to report a novel technique for assessment of the inner retinal metabolic rate of oxygen (MO2) by combined measurements of retinal blood flow and vascular oxygen tension (PO2) in rat. The application of this technology has the potential to broaden knowledge of retinal oxygen dynamics and advance understanding of disease pathophysiology. PMID:21991548

  9. Association among salivary flow rate, caries risk and nutritional status in pre-schoolers.

    PubMed

    Rodríguez, Patricia N; Martínez Reinoso, Josefina; Gamba, Carlota A; Salgado, Pablo A; Mateo, María Teresa; Manto, María del Carmen; Molgatini, Susana L; Iglesias, Verónica; Argentieri, Ángela B

    2015-01-01

    Modeer T. et al.(2011) claim that there is association between decreased salivary flow rate and caries in obese adolescents. The aim of this study was to determine the association among nutritional status, salivary flow rate and caries risk in preschoolers. The study comprised 60 children aged 3 to 6 years attending kindergartens in areas immediately adjacent to Buenos Aires City, Argentina. Body weight and height of the children were determined. Body mass index was calculated and the population was classified anthropometrically according to the WHO 2007 (WHO Anthro. Program). Caries risk was determined. Saliva was collected in sterile graduated widemouth containers, without stimulation and without food restrictions. Salivary flow rate (SFR) was determined. Statistical analysis was performed using Pearson's test. It was found that 56.7% (IC95%: 37.7-74.0) of anthropometrically adequate children (Ad) and 37.0% (IC95%: 20.1-57.5) of overweight and obese children (OW/Ob) had caries. The odds ratio for caries (OR=3.78; IC95%: 1.2-11.8, p=0.02) was almost 4 times higher in adequate children than in the others. SFR was 0.534 0.318 ml/min in Ad and 0.439 } 0.234 ml/min in OW/Ob. Pearson's test showed no correlation between SFR and nutritional status (r= 0.004592, p= 0.5977). Although the presence of caries was lower in overweight and obese children, no correlation was found between nutritional status and salivary flow rate. PMID:26355891

  10. Development and evaluation of a meter for measuring return line fluid flow rates during drilling

    SciTech Connect

    Loeppke, G.E.; Schafer, D.M.; Glowka, D.A.; Scott, D.D.; Wernig, M.D. ); Wright, E.K. )

    1992-06-01

    The most costly problem routinely encountered in geothermal drilling is lost circulation, which occurs when drilling fluid is lost to the formation rather than circulating back to the surface. The successful and economical treatment of lost circulation requires the accurate measurement of drilling fluid flow rate both into and out of the well. This report documents the development of a meter for measuring drilling fluid outflow rates in the return line of a drilling rig. The meter employs a rolling counterbalanced float that rides on the surface of the fluid in the return line. The angle of the float pivot arm is sensed with a pendulum potentiometer, and the height of the float is calculated from this measurement. The float height is closely related to the fluid height and, therefore, the flow rate in the line. The prototype rolling float meter was extensively tested under laboratory conditions in the Wellbore Hydraulics Flow Facility; results from these tests were used in the design of the field prototype rolling float meter. The field prototype meter was tested under actual drilling conditions in August and September 1991 at the Long Valley Exploratory Well near Mammoth Lakes, Ca. In addition, the performance of several other commercially available inflow and outflow meters was evaluated in the field. The tested inflow meters included conventional pump stroke counters, rotary pump speed counters, magnetic flowmeters, and an ultrasonic Doppler flowmeter. On the return flow line, a standard paddlemeter, an acoustic level meter, and the prototype rolling float meter were evaluated for measuring drilling fluid outflow rates.

  11. Relationship between crash rate and hourly traffic flow on interurban motorways.

    PubMed

    Martin, Jean-Louis

    2002-09-01

    This paper describes the relationship between crash incidence rates and hourly traffic volume and discusses the influence of traffic on crash severity, based on observations made on 2000 km of French interurban motorways over 2 years. Incidence rates involving property damage-only crashes and injury-crashes are highest when traffic is lightest (under 400 vehicles/h). These incidence rates are at their lowest when traffic flows at a rate of 1000-1500 vehicles/h. For heavier traffic flows, crash incidence rates increase steadily as traffic increases on 2- and 3-lane motorways and inflect on 2-lane motorways when traffic increases to a level of 3000 vehicles/h. For an equivalent light traffic level, the number of crashes is higher on three-lane than on 2-lane motorways and higher at weekends (when truck traffic is restricted) than on weekdays. In heavy traffic, the number of crashes is higher on weekdays. We found no significant difference between the number of daytime and night-time crashes, whatever the traffic. No difference was observed in crash severity by number of lanes or period in the week for a given level of traffic. However, severity is greater at night and when hourly traffic is light. Compared to the number of vehicles on the road, light traffic is a safety problem in terms of frequency and severity, and road safety campaigns targeting motorway users to influence their behavior in these driving conditions should be introduced. PMID:12214956

  12. Removal Rates of Aqueous Cr(VI) by Zero-Valent Iron Measured Under Flow Conditions

    SciTech Connect

    Kaplan, D.I.

    2002-05-10

    Studies were undertaken to measure the rate of Cr(VI) removal from the aqueous phase by zero-valent iron, Fe(0), under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a groundwater remediation technology that replaces the sand in a filter pack of a conventional well with a reactive material, such as Fe(0). The pseudo-first-order rate coefficients measured under flow conditions were comparable to those previously measured under batch conditions that had significantly greater ratios of solution volume to Fe(0) surface area. Between the range of 20 and 100 weight percent Fe(0), there was little measurable change in the reaction kinetics. Thus, it may be possible to include sand into the reactive filter packs in the event it is necessary to increase filter pack porosity or to decrease the accumulation of secondary reaction products that may lead to filter pack plugging. Background water chemistry had only marginal effects on reaction rate coefficients. The reaction rates measured in this study indicated that an Fe(0) filter pack could be used to lower Cr(VI) concentrations by several orders of magnitude in a once-through mode of operation of the Reactive Well Technology.

  13. Comparison of parameterized nitric acid rainout rates using a coupled stochastic-photochemical tropospheric model

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.; Thompson, Anne M.; Owens, Melody A.; Herwehe, Jerold A.

    1989-01-01

    A major tropospheric loss of soluble species such as nitric acid results from scavenging by water droplets. Several theoretical formulations have been advanced which relate an effective time-independent loss rate for soluble species to statistical properties of precipitation such as the wet fraction and length of a precipitation cycle. In this paper, various 'effective' loss rates that have been proposed are compared with the results of detailed time-dependent model calculations carried out over a seasonal time scale. The model is a stochastic precipitation model coupled to a tropospheric photochemical model. The results of numerous time-dependent seasonal model runs are used to derive numerical values for the nitric acid residence time for several assumed sets of preciptation statistics. These values are then compared with the results obtained by utilizing theoretical 'effective' loss rates in time-independent models.

  14. Flow Rate In Microfluidic Pumps As A Function Of Tension and Pump Motor Head Speed

    NASA Astrophysics Data System (ADS)

    Irwin, Anthony; McBride, Krista

    2015-03-01

    As the use of microfluidic devices has become more common in recent years the need for standardization within the pump systems has grown. The pumps are ball bearing rotor microfluidic pumps and work off the idea of peristalsis. The rapid contraction and relaxation propagating down a tube or a microfluidic channel. The ball bearings compress the tube (occlusion) and move along part of the tube length forcing fluid to move inside of the tube in the same direction of the ball bearings. When the ball bearing rolls off the area occupied by the microfluidic channel, its walls and ceiling undergo restitution and a pocket of low pressure is briefly formed pulling more of the liquid into the pump system. Before looking to standardize the pump systems it must be known how the tension placed by the pumps bearing heads onto the PDMS inserts channels affect the pumps performance (mainly the flow rate produced). The relationship of the speed at which the bearings on the motor head spin and the flow rate must also be established. This research produced calibration curves for flow rate vs. tension and rpm. These calibration curves allow the devices to be set to optimal user settings by simply varying either the motor head tension or the motor head speed. I would like to acknowledge the help and support of Vanderbilt University SyBBURE program, Christina Marasco, Stacy Sherod, Franck Block and Krista McBride.

  15. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  16. The role of silane gas flow rate on PECVD-assisted fabrication of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Hamidinezhad, Habib; Ashkarran, Ali Akbar; Abdul-Malek, Zulkurnain

    2016-03-01

    Silicon (Si) core-shell nanowires (NWs) were successfully prepared by very high frequency plasma-enhanced chemical vapor deposition technique, and the effect of silane (SiH4) gas flow rates on physicochemical properties of silicon NWs was investigated. Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize SiNWs. Structural properties and morphology of NWs were studied as a function of SiH4 gas flow rate. Microscopic analysis revealed the formation of SiNWs with average tip and stem diameters ranging from 18 to 30 and 21 to 67 nm, respectively. Furthermore, the average length of Si NWs calculated based on the FESEM images was about 300-1800 nm. We have found that the growth of SiNWs increased with increasing in SiH4 gas flow rate. XRD, Raman spectra in addition to high-resolution TEM, verified the formation of crystalline SiNWs. A possible growth mechanism was suggested based on our observations.

  17. Study on three-dimensional printing using electrohydrodynamic inkjet by analysis of mass flow rate

    NASA Astrophysics Data System (ADS)

    Ko, Han Seo; Lee, Soo-Hong; Lee, Pil-Ho; Lee, Sang Won

    2014-11-01

    An electrohydrodynamic (EHD) jet can produce much smaller droplets than nozzle sizes even for highly viscous liquid. Micro scale patterns are produced by a direct patterning of the EHD inkjet printing technique to obtain lamination layers. A cone-jet mode shows good performance for line and surface printings. A prediction method for a flow rate was proposed by performing experiments and deriving an equation. The calculation was carried out by dividing the electric field and the fluid regions. Dielectric liquids were used as the working fluid, whose flow rate was measured at the applied voltage of 1.5 kV to 2.5 kV. The measured flow rate was affected by viscosity, surface tension, and density as fluid properties, and dielectric constant and electric conductivity as properties of electric fields for the voltage. Then, parameters of the printing were investigated by printed line width and thickness at various conditions. As a result, the applied static pressure had more effect on the line printing although the line width was affected by the stage velocity. The significant role of the parameters was confirmed to produce scaffolds using the three-dimensional EHD printing. This work supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. S-2011-0023457).

  18. Structural modulation of silicon nanowires by combining a high gas flow rate with metal catalysts

    NASA Astrophysics Data System (ADS)

    Seo, Dongjea; Lee, Jaejun; Kim, Sung Wook; Kim, Ilsoo; Na, Jukwan; Hong, Min-Ho; Choi, Heon-Jin

    2015-04-01

    We grew silicon nanowires (SiNWs) by a vapor-liquid-solid (VLS) mechanism using metal catalysts of gold (Au), titanium (Ti), manganese (Mn), and iron (Fe) under a high flow rate of hydrogen (H2). This combination of catalyst types and high gas flow rate revealed the potential for growing various SiNWs, including kinked SiNWs (with Au), ultra-thin SiNWs having diameters about 5 nm (with Ti), rough-surfaced SiNWs (with Mn), and ribbon-shaped SiNWs tens of microns in width (with Fe). The high flow rate of gas affects the VLS mechanism differently for each combination; for example, it induces an unstable solid-liquid interfaces (with Au), active etching of the catalyst (with Ti), sidewall deposition by a vapor-solid (VS) mechanism, and an asymmetric precipitation of Si in the catalyst (with Fe). Our combinatorial approach may provide a new path for the structural modulation of SiNWs via the VLS mechanism.

  19. Measurements of Flow Rate and Trajectory of Aircraft Tire-Generated Water Spray

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Stubbs, Sandy M.

    1987-01-01

    An experimental investigation was conducted at the NASA Langley Research Center to measure the flow rate and trajectory of water spray generated by an aircraft tire operating on a flooded runway. Tests were conducted in the Hydrodynamics Research Facility and made use of a partial airframe and a nose tire from a general aviation aircraft. Nose tires from a commercial transport aircraft were also used. The effects of forward speed, tire load, and water depth on water spray patterns were evaluated by measuring the amount and location of water captured by an array of tubes mounted behind the test tire. Water ejected from the side of the tire footprint had the most significant potential for ingestion into engine inlets. A lateral wake created on the water surface by the rolling tire can dominate the shape of the spray pattern as the distance aft of the tire is increased. Forward speed increased flow rates and moved the spray pattern inboard. Increased tire load caused the spray to become less dense. Near the tire, increased water depths caused flow rates to increase. Tests using a fuselage and partial wing along with the nose gear showed that for certain configurations, wing aerodynamics can cause a concentration of spray above the wing.

  20. Water cut measurement of oil-water flow in vertical well by combining total flow rate and the response of a conductance probe

    NASA Astrophysics Data System (ADS)

    Chen, Jianjun; Xu, Lijun; Cao, Zhang; Zhang, Wen; Liu, Xingbin; Hu, Jinhai

    2015-09-01

    In this paper, a conductance probe-based well logging instrument was developed and the total flow rate is combined with the response of the conductance probe to estimate the water cut of the oil-water flow in a vertical well. The conductance probe records the time-varying electrical characteristics of the oil-water flow. Linear least squares regression (LSR) and nonlinear support vector regression (SVR) were used to establish models to map the total flow rate and features extracted from the probe response onto the water cut, respectively. Principal component analysis (PCA) and partial least squares analysis (PLSA) techniques were employed to reduce data redundancy within the extracted features. An experiment was carried out in a vertical pipe with an inner diameter of 125 mm and a height of 24 m in an experimental multi-phase flow setup, Daqing Oilfield, China. In the experiment, oil-water flow was used and the total flow rate varied from 10 to 200 m3 per day and the water cut varied from 0% to 100%. As a direct comparison, the cases were also studied when the total flow rate was not used as an independent input to the models. The results obtained demonstrate that: (1) the addition of the total flow rate as an input to the regression models can greatly improve the accuracy of water cut prediction, (2) the nonlinear SVR model performs much better than the linear LSR model, and (3) for the SVR model with the total flow rate as an input, the adoption of PCA or PLSA not only decreases the dimensions of inputs, but also increases prediction accuracy. The SVR model with five PCA-treated features plus the total flow rate achieves the best performance in water cut prediction, with a coefficient of determination (R2) as high as 0.9970. The corresponding root mean squared error (RMSE) and mean quoted error (MQE) are 0.0312% and 1.99%, respectively.

  1. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents

    PubMed Central

    Heusch, G

    2008-01-01

    Starting out from a brief description of the determinants of coronary blood flow (perfusion, pressure, extravascular compression, autoregulation, metabolic regulation, endothelium-mediated regulation and neurohumoral regulation) the present review highlights the overwhelming importance of metabolic regulation such that coronary blood flow is increased at increased heart rate under physiological circumstances and the overwhelming importance of extravascular compression such that coronary blood flow is decreased at increased heart rate through reduction of diastolic duration in the presence of severe coronary stenoses. The review goes on to characterize the role of heart rate in the redistribution of regional myocardial blood flow between a normal coronary vascular tree with preserved autoregulation and a poststenotic vasculature with exhausted coronary reserve. When flow is normalized by heart rate, there is a consistent close relationship of regional myocardial blood flow and contractile function for each single cardiac cycle no matter whether or not there is a coronary stenosis and what the actual blood flow is. β-Blockade improves both flow and function along this relationship. When the heart rate reduction associated with β-blockade is prevented by pacing, α-adrenergic coronary vasoconstriction is unmasked and both flow and function are deteriorated. Selective heart rate reduction, however, improves both flow and function without any residual negative effect such as unmasked α-adrenergic coronary vasoconstriction or negative inotropic action. PMID:18223669

  2. Measurement and Analysis of Extracellular Acid Production to Determine Glycolytic Rate.

    PubMed

    Mookerjee, Shona A; Brand, Martin D

    2015-01-01

    Extracellular measurement of oxygen consumption and acid production is a simple and powerful way to monitor rates of respiration and glycolysis(1). Both mitochondrial (respiration) and non-mitochondrial (other redox) reactions consume oxygen, but these reactions can be easily distinguished by chemical inhibition of mitochondrial respiration. However, while mitochondrial oxygen consumption is an unambiguous and direct measurement of respiration rate(2), the same is not true for extracellular acid production and its relationship to glycolytic rate (3-6). Extracellular acid produced by cells is derived from both lactate, produced by anaerobic glycolysis, and CO2, produced in the citric acid cycle during respiration. For glycolysis, the conversion of glucose to lactate(-) + H(+) and the export of products into the assay medium is the source of glycolytic acidification. For respiration, the export of CO2, hydration to H2CO3 and dissociation to HCO3(-) + H(+) is the source of respiratory acidification. The proportions of glycolytic and respiratory acidification depend on the experimental conditions, including cell type and substrate(s) provided, and can range from nearly 100% glycolytic acidification to nearly 100% respiratory acidification (6). Here, we demonstrate the data collection and calculation methods needed to determine respiratory and glycolytic contributions to total extracellular acidification by whole cells in culture using C2C12 myoblast cells as a model. PMID:26709455

  3. ZERO-VALENT IRON REMOVAL RATES OF AQUEOUS Cr(VI) MEASURED UNDER FLOW CONDITIONS

    SciTech Connect

    Kaplan, Daniel I.; Gilmore, Tyler J.

    2004-06-01

    The rates of Cr(VI) removal from the aqueous phase by zero-valent iron, Fe(0), was measured under flow conditions. The intent of this work was to generate removal rate coefficients that would be applicable to the Reactive Well Technology, a groundwater remediation technology that replaces the sand in a filter pack of a conventional well with a reactive material, such as Fe(0). Dissolved Cr(VI) concentration, dissolved O2 concentration, and Eh data indicated that Cr(VI) removal from the aqueous phase was mass-transfer limited. All pseudo-first-order regression fits to the data were significant (P≤0.05), however, they did not capture many of the salient aspects of the data, including that the removal rate often decreased as contact time increased. As such, application of these rate coefficients to predict long-term Cr(VI) removal were compromised. The rate coefficients measured under flow conditions were comparable to those measured previously under batch conditions with significantly greater solution:solid ratios. Between the range of 20 and 100 wt-% Fe(0) in the column, there was little measurable change in the reaction kinetics. Thus, it may be possible to include sand into the reactive filter packs in the event it is necessary to increase filter pack porosity or to decrease the accumulation of secondary reaction products that may lead to filter pack plugging. Background water chemistry (0.2 M NaHCO3, distilled water, and a carbonate-dominated groundwater) had only marginal, if any, effects on reaction rate coefficients. The reaction rates measured in this study indicated that an Fe(0) filter pack could be used to lower Cr(VI) concentrations by several orders of magnitude in a once-through mode of operation of the Reactive Well Technology.

  4. Influence of paleo-heat flow variations on estimates of exhumation rates

    NASA Astrophysics Data System (ADS)

    von Hagke, Christoph; Luijendijk, Elco

    2016-04-01

    Deriving exhumation estimates from thermochronological data requires assumptions on the paleo-thermal field of the Earth's crust. Existing thermal models take into account heat transfer by diffusion and advection caused by the movement of the crust and erosion as well as changes in geothermal gradient over time caused by changes in structure or thermal properties of the crust, surface temperature and elevation. However, temperature field of mountain belts and basins may vary not only due to tectonic activity or landscape evolution. We present a high-resolution thermochronology data set from the foreland fold-and-thrust belt of the European Alps that shows substantial variation of cooling rates probably caused by hydrothermal flow in the subsurface in the past. Tectonic blocks with uniform exhumation history show variations in cooling of up to 50°C. In addition, changes in cooling between two different fault blocks show opposite trend than expected by models of their tectonic history. The observed historic changes in paleo-geothermal gradients are equal in magnitude to a present-day thermal anomaly caused by the upward flow of warm fluids in the distal part of the foreland basin. The strong variations in geothermal gradients by fluid flow imply that straightforward interpretation of landscape evolution rates using thermochronology is not possible, unless the thermal effects of fluid flow are taken into account. This is of particular importance to studies where the amount of thermochronology data is limited and local hydrothermal anomalies could easily be interpreted as regional exhumation signals. On the other hand, our findings suggest that thermochronology offers new opportunities to constrain magnitude and timing of paleo-heat flow variations in the upper crust.

  5. The effect of a 6 Fr catheter on flow rate in men

    PubMed Central

    Richard, Patrick; Ordonez, Nydia Icaza; Tu, Le Mai

    2013-01-01

    Background: The pressure-flow study (PFS) is considered the gold standard for the detection of bladder outlet obstruction (BOO) in men. However, several studies have raised the possibility that transurethral catheterization might have an obstructive effect on PFS while others did not. Objectives: To evaluate the effect of a 6 Fr transurethral catheter on the pressure-flow study and to evaluate its clinical implication in men. Materials and Methods: A retrospective chart review study of 515 men referred for an evaluation of lower urinary tract symptoms and who underwent an urodynamic study (UDS). Of those, 133 met our inclusion/exclusion criteria. Non invasive free-flow studies (NIFFS) were performed before every UDS. Cystometrogram and PFS were performed through a 6 Fr transurethral catheter. Results: The maximal flow rate (Qmax) was significantly higher (P < 0.001) in the NIFFS (15.0 mL/s (range 9.0-23.0)) than in the PFS (11.0 mL/s (range 7.0-18.5)). This difference became greater (18.5 mL/s (range 10.0-30.3) vs. 13.0 mL/s (range 6.0-25.0), in favor of the NIFFS) when we analyzed only the patients (n = 34) who voided a similar volume. According to the International Continence Society (ICS) nomogram, the use of the PFS alone would have resulted in the upstaging of 14% of cases (10/71) in the overall population and 24% (4/17) in the sub-analyzed group. Conclusion: A 6 Fr transurethral catheter significantly lowers the maximal flow rate by 4 mL/s. Its presence resulted in an upstaging on the ICS nomogram. However, further studies will be necessary to confirm this upstaging. PMID:24311907

  6. The measurements of water flow rates in the straight microchannel based on the scanning micro-PIV technique

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Han, W.; Xu, M.

    2011-12-01

    Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.

  7. Zonal rate model for stacked membrane chromatography. I: characterizing solute dispersion under flow-through conditions.

    PubMed

    Francis, Patrick; von Lieres, Eric; Haynes, Charles A

    2011-08-01

    Conventional models of both packed-bed and stacked-membrane chromatography typically attribute elution band broadening to non-idealities within the column. However, when the column length to diameter ratio is greatly reduced, as in stacked-membrane chromatography, variations in solute residence times within the feed-distribution (inlet) and eluent-collection (outlet) manifolds can also contribute to band broadening. We report on a new zonal rate model (ZRM) for stacked-membrane chromatography that improves on existing hold-up volume models that rely on one plug-flow reactor and one stirred-tank reactor in series to describe dispersion of solute during transport into and out of the column. The ZRM radially partitions the membrane stack and the hold-up volumes within the inlet and outlet manifolds into zones to better capture non-uniform flow distribution effects associated with the large column diameter to height ratio. Breakthrough curves from a scaled-down anion-exchange membrane chromatography module using ovalbumin as a model protein were collected at flow rates ranging from 1.5 to 20 mL min(-1) under non-binding conditions and used to evaluate the ZRM as well as previous models. The ZRM was shown to be significantly more accurate in describing protein dispersion and breakthrough. The model was then used to decompose breakthrough data, where it was found that variations in solute residence time distributions within the inlet and outlet manifolds make the dominant contribution to solute dispersion over the recommended range of feed flow rates. The ZRM therefore identifies manifold design as a critical contributor to separation quality within stacked-membrane chromatography units. PMID:21703630

  8. Measurement of proton transfer reaction rates in a microwave cavity discharge flowing afterglow

    NASA Astrophysics Data System (ADS)

    Brooke, George M., IV

    The reaction rate coefficients between the hydronium ion and the molecules ethene (C2H4), propene (C 3H6), 1-butene (C4H8) and hydrogen sulfide (H2S) were measured at 296 K. The measured reaction rates were compared to collision rates calculated using average dipole orientation (ADO) theory. Reaction efficiency depends primarily upon the proton affinity of the molecules. All the measurements were obtained using the newly developed microwave cavity discharge flowing afterglow (MCD-FA) apparatus. This device uses an Asmussen-type microwave cavity discharge ion source that is spatially separated from the flow tube, eliminating many of the problems inherent with the original FA devices. In addition to measuring reaction rate coefficients, the MCD-FA was shown to be an effective tool for measuring trace compounds in atmospheric air. This method has many advantages over current detection techniques since compounds can be detected in almost real time, large mass ranges can be scanned quickly, and repeated calibration is not required. Preliminary measurements were made of car exhaust and exhaled alveolar air. Car exhaust showed the presence of numerous hydrocarbons, such as butene, benzene and toluene while the exhaled alveolar air showed the presence of various volatile organic compounds such as methanol and acetone.

  9. Hypothermia reduces cerebral metabolic rate and cerebral blood flow in newborn pigs

    SciTech Connect

    Busija, D.W.; Leffler, C.W. )

    1987-10-01

    The authors examined effects of hypothermia on cerebral metabolic rate and cerebral blood flow in anesthetized, newborn pigs (1-4 days old). Cerebral blood flow (CBF) was determined with 15-{mu}m radioactive microspheres. Regional CBF ranged from 44 to 66 ml{center dot}min{sup {minus}1}{center dot}100 g{sup {minus}1}, and cerebral metabolic rate was 1.94 {plus minus} 0.23 ml O{sub 2}{center dot}100 g{sup {minus}1}{center dot}min{sup {minus}1} during normothermia (39{degree}C). Reduction of rectal temperature to 34-35{degree}C decreased CBF and cerebral metabolic rate 40-50%. In another group of piglets, they examined responsiveness of the cerebral circulation to arterial hypercapnia during hypothermia. Although absolute values for normocapnic and hypercapnic CBF were reduced by hypothermia and absolute values for normocapnic and hypercapnic cerebrovascular resistance were increased, the percentage changes from control in these variables during hypercapnia were similar during normothermia and hypothermia. In another group of animals that were maintained normothermic and exposed to two episodes of hypercapnia, there was no attenuation of cerebrovascular dilation during the second episode. They conclude that hypothermia reduces CBF secondarily to a decrease in cerebral metabolic rate and that percent dilator responsiveness to arterial hypercapnia is unaltered when body temperature is reduced.

  10. An automatic system for acidity determination based on sequential injection titration and the monosegmented flow approach.

    PubMed

    Kozak, Joanna; Wójtowicz, Marzena; Gawenda, Nadzieja; Kościelniak, Paweł

    2011-06-15

    An automatic sequential injection system, combining monosegmented flow analysis, sequential injection analysis and sequential injection titration is proposed for acidity determination. The system enables controllable sample dilution and generation of standards of required concentration in a monosegmented sequential injection manner, sequential injection titration of the prepared solutions, data collecting, and handling. It has been tested on spectrophotometric determination of acetic, citric and phosphoric acids with sodium hydroxide used as a titrant and phenolphthalein or thymolphthalein (in the case of phosphoric acid determination) as indicators. Accuracy better than |4.4|% (RE) and repeatability better than 2.9% (RSD) have been obtained. It has been applied to the determination of total acidity in vinegars and various soft drinks. The system provides low sample (less than 0.3 mL) consumption. On average, analysis of a sample takes several minutes. PMID:21641455

  11. Physical Property Requirements of Ion-exchange Polymer Membranes for Acid-base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Roddecha, Supacharee; Thayer, Peter; Jorne', Jacob; Anthamatten, Mitchell

    2013-03-01

    Flow batteries offer feasible solutions to grid-scale storage of intermittent power. We are developing a new type of flow battery that reversibly controls an acid-base neutralization reaction. The battery consists of two highly reversible hydrogen gas electrodes that are exposed to low and high pH process streams. A brine solution runs between the acid and base streams and is separated by cationic and anionic exchange membranes. For both charge and discharge phases, hydrogen gas is produced at one electrode and consumed at the other. During charging, an external potential is applied across the two electrodes to electrochemically produce acid and base from the fed brine solution. Discharge involves electrochemical neutralization of acid and base streams, resulting in current flow through an external load. Several charge and discharge cycles were performed to demonstrate proof of concept. Experiments were conducted to determine the physical property requirements of the ionic exchange polymer layers. Properties including ion conductivity, permselectivity, and membrane stability will be discussed.

  12. Observation of pressure gradient and related flow rate effect on the plasma parameters in plasma processing reactor

    SciTech Connect

    Lee, Hyo-Chang; Kim, Aram; Chung, Chin-Wook; Moon, Se Youn

    2011-02-15

    In industrial plasma processes, flow rate has been known to a key to control plasma processing results and has been discussed with reactive radical density, gas residence time, and surface reaction. In this study, it was observed that the increase in the flow rate can also change plasma parameters (electron temperature and plasma density) and electron energy distribution function in plasma processing reactor. Based on the measurement of gas pressure between the discharge region and the pumping port region, the considerable differences in the gas pressure between the two regions were found with increasing flow rate. It was also observed that even in the discharge region, the pressure gradient occurs at the high gas flow rate. This result shows that increasing the flow rate results in the pressure gradient and causes the changes in the plasma parameters.

  13. Reynolds-stress and dissipation rate budgets in a turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Kim, J.; Moin, P.

    1987-01-01

    The budgets for the Reynolds stresses and for the dissipation rate of the turbulence kinetic energy are computed using direct simulation data of a turbulent channel flow. The budget data reveal that all the terms in the budget become important close to the wall. For inhomogeneous pressure boundary conditions, the pressure-strain term is split into a return term, a rapid term, and a Stokes term. The Stokes term is important close to the wall. The rapid and return terms play different roles depending on the component of the term. A split of the velocity pressure-gradient term into a redistributive term and a diffusion term is proposed, which should be simpler to model. The budget data is used to test existing closure models for the pressure-strain term, the dissipation rate, and the transport rate. In general, further work is needed to improve the models.

  14. Aero-optics: Simultaneous MHz Rate Planar Flow Visualization and Optical Wavefront Measurements

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Samimy, Mo; Lempert, Walter; Harris, Scott; Widiker, Jeff; Duncan, Bradley

    2002-11-01

    In response to a need for more detailed understanding of aero-optic effects in realistic flows (high-speed and compressible), we apply very recently developed MHz rate planar diagnostic techniques to simultaneously perform flow visualization and wavefront measurement on a Mach 1.3 rectangular jet. A custom-built pulse burst laser is used to produce 17 pulses (10 nsec duration) with inter-pulse timing of 4 microseconds (250 kHz). The pulses were formed into a laser sheet and illuminated the mixing layer in a streamwise plane of a Mach 1.3 rectangular, aspect ratio 3 jet. Images were captured using a Dalsa 64K1M camera that can record 17 images at framing rates as high as 1 MHz. Optical wavefronts were measured at rates up to 1 MHz using a newly designed Shack-Hartmann (SH) wavefront sensor. A 10 mW HeNe laser beam was spatially filtered and expanded to a 2.5 cm diameter and passed through the center of the rectangular jet 8 nozzle exit heights downstream of the nozzle exit. A lenslet array (1.024 mm pitch, 260 mm f. l.) and a -1000 mm f. l. lens are used to form a grid pattern of dots onto a PSI-IV camera capable of capturing 28 frames at 1 MHz framing rates. The camera was operated at 500 kHz and imaged a 6 x 6 pattern of dots. The displacement of each dot corresponds to the local wavefront tilt induced by the jet as the initially planar wavefront passes through the flow. Results are being analyzed to obtain a correlation between turbulence structures contained in the mixing layer of the jet and the optical distortion produced by these structures.

  15. Constraints on Lunar Heat Flow Rates from Diviner Lunar Radiometer Polar Observations

    NASA Astrophysics Data System (ADS)

    Paige, D. A.; Siegler, M. A.; Vasavada, A. R.

    2010-12-01

    The heat flow rate from the lunar interior is a fundamental property of the moon that is related to its composition, interior structure and history. Lunar heat flow rates have been measured at the Apollo 15 and 17 landing sites [1], but it is widely believed that the measured values of 0.021 Wm-2 and 0.016 Wm-2 respectively may not be representative of the moon as a whole due to the presence of enhanced radiogenic elements at these landing sites [2]. The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter [3] has acquired an extensive set of thermal emission from the lunar surface at infrared wavelengths, including the first radiometric measurements of surface temperatures at the lunar poles [4]. Due to its low obliquity and rough topography, the moon has extensive cryogenic regions at high latitudes that never receive direct sunlight. The temperatures of the coldest of these regions can be used to place upper limits on the heat flow rate from the lunar interior because if other heat sources are neglected, then surface thermal emission is balanced by heat flow from warmer lunar interior [5]. Diviner has mapped the north and south polar regions over a complete annual cycle and we have identified a 4 km2 area within Hermite Crater in the north polar region that has a winter season nighttime Channel 9 (100-400 micron) brightness temperatures in of less than 20K. These low temperatures would imply a lunar heat flow rate of less than 0.010 Wm-2, which may be consistent with expectations for regions of the moon that do not contain enhanced concentrations of radiogenic elements [2,6], as is the case for the north polar region of the moon [7]. [1] Langseth, M. G. et al, Proc. Lunar Sci. Conf, 7th, 3143-3171, 1976. [2] Warren, P. H. and K. K. L. Rasmussen, JGR 92, 3453-3465, 1987. [3] Paige, D. A. et al, Space Sci. Rev, 150:125-160, 2010. [4] Paige, D. A. et al., Science, in press, 2010. [5] Watson, K. JGR 72, 3301-3302, 1967. [6] Wieczorek, M. A. and R

  16. The effect of chewing gum's flavor on salivary flow rate and pH

    PubMed Central

    Karami-Nogourani, Maryam; Kowsari-Isfahan, Raha; Hosseini-Beheshti, Mozhgan

    2011-01-01

    Background: Chewing sugar-free gums is a convenient way to increase salivary flow. Salivary flow increases in response to both gustatory (taste) and mechanical (chewing) stimuli, and chewing gum can provide both of these stimuli. The aim of this study was to compare the effect of five different flavors of sugar-free chewing gum on the salivary flow rate (SFR) and pH. Materials and Methods: Fifteen dental students volunteered at the same time on six consecutive days, to collect one minute unstimulated saliva. After five minutes, while some volunteers continued to collect only unstimulated saliva, the others asked to start chewing one of the five flavored gums randomly. The flavors were spearmint, cinnamon, watermelon, strawberry, and apple. The whole saliva was collected over time periods of 0 – 1, 1 – 3, and 3 – 6 minutes, and the SFR and pH were also measured. The data were subjected to pair t-test, repeated-measures analysis of variance, and Duncan tests. Results: Compared to the unstimulated rate, all five different flavored gums significantly increased the SFR within six minutes. Although the flow rate peaked during the first minute of stimulation with all five products, it reduced gradually, but still remained above the unstimulated saliva, after six minutes. In the first minute, the strawberry-flavored gums showed the highest weight, yet, it only induced a significantly higher SFR compared to the cinnamon-flavored gums. During one to three minutes, strawberry and apple-flavored gums showed significantly higher SFR, respectively, compared to cinnamon-flavored gums. There were no significant differences in the flow rates elicited by each flavored gum through the three-to-six minute interval, although the spearmint-flavored gums induced slightly higher SFR. Only the spearmint and cinnamon-flavored gum significantly increased the salivary pH. Conclusion: Gum flavor can affect the SFR and special flavors may be advised for different individuals according to

  17. Dental erosive wear and salivary flow rate in physically active young adults

    PubMed Central

    2012-01-01

    Background Little attention has been directed towards identifying the relationship between physical exercise, dental erosive wear and salivary secretion. The study aimed i) to describe the prevalence and severity of dental erosive wear among a group of physically active young adults, ii) to describe the patterns of dietary consumption and lifestyle among these individuals and iii) to study possible effect of exercise on salivary flow rate. Methods Young members (age range 18-32 years) of a fitness-centre were invited to participate in the study. Inclusion criteria were healthy young adults training hard at least twice a week. A non-exercising comparison group was selected from an ongoing study among 18-year-olds. Two hundred and twenty participants accepted an intraoral examination and completed a questionnaire. Seventy of the exercising participants provided saliva samples. The examination was performed at the fitness-centre or at a dental clinic (comparison group), using tested erosive wear system (VEDE). Saliva sampling (unstimulated and stimulated) was performed before and after exercise. Occlusal surfaces of the first molars in both jaws and the labial and palatal surfaces of the upper incisors and canines were selected as index teeth. Results Dental erosive wear was registered in 64% of the exercising participants, more often in the older age group, and in 20% of the comparison group. Enamel lesions were most observed in the upper central incisors (33%); dentine lesions in lower first molar (27%). One fourth of the participants had erosive wear into dentine, significantly more in males than in females (p = 0.047). More participants with erosive wear had decreased salivary flow during exercise compared with the non-erosion group (p < 0.01). The stimulated salivary flow rate was in the lower rage (≤ 1 ml/min) among more than one third of the participants, and more erosive lesions were registered than in subjects with higher flow rates (p < 0.01). Conclusion

  18. On a sparse pressure-flow rate condensation of rigid circulation models.

    PubMed

    Schiavazzi, D E; Hsia, T Y; Marsden, A L

    2016-07-26

    Cardiovascular simulation has shown potential value in clinical decision-making, providing a framework to assess changes in hemodynamics produced by physiological and surgical alterations. State-of-the-art predictions are provided by deterministic multiscale numerical approaches coupling 3D finite element Navier Stokes simulations to lumped parameter circulation models governed by ODEs. Development of next-generation stochastic multiscale models whose parameters can be learned from available clinical data under uncertainty constitutes a research challenge made more difficult by the high computational cost typically associated with the solution of these models. We present a methodology for constructing reduced representations that condense the behavior of 3D anatomical models using outlet pressure-flow polynomial surrogates, based on multiscale model solutions spanning several heart cycles. Relevance vector machine regression is compared with maximum likelihood estimation, showing that sparse pressure/flow rate approximations offer superior performance in producing working surrogate models to be included in lumped circulation networks. Sensitivities of outlets flow rates are also quantified through a Sobol׳ decomposition of their total variance encoded in the orthogonal polynomial expansion. Finally, we show that augmented lumped parameter models including the proposed surrogates accurately reproduce the response of multiscale models they were derived from. In particular, results are presented for models of the coronary circulation with closed loop boundary conditions and the abdominal aorta with open loop boundary conditions. PMID:26671219

  19. Combination of CFD and DOE to analyze and improve the mass flow rate in urinary catheters.

    PubMed

    Frawley, Patrick; Geron, Marco

    2009-08-01

    The urinary catheter is a thin plastic tube that has been designed to empty the bladder artificially, effortlessly, and with minimum discomfort. The current CH14 male catheter design was examined with a view to optimizing the mass flow rate. The literature imposed constraints to the analysis of the urinary catheter to ensure that a compromise between optimal flow, patient comfort, and everyday practicality from manufacture to use was achieved in the new design. As a result a total of six design characteristics were examined. The input variables in question were the length and width of eyelets 1 and 2 (four variables), the distance between the eyelets, and the angle of rotation between the eyelets. Due to the high number of possible input combinations a structured approach to the analysis of data was necessary. A combination of computational fluid dynamics (CFD) and design of experiments (DOE) has been used to evaluate the "optimal configuration." The use of CFD couple with DOE is a novel concept, which harnesses the computational power of CFD in the most efficient manner for prediction of the mass flow rate in the catheter. PMID:19604024

  20. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia.

    PubMed

    Iwamoto, Erika; Katayama, Keisho; Ishida, Koji

    2015-06-01

    The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (V˙O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hypoxic (FIO2 = 0.12 or 0.13) gas mixtures. Subjects then performed four exercise bouts at the same relative intensities (30 and 60% V˙O2peak) for 30 min under normoxic or hypoxic conditions. Brachial artery diameter and blood velocity were simultaneously recorded, using Doppler ultrasonography. Retrograde SR was enhanced with increasing exercise intensity under both conditions at 10 min of exercise. Thereafter, retrograde blood flow and SR in normoxia returned to pre-exercise levels, with no significant differences between the two exercise intensities. In contrast, retrograde blood flow and SR in hypoxia remained significantly elevated above baseline and was significantly greater at 60% than at 30% V˙O2peak. We conclude that differences in exercise intensity affect brachial artery retrograde blood flow and SR during prolonged exercise under hypoxic conditions. PMID:26038470

  1. Competitive kinetics versus stopped flow method for determining the degradation rate constants of steroids by ozonation.

    PubMed

    López-López, Alberto; Flores-Payán, Valentín; León-Becerril, Elizabeth; Hernández-Mena, Leonel; Vallejo-Rodríguez, Ramiro

    2016-01-01

    Steroids are classified as endocrine disrupting chemicals; they are persistent with low biodegradability and are hardly degraded by conventional methods. Ozonation process has been effective for steroids degradation and the determination of the kinetics is a fundamental aspect for the design and operation of the reactor. This study assessed two methods: competitive kinetics and stopped flow, for determining the degradation kinetics of two steroids, estradiol (E2) and ethinylestradiol (EE2) in spiked water. Experiments were performed at pH 6, 21 °C, and using tertbutyl alcohol as scavenger of hydroxyl radicals; competitive kinetics method used sodium phenolate as reference compound. For the stopped flow, the experiments were performed in a BioLogic SFM-3000/S equipment. For both methods, the second order rate constants were in the order of 10(6) and 10(5) M(-1) s(-1) for E2 and EE2 respectively. The competitive kinetics can be applied with assurance and reliability but needing an additional analysis method to measure the residual concentrations. Stopped flow method allows the evaluation of the degradation kinetics in milliseconds and avoids the use of additional analytical methodologies; this method allows determining the reaction times on line. The methods are applicable for degradation of other emerging contaminants or other steroids and could be applied in water treatment at industrial level. Finally, it is important to consider the resources available to implement the most appropriate method, either competitive kinetics or the stopped-flow method. PMID:27478722

  2. Flow stress and material model study at high strain rate and low temperature

    NASA Astrophysics Data System (ADS)

    Kandasamy, R.; Brar, N. S.

    1994-07-01

    The flow stress of M200 maraging steel, C1008 steel, and 6061-T6 aluminum at low temperatures to 123 K and at a strain rate of about 103 s-1 is measured using split Hopkinson bar (SHB). Liquid nitrogen is used to cool the specimen to the desired temperature. The flow stress of M200 increased to 1.93 GPa at 123 K, an increase of 22 percent compared to 1.58 GPa at room temperature. In the case of 6061-T6 aluminum the flow stress remains at about 390 MPa at temperatures in the range 293 to 123 K. For C1008 steel, the flow stress increased to 860 MPa at 123 K from its room temperature value of 610 MPa. The failure strain for C1008 steel at 123 K was 0.02, compared to 0.2 at room temperature, suggesting a ductile to brittle transition. The Johnson-Cook material model constant ``m'', which accounts for temperature effect, is 0.5 for C1008 at temperatures in the range 123 K to 950 K.

  3. Exercise intensity modulates brachial artery retrograde blood flow and shear rate during leg cycling in hypoxia

    PubMed Central

    Iwamoto, Erika; Katayama, Keisho; Ishida, Koji

    2015-01-01

    The purpose of this study was to elucidate the effect of exercise intensity on retrograde blood flow and shear rate (SR) in an inactive limb during exercise under normoxic and hypoxic conditions. The subjects performed two maximal exercise tests on a semi-recumbent cycle ergometer to estimate peak oxygen uptake (O2peak) while breathing normoxic (inspired oxygen fraction [FIO2 = 0.21]) and hypoxic (FIO2 = 0.12 or 0.13) gas mixtures. Subjects then performed four exercise bouts at the same relative intensities (30 and 60% O2peak) for 30 min under normoxic or hypoxic conditions. Brachial artery diameter and blood velocity were simultaneously recorded, using Doppler ultrasonography. Retrograde SR was enhanced with increasing exercise intensity under both conditions at 10 min of exercise. Thereafter, retrograde blood flow and SR in normoxia returned to pre-exercise levels, with no significant differences between the two exercise intensities. In contrast, retrograde blood flow and SR in hypoxia remained significantly elevated above baseline and was significantly greater at 60% than at 30% O2peak. We conclude that differences in exercise intensity affect brachial artery retrograde blood flow and SR during prolonged exercise under hypoxic conditions. PMID:26038470

  4. Habitat availability vs. flow rate for the Pecos River, Part 1 : Depth and velocity availability.

    SciTech Connect

    James, Scott Carlton; Schaub, Edward F.; Jepsen, Richard Alan; Roberts, Jesse Daniel

    2004-02-01

    The waters of the Pecos River in New Mexico must be delivered to three primary users: (1) The Pecos River Compact: each year a percentage of water from natural river flow must be delivered to Texas; (2) Agriculture: Carlsbad Irrigation District has a storage and diversion right and Fort Sumner Irrigation District has a direct flow diversion right; and, (3) Endangered Species Act: an as yet unspecified amount of water is to support Pecos Bluntnose Shiner Minnow habitat within and along the Pecos River. Currently, the United States Department of Interior Bureau of Reclamation, the New Mexico Interstate Stream Commission, and the United States Department of the Interior Fish and Wildlife Service are studying the Pecos Bluntnose Shiner Minnow habitat preference. Preliminary work by Fish and Wildlife personnel in the critical habitat suggest that water depth and water velocity are key parameters defining minnow habitat preference. However, river flows that provide adequate preferred habitat to support this species have yet to be determined. Because there is a limited amount of water in the Pecos River and its reservoirs, it is critical to allocate water efficiently such that habitat is maintained, while honoring commitments to agriculture and to the Pecos River Compact. This study identifies the relationship between Pecos River flow rates in cubic feet per second (cfs) and water depth and water velocity.

  5. The Relationships between Arterial Oxygen Flow Rate, Oxygen Binding by Hemoglobin, and Oxygen Utilization after Myocardial Infarction

    PubMed Central

    Lichtman, Marshall A.; Cohen, Jules; Young, Jerald A.; Whitbeck, April A.; Murphy, Marion

    1974-01-01

    The interrelationships of arterial oxygen flow rate index, oxygen binding by hemoglobin, and oxygen consumption have been examined in patients with acute myocardial infarction. Proportional extraction of oxygen increased in close association with decreasing oxygen flow rate, and hence, whole body oxygen consumption was constant over nearly a three-fold variation in arterial oxygen flow rate. A reduction in hemoglobin-oxygen affinity at in vivo conditions of pH. Pco2 and temperature also occurred in proportion to the reduction in arterial oxygen flow rate. Therefore, the increased proportional removal of oxygen from arterial blood at low oxygen flow rates, required to maintain oxygen consumption, may have been facilitated by the reduced affinity of hemoglobin for oxygen at in vivo conditions. However, the decrease in affinity did not appear to explain more than 30-40% of the increased extraction. Respiratory alkalosis was a frequent occurrence in these patients and 2,3-diphosphoglycerate was positively associated with blood pH as well as with the time-averaged proportion of deoxyhemoglobin in arterial and venous blood. Hemoglobin-oxygen affinity measured at standard conditions and the mixed venous oxygen saturation were equally good indicators of reduced arterial oxygen flow rate in patients without shock. However, S̄vo2 is more easily measured and is a more useful indicator of reduced oxygen flow rate, since its relationship to oxygen flow appears to be independent of affinity changes and time. PMID:4855047

  6. Analysis of the flow rate characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zhang, Jianhui; Wang, Shouyin; Liu, Weidong

    2014-05-01

    Microchannel heat sink with high heat transfer coefficients has been extensively investigated due to its wide application prospective in electronic cooling. However, this cooling system requires a separate pump to drive the fluid transfer, which is uneasy to minimize and reduces their reliability and applicability of the whole system. In order to avoid these problems, valveless piezoelectric pump with fractal-like Y-shape branching tubes is proposed. Fractal-like Y-shape branching tube used in microchannel heat sinks is exploited as no-moving-part valve of the valveless piezoelectric pump. In order to obtain flow characteristics of the pump, the relationship between tube structure and flow rate of the pump is studied. Specifically, the flow resistances of fractal-like Y-shape branching tubes and flow rate of the pump are analyzed by using fractal theory. Then, finite element software is employed to simulate the flow field of the tube, and the relationships between pressure drop and flow rate along merging and dividing flows are obtained. Finally, valveless piezoelectric pumps with fractal-like Y-shape branching tubes with different fractal dimensions of diameter distribution are fabricated, and flow rate experiment is conducted. The experimental results show that the flow rate of the pump increases with the rise of fractal dimension of the tube diameter. When fractal dimension is 3, the maximum flow rate of the valveless pump is 29.16 mL/min under 100 V peak to peak (13 Hz) power supply, which reveals the relationship between flow rate and fractal dimensions of tube diameter distribution. This paper investigates the flow characteristics of valveless piezoelectric pump with fractal-like Y-shape branching tubes, which provides certain references for valveless piezoelectric pump with fractal-like Y-shape branching tubes in application on electronic chip cooling.

  7. Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by-products.

    PubMed

    Jaworek, K; Czaplicka, M; Bratek, Ł

    2014-10-01

    The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm(-3) phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45 × 10(-3) and 20.12 × 10(-3)) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified. PMID:24824504

  8. Measuring the orientation and rotation rate of 3D printed particles in turbulent flow

    NASA Astrophysics Data System (ADS)

    Voth, Greg; Marcus, Guy G.; Parsa, Shima; Kramel, Stefan; Ni, Rui; Cole, Brendan

    2014-11-01

    The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 μm. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow. This research is supported by NSF Grant DMR-1208990.

  9. Measuring the orientation and rotation rate of 3D printed particles in turbulent flow

    NASA Astrophysics Data System (ADS)

    Voth, Greg; Kramel, Stefan; Cole, Brendan

    2015-03-01

    The orientation distribution and rotations of anisotropic particles plays a key role in many applications ranging from icy clouds to papermaking and drag reduction in pipe flow. Experimental access to time resolved orientations of anisotropic particles has not been easy to achieve. We have found that 3D printing technology can be used to fabricate a wide range of particle shapes with smallest dimension down to 300 ?m. So far we have studied rods, crosses, jacks, tetrads, and helical shapes. We extract the particle orientations from stereoscopic video images using a method of least squares optimization in Euler angle space. We find that in turbulence the orientation and rotation rate of many particles can be understood using a simple picture of alignment of both the vorticity and a long axis of the particle with the Lagrangian stretching direction of the flow.

  10. Electron-Ion Recombination Rate Coefficient Measurements in a Flowing Afterglow Plasma

    NASA Technical Reports Server (NTRS)

    Gougousi, Theodosia; Golde, Michael F.; Johnsen, Rainer

    1996-01-01

    The flowing-afterglow technique in conjunction with computer modeling of the flowing plasma has been used to determine accurate dissociative-recombination rate coefficients alpha for the ions O2(+), HCO(+), CH5(+), C2H5(+), H3O(+), CO2(+), HCO2(+), HN2O(+), and N2O(+) at 295 K. We find that the simple form of data analysis that was employed in earlier experiments was adequate and we largely confirm earlier results. In the case of HCO(+) ions, published coefficients range from 1.1 X 10(exp -7) to 2.8 x 10(exp -7) cu cm/S, while our measurements give a value of 1.9 x 10(exp -7) cu cm/S.

  11. Slow plastic strain rate compressive flow in binary CoAl intermetallics

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1985-01-01

    Constant-velocity elevated temperature compression tests have been conducted on a series of binary CoAl intermetallics produced by hot extrusion of blended prealloyed powders. The as-extruded materials were polycrystalline, and they retained their nominal 10-micron grain size after being tested between 1100 and 1400 K at strain rates ranging from 2 x 10 to the -4th to 2 x 10 to the -7th per sec. Significant plastic flow was obtained in all cases; while cracking was observed, much of this could be due to failure at matrix-oxide interfaces along extrusion stringers rather than to solely intergranular fracture. A maximum in flow strength occurs at an aluminum-to-cobalt ratio of 0.975, and the stress exponent appears to be constant for aluminum-to-cobalt ratios of 0.85 or more. It is likely that very aluminum-deficient materials deform by a different mechanism than do other compositions.

  12. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE PAGESBeta

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  13. Swfoldrate: predicting protein folding rates from amino acid sequence with sliding window method.

    PubMed

    Cheng, Xiang; Xiao, Xuan; Wu, Zhi-cheng; Wang, Pu; Lin, Wei-zhong

    2013-01-01

    Protein folding is the process by which a protein processes from its denatured state to its specific biologically active conformation. Understanding the relationship between sequences and the folding rates of proteins remains an important challenge. Most previous methods of predicting protein folding rate require the tertiary structure of a protein as an input. In this study, the long-range and short-range contact in protein were used to derive extended version of the pseudo amino acid composition based on sliding window method. This method is capable of predicting the protein folding rates just from the amino acid sequence without the aid of any structural class information. We systematically studied the contributions of individual features to folding rate prediction. The optimal feature selection procedures are adopted by means of combining the forward feature selection and sequential backward selection method. Using the jackknife cross validation test, the method was demonstrated on the large dataset. The predictor was achieved on the basis of multitudinous physicochemical features and statistical features from protein using nonlinear support vector machine (SVM) regression model, the method obtained an excellent agreement between predicted and experimentally observed folding rates of proteins. The correlation coefficient is 0.9313 and the standard error is 2.2692. The prediction server is freely available at http://www.jci-bioinfo.cn/swfrate/input.jsp. PMID:22933332

  14. High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe

    PubMed Central

    Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L.; Fogelqvist, Johan; Goicoechea, Pablo G.; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G.; Kremer, Antoine

    2014-01-01

    Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands. PMID:24454802

  15. Inhibition of viscous fluid fingering: A variational scheme for optimal flow rates

    NASA Astrophysics Data System (ADS)

    Miranda, Jose; Dias, Eduardo; Alvarez-Lacalle, Enrique; Carvalho, Marcio

    2012-11-01

    Conventional viscous fingering flow in radial Hele-Shaw cells employs a constant injection rate, resulting in the emergence of branched interfacial shapes. The search for mechanisms to prevent the development of these bifurcated morphologies is relevant to a number of areas in science and technology. A challenging problem is how best to choose the pumping rate in order to restrain growth of interfacial amplitudes. We use an analytical variational scheme to look for the precise functional form of such an optimal flow rate. We find it increases linearly with time in a specific manner so that interface disturbances are minimized. Experiments and nonlinear numerical simulations support the effectiveness of this particularly simple, but not at all obvious, pattern controlling process. J.A.M., E.O.D. and M.S.C. thank CNPq/Brazil for financial support. E.A.L. acknowledges support from Secretaria de Estado de IDI Spain under project FIS2011-28820-C02-01.

  16. Analysis of carrier gas flow rate effect on hydroxyapatite particle formation in ultrasonic spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Setiawan, Adhi; Nurtono, Tantular; Winardi, Sugeng

    2016-02-01

    Ultrasonic spray pyrolysis has been well-known process for producing fine particles from single and multicomponent materials. Here, the effect of carrier gas flow rate in ultrasonic spray pyrolysis process was studied in the particle formation of hydroxyapatite using solution precursor of Ca(CH3COO)2 and (NH4)2HPO4 with Ca/P ratio of 1.67. The experimental analysis was accompanied with computational fluid dynamics (CFD) simulation for comparison. In the simulation, the evaporation of the solvent in the droplets, a second evaporation due to crust formation, the decomposition reaction of the precursor involving the transfer of heat and mass transfer from droplet to surrounding were considered. By maintaining temperature at 900 °C, the residence time increased with decreasing the carrier gas flow rate led to the increasing the evaporation rate and the reacted fraction of the precursor. The predicted and experimental results of average particles size were agreed well with discrepancy 6.3%.

  17. Assessing the numerical dissipation rate and viscosity in CFD simulations of fluid flows

    NASA Astrophysics Data System (ADS)

    Schranner, F. S.; Domaradzki, J. A.; Hickel, S.; Adams, N. A.

    2014-11-01

    We describe a method for quantifying the effective numerical dissipation rate and the effective numerical viscosity in Computational Fluid Dynamics simulations. Differently from the previous approach that was formulated in spectral space, the proposed method is developed in a physical-space representation and allows for determining numerical dissipation rates and viscosities locally, i.e., at the individual cell level or for arbitrary subdomains of the computational domain. The method is self-contained using only results produced by the Navier-Stokes solver being investigated. Since no extraneous information is required, the method is suitable for a straightforward quantification of the numerical dissipation as a post-processing step. We demonstrate the method's capabilities on the example of implicit large-eddy simulations of three-dimensional Taylor-Green vortex flows that exhibit laminar, transitional, and turbulent flow behavior at different stages of time evolution. For validation, we compare the numerical dissipation rate obtained using this method with exact reference data obtained with an accurate, spectral-space approach. Supported by Deutsche Forschungsgemeinschaft and Alexander von Humboldt Foundation.

  18. Effect of dietary fatty acids on metabolic rate and nonshivering thermogenesis in golden hamsters.

    PubMed

    Jefimow, Małgorzata; Wojciechowski, Michał S

    2014-02-01

    Hibernating rodents prior to winter tend to select food rich in polyunsaturated fatty acids (PUFA). Several studies found that such diet may positively affect their winter energy budget by enhancing torpor episodes. However, the effect of composition of dietary fatty acids (FA) on metabolism of normothermic heterotherms is poorly understood. Thus we tested whether diets different in FA composition affect metabolic rate (MR) and the capacity for nonshivering thermogenesis (NST) in normothermic golden hamsters (Mesocricetus auratus). Animals were housed in outdoor enclosures from May 2010 to April 2011 and fed a diet enriched with PUFA (i.e., standard food supplemented weekly with sunflower and flax seeds) or with saturated and monounsaturated fatty acids (SFA/MUFA, standard food supplemented with mealworms). Since diet rich in PUFA results in lower MR in hibernating animals, we predicted that PUFA-rich diet would have similar effect on MR of normothermic hamsters, that is, normothermic hamsters on the PUFA diet would have lower metabolic rate in cold and higher NST capacity than hamsters supplemented with SFA/MUFA. Indeed, in winter resting metabolic rate (RMR) below the lower critical temperature was higher and NST capacity was lower in SFA/MUFA-supplemented animals than in PUFA-supplemented ones. These results suggest that the increased capacity for NST in PUFA-supplemented hamsters enables them lower RMR below the lower critical temperature of the thermoneural zone. PMID:24151228

  19. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    NASA Astrophysics Data System (ADS)

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  20. Reduction of Tubular Flow Rate as a Mechanism of Oliguria in the Early Phase of Endotoxemia Revealed by Intravital Imaging.

    PubMed

    Nakano, Daisuke; Doi, Kent; Kitamura, Hiroaki; Kuwabara, Takashige; Mori, Kiyoshi; Mukoyama, Masashi; Nishiyama, Akira

    2015-12-01

    Urine output is widely used as a criterion for the diagnosis of AKI. Although several potential mechanisms of septic AKI have been identified, regulation of urine flow after glomerular filtration has not been evaluated. This study evaluated changes in urine flow in mice with septic AKI. The intratubular urine flow rate was monitored in real time by intravital imaging using two-photon laser microscopy. The tubular flow rate, as measured by freely filtered dye (FITC-inulin or Lucifer yellow), time-dependently declined after LPS injection. At 2 hours, the tubular flow rate was slower in mice injected with LPS than in mice injected with saline, whereas BP and GFR were similar in the two groups. Importantly, fluorophore-conjugated LPS selectively accumulated in the proximal tubules that showed reduced tubular flow at 2 hours and luminal obstruction with cell swelling at 24 hours. Delipidation of LPS or deletion of Toll-like receptor 4 in mice abolished these effects, whereas neutralization of TNF-α had little effect on LPS-induced tubular flow retention. Rapid intravenous fluid resuscitation within 6 hours improved the tubular flow rate only when accompanied by the dilation of obstructed proximal tubules with accumulated LPS. These findings suggest that LPS reduces the intratubular urine flow rate during early phases of endotoxemia through a Toll-like receptor 4-dependent mechanism, and that the efficacy of fluid resuscitation may depend on the response of tubules with LPS accumulation. PMID:25855781

  1. Optimization of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass conversion to ethanol

    SciTech Connect

    Torget, R.; Hatzis, C.; Hayward, T.K.

    1996-12-31

    A reverse-flow, two-temperature dilute-acid prehydrolysis process of commercial yellow poplar sawdust using two percolation reactors was designed to simulate countercurrent flow of the biomass solids and prehydrolysis liquor, and to exploit the xylan biphasic kinetics. Lower temperatures (150-174{degrees}C) are initially applied to hydrolyze the easily hydrolyzable xylan, and higher temperatures (180-204{degrees}C) are applied to hydrolyze the remaining xylan. Two reactors were used to optimize each temperature range, using varying concentrations of sulfuric acid from 0.073-0.73 wt% and reaction times. Yields of soluble xylose, as high as 97% of theoretical, expressed as monomeric and oligomeric xylose, have been achieved with only 2.9% of the xylan being degraded to furfural, at concentrations of total potential sugar between 2.4 and 3.7 wt% before flashing. Depending on the combined severity of the acid concentration, residence time of the solids and liquor, and temperature of prehydrolysis, 81-100% of the hemicellulose, 3-32% of the glucans, and up to 46% of the Klason lignin could be solubilized. The lignocellulosic substrate produced from the pretreatment is readily converted to ethanol at a yield of approximately 91% of theoretical, with ethanol concentrations of up to 4.0 wt% in 55 h via a simultaneous saccharification and fermentation (SSF) process. In terms of xylose recovery and ethanol production level and rate, the present results are far superior to those previously reported using a single-temperature, dilute-acid pretreatment. 42 refs., 6 figs., 2 tabs.

  2. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions

  3. Prediction of Ablation Rates from Solid Surfaces Exposed to High Temperature Gas Flow

    NASA Technical Reports Server (NTRS)

    Akyuzlu, Kazim M.; Coote, David

    2013-01-01

    ablation. Two different ablation models are proposed to determine the heat loss from the solid surface due to the ablation of the solid material. Both of them are physics based. Various numerical simulations were carried out using both models to predict the temperature distribution in the solid and in the gas flow, and then predict the ablation rates at a typical NTR motor hydrogen gas temperature and pressure. Solid mass loss rate per foot of a pipe was also calculated from these predictions. The results are presented for fully developed turbulent flow conditions in a sample SS pipe with a 6 inch diameter.

  4. Bubbling at high flow rates in inviscid and viscous liquids (slags)

    NASA Astrophysics Data System (ADS)

    Engh, T. Abel; Nilmani, M.

    1988-02-01

    The behavior of gas discharging into melts at high velocities but still in the bubbling regime has been investigated in a laboratory modeling study for constant flow conditions. Air or helium was injected through a vertical tuyere into water, zinc-chloride, and aqueous glycerol solutions. High speed cinematography and pressure measurements in the tuyere have been carried out simultaneously. Pressure fluctuations at the injection point were monitored and correlated to the mode of bubble formation. The effects of high gas flow rates and high liquid viscosities have been examined in particular. Flow rates were employed up to 10-3 m3/s and viscosity to 0.5 Ns/m2. In order to attain a high gas momentum, the tuyere diameter was only 3 x 10-3 m. The experimental conditions and modeling liquids were chosen with special reference to the established practice of submerged gas injection to treat nonferrous slags. Such slags can be highly viscous. Bubble volume is smaller than that calculated from existing models such as those given by Davidson and Schüler10,11 due to the effect of gas momentum elongating the bubbles. On the other hand, viscosity tends to retard the bubble rise velocity, thus increasing volumes. To take elongation into account, a mathematical model is presented that assumes a prolate ellipsoidal shape of the bubbles. The unsteady potential flow equations for the liquid are solved for this case. Viscous effects are taken into account by noting that flow deviates from irrotational motion only in a thin boundary layer along the surface of the bubble. Thus, drag on the bubble can be obtained by calculating the viscous energy dissipation for potential flow past an ellipse. The time-dependent inertia coefficient for the ellipsoid is found by equating the vertical pressure increase inside and outside the bubble. This pressure change in the bubble is obtained by assuming that gas enters as a homogeneous jet and then calculating the stagnation pressure at the apex of

  5. Effects of Chewing Different Flavored Gums on Salivary Flow Rate and pH

    PubMed Central

    Karami Nogourani, Maryam; Janghorbani, Mohsen; Kowsari Isfahan, Raha; Hosseini Beheshti, Mozhgan

    2012-01-01

    Chewing gum increases salivary flow rate (SFR) and pH, but differences in preferences of gum flavor may influence SFR and pH. The aim of this paper was to assess the effect of five different flavors of sucrose-free chewing gum on the salivary flow rate and pH in healthy dental students in Isfahan, Iran. Fifteen (7 men and 8 women) healthy dental student volunteers collected unstimulated saliva and then chewed one of five flavored gums for 6 min. The whole saliva was collected and assessed for 6 consecutive days. After unstimulated saliva was collected, stimulated saliva was collected at interval of 0-1, 1–3, and 3–6 minutes after the start of different flavored chewing gums. The SFR and salivary pH were measured. The SFR increased in all five flavored gums at 1, 3, and 6 minutes after start of chewing gums (P < 0.001). The flow rate of all products reached peak in the 1st minute of stimulation, except spearmint-flavored gums which reached peak in the 6th minute. In the 1st minute, the strawberry-flavored gums showed the highest SFR. During 1–3 minutes, strawberry- and apple-flavored gums showed higher SFR, respectively. Only the spearmint- and cinnamon-flavored gum significantly increased salivary pH. Gum flavored can affect the SFR and pH and special flavors can be advised for different individuals according to their oral conditions. PMID:22505903

  6. Milk flow-controlled changes of pulsation ratio and pulsation rate affect milking characteristics in dairy cows.

    PubMed

    Ambord, Sarah; Bruckmaier, Rupert M

    2009-08-01

    To test a system with milk flow-controlled pulsation, milk flow was recorded in 29 Holstein cows during machine milking. The three different treatments were routine milking (including a pre-stimulation of 50-70 s), milking with a minimum of teat preparation and milking with milk flow-controlled b-phase, i.e. with a gradually elongated b-phase of the pulsation cycle with increasing milk flow rate and shortening again during decreasing milk flow. For data evaluation the herd was divided into three groups based on the peak flow rate at routine milking (group 1: <3.2 kg/min; group 2: 3.2-4.5 kg/min; group 3: >4.5 kg/min). Compared with routine milking, milking with milk flow-controlled b-phase caused a significant elevation of the peak flow rate and the duration of incline lasted longer especially in cows with a peak flow rate of >3.2 kg/min in routine milking. In milking with a minimum of teat preparation the duration of incline lasted longer compared with the two other treatments. Bimodality of milk flow, i.e. delayed milk ejection at the start of milking, was most frequent at milking with a minimum of teat preparation. No significant differences between routine milking and milking with milk flow-controlled b-phase were detected for all other milking characteristics. In summary, milking with milk flow-controlled b-phase changes the course of milk removal, however mainly in cows with high peak flow rates. PMID:19250576

  7. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  8. Effects of chest wall compression on expiratory flow rates in patients with chronic obstructive pulmonary disease

    PubMed Central

    Nozoe, Masafumi; Mase, Kyoshi; Ogino, Tomoyuki; Murakami, Shigefumi; Takashima, Sachie; Domen, Kazuhisa

    2016-01-01

    Background: Manual chest wall compression (CWC) during expiration is a technique for removing airway secretions in patients with respiratory disorders. However, there have been no reports about the physiological effects of CWC in patients with chronic obstructive pulmonary disease (COPD). Objective: To compare the effects of CWC on expiratory flow rates in patients with COPD and asymptomatic controls. Method: Fourteen subjects were recruited from among patients with COPD who were receiving pulmonary rehabilitation at the University Hospital (COPD group). Fourteen age-matched healthy subjects were also consecutively recruited from the local community (Healthy control group). Airflow and lung volume changes were measured continuously with the subjects lying in supine position during 1 minute of quiet breathing (QB) and during 1 minute of CWC by a physical therapist. Results: During CWC, both the COPD group and the healthy control group showed significantly higher peak expiratory flow rates (PEFRs) than during QB (mean difference for COPD group 0.14 L/sec, 95% confidence interval (CI) 0.04 to 0.24, p<0.01, mean difference for healthy control group 0.39 L/sec, 95% CI 0.25 to 0.57, p<0.01). In the between-group comparisons, PEFR was significantly higher in the healthy control group than in the COPD group (-0.25 L/sec, 95% CI -0.43 to -0.07, p<0.01). However, the expiratory flow rates at the lung volume at the PEFR during QB and at 50% and 25% of tidal volume during QB increased in the healthy control group (mean difference for healthy control group 0.31 L/sec, 95% CI 0.15 to 0.47, p<0.01: 0.31 L/sec, 95% CI 0.15 to 0.47, p<0.01: 0.27 L/sec, 95% CI 0.13 to 0.41, p<0.01, respectively) but not in the COPD group (0.05 L/sec, 95% CI -0.01 to 0.12: -0.01 L/sec, 95% CI -0.11 to 0.08: 0.02 L/sec, 95% CI -0.05 to 0.90) with the application of CWC. Conclusion: The effects of chest wall compression on expiratory flow rates was different between COPD patients and asymptomatic

  9. Meta-analysis of the effects of plant roots in controlling concentrated flow erosion rates

    NASA Astrophysics Data System (ADS)

    Vannoppen, Wouter; Poesen, Jean; Vanmaercke, Matthias; De Baets, Sarah

    2015-04-01

    Vegetation is often used in ecological restoration programs to control various soil erosion processes. During the last two decades several studies reported on the effects of plant roots in controlling concentrated flow erosion rates. However a global analysis of the now available data on root effects is still lacking. Yet, a meta-data analysis will contribute to a better understanding of the soil-root interactions as our capability to assess the effectiveness of roots in reducing soil erosion rates due to concentrated flow in different environments remains difficult. The objectives of this study are therefore i) to provide a state of the art on studies quantifying the effectiveness of roots in reducing soil erosion rates due to concentrated flow; and ii) to explore the overall trends in erosion reduction as a function of the root (length) density, root system architecture and soil texture, based on a global analysis of published research data. We therefore compiled a dataset of measured relative soil detachment rates (RSD) for the root density (RD; 822 observations) as well as the root length density (RLD; 274 observations). Non-linear regression analyses showed that decreases in RSD as a function of RD and RLD could be best described with the Hill curve model. However, a large proportion of the variability in RSD could not be attributed to RD or RLD, resulting in a relatively low predictive accuracy of the Hill curve model with model efficiencies of 0.11 and 0.17 for RD and RLD respectively. Considering root architecture and soil texture yielded a better predictive model especially for RLD with ME of 0.37 for fibrous roots in a non-sandy soil. The unexplained variance is to a large extent attributable to measuring errors and differences in experimental set ups that could not be explicitly accounted for (e.g. tested plant species, soil and flow characteristics). However, using a Monte Carlo simulation approach, we were able to establish relationships that allow

  10. Mass loss rates of uranium-zirconium carbide in flowing hydrogen and hydrogen-hydrocarbon mixtures

    NASA Astrophysics Data System (ADS)

    MacMillan, Donald P.

    1991-01-01

    The results of experimental determinations of mass loss rates from (U,Zr)C exposed to flowing hydrogen at high temperature are reported. Two experimental techniques were used: isothermal heating of samples by arc jet and heating of long, porous, tubular samples by electrical self-resistance. Total mass losses as high as 20% were obtained, and the composition of the residue was determined. The results of these experiments were encouraging and led to the decision to use (U,Zr)C fuel elements in the next test reactor, Nuclear Furnace 2.

  11. A diagonal implicit scheme for computing flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Imlay, Scott

    1990-01-01

    A new algorithm for solving steady, finite-rate chemistry, flow problems is presented. The new scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The source Jacobian matrix is replaced by a diagonal matrix which is tailored to account for the fastest reactions in the chemical system. A point-implicit procedure is discussed and then the algorithm is included into the LU-SGS scheme. Solutions are presented for hypervelocity reentry and Hydrogen-Oxygen combustion. For the LU-SGS scheme a CFL number in excess of 10,000 has been achieved.

  12. Tribological development of TiCN coatings by adjusting the flowing rate of reactive gases

    NASA Astrophysics Data System (ADS)

    Tillmann, Wolfgang; Momeni, Soroush

    2016-03-01

    TiCN coatings were deposited by means of direct current magnetron sputtering of Ti targets in presence of N2 and C2H2 reactive gases. The microstructure, composition, mechanical and tribological properties of the deposited thin films were analyzed by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), nanoindentation, ball-on-disc, scratch test, and three dimensional (3D) optical microscopy. The obtained results presents a reproducible processing route for tailoring microstructure, mechanical and tribological behavior of TiCN coatings by controlling flowing rate of the reactive gases.

  13. Filter feeders and plankton increase particle encounter rates through flow regime control.

    PubMed

    Humphries, Stuart

    2009-05-12

    Collisions between particles or between particles and other objects are fundamental to many processes that we take for granted. They drive the functioning of aquatic ecosystems, the onset of rain and snow precipitation, and the manufacture of pharmaceuticals, powders and crystals. Here, I show that the traditional assumption that viscosity dominates these situations leads to consistent and large-scale underestimation of encounter rates between particles and of deposition rates on surfaces. Numerical simulations reveal that the encounter rate is Reynolds number dependent and that encounter efficiencies are consistent with the sparse experimental data. This extension of aerosol theory has great implications for understanding of selection pressure on the physiology and ecology of organisms, for example filter feeders able to gather food at rates up to 5 times higher than expected. I provide evidence that filter feeders have been strongly selected to take advantage of this flow regime and show that both the predicted peak concentration and the steady-state concentrations of plankton during blooms are approximately 33% of that predicted by the current models of particle encounter. Many ecological and industrial processes may be operating at substantially greater rates than currently assumed. PMID:19416879

  14. Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers.

    PubMed

    Li, Hongxia; Vermeirssen, Etiënne L M; Helm, Paul A; Metcalfe, Chris D

    2010-11-01

    The uptake of polar organic contaminants into polar organic chemical integrative samplers (POCIS) varies with environmental factors, such as water flow rate. To evaluate the influence of water flow rate on the uptake of contaminants into POCIS, flow-controlled field experiments were conducted with POCIS deployed in channel systems through which treated sewage effluent flowed at rates between 2.6 and 37 cm/s. Both pharmaceutical POCIS and pesticide POCIS were exposed to effluent for 21 d and evaluated for uptake of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting substances (EDS). The pesticide POCIS had higher uptake rates for PPCPs and EDS than the pharmaceutical POCIS, but there are some practical advantages to using pharmaceutical POCIS. The uptake of contaminants into POCIS increased with flow rate, but these effects were relatively small (i.e., less than twofold) for most of the test compounds. There was no relationship observed between the hydrophobicity (log octanol/water partition coefficient, log K(OW)) of model compounds and the effects of flow rate on the uptake kinetics by POCIS. These data indicate that water flow rate has a relatively minor influence on the accumulation of PPCPs and EDS into POCIS. PMID:20865700

  15. Flow injection analysis of cholic acids in pharmaceutical preparations using a polymeric membrane ISE as detector.

    PubMed

    Arias De Fuentes, O; Campanella, L; Crescentini, G; Falcioni, A; Sammartino, M P; Tomassetti, M

    2000-08-01

    The results reported in this paper regard the setting up of a polymeric membrane ISE that is selective for cholic acids (CA) and able to work in a flow system, especially in flow injection analysis (FIA), based on the exchanger (tetrakisdecylammoniumcholate, TDACh), which has proved effective, is of very simple but suitable structure and is above all easy to synthesise starting from commercially available chemicals. A complete analytical characterisation of the sensor was performed working both in batch conditions and in FIA, using in the latter case a 'wall jet' type of flow cell. The response toward different bile acid sodium salts such as the CA, deoxycholic (DCA), chenodeoxycholic (CDCA), ursodeoxycholic (UDCA), taurocholic (TCA) sodium salts was checked. The application to the analysis of different commercial drugs by FIA was also performed to determine the UDCA or CDCA acid content of several pharmaceutical formulations. Lastly, a preliminary study is presented concerning the use of the investigated electrochemical sensor as high performance liquid chromatography (HPLC) detector. PMID:10898158

  16. Development of fluorescent nanoparticle-labeled lateral flow assay for the detection of nucleic acids.

    PubMed

    Wang, Yuhong; Nugen, Sam R

    2013-10-01

    The rapid, specific and sensitive detection of nucleic acids is of utmost importance for the identification of infectious agents, diagnosis and treatment of genetic diseases, and the detection of pathogens related to human health and safety. Here we report the development of a simple and sensitive nucleic acid sequence-based and Ru(bpy)3 (2+)-doped silica nanoparticle-labeled lateral flow assay which achieves low limit of detection by using fluorescencent nanoparticles. The detection of the synthetic nucleic acid sequences representative of Trypanosoma mRNA, the causative agent for African sleeping sickness, was utilized to demonstrate this assay. The 30 nm spherical Ru(bpy)3 (2+)-doped silica nanoparticles were prepared in aqueous medium by a novel method recently reported. The nanoparticles were modified by 3-glycidoxypropyl trimethoxysilane in order to conjugate to amine-capped oligonucleotide reporter probes. The fluorescent intensities of the fluorescent assays were quantified on a mictrotiter plate reader using a custom holder. The experimental results showed that the lateral flow fluorescent assay developed was more sensitive compared with the traditional colloidal gold test strips. The limit of detection for the fluorescent lateral flow assay developed is approximately 0.066 fmols as compared to approximately 15 fmols for the colloidal gold. The limit of detection can further be reduced about one order of magnitude when "dipstick" format was used. PMID:23525961

  17. Increase of apatite dissolution rate by Scots pine roots associated or not with Burkholderia glathei PML1(12)Rp in open-system flow microcosms

    NASA Astrophysics Data System (ADS)

    Calvaruso, Christophe; Turpault, Marie-Pierre; Frey-Klett, Pascale; Uroz, Stéphane; Pierret, Marie-Claire; Tosheva, Zornitza; Kies, Antoine

    2013-04-01

    The release of nutritive elements through apatite dissolution represents the main source of phosphorus, calcium, and several micronutrients (e.g., Zn, Cu) for organisms in non-fertilized forest ecosystems. The aim of this study was to quantify, for the first time, the dissolution rate of apatite grains by tree roots that were or were not associated with a mineral weathering bacterial strain, and by various acids known to be produced by tree roots and soil bacterial strains in open-system flow microcosms. In addition, we explored whether the mobilization of trace elements (including rare earth elements) upon apatite dissolution was affected by the presence of trees and associated microorganisms. The dissolution rate of apatite by Scots pine plants that were or were not inoculated with the strain Burkholderia glathei PML1(12)Rp, and by inorganic (nitric) and organic (citric, oxalic and gluconic) acids at pH 5.5, 4.8, 3.8, 3.5, 3.0, and 2.0 was monitored in two controlled experiments: "plant-bacteria interaction" and "inorganic and organic acids". Analyses of the outlet solutions in the "plant-bacteria interaction" experiment showed that Scots pine roots and B. glathei PML1(12)Rp produced protons and organic acids such as gluconate, oxalate, acetate, and lactate. The weathering budget calculation revealed that Scots pines (with or without PML1(12)Rp) significantly increased (factor > 10) the release of Ca, P, As, Sr, Zn, U, Y, and rare earth elements such as Ce, La, Nd from apatite, compared to control abiotic treatment. Scanning electron microscopy observation confirmed traces of apatite dissolution in contact of roots. Most dissolved elements were taken up by Scots pine roots, i.e., approximately 50% of Ca, 70% of P, 30% of As, 70% of Sr, 90% of Zn, and 100% of U, Y, and rare earth elements. Interestingly, no significant additional effect due to the bacterial strain PML1(12)Rp on apatite dissolution and Scots pine nutrition and growth was observed. The "inorganic

  18. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    PubMed Central

    Kawasaki, Shin-ichiro; Suzuki, Akira

    2013-01-01

    Summary The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid. PMID:23843908

  19. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors.

    PubMed

    Javaid, Rahat; Kawasaki, Shin-Ichiro; Suzuki, Akira; Suzuki, Toshishige M

    2013-01-01

    The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd-Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid. PMID:23843908

  20. Flow-Injection Determination of Thiabendazole Fungicide in Water Samples Using a Diperiodatocuprate(III)-Sulfuric Acid-Chemiluminescence System.

    PubMed

    Asghar, Mohammad; Yaqoob, Mohammad; Munawar, Nusrat; Nabi, Abdul

    2016-01-01

    Chemiluminescence (CL) with a flow-injection method is reported for the determination of thiabendazole (TBZ) fungicide based on its enhancement effect on diperiodatocuprate(III) (DPC)-sulfuric acid-CL system. The calibration graph was linear in the concentration range of 1 - 2000 μg L(-1) (R(2) = 0.9999, n = 8) with a limit of detection (S/N = 3) of 0.3 μg L(-1). The injection throughput was 160 h(-1) with relative standard deviations (RSD, n = 4) of 1.1 - 2.9% in the concentration range studied. The experimental variables e.g., reagents concentrations, flow rates, sample volume, and PMT voltage were optimized, and the potential interferences were investigated individually. The method was successfully applied to the determination of TBZ in water samples showing good agreement and recovery in the range of 92 ± 2.2 - 108 ± 3% (n = 3) using dispersive liquid-liquid micro-extraction (DLLME). The possible CL reaction mechanism for DPC-sulfuric acid-TBZ is also discussed. PMID:26960615

  1. Solid-Fuel Regression Rate for Standard-Flow Hybrid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Morita, Takakazu; Yuasa, Saburo; Yamaguchi, Shigeru; Shimada, Toru

    Marxman's diffusion-limited analysis of hybrid rocket combustion has been often used to investigate various combustion problems in hybrid rocket motors. This analysis was developed on the basis of the Reynolds analogy in turbulent boundary layers. This analogy assumes that both molecular and turbulent Prandtl numbers are equal to one. In the present study, a semi-empirical correlation between the Stanton number and the skin-friction coefficient in a turbulent boundary layer was obtained. This is applicable to hybrid rocket combustion, and also includes the effects of the Prandtl numbers variation. Using this correlation, a fuel regression rate equation for standard-flow hybrid rocket motors was obtained, and its characteristics were examined. In addition, the calculated regression rate characteristics were compared with the experimental data from the laboratory-scale hybrid rocket motors that used gaseous oxygen (GOX) as oxidizer and polymethylmethacrylate (PMMA) as fuel.

  2. An analytical study of a lead-acid flow battery as an energy storage system

    NASA Astrophysics Data System (ADS)

    Bates, Alex; Mukerjee, Santanu; Lee, Sang C.; Lee, Dong-Ha; Park, Sam

    2014-03-01

    The most important issue with our current clean energy technology is the dependence on environmental conditions to produce power. To solve this problem a wide range of energy storage devices are being explored for grid-scale energy storage including soluble lead-acid flow batteries. Flow batteries offer a unique solution to grid-scale energy storage because of their electrolyte tanks which allow easy scaling of storage capacity. This study seeks to further understand the mechanisms of a soluble lead acid flow battery using simulations. The effects of varies changes to operating conditions and the system configuration can be explored through simulations. The simulations preformed are 2D and include the positive electrode, negative electrode, and the flow space between them. Simulations presented in this study show Pb(II) surface concentration, external electric potential, and PbO/PbO2 surface concentration on the positive electrode. Simulations have shown increasing cell temperature can increase external electric potential by as much as 0.2 V during charge. Simulations have also shown electrolyte velocity is an important aspect when investigating lead deposition onto the electrodes. Experimental work was performed to validate simulation results of current density and voltage. Good correlation was found between experimental work and simulation results.

  3. Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration

    SciTech Connect

    Jorio, H.; Bibeau, L.; Heitz, M.

    2000-05-01

    The biofiltration process is a promising technology for the treatment of dilute styrene emissions in air. The efficiency of this process is however strongly dependent upon various operational parameters such as the filter bed characteristics, nutrient supplies, input contaminant concentrations, and gas flow rates. The biofiltration of air containing styrene vapors was therefore investigated, employing a novel biomass filter material, in two identical but separate laboratory scale biofiltration units (units 1 and 2), both biofilters being initially inoculated with a microbial consortium. Each biofilter was irrigated with a nutrient solution supplying nitrogen in one of two forms; i.e., mainly as ammonia for unit 1 and exclusively as nitrate for unit 2. The experimental results have revealed that greater styrene elimination rates are achieved in the biofilter supplied with ammonia as the major nitrogen source in comparison to the lesser elimination performance obtained with the nitrate provided biofilter. However, in achieving the high styrene removal rates in the ammonia supplied biofilter, the excess of biomass accumulates on the filtering pellets and causes progressive clogging of the filter media. Furthermore, the effectiveness of nitrate supply as the sole nitrogen nutrient form, on reducing or controlling the biomass accumulation in the filter media in comparison to ammonia, could not be satisfactorily demonstrated because the two biofilters operated with very different styrene elimination capacities. The monitoring of the carbon dioxide concentration profile through both biofilters revealed that the ratio of carbon dioxide produced to the styrene removed was approximately 3/1, which confirms the complete biodegradation of removed styrene, given that some of the organic carbon consumed is also used for the microbial growth. The effects of the most important design parameters, namely styrene input concentrations and gas flow rates, were investigated for each

  4. Prediction of flow rates through an orifice at pressures corresponding to the transition between molecular and isentropic flow

    SciTech Connect

    DeMuth, S.F.; Watson, J.S.

    1985-01-01

    A model of compressible flow through an orifice, in the region of transition from free molecular to isentropic expansion flow, has been developed and tested for accuracy. The transitional or slip regime is defined as the conditions where molecular interactions are too many for free molecular flow modeling, yet not great enough for isentropic expansion flow modeling. Due to a lack of literature establishing a well-accepted model for predicting transitional flow, it was felt such work would be beneficial. The model is nonlinear and cannot be satisfactorily linearized for a linear regression analysis. Consequently, a computer routine was developed which minimized the sum of the squares of the residual flow for the nonlinear model. The results indicate an average accuracy within 15% of the measured flow throughout the range of test conditions. Furthermore, the results of the regression analysis indicate that the transitional regime lies between Knudsen numbers of approximately 2 and 45. 4 refs., 3 figs., 1 tab.

  5. Intracellular pH Recovery Rates of Hemocytes from Estuarine and Open Ocean Bivalve Species Following In vitro Acid Challenge

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G.

    2013-12-01

    Decreasing pH in estuarine systems is a growing concern for researchers studying mollusk species. Debates continue on whether estuarine bivalve species are more or less vulnerable to ocean acidification than marine species because estuaries can present multiple environmental stressors. The aim of this study is to understand the homeostatic mechanisms of bivalve hemocytes following exposure to extracellular acid treatment. Previous measurements using fluorescent SNARF probes and flow-cytometry have determined the intracellular pH of hemocytes from several bivalve species (eastern oyster, bay scallop, northern quahog, soft-shell clam, and blue mussel) to range between 7.0-7.4. In the present study of four bivalve species, recovery rate profiles were determined for intracellular hemocyte pH following addition of acid to hemolymph in vitro. These profiles indicate that soft-shell clams and bay scallops maintained homeostasis with very little change in intracellular pH. In contrast, an initial drop in intracellular pH in northern quahogs was followed by a steady recovery of intracellular pH. Contrasting results between species appear to be unrelated to mineral shell composition (aragonite vs. calcite) or habitat location (infaunal vs. epifaunal). The next phase of this study will be to determine if offshore species (surfclams and sea scallops) will have similar responses. Results from these studies will provide a better understanding of the physiological responses of estuarine and marine species exposed to acidified environments.

  6. A database on post-fire erosion rates and debris flows in Mediterranean-Basin watersheds

    NASA Astrophysics Data System (ADS)

    Parise, M.; Cannon, S. H.

    2009-04-01

    proceedings. The database derives from critical analysis of the existing literature, integrated by case studies directly studied by the authors. Studies on recently burned areas in the Mediterranean basin are most frequently carried out on small experimental plots, often with simulated rainfall A problem of scale therefore exists when trying to extrapolate the erosion rates (also reported as sediment yields or as sediment losses) from these studies to a watershed scale. Very few articles, on the other hand, were found that document the watershed-scale response of basins to rainfall-induced erosion and debris flows following wildfires. The few reported cases of debris flows in the Mediterranean Basin describe erosion of sediment from the hillslopes and the channels (sometimes down to bedrock), and, for a limited number of sites, failure of discrete landslides. This information indicates that debris-flow generation from recently burned areas in the Mediterranean basin appears to occur primarily through sediment bulking processes. Nevertheless, the database so far compiled shows a distribution of post-fire erosion and debris flows in the western Mediterranean basin (Spain, essentially, but also Portugal), followed by the eastern Mediterranean area (Israel), and then by France, Italy and Greece. Even though still in a preliminary version, that needs to be integrated and updated from further sources, our data compilation allows for the unique opportunity to examine issues related to the generation of post-wildfire debris flows across a variety of environments and under a variety of conditions, and to move from a qualitative conception of the controls on post-fire debris-flow generation to the definition of specific conditions that result in their occurrence. Future activities of the project will include: i) updating and integration of the preliminary version of the database; ii) development of models that can be used to identify the probability of debris-flow occurrence and the

  7. Tauroursodeoxycholic acid improves the implantation and live-birth rates of mouse embryos.

    PubMed

    Lin, Tao; Diao, Yun Fei; Kang, Jung Won; Lee, Jae Eun; Kim, Dong Kyu; Jin, Dong Il

    2015-06-01

    We previously demonstrated that tauroursodeoxycholic acid (TUDCA) improved the developmental competence of mouse embryos by attenuating endoplasmic reticulum (ER) stress-induced apoptosis during preimplantation development. Here, we present a follow-up study examining whether TUDCA enhances the implantation and live-birth rate of mouse embryos. Mouse 2-cell embryos were collected by oviduct flushing and cultured in the presence or absence of 50 μM TUDCA. After culture (52 h), blastocysts were transferred to 2.5-day pseudopregnant foster mothers. It was found that the rates of pregnancy and implantation as well as the number of live pups per surrogate mouse were significantly higher in the TUDCA-treated group compared to the control group, but there was no significant difference in the mean weights of the pups or placentae. Thus, we report for the first time that TUDCA supplementation of the embryo culture medium increased the implantation and livebirth rates of transferred mouse embryos. PMID:26051458

  8. Evaluation of In Vitro and In Vivo Flow Rate Dependency of Budesonide/Formoterol Easyhaler®

    PubMed Central

    Malmberg, L. Pekka; Everard, Mark L.; Haikarainen, Jussi

    2014-01-01

    Abstract Background: The Easyhaler® (EH) device-metered dry powder inhaler containing budesonide and formoterol is being developed for asthma and chronic obstructive pulmonary disease (COPD). As a part of product optimization, a series of in vitro and in vivo studies on flow rate dependency were carried out. Methods: Inspiratory flow parameters via EH and Symbicort® Turbuhaler® (TH) inhalers were evaluated in 187 patients with asthma and COPD. The 10th, 50th, and 90th percentile flow rates achieved by patients were utilized to study in vitro flow rate dependency of budesonide/formoterol EH and Symbicort TH. In addition, an exploratory pharmacokinetic study on pulmonary deposition of active substances for budesonide/formoterol EH in healthy volunteers was performed. Results: Mean inspiratory flow rates through EH were 64 and 56 L/min in asthmatics and COPD patients, and through TH 79 and 72 L/min, respectively. Children with asthma had marginally lower PIF values than the adults. The inspiratory volumes were similar in all groups between the inhalers. Using weighted 10th, 50th, and 90th percentile flows the in vitro delivered doses (DDs) and fine particle doses (FPDs) for EH were rather independent of flow as 98% of the median flow DDs and 89%–93% of FPDs were delivered already at 10th percentile air flow. Using±15% limits, EH and TH had similar flow rate dependency profiles between 10th and 90th percentile flows. The pharmacokinetic study with budesonide/formoterol EH in healthy subjects (n=16) revealed a trend for a flow-dependent increase in lung deposition for both budesonide and formoterol. Conclusions: Comparable in vitro flow rate dependency between budesonide/formoterol EH and Symbicort TH was found using the range of clinically relevant flow rates. The results of the pharmacokinetic study were in accordance with the in vitro results showing only a trend of flow rate-dependant increase in lung deposition of active substances with EH. PMID:24978441

  9. The rate form of equilibrium equation for problems of steady-state, elastic, viscous flows

    NASA Astrophysics Data System (ADS)

    Tsai, Lung John

    1992-07-01

    The development of a numerical simulation for steady-state, elastic, viscous flows in two dimensions is presented. A mixed finite element method is used to couple the rate-equilibrium and the rate-constitutive equations by using successive substitution to solve for the velocity field and the stress field simultaneously. The method is applied to the flow analysis of co-rotational Maxwell (CRM), upper convective Maxwell (UCM), and four-element UCM fluid models. A flow through contraction problem is analyzed for the CRM, UCM and four-element UCM models. For both the CRM and UCM modles, the purely elastic case is compared to a solution found by using a linear formulation and it is found to compare favorably. For the purely viscous case, comparison is made with results obtained using the mixed formulation for velocity and pressure. Again, the results compare quite favorably. For the four-element UCM model, it is compared with the conventional UCM model. For the purely elastic and the purely viscous cases both models compare very well, and two examples are given for simulating both the Oldroyd-B and the Kelvin-Voigt models. From this illustration, the four-element UCM model is shown to work well for a wide range of constitutive behaviors. A second example presents an analysis of a metal forming rolling problem in the presence of free surfaces. For the purely elastic case, a decent solution of the velocity and stress distributions in the control volume for both CRM and UCM fluids is found. However, when the viscous effect is increased in the material, the free surface exhibits a continual swelling on the downstream side and the accuracy of the stress distribution deteriorates. In spite of the progress made on the free surface problem, the solutions for free surface problem presented in this dissertation are not yet of sufficient accuracy to be directly applicable to practical forming process design or analysis. The final example is an application of the rate

  10. Reshaping of Bulbar Odor Response by Nasal Flow Rate in the Rat

    PubMed Central

    Courtiol, Emmanuelle; Amat, Corine; Thévenet, Marc; Messaoudi, Belkacem; Garcia, Samuel; Buonviso, Nathalie

    2011-01-01

    Background The impact of respiratory dynamics on odor response has been poorly studied at the olfactory bulb level. However, it has been shown that sniffing in the behaving rodent is highly dynamic and varies both in frequency and flow rate. Bulbar odor response could vary with these sniffing parameter variations. Consequently, it is necessary to understand how nasal airflow can modify and shape odor response at the olfactory bulb level. Methodology and Principal Findings To assess this question, we used a double cannulation and simulated nasal airflow protocol on anesthetized rats to uncouple nasal airflow from animal respiration. Both mitral/tufted cell extracellular unit activity and local field potentials (LFPs) were recorded. We found that airflow changes in the normal range were sufficient to substantially reorganize the response of the olfactory bulb. In particular, cellular odor-evoked activities, LFP oscillations and spike phase-locking to LFPs were strongly modified by nasal flow rate. Conclusion Our results indicate the importance of reconsidering the notion of odor coding as odor response at the bulbar level is ceaselessly modified by respiratory dynamics. PMID:21298064

  11. New regimes of plastic flow at very high pressures and strain rates

    NASA Astrophysics Data System (ADS)

    Remington, Bruce

    2015-06-01

    Recent progress in understanding solid-state plastic flow at very high pressures and strain rates for high energy density (HED) science will be described. These results are relevant to hypervelocity impacts, space hardware durability, planetary formation dynamics, advanced designs for inertial confinement fusion, and basic HED science. We use high power lasers to study the Rayleigh-Taylor and Richtmyer-Meshkov hydrodynamic instability evolution in the solid state plastic flow regime on the Janus, Omega, and NIF lasers, spanning peak pressures from 10 - 500 GPa (0.1 - 5 Mbar). We are pursuing time resolved diffraction experiments to understand the lattice level dynamics resulting from high rate compression of samples. EXAFS experiments probe the atomic level structure and phase, and provide a volume-averaged temperature. We use the very bright, high time resolution x-ray probe at LCLS to examine the detailed lattice response and time evolution right behind the shock front. And finally, shock driven samples are recovered so that the residual microstructure caused by the shock can be examined by SEM, TEM, and other characterization techniques. An overview of these recent results, with comparisons to theory and simulations, will be given. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. A Subgrid Model for Predicting Air Entrainment Rates in Bubbly Flows

    NASA Astrophysics Data System (ADS)

    Ma, Jingsen; Oberai, Assad A.; Drew, Donald E.; Lahey, Richard T., Jr.; Moraga, Francisco J.

    2008-11-01

    In this talk we present a fairly simple subgrid air entrainment model that accurately predicts the rate of air entrainment, which is critical in simulating multiphase (air/water) flows. The derivation of this model begins by assuming that a thin sheet of air is carried into the water by the inertia of the liquid at the free surface. A momentum balance on the entrained gas layer results in an expression for the entrained volumetric gas flow rate, in terms of the local liquid velocity, gas viscosity etc., which are readily available from a multiphase RANS-type simulation. This model has been validated against extensive experimental data on both plunging jets and hydraulic jumps over a wide range of liquid velocities. It was implemented in a two-fluid computational fluid dynamics code (CFDShipM) to be used to predict the void fraction distribution underneath a plunging liquid jet at different depths and jet velocities. The results were found to match the experimental observations very well. The application of this model to more challenging problems, including hydraulic jumps and full-scale ship simulations, is currently underway.

  13. Effect of Long-term Smoking on Whole-mouth Salivary Flow Rate and Oral Health

    PubMed Central

    Rad, Maryam; Kakoie, Shahla; Niliye Brojeni, Fateme; Pourdamghan, Nasim

    2010-01-01

    Background and aims Change in the resting whole-mouth salivary flow rate (SFR) plays a significant role in patho-genesis of various oral conditions. Factors such as smoking may affect SFR as well as the oral and dental health. The primary purpose of this study was to determine the effect of smoking on SFR, and oral and dental health. Materials and methods One-hundred smokers and 100 non-tobacco users were selected as case and control groups, respectively. A questionnaire was used to collect the demographic data and smoking habits. A previously used questionnaire about dry mouth was also employed. Then, after a careful oral examination, subjects’ whole saliva was collected in the resting condition. Data was analyzed by chi-square test using SPSS 15. Results The mean (±SD) salivary flow rate were 0.38 (± 0.13) ml/min in smokers and 0.56 (± 0.16) ml/min in non-smokers. The difference was statistically significant (P=0.00001). Also, 39% of smokers and 12% of non-smokers reported experiencing at least one xerostomia symptom, with statistically significant difference between groups (p=0.0001). Oral lesions including cervical caries, gingivitis, tooth mobility, calculus and halitosis were significantly higher in smokers. Conclusion Our findings indicated that long-term smoking would significantly reduce SFR and increase oral and dental disorders associated with dry mouth, especially cervical caries, gingivitis, tooth mobility, calculus, and halitosis. PMID:23346336

  14. [Evaluation of tissue perfusion by simultaneous monitoring of aortic flow rate and capnography].

    PubMed

    Brunel, D; Muchada, R

    1991-10-26

    Ten patients under general anaesthesia were subjected to non-invasive haemodynamic monitoring, together with arterial gasometry and capnography. When enflurane was administered for maintenance anaesthesia, a 33 percent fall in aortic flow rate was observed (P less than 0.01), together with prolongation of the pre-ejection period and left ventricular pre-ejection/ejection ratio, an increase of central venous pressure and total vascular systemic resistances. The end-expiratory CO2 (Pet CO2) was reduced by 13 percent (P less than 0.05). There was no significant variation in arteriolo-alveolar CO2 difference (P(a-A)CO2). Under dobutamine (mean dose: 3.4 +/- 0.5 micrograms/kg/min), the haemodynamic parameters returned to their initial values. Pet CO2 rose above its initial level (+ 12 percent; P less than 0.05), but P(a-A)CO2 was not significantly modified. The variations of Pet CO2 were parallel with those of aortic flow rate. It is concluded that the changes in Pet CO2 observed during haemodynamic modifications could be used as markers for qualitative evaluation of tissue perfusion. PMID:1836570

  15. Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications

    PubMed Central

    Ke, Ming-Tsun; Zhong, Jian-Hao; Lee, Chia-Yen

    2012-01-01

    This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between the coil and the magnet. The resulting bi-directional deflection of the PDMS diaphragm causes the check-valve to open and close; thereby creating a pumping effect. The experimental results show that a coil input current of 0.4 A generates an electromagnetic force of 47 mN and a diaphragm deflection of 108 μm. Given an actuating voltage of 3 V and a driving frequency of 15 Hz, the flow rate is found to be 13.2 mL/min under zero head pressure conditions. PMID:23201986

  16. PHOSPHATED, ACID-ETCHED IMPLANTS DECREASE MINERAL APPOSITION RATES NEAR IMPLANTS IN CANINES

    PubMed Central

    Foley, Christine Hyon; Kerns, David G.; Hallmon, William W.; Rivera-Hidalgo, Francisco; Nelson, Carl J.; Spears, Robert; Dechow, Paul C.; Opperman, Lynne A.

    2010-01-01

    Purpose: This study evaluated the effects of phosphate-coated titanium on mineral apposition rate (MAR) and new bone-to-implant contact (BIC) in canines. Materials and Methods: 2.2 mm × 4 mm electrolytically phosphated or non-phosphated titanium implants with acid-etched surfaces were placed in 48 mandibular sites in 6 foxhounds. Tetracycline and calcein dyes were administered 1 week after implant placement and 1 week before sacrifice. At twelve weeks following implant healing, animals were sacrificed. MAR and BIC were evaluated using fluorescence microscopy. Light microscopic and histological evaluation was performed on undecalcified sections. Results: Microscopic evaluation showed the presence of healthy osteoblasts lining bone surfaces near implants. Similar bone-to-implant contact was observed in phosphated and non-phosphated titanium implant sites. MAR was significantly higher near non-phosphated titanium implant surfaces than the phosphated titanium samples. No significant differences were found between dogs or implant sites. Discussion and Conclusion: Acid-etched only implants showed significantly higher mineral apposition rates compared to acid-etched, phosphate-coated implants. PMID:20369085

  17. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  18. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    PubMed

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  19. 323 Annual Change of Peak Expiratory Flow Rate in Asthma and COPD

    PubMed Central

    Yoo, Kwang H. A.; Lee, Kye Young

    2012-01-01

    Background Peak Expiratory Flow Rate (PEFR) is a useful measurement for the follow-up examination in a chronic airway disease because it has the advantage of simple measuring and repetitive examination. The aim of this study is to examine the annual decrease of PEFR in asthma and COPD patients and to confirm the factors which influence the annual decreasing rate of PEFR. Methods From May, 2003 to September, 2010, the annual decreasing rate of PEFR is obtained from the asthma and COPD patients attending an outpatient pulmonary clinic. PEFR was measured using Mini-Wright (Clement Clarke International Ltd. UK). We conducted an analysis of the factors to influence on the change of PEFR and the average of it. Results The result indicated decrease of 3.72 ± 12.55 L/min annually in the asthmatic patient and decrease of 8.69 ± 8.87 L/min annually in the COPD patient. In the asthma, age and FEV1 are the predictive factor to influence on the change, on the other hand, age, FEV1, smoking and the number of aggravation are the factors in the COPD. Conclusions We could confirm the annual decreasing rate in patients of chronic airway disease and similar factor with FEV1 to influence on the change.

  20. Flowmeter for determining average rate of flow of liquid in a conduit

    DOEpatents

    Kennerly, John M.; Lindner, Gordon M.; Rowe, John C.

    1982-01-01

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  1. Flowmeter for determining average rate of flow of liquid in a conduit

    DOEpatents

    Kennerly, J.M.; Lindner, G.M.; Rowe, J.C.

    1981-04-30

    This invention is a compact, precise, and relatively simple device for use in determining the average rate of flow of a liquid through a conduit. The liquid may be turbulent and contain bubbles of gas. In a preferred embodiment, the flowmeter includes an electrical circuit and a flow vessel which is connected as a segment of the conduit conveying the liquid. The vessel is provided with a valved outlet and is partitioned by a vertical baffle into coaxial chambers whose upper regions are vented to permit the escape of gas. The inner chamber receives turbulent downflowing liquid from the conduit and is sized to operate at a lower pressure than the conduit, thus promoting evolution of gas from the liquid. Lower zones of the two chambers are interconnected so that the downflowing liquid establishes liquid levels in both chambers. The liquid level in the outer chamber is comparatively calm, being to a large extent isolated from the turbulence in the inner chamber once the liquid in the outer chamber has risen above the liquid-introduction zone for that chamber. Lower and upper probes are provided in the outer chamber for sensing the liquid level therein at points above its liquid-introduction zone. An electrical circuit is connected to the probes to display the time required for the liquid level in the outer chamber to successively contact the lower and upper probes. The average rate of flow through the conduit can be determined from the above-mentioned time and the vessel volume filled by the liquid during that time.

  2. The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis

    NASA Astrophysics Data System (ADS)

    Schutter, M.; Crocker, J.; Paijmans, A.; Janse, M.; Osinga, R.; Verreth, A. J.; Wijffels, R. H.

    2010-09-01

    To study the effect of water flow on coral growth, four series of ten coral nubbins of Galaxea fascicularis were exposed to four different flow regimes (0, 10, 20, and 25 cm s-1, bidirectional flow) for 42 weeks. Buoyant weight, surface area, and polyp number were measured at regular intervals. Net photosynthesis and dark respiration were measured at the corresponding flow speeds, and daily amount of photosynthetic carbon left for coral growth was calculated. Finally, skeletal density and CN content, chlorophyll concentration and dry weight of coral tissue were determined for each coral. Specific growth rate (in day-1) decreased with time in each flow treatment. Absence of flow resulted in significantly lower growth rates. Average specific growth rate calculated over the entire experiment was not significantly different between 10 and 20 cm s-1, while it was significantly higher at 25 cm s-1. From 10 to 25 cm s-1, average net photosynthetic rate decreased and average dark respiration rate did not change significantly. Scope for growth based on phototrophic carbon decreased with increasing flow. Growth was not positively correlated with either photosynthesis or respiration, or scope for growth. It is suggested that higher flow rates reduce the chance of disturbance of coral growth by competing algae or cyanobacteria, allowing corals to grow more readily with the maximum specific growth rate possible under the given environmental conditions. Notably, other effects of increased flow, such as increased respiratory rates and increased (in)organic nutrient uptake, might have been equally responsible for the increased growth of the corals in 25 cm s-1.

  3. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    PubMed

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L. PMID:26038800

  4. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance

    PubMed Central

    Berteau, Cecile; Filipe-Santos, Orchidée; Wang, Tao; Rojas, Humberto E; Granger, Corinne; Schwarzenbach, Florence

    2015-01-01

    Aim The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC) injection pain tolerance. Methods The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP) combined with two different injection flow rates (0.02 and 0.3 mL/s). All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS) (0 mm/no pain, 100 mm/extreme pain). The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results Viscosity levels had significant impact on perceived injection pain (P=0.0003). Specifically, less pain was associated with high viscosity (VAS =12.6 mm) than medium (VAS =16.6 mm) or low (VAS =22.1 mm) viscosities, with a significant difference between high and low viscosities (P=0.0002). Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89). Slow (0.02 mL/s) or fast (0.30 mL/s) injection rates also showed no significant impact on perceived pain during SC injection (P=0.79). In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High viscosity injections were shown to be the most tolerated, whereas injection volume and flow rates did not impact perceived pain. PMID:26635489

  5. Anomalous effect of flow rate on the electrochemical behavior at a liquid|liquid interface under microfluidic conditions.

    PubMed

    Kaluza, Dawid; Adamiak, Wojciech; Kalwarczyk, Tomasz; Sozanski, Krzysztof; Opallo, Marcin; Jönsson-Niedziolka, Martin

    2013-12-23

    We have investigated the oxidation of ferrocene at a flowing organic solvent|aqueous electrolyte|solid electrode junction in a microfluidic setup using cyclic voltammetry and fluorescent laser scanning confocal microscopy. At low flow rates the oxidation current decreases with increasing flow, contrary to the Levich equation, but at higher flow rates the current increases linearly with the cube root of the flow rate. This behavior is explained using a simple model postulating a smallest effective width of the three-phase junction, which after fitting to the data comes to be ca. 20 μm. The fluorescence microscopy reveals mixing of the two phases close to the PDMS cover, but the liquid|liquid junction is stable close to the glass support. This study shows the importance of the solid|liquid|liquid junctions for the behavior of multiphase systems under microfluidic conditions. PMID:24328179

  6. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In

  7. Intracellular pH Recovery Rates in Bivalve Hemocytes Following Exposure to Acidic Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G. H.

    2012-12-01

    Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.

  8. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    PubMed

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure. PMID:26484732

  9. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain).

    PubMed

    Asta, Maria P; Ayora, Carlos; Acero, Patricia; Cama, Jordi

    2010-05-15

    Reactive transport modelling of the main processes related to the arsenic natural attenuation observed in the acid mine drainage (AMD) impacted stream of Tinto Santa Rosa (SW Spain) was performed. Despite the simplicity of the kinetic expressions used to deal with arsenic attenuation processes, the model reproduced successfully the major chemical trends observed along the acid discharge. Results indicated that the rate of ferrous iron oxidation was similar to the one obtained in earlier field studies in which microbial catalysis is reported to occur. With regard to the scaled arsenic oxidation rate, it is one order of magnitude faster than the values obtained under laboratory conditions suggesting the existence of a catalytic agent in the natural system. Schwertmannite precipitation rate, which was represented by a simple kinetic expression relying on Fe(III) and pH, was in the range calculated for other AMD impacted sites. Finally, the obtained distribution coefficients used for representing arsenic sorption onto Fe(III) precipitates were lower than those deduced from reported laboratory data. This discrepancy is attributed to a decrease in the schwertmannite arsenate sorption capacity as sulphate increases in the solution. PMID:20153577

  10. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  11. The control of glomerular filtration rate and renal blood flow in chronically volume-expanded rats.

    PubMed Central

    Davis, J M; Häberle, D A; Kawata, T

    1988-01-01

    1. Chronic volume expansion by dietary salt loading practically abolishes tubuloglomerular feed-back (TGF) by means of a humoral inhibitor in tubular fluid. Elimination of the vasoconstrictor influence of feed-back does not, however, increase glomerular filtration rate (GFR) and renal blood flow (RBF), implying that chronic salt loading induces additional preglomerular vasoconstriction. This being so, the feed-back response which, although absent in free-flowing nephrons, can still be elicited by loop of Henle perfusion with Ringer solution, should be essentially normal, except that nephron GFR at any loop perfusion rate should be lower than in controls. Persistence of RBF, GFR and nephron GFR autoregulation would imply that autoregulation is achieved by a preglomerular resistance control system independent of feed-back. 2. These hypotheses were tested by clearance and micropuncture experiments in rats chronically fed a diet containing 40 g NaCl (kg food)-1. 3. RBF and GFR autoregulation indeed persisted, the former down to 90 mmHg compared with 105 mmHg in controls. In controls, nephron GFR measured distally was autoregulated down to 90 mmHg whereas that measured proximally was autoregulated only above 105 mmHg. In high-salt rats nephron GFR from both sites was autoregulated to 90 mmHg. 4. Loop of Henle perfusion with homologous tubular fluid in high-salt rats confirmed attenuation of feed-back. Loop perfusion with Ringer solution yielded a response comparable to that in controls (maximal reduction of nephron GFR to 57%, compared with 56% in controls). Absolute nephron GFR at any loop perfusion rate was lower in high-salt rats than in controls. 5. These observations confirm the initial hypotheses. Considering feed-back and autoregulation as independent, preglomerular resistance control mechanisms, together with elementary haemodynamic considerations, allows formulation of a renal haemodynamics model whose quantitative predictions regarding characteristics of RBF

  12. Characterisation of DLC films deposited using titanium isopropoxide (TIPOT) at different flow rates.

    PubMed

    Said, R; Ali, N; Ghumman, C A A; Teodoro, O M N D; Ahmed, W

    2009-07-01

    In recent years, there has been growing interest in the search for advanced biomaterials for biomedical applications, such as human implants and surgical cutting tools. It is known that both carbon and titanium exhibit good biocompatibility and have been used as implants in the human body. It is highly desirable to deposit biocompatible thin films onto a range of components in order to impart biocompatibility and to minimise wear in implants. Diamond like carbon (DLC) is a good candidate material for achieving biocompatibility and low wear rates. In this study, thin films of diamond-like-carbon DLC were deposited onto stainless steel (316) substrates using C2H2, argon and titanium isopropoxide (TIPOT) precursors. Argon was used to generate the plasma in the plasma enhanced vapour deposition (PECVD) system. A critical coating feature governing the performance of the component during service is film thickness. The as-grown films were in the thickness range 90-100 nm and were found to be dependent on TIPOT flow rate. Atomic force microscopy (AFM) was used to characterise the surface roughness of the samples. As the flow rate of TIPOT increased the average roughness was found to increase in conjunction with the film thickness. Raman spectroscopy was used to investigate the chemical structure of amorphous carbon matrix. Surface tension values were calculated using contact angle measurements. In general, the trend of the surface tension results exhibited an opposite trend to that of the contact angle. The elemental composition of the samples was characterised using a VG ToF SIMS (IX23LS) instrument and X-ray photoelectron spectroscopy (XPS). Surprisingly, SIMS and XPS results showed that the DLC samples did not show evidence of titanium since no peaks representing to titanium appeared on the SIMS/XPS spectra. PMID:19916446

  13. Suppression of Growth Rate of Colony-Associated Fungi by High Fructose Corn Syrup Feeding Supplement, Formic Acid, and Oxalic Acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Select colony-associated fungi (bee isolates). Absidia sp., Ascosphaera apis, Aspergillus flavus, Fusarium sp., Penicillium glabrum, Mucor sp., showed a 40% reduction in radial growth rate with formic acid, a 28% reduction with oxalic acid, and a 15% reduction with fructose and high fructose corn sy...

  14. Dehumidification: Prediction of Condensate Flow Rate for Plate-Fin Tube Heat Exchangers Using the Latent j Factor

    SciTech Connect

    Baxter, V.D.; Chen, D.T.; Conklin, J.C.

    1999-03-15

    Condensate flow rate is an important factor in designing dehumidifiers or evaporators. In this paper, the latentj fimtor is used to analyze the dehumidification performance of two plate-fin tube heat exchangers. This latent j factor, analogous to the total j factor, is a flmction of the mass transfa coefllcient, the volumetric air flow rate, and the Schmidt number. This latent j factor did predict condensate flow rate more directly and accurately than any other sensiblej factor method. The Iatentj factor has been used in the present study because the sensible j factor correlations presented in the literature failed to predict the condensate flow rate at high Reynolds numbers. Results show that the latent j i%ctor em be simply correlated as a fhnction of the Reynolds number based on the tube outside diameter and number of rows of the heat exchanger.

  15. Determination of Flow Rates in Capillary Liquid Chromatography Coupled to a Nanoelectrospray Source using Droplet Image Analysis Software.

    PubMed

    Cohen, Alejandro M; Soto, Axel J; Fawcett, James P

    2016-08-01

    Liquid chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS) is widely used in proteomic and metabolomic workflows. Considerable analytical improvements have been observed when the components of LC systems are scaled down. Currently, nano-ESI is typically done at capillary LC flow rates ranging from 200 to 300 nL/min. At these flow rates, trouble shooting and leak detection of LC systems has become increasingly challenging. In this paper we present a novel proof-of-concept approach to measure flow rates at the tip of electrospray emitters when the ionization voltage is turned off. This was achieved by estimating the changes in the droplet volume over time using digital image analysis. The results are comparable with the traditional methods of measuring flow rates, with the potential advantages of being fully automatable and nondisruptive. PMID:27351615

  16. Soil calcium status and the response of stream chemistry to changing acidic deposition rates

    USGS Publications Warehouse

    Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.

    1999-01-01

    Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.

  17. Calcite growth-rate inhibition by fulvic acids isolated from Big Soda Lake, Nevada, USA, The Suwannee River, Georgia, USA and by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, Michael M.; Leenheer, Jerry

    2011-01-01

    Calcite crystallization rates are characterized using a constant solution composition at 25°C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition by BSLFA. Calcite growth-rate inhibition by BSLFA is consistent with a model indicating that polycarboxylic acid molecules present in BSLFA adsorb at growth sites on the calcite crystal surface. In contrast to published results for an unfractionated SRFA, there is dramatic calcite growth inhibition (at a concentration of 1 mg/L) by a SRFA fraction eluted by pH 5 solution from XAD-8 resin, indicating that calcite growth-rate inhibition is related to specific SRFA component fractions. A cyclic PCA, 1, 2, 3, 4, 5, 6-cyclohexane hexacarboxylic acid (CHXHCA) is a strong calcite growth-rate inhibitor at concentrations less than 0.1 mg/L. Two other cyclic PCAs, 1, 1 cyclopentanedicarboxylic acid (CPDCA) and 1, 1 cyclobutanedicarboxylic acid (CBDCA) with the carboxylic acid groups attached to the same ring carbon atom, have no effect on calcite growth rates up to concentrations of 10 mg/L. Organic matter ad-sorbed from the air onto the seed crystals has no effect on the measured calcite crystal-growth rates.

  18. Prediction of Liquid Sodium Flow Rate through the Core of the IBR-2M Reactor Using Nonlinear Autoregressive Neural Networks

    NASA Astrophysics Data System (ADS)

    Ososkov, G.; Pepelyshev, Yu.; Tsogtsaikhan, Ts.

    2016-02-01

    This paper presents an artificial neural network method for long-term prediction of liquid sodium flow rate through the core of the IBR-2M reactor. The nonlinear autoregressive neural network (NAR) with local feedback connection has been considered as the most appropriate tool for such a prediction. The predicted results were compared with experimental values. NAR model predicts slow changes of liquid sodium flow rate up to two days with an error less than 5%.

  19. Interactions of vacuum, b-phase duration, and liner compression on milk flow rates in dairy cows.

    PubMed

    Bade, R D; Reinemann, D J; Zucali, M; Ruegg, P L; Thompson, P D

    2009-03-01

    Vacuum, b-phase duration, and liner compression are 3 milking machine factors that affect peak milk flow rate; however, extreme values of these factors can also have negative effects on teat tissue health. The main and interactive effects of vacuum, b-phase duration, and liner compression on peak milk flow rate were studied by independently controlling these causal variables over a wide range of settings, using a central composite experimental design (42 to 53 kPa of system vacuum, 220 to 800 ms of b-phase, and residual vacuum for massage of 16 to 30 kPa; corresponding to a liner compression of 8 to 14 kPa). The results of this study indicated that increasing the vacuum and b-phase duration always increased peak milk flow rate (no relative maximum was reached); however, the rate of increase of flow rate decreased as the vacuum and b-phase were increased. Increasing the liner compression also increased peak flow rates, with an increasing effect at greater vacuum. The interaction between vacuum and liner compression and the lack of interaction between b-phase and liner compression indicate that for a corresponding increase in peak milk flow rate, increasing the b-phase produced less teat-end tissue congestion than increasing the vacuum. The effect of milking vacuum on peak milk flow rate was smaller than that reported in previous studies, probably because of the independent adjustment of milking vacuum and liner compression used in this study. The effect of b-phase duration on peak milk flow was also smaller in this study than in previous studies, probably because of the independent adjustment of b-phase and d-phase durations used in this study. PMID:19233784

  20. Rate Coefficient Determinations for H + NO2 → OH + NO from High Pressure Flow Reactor Measurements.

    PubMed

    Haas, Francis M; Dryer, Frederick L

    2015-07-16

    Rate coefficients for the reaction H + NO2 → OH + NO (R1) have been determined over the nominal temperature and pressure ranges of 737-882 K and 10-20 atm, respectively, from measurements in two different flow reactor facilities: one laminar and one turbulent. Considering the existing database of experimental k1 measurements, the present conditions add measurements of k1 at previously unconsidered temperatures between ∼820-880 K, as well as at pressures that exceed existing measurements by over an order of magnitude. Experimental measurements of NOx-perturbed H2 oxidation have been interpreted by a quasi-steady state NOx plateau (QSSP) method. At the QSSP conditions considered here, overall reactivity is sensitive only to the rates of R1 and H + O2 + M → HO2 + M (R2.M). Consequently, the ratio of k1 to k2.M may be extracted as a simple algebraic function of measured NO2, O2, and total gas concentrations with only minimal complication (within measurement uncertainty) due to treatment of overall gas composition M that differs slightly from pure bath gas B. Absolute values of k1 have been determined with reference to the relatively well-known, pressure-dependent rate coefficients of R2.B for B = Ar and N2. Rate coefficients for the title reaction determined from present experimental interpretation of both laminar and turbulent flow reactor results appear to be in very good agreement around a representative value of 1.05 × 10(14) cm(3) mol(-1) s(-1) (1.74 × 10(-10) cm(3) molecule(-1) s(-1)). Further, the results of this study agree both with existing low pressure flash photolysis k1 determinations of Ko and Fontijn (J. Phys. Chem. 95 3984) near 760 K as well as a present fit to the theoretical expression of Su et al. (J. Phys. Chem. A 106 8261). These results indicate that, over the temperature range considered in this study and up to at least 20 atm, net chemistry due to stabilization of the H-NO2 reaction intermediate to form isomers of HNO2 may proceed at