Science.gov

Sample records for acid fumaric acid

  1. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fumaric acid and salts of fumaric acid. 172.350... Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous... prescribed conditions: (a) The additives meet the following specifications: (1) Fumaric acid contains...

  2. Fumaric acid production by fermentation

    PubMed Central

    Roa Engel, Carol A.; Zijlmans, Tiemen W.; van Gulik, Walter M.; van der Wielen, Luuk A. M.

    2008-01-01

    The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations. PMID:18214471

  3. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely...

  4. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely...

  5. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely...

  6. 21 CFR 172.350 - Fumaric acid and salts of fumaric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fumaric acid and salts of fumaric acid. 172.350... HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.350 Fumaric acid and salts of fumaric acid. Fumaric acid and its calcium, ferrous, magnesium, potassium, and sodium salts may be safely...

  7. Enhanced acid tolerance of Rhizopus oryzae during fumaric acid production.

    PubMed

    Liu, Ying; Lv, Chunwei; Xu, Qing; Li, Shuang; Huang, He; Ouyang, Pingkai

    2015-02-01

    Ensuring a suitable pH in the culture broth is a major problem in microorganism-assisted industrial fermentation of organic acids. To address this issue, we investigated the physiological changes in Rhizopus oryzae at different extracellular pH levels and attempted to solve the issue of cell shortage under low pH conditions. We compared various parameters, such as membrane fatty acids' composition, intracellular pH, and adenosine triphosphate (ATP) concentration. It was found that the shortage of intracellular ATP might be the main reason for the low rate of fumaric acid production by R. oryzae under low pH conditions. When 1 g/l citrate was added to the culture medium at pH 3.0, the intracellular ATP concentration increased from 0.4 to 0.7 µmol/mg, and the fumaric acid titer was enhanced by 63% compared with the control (pH 3.0 without citrate addition). The final fumaric acid concentration at pH 3.0 reached 21.9 g/l after 96 h of fermentation. This strategy is simple and feasible for industrial fumaric acid production under low pH conditions.

  8. Bis-(2-amino-5-methyl-pyridinium) fumarate-fumaric acid (1/1).

    PubMed

    Hemamalini, Madhukar; Fun, Hoong-Kun

    2010-07-24

    In the crystal structure of the title compound, C(6)H(9)N(2) (+)·0.5C(4)H(2)O(4) (2-)·0.5C(4)H(6)O(4), the fumarate dianion and fumaric acid mol-ecule are located on inversion centres. The 2-amino-5-methyl-pyrimidinium cation inter-acts with the carboxyl-ate group of the fumarate anion through a pair of N-H⋯O hydrogen bonds, forming an R(2) (2)(8) ring motif. These motifs are centrosymmetrically paired via N-H⋯O hydrogen bonds, forming a complementary DDAA array. The carboxyl groups of the fumaric acid mol-ecules and the carboxyl-ate groups of the fumarate anions are hydrogen bonded through O-H⋯O hydrogen bonds, leading to a supra-molecular chain along [101]. The crystal structure is further stabilized by weak C-H⋯O hydrogen bonds.

  9. Production of Fumaric Acid in 20-Liter Fermentors

    PubMed Central

    Rhodes, R. A.; Lagoda, A. A.; Misenheimer, T. J.; Smith, M. L.; Anderson, R. F.; Jackson, R. W.

    1962-01-01

    The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO3 to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose. PMID:16349614

  10. Production of Fumaric Acid in 20-Liter Fermentors.

    PubMed

    Rhodes, R A; Lagoda, A A; Misenheimer, T J; Smith, M L; Anderson, R F; Jackson, R W

    1962-01-01

    The conditions necessary for the production of fumaric acid in 20-liter fermentors by fermentation of glucose with Rhizopus arrhizus strain NRRL 2582 were determined. Continuous neutralization of fumaric acid was necessary for optimal yields. Yields of the calcium salt were in excess of 65 g of fumaric acid from 100 g of sugar consumed during fermentation of sugar concentrations of 10 to 16%. Conditions established for calcium fumarate production include a simple mineral salts medium, 0.5 v:v:min aeration rate, 300 rev/min agitation rate in a baffled tank, 33 C incubation temperature, CaCO(3) to neutralize the acid formed, and a 4 to 5% (v/v) vegetative inoculum. A suitable procedure and medium for the preparation of a vigorous vegetative inoculum were established. The tendency for calcium fumarate fermentations to foam excessively was controlled with a proper antifoam agent added prior to sterilization of the medium and again at daily intervals during fermentation. The production of soluble sodium or potassium fumarates was inhibited when the concentration of fumarates reached 3.5 to 4.0%. No means of overcoming this inhibition was found. Starches and certain other grain-derived carbohydrates were fermented to form calcium fumarate in flask experiments with approximately the same efficiency as was glucose.

  11. Alternative respiration and fumaric acid production of Rhizopus oryzae.

    PubMed

    Gu, Shuai; Xu, Qing; Huang, He; Li, Shuang

    2014-06-01

    Under the conditions of fumaric acid fermentation, Rhizopus oryzae ME-F14 possessed at least two respiratory systems. The respiration of mycelia was partially inhibited by the cytochrome respiration inhibitor antimycin A or the alternative respiration inhibitor salicylhydroxamic acid and was completely inhibited in the presence of both antimycin A and salicylhydroxamic acid. During fumaric acid fermentation process, the activity of alternative respiration had a great correlation with fumaric acid productivity; both of them reached peak at the same time. The alternative oxidase gene, which encoded the mitochondrial alternative oxidase responsible for alternative respiration in R. oryzae ME-F14, was cloned and characterized in Escherichia coli. The activity of alternative respiration, the alternative oxidase gene transcription level, as well as the fumaric acid titer were measured under different carbon sources and different carbon-nitrogen ratios. The activity of alternative respiration was found to be comparable to the transcription level of the alternative oxidase gene and the fumaric acid titer. These results indicated that the activity of the alternative oxidase was regulated at the transcription stage under the conditions tested for R. oryzae ME-F14.

  12. Fumaric and sorbic acid as additives in broiler feed.

    PubMed

    Pirgozliev, V; Murphy, T C; Owens, B; George, J; McCann, M E E

    2008-06-01

    The aim of the experiment was to study the effect of dietary organic acids, fumaric and sorbic, on nitrogen corrected apparent metabolisable energy (AME(N)), metabolisability of nutrients, endogenous losses and performance on young broiler chickens. A total of 56 male Ross broilers were used in a growing experiment from 14 to 30d age. Seven experimental wheat-based (655g/kg) diets were formulated. The control diet did not contain organic acids. The other six diets were produced with the addition of fumaric or sorbic acids, replacing 0.5% , 1.0% or 1.5% of the wheat. The organic acid supplemented diets contained higher levels of AME(N) compared to the control diet. Overall, birds offered organic acids had lower feed intake. Dietary organic acids did not significantly affect weight gain or feed efficiency, however, birds offered supplemented diets had lower numbers of Lactic acid bacteria and Coliforms in the ileum and caeca. Birds offered organic acids had lower levels of endogenous losses compared to control fed birds. There was a negative relationship between AME(N) of the diets and excreted endogenous losses, measured as sialic acid. It can be concluded that the decrease in secretions from the gastrointestinal tract in the presence of fumaric and sorbic acids may be a mechanism involved in the mode of action of dietary organic acids.

  13. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background Fumaric acid is a commercially important component of foodstuffs, pharmaceuticals and industrial materials, yet the current methods of production are unsustainable and ecologically destructive. Results In this study, the fumarate biosynthetic pathway involving reductive reactions of the tricarboxylic acid cycle was exogenously introduced in S. cerevisiae by a series of simple genetic modifications. First, the Rhizopus oryzae genes for malate dehydrogenase (RoMDH) and fumarase (RoFUM1) were heterologously expressed. Then, expression of the endogenous pyruvate carboxylase (PYC2) was up-regulated. The resultant yeast strain, FMME-001 ↑PYC2 + ↑RoMDH, was capable of producing significantly higher yields of fumarate in the glucose medium (3.18 ± 0.15 g liter-1) than the control strain FMME-001 empty vector. Conclusions The results presented here provide a novel strategy for fumarate biosynthesis, which represents an important advancement in producing high yields of fumarate in a sustainable and ecologically-friendly manner. PMID:22335940

  14. Bis(adamantan-1-aminium) hydrogen phosphate fumaric acid sesquisolvate

    PubMed Central

    Mrad, Mohamed Lahbib; Zeller, Matthias; Hernandez, Kristen J.; Rzaigui, Mohamed; Ben Nasr, Cherif

    2012-01-01

    The asymmetric unit of the title compound, 2C10H18N+·HPO4 2−·1.5C4H4O4, contains two adamantan-1-aminium cations, one hydrogen phosphate anion, and one and a half mol­ecules of fumaric acid, one of which exhibits crystallographic inversion symmetry. Each HPO4 2− anion is hydrogen bonded, via all of its O atoms, to four NH3 + groups of the adamantan-1-aminium cations, forming chains along [100]. These chains are, in turn, inter­connected via a set of O—H⋯O hydrogen bonds involving the fumaric acid solvent mol­ecules, forming layers parallel to (001). Weak C—H⋯O inter­actions lead to a consolidation of the three-dimensional set-up. PMID:22904965

  15. Metabolic engineering of Escherichia coli for the production of fumaric acid.

    PubMed

    Song, Chan Woo; Kim, Dong In; Choi, Sol; Jang, Jae Won; Lee, Sang Yup

    2013-07-01

    Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, the iclR gene was deleted to redirect the carbon flux through the glyoxylate shunt. In addition, the fumA, fumB, and fumC genes were also deleted to enhance fumaric acid formation. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. Based on in silico flux response analysis, this base strain was further engineered by plasmid-based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), from the strong tac promoter, which resulted in the production of 4.09 g/L of fumaric acid. Additionally, the arcA and ptsG genes were deleted to reinforce the oxidative TCA cycle flux, and the aspA gene was deleted to block the conversion of fumaric acid into L-aspartic acid. Since it is desirable to avoid the use of inducer, the lacI gene was also deleted. To increase glucose uptake rate and fumaric acid productivity, the native promoter of the galP gene was replaced with the strong trc promoter. Fed-batch culture of the final strain CWF812 allowed production of 28.2 g/L fumaric acid in 63 h with the overall yield and productivity of 0.389 g fumaric acid/g glucose and 0.448 g/L/h, respectively. This study demonstrates the possibility for the efficient production of fumaric acid by metabolically engineered E. coli.

  16. Bioconversion of fumaric acid to L-malic acid by the bacteria of the genus Nocardia.

    PubMed

    Hronská, Helena; Tokošová, Silvia; Pilniková, Anna; Krištofíková, Ľudmila; Rosenberg, Michal

    2015-01-01

    The bacterial strains of the genus Nocardia were used for the bioconversion of fumaric acid to L-malic acid. The ability of the bacterial strain Nocardia sp. CCM 4837/A to produce L-malic acid from fumaric acid was investigated under various conditions. The optimal temperature for the bioconversion was approximately 37 °C, and the optimal pH was around 8.0. The addition of an inductor (fumarate salt) to the fermentation medium was necessary to enhance enzyme activity. The presence of detergent Triton X-100 (0.02-0.1 %) in the reaction mixture rapidly increased the enzyme activity of fumarase. The specific fumarase activity of intact cells Nocardia sp. CCM 4837/A increased from 2.8 to 75 U/mg after optimising the experimental conditions described here. Pretreatment of the Nocardia cells with malonate was not necessary because succinate was not detected as a by-product under our experimental conditions.

  17. Preservation of acidified cucumbers with a combination of fumaric acid and cinnamaldehyde that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The naturally occurring compound, fumaric acid, was evaluated as a potential preservative for the long-term storage of cucumbers. Fumaric acid inhibited growth of lactic acid bacteria (LAB) in an acidified cucumber juice medium model system resembling conditions that could allow preservation of cucu...

  18. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth.

    PubMed

    Prochaska, Krystyna; Staszak, Katarzyna; Woźniak-Budych, Marta Joanna; Regel-Rosocka, Magdalena; Adamczak, Michalina; Wiśniewski, Maciej; Staniewski, Jacek

    2014-09-01

    A novel approach based on a hybrid system allowing nanofiltration, bipolar electrodialysis and reactive extraction, was proposed to remove fumaric acid from fermentation broth left after bioconversion of glycerol. The fumaric salts can be concentrated in the nanofiltration process to a high yield (80-95% depending on pressure), fumaric acid can be selectively separated from other fermentation components, as well as sodium fumarate can be conversed into the acid form in bipolar electrodialysis process (stack consists of bipolar and anion-exchange membranes). Reactive extraction with quaternary ammonium chloride (Aliquat 336) or alkylphosphine oxides (Cyanex 923) solutions (yield between 60% and 98%) was applied as the final step for fumaric acid recovery from aqueous streams after the membrane techniques. The hybrid system permitting nanofiltration, bipolar electrodialysis and reactive extraction was found effective for recovery of fumaric acid from the fermentation broth.

  19. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    PubMed

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH < pK). Steady states were achieved with different extracellular levels of fumaric acid, obtained by adding different amounts of fumaric acid to the feed medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed.

  20. Metabolic engineering of Rhizopus oryzae: Effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumaric acid, a dicarboxylic acid used as a food acidulant and in manufacturing synthetic resins, can be produced from glucose in fermentation by Rhizopus oryzae. However, the fumaric acid yield is limited by the co-production of ethanol and other byproducts. To increase fumaric acid production, ove...

  1. [Acute kidney failure during psoriasis therapy with fumaric acid derivatives].

    PubMed

    Dalhoff, K; Faerber, P; Arnholdt, H; Sack, K; Strubelt, O

    1990-06-29

    24 days after starting treatment of psoriasis with fumaric acid derivatives (0.8-1.0 g orally, plus unknown quantities locally) a 21-year-old woman developed acute oliguric renal failure with a rise of serum creatinine levels to 1094 mumol/l (12.4 mg/dl). Deterioration of renal function had been preceded by severe abdominal symptoms with nausea, vomiting and colicky pain. On admission to hospital she was dehydrated with hyponatraemia and hypokalaemia. There was glomerular microhaematuria, increased excretion of renal epithelia, and tubular proteinuria. Renal biopsy demonstrated acute tubular damage with vacuolization of proximal epithelia, dilated tubules and scattered necroses. After intermittent haemodialysis (13 courses over two weeks) renal function gradually recovered, as demonstrated at a follow-up examination four months after discharge.

  2. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    PubMed Central

    Jamalzadeh, Elaheh; Verheijen, Peter J. T.; Heijnen, Joseph J.

    2012-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a successful metabolic engineering approach for overproduction of organic acids requires an incorporation of a proper exporter to increase the productivity. Moreover, low-pH fermentations, which are desirable for facilitating the downstream processing, may cause back diffusion of the undissociated acid into the cells with simultaneous active export, thereby creating an ATP-dissipating futile cycle. In this work, we have studied the uptake of fumaric acid in S. cerevisiae in carbon-limited chemostat cultures under anaerobic conditions. The effect of the presence of fumaric acid at different pH values (3 to 5) has been investigated in order to obtain more knowledge about possible uptake mechanisms. The experimental results showed that at a cultivation pH of 5.0 and an external fumaric acid concentration of approximately 0.8 mmol · liter−1, the fumaric acid uptake rate was unexpectedly high and could not be explained by diffusion of the undissociated form across the plasma membrane alone. This could indicate the presence of protein-mediated import. At decreasing pH levels, the fumaric acid uptake rate was found to increase asymptotically to a maximum level. Although this observation is in accordance with protein-mediated import, the presence of a metabolic bottleneck for fumaric acid conversion under anaerobic conditions could not be excluded. PMID:22113915

  3. Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation

    PubMed Central

    Sloothaak, Jasper; van Heck, Ruben G.A.; Martins dos Santos, Vitor A.P.; Suarez-Diez, Maria

    2017-01-01

    The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism. PMID:28382234

  4. Fumaric acid microenvironment tablet formulation and process development for crystalline cenicriviroc mesylate, a BCS IV compound.

    PubMed

    Menning, Mark M; Dalziel, Sean M

    2013-11-04

    Cenicriviroc mesylate (CVC) is a potent dual antagonist of C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 2 (CCR2) in phase 2b development as an entry inhibitor for HIV-1 infection treatment.1,2 CVC is a weak base exhibiting BCS IV characteristics with a highly pH dependent solubility profile (>100 mg/mL for pH < 2 and <0.2 μg/mL for pH > 4) and low Caco-2 cell line permeability. Previous tablet formulations of CVC, including spray-dried dispersion and a wet granulation with citric acid, had been found unacceptable for commercial use due to chemical and physical instability or unacceptably high excipient loading precluding fixed-dose combinability. A high drug loading, 26% (w/w), acidic microenvironment tablet formulation with fumaric acid solubilizer (1:1 CVC/fumaric acid) and a dry granulation process was developed iteratively through a sequence of prototypes characterized by beagle dog absorption studies, focused beam reflectance measurement (FBRM), dynamic vapor sorption (DVS), and accelerated stability testing. The fumaric acid based dry granulated product demonstrated a mean bioavailability comparable to an oral solution dose in a dog model. Stability and moisture sensitivity of the formulation were improved via the dry granulation process technique and the use of fumaric acid. It is hypothesized that the observed slow dissolution kinetics of fumaric acid prolongs an acidic microenvironment around the agglomerated CVC crystals and excipients leading to increased CVC dissolution and thereby absorption. The fumaric acid formulation also demonstrated absorption resilience to gastric pH extremes in a dog model. This optimized formulation and process enables CVC to be a viable candidate for current HIV treatment paradigms of single once daily fixed-dose combination products.

  5. Food Waste Fermentation to Fumaric Acid by Rhizopus arrhizus RH7-13.

    PubMed

    Liu, Huan; Ma, Jingyuan; Wang, Meng; Wang, Weinan; Deng, Li; Nie, Kaili; Yue, Xuemin; Wang, Fang; Tan, Tianwei

    2016-12-01

    Fumaric acid as a four-carbon unsaturated dicarboxylic acid is widely used in the food and chemical industries. Food waste (FW), rich in carbohydrates and protein, is a promising potential feedstock for renewable bio-based chemicals. In this research, we investigated the capability of Rhizopus arrhizus RH7-13 in producing fumaric acid from FW. The liquid fraction of the FW (L-FW) was proven to be the best seed culture medium in our research. When it was however used to be fermentation medium, the yield of fumaric acid reached 32.68 g/L, at a volumetric production of 0.34 g/L h. The solid fraction of FW mixed with water (S-FW) could also be used as fermentation medium when a certain amount of glucose was added, and the yield of fumaric acid reached 31.26 g/L. The results indicated that both fractions of FW could be well utilized in fermentation process and it could replace a part of common carbon, nitrogen, and nutrient. The process has an application potential since reducing the costs of raw materials.

  6. Total synthesis of (−)-dihydroprotolichesterenic acid via diastereoselective conjugate addition to chiral fumarates

    PubMed Central

    Hethcox, J. Caleb; Shanahan, Charles S.; Martin, Stephen F.

    2013-01-01

    A diastereoselective conjugate addition of a variety of monoorganocuprates, Li[RCuI], to chiral fumarates to provide funtionalized succinates has been developed. The utility of this reaction is demonstrated in a concise total synthesis of (−)-dihydroprotolichesterenic acid that required only four steps and proceeded in an overall 31% yield. PMID:23539490

  7. Diastereoselective addition of monoorganocuprates to a chiral fumarate: reaction development and synthesis of (-)-dihydroprotolichesterinic acid.

    PubMed

    Hethcox, J Caleb; Shanahan, Charles S; Martin, Stephen F

    2015-09-16

    Recent studies of diastereoselective conjugate additions of monoorganocuprates, Li[RCuI], to chiral γ-alkoxycrotonates and fumarates are disclosed. This methodology was applied to the shortest total synthesis of (-)-dihydroprotolichesterinic acid to date, but several attempts to prepare other succinate-derived natural products, such as pilocarpine and antrodin E, were unsuccessful.

  8. Production of fumaric acid from biodiesel-derived crude glycerol by Rhizopus arrhizus.

    PubMed

    Zhou, Yuqing; Nie, Kaili; Zhang, Xin; Liu, Shihong; Wang, Meng; Deng, Li; Wang, Fang; Tan, Tianwei

    2014-07-01

    This work investigated the capability of Rhizopus arrhizus to assimilate biodiesel-derived crude glycerol and convert it into fumaric acid. After optimizing the initial glycerol concentration, spore inoculum and yeast extract concentration, smaller pellets (0.7 mm) and higher biomass (3.11 g/L) were obtained when R. arrhizus grew on crude glycerol. It was found that crude glycerol was more suitable than glucose for smaller R. arrhizus pellet forming. When 80 g/L crude glycerol was used as carbon source, the fumaric acid production of 4.37 g/L was obtained at 192 h. With a highest concentration of 22.81 g/L achieved in the co-fermentation of crude glycerol (40 g/L) and glucose (40 g/L) at 144 h, the fumaric acid production was enhanced by 553.6%, compared to the fermentation using glycerol (80 g/L) as sole carbon source. Moreover, the production cost of fumaric acid in co-fermentation was reduced by approximately 14% compared to glucose fermentation.

  9. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    SciTech Connect

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-10-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.

  10. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens.

    PubMed

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-02-12

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25-60 °C), times (1-5 min), and concentrations (5-30 ppm for SAEW and 0.125%-0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95-5.76 log CFU/mL at 25-60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens.

  11. Fumaric Acid and Slightly Acidic Electrolyzed Water Inactivate Gram Positive and Gram Negative Foodborne Pathogens

    PubMed Central

    Tango, Charles Nkufi; Mansur, Ahmad Rois; Oh, Deog-Hwan

    2015-01-01

    Sanitizing effectiveness of slightly acidic electrolyzed water (SAEW) and fumaric acid (FA) at different dipping temperatures (25–60 °C), times (1–5 min), and concentrations (5–30 ppm for SAEW and 0.125%–0.5% for FA) on pure cultures of two Gram positive pathogens Staphylococcus aureus (SA) and Listeria monocytogenes (LM) and two Gram negative pathogens Escherichia coli O157:H7 (EC) and Salmonella Typhimurium (ST) was evaluated. FA (0.25%) showed the strongest sanitizing effect, demonstrating complete inactivation of EC, ST, and LM, while SA was reduced by 3.95–5.76 log CFU/mL at 25–60 °C, respectively, after 1 min of treatment. For SAEW, the complete inactivation was obtained when available chlorine concentration was increased to 20 ppm at 40 °C for 3 and 5 min. Moreover, Gram positive pathogens have been shown to resist to all treatment trends more than Gram negative pathogens throughout this experiment. Regardless of the different dipping temperatures, concentrations, and times, FA treatment was more effective than treatment with SAEW for reduction of foodborne pathogens. This study demonstrated that application of FA in food systems may be useful as a method for inactivation of foodborne pathogens. PMID:27682077

  12. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.

    PubMed

    Mondala, Andro H

    2015-04-01

    Various economic and environmental sustainability concerns as well as consumer preference for bio-based products from natural sources have paved the way for the development and expansion of biorefining technologies. These involve the conversion of renewable biomass feedstock to fuels and chemicals using biological systems as alternatives to petroleum-based products. Filamentous fungi possess an expansive portfolio of products including the multifunctional organic acids itaconic, fumaric, and malic acids that have wide-ranging current applications and potentially addressable markets as platform chemicals. However, current bioprocessing technologies for the production of these compounds are mostly based on submerged fermentation, which necessitates physicochemical pretreatment and hydrolysis of lignocellulose biomass to soluble fermentable sugars in liquid media. This review will focus on current research work on fungal production of itaconic, fumaric, and malic acids and perspectives on the potential application of solid-state fungal cultivation techniques for the consolidated hydrolysis and organic acid fermentation of lignocellulosic biomass.

  13. Production of fumaric acid from L-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8.

    PubMed

    Liu, Yanhui; Song, Jianing; Tan, Tianwei; Liu, Luo

    2015-03-01

    Currently, fumaric acid is produced by catalytic isomerization of maleic acid in aqueous solutions at low pH. Being petroleum based, requiring catalyst, and producing vast amounts of by-products and wastewater, the production of fumaric acid from renewable resources by a "green" process is increasingly attractive. In an aqueous solution, the reaction equilibrium constant of the fumarase-mediated conversion of L-malic acid to fumaric acid is 1:4.2 (fumaric acid to L-malic acid). To shift the reaction equilibrium to fumaric acid, solvent engineering was carried out by varying hydrophilic solvents and their concentrations. Generally, organic solvents may denature fumarase. Therefore, fumarase from Thermus thermophilus was employed to overcome this problem. Ethylene glycol was found more suitable than other solvents. This fumarase was shown to be more stable in 50% than in 70% ethylene glycol. Therefore, a preparation was carried out in 50% ethylene glycol. Under this condition, 54.7% conversion was observed using fumarase for transforming 1 mmol L-malic acid. After precipitation by adapting the pH, and washing to remove residual solvent and substrate, 27% total yield was obtained with 99% purity. The results demonstrated that the alternative green route to produce bio-based fumaric acid via L-malic acid is feasible and viable.

  14. Characterization of the hyperline of D1/D0 conical intersections between the maleic acid and fumaric acid anion radicals

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Sumita, Masato

    2004-10-01

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D0) and the lowest excited doublet state (D1) near a 90°-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D1/D0 CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis→trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  15. Preservation of acidified cucumbers with a natural preservative combination of fumaric acid and allyl isothiocyanate that target lactic acid bacteria and yeasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Without the addition of preservative compounds cucumbers acidified with 150 mM acetic acid with pH adjusted to 3.5 typically undergo fermentation by lactic acid bacteria. Fumaric acid (20 mM) inhibited growth of Lactobacillus plantarum and the lactic acid bacteria present on fresh cucumbers, but sp...

  16. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques.

    PubMed

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-15

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  17. Spectroscopic investigation on cocrystal formation between adenine and fumaric acid based on infrared and Raman techniques

    NASA Astrophysics Data System (ADS)

    Du, Yong; Fang, Hong Xia; Zhang, Qi; Zhang, Hui Li; Hong, Zhi

    2016-01-01

    As an important component of double-stranded DNA, adenine has powerful hydrogen-bond capability, due to rich hydrogen bond donors and acceptors existing within its molecular structure. Therefore, it is easy to form cocrystal between adenine and other small molecules with intermolecular hydrogen-bond effect. In this work, cocrystal of adenine and fumaric acid has been characterized as model system by FT-IR and FT-Raman spectral techniques. The experimental results show that the cocrystal formed between adenine and fumaric acid possesses unique spectroscopical characteristic compared with that of starting materials. Density functional theory (DFT) calculation has been performed to optimize the molecular structures and simulate vibrational modes of adenine, fumaric acid and the corresponding cocrystal. Combining the theoretical and experimental vibrational results, the characteristic bands corresponding to bending and stretching vibrations of amino and carbonyl groups within cocrystal are shifted into lower frequencies upon cocrystal formation, and the corresponding bond lengths show some increase due to the effect of intermolecular hydrogen bonding. Different vibrational modes shown in the experimental spectra have been assigned based on the simulation DFT results. The study could provide experimental and theoretical benchmarks to characterize cocrystal formed between active ingredients and cocrystal formers and also the intermolecular hydrogen-bond effect within cocrystal formation process by vibrational spectroscopic techniques.

  18. Hydro-thermal synthesis and crystal structure of a new lanthanum(III) coordination polymer with fumaric acid.

    PubMed

    Anana, Hayet; Trifa, Chahrazed; Bouacida, Sofiane; Boudaren, Chaouki; Merazig, Hocine

    2015-05-01

    The title compound, poly[di-aqua-tris-(μ4-but-2-enedioato)(μ2-but-2-enedioic acid)dilanthanum(III)], [La2(C4H2O4)3(C4H4O4)(H2O)2] n , was synthesized by the reaction of lanthanum chloride penta-hydrate with fumaric acid under hydro-thermal conditions. The asymmetric unit comprises an La(III) cation, one and a half fumarate dianions (L (2-)), one a half-mol-ecule of fumaric acid (H2 L) and one coordinated water mol-ecule. Each La(III) cation has the same nine-coordinate environment and is surrounded by eight O atoms from seven distinct fumarate moieties, including one proton-ated fumarate unit and one water mol-ecule in a distorted tricapped trigonal-prismatic environment. The LaO8(H2O) polyhedra centres are edge-shared through three carboxyl-ate bridges of the fumarate ligand, forming chains in three dimensions to construct the MOF. The crystal structure is stabilized by O-H⋯O hydrogen-bond inter-actions between the coordin-ated water mol-ecule and the carboxyl-ate O atoms, and also between oxygen atoms of fumaric acid.

  19. Fumarate Production by Torulopsis glabrata: Engineering Heterologous Fumarase Expression and Improving Acid Tolerance

    PubMed Central

    Chen, Xiulai; Song, Wei; Gao, Cong; Qin, Wen; Luo, Qiuling; Liu, Jia; Liu, Liming

    2016-01-01

    Fumarate is a well-known biomass building block compound. However, the poor catalytic efficiency of fumarase is one of the major factors preventing its widespread production. To address this issue, we selected residues 159HPND162 of fumarase from Rhizopus oryzae as targets for site-directed mutagenesis based on molecular docking analysis. Twelve mutants were generated and characterized in detail. Kinetic studies showed that the Km values of the P160A, P160T, P160H, N161E, and D162W mutants were decreased, whereas Km values of H159Y, H159V, H159S, N161R, N161F, D162K, and D162M mutants were increased. In addition, all mutants displayed decreased catalytic efficiency except for the P160A mutant, whose kcat/Km was increased by 33.2%. Moreover, by overexpressing the P160A mutant, the engineered strain T.G-PMS-P160A was able to produce 5.2 g/L fumarate. To further enhance fumarate production, the acid tolerance of T.G-PMS-P160A was improved by deleting ade12, a component of the purine nucleotide cycle, and the resulting strain T.G(△ade12)-PMS-P160A produced 9.2 g/L fumarate. The strategy generated in this study opens up new avenues for pathway optimization and efficient production of natural products. PMID:27711153

  20. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.

    PubMed

    Liu, Ying; Xu, Qing; Lv, Chunwei; Yan, Caixia; Li, Shuang; Jiang, Ling; Huang, He; Ouyang, Pingkai

    2015-12-01

    Ensuring a suitable pH is a major problem in industrial organic acid fermentation. To circumvent this problem, we used a metabolic profiling approach to analyze metabolite changes in Rhizopus oryzae under different pH conditions. A correlation between fumaric acid production and intracellular metabolic characteristics of R. oryzae was revealed by principal component analysis. The results showed that to help cell survival in the presence of low pH, R. oryzae altered amino acid and fatty acid metabolism and promoted sugar or sugar alcohol synthesis, corresponding with a suppressing of energy metabolism, phenylalanine, and tyrosine synthesis and finally resulting in the low performance of fumaric acid production. Based on this observation, 1 % linoleic acid was added to the culture medium in pH 3.0 to decrease the carbon demand for cell survival, and the fumaric acid titer was enhanced by 39.7 % compared with the control (pH 3.0 without linoleic acid addition), reaching 18.3 g/L after 84 h of fermentation. These findings provide new insights into the mechanism by which R. oryzae responds to acidic stress and would be helpful for the development of efficient strategies for fumaric acid production at low pH.

  1. Transcriptome analysis of Rhizopus oryzae in response to xylose during fumaric acid production.

    PubMed

    Xu, Qing; Liu, Ying; Li, Shuang; Jiang, Ling; Huang, He; Wen, Jianping

    2016-08-01

    Xylose is one of the most abundant lignocellulosic components, but it cannot be used by R. oryzae for fumaric acid production. Here, we applied high-throughput RNA sequencing to generate two transcriptional maps of R. oryzae following fermentation in glucose or xylose. The differential expression analysis showed that, genes involved in amino acid metabolism, fatty acid metabolism, and gluconeogenesis, were up-regulated in response to xylose. Moreover, we discovered the potential presence of oxidative stress in R. oryzae during xylose fermentation. To adapt to this unfavorable condition, R. oryzae displayed reduced growth and induce of a number of antioxidant enzymes, including genes involved in glutathione, trehalose synthesis, and the proteasomal pathway. These responses might divert the flow of carbon required for the accumulation of fumaric acid. Furthermore, using high-throughput RNA sequencing, we identified a large number of novel transcripts and a substantial number of genes that underwent alternative splicing. Our analysis provides remarkable insight into the mechanisms underlying xylose fermentation by R. oryzae. These results may reveal potential target genes or strategies to improve xylose fermentation.

  2. Studies on potential effects of fumaric acid on rumen microbial fermentation, methane production and microbial community.

    PubMed

    Riede, Susanne; Boguhn, Jeannette; Breves, Gerhard

    2013-01-01

    The greenhouse gas methane (CH4) contributes substantially to global climate change. As a potential approach to decrease ruminal methanogenesis, the effects of different dosages of fumaric acid (FA) on ruminal microbial metabolism and on the microbial community (archaea, bacteria) were studied using a rumen simulation technique (RUSITEC). FA acts as alternative hydrogen acceptor diverting 2H from methanogenesis of archaea towards propionate formation of bacteria. Three identical trials were conducted with 12 fermentation vessels over a period of 14 days. In each trial, four fermentation vessels were assigned to one of the three treatment groups differing in FA dosage: low fumaric acid (LFA), high fumaric acid (HFA) and without FA (control). FA was continuously infused with the buffer. Grass silage and concentrate served as substrate. FA led to decreases in pH and to higher production rates of total short chain fatty acids (SCFA) mediated by increases in propionate for LFA of 1.69 mmol d(-1) and in propionate and acetate production for HFA of 4.49 and 1.10 mmol d(-1), respectively. Concentrations of NH3-N, microbial crude protein synthesis, their efficiency, degradation of crude nutrients and detergent fibre fraction were unchanged. Total gas and CH4 production were not affected by FA. Effects of FA on structure of microbial community by means of single strand conformation polymorphism (SSCP) analyses could not be detected. Given the observed increase in propionate production and the unaffected CH4 production it can be supposed that the availability of reduction equivalents like 2H was not limited by the addition of FA in this study. It has to be concluded from the present study that the application of FA is not an appropriate approach to decrease the ruminal CH4 production.

  3. Activation of glycerol metabolic pathway by evolutionary engineering of Rhizopus oryzae to strengthen the fumaric acid biosynthesis from crude glycerol.

    PubMed

    Huang, Di; Wang, Ru; Du, Wenjie; Wang, Guanyi; Xia, Menglei

    2015-11-01

    Rhizopus oryzae is strictly inhibited by biodiesel-based by-product crude glycerol, which results in low fumaric acid production. In this study, evolutionary engineering was employed to activate the glycerol utilization pathway for fumaric acid production. An evolved strain G80 was selected, which could tolerate and utilize high concentrations of crude glycerol to produce 14.9g/L fumaric acid with a yield of 0.248g/g glycerol. Key enzymes activity analysis revealed that the evolved strain displayed a significant upregulation in glycerol dissimilation, pyruvate consumption and reductive tricarboxylic acid pathways, compared with the parent strain. Subsequently, intracellular metabolic profiling analysis showed that amino acid biosynthesis, tricarboxylic acid cycle, fatty acid and stress response metabolites accounted for metabolic difference between two strains. Moreover, a glycerol fed-batch strategy was optimized to obtain the highest fumaric acid production of 25.5g/L, significantly increased by 20.9-fold than that of the parent strain of 1.2g/L.

  4. Influence of various amounts of fumaric acid on performance and parameters of the acid-base balance of growing bulls fed with grass or maize silage.

    PubMed

    Remling, Nicole; Hachenberg, Sabrina; Meyer, Ulrich; Höltershinken, Martin; Flachowsky, Gerhard; Dänicke, Sven

    2011-10-01

    The aim of the present study was to determine the effects of the potential methane reducer fumaric acid on the fattening performance and acid-base balance of growing bulls fed two different silage types as roughage (maize and grass silage). A total of 62 fattening bulls (German Holstein breed, initial body weight: 266 +/- 42 kg), randomly assigned to eight feeding groups, received four levels of fumaric acid (0, 100, 200 or 300 g/d) at each silage type. The daily feed and water intake and the live weight were measured over the whole testing period of 280 days. In blood samples, blood cells and blood gases as a parameter of acid-base status were analysed. Feed and faeces were collected to determine the apparent nutrient digestibility. Five animals from each group fed maize or grass silage, supplemented with 0 g or 300 g fumaric acid, were slaughtered at 580 kg body weight. After slaughter, rumen fluid pH was measured and dressing percentage was calculated. Neither the total feed intake (8.81 +/- 0.07 kg/d) nor the daily weight gain (1277 +/- 24 g/d) was influenced significantly by treatments. Fumaric acid supplementation did not influence the erythrocyte count or the blood gas concentration. The silage type significantly influenced the apparent digestibility of the whole diet. The dressing percentage was slightly higher (p < 0.1) after fumaric acid supplementation. No signs of an incompatibility to fumaric acid on the animals were observed over the whole experimental period. However, it seems to be necessary to conduct more long-term studies with different silage types and addition of organic acids combined with direct measurements of methane.

  5. Determination of fumaric and maleic acids with stacking analytes by transient moving chemical reaction boundary method in capillary electrophoresis.

    PubMed

    He, Jian-Feng; Yang, Wei-Ying; Yao, Fu-Jun; Zhao, Hong; Li, Xiang-Jun; Yuan, Zhuo-Bin

    2011-06-17

    The paper presents an on-line transient moving chemical reaction boundary (MCRB) method for simply but efficiently stacking analytes in capillary electrophoresis (CE). The CE technique was developed for a rapid determination of fumaric and maleic acid. Based on the theory of MCRB, Effects of several important factors such as the pH and concentration of running buffer and the conditions of stacking analytes were investigated to acquire the optimum conditions. The optimized separations were carried out in a 20 mmol/L sulphate neutralized with ethylenediamine to pH 6.0 electrolytes using a capillary coated with poly (diallyldimethylammonium chloride) and direct UV detection at 214 nm. The optimized preconcentrations were carried out in 50 mmol/L borax (pH 9.0). The calibration curves were linear in the concentration range of 1.0×10⁻⁷-1.0×10⁻⁴ mol/L and 5.0×10⁻⁷-1.0×10⁻⁴ mol/L for fumaric and maleic acid with correlation coefficients higher than 0.9991. The detection limits were 5.34×10⁻⁸ mol/L for fumaric acid and 1.92×10⁻⁷ mol/L for maleic acid. This method was applied for determination of fumaric acid in apple juice and of fumaric and maleic acid in dl-malic, the recovery tests established for real samples were within the range 95-105%. This work provided a valid and simple approach to detect fumaric and maleic acid.

  6. Effects of irradiation and fumaric acid treatment on the inactivation of Listeria monocytogenes and Salmonella typhimurium inoculated on sliced ham

    NASA Astrophysics Data System (ADS)

    Song, Hyeon-Jeong; Lee, Ji-Hye; Song, Kyung Bin

    2011-11-01

    To examine the effects of fumaric acid and electron beam irradiation on the inactivation of foodborne pathogens in ready-to-eat meat products, sliced ham was inoculated with Listeria monocytogenes and Salmonella typhimurium. The inoculated ham slices were treated with 0.5% fumaric acid or electron beam irradiation at 2 kGy. Fumaric acid treatment reduced the populations of L. monocytogenes and S. typhimurium by approximately 1 log CFU/g compared to control populations. In contrast, electron beam irradiation decreased the populations of S. typhimurium and L. monocytogenes by 3.78 and 2.42 log CFU/g, respectively. These results suggest that electron beam irradiation is a better and appropriate technique for improving the microbial safety of sliced ham.

  7. Fumaric Acid Production from Alkali-Pretreated Corncob by Fed-Batch Simultaneous Saccharification and Fermentation Combined with Separated Hydrolysis and Fermentation at High Solids Loading.

    PubMed

    Li, Xin; Zhou, Jin; Ouyang, Shuiping; Ouyang, Jia; Yong, Qiang

    2017-02-01

    Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.

  8. High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH 7-13-9#.

    PubMed

    Liu, Huan; Wang, Weinan; Deng, Li; Wang, Fang; Tan, Tianwei

    2015-06-01

    Fumaric acid, as an important material for polymerization, is highly expected to be produced by fermentation of lignocellulosic biomass which is composed of cellulose, hemicellulose and lignin. Xylose as the main component of hemicellulose cannot be efficiently utilized by most of the common fermentation. In this study, a new strain Rhizopus arrhizus RH 7-13-9# was selected from the R. arrhizus RH 7-13 through a novel convenient and efficient selection method. Efficient production of fumaric acid (45.31 g/L) from xylose was achieved by the new strain, and the volumetric productivity was still 0.472 g/L h. Moreover, the conversion of xylose reached 73% which is close to the theoretic yield (77%). The production of fumaric acid was increased approximate by 172%, compared with the initial strain counterpart. These results indicated that xylose, as the main component of hemicellulose, has a promising application for the production of fumaric acid on an industrial-scale.

  9. Bis­(2-amino-5-methyl­pyridinium) fumarate–fumaric acid (1/1)

    PubMed Central

    Hemamalini, Madhukar; Fun, Hoong-Kun

    2010-01-01

    In the crystal structure of the title compound, C6H9N2 +·0.5C4H2O4 2−·0.5C4H6O4, the fumarate dianion and fumaric acid mol­ecule are located on inversion centres. The 2-amino-5-methyl­pyrimidinium cation inter­acts with the carboxyl­ate group of the fumarate anion through a pair of N—H⋯O hydrogen bonds, forming an R 2 2(8) ring motif. These motifs are centrosymmetrically paired via N—H⋯O hydrogen bonds, forming a complementary DDAA array. The carboxyl groups of the fumaric acid mol­ecules and the carboxyl­ate groups of the fumarate anions are hydrogen bonded through O—H⋯O hydrogen bonds, leading to a supra­molecular chain along [101]. The crystal structure is further stabilized by weak C—H⋯O hydrogen bonds. PMID:21588388

  10. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling.

    PubMed

    Bénit, Paule; Letouzé, Eric; Rak, Malgorzata; Aubry, Laetitia; Burnichon, Nelly; Favier, Judith; Gimenez-Roqueplo, Anne-Paule; Rustin, Pierre

    2014-08-01

    Seventy years from the formalization of the Krebs cycle as the central metabolic turntable sustaining the cell respiratory process, key functions of several of its intermediates, especially succinate and fumarate, have been recently uncovered. The presumably immutable organization of the cycle has been challenged by a number of observations, and the variable subcellular location of a number of its constitutive protein components is now well recognized, although yet unexplained. Nonetheless, the most striking observations have been made in the recent period while investigating human diseases, especially a set of specific cancers, revealing the crucial role of Krebs cycle intermediates as factors affecting genes methylation and thus cell remodeling. We review here the recent advances and persisting incognita about the role of Krebs cycle acids in diverse aspects of cellular life and human pathology.

  11. Recent advances in the biomedical applications of fumaric acid and its ester derivatives: The multifaceted alternative therapeutics.

    PubMed

    Das, Ratul Kumar; Brar, Satinder Kaur; Verma, Mausam

    2016-04-01

    Several lines of evidence have demonstrated the potential biomedical applications of fumaric acid (FA) and its ester derivatives against many human disease conditions. Fumaric acid esters (FAEs) have been licensed for the systemic treatment of the immune-mediated disease psoriasis. Biogen Idec Inc. announced about the safety and efficacy of the formulation FAE (BG-12) for treating RRMS (relapsing-remitting multiple sclerosis). Another FAE formulation DMF (dimethyl fumarate) was found to be capable of reduction in inflammatory cardiac conditions, such as autoimmune myocarditis and ischemia and reperfusion. DMF has also been reported to be effective as a potential neuroprotectant against the HIV-associated neurocognitive disorders (HAND). Many in vivo studies carried out on rat and mice models indicated inhibitory effects of fumaric acid on carcinogenesis of different origins. Moreover, FAEs has emerged as an important matrix ingredient in the fabrication of biodegradable scaffolds for tissue engineering applications. Drug delivery vehicles composed of FAEs have shown promising results in delivering some leading drug molecules. Apart from these specific applications and findings, many more studies on FAEs have revealed new therapeutic potentials with the scope of clinical applications. However, until now, this scattered vital information has not been written into a collective account and analyzed for minute details. The aim of this paper is to review the advancement made in the biomedical application of FA and FAEs and to focus on the clinical investigation and molecular interpretation of the beneficial effects of FA and FAEs.

  12. Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9.

    PubMed

    Liu, Huan; Hu, Huirong; Jin, Yuhan; Yue, Xuemin; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-02-11

    Lignocellulose is the most abundant biomass, composed of cellulose, hemicellulose and lignin. It can be converted into glucose and xylose, which could be utilized as carbon source to produce fumaric acid. But glucose and xylose were commonly used separately to produce fumaric acid, while the co-fermentation of glucose and xylose process was not studied so far. In this work, the co-fermentation process was researched through a new strain R. arrhizus RH 7-13-9# isolated from high concentration xylose. It was firstly proven to utilize glucose efficiently and 37.52g/L fumaric acid was obtained from 80g/L glucose. Furthermore, the effect of different ratios of glucose/xylose and carbon/nitrogen in the co-fermentation process was investigated and the best ratios were 75/25 (w/w) and 800/1 (w/w), where the yield of fumaric acid reached 46.78g/L.

  13. Simultaneous Production and Recovery of Fumaric Acid from Immobilized Rhizopus oryzae with a Rotary Biofilm Contactor and an Adsorption Column

    PubMed Central

    Cao, N.; Du, J.; Gong, C. S.; Tsao, G. T.

    1996-01-01

    An integrated system of simultaneous fermentation-adsorption for the production and recovery of fumaric acid from glucose by Rhizopus oryzae was investigated. The system was constructed such that growing Rhizopus mycelia were self-immobilized on the plastic discs of a rotary biofilm contactor during the nitrogen-rich growth phase. During the nongrowth, production phase, the biofilm was alternately exposed to liquid medium and air upon rotation of the discs in the horizontal fermentation vessel. The product of fermentation, fumaric acid, was removed simultaneously and continuously by a coupled adsorption column, thereby moderating inhibition, enhancing the fermentation rate, and sustaining cell viability. Another beneficial effect of the removal of fumaric acid is release of hydroxyl ions from a polyvinyl pyridine adsorbent into the circulating fermentation broth. This moderates the decrease in pH that would otherwise occur. Polyvinyl pyridine and IRA-900 gave the highest loading for this type of fermentation. This fermentation system is capable of producing fumaric acid with an average yield of 85 g/liter from 100 g of glucose per liter within 20 h under repetitive fed-batch cycles. On a weight yield basis, 91% of the theoretical maximum was obtained with a productivity of 4.25 g/liter/h. This is in contrast to stirred-tank fermentation supplemented with calcium carbonate, whose average weight yield was 65% after 72 h with a productivity of 0.9 g/liter/h. The immobilized reactor was operated repetitively for 2 weeks without loss of biological activity. PMID:16535381

  14. Influence of dietary phosphorus deficiency with or without addition of fumaric acid to a diet in pigs on bone parameters.

    PubMed

    Liesegang, A; Ursprung, R; Gasser, J; Sassi, M-L; Risteli, J; Riond, J-L; Wanner, M

    2002-02-01

    The purpose of this study was to examine if substantial bone loss occurs in weaned pigs by feeding a phosphorus-deficient diet with or without fumaric acid. Eighteen weaned pigs were used. The animals were assigned to three groups: group C (control; 0.65% P on DM basis), group LP (low phosphorus; 0.37% P on DM basis) and group LPF (low phosphorus plus fumaric acid; 0.35% P on DM basis plus 2% fumaric acid). These three diets were fed to the groups for a period of four weeks after a two-week adaptation period. Blood samples were collected once a week. Carboxyterminal telopeptide of type I collagen (ICTP) in serum was used as a bone resorption marker. Osteocalcin (OC) and bone-specific alkaline phosphatase (bAP) were used as bone formation markers. Bone mineral density (BMD) and content (BMC) were determined by peripheral quantitative computer tomography. BAP activities significantly increased (24%) in group LPF, and at the last sampling day group LPF had significantly increased activities in comparison to group C. In contrast, ICTP concentrations significantly increased with time in group LP and LPF, and at the last sampling day group LPF had significantly increased activities in comparison to group C. BMD and BMC in femur and tibia significantly decreased in group LP and LPF. The results show that P-deficient diets induce a bone loss. Fumaric acid did not influence the degree of bone loss. With a better understanding of its effect on bone, dietary phosphorus requirements in pigs could be more precisely defined.

  15. Effects of fumaric acid esters on blood-brain barrier tight junction proteins.

    PubMed

    Bénardais, Karelle; Pul, Refik; Singh, Vikramjeet; Skripuletz, Thomas; Lee, De-Hyung; Linker, Ralf A; Gudi, Viktoria; Stangel, Martin

    2013-10-25

    The blood-brain barrier (BBB) is composed of a network of tight junctions (TJ) which interconnect cerebral endothelial cells (EC). Alterations in the TJ proteins are common in inflammatory diseases of the central nervous system (CNS) like multiple sclerosis (MS). Modulation of the BBB could thus represent a therapeutic mechanism. One pathway to modulate BBB integrity could be the induction of nuclear-factor (erythroid derived 2) related factor-2 (Nrf2) mediated oxidative stress responses which are targeted by fumaric acid esters (FAE). Here we analyze effects of FAE on the expression of TJ proteins in the human cerebral endothelial cell line hCMEC/D3 and experimental autoimmune encephalomyelitis (EAE). We show that dimethylfumarate (DMF) and its primary metabolite monomethylfumarate (MMF) induce the expression of the Nrf2/NQO1 pathway in endothelial cells. Neither MMF nor DMF had a consistent modulatory effect on the expression of TJ molecules in hCMEC/D3 cells. Tumor necrosis factor (TNFα)-induced downregulation of TJ proteins was at least partially reversed by treatment with FAE. However, DMF had no effect on claudin-5 expression in EAE, despite its effect on the clinical score and infiltration of immune cells. These data suggest that the modulation of the BBB is not a major mechanism of action of FAE in inflammatory demyelinating diseases of the CNS.

  16. A metabolic-based approach to improve xylose utilization for fumaric acid production from acid pretreated wheat bran by Rhizopus oryzae.

    PubMed

    Wang, Guanyi; Huang, Di; Li, Yong; Wen, Jianping; Jia, Xiaoqiang

    2015-03-01

    In this work, wheat bran (WB) was utilized as feedstock to synthesize fumaric acid by Rhizopus oryzae. Firstly, the pretreatment process of WB by dilute sulfuric acid hydrolysis undertaken at 100°C for 30min offered the best performance for fumaric acid production. Subsequently, through optimizing the seed culture medium, a suitable morphology (0.55mm pellets diameter) of R. oryzae was obtained. Furthermore, a metabolic-based approach was developed to profile the differences of intracellular metabolites concentration of R. oryzae between xylose (the abundant sugar in wheat bran hydrolysate (WBH)) and glucose metabolism. The xylitol, sedoheptulose 7-phosphate, ribulose 5-phosphate, glucose 6-phosphate, proline and serine were responsible for fumaric acid biosynthesis limitation in xylose fermentation. Consequently, regulation strategies were proposed, leading to a 149% increase in titer (up to 15.4g/L). Finally, by combinatorial regulation strategies the highest production was 20.2g/L from WBH, 477% higher than that of initial medium.

  17. Drug-induced Fanconi syndrome associated with fumaric acid esters treatment for psoriasis: a case series

    PubMed Central

    Balak, Deepak M.W.; Bouwes Bavinck, Jan Nico; de Vries, Aiko P.J.; Hartman, Jenny; Neumann, Hendrik A. Martino; Zietse, Robert; Thio, Hok Bing

    2016-01-01

    Background Fumaric acid esters (FAEs), an oral immunomodulating treatment for psoriasis and multiple sclerosis, have been anecdotally associated with proximal renal tubular dysfunction due to a drug-induced Fanconi syndrome. Few data are available on clinical outcomes of FAE-induced Fanconi syndrome. Methods Descriptive case series with two cases of Fanconi syndrome associated with FAE treatment diagnosed at two Dutch university nephrology departments, three cases reported at the Dutch and German national pharmacovigilance databases and six previously reported cases. Results All 11 cases involved female patients with psoriasis. The median age at the time of onset was 38 years [interquartile range (IQR) 37–46]. Patients received long-term FAEs treatment with a median treatment duration of 60 months (IQR 28–111). Laboratory tests were typically significant for low serum levels of phosphate and uric acid, while urinalysis showed glycosuria and proteinuria. Eight (73%) patients had developed a hypophosphataemic osteomalacia and three (27%) had pathological bone fractures. All patients discontinued FAEs, while four (36%) patients were treated with supplementation of phosphate and/or vitamin D. Five (45%) patients had persisting symptoms despite FAEs discontinuation. Conclusions FAEs treatment can cause drug-induced Fanconi syndrome, but the association has been reported infrequently. Female patients with psoriasis treated long term with FAEs seem to be particularly at risk. Physicians treating patients with FAEs should be vigilant and monitor for the potential occurrence of Fanconi syndrome. Measurement of the urinary albumin:total protein ratio is a suggested screening tool for tubular proteinuria in Fanconi syndrome. PMID:26798466

  18. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material - dairy manure - using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344.

    PubMed

    Liao, Wei; Liu, Yan; Frear, Craig; Chen, Shulin

    2008-09-01

    Fumaric acid is widely used as a food additive for flavor and preservation. Rhizopus oryzae ATCC 20344 is a fungus known for good fumaric acid production. It also has been reported that the fungal biomass has high chitin content. This study investigated the possibility of producing both fumaric acid and chitin via R. oryzae fermentation of dairy manure. Co-production of valuable bio-based chemicals such as fumaric acid and chitin could make the utilization of manure more efficient and more profitable. A three step fermentation process was developed which effectively utilized the nitrogen as well as the carbohydrate sources within the manure. These steps were: the culturing of pellet seed; biomass cultivation on liquid manure to produce both biomass and chitin; and fumaric acid production on the hydrolysate from the manure fiber. Under the identified optimal conditions, the fermentation system had a fumaric acid yield of 31%, and a biomass concentration of 11.5 g/L that contained 0.21 g chitin/g biomass.

  19. Inducible overexpression of the FUM1 gene in saccharomyces cerevisiae: Localization of fumarase and efficient fumaric acid bioconversion to L-Malic acid

    SciTech Connect

    Peleg, Y.; Rokem, J.S.; Goldberg, I.; Pines, O. )

    1990-09-01

    Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.

  20. Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

    PubMed Central

    Lee, De-Hyung; Gold, Ralf; Linker, Ralf A.

    2012-01-01

    Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE) are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF) leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE. PMID:23109883

  1. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose.

    PubMed

    Pan, Xinrong; Liu, Huanhuan; Liu, Jiao; Wang, Cheng; Wen, Jianping

    2016-12-01

    In order to relieve the toxicity of furfural on Rhizopus oryzae fermentation, the molecular mechanism of R. oryzae responding to furfural stress for fumaric acid-production was investigated by omics-based approaches. In metabolomics analysis, 29 metabolites including amino acid, sugars, polyols and fatty acids showed significant changes for maintaining the basic cell metabolism at the cost of lowering fumaric acid production. To further uncover the survival mechanism, lipidomics was carried out, revealing that phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and polyunsaturated acyl chains might be closely correlated with R. oryzae's adapting to furfural stress. Based on the above omics analysis, lecithin, inositol and soybean oil were exogenously supplemented separately with an optimized concentration in the presence of furfural, which increased fumaric acid titer from 5.78g/L to 10.03g/L, 10.05g/L and 12.13g/L (increased by 73.5%, 73.8% and 110%, respectively). These findings provide a methodological guidance for hemicellulose-fumaric acid development.

  2. The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells.

    PubMed

    Van heusden, J; Wouters, W; Ramaekers, F C; Krekels, M D; Dillen, L; Borgers, M; Smets, G

    1998-04-01

    The clinical use of all-trans-retinoic acid (ATRA) in the treatment of cancer is significantly hampered by the prompt emergence of resistance, believed to be caused by increased ATRA catabolism. Inhibitors of ATRA catabolism may therefore prove valuable for cancer therapy. Liarozole-fumarate is an anti-tumour drug that inhibits the cytochrome P450-dependent catabolism of ATRA. ATRA, but also its naturally occurring catabolites, 4-oxo-ATRA and 5,6-epoxy-ATRA, as well as its stereoisomers, 9-cis-RA and 13-cis-RA, show significant antiproliferative activity in MCF-7 human breast cancer cells. To further elucidate its mechanism of action, we investigated whether liarozole-fumarate was able to enhance the antiproliferative activity of ATRA catabolites and isomers. Liarozole-fumarate alone up to a concentration of 10(-6) M had no effect on MCF-7 cell proliferation. However, in combination with ATRA or the ATRA catabolites, liarozole-fumarate (10(-6) M) significantly enhanced their antiproliferative activity. On the contrary, liarozole-fumarate (10(-6) M) was not able to potentiate the antiproliferative activity of the ATRA stereoisomers, most probably because of the absence of cytochrome P450-dependent catabolism. Together, these findings show that liarozole-fumarate acts as a versatile inhibitor of retinoid catabolism in that it not only blocks the breakdown of ATRA, but also inhibits the catabolic pathway of 4-oxo-ATRA and 5,6-epoxy-ATRA, thereby enhancing their antiproliferative activity.

  3. Fumarate and cytosolic pH as modulators of the synthesis or consumption of C(4) organic acids through NADP-malic enzyme in Arabidopsis thaliana.

    PubMed

    Arias, Cintia Lucía; Andreo, Carlos Santiago; Drincovich, María Fabiana; Gerrard Wheeler, Mariel Claudia

    2013-02-01

    Arabidopsis thaliana is a plant species that accumulates high levels of organic acids and uses them as carbon, energy and reducing power sources. Among the enzymes that metabolize these compounds, one of the most important ones is malic enzyme (ME). A. thaliana contains four malic enzymes (NADP-ME 1-4) to catalyze the reversible oxidative decarboxylation of malate in the presence of NADP. NADP-ME2 is the only one located in the cell cytosol of all Arabidopsis organs providing most of the total NADP-ME activity. In the present work, the regulation of this key enzyme by fumarate was investigated by kinetic assays, structural analysis and a site-directed mutagenesis approach. The final effect of this metabolite on NADP-ME2 forward activity not only depends on fumarate and substrate concentrations but also on the pH of the reaction medium. Fumarate produced an increase in NADP-ME2 activity by binding to an allosteric site. However at higher concentrations, fumarate caused a competitive inhibition, excluding the substrate malate from binding to the active site. The characterization of ME2-R115A mutant, which is not activated by fumarate, confirms this hypothesis. In addition, the reverse reaction (reductive carboxylation of pyruvate) is also modulated by fumarate, but in a different way. The results indicate pH-dependence of the fumarate modulation with opposite behavior on the two activities analyzed. Thereby, the coordinated action of fumarate over the direct and reverse reactions would allow a precise and specific modulation of the metabolic flux through this enzyme, leading to the synthesis or degradation of C(4) compounds under certain conditions. Thus, the physiological context might be exerting an accurate control of ME activity in planta, through changes in metabolite and substrate concentrations and cytosolic pH.

  4. Wortmannilactones I-L, new NADH-fumarate reductase inhibitors, induced by adding suberoylanilide hydroxamic acid to the culture medium of Talaromyces wortmannii.

    PubMed

    Liu, Wen-Cai; Wang, Yi-Yu; Liu, Jun-Hui; Ke, Ai-Bing; Zheng, Zhi-Hui; Lu, Xin-Hua; Luan, Yu-Shi; Xiu, Zhi-Long; Dong, Yue-Sheng

    2016-11-01

    With the aim of finding more potential inhibitors against NADH-fumarate reductase (specific target for treating helminthiasis and cancer) from natural resources, Talaromyces wortmannii was treated with the epigenome regulatory agent suberoylanilide hydroxamic acid, which resulted in the isolation of four new wortmannilactones derivatives (wortmannilactones I-L, 1-4). The structures of these new compounds were elucidated based on IR, HRESIMS and NMR spectroscopic data analyses. These four new compounds showed potent inhibitory activity against NADH-fumarate reductase with the IC50 values ranging from 0.84 to 1.35μM.

  5. The antiproliferative activity of all-trans-retinoic acid catabolites and isomers is differentially modulated by liarozole-fumarate in MCF-7 human breast cancer cells.

    PubMed Central

    Van heusden, J.; Wouters, W.; Ramaekers, F. C.; Krekels, M. D.; Dillen, L.; Borgers, M.; Smets, G.

    1998-01-01

    The clinical use of all-trans-retinoic acid (ATRA) in the treatment of cancer is significantly hampered by the prompt emergence of resistance, believed to be caused by increased ATRA catabolism. Inhibitors of ATRA catabolism may therefore prove valuable for cancer therapy. Liarozole-fumarate is an anti-tumour drug that inhibits the cytochrome P450-dependent catabolism of ATRA. ATRA, but also its naturally occurring catabolites, 4-oxo-ATRA and 5,6-epoxy-ATRA, as well as its stereoisomers, 9-cis-RA and 13-cis-RA, show significant antiproliferative activity in MCF-7 human breast cancer cells. To further elucidate its mechanism of action, we investigated whether liarozole-fumarate was able to enhance the antiproliferative activity of ATRA catabolites and isomers. Liarozole-fumarate alone up to a concentration of 10(-6) M had no effect on MCF-7 cell proliferation. However, in combination with ATRA or the ATRA catabolites, liarozole-fumarate (10(-6) M) significantly enhanced their antiproliferative activity. On the contrary, liarozole-fumarate (10(-6) M) was not able to potentiate the antiproliferative activity of the ATRA stereoisomers, most probably because of the absence of cytochrome P450-dependent catabolism. Together, these findings show that liarozole-fumarate acts as a versatile inhibitor of retinoid catabolism in that it not only blocks the breakdown of ATRA, but also inhibits the catabolic pathway of 4-oxo-ATRA and 5,6-epoxy-ATRA, thereby enhancing their antiproliferative activity. PMID:9579827

  6. Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen.

    PubMed

    Pracharoenwattana, Itsara; Zhou, Wenxu; Keech, Olivier; Francisco, Perigio B; Udomchalothorn, Thanikan; Tschoep, Hendrik; Stitt, Mark; Gibon, Yves; Smith, Steven M

    2010-06-01

    The Arabidopsis genome has two fumarase genes, one of which encodes a protein with mitochondrial targeting information (FUM1) while the other (FUM2) does not. We show that a FUM1-green fluorescent protein fusion is directed to mitochondria while FUM2-red fluorescent protein remains in the cytosol. While mitochondrial FUM1 is an essential gene, cytosolic FUM2 is not required for plant growth. However FUM2 is required for the massive accumulation of carbon into fumarate that occurs in Arabidopsis leaves during the day. In fum2 knock-out mutants, fumarate levels remain low while malate increases, and these changes can be reversed with a FUM2 transgene. The fum2 mutant has lower levels of many amino acids in leaves during the day compared with the wild type, but higher levels at night, consistent with a link between fumarate and amino acid metabolism. To further test this relationship we grew plants in the absence or presence of nitrogen fertilizer. The amount of fumarate in leaves increased several fold in response to nitrogen in wild-type plants, but not in fum2. Malate increased to a small extent in the wild type but to a greater extent in fum2. Growth of fum2 plants was similar to that of the wild type in low nitrogen but much slower in the presence of high nitrogen. Activities of key enzymes of nitrogen assimilation were similar in both genotypes. We conclude that FUM2 is required for the accumulation of fumarate in leaves, which is in turn required for rapid nitrogen assimilation and growth on high nitrogen.

  7. A tricarboxylic acid cycle intermediate regulating transcription of a chloroaromatic biodegradative pathway: fumarate-mediated repression of the clcABD operon.

    PubMed

    McFall, S M; Abraham, B; Narsolis, C G; Chakrabarty, A M

    1997-11-01

    The ortho-cleavage pathways of catechol and 3-chlorocatechol are central catabolic pathways of Pseudomonas putida that convert aromatic and chloroaromatic compounds to tricarboxylic acid (TCA) cycle intermediates. They are encoded by the evolutionarily related catBCA and clcABD operons, respectively. Expression of the cat and clc operons requires the LysR-type transcriptional activators CatR and ClcR, respectively, and the inducer molecules cis,cis-muconate and 2-chloro-cis,cis-muconate, respectively. The regulation of the cat and clc promoters has been well studied, but the extent to which these operons are repressed by growth in TCA cycle intermediates has not been explored. We demonstrate by transcriptional fusion studies that the expression from the clc promoter is repressed when the cells are grown on succinate, citrate, or fumarate and that this repression is ClcR dependent and occurs at the transcriptional level. The presence of these organic acids did not affect the expression from the cat promoter. In vitro transcription assays demonstrate that the TCA cycle intermediate fumarate directly and specifically inhibits the formation of the clcA transcript. No such inhibition was observed when CatR was used as the activator on either the cat or clc template. Titration studies of fumarate and 2-chloromuconate show that the fumarate effect is concentration dependent and reversible, indicating that fumarate and 2-chloromuconate most probably compete for the same binding site on ClcR. This is an interesting example of the transcriptional regulation of a biodegradative pathway by the intracellular sensing of the state of the TCA cycle.

  8. A fermentative approach towards optimizing directed biosynthesis of fumaric acid by Rhizopus oryzae 1526 utilizing apple industry waste biomass.

    PubMed

    Das, Ratul Kumar; Brar, Satinder Kaur; Verma, Mausam

    2015-12-01

    The present research account deals with the bioproduction of fumaric acid (FA) from apple pomace ultrafiltration sludge (APUS) and apple pomace (AP) through fermentation. The filamentous fungus Rhizopus oryzae 1526 was used as a biocatalyst and its morphological impact on FA production was analysed in detail. For submerged fermentation, 40 g L(-1) of total solids concentration of APUS, pH 6.0, 30 °C, 200 rpm flask shaking speed and 72 h of incubation were found to be optimum for FA production (25.2 ± 1.0 g L(-1), 0.350 g (L(-1) h(-1))). Broth viscosity (cP), residual reducing sugar (g L(-1)) and ethanol (g L(-1)) produced as by-product, were also analysed. Plastic trays were used for solid state fermentation and at optimized level of moisture and incubation period, 52 ± 2.67 g FA per kg dry weight of AP was obtained. Changes in the total phenolic content (mg g(-1) dry weight of AP) were monitored at regular intervals. Utilization of APUS and AP for the directed synthesis of the high-value platform chemical FA by the fungal strain R. oryzae 1526 was an excellent display of fungal physiological and morphological control over a fermentative product.

  9. Addition of fumaric acid and sodium benzoate as an alternative method to achieve a 5-log reduction of Escherichia coli O157:H7 populations in apple cider.

    PubMed

    Comes, Justin E; Beelman, Robert B

    2002-03-01

    A study was conducted to develop a preservative treatment capable of the Food and Drug Administration-mandated 5-log reduction of Escherichia coli O157:H7 populations in apple cider. Unpreserved apple cider was treated with generally recognized as safe acidulants and preservatives before inoculation with E. coli O157:H7 in test tubes and subjected to mild heat treatments (25, 35, and 45 degrees C) followed by refrigerated storage (4 degrees C). Fumaric acid had significant (P < 0.05) bactericidal effect when added to cider at 0.10% (wt/vol) and adjusted to pH 3.3, but citric and malic acid had no effect. Strong linear correlation (R2 = 0.96) between increasing undissociated fumaric acid concentrations and increasing log reductions of E. coli O157:H7 in apple cider indicated the undissociated acid to be the bactericidal form. The treatment that achieved the 5-log reduction in three commercial ciders was the addition of fumaric acid (0.15%, wt/vol) and sodium benzoate (0.05%, wt/vol) followed by holding at 25 degrees C for 6 h before 24 h of refrigeration at 4 degrees C. Subsequent experiments revealed that the same preservatives added to cider in flasks resulted in a more than 5-log reduction in less than 5 and 2 h when held at 25 and 35 degrees C, respectively. The treatment also significantly (P < 0.05) reduced total aerobic counts in commercial ciders to populations less than those of pasteurized and raw ciders from the same source (after 5 and 21 days of refrigerated storage at 4 degrees C, respectively). Sensory evaluation of the same ciders revealed that consumers found the preservative-treated cider to be acceptable.

  10. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

    PubMed

    Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias

    2015-08-13

    Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  11. Novel biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) porous scaffolds fabricated by phase separation for tissue engineering applications

    PubMed Central

    Liu, Xifeng; Miller, A. Lee; Waletzki, Brian E.; Yaszemski, Michael J.

    2015-01-01

    Scaffolds with intrinsically interconnected porous structures are highly desirable in tissue engineering and regenerative medicine. In this study, three-dimensional polymer scaffolds with highly interconnected porous structures were fabricated by thermally induced phase separation of novel synthesized biodegradable poly(propylene fumarate)-co-poly(l-lactic acid) in a dioxane/water binary system. Defined porous scaffolds were achieved by optimizing conditions to attain interconnected porous structures. The effect of phase separation parameters on scaffold morphology were investigated, including polymer concentration (1, 3, 5, 7, and 9%), quench time (1, 4, and 8 min), dioxane/water ratio (83/17, 85/15, and 87/13 wt/wt), and freeze temperature (−20, −80, and −196 °C). Interesting pore morphologies were created by adjusting these processing parameters, e.g., flower-shaped (5%; 85/15; 1 min; −80 °C), spherulite-like (5%; 85/15; 8 min; −80 °C), and bead-like (5%; 87/13; 1 min; −80 °C) morphology. Modulation of phase separation conditions also resulted in remarkable differences in scaffold porosities (81% to 91%) and thermal properties. Furthermore, scaffolds with varied mechanic strengths, degradation rates, and protein adsorption capabilities could be fabricated using the phase separation method. In summary, this work provides an effective route to generate multi-dimensional porous scaffolds that can be applied to a variety of hydrophobic polymers and copolymers. The generated scaffolds could potentially be useful for various tissue engineering applications including bone tissue engineering. PMID:26989483

  12. Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows.

    PubMed

    van Zijderveld, S M; Dijkstra, J; Perdok, H B; Newbold, J R; Gerrits, W J J

    2011-06-01

    Two similar experiments were conducted to assess the effect of diallyl disulfide (DADS), yucca powder (YP), calcium fumarate (CAFU), an extruded linseed product (UNSAT), or a mixture of capric and caprylic acid (MCFA) on methane production, energy balance, and dairy cow performance. In experiment 1, a control diet (CON1) and diets supplemented with 56 mg of DADS/kg of dry matter (DM), 3g of YP/kg of DM, or 25 g of CAFU/kg of DM were evaluated. In experiment 2, an inert saturated fat source in the control diet (CON2) was exchanged isolipidically for an extruded linseed source (100g/kg of DM; UNSAT) or a mixture of C8:0 and C10:0 (MCFA; 20.3g/kg of DM). In experiment 2, a higher inclusion level of DADS (200mg/kg of DM) was also tested. Both experiments were conducted using 40 lactating Holstein-Friesian dairy cows. Cows were adapted to the diet for 12 d and were subsequently kept in respiration chambers for 5 d to evaluate methane production, diet digestibility, energy balance, and animal performance. Feed intake was restricted to avoid confounding effects of possible differences in ad libitum feed intake on methane production. Feed intake was, on average, 17.5 and 16.6 kg of DM/d in experiments 1 and 2, respectively. None of the additives reduced methane production in vivo. Methane production in experiment 1 was 450, 453, 446, and 423 g/d for CON1 and the diets supplemented with DADS, YP, and CAFU, respectively. In experiment 2, methane production was 371, 394, 388, and 386 g/d for CON2 and the diets supplemented with UNSAT, MCFA, and DADS, respectively. No effects of the additives on energy balance or neutral detergent fiber digestibility were observed. The addition of MCFA increased milk fat content (5.38% vs. 4.82% for control) and fat digestibility (78.5% vs. 59.8% for control), but did not affect milk yield or other milk components. The other products did not affect milk yield or composition. Results from these experiments emphasize the need to confirm methane

  13. Acid preservation systems for food products

    SciTech Connect

    Tiberio, J. E.; Cirigiano, M. C.

    1984-10-16

    Fumaric acid is used in combination with critical amounts of acetic acid to preserve acid containing food products from microbiological spoilage in the absence of or at reduced levels of chemical preservative.

  14. Efficiency of sodium hypochlorite, fumaric acid, and mild heat in killing native microflora and Escherichia coli O157:H7, Salmonella typhimurium DT104, and Staphylococcus aureus attached to fresh-cut lettuce.

    PubMed

    Kondo, Nozomi; Murata, Masatsune; Isshiki, Kenji

    2006-02-01

    The effect of the disinfectant sodium hypochlorite (NaClO), with or without mild heat (50 degrees C) and fumaric acid, on native bacteria and the foodborne pathogens Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella Typhimurium DT104 attached to iceberg lettuce leaves was examined. The retail lettuce examined consistently harbored 6 to 7 log CFU/g of native bacteria throughout the study period. Inner leaves supported 1 to 2 log CFU/g fewer bacteria than outer leaves. About 70% of the native bacterial flora was removed by washing five times with 0.85% NaCl. S. aureus, E. coli, and Salmonella allowed to attach to lettuce leaves for 5 min were more easily removed by washing than when allowed to attach for 1 h or 2 days, with more S. aureus being removed than E. coli or Salmonella Typhimurium. An increase of time for attachment of pathogens from 5 min to 2 days leads to decreased efficiency of the washing and sanitizing treatment. Treatment with fumaric acid (50 mM for 10 min at room temperature) was the most effective, although it caused browning of the lettuce, with up to a 2-log reduction observed. The combination of 200 ppm of sodium hypochlorite and mild heat treatment at 50 degrees C for 1 min reduced the pathogen populations by 94 to 98% (1.2- to 1.7-log reduction) without increasing browning.

  15. Sonolysis of Short-Chain Organic Dicarboxylic Acid Solutions

    NASA Astrophysics Data System (ADS)

    Naruke, Yukio; Harada, Hisashi

    2011-07-01

    Sonolyses of C4 (carbon number 4) dicarboxylic acids (succinic acid, maleic acid, and fumaric acid) were performed in aqueous solution. They changed one into the other during sonication, affording carbon-number-conserving transformations. Maleic acid and fumaric acid were produced from saccinic acid by dehydrogenation. Furthermore, malic acid and tartaric acid were obtained by hydroxylation. The sonochemical reaction processes are discussed in terms of the time dependences of products and the addition of radical scavengers. In addition, mutual isomerization of fumaric acid and maleic acid was observed during sonication without the use of mediators.

  16. Poly(propylene fumarate) and poly(DL-lactic-co-glycolic acid) as scaffold materials for solid and foam-coated composite tissue-engineered constructs for cranial reconstruction.

    PubMed

    Dean, David; Topham, Neal S; Meneghetti, S Cristina; Wolfe, Michael S; Jepsen, Karl; He, Shulin; Chen, Jeffrey E-K; Fisher, John P; Cooke, Malcolm; Rimnac, Clare; Mikos, Antonios G

    2003-06-01

    This pilot study investigates the osseointegration of four types of critical-size (1.5-cm diameter) rabbit cranial defect (n = 35) bone graft scaffolds. The first is a solid poly(propylene fumarate)/beta-tricalcium phosphate(PPF/beta-TCP) disk; the three remaining constructs contain a PPF/beta-TCP core coated with a 1-mm resorptive porous foam layer of PPF or PLGA [poly(DL-lactic-co-glycolic acid)], and bone marrow. Animals were killed at 6, 12, and 20 weeks. There was no evidence of a foreign body inflammatory response at any time during the study. Histomorphometric analyses of new bone formation sorted lineal and areal measures of new bone into three cranial layers (i.e., external, middle, and internal). Statistical analyses revealed significantly more bone in the PLGA foam-coated constructs than in the PPF foam-coated constructs (p < 0.03). No implant fixation was used; there is no strength at time 0. Twenty percent of all explants were tested for incorporation strength with a one-point "push-in" test, and failure ranged from 8.3 to 34.7 lb. The results of this study support the use of PPF as a biocompatible material that provides both a structural and osteogenic substrate for the repair of cranial defects.

  17. 40 CFR 721.10457 - 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol, fumaric acid and propylene glycol. 721.10457...-hexanol, fumaric acid and propylene glycol. (a) Chemical substance and significant new uses subject to... alc., cyclohexanol, 2-ethyl-1-hexanol, fumaric acid and propylene glycol (PMN P-03-154; CAS No....

  18. 40 CFR 721.10457 - 1,2-Benzenedicarboxylic acid, mixed esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... esters with benzyl alc., cyclohexanol, 2-ethyl-1-hexanol, fumaric acid and propylene glycol. 721.10457...-hexanol, fumaric acid and propylene glycol. (a) Chemical substance and significant new uses subject to... alc., cyclohexanol, 2-ethyl-1-hexanol, fumaric acid and propylene glycol (PMN P-03-154; CAS No....

  19. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  20. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  1. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  2. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  3. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  4. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples.

    PubMed

    Röhrl, Andreas; Lammel, Gerhard

    2002-03-01

    An ion chromatographic method was developed which is able to separate five unsubstituted and hydroxy C4 dicarboxylic acids, succinic, malic, tartaric, maleic and fumaric acid, besides the other unsubstituted C2-C5 dicarboxylic acids, oxalic, malonic and glutaric acids, as well as inorganic ions in samples extracted from atmospheric particulate matter. By the application of this method it was found for both rural and urban sites and for various types of air masses that in the summer-time malic acid is the most prominent C4 diacid (64 ng m(-3) by average), exceeding succinic acid concentration (28 ng m(-3) by average) considerably. In winter-time considerably less, a factor of 4-15, C4 acids occurred and succinic acid was more concentrated than malic acid. Tartaric, fumaric and maleic acids were less concentrated (5.1, 5.0 and 4.5 ng m(-3) by average, respectively). Tartaric acid was observed for the first time in ambient air. The results indicate that in particular anthropogenic sources are important for the precursors of succinic, maleic and fumaric acids. Biogenic sources seem to influence the occurrence of malic acid significantly.

  5. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  6. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  7. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  8. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  9. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  10. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  11. Amino acids

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  12. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  13. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  14. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  15. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  16. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  17. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids

    NASA Technical Reports Server (NTRS)

    Kawamura, Kimitaka; Kaplan, I. R.

    1987-01-01

    Significant amounts (up to 2 percent of organic geopolymers) of low-molecular-weight (LMW) dicarboxylic acids (C2-C10) have been detected during thermal alteration (270 C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by the predominance of oxalic acid followed by succinic, fumaric, and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early digenesis in sediments. Because of their reactivity, LMW diacids may play geochemically important roles under natural conditions.

  18. Mitochondrial engineering of the TCA cycle for fumarate production.

    PubMed

    Chen, Xiulai; Dong, Xiaoxiang; Wang, Yuancai; Zhao, Zihao; Liu, Liming

    2015-09-01

    Microbial fumarate production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here, mitochondrial engineering was used to construct the oxidative pathway for fumarate production starting from the TCA cycle intermediate α-ketoglutarate in Candida glabrata. Accordingly, α-ketoglutarate dehydrogenase complex (KGD), succinyl-CoA synthetase (SUCLG), and succinate dehydrogenase (SDH) were selected to be manipulated for strengthening the oxidative pathway, and the engineered strain T.G-K-S-S exhibited increased fumarate biosynthesis (1.81 g L(-1)). To further improve fumarate production, the oxidative route was optimized. First, three fusion proteins KGD2-SUCLG2, SUCLG2-SDH1 and KGD2-SDH1 were constructed, and KGD2-SUCLG2 led to improved fumarate production (4.24 g L(-1)). In addition, various strengths of KGD2-SUCLG2 and SDH1 expression cassettes were designed by combinations of promoter strengths and copy numbers, resulting in a large increase in fumarate production (from 4.24 g L(-1) to 8.24 g L(-1)). Then, through determining intracellular amino acids and its related gene expression levels, argininosuccinate lyase in the urea cycle was identified as the key factor for restricting higher fumarate production. Correspondingly, after overexpression of it, the fumarate production was further increased to 9.96 g L(-1). Next, two dicarboxylic acids transporters facilitated an improvement of fumarate production, and, as a result, the final strain T.G-KS(H)-S(M)-A-2S reached fumarate titer of 15.76 g L(-1). This strategy described here paves the way to the development of an efficient pathway for microbial production of fumarate.

  19. Interconversion of biologically important carboxylic acids by radiation

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1978-01-01

    The interconversion of a group of biologically important polycarboxylic acids (acetic, fumaric, malic, malonic, succinic, citric, isocitric, tricarballylic) under gamma-ray or ultraviolet radiation was investigated. The formation of high molecular weight compounds was observed in all cases. Succinic acid was formed in almost all radiolysis experiments. Citric, malonic, and succinic acids appeared to be relatively insensitive to radiation. Interconversion of the polycarboxylic acids studied may have occurred under the effect of radiation in the prebiotic earth.

  20. Production of Succinic Acid from Citric Acid and Related Acids by Lactobacillus Strains

    PubMed Central

    Kaneuchi, Choji; Seki, Masako; Komagata, Kazuo

    1988-01-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, α-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli. PMID:16347795

  1. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  2. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  3. Acid Rain

    MedlinePlus

    ... EPA Is Doing Acid Rain Program Cross-State Air Pollution Rule Progress Reports Educational Resources Kid's Site for ... Monitoring National Atmospheric Deposition Program (NADP) Exit Interstate Air Pollution Transport Contact Us to ask a question, provide ...

  4. Folic Acid

    MedlinePlus

    ... folic acid can hide signs that you lack vitamin B12, which can cause nerve damage. 10 Do I ... Rosenberg, I.H., et al. (2007). Folate and vitamin B12 status in relation to anemia, macrocytosis and cognitive ...

  5. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  6. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  7. Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala.

    PubMed

    Côrte-Real, M; Leão, C

    1990-04-01

    DL-Malic acid-grown cells of the yeast Hansenula anomala formed a saturable transport system that mediated accumulative transport of L-malic acid with the following kinetic parameters at pH 5.0: Vmax, 0.20 nmol.s-1.mg (dry weight)-1; Km, 0.076 mM L-malate. Uptake of malic acid was accompanied by proton disappearance from the external medium with rates that followed Michaelis-Menten kinetics as a function of malic acid concentration. Fumaric acid, alpha-ketoglutaric acid, oxaloacetic acid, D-malic acid, and L-malic acid were competitive inhibitors of succinic acid transport, and all induced proton movements that followed Michaelis-Menten kinetics, suggesting that all of these dicarboxylates used the same transport system. Maleic acid, malonic acid, oxalic acid, and L-(+)-tartaric acid, as well as other Krebs cycle acids such as citric and isocitric acids, were not accepted by the malate transport system. Km measurements as a function of pH suggested that the anionic forms of the acids were transported by an accumulative dicarboxylate proton symporter. The accumulation ratio at pH 5.0 was about 40. The malate system was inducible and was subject to glucose repression. Undissociated succinic acid entered the cells slowly by simple diffusion. The permeability of the cells by undissociated acid increased with pH, with the diffusion constant increasing 100-fold between pH 3.0 and 6.0.

  8. Fumarate induces redox-dependent senescence by modifying glutathione metabolism.

    PubMed

    Zheng, Liang; Cardaci, Simone; Jerby, Livnat; MacKenzie, Elaine D; Sciacovelli, Marco; Johnson, T Isaac; Gaude, Edoardo; King, Ayala; Leach, Joshua D G; Edrada-Ebel, RuAngelie; Hedley, Ann; Morrice, Nicholas A; Kalna, Gabriela; Blyth, Karen; Ruppin, Eytan; Frezza, Christian; Gottlieb, Eyal

    2015-01-23

    Mutations in the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) are associated with a highly malignant form of renal cancer. We combined analytical chemistry and metabolic computational modelling to investigate the metabolic implications of FH loss in immortalized and primary mouse kidney cells. Here, we show that the accumulation of fumarate caused by the inactivation of FH leads to oxidative stress that is mediated by the formation of succinicGSH, a covalent adduct between fumarate and glutathione. Chronic succination of GSH, caused by the loss of FH, or by exogenous fumarate, leads to persistent oxidative stress and cellular senescence in vitro and in vivo. Importantly, the ablation of p21, a key mediator of senescence, in Fh1-deficient mice resulted in the transformation of benign renal cysts into a hyperplastic lesion, suggesting that fumarate-induced senescence needs to be bypassed for the initiation of renal cancers.

  9. Adipocyte protein modification by Krebs cycle intermediates and fumarate ester-derived succination.

    PubMed

    Manuel, Allison M; Frizzell, Norma

    2013-11-01

    Protein succination, the non-enzymatic modification of cysteine residues by fumarate, is distinguishable from succinylation, an enzymatic reaction forming an amide bond between lysine residues and succinyl-CoA. Treatment of adipocytes with 30 mM glucose significantly increases protein succination with only a small change in succinylation. Protein succination may be significantly increased intracellularly after treatment with fumaric acid esters, however, the ester must be removed by saponification to permit 2SC-antibody detection of the fumarate adduct.

  10. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1993-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  11. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  12. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  13. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  14. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    EPA 635 / R - 03 / 007 www.epa.gov / iris TOXICOLOGICAL REVIEW OF DICHLOROACETIC ACID ( CAS No . 79 - 43 - 6 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) August 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been revi

  15. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 09 / 003F www.epa.gov / iris TOXICOLOGICAL REVIEW OF TRICHLOROACETIC ACID ( CAS No . 76 - 03 - 9 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2011 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER This document has

  16. Acid rain

    SciTech Connect

    Not Available

    1984-06-01

    An overview is presented of acid rain and the problems it causes to the environment worldwide. The acidification of lakes and streams is having a dramatic effect on aquatic life. Aluminum, present in virtually all forest soils, leaches out readily under acid conditions and interferes with the gills of all fish, some more seriously than others. There is evidence of major damage to forests in European countries. In the US, the most severe forest damage appears to be in New England, New York's Adirondacks, and the central Appalachians. This small region is part of a larger area of the Northeast and Canada that appears to have more acid rainfall than the rest of the country. It is downwind from major coal burning states, which produce about one quarter of US SO/sub 2/ emissions and one sixth of nitrogen oxide emissions. Uncertainties exist over the causes of forest damage and more research is needed before advocating expensive programs to reduce rain acidity. The President's current budget seeks an expansion of research funds from the current $30 million per year to $120 million.

  17. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  18. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  19. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  20. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  1. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Azelaic acid.

    PubMed

    Nazzaro-Porro, M

    1987-12-01

    This review is an update on the literature accumulated over the past 10 years following the original observation that azelaic acid, a naturally occurring and nontoxic C9 dicarboxylic acid, possesses significant biologic properties and a potential as a therapeutic agent. These studies have shown that azelaic acid is a reversible inhibitor of tyrosinase and other oxidoreductases in vitro and that it inhibits mitochondrial respiration. It can also inhibit anaerobic glycolysis. Both in vitro and in vivo it has an antimicrobial effect on both aerobic and anaerobic (Propionibacterium acnes) microorganisms. In tissue culture it exerts a dose- and time-dependent cytotoxic effect on malignant melanocytes, associated with mitochondrial damage and inhibition of deoxyribonucleic acid (DNA) synthesis. Tumoral cell lines not containing tyrosinase are equally affected. Normal cells in culture exposed to the same concentrations of the diacid that are toxic for tumoral cells are in general not damaged. Radioactive azelaic acid has been shown to penetrate tumoral cells at a higher level than normal cells of the corresponding line. Topically applied (a 20% cream), it has been shown to be of therapeutic value in skin disorders of different etiologies. Its beneficial effect on various forms of acne (comedogenic, papulopustular, nodulocystic) has been clearly demonstrated. Particularly important is its action on abnormal melanocytes, which has led to the possibility of obtaining good results on melasma and highly durable therapeutic responses on lentigo maligna. It is also capable of causing regression of cutaneous malignant melanoma, but its role in melanoma therapy remains to be investigated.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies.

  4. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  5. Acidic domains around nucleic acids.

    PubMed Central

    Lamm, G; Pack, G R

    1990-01-01

    The hydrogen ion concentration in the vicinity of DNA was mapped out within the Poisson-Boltzmann approximation. Experimental conditions were modeled by assuming Na-DNA to be solvated in a buffer solution containing 45 mM Tris and 3 mM Mg cations at pH 7.5. Three regions of high H+ concentration (greater than 10 microM) are predicted: one throughout the minor groove of DNA and two localized in the major groove near N7 of guanine and C5 of cytosine for a G.C base pair. These acidic domains correlate well with the observed covalent binding sites of benzo[a]pyrene epoxide (N2 of guanine) and of aflatoxin B1 epoxide (N7 of guanine), chemical carcinogens that presumably undergo acid catalysis to form highly reactive carbocations that ultimately bind to DNA. It is suggested that these regions of high H+ concentration may also be of concern in understanding interactions involving proteins and noncarcinogenic molecules with or near nucleic acids. PMID:2123348

  6. Dimethyl Fumarate

    MedlinePlus

    ... course of disease where symptoms flare up from time to time) of multiple sclerosis (MS; a condition in which ... day. Take dimethyl fumarate at around the same times every day. Follow the directions on your prescription ...

  7. Folic Acid and Pregnancy

    MedlinePlus

    ... Feeding Your 1- to 2-Year-Old Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  8. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  9. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  10. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  11. Acid rain

    SciTech Connect

    Boyle, R.H.; Boyle, R.A.

    1983-01-01

    Acid rain, says Boyle is a chemical leprosy eating into the face of North America and Europe, perhaps the major ecological problem of our time. Boyle describes the causes and scope of the phenomenon; the effects on man, wildlife, water, and our cultural heritage. He probes the delays of politicians and the frequent self-serving arguments advanced by industry in the face of what scientists have proved. The solutions he offers are to strengthen the Clean Air Act and require emission reductions that can be accomplished by establishing emission standards on a regional or bubble basis, burn low-sulfur coal, install scrubbers at critical plants, and invest in alternative energy sources. 73 references, 1 figure.

  12. Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala.

    PubMed Central

    Côrte-Real, M; Leão, C

    1990-01-01

    DL-Malic acid-grown cells of the yeast Hansenula anomala formed a saturable transport system that mediated accumulative transport of L-malic acid with the following kinetic parameters at pH 5.0: Vmax, 0.20 nmol.s-1.mg (dry weight)-1; Km, 0.076 mM L-malate. Uptake of malic acid was accompanied by proton disappearance from the external medium with rates that followed Michaelis-Menten kinetics as a function of malic acid concentration. Fumaric acid, alpha-ketoglutaric acid, oxaloacetic acid, D-malic acid, and L-malic acid were competitive inhibitors of succinic acid transport, and all induced proton movements that followed Michaelis-Menten kinetics, suggesting that all of these dicarboxylates used the same transport system. Maleic acid, malonic acid, oxalic acid, and L-(+)-tartaric acid, as well as other Krebs cycle acids such as citric and isocitric acids, were not accepted by the malate transport system. Km measurements as a function of pH suggested that the anionic forms of the acids were transported by an accumulative dicarboxylate proton symporter. The accumulation ratio at pH 5.0 was about 40. The malate system was inducible and was subject to glucose repression. Undissociated succinic acid entered the cells slowly by simple diffusion. The permeability of the cells by undissociated acid increased with pH, with the diffusion constant increasing 100-fold between pH 3.0 and 6.0. PMID:2339872

  13. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids.

    PubMed

    Kawamura, K; Kaplan, I R

    1987-01-01

    Significant amounts (up to 2% of organic geopolymers) of low molecular weight (LMW) dicarboxylic acids (C2-C10) have been detected during thermal alteration (270 degrees C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by predominance of oxalic acid followed by succinic, fumaric and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early diagenesis in sediments. Because of their reactivity, LMW diacids may play the following geochemically important roles under natural conditions: (1) the diacids dissolve carbonates and clay minerals to increase porosity and permeability, which enhances migration of oils and gas generated from catagenesis of kerogen dispersed in shale, and (2) the diacids may form organo-metal complexes, which are important for mobilization, transport and accumulation of trace metals in sedimentary basins.

  14. Degradation of organic acids by dairy lactic acid bacteria.

    PubMed

    Hegazi, F Z; Abo-Elnaga, I G

    1980-01-01

    One hundred and twelve different strains of lactic acid bacteria, belonging to the genera Leuconostoc, Streptococcus, and Lactobacillus, were examined for the ability to degrade 10 organic acids by detecting gas production, using the conventional Durham tube method. All the strains did not break down succinate, glutarate, 2-oxo-glutarate, and mucate. Malate, citrate, pyruvate, fumarate, tartrate, and gluconate were variably attacked. Streptococcus cremoiris AM2, ML8, and SK11 required glucose to produce gas from citrate, whereas Leuconostoc citrovorum and Streptococcus faecalis did not. Streptococcus cremoris differed from the other streptococci in not producing gas from gluconate. From all lactic acid bacteria examined, only Lactobacillus plantarum formed gas from tartarate. Determination of acetoin and diacetyl proved to be a more reliable evidence for assessing the degradation of pyruvate, compared with detection of gas production. Homofermentative lactobacilli and Leuconostoc citrovorum produced acetoin and diacetyl from pyruvate, whereas beta-bacteria did not, a character that would be of taxonomic value. Streptobacteria degraded pyruvate in the presence of glucose with lactate as the major product together with a mean acetate of 4.1%, ethanol 7.9%, acetoin 1.7%, and diacetyl 2.6% yield on a molar basis after 60 days at 30 degrees C. L. brevis produced acetate and lactate. Formation of diacetyl from pyruvate by lactic acid bacteria may play an important role in flavour development in fermenting dairy products, especially in cheese, where lactic acid bacteria usually predominate, and pyruvate is probably excreted in the breaking down of lactose and in the oxidative deamination of alanine by the accompanying microflora.

  15. [Teichoic acids from lactic acid bacteria].

    PubMed

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  16. Organic acids tunably catalyze carbonic acid decomposition.

    PubMed

    Kumar, Manoj; Busch, Daryle H; Subramaniam, Bala; Thompson, Ward H

    2014-07-10

    Density functional theory calculations predict that the gas-phase decomposition of carbonic acid, a high-energy, 1,3-hydrogen atom transfer reaction, can be catalyzed by a monocarboxylic acid or a dicarboxylic acid, including carbonic acid itself. Carboxylic acids are found to be more effective catalysts than water. Among the carboxylic acids, the monocarboxylic acids outperform the dicarboxylic ones wherein the presence of an intramolecular hydrogen bond hampers the hydrogen transfer. Further, the calculations reveal a direct correlation between the catalytic activity of a monocarboxylic acid and its pKa, in contrast to prior assumptions about carboxylic-acid-catalyzed hydrogen-transfer reactions. The catalytic efficacy of a dicarboxylic acid, on the other hand, is significantly affected by the strength of an intramolecular hydrogen bond. Transition-state theory estimates indicate that effective rate constants for the acid-catalyzed decomposition are four orders-of-magnitude larger than those for the water-catalyzed reaction. These results offer new insights into the determinants of general acid catalysis with potentially broad implications.

  17. Plasma amino acids

    MedlinePlus

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  18. Uric acid - urine

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003616.htm Uric acid urine test To use the sharing features on this page, please enable JavaScript. The uric acid urine test measures the level of uric acid ...

  19. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  20. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour in ...

  1. Methylmalonic acid blood test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003565.htm Methylmalonic acid blood test To use the sharing features on this page, please enable JavaScript. The methylmalonic acid blood test measures the amount of methylmalonic acid ...

  2. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  3. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  4. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  5. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  6. Extraction chemistry of fermentation product carboxylic acids

    SciTech Connect

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathways and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase.

  7. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition

    PubMed Central

    Sciacovelli, Marco; Gonçalves, Emanuel; Isaac Johnson, Timothy; Roberto Zecchini, Vincent; da Costa, Ana Sofia Henriques; Gaude, Edoardo; Vercauteren Drubbel, Alizee; Julian Theobald, Sebastian; Abbo, Sandra; Tran, Maxine; Rajeeve, Vinothini; Cardaci, Simone; Foster, Sarah; Yun, Haiyang; Cutillas, Pedro; Warren, Anne; Gnanapragasam, Vincent; Gottlieb, Eyal; Franze, Kristian; Huntly, Brian; Richard Maher, Eamonn; Henry Maxwell, Patrick; Saez-Rodriguez, Julio; Frezza, Christian

    2016-01-01

    Mutations of the tricarboxylic acid cycle (TCA cycle) enzyme fumarate hydratase (FH) cause Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)1. FH-deficient renal cancers are highly aggressive and metastasise even when small, leading to an abysmal clinical outcome2. Fumarate, a small molecule metabolite that accumulates in FH-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite3. Fumarate was shown to inhibit α-ketoglutarate (aKG)-dependent dioxygenases involved in DNA and histone demethylation4,5. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of FH and the subsequent accumulation of fumarate elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis6. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster6 miR-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of FH-proficient cells with cell-permeable fumarate. Loss of FH is associated with suppression of miR-200 and EMT signature in renal cancer patients, and is associated with poor clinical outcome. These results imply that loss of FH and fumarate accumulation contribute to the aggressive features of FH-deficient tumours. PMID:27580029

  8. Properties of an Inducible C4-Dicarboxylic Acid Transport System in Bacillus subtilis

    PubMed Central

    Ghei, Om. K.; Kay, William W.

    1973-01-01

    The transport of the tricarboxylic acid cycle C4-dicarboxylic acids was studied in both the wild-type strain and tricarboxylic acid cycle mutants of Bacillus subtilis. Active transport of malate, fumarate, and succinate was found to be inducible by these dicarboxylic acids or by precursors to them, whereas glucose or closely related metabolites catabolite-repressed their uptake. l-Malate was found to be the best dicarboxylic acid transport inducer in succinic dehydrogenase, fumarase, and malic dehydrogenase mutants. Succinate and fumarate are accumulated over 100-fold in succinic dehydrogenase and fumarase mutants, respectively, whereas mutants lacking malate dehydrogenase were unable to accumulate significant quantities of the C4-dicarboxylic acids. The stereospecificity of this transport system was studied from a comparison of the rates of competitive inhibition of both succinate uptake and efflux in a succinate dehydrogenase mutant by utilizing thirty dicarboxylic acid analogues. The system was specific for the C4-dicarboxylic acids of the tricarboxylic acid cycle, neither citrate nor α-ketoglutarate were effective competitive inhibitors. Of a wide variety of metabolic inhibitors tested, inhibiors of oxidative phosphorylation and of the formation of proton gradients were the most potent inhibitors of transport. From the kinetics of dicarboxylic acid transport (Km approximately 10−4 M for succinate or fumarate in succinic acid dehydrogenase and fumarase mutants) and from the competitive inhibition studies, it was concluded that an inducible dicarboxylic acid transport system mediates the entry of malate, fumarate, or succinate into B. subtilis. Mutants devoid of α-ketoglutarate dehydrogenase were shown to accumulate both α-ketoglutarate and glutamate, and these metabolites subsequently inhibited the transport of all the C4-dicarboxylic acids, suggesting a regulatory role. Images PMID:4633350

  9. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  10. Field enhancement sample stacking for analysis of organic acids in traditional Chinese medicine by capillary electrophoresis.

    PubMed

    Zhu, Qianqian; Xu, Xueqin; Huang, Yuanyuan; Xu, Liangjun; Chen, Guonan

    2012-07-13

    A technique known as field enhancement sample stacking (FESS) and capillary electrophoresis (CE) separation has been developed to analyze and detect organic acids in the three traditional Chinese medicines (such as Portulaca oleracea L., Crataegus pinnatifida and Aloe vera L.). In FESS, a reverse electrode polarity-stacking mode (REPSM) was applied as on-line preconcentration strategy. Under the optimized condition, the baseline separation of eight organic acids (linolenic acid, lauric acid, p-coumaric acid, ascorbic acid, benzoic acid, caffeic acid, succinic acid and fumaric acid) could be achieved within 20 min. Validation parameters of this method (such as detection limits, linearity and precision) were also evaluated. The detection limits ranged from 0.4 to 60 ng/mL. The results indicated that the proposed method was effective for the separation of mixtures of organic acids. Satisfactory recoveries were also obtained in the analysis of these organic acids in the above traditional Chinese medicine samples.

  11. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  12. Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863.

    PubMed

    Ochsenreither, Katrin; Fischer, Christian; Neumann, Anke; Syldatk, Christoph

    2014-06-01

    L-Malic acid and fumaric acid are C4 dicarboxylic organic acids and considered as promising chemical building blocks. They can be applied as food preservatives and acidulants in rust removal and as polymerization starter units. Molds of the genus Aspergillus are able to produce malic acid in large quantities from glucose and other carbon sources. In order to enhance the production potential of Aspergillus oryzae DSM 1863, production and consumption rates in an established bioreactor batch-process based on glucose were determined. At 35 °C, up to 42 g/L malic acid was produced in a 168-h batch process with fumaric acid as a by-product. In prolonged shaking flask experiments (353 h), the suitability of the alternative carbon sources xylose and glycerol at a carbon-to-nitrogen (C/N) ratio of 200:1 and the influence of different C/N ratios in glucose cultivations were tested. When using glucose, 58.2 g/L malic acid and 4.2 g/L fumaric acid were produced. When applying xylose or glycerol, both organic acids are produced but the formation of malic acid decreased to 45.4 and 39.4 g/L, respectively. Whereas the fumaric acid concentration was not significantly altered when cultivating with xylose (4.5 g/L), it is clearly enhanced by using glycerol (9.3 g/L). When using glucose as a carbon source, an increase or decrease of the C/N ratio did not influence malic acid production but had an enormous influence on fumaric acid production. The highest fumaric acid concentrations were determined at the highest C/N ratio (300:1, 8.44 g/L) and lowest at the lowest C/N ratio (100:1, 0.7 g/L).

  13. Toxicity of adipic acid.

    PubMed

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests.

  14. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  15. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  16. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  17. Retention and utilization of amino acids in piglets fed ad libitum or restrictively diets supplemented with organic acids.

    PubMed

    Walz, O P; Pallauf, J

    1997-01-01

    In a metabolic trial 4 groups of 8 piglets of 5 kg weight each were kept individually for 45 days (final weight 23 kg) and fed a practical diet. At the beginning of the experiment the body amino acid contents of an additional group of 8 piglets were determined by carcass analysis, and at the end of the experiment the body amino acid contents of the 4 test group piglets (A = control fed ad libitum, B and C = supplement of 1.5% fumaric acid fed ad libitum or restrictively, D = supplement of 1.5% citric acid fed ad libitum) were also analysed. The amino acid retention during the experimental period was determined by difference. The supplements of fumaric or citric acid did not influence the amount of the amino acid retention. The quotient of amino acid retention to amino acid consumed or the "productive amino acid value" was calculated and the maintenance requirements of essential amino acids for piglets were used to estimate the productive amino acid value for both retention and maintenance. The mean amino acid retention amounted to about 56 g/d, i.e. 3.49 g/kg W0.75.d of essential amino acids. The essential amino acid requirements for maintenance was 2.0 g, i.e. 0.29 g/kg W0.75.d, showing a variation of 4% (Leu) to 20% (Met+Cys) when related to the amount of the corresponding amino acid retention. With regard to the amino acid pattern for retention of the nutritionally most important amino acids, the following ratios were found: Lys, 100 (6.27 g/16 g N): Met+Cys, 48 (3.03 g): Thr, 56 (3.49 g): Trp, 13 (0.80 g). The productive amino acid values ranged from 40% (Trp), 55% (Thr), 66% (Met) to 80% (Lys). Under the conditions investigated, neither the supplements of organic acids nor the feed restriction influenced the amino acid utilization.

  18. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  19. Omega-3 fatty acids

    PubMed Central

    Schwalfenberg, Gerry

    2006-01-01

    OBJECTIVE To examine evidence for the role of omega-3 fatty acids in cardiovascular disease. QUALITY OF EVIDENCE PubMed was searched for articles on the role of omega-3 fatty acids in cardiovascular disease. Level I and II evidence indicates that omega-3 fatty acids are beneficial in improving cardiovascular outcomes. MAIN MESSAGE Dietary intake of omega-3 fatty acids has declined by 80% during the last 100 years, while intake of omega-6 fatty acids has greatly increased. Omega-3 fatty acids are cardioprotective mainly due to beneficial effects on arrhythmias, atherosclerosis, inflammation, and thrombosis. There is also evidence that they improve endothelial function, lower blood pressure, and significantly lower triglycerides. CONCLUSION There is good evidence in the literature that increasing intake of omega-3 fatty acids improves cardiac outcomes. Physicians need to integrate dietary recommendations for consumption of omega-3 fatty acids into their usual cardiovascular care. PMID:16812965

  20. Sulfuric acid poisoning

    MedlinePlus

    Sulfuric acid is a very strong chemical that is corrosive. Corrosive means it can cause severe burns and ... or mucous membranes. This article discusses poisoning from sulfuric acid. This article is for information only. Do NOT ...

  1. Lactic acid test

    MedlinePlus

    Lactate test ... test. Exercise can cause a temporary increase in lactic acid levels. ... not getting enough oxygen. Conditions that can increase lactic acid levels include: Heart failure Liver disease Lung disease ...

  2. Folic Acid Quiz

    MedlinePlus

    ... About Us Information For... Media Policy Makers Folic Acid Quiz Language: English Español (Spanish) Recommend on Facebook ... button beside the question. Good Luck! 1. Folic acid is: A a B vitamin B a form ...

  3. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe damage, such ... poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do NOT ...

  4. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel and foam is used to clear the bumps, lesions, and swelling caused by rosacea (a skin ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat the pimples and ...

  5. Zoledronic Acid Injection

    MedlinePlus

    Zoledronic acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and weak ... of life,' end of regular menstrual periods). Zoledronic acid (Reclast) is also used to treat osteoporosis in ...

  6. Alpha Hydroxy Acids

    MedlinePlus

    ... Cosmetics Home Cosmetics Products & Ingredients Ingredients Alpha Hydroxy Acids Share Tweet Linkedin Pin it More sharing options ... for Industry: Labeling for Cosmetics Containing Alpha Hydroxy Acids The following information is intended to answer questions ...

  7. Uric Acid Test

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  8. Amino Acid Metabolism Disorders

    MedlinePlus

    ... breaks the food parts down into sugars and acids, your body's fuel. Your body can use this ... process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple ...

  9. Valproic Acid and Pregnancy

    MedlinePlus

    ... live chat Live Help Fact Sheets Share Valproic Acid and Pregnancy Wednesday, 01 July 2015 In every ... This sheet talks about whether exposure to valproic acid may increase the risk for birth defects over ...

  10. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  11. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  12. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  13. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  14. Refining Lurgi tar acids

    SciTech Connect

    Greco, N.P.

    1984-04-17

    There is disclosed a process for removing tar bases and neutral oils from the Lurgi tar acids by treating the tar acids with aqueous sodium bisulfate to change the tar bases to salts and to hydrolyze the neutral oils to hydrolysis products and distilling the tar acids to obtain refined tar acid as the distillate while the tar base salts and neutral oil hydrolysis products remain as residue.

  15. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  16. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Part 180 Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic..., polymer with adipic acid, linoleic acid, oleic acid and ricinoleic acid (CAS Reg. No. 1357486-09- 9) when used as an inert ingredient in a pesticide formulation. Advance Polymer Technology submitted a...

  17. Relationships between pyruvate decarboxylation and branched-chain volatile acid synthesis in Ascaris mitochondria.

    PubMed

    Komuniecki, R; Komuniecki, P R; Saz, H J

    1981-10-01

    The rate of 14CO2 evolution from 1-[14C]pyruvate by intact Ascaris mitochondria was very slow, but increased with increasing concentrations of pyruvate. At all concentrations of pyruvate, in an aerobic environment, pyruvate decarboxylation was stimulated greatly by the addition of fumarate, malate, or succinate. However, under anaerobic conditions, only malate and fumarate stimulated pyruvate decarboxylation; succinate had no effect. This implies that the aerobic metabolism of succinate, presumably to other dicarboxylic acids, may be required for the stimulation. Incubation of sonicated mitochondria with pyruvate plus fumarate, under rate-limiting concentrations of NAD+, resulted in approximately equal quantities of pyruvate utilized and succinate formed, suggesting that pyruvate oxidation and fumarate reduction may be linked. Branched-chain, volatile fatty acids were not formed during incubations with either malate or succinate, or succinate plus acetate. However, incubations of intact Ascaris mitochondria with pyruvate plus succinate yielded 2-methylbutyrate and 2-methylvalerate, whereas incubations with pyruvate plus propionate yielded almost exclusively 2-methylvalerate. Oxygen dramatically inhibited the synthesis of the branched-chain acids from succinate plus pyruvate, attesting to the apparent anaerobic nature of Ascaris mitochondrial metabolism. Significantly, the addition of glucose plus ADP stimulated the formation of all volatile fatty acids. Therefore, the synthesis of branched-chain acids may be related directly to increased energy generation. Alternatively, they may function in the regulatory role of maintaining the mitochondrial redox balance.

  18. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  19. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  20. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  1. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  2. Acid Lipase Disease

    MedlinePlus

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  3. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  4. Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture.

    PubMed

    Galushko, A S; Schink, B

    2000-11-01

    Geobacter sulfurreducens strain PCA oxidized acetate to CO2 via citric acid cycle reactions during growth with acetate plus fumarate in pure culture, and with acetate plus nitrate in coculture with Wolinella succinogenes. Acetate was activated by succinyl-CoA:acetate CoA-transferase and also via acetate kinase plus phosphotransacetylase. Citrate was formed by citrate synthase. Soluble isocitrate and malate dehydrogenases NADP+ and NAD+, respectively. Oxidation of 2-oxoglutarate was measured as benzyl viologen reduction and strictly CoA-dependent; a low activity was also observed with NADP+. Succinate dehydrogenase and fumarate ductase both were membrane-bound. Succinate oxidation was coupled to NADP+ reduction whereas fumarate reduction was coupled to NADPH and NADH Coupling of succinate oxidation to NADP+ or cytochrome(s) reduction required an ATP-dependent reversed electron transport. Net ATP synthesis proceeded exclusively through electron transport phosphorylation. During fumarate reduction, both NADPH and NADH delivered reducing equivalents into the electron transport chain, which contained a menaquinone. Overall, acetate oxidation with fumarate proceeded through an open loop of citric acid cycle reactions, excluding succinate dehydrogenase, with fumarate reductase as the key reaction for electron delivery, whereas acetate oxidation in the syntrophic coculture required the complete citric acid cycle.

  5. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  6. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  7. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  8. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  9. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  11. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions

    PubMed Central

    Vukovic, Milica; van de Lagemaat, Louie N.; Morgan, Marcos; Gonzalez, Marta Vila; Paris, Jasmin; Gezer, Deniz; Wills, Jimi; Coman, David; So, Chi Wai Eric; O’Carroll, Donal; Vernimmen, Douglas; Rodrigues, Neil P.; Pollard, Patrick J.; Morton, Nicholas M.

    2017-01-01

    Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1/Hoxa9-driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation. PMID:28202494

  12. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  13. [Biosynthesis of adipic acid].

    PubMed

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  14. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  15. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  16. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  17. Allosteric substrate inhibition of Arabidopsis NAD-dependent malic enzyme 1 is released by fumarate.

    PubMed

    Tronconi, Marcos Ariel; Wheeler, Mariel Claudia Gerrard; Martinatto, Andrea; Zubimendi, Juan Pablo; Andreo, Carlos Santiago; Drincovich, María Fabiana

    2015-03-01

    Plant mitochondria can use L-malate and fumarate, which accumulate in large levels, as respiratory substrates. In part, this property is due to the presence of NAD-dependent malic enzymes (NAD-ME) with particular biochemical characteristics. Arabidopsis NAD-ME1 exhibits a non-hyperbolic behavior for the substrate L-malate, and its activity is strongly stimulated by fumarate. Here, the possible structural connection between these properties was explored through mutagenesis, kinetics, and fluorescence studies. The results indicated that NAD-ME1 has a regulatory site for L-malate that can also bind fumarate. L-Malate binding to this site elicits a sigmoidal and low substrate-affinity response, whereas fumarate binding turns NAD-ME1 into a hyperbolic and high substrate affinity enzyme. This effect was also observed when the allosteric site was either removed or altered. Hence, fumarate is not really an activator, but suppresses the inhibitory effect of l-malate. In addition, residues Arg50, Arg80 and Arg84 showed different roles in organic acid binding. These residues form a triad, which is the basis of the homo and heterotrophic effects that characterize NAD-ME1. The binding of L-malate and fumarate at the same allosteric site is herein reported for a malic enzyme and clearly indicates an important role of NAD-ME1 in processes that control flow of C4 organic acids in Arabidopsis mitochondrial metabolism.

  18. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  19. Effects of fumarate on ruminal ammonia accumulation and fiber digestion in vitro and nutrient utilization in dairy does.

    PubMed

    Yu, C-W; Chen, Y-S; Cheng, Y-H; Cheng, Y-S; Yang, C-M J; Chang, C-T

    2010-02-01

    The objective of this study was to evaluate effects of fumarate on ruminal ammonia accumulation and fiber digestion in vitro and on feed intake and nutrient utilization in dairy does. Batch cultures of mixed rumen microorganisms were used to study effects of different concentrations of fumarate on fermentation with various N sources (ammonia as ammonium bicarbonate, casein amino acids, casein peptides, gelatin peptides) and feeds (bermudagrass hay, mixed diet of 60% bermudagrass hay plus 40% concentrate) for 6 and 24h, respectively. Substrates were grouped into pairs for separate incubations. Monosodium fumarate was added to incubation tubes to achieve final concentrations of 0, 5, and 10mM fumarate. More ammonia accumulated at the end of incubation with added ammonium bicarbonate. Ammonia concentration was higher for peptide compared with amino acid incubation, and for casein peptide compared with gelatin peptide. Addition of fumarate linearly decreased ammonia for all N sources and for feed substrates. For all substrate types, fumarate treatment increased acetate, propionate, and total volatile fatty acids (VFA), decreased acetate to propionate ratio, and tended to reduce branched-chain VFA. Digestion of feed neutral detergent fiber (NDF) by rumen microorganisms was improved by fumarate along with elevated endoglucanase and xylanase activities. In an animal metabolism experiment, 8 dairy does (4 per treatment) were used in a completely randomized design for 21 d. Does were fed a hay plus concentrate diet without (control) or with fumarate (6 g/head per day) supplementation to determine feed intake, whole-tract nutrient digestibility, and N utilization. Fumarate treatment did not affect weight change or feed intake but increased whole-tract digestion of gross energy, crude protein, and cellulose. Digested N was increased by fumarate supplementation; however, N retention was unaffected. Plasma glucose concentration was elevated with fumarate but urea N

  20. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  1. Progressive Neurologic Dysfunction in a Psoriasis Patient Treated With Dimethyl Fumarate

    PubMed Central

    Bartsch, Thorsten; Rempe, Torge; Wrede, Arne; Leypoldt, Frank; Brück, Wolfgang; Adams, Ortwin; Rohr, Axel; Jansen, Olav; Wüthrich, Christian; Deuschl, Günther; Koralnik, Igor J.

    2016-01-01

    Progressive multifocal leukoencephalopathy (PML) has recently been described in psoriasis or multiple sclerosis patients treated with fumaric acid esters (fumarates), who had developed severe and long-standing lymphocytopenia (<500/mm3). We report a psoriasis patient who presented with progressive neurologic dysfunction and seizures after 2.5 years of fumarate therapy. Despite absolute lymphocyte counts remaining between 500–1000/mm3, his CD4+ and CD8+ T-cell counts were markedly low. MRI showed right hemispheric and brainstem lesions and JC virus DNA was undetectable in his cerebrospinal fluid. Brain biopsy revealed typical features of PML as well as JC virus-infected neurons. Clinicians should consider PML in the differential diagnosis of fumarate-treated patients presenting with brain lesions or seizures even in the absence of severe lymphocytopenia. PMID:26150206

  2. The metabolism of "surplus" amino acids.

    PubMed

    Bender, David A

    2012-08-01

    For an adult in N balance, apart from small amounts of amino acids required for the synthesis of neurotransmitters, hormones, etc, an amount of amino acids almost equal to that absorbed from the diet can be considered to be "surplus" in that it will be catabolized. The higher diet-induced thermogenesis from protein than from carbohydrate or fat has generally been assumed to be due to increased protein synthesis, which is ATP expensive. To this must be added the ATP cost of protein catabolism through the ubiquitin-proteasome pathway. Amino acid catabolism will add to thermogenesis. Deamination results in net ATP formation except when serine and threonine deaminases are used, but there is the energy cost of synthesizing glutamine in extra-hepatic tissues. The synthesis of urea has a net cost of only 1·5 × ATP when the ATP yield from fumarate metabolism is offset against the ATP cost of the urea cycle, but this offset is thermogenic. In fasting and on a low carbohydrate diet as much of the amino acid carbon as possible will be used for gluconeogenesis - an ATP-expensive, and hence thermogenic, process. Complete oxidation of most amino acid carbon skeletons also involves a number of thermogenic steps in which ATP (or GTP) or reduced coenzymes are utilized. There are no such thermogenic steps in the metabolism of pyruvate, acetyl CoA or acetoacetate, but for amino acids that are metabolized by way of the citric acid cycle intermediates there is thermogenesis ranging from 1 up to 7 × ATP equivalent per mol.

  3. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  4. Water-enhanced solubility of carboxylic acids in organic solvents and its application to extraction processes

    SciTech Connect

    Starr, J.N. ); King, C.J. )

    1992-11-01

    This paper reports on solubilities of carboxylic acids in certain organic solvents which increase sharply as the concentration of water in the solvent increases. This phenomenon leads to a method of regeneration for solvent-extraction processes whereby coextracted water is selectively removed from the extract, such as by stripping, thereby precipitating the acid. The removal of a minor constituent to cause precipitation reduces energy consumption, in contrast with bulk removal of solvent. Solubilities of fumaric acid were measured in a number of organic solvents, with varying amounts of water in the organic phase. Cyclohexanone and methylcyclohexanone were chosen as solvents for which detailed solid-liquid and liquid-liquid equilibria were measured for adipic, fumaric, and succinic acids in the presence of varying concentrations of water, at both 25 and 45[degrees]C. Batch precipitation experiments were performed to demonstrate the processing concept and determine the relative volatility of water to solvent in the presence of carbon.

  5. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  6. Recovery of organic acids

    DOEpatents

    Verser, Dan W [Menlo Park, CA; Eggeman, Timothy J [Lakewood, CO

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  7. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  8. Parenteral Nutrition: Amino Acids.

    PubMed

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  9. Parenteral Nutrition: Amino Acids

    PubMed Central

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  10. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    SciTech Connect

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  11. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2016-12-17

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat/K m) for L-aspartic acid (14.18 s(-1) mM(-1)) was higher than that for L-phenylalanine (4.65 s(-1) mM(-1)). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  12. Diterpenoid acids from Grindelia nana.

    PubMed

    Mahmoud, A A; Ahmed, A A; Tanaka, T; Iinuma, M

    2000-03-01

    Two new norditerpenoid acids of the labdane-type (norgrindelic acids), 4,5-dehydro-6-oxo-18-norgrindelic acid (1) and 4beta-hydroxy-6-oxo-19-norgrindelic acid (2), as well as a new grindelic acid derivative, 18-hydroxy-6-oxogrindelic acid (3), were isolated from the aerial parts of Grindelia nana. In addition, the known compounds, 6-oxogrindelic acid, grindelic acid, methyl grindeloate, 7alpha,8alpha-epoxygrindelic acid, and 4alpha-carboxygrindelic acid were also isolated. The structures of the new compounds were characterized on the basis of spectroscopic analysis.

  13. Structure of Acid phosphatases.

    PubMed

    Araujo, César L; Vihko, Pirkko T

    2013-01-01

    Acid phosphatases are enzymes that have been studied extensively due to the fact that their dysregulation is associated with pathophysiological conditions. This characteristic has been exploited for the development of diagnostic and therapeutic methods. As an example, prostatic acid phosphatase was the first marker for metastatic prostate cancer diagnosis and the dysregulation of tartrate resistant acid phosphatase is associated with abnormal bone resorption linked to osteoporosis. The pioneering crystallization studies on prostatic acid phosphatase and mammalian tartrate-resistant acid phosphatase conformed significant milestones towards the elucidation of the mechanisms followed by these enzymes (Schneider et al., EMBO J 12:2609-2615, 1993). Acid phosphatases are also found in nonmammalian species such as bacteria, fungi, parasites, and plants, and most of them share structural similarities with mammalian acid phosphatase enzymes. Acid phosphatase (EC 3.1.3.2) enzymes catalyze the hydrolysis of phosphate monoesters following the general equation. Phosphate monoester + H2O -->/<-- alcohol + phosphate. The general classification "acid phosphatase" relies only on the optimum acidic pH for the enzymatic activity in assay conditions using non-physiological substrates. These enzymes accept a wide range of substrates in vitro, ranging from small organic molecules to phosphoproteins, constituting a heterogeneous group of enzymes from the structural point of view. These structural differences account for the divergence in cofactor dependences and behavior against substrates, inhibitors, and activators. In this group only the tartrate-resistant acid phosphatase is a metallo-enzyme whereas the other members do not require metal-ion binding for their catalytic activity. In addition, tartrate-resistant acid phosphatase and erythrocytic acid phosphatase are not inhibited by L-(+)-tartrate ion while the prostatic acid phosphatase is tartrate-sensitive. This is an important

  14. Folic Acid and Pregnancy

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Folic Acid ... > For Parents > Folic Acid and Pregnancy A A A What's ...

  15. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  16. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  17. Salicylic Acid Topical

    MedlinePlus

    Propa pH® Peel-Off Acne Mask ... pimples and skin blemishes in people who have acne. Topical salicylic acid is also used to treat ... medications called keratolytic agents. Topical salicylic acid treats acne by reducing swelling and redness and unplugging blocked ...

  18. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  19. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  20. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  1. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  2. Production of shikimic acid.

    PubMed

    Ghosh, Saptarshi; Chisti, Yusuf; Banerjee, Uttam C

    2012-01-01

    Shikimic acid is a key intermediate for the synthesis of the antiviral drug oseltamivir (Tamiflu®). Shikimic acid can be produced via chemical synthesis, microbial fermentation and extraction from certain plants. An alternative production route is via biotransformation of the more readily available quinic acid. Much of the current supply of shikimic acid is sourced from the seeds of Chinese star anise (Illicium verum). Supply from star anise seeds has experienced difficulties and is susceptible to vagaries of weather. Star anise tree takes around six-years from planting to bear fruit, but remains productive for long. Extraction and purification from seeds are expensive. Production via fermentation is increasing. Other production methods are too expensive, or insufficiently developed. In the future, production in recombinant microorganisms via fermentation may become established as the preferred route. Methods for producing shikimic acid are reviewed.

  3. The Path of Carbon in Photosynthesis VIII. The Role of Malic Acid

    DOE R&D Accomplishments Database

    Bassham, James A.; Benson, Andrew A.; Calvin, Melvin

    1950-01-25

    Malonate has been found to inhibit the formation of malic acid during short periods of photosynthesis with radioactive carbon dioxide. This result, together with studies which show the photosynthetic cycle to be operating normally at the same time, indicates that malic acid is not an intermediate in photosynthesis but is probably closely related to some intermediate of the cycle. Absence of labeled succinic and fumaric acids in these experiments, in addition to the failure of malonate to inhibit photosynthesis, precludes the participation of these acids as intermediates in photosynthesis.

  4. Fatty acid production from amino acids and alpha-keto acids by Brevibacterium linens BL2.

    PubMed

    Ganesan, Balasubramanian; Seefeldt, Kimberly; Weimer, Bart C

    2004-11-01

    Low concentrations of branched-chain fatty acids, such as isobutyric and isovaleric acids, develop during the ripening of hard cheeses and contribute to the beneficial flavor profile. Catabolism of amino acids, such as branched-chain amino acids, by bacteria via aminotransferase reactions and alpha-keto acids is one mechanism to generate these flavorful compounds; however, metabolism of alpha-keto acids to flavor-associated compounds is controversial. The objective of this study was to determine the ability of Brevibacterium linens BL2 to produce fatty acids from amino acids and alpha-keto acids and determine the occurrence of the likely genes in the draft genome sequence. BL2 catabolized amino acids to fatty acids only under carbohydrate starvation conditions. The primary fatty acid end products from leucine were isovaleric acid, acetic acid, and propionic acid. In contrast, logarithmic-phase cells of BL2 produced fatty acids from alpha-keto acids only. BL2 also converted alpha-keto acids to branched-chain fatty acids after carbohydrate starvation was achieved. At least 100 genes are potentially involved in five different metabolic pathways. The genome of B. linens ATCC 9174 contained these genes for production and degradation of fatty acids. These data indicate that brevibacteria have the ability to produce fatty acids from amino and alpha-keto acids and that carbon metabolism is important in regulating this event.

  5. Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid.

    PubMed

    Shah, Sayali; White, Jonathan M; Williams, Spencer J

    2014-12-14

    cis-Cyclopropane fatty acids (cis-CFAs) are widespread constituents of the seed oils of subtropical plants, membrane components of bacteria and protozoa, and the fats and phospholipids of animals. We describe a systematic approach to the synthesis of enantiomeric pairs of four cis-CFAs: cis-9,10-methylenehexadecanoic acid, lactobacillic acid, dihydromalvalic acid, and dihydrosterculic acid. The approach commences with Rh2(OAc)4-catalyzed cyclopropenation of 1-octyne and 1-decyne, and hinges on the preparative scale chromatographic resolution of racemic 2-alkylcycloprop-2-ene-1-carboxylic acids using a homochiral Evan's auxiliary. Saturation of the individual diastereomeric N-cycloprop-2-ene-1-carbonylacyloxazolidines, followed by elaboration to alkylcyclopropylmethylsulfones, allowed Julia-Kocienski olefination with various ω-aldehyde-esters. Finally, saponification and diimide reduction afforded the individual cis-CFA enantiomers.

  6. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions.

    PubMed

    Lu, Huiying J; Breidt, Frederick; Pérez-Díaz, Ilenys M; Osborne, Jason A

    2011-06-01

    Outbreaks of disease due to vegetative bacterial pathogens associated with acid foods (such as apple cider) have raised concerns about acidified vegetables and related products that have a similar pH (3.2 to 4.0). Escherichia coli O157:H7 and related strains of enterohemorrhagic E. coli (EHEC) have been identified as the most acid resistant vegetative pathogens in these products. Previous research has shown that the lack of dissolved oxygen in many hermetically sealed acid or acidified food products can enhance survival of EHEC compared with their survival under aerobic conditions. We compared the antimicrobial effects of several food acids (acetic, malic, lactic, fumaric, benzoic, and sorbic acids and sulfite) on a cocktail of EHEC strains under conditions representative of non-heat-processed acidified vegetables in hermetically sealed jars, holding the pH (3.2) and ionic strength (0.342) constant under anaerobic conditions. The overall antimicrobial effectiveness of weak acids used in this study was ranked, from most effective to least effective: sulfite > benzoic acid > sorbic acid > fumaric acid > L- and D-lactic acid > acetic acid > malic acid. These rankings were based on the estimated protonated concentrations required to achieve a 5-log reduction in EHEC after 24 h of incubation at 30°C. This study provides information that can be used to formulate safer acid and acidified food products and provides insights about the mode of action of weak acids against EHEC.

  7. Characteristics of organic acids in the fruit of different pumpkin species.

    PubMed

    Nawirska-Olszańska, Agnieszka; Biesiada, Anita; Sokół-Łętowska, Anna; Kucharska, Alicja Z

    2014-04-01

    The aim of the research was to determine the composition of organic acids in fruit of different cultivars of three pumpkin species. The amount of acids immediately after fruit harvest and after 3 months of storage was compared. The content of organic acids in the examined pumpkin cultivars was assayed using the method of high performance liquid chromatography (HPLC). Three organic acids (citric acid, malic acid, and fumaric acid) were identified in the cultivars, whose content considerably varied depending on a cultivar. Three-month storage resulted in decreased content of the acids in the case of cultivars belonging to Cucurbita maxima and Cucurbita pepo species, while a slight increase was recorded for Cucurbita moschata species.

  8. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  9. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  10. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  11. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  12. Aminolevulinic Acid Topical

    MedlinePlus

    ... under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated ...

  13. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  14. Folic acid - test

    MedlinePlus

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider ...

  15. Acid soldering flux poisoning

    MedlinePlus

    The harmful substances in soldering fluxes are called hydrocarbons. They include: Ammonium chloride Rosin Hydrochloric acid Zinc ... Lee DC. Hydrocarbons. In: Marx JA, Hockberger RS, Walls RM, et ... Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ...

  16. Amoxicillin and Clavulanic Acid

    MedlinePlus

    ... Amoxicillin is in a class of medications called penicillin-like antibiotics. It works by stopping the growth ... allergic to amoxicillin (Amoxil, Trimox, Wymox), clavulanic acid, penicillin, cephalosporins, or any other medications.tell your doctor ...

  17. Amino Acid Metabolism Disorders

    MedlinePlus

    ... acidemia? In ASA, the body can’t remove ammonia or a substance called argininosuccinic acid from the ... and children include: Breathing problems High levels of ammonia in the bloodIntense headache, especially after a high- ...

  18. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  19. Citric acid urine test

    MedlinePlus

    ... used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The normal range is 320 ... tubular acidosis and a tendency to form calcium kidney stones. The following may decrease urine citric acid levels: ...

  20. Lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Lead/acid batteries are produced in sizes from less than 1 to 3000 Ah for a wide variety of portable, industrial and automotive applications. Designs include Planté, Fauré or pasted, and tubular electrodes. In addition to the traditional designs which are flooded with sulfuric acid, newer 'valve-regulated" designs have the acid immolibized in a silica gel or absorbed in a porous glass separator. Development is ongoing worldwide to increase the specific power, energy and deep discharge cycle life of this commercially successful system to meet the needs of new applications such as electric vehicles, load leveling, and solar energy storage. The operating principles, current status, technical challenges and commercial impact of the lead/acid battery are reviewed.

  1. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  2. The linoleic acid and trans fatty acids of margarines.

    PubMed

    Beare-Rogers, J L; Gray, L M; Hollywood, R

    1979-09-01

    Fifty brands of margarine were analysed for cis-polyunsaturated acids by lipoxidase, for trans fatty acid by infared spectroscopy, and for fatty acid composition by gas-liquid chromatography. High concentrations of trans fatty acids tended to be associated with low concentrations of linoleic acid. Later analyses on eight of the brands, respresenting various proportions of linoleic to trans fatty acids, indicated that two of them contained still higher levels of trans fatty acids (greater than 60%) and negligible amounts of linoleic acid. It is proposed that margarine could be a vehicle for the distribution of some dietary linoleic acid and that the level of linoleic acid and the summation of the saturated plus trans fatty acids be known to ascertain nutritional characteristics.

  3. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin.

    PubMed

    Bai, Shijie; Dai, Jingcheng; Xia, Ming; Ruan, Jing; Wei, Hehong; Yu, Dianzhen; Li, Ronghui; Jing, Hongmei; Tian, Chunyuan; Song, Lirong; Qiu, Dongru

    2015-04-01

    Toxic Microcystis species are the main bloom-forming cyanobacteria in freshwaters. It is imperative to develop efficient techniques to control these notorious harmful algal blooms (HABs). Here, we present a simple, efficient, and environmentally safe algicidal way to control Microcystis blooms, by using intermediate carboxylic acids from the tricarboxylic acid (TCA) cycle. The citric acid, alpha-ketoglutaric acid, succinic acid, fumaric acid, and malic acid all exhibited strong algicidal effects, and particularly succinic acid could cause the rapid lysis of Microcystis in a few hours. It is revealed that the Microcystis-lysing activity of succinic acid and other carboxylic acids was due to their strong acidic activity. Interestingly, the acid-lysed Microcystis cells released large amounts of phycocyanin, about 27-fold higher than those of the control. On the other hand, the transcription of mcyA and mcyD of the microcystin biosynthesis operon was not upregulated by addition of alpha-ketoglutaric acid and other carboxylic acids. Consider the environmental safety of intermediate carboxylic acids. We propose that administration of TCA cycle organic acids may not only provide an algicidal method with high efficiency and environmental safety but also serve as an applicable way to produce and extract phycocyanin from cyanobacterial biomass.

  4. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  5. [Acids in coffee. XI. The proportion of individual acids in the total titratable acid].

    PubMed

    Engelhardt, U H; Maier, H G

    1985-07-01

    22 acids in ground roast coffees and instant coffees were determined by GLC of their silyl derivatives (after preseparation by gel electrophoresis) or isotachophoresis. The contribution to the total acidity (which was estimated by titration to pH 8 after cation exchange of the coffee solutions) was calculated for each individual acid. The mentioned acids contribute with 67% (roast coffee) and 72% (instant coffee) to the total acidity. In the first place citric acid (12.2% in roast coffee/10.7% in instant coffee), acetic acid (11.2%/8.8%) and the high molecular weight acids (8%/9%) contribute to the total acidity. Also to be mentioned are the shares of chlorogenic acids (9%/4.8%), formic acid (5.3%/4.6%), quinic acid (4.7%/5.9%), malic acid (3.9%/3%) and phosphoric acid (2.5%/5.2%). A notable difference in the contribution to total acidity between roast and instant coffee was found for phosphoric acid and pyrrolidonecarboxylic acid (0.7%/1.9%). It can be concluded that those two acids are formed or released from e.g. their esters in higher amounts than other acids during the production of instant coffee.

  6. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  7. The second acidic constant of salicylic acid.

    PubMed

    Porto, Raffaella; De Tommaso, Gaetano; Furia, Emilia

    2005-01-01

    The second dissociation constant of salicylic acid (H2L) has been determined, at 25 degrees C, in NaCl ionic media by UV spectrophotometric measurements. The investigated ionic strength values were 0.16, 0.25, 0.50, 1.0, 2.0 and 3.0 M. The protolysis constants calculated at the different ionic strengths yielded, with the Specific Interaction Theory, the infinite dilution constant, log beta1(0) = 13.62 +/- 0.03, for the equilibrium L2- + H+ <==> HL-. The interaction coefficient between Na+ and L2-, b(Na+, L2-) = 0.02 +/- 0.07, has been also calculated.

  8. Differential activation of pregnane X receptor by carnosic acid, carnosol, ursolic acid, and rosmarinic acid.

    PubMed

    Seow, Chun Ling; Lau, Aik Jiang

    2017-03-10

    Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77μM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects.

  9. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  10. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    PubMed

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  11. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  12. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    PubMed

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  13. [Determination of organic acids in rice wine by ion-exclusion chromatography].

    PubMed

    Lin, Xiaojie; Wei, Wei; He, Zhigang; Lin, Xiaozi

    2014-03-01

    An ion-exclusion chromatographic method for the simultaneous determination of organic acids in rice wine was developed. An IC-Pak Ion Exclusion column (300 mm x 7.8 mm, 7 microm) was used at 50 degrees C. The mobile phases were H2SO4 (phase A) and acetonitrile (phase B) (98:2, v/v) at a flow rate of 0.5 mL/min. The gradient elution program was as follows: 0-40 min, 0.01 mol/L H2SO4 to 0.02 mol/L H2SO4; 40-50 min, 0.01 mol/L H2SO4. The injection volume was 10 microL. The detection wavelength was set at 210 nm. The results showed that oxalic acid, maleic acid, citric acid, tartaric acid, malic acid, ascorbic acid, succinic acid, lactic, fumaric acid, acetic acid, propionic acid, isobutyric acid and butyric acid were completely separated and determined in 30 min. The linear correlation coefficients were above 0.999 7 in the range of 0.001- 1.000 g/L. Under the optimized conditions, the recoveries of organic acids in rice wine were in the range of 93.4% - 103.8% with the relative standard deviations (RSDs, n = 5) of 0.1% - 1.5%. This method is feasible, convenient, fast, accurate and applicable for the quantitative analysis of the organic acids in rice wine.

  14. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  15. Recurrent uric acid stones.

    PubMed

    Kamel, K S; Cheema-Dhadli, S; Shafiee, M A; Davids, M R; Halperin, M L

    2005-01-01

    A 46-year-old female had a history of recurrent uric acid stone formation, but the reason why uric acid precipitated in her urine was not obvious, because the rate of urate excretion was not high, urine volume was not low, and the pH in her 24-h urine was not low enough. In his discussion of the case, Professor McCance provided new insights into the pathophysiology of uric acid stone formation. He illustrated that measuring the pH in a 24-h urine might obscure the fact that the urine pH was low enough to cause uric acid to precipitate during most of the day. Because he found a low rate of excretion of NH(4)(+) relative to that of sulphate anions, as well as a high rate of citrate excretion, he speculated that the low urine pH would be due to a more alkaline pH in proximal convoluted tubule cells. He went on to suspect that there was a problem in our understanding of the function of renal medullary NH(3) shunt pathway, and he suggested that its major function might be to ensure a urine pH close to 6.0 throughout the day, to minimize the likelihood of forming uric acid kidney stones.

  16. Hydrogen production by fermentation using acetic acid and lactic acid.

    PubMed

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  17. A Demonstration of Acid Rain

    ERIC Educational Resources Information Center

    Fong, Man Wai

    2004-01-01

    A demonstration showing acid rain formation is described. Oxides of sulfur and nitrogen that result from the burning of fossil fuels are the major pollutants of acid rain. In this demonstration, SO[subscript 2] gas is produced by the burning of matches. An acid-base indicator will show that the dissolved gas turns an aqueous solution acidic.

  18. Biodegradation of Cyanuric Acid

    PubMed Central

    Saldick, Jerome

    1974-01-01

    Cyanuric acid biodegrades readily under a wide variety of natural conditions, and particularly well in systems of either low or zero dissolved-oxygen level, such as anaerobic activated sludge and sewage, soils, muds, and muddy streams and river waters, as well as ordinary aerated activated sludge systems with typically low (1 to 3 ppm) dissolved-oxygen levels. Degradation also proceeds in 3.5% sodium chloride solution. Consequently, there are degradation pathways widely available for breaking down cyanuric acid discharged in domestic effluents. The overall degradation reaction is merely a hydrolysis; CO2 and ammonia are the initial hydrolytic breakdown products. Since no net oxidation occurs during this breakdown, biodegradation of cyanuric acid exerts no primary biological oxygen demand. However, eventual nitrification of the ammonia released will exert its usual biological oxygen demand. PMID:4451360

  19. [Aristolochic acid nephropathy].

    PubMed

    Witkowicz, Joanna

    2009-01-01

    Aristolochic acid nephropathy is a chronic, fibrosing, interstitial nephritis caused by aristolochic acid (AA), which is a component of the plants of Aristolochiacae family. It was first reported in 1993, in Belgium as a Chinese herb nephropathy, in patients who received a slimming regimen containing AA. The term aristolochic acid nephropathy also includes Balcan endemic nephropathy and other endemic tubulointerstitial fibrosis. Moreover, AA is a human carcinogen which induces urothelial cancer. The AA-containing herbs are banned in many countries and FDA published the warnings concerning the safety of AA-containing botanical remedies in 2000. Regarding the increasing interest in herbal medicines, uncontrolled access to botanical remedies and replacement of one herb by another AA-containing compounds makes thousands of people all around the world at risk of this grave disease.

  20. Calorimetry of Nucleic Acids.

    PubMed

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  1. Acid rain in Asia

    NASA Astrophysics Data System (ADS)

    Bhatti, Neeloo; Streets, David G.; Foell, Wesley K.

    1992-07-01

    Acid rain has been an issue of great concern in North America and Europe during the past several decades. However, due to the passage of a number of recent regulations, most notably the Clean Air Act in the United States in 1990, there is an emerging perception that the problem in these Western nations is nearing solution. The situation in the developing world, particularly in Asia, is much bleaker. Given the policies of many Asian nations to achieve levels of development comparable with the industrialized world—which necessitate a significant expansion of energy consumption (most derived from indigenous coal reserves)—the potential for the formation of, and damage from, acid deposition in these developing countries is very high. This article delineates and assesses the emissions patterns, meteorology, physical geology, and biological and cultural resources present in various Asian nations. Based on this analysis and the risk factors to acidification, it is concluded that a number of areas in Asia are currently vulnerable to acid rain. These regions include Japan, North and South Korea, southern China, and the mountainous portions of Southeast Asia and southwestern India. Furthermore, with accelerated development (and its attendant increase in energy use and production of emissions of acid deposition precursors) in many nations of Asia, it is likely that other regions will also be affected by acidification in the near future. Based on the results of this overview, it is clear that acid deposition has significant potential to impact the Asian region. However, empirical evidence is urgently needed to confirm this and to provide early warning of increases in the magnitude and spread of acid deposition and its effects throughout this part of the world.

  2. Ethylenediaminetetraacetic acid in endodontics.

    PubMed

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-09-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented.

  3. Ethylenediaminetetraacetic acid in endodontics

    PubMed Central

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-01-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented. PMID:24966721

  4. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  5. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham; Hamid, Mohamed Ali

    2015-04-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid.

  6. Oxalic acid excretion after intravenous ascorbic acid administration.

    PubMed

    Robitaille, Line; Mamer, Orval A; Miller, Wilson H; Levine, Mark; Assouline, Sarit; Melnychuk, David; Rousseau, Caroline; Hoffer, L John

    2009-02-01

    Ascorbic acid is frequently administered intravenously by alternative health practitioners and, occasionally, by mainstream physicians. Intravenous administration can greatly increase the amount of ascorbic acid that reaches the circulation, potentially increasing the risk of oxalate crystallization in the urinary space. To investigate this possibility, we developed gas chromatography mass spectrometry methodology and sampling and storage procedures for oxalic acid analysis without interference from ascorbic acid and measured urinary oxalic acid excretion in people administered intravenous ascorbic acid in doses ranging from 0.2 to 1.5 g/kg body weight. In vitro oxidation of ascorbic acid to oxalic acid did not occur when urine samples were brought immediately to pH less than 2 and stored at -30 degrees C within 6 hours. Even very high ascorbic acid concentrations did not interfere with the analysis when oxalic acid extraction was carried out at pH 1. As measured during and over the 6 hours after ascorbic acid infusions, urinary oxalic acid excretion increased with increasing doses, reaching approximately 80 mg at a dose of approximately 100 g. We conclude that, when studied using correct procedures for sample handling, storage, and analysis, less than 0.5% of a very large intravenous dose of ascorbic acid is recovered as urinary oxalic acid in people with normal renal function.

  7. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Iozzino, Valentina; Speranza, Vito; Pantani, Roberto

    2015-12-01

    The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.

  8. [Studies on interaction of acid-treated nanotube titanic acid and amino acids].

    PubMed

    Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang

    2010-06-01

    Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.

  9. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  10. Effect of domoic acid on brain amino acid levels.

    PubMed

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  11. Hydrofluoric acid poisoning

    MedlinePlus

    Chemical Emergencies: Case Definition: Hydrofluoric Acid . Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2005. Goldfrank LR, ed. Goldfrank's Toxicologic Emergencies . 8th ed. New York, NY: McGraw Hill; 2006. Wax PM, Young A. ...

  12. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  13. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Oates-Bockenstedt, Catherine

    1997-01-01

    Details an activity designed to motivate students by incorporating science-related issues into a classroom debate. Includes "The Acid Rain Bill" and "Position Guides" for student roles as committee members, consumers, governors, industry owners, tourism professionals, senators, and debate directors. (DKM)

  14. Acid Rain Investigations.

    ERIC Educational Resources Information Center

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  15. The Acid Rain Game.

    ERIC Educational Resources Information Center

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  16. Acid Rain Classroom Projects.

    ERIC Educational Resources Information Center

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  17. The Acid Rain Debate.

    ERIC Educational Resources Information Center

    Bybee, Rodger; And Others

    1984-01-01

    Describes an activity which provides opportunities for role-playing as industrialists, ecologists, and government officials. The activity involves forming an international commission on acid rain, taking testimony, and, based on the testimony, making recommendations to governments on specific ways to solve the problem. Includes suggestions for…

  18. Acid rain bibliography

    SciTech Connect

    Sayers, C.S.

    1983-09-01

    This bibliography identifies 900 citations on various aspects of Acid Rain, covering published bibliographies, books, reports, conference and symposium proceedings, audio visual materials, pamphlets and newsletters. It includes five sections: citations index (complete record of author, title, source, order number); KWIC index; title index; author index; and source index. 900 references.

  19. Docosahexaenoic acid and lactation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Docosahexaenoic acid (DHA) is an important component of membrane phospholipids in the retina, and brain, and accumulates rapidly in these tissues during early infancy. DHA is present in human milk, but the amount varies considerably and is largely dependent on maternal diet. This article reviews dat...

  20. Spermatotoxicity of dichloroacetic acid

    EPA Science Inventory

    The testicular toxicity of dichloroacetic acid (DCA), a disinfection byproduct of drinking water, was evaluated in adult male rats given both single and multiple (up to 14 d) oral doses. Delayed spermiation and altered resorption of residual bodies were observed in rats given sin...

  1. Water surface is acidic

    PubMed Central

    Buch, Victoria; Milet, Anne; Vácha, Robert; Jungwirth, Pavel; Devlin, J. Paul

    2007-01-01

    Water autoionization reaction 2H2O → H3O− + OH− is a textbook process of basic importance, resulting in pH = 7 for pure water. However, pH of pure water surface is shown to be significantly lower, the reduction being caused by proton stabilization at the surface. The evidence presented here includes ab initio and classical molecular dynamics simulations of water slabs with solvated H3O+ and OH− ions, density functional studies of (H2O)48H+ clusters, and spectroscopic isotopic-exchange data for D2O substitutional impurities at the surface and in the interior of ice nanocrystals. Because H3O+ does, but OH− does not, display preference for surface sites, the H2O surface is predicted to be acidic with pH < 4.8. For similar reasons, the strength of some weak acids, such as carbonic acid, is expected to increase at the surface. Enhanced surface acidity can have a significant impact on aqueous surface chemistry, e.g., in the atmosphere. PMID:17452650

  2. Acid rain sourcebook

    SciTech Connect

    Elliott, T.C.; Schwieger, R.G.

    1984-01-01

    Discusses the problem of acid rain and how it can be controlled. The book is divided into seven key sections: the problem and the legislative solutions; international mitigation programs; planning the US program; emissions reduction-before combustion; emissions/reduction-during combustion; emissions reduction-after combustion and engineering solutions under development. 13 papers have been abstracted separately.

  3. The acid rain sourcebook

    SciTech Connect

    Elliott, T.C.; Schwieger, R.G.

    1985-01-01

    A reference collection of specialized information discussions on areas critical to the acid rain issue: problem definition, impact of legislation, emissions standards, international perspective, cost scenarios, and engineering solutions. The text is reinforced with 130 illustrations and about 50 tables. Contents: International mitigation programs. Emissions reduction: before combustion; during combustion; after combustion. Engineering solutions under development.

  4. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  5. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  6. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations.

    PubMed

    Ahmad, I; Ali Sheraz, M; Ahmed, S; Shad, Z; Vaid, F H M

    2012-06-01

    This study involves the evaluation of the effect of certain stabilizers, that is, citric acid (CT), tartaric acid (TA) and boric acid (BA) on the degradation of ascorbic acid (AH(2) ) in oil-in-water cream formulations exposed to the UV light and stored in the dark. The apparent first-order rate constants (0.34-0.95 × 10(-3) min(-1) in light, 0.38-1.24 × 10(-2) day(-1) in dark) for the degradation reactions in the presence of the stabilizers have been determined. These rate constants have been used to derive the second-order rate constants (0.26-1.45 × 10(-2) M(-1) min(-1) in light, 3.75-8.50 × 10(-3) M(-1) day(-1) in dark) for the interaction of AH(2) and the individual stabilizers. These stabilizers are effective in causing the inhibition of the rate of degradation of AH(2) both in the light and in the dark. The inhibitory effect of the stabilizers is in the order of CT > TA > BA. The rate of degradation of AH(2) in the presence of these stabilizers in the light is about 120 times higher than that in the dark. This could be explained on the basis of the deactivation of AH(2) -excited triplet state by CT and TA and by the inhibition of AH(2) degradation through complex formation with BA. AH(2) leads to the formation of dehydroascorbic acid (A) by chemical and photooxidation in cream formulations.

  7. Absolute configuration of a chiral CHD group via neutron diffraction: confirmation of the absolute stereochemistry of the enzymatic formation of malic acid

    SciTech Connect

    Bau, R.; Brewer, I.; Chiang, M.Y.; Fujita, S.; Hoffman, J.; Watkins, M.I.; Koetzle, T.F.

    1983-09-30

    Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.

  8. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  9. Acid diffusion through polyaniline membranes

    SciTech Connect

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  10. Fatty acid-producing hosts

    DOEpatents

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  11. Radioenzymatic assay for quinolinic acid

    SciTech Connect

    Foster, A.C.; Okuno, E.; Brougher, D.S.; Schwarcz, R.

    1986-10-01

    A new and rapid method for the determination of the excitotoxic tryptophan metabolite quinolinic acid is based on its enzymatic conversion to nicotinic acid mononucleotide and, in a second step utilizing (/sup 3/H)ATP, further to (/sup 3/H) deamido-NAD. Specificity of the assay is assured by using a highly purified preparation of the specific quinolinic acid-catabolizing enzyme, quinolinic acid phosphoribosyltransferase, in the initial step. The limit of sensitivity was found to be 2.5 pmol of quinolinic acid, sufficient to conveniently determine quinolinic acid levels in small volumes of human urine and blood plasma.

  12. Six hydrogen-bonded supramolecular frameworks assembled from organic acids and p-dimethylaminobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Lanqing; Lou, Yulei; Liu, Li; Li, Bin; Li, Linyu; Feng, Chao; Liu, Hui; Wang, Daqi

    2016-03-01

    Cocrystallization of the commonly available organic compound, p-dimethylaminobenzaldehyde, with a series of organic acids gave a total of six molecular adducts with the compositions: p-dimethylaminobenzaldehyde : (3,5-dinitrosalicylic acid) [(L) · (Hdsa), Hdsa = 3,5-dinitrosalicylic acid] (1), p-dimethylaminobenzaldehyde : (3-nitrophthalic acid) [(L) · (3-H2npa), 3-H2npa = 3-nitrophthalic acid] (2), p-dimethylaminobenzaldehyde : (4-nitrophthalic acid) [(L) · (4-H2npa), 4-H2npa = 4-nitrophthalic acid] (3), p-dimethylaminobenzaldehyde : (1,5-naphthalenedisulfonic acid) : (NH3)2 [NH4 · (HL) · (nds2-) · NH3, nds- = 1,5-naphthalenedisulfonate] (4), p-dimethylaminobenzaldehyde : (oxalic acid)0.5 [(L) · (H2oa)0.5, H2oa = oxalic acid] (5), and p-dimethylaminobenzaldehyde : (fumaric acid)0.5 [(L) · (H2fum)0.5, H2fum = fumaric acid] (6). The six molecular adducts have been characterized by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all adducts were also reported. And their structural and supramolecular aspects are fully analyzed. Of the six adducts, only 4 is an organic salt and the other five are cocrystals. The crystal packing is interpreted in terms of the strong classical hydrogen bonds as well as other weak non-classical hydrogen bonds. The different families of non-covalent bonds contribute to the stabilization and expansion of the total high-dimensional (2D-3D) frameworks.

  13. Progress in engineering acid stress resistance of lactic acid bacteria.

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  14. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    PubMed

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  15. NAPAP (National Acid Precipitation Assessment Program) results on acid rain

    SciTech Connect

    Not Available

    1990-06-01

    The National Acid Precipitation Assessment Program (NAPAP) was mandated by Congress in 1980 to study the effects of acid rain. The results of 10 years of research on the effect of acid deposition and ozone on forests, particularly high elevation spruce and fir, southern pines, eastern hardwoods and western conifers, will be published this year.

  16. Acid Earth--The Global Threat of Acid Pollution.

    ERIC Educational Resources Information Center

    McCormick, John

    Acid pollution is a major international problem, but the debate it has elicited has often clouded the distinction between myth and facts. This publication attempts to concerning the acid pollution situation. This publication attempts to identify available facts. It is the first global review of the problem of acid pollution and the first to…

  17. Boric/sulfuric acid anodize - Alternative to chromic acid anodize

    NASA Astrophysics Data System (ADS)

    Koop, Rodney; Moji, Yukimori

    1992-04-01

    The suitability of boric acid/sulfuric acid anodizing (BSAA) solution as a more environmentally acceptable replacement of the chromic acid anodizing (CAA) solution was investigated. Results include data on the BSAA process optimization, the corrosion protection performance, and the compatibility with aircraft finishing. It is shown that the BSSA implementation as a substitude for CAA was successful.

  18. Circulating folic acid in plasma: relation to folic acid fortification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The implementation of folic acid fortification in the United States has resulted in unprecedented amounts of this synthetic form of folate in the American diet. Folic acid in circulation may be a useful measure of physiologic exposure to synthetic folic acid, and there is a potential for elevated co...

  19. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  20. Eucomic acid methanol monosolvate

    PubMed Central

    Li, Guo-Qiang; Li, Yao-Lan; Wang, Guo-Cai; Liang, Zhi-Hong; Jiang, Ren-Wang

    2011-01-01

    In the crystal structure of the title compound [systematic name: 2-hy­droxy-2-(4-hy­droxy­benz­yl)butane­dioic acid methanol monosolvate], C11H12O6·CH3OH, the dihedral angles between the planes of the carboxyl groups and the benzene ring are 51.23 (9) and 87.97 (9)°. Inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give a three-dimensional structure. PMID:22091200

  1. Autohydrolysis of phytic acid.

    PubMed

    Hull, S R; Gray, J S; Montgomery, R

    1999-09-10

    The autohydrolysis of phytic acid at 120 degrees C resulted in the formation of most of the phosphate esters of myo-inositol in varying amounts depending upon the reaction time. Eighteen of the 39 chromatographically distinct myo-inositol mono-, bis-, tris-, tetrakis-, pentakis-, and hexakisphosphates have been characterized using two different HPLC systems. These myo-inositol phosphates were partially purified by preparative anion-exchange chromatography under acidic and alkaline elution conditions. The combination of these two methods provides a two-tiered chromatographic approach to the rapid and sensitive identification of inositol phosphates in complex mixtures. Identification of the products was confirmed by 1D and 2D (1)H NMR analysis. The analytical procedure was applied to the autohydrolysis of the mixture of inositol phosphates from corn steep water.

  2. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  3. Optimize acid gas removal

    SciTech Connect

    Nicholas, D.M.; Wilkins, J.T.

    1983-09-01

    Innovative design of physical solvent plants for acid gas removal can materially reduce both installation and operating costs. A review of the design considerations for one physical solvent process (Selexol) points to numerous arrangements for potential improvement. These are evaluated for a specific case in four combinations that identify an optimum for the case in question but, more importantly, illustrate the mechanism for use for such optimization elsewhere.

  4. Perfluorooctanoic acid and environmental risks

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acids (PFAA) family of chemicals, which consist of a carbon backbone typically four to fourteen carbons in length and a charged functional moiety.

  5. Ideas about Acids and Alkalis.

    ERIC Educational Resources Information Center

    Toplis, Rob

    1998-01-01

    Investigates students' ideas, conceptions, and misconceptions about acids and alkalis before and after a teaching sequence in a small-scale research project. Concludes that student understanding of acids and alkalis is lacking. (DDR)

  6. Pantothenic acid (Vitamin B5)

    MedlinePlus

    Pantothenic acid is a vitamin, also known as vitamin B5. It is widely found in both plants and animals ... Vitamin B5 is commercially available as D-pantothenic acid, as well as dexpanthenol and calcium pantothenate, which ...

  7. Folic Acid Questions and Answers

    MedlinePlus

    ... Controls NCBDDD Cancel Submit Search The CDC Folic Acid Note: Javascript is disabled or is not supported ... please visit this page: About CDC.gov . Folic Acid Homepage Facts Quiz Frequently Asked Questions General Information ...

  8. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  9. Immunomodulatory spherical nucleic acids.

    PubMed

    Radovic-Moreno, Aleksandar F; Chernyak, Natalia; Mader, Christopher C; Nallagatla, Subbarao; Kang, Richard S; Hao, Liangliang; Walker, David A; Halo, Tiffany L; Merkel, Timothy J; Rische, Clayton H; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A; Gryaznov, Sergei M

    2015-03-31

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies.

  10. Immunomodulatory spherical nucleic acids

    PubMed Central

    Radovic-Moreno, Aleksandar F.; Chernyak, Natalia; Mader, Christopher C.; Nallagatla, Subbarao; Kang, Richard S.; Hao, Liangliang; Walker, David A.; Halo, Tiffany L.; Merkel, Timothy J.; Rische, Clayton H.; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A.; Gryaznov, Sergei M.

    2015-01-01

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582

  11. Microbial naphthenic Acid degradation.

    PubMed

    Whitby, Corinne

    2010-01-01

    Naphthenic acids (NAs) are an important group of trace organic pollutants predominantly comprising saturated aliphatic and alicyclic carboxylic acids. NAs are ubiquitous; occurring naturally in hydrocarbon deposits (petroleum, oil sands, bitumen, and crude oils) and also have widespread industrial uses. Consequently, NAs can enter the environment from both natural and anthropogenic processes. NAs are highly toxic, recalcitrant compounds that persist in the environment for many years, and it is important to develop efficient bioremediation strategies to decrease both their abundance and toxicity in the environment. However, the diversity of microbial communities involved in NA-degradation, and the mechanisms by which NAs are biodegraded, are poorly understood. This lack of knowledge is mainly due to the difficulties in identifying and purifying individual carboxylic acid compounds from complex NA mixtures found in the environment, for microbial biodegradation studies. This paper will present an overview of NAs, their origin and fate in the environment, and their toxicity to the biota. The review describes the microbial degradation of both naturally occurring and chemically synthesized NAs. Proposed pathways for aerobic NA biodegradation, factors affecting NA biodegradation rates, and possible bioremediation strategies are also discussed.

  12. Amino acids in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Peterson, E.

    1975-01-01

    Studies with the combined gas chromatograph-mass spectrometer were conducted to characterize further the amino acids found in extracts of the Murchison meteorite. With the exception of beta-aminoisobutyric acid, all of the amino acids which were found in previous studies of the Murchison meteorite and the Murray meteorite have been identified. The results obtained lend further support to the hypothesis that amino acids are present in the Murchison meteorite as the result of an extraterrestrial abiotic synthesis.

  13. [In vitro incubation of lenses. Model for testing substrate utilization of substances of the energy metabolism, demonstrated with bencyclane-hydrogen-fumarate (author's transl)].

    PubMed

    Hockwin, O; Korte, I; Breuer, R; Schmidt, G; Rast-Czyborra, F

    1978-08-16

    When bovine lens homogenate was treated with bencyclane-hydrogen-fumarate, the carbohydrate metabolism was activated. This may chiefly be due to the fumarate part of the substance. A 24 H In vitro incubation of whole bovine lenses in TC-199 with and without bencyclane-hydrogen-fumarate did not show the above effect. On the model of former investigations by J.E. Harris et al. we modified the test procedure by selecting the medium and the time of incubation so that the endogenous carbohydrates of the lens were consumed, thus creating new metabolic balances. This metabolic condition allows investigations intended to activate metabolic processes and to restore the steady state of metabolic parameters. We investigated the effect of bencyclane-hydrogen-fumarate using the same method and found that given certain conditions the lens recovers when incubated for 2 h in TC-199 (containing 1 g glucose/1) with addition of a 10(-4) M solution of bencyclane-hydrogen-fumarate. The ATP-content of these lenses in particular gives proof of this result. As already observed in former investigations on homogenates, this effect is probably due to metabolization of the fumarate part of the bencyclane-hydrogen-fumarate by the citric acid cycle. The method used explains the differences observed when using lens homogenates or whole lenses under the same experimental conditions.

  14. The effect of several organic acids on phytate phosphorus hydrolysis in broiler chicks.

    PubMed

    Liem, A; Pesti, G M; Edwards, H M

    2008-04-01

    Supplementation of some organic acids to a P-deficient diet has been shown to improve phytate P utilization. Two experiments were conducted from 0 to 16 d in battery brooders to determine the effect of various organic acids supplementation on phytate P utilization. In both experiments, birds were fed P-deficient corn and soybean meal-based diets. In experiment 1, citric acid, malic acid, fumaric acid, and EDTA were supplemented. Experiment 2 had a 2 x 2 factorial design with 2 sources of Met, 2-hydroxy-4-(methylthio) butanoic acid (HMB) and dl-Met, with or without 500 U/kg of phytase. In experiment 1, the addition of citric, malic, and fumaric acids increased percentage of bone ash, but only the effect of citric acid was significant. The addition of citric and malic acids also significantly increased the retention of P and phytate P (P<0.05). In experiment 2, the addition of phytase to the diet significantly increased 16-d BW gain, feed intake, percentage of bone ash, milligrams of bone ash, phytate P disappearance, and decreased the incidence of P-deficiency rickets. Methionine source did not affect 16-d BW gain, feed intake, feed efficiency, milligrams of bone ash, or P rickets incidence. However, the birds fed HMB had a higher percentage of bone ash and phytate P disappearance compared with the groups fed dl-Met only when phytase was added to the diets. The additions of citric acid and HMB improved phytate P utilization. However, the reason why some organic acids are effective whereas others are not is not apparent.

  15. Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita.

    PubMed

    Kim, Tae Yoon; Jang, Ja Yeong; Jeon, Sun Jeong; Lee, Hye Won; Bae, Chang-Hwan; Yeo, Joo Hong; Lee, Hyang Burm; Kim, In Seon; Park, Hae Woong; Kim, Jin-Cheol

    2016-08-28

    The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with (1)H- and (13)C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 µg/ml and 238.3 µg/ml, respectively, at 72 h postexposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita.

  16. Sequential injection redox or acid-base titration for determination of ascorbic acid or acetic acid.

    PubMed

    Lenghor, Narong; Jakmunee, Jaroon; Vilen, Michael; Sara, Rolf; Christian, Gary D; Grudpan, Kate

    2002-12-06

    Two sequential injection titration systems with spectrophotometric detection have been developed. The first system for determination of ascorbic acid was based on redox reaction between ascorbic acid and permanganate in an acidic medium and lead to a decrease in color intensity of permanganate, monitored at 525 nm. A linear dependence of peak area obtained with ascorbic acid concentration up to 1200 mg l(-1) was achieved. The relative standard deviation for 11 replicate determinations of 400 mg l(-1) ascorbic acid was 2.9%. The second system, for acetic acid determination, was based on acid-base titration of acetic acid with sodium hydroxide using phenolphthalein as an indicator. The decrease in color intensity of the indicator was proportional to the acid content. A linear calibration graph in the range of 2-8% w v(-1) of acetic acid with a relative standard deviation of 4.8% (5.0% w v(-1) acetic acid, n=11) was obtained. Sample throughputs of 60 h(-1) were achieved for both systems. The systems were successfully applied for the assays of ascorbic acid in vitamin C tablets and acetic acid content in vinegars, respectively.

  17. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  18. An Umbrella for Acid Rain.

    ERIC Educational Resources Information Center

    Randal, Judith

    1979-01-01

    The Environmental Protection Agency has awarded several grants to study effects of and possible solutions to the problem of "acid rain"; pollution from atmospheric nitric and sulfuric acids. The research program is administered through North Carolina State University at Raleigh and will focus on biological effects of acid rain. (JMF)

  19. Carboxylic acid sorption regeneration process

    DOEpatents

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  20. Scientists Puzzle Over Acid Rain

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Reports on a growing concern over increased acidity in atmospheric percipitation. Explores possible causes of the increased acidity, identifies chemical components of precipitation in various parts of the world, and presents environmental changes that might be attributed to the acidity. (GS)

  1. [Total synthesis of nordihydroguaiaretic acid].

    PubMed

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F

    1997-04-01

    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized.

  2. Pantothenic acid biosynthesis in zymomonas

    SciTech Connect

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  3. Microbial degradation of poly(amino acid)s.

    PubMed

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  4. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  5. Evolution of rosmarinic acid biosynthesis.

    PubMed

    Petersen, Maike; Abdullah, Yana; Benner, Johannes; Eberle, David; Gehlen, Katja; Hücherig, Stephanie; Janiak, Verena; Kim, Kyung Hee; Sander, Marion; Weitzel, Corinna; Wolters, Stefan

    2009-01-01

    Rosmarinic acid and chlorogenic acid are caffeic acid esters widely found in the plant kingdom and presumably accumulated as defense compounds. In a survey, more than 240 plant species have been screened for the presence of rosmarinic and chlorogenic acids. Several rosmarinic acid-containing species have been detected. The rosmarinic acid accumulation in species of the Marantaceae has not been known before. Rosmarinic acid is found in hornworts, in the fern family Blechnaceae and in species of several orders of mono- and dicotyledonous angiosperms. The biosyntheses of caffeoylshikimate, chlorogenic acid and rosmarinic acid use 4-coumaroyl-CoA from the general phenylpropanoid pathway as hydroxycinnamoyl donor. The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and hydroxyphenyllactic acid derived from l-tyrosine. Similar steps are involved in the biosyntheses of rosmarinic, chlorogenic and caffeoylshikimic acids: the transfer of the 4-coumaroyl moiety to an acceptor molecule by a hydroxycinnamoyltransferase from the BAHD acyltransferase family and the meta-hydroxylation of the 4-coumaroyl moiety in the ester by a cytochrome P450 monooxygenase from the CYP98A family. The hydroxycinnamoyltransferases as well as the meta-hydroxylases show high sequence similarities and thus seem to be closely related. The hydroxycinnamoyltransferase and CYP98A14 from Coleus blumei (Lamiaceae) are nevertheless specific for substrates involved in RA biosynthesis showing an evolutionary diversification in phenolic ester metabolism. Our current view is that only a few enzymes had to be "invented" for rosmarinic acid biosynthesis probably on the basis of genes needed for the formation of chlorogenic and caffeoylshikimic acid while further biosynthetic steps might have been recruited from phenylpropanoid metabolism, tocopherol/plastoquinone biosynthesis and photorespiration.

  6. Microbial production of specialty organic acids from renewable and waste materials.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2015-01-01

    Microbial production of organic acids has become a fast-moving field due to the increasing role of these compounds as platform chemicals. In recent years, the portfolio of specialty fermentation-derived carboxylic acids has increased considerably, including the production of glyceric, glucaric, succinic, butyric, xylonic, fumaric, malic, itaconic, lactobionic, propionic and adipic acid through innovative fermentation strategies. This review summarizes recent trends in the use of novel microbial platforms as well as renewable and waste materials for efficient and cost-effective bio-based production of emerging high-value organic acids. Advances in the development of robust and efficient microbial bioprocesses for producing carboxylic acids from low-cost feedstocks are also discussed. The industrial market scenario is also reviewed, including the latest information on the stage of development for producing these emerging bio-products via large-scale fermentation.

  7. Polar lipid fatty acids, LPS-hydroxy fatty acids, and respiratory quinones of three Geobacter strains, and variation with electron acceptor

    SciTech Connect

    Hedrick, David B.; Peacock, Aaron; Lovley, Derek; Woodard, Trevor L.; Nevin, Kelly P.; Long, Philip E.; White, David C.

    2009-02-01

    The polar lipid fatty acids, lipopolysaccharide hydroxy-fatty acids, and respiratory quinones of Geobacter metallireducens str. GS-15, Geobacter sulfurreducens str. PCA, and Geobacter bemidjiensis str. Bem are reported. Also, the lipids of G. metallireducens were compared when grown with Fe3+ or nitrate as electron acceptors and G. sulfurreducens with Fe3+ or fumarate. In all experiments, the most abundant polar lipid fatty acids were 14:0, i15:0, 16:1*7c, 16:1*5c, and 16:0; lipopolysaccharide hydroxyfatty acids were dominated by 3oh16:0, 3oh14:0, 9oh16:0, and 10oh16:0; and menaquinone-8 was the most abundant respiratory quinone. Some variation in lipid proWles with strain were observed, but not with electron acceptor.

  8. The politics of acid rain

    SciTech Connect

    Wilcher, M.E. )

    1989-01-01

    This work examines and compares the acid rain policies through the different political systems of Canada, Great Britain and the United States. Because the flow of acid rain can transcend national boundaries, acid rain has become a crucial international problem. According to the author, because of differences in governmental institutions and structure, the extent of governmental intervention in the industrial economy, the degree of reliance on coal for power generation, and the extent of acid rain damage, national responses to the acid rain problem have varied.

  9. [Stewart's acid-base approach].

    PubMed

    Funk, Georg-Christian

    2007-01-01

    In addition to paCO(2), Stewart's acid base model takes into account the influence of albumin, inorganic phosphate, electrolytes and lactate on acid-base equilibrium. It allows a comprehensive and quantitative analysis of acid-base disorders. Particularly simultaneous and mixed metabolic acid-base disorders, which are common in critically ill patients, can be assessed. Stewart's approach is therefore a valuable tool in addition to the customary acid-base approach based on bicarbonate or base excess. However, some chemical aspects of Stewart's approach remain controversial.

  10. Tested Demonstrations: Color Oscillations in the Formic Acid-Nitric Acid-Sulfuric Acid System.

    ERIC Educational Resources Information Center

    Raw, C. J. G.; And Others

    1983-01-01

    Presented are procedures for demonstrating the production of color oscillations when nitric acid is added to a formic acid/concentrated sulfuric acid mixture. Because of safety considerations, "Super-8" home movie of the color changes was found to be satisfactory for demonstration purposes. (JN)

  11. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-11-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids and quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  12. Amino acids in Arctic aerosols

    NASA Astrophysics Data System (ADS)

    Scalabrin, E.; Zangrando, R.; Barbaro, E.; Kehrwald, N. M.; Gabrieli, J.; Barbante, C.; Gambaro, A.

    2012-07-01

    Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs) in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS) to analyze 20 amino acids to quantify compounds at fmol m-3 levels. Mean total FAA concentration was 1070 fmol m-3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45-60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m-3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm) and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  13. Twinning of dodecanedicarboxylic acid

    NASA Technical Reports Server (NTRS)

    Sen, R.; Wilcox, W. R.

    1986-01-01

    Twinning of 1,10-dodecanedicarboxyl acid (DDA) was observed in 0.1 mm thick films with a polarizing microscope. Twins originated from polycrystalline regions which tended to nucleate on twin faces, and terminated by intersection gone another. Twinning increased dramatically with addition of organic compounds with a similar molecular size and shape. Increasing the freezing rate, increasing the temperature gradient, and addition of silica particles increased twinning. It is proposed that twins nucleate with polycrystals and sometimes anneal out before they become observable. The impurities may enhance twinning either by lowering the twin energy or by adsorbing on growing faces.

  14. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  15. Application of acetate, lactate, and fumarate as electron donors in microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

    2013-09-01

    Microbial fuel cells (MFCs) are devices that use bacteria as the catalysts to oxidize organic and inorganic matter and generate current. Up to now, several classes of extracellular electron transfer mechanisms have been elucidated for various microorganisms. Shewanellaceae and Geobacteraceae families include the most of model exoelectrogenic microorganisms. Desulfuromonas acetoxidans bacterium inhabits aquatic sedimental sulfur-containing environments and is philogenetically close to representatives of Geobacteraceae family. Two chamber microbial fuel cell (0.3 l volume) was constructed with application of D. acetoxidans IMV B-7384 as anode biocatalyst. Acetic, lactic and fumaric acids were separately applied as organic electron donors for bacterial growth in constructed MFC. Bacterial cultivation in MFC was held during twenty days. Lactate oxidation caused electric power production with the highest value up to 0.071 mW on 64 hour of D. acetoxidans IMV B-7384 growth. Addition of acetic and fumaric acids into bacterial growth medium caused maximal power production up to 0.075 and 0.074 mW respectively on the 40 hour of their growth. Increasing of incubation time up to twentieth day caused decrease of generated electric power till 0.018 mW, 0.042 mW and 0.047 mW under usage of lactic, acetic and fumaric acids respectively by investigated bacteria. Power generation by D. acetoxidans IMV B-7384 was more stabile and durable under application of acetic and fumaric acids as electron donors in constructed MFC, than under addition of lactic acid in the same concentration into the growth medium.

  16. The effects of various organic acids on phytate phosphorus utilization in chicks.

    PubMed

    Rafacz-Livingston, K A; Parsons, C M; Jungk, R A

    2005-09-01

    Previous research from our laboratory has shown that citric acid improves phytate P utilization in chicks fed a P-deficient corn-soybean meal diet. The current study was conducted to determine if other organic acids also are effective, with an emphasis on gluconic acid. Four experiments were conducted in which 4 replicate groups of 5 crossbred chicks (New Hampshire x Columbian) were fed a P-deficient diet (0.16% nonphyate P) from 8 to 22 d of age. In Experiment 1, chick weight gain and tibia ash were significantly increased (P < 0.05) by 1.5 and 3% sodium gluconate (NaGlu), 1.5% calcium gluconate (CaGlu), 1.5 and 3% glucono-delta-lactone, and 1% 2-hydroxy-4-methylthio butanoic acid (Alimet). In experiment 2, tibia ash was significantly increased (P < 0.05) by 2% NaGlu, CaGlu, and citric acid in chicks fed the P-deficient diet but not in chicks fed a 0.45% nonphytate P diet, indicating that the organic acid responses were due to increased P utilization. In experiments 3 and 4, tibia ash was significantly increased by 3% NaGlu and 3% citric acid, but not by 3% fumaric acid or 0.025, 0.05 and 0.1% EDTA. The results of this study showed that NaGlu, CaGlu, glucono-delta-lactone, Alimet, and citric acid, but not fumaric acid or EDTA, improved phytate P utilization in chicks fed a corn-soybean meal diet.

  17. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid.

    PubMed

    Májer, Ferenc; Sharma, Ruchika; Mullins, Claire; Keogh, Luke; Phipps, Sinead; Duggan, Shane; Kelleher, Dermot; Keely, Stephen; Long, Aideen; Radics, Gábor; Wang, Jun; Gilmer, John F

    2014-01-01

    We have prepared a new panel of 23 BA derivatives of DCA, chenodeoxycholic acid (CDCA) and lithocholic acid (LCA) in order to study the effect of dual substitution with 3-azido and 24-amidation, features individually associated with cytotoxicity in our previous work. The effect of the compounds on cell viability of HT-1080 and Caco-2 was studied using the 3-[4,5-dimethylthizol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Compounds with high potency towards reduction of cell viability were further studied using flow cytometry in order to understand the mechanism of cell death. Several compounds were identified with low micromolar IC₅₀ values for reducing cell viability in the Caco-2 and HT1080 cell lines, making them among the most potent BA apoptotic agents reported to date. There was no evidence of relationship between overall hydrophobicity and cytotoxicity supporting the idea that cell death induction by BAs may be structure-specific. Compounds derived from DCA caused cell death through apoptosis. There was some evidence of selectivity between the two cell lines studied which may be due to differing expression of CD95/FAS. The more toxic compounds increased ROS production in Caco-2 cells, and co-incubation with the antioxidant N-acetyl cysteine blunted pro-apoptotic effects. The properties these compounds suggest that there may be specific mechanism(s) mediating BA induced cell death. Compound 8 could be useful for investigating this phenomenon.

  18. Cryoprotection from lipoteichoic acid

    NASA Astrophysics Data System (ADS)

    Rice, Charles V.; Middaugh, Amy; Wickham, Jason R.; Friedline, Anthony; Thomas, Kieth J.; Johnson, Karen; Zachariah, Malcolm; Garimella, Ravindranth

    2012-10-01

    Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as the high salt concentration of brine veins and adhesion to particulates or ice crystal defects. We have discovered an endogenous cryoprotectant in the cell wall of bacteria, lipoteichoic acid biopolymers. Adding 1% LTA to bacteria cultures immediately prior to freezing provides 50% survival rate, similar to the results obtained with 1% glycerol. In the absence of an additive, bacterial survival is negligible as measured with the resazurin cell viability assay. The mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. Our observations suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.

  19. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  20. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  1. Ribonucleic acid purification.

    PubMed

    Martins, R; Queiroz, J A; Sousa, F

    2014-08-15

    Research on RNA has led to many important biological discoveries and improvement of therapeutic technologies. From basic to applied research, many procedures employ pure and intact RNA molecules; however their isolation and purification are critical steps because of the easy degradability of RNA, which can impair chemical stability and biological functionality. The current techniques to isolate and purify RNA molecules still have several limitations and the requirement for new methods able to improve RNA quality to meet regulatory demands is growing. In fact, as basic research improves the understanding of biological roles of RNAs, the biopharmaceutical industry starts to focus on them as a biotherapeutic tools. Chromatographic bioseparation is a high selective unit operation and is the major option in the purification of biological compounds, requiring high purity degree. In addition, its application in biopharmaceutical manufacturing is well established. This paper discusses the importance and the progress of RNA isolation and purification, considering RNA applicability both in research and clinical fields. In particular and in view of the high specificity, affinity chromatography has been recently applied to RNA purification processes. Accordingly, recent chromatographic investigations based on biorecognition phenomena occurring between RNA and amino acids are focused. Histidine and arginine have been used as amino acid ligands, and their ability to isolate different RNA species demonstrated a multipurpose applicability in molecular biology analysis and RNA therapeutics preparation, highlighting the potential contribution of these methods to overcome the challenges of RNA purification.

  2. Growth of nitric acid hydrates on thin sulfuric acid films

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Middlebrook, Ann M.; Wilson, Margaret A.; Tolbert, Margaret A.

    1994-01-01

    Type I polar stratospheric clouds (PSCs) are thought to nucleate and grow on stratospheric sulfate aerosols (SSAs). To model this system, thin sulfuric acid films were exposed to water and nitric acid vapors (1-3 x 10(exp -4) Torr H2O and 1-2.5 x 10(exp -6) Torr HNO3) and subjected to cooling and heating cycles. Fourier Transform Infrared (FTIR) spectroscopy was used to probe the phase of the sulfuric acid and to identify the HNO3/H2O films that condensed. Nitric acid trihydrate (NAT) was observed to grow on crystalline sulfuric acid tetrahydrate (SAT) films. NAT also condensed in/on supercooled H2SO4 films without causing crystallization of the sulfuric acid. This growth is consistent with NAT nucleation from ternary solutions as the first step in PSC formation.

  3. CELL PENETRATION BY ACIDS : VI. THE CHLOROACETIC ACIDS.

    PubMed

    Crozier, W J

    1922-09-20

    Measurements of the penetration of tissue from Chromodoris zebra are believed to show that a determining factor in penetration involves the establishment of a critical pH (near 3.5) in relation to superficial cell proteins. The rapidity with which this state is produced depends upon acid strength, and upon some property of the acid influencing the speed of absorption; hence it is necessary to compare acids within groups of chemical relationship. The actual speed of penetration observed with any acid is dependent upon two influences: preliminary chemical combination with the outer protoplasm, followed by diffusion. The variation of the temperature coefficient of penetration velocity with the concentration of acid, and the effect of size (age) of individual providing the tissue sample agree in demonstrating the significant part played by diffusion. In comparing different acids, however, their mode of chemical union with the protoplasm determines the general order of penetrating ability.

  4. Bile acids: regulation of synthesis.

    PubMed

    Chiang, John Y L

    2009-10-01

    Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.

  5. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  6. [Analysis of citric acid and citrates. Citric acid and urolithiasis].

    PubMed

    Leskovar, P

    1979-08-01

    In the first part the physico-chemical, analytic chemical and physiologic biochemical properties of the citric acid are discussed. In the second part the author enters the role of the citric acid in the formation of uric calculi. In the third part is reported on the individual methods of the determination of citric acid and the method practised in the author's laboratory is described.

  7. Rotational study of the bimolecule acetic acid-fluoroacetic acid

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Caminati, Walther

    2017-01-01

    The rotational spectrum of the acetic acid-fluoroacetic acid bimolecule was measured by using a pulsed jet Fourier transform microwave spectrometer. One conformer, in which fluoroacetic acid is in trans form, has been observed. The rotational transitions are split into two component lines, due to the internal rotation of the methyl group of acetic acid. From these splittings, the corresponding V3 barrier has been determined. The dissociation energy of this complex has been estimated to 66 kJ/mol. An increase of the distance between the two monomers upon the OH → OD substitution (Ubbelohde effect) has been observed.

  8. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    NASA Astrophysics Data System (ADS)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  9. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  10. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  11. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  12. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  13. 49 CFR 173.158 - Nitric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid...

  14. Growth of Campylobacter incubated aerobically in fumarate-pyruvate media or media supplemented with dairy, meat, or soy extracts and peptones.

    PubMed

    Hinton, Arthur

    2016-09-01

    The ability of Campylobacter to grow aerobically in media supplemented with fumarate-pyruvate or with dairy, meat, or soy extracts or peptones was examined. Optical densities (OD) of Campylobacter cultured in basal media, media supplemented with fumarate-pyruvate or with 1.0, 2.5, 5.0, or 7.5% beef extract was measured. Growth was also compared in media supplemented with other extracts or peptones. Finally, cfu/mL of Campylobacter recovered from basal media or media supplemented with fumarate-pyruvate, casamino acids, beef extract, soytone, or beef extract and soytone was determined. Results indicated that OD of cultures grown in media supplemented with fumarate-pyruvate or with 5.0 or 7.5% beef extract were higher than OD of isolates grown in basal media or media supplemented with lower concentrations of beef extract. Highest OD were produced by isolates grown in media supplemented with beef extract, peptone from meat, polypeptone, proteose peptone, or soytone. Also, more cfu/mL were recovered from media with fumarate-pyruvate, beef extract, soytone, or beef extract-soytone than from basal media or media with casamino acids. Findings indicate that media supplemented with organic acids, vitamins, and minerals and media supplemented with extracts or peptones containing these metabolites can support aerobic growth of Campylobacter.

  15. The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia

    PubMed Central

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Michely, Stéphanie; Thevenieau, France; Neuvéglise, Cécile; Nicaud, Jean-Marc

    2015-01-01

    Jen proteins in yeast are involved in the uptake of mono/dicarboxylic acids. The Jen1 subfamily transports lactate and pyruvate, while the Jen2 subfamily transports fumarate, malate, and succinate. Yarrowia lipolytica has six JEN genes: YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D20108g, YALI0D24607g, and YALI0E32901g. Through phylogenetic analyses, we found that these genes represent a new subfamily, Jen3 and that these three Jen subfamilies derivate from three putative ancestral genes. Reverse transcription-PCR. revealed that only four YLJEN genes are expressed and they are upregulated in the presence of lactate, pyruvate, fumarate, malate, and/or succinate, suggesting that they are able to transport these substrates. Analysis of deletion mutant strains revealed that Jen3 subfamily proteins transport fumarate, malate, and succinate. We found evidence that YALI0C15488 encodes the main transporter because its deletion was sufficient to strongly reduce or suppress growth in media containing fumarate, malate, or succinate. It appears that the other YLJEN genes play a minor role, with the exception of YALI0E32901g, which is important for malate uptake. However, the overexpression of each YLJEN gene in the sextuple-deletion mutant strain ΔYLjen1-6 revealed that all six genes are functional and have evolved to transport different substrates with varying degrees of efficacy. In addition, we found that YALI0E32901p transported succinate more efficiently in the presence of lactate or fumarate. PMID:25515252

  16. [Women's knowledge of folic acid].

    PubMed

    Salgues, Mathilde; Damase-Michel, Christine; Montastruc, Jean-Louis; Lacroix, Isabelle

    2016-10-27

    Many trials have shown that folic acid supplementation before and during pregnancy reduces the risk of neural tube defects in general population. We investigated the knowledge of folic acid in women of child-bearing age. Women of child-bearing age were interviewed by 20 pharmacists living in Haute-Garonne between January and February 2014. One hundred ninety-six women were included in the present study. Out of them, 36% of women never heard of folic acid and 82% were not aware of its benefits. Knowledge was higher in older women, women in a couple and women with higher educational level (P<10(-2)). This study underlines that women are not enough aware of benefits of folic acid during pregnancy. Moreover, previous studies have shown that French women have low use of folic acid during peri-conceptional period. Information of general population will be required for a better prevention of folic acid-preventable NTDs.

  17. Flecainide acetate acetic acid solvates.

    PubMed

    Veldre, Kaspars; Actiņs, Andris; Eglite, Zane

    2011-02-01

    Flecainide acetate forms acetic acid solvates with 0.5 and 2 acetic acid molecules. Powder X-ray diffraction, differential thermal analysis/thermogravimetric, infrared, and potentiometric titration were used to determine the composition of solvates. Flecainide acetate hemisolvate with acetic acid decomposes to form a new crystalline form of flecainide acetate. This form is less stable than the already known polymorphic form at all temperatures, and it is formed due to kinetic reasons. Both flecainide acetate nonsolvated and flecainide acetate hemisolvate forms crystallize in monoclinic crystals, but flecainide triacetate forms triclinic crystals. Solvate formation was not observed when flecainide base was treated with formic acid, propanoic acid, and butanoic acid. Only nonsolvated flecainide salts were obtained in these experiments.

  18. A Simpler Nucleic Acid

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie

    2000-01-01

    It has been supposed that for a nucleic acid analog to pair with RNA it must, like RNA, have a backbone with at least a sixatom repeat; a shorter backbone presumably would not stretch far enough to bind RNA properly. The Eschenmoser group has shown, however, that this first impression is incorrect.As they report in their new paper, Eschenmoser and co-workers ( I ) have now synthesized a substantial number of these polymers, which are called (L)-a-threofuranosyl oligonucleotides or TNAs. They are composed of bases linked to a threose sugar-phosphate backbone, with phosphodiester bonds connecting the nucleotides. The investigators discovered that pairs of complementary TNAs do indeed form stable Watson-Crick double helices and, perhaps more importantly, that TNAs form stable double helices with complementary RNAs and DNAs.

  19. Acid mine drainage

    USGS Publications Warehouse

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  20. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.

    PubMed

    Zou, Xiang; Zhou, Yipin; Yang, Shang-Tian

    2013-08-01

    Malic acid is a dicarboxylic acid widely used in the food industry and also a potential C4 platform chemical that can be produced from biomass. However, microbial fermentation for direct malic acid production is limited by low product yield, titer, and productivity due to end-product inhibition. In this work, a novel process for malic acid production from polymalic acid (PMA) fermentation followed by acid hydrolysis was developed. First, a PMA-producing Aureobasidium pullulans strain ZX-10 was screened and isolated. This microbe produced PMA as the major fermentation product at a high-titer equivalent to 87.6 g/L of malic acid and high-productivity of 0.61 g/L h in free-cell fermentation in a stirred-tank bioreactor. Fed-batch fermentations with cells immobilized in a fibrous-bed bioreactor (FBB) achieved the highest product titer of 144.2 g/L and productivity of 0.74 g/L h. The fermentation produced PMA was purified by adsorption with IRA-900 anion-exchange resins, achieving a ∼100% purity and a high recovery rate of 84%. Pure malic acid was then produced from PMA by hydrolysis with 2 M sulfuric acid at 85°C, which followed the first-order reaction kinetics. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.

  1. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols.

    PubMed

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo

    2011-02-01

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now.

  2. Acidic gas capture by diamines

    DOEpatents

    Rochelle, Gary; Hilliard, Marcus

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  3. Dipotassium maleate with boric acid.

    PubMed

    Tombul, Mustafa; Guven, Kutalmis; Büyükgüngör, Orhan; Aktas, Huseyin; Durlu, Tahsin Nuri

    2007-09-01

    In the title compound, poly[(mu3-boric acid)-mu4-maleato-dipotassium], [K2(C(4)H(2)O(4)){B(OH)3}]n, there are two independent K+ cations, one bonded to seven O atoms (three from boric acid and four from maleate), and the other eight-coordinate via three boric acid and four maleate O atoms and a weak eta(1)-type coordination to the C=C bond of the maleate central C atoms. Hydrogen bonding links the boric acid ligands and maleate dianions, completing the packing structure.

  4. Organic Acid Production by Basidiomycetes

    PubMed Central

    Takao, Shoichi

    1965-01-01

    Sixty-seven strains belonging to 47 species of Basidiomycetes were examined for their acid-producing abilities in glucose media, in both the presence and absence of CaCO3, in stationary and shake cultures. Some strains were found to produce large quantities of oxalic acid. The oxalic acid-producing strains could be separated into two groups. Strains of one group (mostly brown-rot fungi) were able to produce oxalic acid, regardless of whether CaCO3 was present in the medium. Strains of the other group (mostly white-rot fungi) were characterized by their ability to produce oxalic acid only when CaCO3 was added to the medium. With the latter group, shake-culturing was generally more effective than stationary culturing in respect to acid production. In the CaCO3-containing media, Schizophyllum commune, Merulius tremellosus, and Porodisculus pendulus were found to produce substantial amounts of L-malic acid as a main metabolic product, along with small quantities of oxalic and other acids in shake cultures. Especially, S. commune and M. tremellosus may be employed as malic acid-producing species. PMID:5867653

  5. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    NASA Astrophysics Data System (ADS)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  6. Simultaneous analysis of ten low-molecular-mass organic acids in the tricarboxylic acid cycle and photorespiration pathway in Thalassiosira pseudonana at different growth stages.

    PubMed

    Ye, Mengwei; Zhang, Lijing; Xu, Panpan; Zhang, Runtao; Xu, Jilin; Wu, Xiaokai; Chen, Juanjuan; Zhou, Chengxu; Yan, Xiaojun

    2017-02-01

    A method using high-performance liquid chromatography coupled with tandem mass spectrometry was developed for the simultaneous determination of organic acids in microalgae. o-Benzylhydroxylamine was used to derivatize the analytes, and stable isotope-labeled compounds were used as internal standards for precise quantification. The proposed method was evaluated in terms of linearity, recovery, matrix effect, sensitivity, and precision. Linear calibration curves with correlation coefficients >0.99 were obtained over the concentration range of 0.4-40 ng/mL( ) for glycolic acid, 0.1-10 ng/mL for malic acid and oxaloacetic acid, 0.02-2 ng/mL for succinic acid and glyoxylic acid, 4-400 ng/mL for fumaric acid, 20-2000 ng/mL for isocitric acid, 2-200 ng mL(-1)  for citric acid, 100-10000 ng mL(-1)  for cis-aconitic acid, and 1-100 ng mL(-1)  for α-ketoglutaric acid. Analyte recoveries were between 80.2 and 115.1%, and the matrix effect was minimal. Low limits of detection (0.003-1 ng/mL) and limits of quantification (0.01-5 ng/mL) were obtained except cis-aconitic acid. Variations in reproducibility for standard solution at three different concentrations levels were <9%. This is the first report of the simultaneous analysis of ten organic acids in microalgae, which promotes better understanding of their growth state and provides reference value for high-yield microalgae cultures.

  7. Development of an HPLC-fluorescence determination method for carboxylic acids related to the tricarboxylic acid cycle as a metabolome tool.

    PubMed

    Kubota, Kazuyuki; Fukushima, Takeshi; Yuji, Reiko; Miyano, Hiroshi; Hirayama, Kazuo; Santa, Tomofumi; Imai, Kazuhiro

    2005-12-01

    We report the simultaneous determination of the carboxylic acids related to the tricarboxylic acid (TCA) cycle, which plays an important role in producing adenosine triphosphate (ATP) and generating energy in mitochondria. Seven carboxylic acids from the TCA cycle, and pyruvic acid and 2-methylsuccinic acid, as an internal standard, were derivatized with a fluorescent reagent for carboxyl groups, 4-N,N-dimethylaminosulfonyl-7-piperazino-2,1,3-benzoxadiazole (DBD-PZ), in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and 4-N,N-dimethyaminopyridine as the coupling reagents, at 60 degrees C for 120 min. Subsequently, the excess DBD-PZ was removed efficiently using a cation-exchange cartridge, SDB-RPS (Empore). These fluorescent derivatives were separated well from each other on an octadecyl silica column (TSKgel ODS-80Ts, 250 x 4.6 mm, i.d.) with an eluent of acetonitrile-water containing 1% formic acid at a flow rate of 0.8 mL/min, and were detected fluorometrically at 560 nm, with excitation at 450 nm. The validation data were satisfactory in the range of 2.5-100 microm citric acid, isocitric acid, 2-oxoglutaric acid, succinic acid and fumaric acid. The detection limit (S/N = 3) for citric acid was 2 fmol on the column. The structures of these derivatives were confirmed by high-performance liquid chromatography-mass spectrometry, which proved that their carboxylic groups were completely labeled with DBD-PZ, except for oxaloacetic acid. This HPLC method was successfully applied to the analysis of TCA cycle metabolites in rat urine. The method will also be useful for metabolome research, such as for target analyses of metabolites with carboxyl groups, not only in urine but also in cells and organs.

  8. Monitoring of the fermentation media of citric acid by the trimethylsilyl derivatives of the organic acids formed.

    PubMed

    Ghassempour, Alireza; Nojavan, Saeed; Talebpour, Zahra; Amiri, Ali Asghar; Najafi, Nahid Mashkouri

    2004-10-20

    In this approach, a derivatization method is described for monitoring of organic acids in fermentation media without any separation step. The aqueous phase of fermentation media was evaporated and heated in a silylation reagent to form trimethylsilyl (TMS) derivatives. The silylated compounds are analyzed by 29Si nuclear magnetic resonance (29Si NMR) and gas chromatography-mass spectrometry (GC-MS). 29Si NMR can qualitatively monitor the components produced in the Krebs cycle. Quantification of these compounds is investigated by using selected ion monitoring mode of mass spectrometry. In this mode, mass to charge (m/z) values of their [M - 15]+ ions, which are 465, 275, 247, 221, 335, 251, and 313 of TMS derivatives of citric, alpha-ketoglutaric, succinic, fumaric, l-malic, oxaloacetic, and palmitic (as an internal standard), acids, respectively, are used. The limit of detection and the linear working range for derivatized citric acid were found to be 0.1 mg L(-1) and 10-3 x 10(4) mg L(-1). The relative standard deviation of the method for five replicates was 2.1%. The average recovery efficiency for citric acid added to culture media was approximately 97.2%. Quantitative results of GC-MS are compared with those obtained by an ultraviolet-visible method.

  9. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  10. Sulfuric acid as autocatalyst in the formation of sulfuric acid.

    PubMed

    Torrent-Sucarrat, Miquel; Francisco, Joseph S; Anglada, Josep M

    2012-12-26

    Sulfuric acid can act as a catalyst of its own formation. We have carried out a computational investigation on the gas-phase formation of H(2)SO(4) by hydrolysis of SO(3) involving one and two water molecules, and also in the presence of sulfuric acid and its complexes with one and two water molecules. The hydrolysis of SO(3) requires the concurrence of two water molecules, one of them acting as a catalyzer, and our results predict an important catalytic effect, ranging between 3 and 11 kcal·mol(-1) when the catalytic water molecule is substituted by a sulfuric acid molecule or one of its hydrates. In these cases, the reaction products are either bare sulfuric acid dimer or sulfuric acid dimer complexed with a water molecule. There are broad implications from these new findings. The results of the present investigation show that the catalytic effect of sulfuric acid in the SO(3) hydrolysis can be important in the Earth's stratosphere, in the heterogeneous formation of sulfuric acid and in the formation of aerosols, in H(2)SO(4) formation by aircraft engines, and also in understanding the formation of sulfuric acid in the atmosphere of Venus.

  11. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  12. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    PubMed

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-04

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  13. Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids

    NASA Astrophysics Data System (ADS)

    Raj, Hans; Szymański, Wiktor; de Villiers, Jandré; Rozeboom, Henriëtte J.; Veetil, Vinod Puthan; Reis, Carlos R.; de Villiers, Marianne; Dekker, Frank J.; de Wildeman, Stefaan; Quax, Wim J.; Thunnissen, Andy-Mark W. H.; Feringa, Ben L.; Janssen, Dick B.; Poelarends, Gerrit J.

    2012-06-01

    The redesign of enzymes to produce catalysts for a predefined transformation remains a major challenge in protein engineering. Here, we describe the structure-based engineering of methylaspartate ammonia lyase (which in nature catalyses the conversion of 3-methylaspartate to ammonia and 2-methylfumarate) to accept a variety of substituted amines and fumarates and catalyse the asymmetric synthesis of aspartic acid derivatives. We obtained two single-active-site mutants, one exhibiting a wide nucleophile scope including structurally diverse linear and cyclic alkylamines and one with broad electrophile scope including fumarate derivatives with alkyl, aryl, alkoxy, aryloxy, alkylthio and arylthio substituents at the C2 position. Both mutants have an enlarged active site that accommodates the new substrates while retaining the high stereo- and regioselectivity of the wild-type enzyme. As an example, we demonstrate a highly enantio- and diastereoselective synthesis of threo-3-benzyloxyaspartate (an important inhibitor of neuronal excitatory glutamate transporters in the brain).

  14. Acid rain on acid soil: a new perspective

    SciTech Connect

    Krug, E.C.; Frink, C.R.

    1983-08-05

    Acid rain is widely believed to be responsible for acidifying soil and water in areas of North America and Northern Europe. However, factors commonly considered to make landscapes susceptible to acidification by acid rain are the same factors long known to strongly acidify soils through the natural processes of soil formation. Recovery from extreme and widespread careless land use has also occurred in regions undergoing acidification. There is evidence that acidification by acid rain is superimposed on long-term acidification induced by changes in land use and consequent vegetative succession. Thus, the interactions of acid rain, acid soil, and vegetation need to be carefully examined on a watershed basis in assessing benefits expected from proposed reductions in emissions of oxides of sulfur and nitrogen.

  15. Acid rain on acid soil: a new perspective

    SciTech Connect

    Krug, E.C.; Frink, C.R.

    1983-08-05

    Acid rain is widely believed to be responsible for acidifying soil and water in areas of North America and northern Europe. However, factors commonly considered to make landscapes susceptible to acidification by acid rain are the same factors long known to strongly acidify soils through the natural processes of soil formation. Recovery from extreme and widespread careless land use has also occurred in regions undergoing acidification. There is evidence that acidification by acid rain is superimposed on long-term acidification induced by changes in land use and consequent vegetative succession. Thus, the interactions of acid rain, acid soil, and vegetation need to be carefully examined on a watershed basis in assessing benefits expected from proposed reductions in emissions of oxides of sulfur and nitrogen.

  16. Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids.

    PubMed Central

    Zürrer, D; Cook, A M; Leisinger, T

    1987-01-01

    Sulfur-limited batch enrichment cultures containing one of nine multisubstituted naphthalenesulfonates and an inoculum from sewage yielded several taxa of bacteria which could quantitatively utilize 19 sulfonated aromatic compounds as the sole sulfur source for growth. Growth yields were about 4 kg of protein per mol of sulfur. Specific degradation rates were about 4 to 14 mu kat/kg of protein. A Pseudomonas sp., an Arthrobacter sp., and an unidentified bacterium were examined. Each desulfonated at least 16 aromatic compounds, none of which served as a carbon source. Pseudomonas sp. strain S-313 converted 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 5-amino-1-naphthalenesulfonic acid, benzenesulfonic acid, and 3-aminobenzenesulfonic acid to 1-naphthol, 2-naphthol, 5-amino-1-naphthol, phenol, and 3-aminophenol, respectively. Experiments with 18O2 showed that the hydroxyl group was derived from molecular oxygen. PMID:3662502

  17. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  18. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity.

    PubMed

    Skory, C D

    2004-04-01

    Rhizopus oryzae is capable of producing high levels of lactic acid by the fermentation of glucose. Yields typically vary over 60-80%, with the remaining glucose diverted primarily into ethanol fermentation. The goal of this work was to increase lactate dehydrogenase (LDH) activity, so lactic acid fermentation could more effectively compete for available pyruvate. Three different constructs, pLdhA71X, pLdhA48XI, and pLdhA89VII, containing various lengths of the ldhA gene fragment, were transformed into R. oryzae. This fungus rarely integrates DNA used for transformation, but instead relies on extra-chromosomal replication in a high-copy number. Plasmid pLdhA48XI was linearized prior to transformation in order to facilitate integration into the pyrG gene used for selection. Isolates transformed with ldhA containing plasmid were compared with both the wild-type parent strain and the auxotrophic recipient strain containing vector only. All isolates transformed with pLdhA71X or pLdhA48XI had multiple copies of the ldhA gene that resulted in ldhA transcript accumulation, LDH specific activity, and lactic acid production higher than the controls. Integration of plasmid pLdhA48XI increased the stability of the strain, but did not seem to offer any benefit for increasing lactic acid production. Since lactic acid fermentation competes with ethanol and fumaric acid production, it was not unexpected that increased lactic acid production was always concomitant with decreased ethanol and fumaric acid. Plasmid pLdhA71X, containing a large ldhA fragment (6.1 kb), routinely yielded higher levels of lactic acid than the smaller region (3.3 kb) used to construct plasmid pLdhA48XI. The greatest levels of ldhA transcript and enzyme production occurred with isolates transformed with plasmid pLdhA89VII. However, these transformants always produced less lactic acid and higher amounts of ethanol, fumaric, and glycerol compared with the control.

  19. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  20. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  1. Fatty acids and lymphocyte functions.

    PubMed

    Calder, P C; Yaqoob, P; Thies, F; Wallace, F A; Miles, E A

    2002-01-01

    The immune system acts to protect the host against pathogenic invaders. However, components of the immune system can become dysregulated such that their activities are directed against host tissues, so causing damage. Lymphocytes are involved in both the beneficial and detrimental effects of the immune system. Both the level of fat and the types of fatty acid present in the diet can affect lymphocyte functions. The fatty acid composition of lymphocytes, and other immune cells, is altered according to the fatty acid composition of the diet and this alters the capacity of those cells to produce eicosanoids, such as prostaglandin E2, which are involved in immunoregulation. A high fat diet can impair lymphocyte function. Cell culture and animal feeding studies indicate that oleic, linoleic, conjugated linoleic, gamma-linolenic, dihomo-gamma-linolenic, arachidonic, alpha-linolenic, eicosapentaenoic and docosahexaenoic acids can all influence lymphocyte proliferation, the production of cytokines by lymphocytes, and natural killer cell activity. High intakes of some of these fatty acids are necessary to induce these effects. Among these fatty acids the long chain n-3 fatty acids, especially eicosapentaenoic acid, appear to be the most potent when included in the human diet. Although not all studies agree, it appears that fish oil, which contains eicosapentaenoic acid, down regulates the T-helper 1-type response which is associated with chronic inflammatory disease. There is evidence for beneficial effects of fish oil in such diseases; this evidence is strongest for rheumatoid arthritis. Since n-3 fatty acids also antagonise the production of inflammatory eicosanoid mediators from arachidonic acid, there is potential for benefit in asthma and related diseases. Recent evidence indicates that fish oil may be of benefit in some asthmatics but not others.

  2. Infrared spectra of hydrogen-bonded salicylic acid and its derivatives : Salicylic acid and acetylsalicylic acid

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.

    1981-11-01

    Infrared spectra of hydrogen-bonded salicylic acid, O-deutero-salicylic acid and acetylsalicylic acid crystals have been studied experimentally and theoretically. Interpretation of these spectra was based on the Witkowski-Maréchal model. Semi-quantitative agreement between experimental and theoretical spectra can be achieved with the simplest form of this model, with values of interaction parameters transferable for equivalent intermolecular hydrogen bonds.

  3. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc.

  4. Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts.

    PubMed

    Magyar, Ildikó; Nyitrai-Sárdy, Diána; Leskó, Annamária; Pomázi, Andrea; Kállay, Miklós

    2014-05-16

    Organic acid production under oxygen-limited conditions has been thoroughly studied in the Saccharomyces species, but practically never investigated in Candida zemplinina, which seems to be an acidogenic species under oxidative laboratory conditions. In this study, several strains of C. zemplinina were tested for organic acid metabolism, in comparison with Saccharomyces cerevisiae, Saccharomyces uvarum and Candida stellata, under fermentative conditions. Only C. stellata produced significantly higher acidity in simple minimal media (SM) with low sugar content and two different nitrogen sources (ammonia or glutamic acid) at low level. However, the acid profile differed largely between the Saccharomyces and Candida species and showed inverse types of N-dependence in some cases. Succinic acid production was strongly enhanced on glutamic acid in Saccharomyces species, but not in Candida species. 2-oxoglutarate production was strongly supported on ammonium nitrogen in Candida species, but remained low in Saccharomyces. Candida species, C. stellata in particular, produced more pyruvic acid regardless of N-sources. From the results, we concluded that the anaerobic organic acid metabolisms of C. zemplinina and C. stellata are different from each other and also from that of the Saccharomyces species. In the formation of succinic acid, the oxidative pathway from glutamic acid seems to play little or no role in C. zemplinina. The reductive branch of the TCA cycle, however, produces acidic intermediates (malic, fumaric, and succinic acid) in a level comparable with the production of the Saccharomyces species. An unidentified organic acid, which was produced on glutamic acid only by the Candida species, needs further investigation.

  5. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  6. Synthesis of new kojic acid based unnatural α-amino acid derivatives.

    PubMed

    Balakrishna, C; Payili, Nagaraju; Yennam, Satyanarayana; Devi, P Uma; Behera, Manoranjan

    2015-11-01

    An efficient method for the preparation of kojic acid based α-amino acid derivatives by alkylation of glycinate schiff base with bromokojic acids have been described. Using this method, mono as well as di alkylated kojic acid-amino acid conjugates have been prepared. This is the first synthesis of C-linked kojic acid-amino acid conjugate where kojic acid is directly linked to amino acid through a C-C bond.

  7. Getting Back to Basics (& Acidics)

    ERIC Educational Resources Information Center

    Rhodes, Sam

    2006-01-01

    This article describes a few novel acid-base experiments intended to introduce students to the basic concepts of acid-base chemistry and provide practical examples that apply directly to the study of biology and the human body. Important concepts such as the reaction between carbon dioxide and water, buffers and protein denaturation, are covered.…

  8. Synthesis of pyromellitic acid esters

    NASA Technical Reports Server (NTRS)

    Fedorova, V. A.; Donchak, V. A.; Martynyuk-Lototskaya, A. N.

    1985-01-01

    The ester acids necessary for studyng the thermochemical properties of pyromellitic acid (PMK)-based peroxides were investigated. Obtaining a tetramethyl ester of a PMK was described. The mechanism of an esterification reaction is discussed, as is the complete esterification of PMK with primary alcohol.

  9. Acid Rain: What's the Forecast?

    ERIC Educational Resources Information Center

    Bybee, Rodger

    1984-01-01

    Discusses various types of acid rain, considered to be a century-old problem. Topics include: wet and dry deposition, effects on a variety of environments, ecosystems subject to detrimental effects, and possible solutions to the problem. A list of recommended resources on acid rain is provided. (BC)

  10. Acid Rain: An Educational Opportunity?

    ERIC Educational Resources Information Center

    Marion, James I.

    1984-01-01

    Deals with how educators can handle the subject of acid rain; illustrates suggestions with experiences of grade nine students visiting Frost Valley Environmental Education Center (Oliverea, New York) to learn scientific concepts through observation of outdoor phenomena, including a stream; and discusses acid rain, pH levels, and pollution control…

  11. Acid Precipitation: Causes and Consequences.

    ERIC Educational Resources Information Center

    Babich, Harvey; And Others

    1980-01-01

    This article is the first of three articles in a series on the acid rain problem in recent years. Discussed are the causes of acid precipitation and its consequences for the abiotic and biotic components of the terrestrial and aquatic ecosystems, and for man-made materials. (Author/SA)

  12. Acid rain & electric utilities II

    SciTech Connect

    1997-12-31

    This document presents reports which were presented at the Acid Rain and Electric Utilities Conference. Topics include environmental issues and electric utilities; acid rain program overview; global climate change and carbon dioxide; emissions data management; compliance; emissions control; allowance and trading; nitrogen oxides; and assessment. Individual reports have been processed separately for the United States Department of Energy databases.

  13. Acid Rain: The Scientific Challenge.

    ERIC Educational Resources Information Center

    Godfrey, Paul J.

    1991-01-01

    Documents the workings and findings of the Massachusetts Acid Rain Monitoring Project, which has pooled the volunteer efforts of more than 1,000 amateur and professional scientists since 1983. Reports on the origins of air pollution, the prediction of acid rain, and its effects on both water life and land resources. (JJK)

  14. Beneficial effects of hyaluronic acid.

    PubMed

    Sudha, Prasad N; Rose, Maximas H

    2014-01-01

    Biomaterials are playing a vital role in our day-to-day life. Hyaluronan (hyaluronic acid), a biomaterial, receives special attention among them. Hyaluronic acid (HA) is a polyanionic natural polymer occurring as linear polysaccharide composed of glucuronic acid and N-acetylglucosamine repeats via a β-1,4 linkage. It is the most versatile macromolecule present in the connective tissues of all vertebrates. Hyaluronic acid has a wide range of applications with its excellent physicochemical properties such as biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity and serves as an excellent tool in biomedical applications such as osteoarthritis surgery, ocular surgery, plastic surgery, tissue engineering, and drug delivery. It plays a key role in cushioning and lubricating the body and is abundant in the eyes, joints, and heart valves. A powerful antioxidant, hyaluronic acid is perhaps best known for its ability to bond water to tissue. Hyaluronan production increases in proliferating cells, and the polymer may play a role in mitosis. This chapter gives an overview of hyaluronic acid and its physicochemical properties and applications. This chapter gives a deep understanding on the special benefits of hyaluronic acid in the fields of pharmaceutical, medical, and environmental applications. Hyaluronic acid paves the way for beneficial research and applications to the welfare of life forms.

  15. Phosphorus derivatives of salicylic acid

    NASA Astrophysics Data System (ADS)

    Chvertkina, L. V.; Khoklov, P. S.; Mironov, Vladimir F.

    1992-10-01

    The present state of work on the methods of synthesis, chemical properties, and practical applications of phosphorus-containing derivatives of salicylic acid has been reviewed. The characteristics of the chemical transformations of cyclic and acyclic phosphorus derivatives of salicylic acid related to the coordination state of the phosphorus atom have been examined. The bibliography includes 158 references.

  16. Protein and amino acid nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  17. Acid Tests and Basic Fun.

    ERIC Educational Resources Information Center

    McBride, John W.

    1995-01-01

    Explores acids and bases using different indicators, such as turmeric, purple grape juice, and lichens. Because some of these indicators are not as sensitive as cabbage juice or litmus paper, determining to which acids and bases each indicator is sensitive presents an enjoyable, problem-solving challenge for students. Presents directions for…

  18. Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium lappa L.) roots by liquid chromatography/tandem mass spectrometry.

    PubMed

    Jaiswal, Rakesh; Kuhnert, Nikolai

    2011-01-01

    Burdock (Arcticum lappa L.) roots are used in folk medicine and also as a vegetable in Asian countries especially Japan, Korea, and Thailand. We have used LC-MS(n) (n = 2-4) to detect and characterize in burdock roots 15 quantitatively minor fumaric, succinic, and malic acid-containing chlorogenic acids, 11 of them not previously reported in nature. These comprise 3-succinoyl-4,5-dicaffeoyl or 1-succinoyl-3,4-dicaffeoylquinic acid, 1,5-dicaffeoyl-3-succinoylquinic acid, 1,5-dicaffeoyl-4-succinoylquinic acid, and 3,4-dicaffeoyl-5-succinoylquinic acid (M(r) 616); 1,3-dicaffeoyl-5-fumaroylquinic acid and 1,5-dicaffeoyl-4-fumaroylquinic acid (M(r) 614); 1,5-dicaffeoyl-3-maloylquinic acid, 1,4-dicaffeoyl-3-maloylquinic acid, and 1,5-dicaffeoyl-4-maloylquinic acid (M(r) 632); 1,3,5-tricaffeoyl-4-succinoylquinic acid (M(r) 778); 1,5-dicaffeoyl-3,4-disuccinoylquinic acid (M(r) 716); 1,5-dicaffeoyl-3-fumaroyl-4-succinoylquinic acid and 1-fumaroyl-3,5-dicaffeoyl-4-succinoylquinic acid (M(r) 714); dicaffeoyl-dimaloylquinic acid (M(r) 748); and 1,5-dicaffeoyl-3-succinoyl-4-dimaloylquinic acid (M(r) 732). All the structures have been assigned on the basis of LC-MS(n) patterns of fragmentation, relative hydrophobicity, and analogy of fragmentation patterns if compared to caffeoylquinic acids.

  19. Acid Ceramidase in Melanoma

    PubMed Central

    Realini, Natalia; Palese, Francesca; Pizzirani, Daniela; Pontis, Silvia; Basit, Abdul; Bach, Anders; Ganesan, Anand; Piomelli, Daniele

    2016-01-01

    Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human subjects with Stage II melanoma. Immunofluorescence studies revealed that the subcellular localization of AC differs between melanocytes (where it is found in both cytosol and nucleus) and melanoma cells (where it is primarily localized to cytosol). In addition to having high AC levels, melanoma cells generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 nm) and stable inhibitor. AC inhibition increased cellular ceramide levels, decreased sphingosine 1-phosphate levels, and acted synergistically with several, albeit not all, antitumoral agents. The results suggest that AC-controlled sphingolipid metabolism may play an important role in the control of melanoma proliferation. PMID:26553872

  20. Lead-acid battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1983-01-01

    A light weight lead-acid battery (30) having a positive terminal (36) and a negative terminal (34) and including one or more cells or grid stacks having a plurality of vertically stacked conductive monoplates (10, 20) with positive active material and negative active material deposited on alternating plates in the cell or grid stack. Electrolyte layers (26, 28) positioned between each monoplate are included to provide a battery cell having four sides which is capable of being electrically charged and discharged. Two vertical positive bus bars (42, 43) are provided on opposite sides of the battery cell for connecting the monoplates (10) with positive active material together in parallel current conducting relation. In addition, two negative bus bars (38, 39) on opposite sides of the battery cell each being adjacent the positive bus bars are provided for connecting the monoplates (20) with negative active material together in parallel current conducting relation. The positive (42, 43) and negative (38, 39) bus bars not only provide a low resistance method for connecting the plurality of conductive monoplates of their respective battery terminals (36, 34) but also provides support and structural strength to the battery cell structure. In addition, horizontal orientation of monoplates (10, 20) is provided in a vertical stacking arrangement to reduce electrolyte stratification and short circuiting due to flaking of positive and negative active materials from the monoplates.

  1. Atmospheric dust and acid rain

    SciTech Connect

    Hedin, L.O.; Likens, G.E.

    1996-12-01

    Why is acid rain still an environmental problem in Europe and North America despite antipollution reforms? The answer really is blowing in the wind: atmospheric dust. These airborne particles can help neutralize the acids falling on forests, but dust levels are unusually low these days. In the air dust particles can neutralize acid rain. What can we do about acid rain and atmospheric dust? Suggestions range from the improbable to the feasible. One reasonable suggestion is to reduce emissions of acidic pollutants to levels that can be buffered by natural quantities of basic compounds in the atmosphere; such a goal would mean continued reductions in sulfur dioxide and nitrogen oxides, perhaps even greater than those prescribed in the 1990 Amendments to the Clean Air Act in the U.S. 5 figs.

  2. SIALIC ACIDS AND AUTOIMMUNE DISEASE

    PubMed Central

    Mahajan, Vinay S.; Pillai, Shiv

    2016-01-01

    summary An important underlying mechanism that contributes to autoimmunity is the loss of inhibitory signaling in the immune system. Sialic acid-recognizing Ig superfamily lectins or Siglecs are a family of cell surface proteins largely expressed in hematopoietic cells. The majority of Siglecs are inhibitory receptors expressed in immune cells that bind to sialic acid containing ligands and recruit SH2-domain containing tyrosine phosphatases to their cytoplasmic tails. They deliver inhibitory signals that can contribute to the constraining of immune cells and thus protect the host from autoimmunity. The inhibitory functions of CD22/Siglec-2 and Siglec-G and their contributions to tolerance and autoimmunity, primarily in the B lymphocyte context, are considered in some detail in this review. The relevance to autoimmunity and unregulated inflammation of modified sialic acids, enzymes that modify sialic acid, and other sialic acid binding proteins are also reviewed. PMID:26683151

  3. Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize.

    PubMed

    Moretti, Diego; Biebinger, Ralf; Bruins, Maaike J; Hoeft, Birgit; Kraemer, Klaus

    2014-04-01

    Several strategies appear suitable to improve iron and zinc bioavailability from fortified maize, and fortification per se will increase the intake of bioavailable iron and zinc. Corn masa flour or whole maize should be fortified with sodium iron ethylenediaminetetraacetate (NaFeEDTA), ferrous fumarate, or ferrous sulfate, and degermed corn flour should be fortified with ferrous sulfate or ferrous fumarate. The choice of zinc fortificant appears to have a limited impact on zinc bioavailability. Phytic acid is a major inhibitor of both iron and zinc absorption. Degermination at the mill will reduce phytic acid content, and degermed maize appears to be a suitable vehicle for iron and zinc fortification. Enzymatic phytate degradation may be a suitable home-based technique to enhance the bioavailability of iron and zinc from fortified maize. Bioavailability experiments with low phytic acid-containing maize varieties have suggested an improved zinc bioavailability compared to wild-type counterparts. The bioavailability of folic acid from maize porridge was reported to be slightly higher than from baked wheat bread. The bioavailability of vitamin A provided as encapsulated retinyl esters is generally high and is typically not strongly influenced by the food matrix, but has not been fully investigated in maize.

  4. Reduction of hypervalent chromium in acidic media by alginic acid.

    PubMed

    Bertoni, Fernando A; Bellú, Sebastian E; González, Juan C; Sala, Luis F

    2014-12-19

    Selective oxidation of carboxylate groups present in alginic acid by Cr(VI) affords CO2, oxidized alginic acid, and Cr(III) as final products. The redox reaction afforded first-order kinetics in [alginic acid], [Cr(VI)], and [H(+)], at fixed ionic strength and temperature. Kinetic studies showed that the redox reaction proceeds through a mechanism which combines Cr(VI)→Cr(IV)→Cr(II) and Cr(VI)→Cr(IV)→Cr(III) pathways. The mechanism was supported by the observation of free radicals, CrO2(2+) and Cr(V) as reaction intermediates. The reduction of Cr(IV) and Cr(V) by alginic acid was independently studied and it was found to occur more than 10(3) times faster than alginic acid/Cr(VI) reaction, in acid media. At pH 1-3, oxo-chromate(V)-alginic acid species remain in solution during several hours at 15°C. The results showed that this abundant structural polysaccharide present on brown seaweeds is able to reduce Cr(VI/V/IV) or stabilize high-valent chromium depending on pH value.

  5. Acid hydrolysis of sugarcane bagasse for lactic acid production.

    PubMed

    Laopaiboon, Pattana; Thani, Arthit; Leelavatcharamas, Vichean; Laopaiboon, Lakkana

    2010-02-01

    In order to use sugarcane bagasse as a substrate for lactic acid production, optimum conditions for acid hydrolysis of the bagasse were investigated. After lignin extraction, the conditions were varied in terms of hydrochloric (HCl) or sulfuric (H(2)SO(4)) concentration (0.5-5%, v/v), reaction time (1-5h) and incubation temperature (90-120 degrees C). The maximum catalytic efficiency (E) was 10.85 under the conditions of 0.5% of HCl at 100 degrees C for 5h, which the main components (in gl(-1)) in the hydrolysate were glucose, 1.50; xylose, 22.59; arabinose, 1.29; acetic acid, 0.15 and furfural, 1.19. To increase yield of lactic acid production from the hydrolysate by Lactococcus lactis IO-1, the hydrolysate was detoxified through amberlite and supplemented with 7 g l(-1) of xylose and 7 g l(-1) of yeast extract. The main products (in gl(-1)) of the fermentation were lactic acid, 10.85; acetic acid, 7.87; formic acid, 6.04 and ethanol, 5.24.

  6. Acid soil and acid rain, 2nd edition

    SciTech Connect

    Kennedy, I.R.

    1992-01-01

    This book examines the basic chemical processes involved in acidification in order to better assess their long-term effects on the status of soils, the health of plants and other living species that depend on them. It also discusses acidity, pH and protons their significance in bioenergetics and the consequent role of autotrophic organisms in acidifying ecosystems. This edition incorporates and integrates recent findings that render more explanations of the causes of the environmental impacts of acidity, especially in forests and lakes. Also explores current research into acid rain and soil in order to devise appropriate measures for their amelioration.

  7. Fatty acid composition of selected prosthecate bacteria.

    PubMed

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  8. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  9. Evaluation of clastogenicity of formic acid, acetic acid and lactic acid on cultured mammalian cells.

    PubMed

    Morita, T; Takeda, K; Okumura, K

    1990-03-01

    Using Chinese hamster ovary K1 cells, chromosomal aberration tests were carried out with formic acid, acetic acid and lactic acid, and the relationship between the pH of the medium and the clastogenic activity was examined. The medium used was Ham's F12 supplemented with 17 mM NaHCO3 and 10% fetal calf serum. All of these acids induced chromosomal aberrations at the initial pH of ca. 6.0 or below (about 10-14 mM of each acid) both with and without S9 mix. Exposure of cells to about pH 5.7 or below (about 12-16 mM of each acid) was found to be toxic. When the culture medium was first acidified with each of these acids and then neutralized to pH 6.4 or pH 7.2 with NaOH, no clastogenic activity was observed. Using F12 medium supplemented with 34 mM NaHCO3 as a buffer, no clastogenic activity was observed at doses up to 25 mM of these acids (initial pH 5.8-6.0). However, it was found that about 10% of the cells had aberrations at pH 5.7 or below (27.5-32.5 mM of each acid). Furthermore, when 30 mM HEPES was used as a buffer, chromosomal aberrations were not induced at doses up to 20 mM formic acid and acetic acid (initial pH 7.0-7.1), and at doses up to 30 mM lactic acid (initial pH 6.6). In the initial pH range of 6.4-6.7 (25-32.5 mM of each acid), chromosomal aberrations were observed. The above results show that these acids themselves are non-clastogenic, and the pseudo-positive reactions attributable to non-physiological pH could be eliminated by either neutralization of the treatment medium or enhancement of the buffering ability.

  10. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  11. 21 CFR 184.1007 - Aconitic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aconitic acid. 184.1007 Section 184.1007 Food and... Substances Affirmed as GRAS § 184.1007 Aconitic acid. (a) Aconitic acid (1,2,3-propenetricarboxylic acid... Ranunculaceae. Transaconitic acid can be isolated during sugarcane processing, by precipitation as the...

  12. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and....1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid occurs naturally are...

  13. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Caprylic acid. 184.1025 Section 184.1025 Food and....1025 Caprylic acid. (a) Caprylic acid is the chemical name for octanoic acid. It is considered to be a short or medium chain fatty acid. It occurs normally in various foods and is commercially prepared...

  14. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  15. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Caprylic acid. 184.1025 Section 184.1025 Food and... Substances Affirmed as GRAS § 184.1025 Caprylic acid. (a) Caprylic acid is the chemical name for octanoic acid. It is considered to be a short or medium chain fatty acid. It occurs normally in various...

  16. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Caprylic acid. 184.1025 Section 184.1025 Food and... Substances Affirmed as GRAS § 184.1025 Caprylic acid. (a) Caprylic acid is the chemical name for octanoic acid. It is considered to be a short or medium chain fatty acid. It occurs normally in various...

  17. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  18. 21 CFR 184.1021 - Benzoic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Benzoic acid. 184.1021 Section 184.1021 Food and... Substances Affirmed as GRAS § 184.1021 Benzoic acid. (a) Benzoic acid is the chemical benzenecarboxylic acid (C7H6O2), occurring in nature in free and combined forms. Among the foods in which benzoic acid...

  19. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Caprylic acid. 184.1025 Section 184.1025 Food and... Substances Affirmed as GRAS § 184.1025 Caprylic acid. (a) Caprylic acid is the chemical name for octanoic acid. It is considered to be a short or medium chain fatty acid. It occurs normally in various...

  20. 21 CFR 184.1007 - Aconitic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aconitic acid. 184.1007 Section 184.1007 Food and... Substances Affirmed as GRAS § 184.1007 Aconitic acid. (a) Aconitic acid (1,2,3-propenetricarboxylic acid... Ranunculaceae. Transaconitic acid can be isolated during sugarcane processing, by precipitation as the...

  1. 21 CFR 184.1007 - Aconitic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aconitic acid. 184.1007 Section 184.1007 Food and....1007 Aconitic acid. (a) Aconitic acid (1,2,3-propenetricarboxylic acid (C6H6O6), CAS Reg. No. 000499-12... acid can be isolated during sugarcane processing, by precipitation as the calcium salt from cane...

  2. 21 CFR 189.155 - Monochloroacetic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Monochloroacetic acid. 189.155 Section 189.155... Human Food § 189.155 Monochloroacetic acid. (a) Monochloroacetic acid is the chemical chloroacetic acid... in alcoholic and nonalcoholic beverages. Monochloroacetic acid is permitted in food package...

  3. 21 CFR 184.1007 - Aconitic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aconitic acid. 184.1007 Section 184.1007 Food and... Substances Affirmed as GRAS § 184.1007 Aconitic acid. (a) Aconitic acid (1,2,3-propenetricarboxylic acid... Ranunculaceae. Transaconitic acid can be isolated during sugarcane processing, by precipitation as the...

  4. 21 CFR 184.1025 - Caprylic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Caprylic acid. 184.1025 Section 184.1025 Food and... Substances Affirmed as GRAS § 184.1025 Caprylic acid. (a) Caprylic acid is the chemical name for octanoic acid. It is considered to be a short or medium chain fatty acid. It occurs normally in various...

  5. 21 CFR 184.1007 - Aconitic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aconitic acid. 184.1007 Section 184.1007 Food and... Substances Affirmed as GRAS § 184.1007 Aconitic acid. (a) Aconitic acid (1,2,3-propenetricarboxylic acid... Ranunculaceae. Transaconitic acid can be isolated during sugarcane processing, by precipitation as the...

  6. 21 CFR 184.1097 - Tannic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tannic acid. 184.1097 Section 184.1097 Food and....1097 Tannic acid. (a) Tannic acid (CAS Reg. No. 1401-55-4), or hydrolyzable gallotannin, is a complex polyphenolic organic structure that yields gallic acid and either glucose or quinic acid as hydrolysis...

  7. Terahertz spectrum of gallic acid

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Zhao, Guozhong; Wang, Haiyan; Liang, Chengshen

    2009-11-01

    Gallic acid is natural polyphenol compound found in many green plants. More and more experiments have demonstrated that the gallic acid has comprehensive applications. In the field of medicine, the gallic acid plays an important role in antianaphylaxis, antineoplastic, antimycotic, anti-inflammatory, antivirotic, antiasthmatic and inhibiting the degradation of insulin. It also has a lot of applications in chemical industry, food industry and light industry. So it is important to study the terahertz time-domain spectroscopy of gallic acid. Terahertz time-domain spectroscopy (THz-TDS) is a new coherent spectral technology based on the femtosecond laser. In this work, the spectral characteristics of gallic acid in the range of 0.4 THz to 2.6 THz have been measured by THz-TDS. We obtained its absorption and refraction spectra at room temperature. The vibration absorption spectrum of the single molecule between 0.4 THz and 2.6 THz is simulated based on the Density Functional Theory (DFT). It is found that the gallic acid has the spectral response to THz wave in this frequency range. The results show the abnormal dispersion at 1.51 THz and 2.05 THz. These results can be used in the qualitative analysis of gallic acid and the medicine and food inspection.

  8. Diabetes and Alpha Lipoic Acid

    PubMed Central

    Golbidi, Saeid; Badran, Mohammad; Laher, Ismail

    2011-01-01

    Diabetes mellitus is a multi-faceted metabolic disorder where there is increased oxidative stress that contributes to the pathogenesis of this debilitating disease. This has prompted several investigations into the use of antioxidants as a complementary therapeutic approach. Alpha lipoic acid, a naturally occurring dithiol compound which plays an essential role in mitochondrial bioenergetic reactions, has gained considerable attention as an antioxidant for use in managing diabetic complications. Lipoic acid quenches reactive oxygen species, chelates metal ions, and reduces the oxidized forms of other antioxidants such as vitamin C, vitamin E, and glutathione. It also boosts antioxidant defense system through Nrf-2-mediated antioxidant gene expression and by modulation of peroxisome proliferator activated receptors-regulated genes. ALA inhibits nuclear factor kappa B and activates AMPK in skeletal muscles, which in turn have a plethora of metabolic consequences. These diverse actions suggest that lipoic acid acts by multiple mechanisms, many of which have only been uncovered recently. In this review we briefly summarize the known biochemical properties of lipoic acid and then discussed the oxidative mechanisms implicated in diabetic complications and the mechanisms by which lipoic acid may ameliorate these reactions. The findings of some of the clinical trials in which lipoic acid administration has been tested in diabetic patients during the last 10 years are summarized. It appears that the clearest benefit of lipoic acid supplementation is in patients with diabetic neuropathy. PMID:22125537

  9. Phytic acid in green leaves.

    PubMed

    Hadi Alkarawi, H; Zotz, G

    2014-07-01

    Phytic acid or phytate, the free-acid form of myo-inositolhexakiphosphate, is abundant in many seeds and fruits, where it represents the major storage form of phosphorus. Although also known from other plant tissues, available reports on the occurrence of phytic acid, e.g. in leaves, have never been compiled, nor have they been critically reviewed. We found 45 published studies with information on phytic acid content in leaves. Phytic acid was almost always detected when studies specifically tried to detect it, and accounted for up to 98% of total P. However, we argue that such extreme values, which rival findings from storage organs, are dubious and probably result from measurement errors. Excluding these high values from further quantitative analysis, foliar phytic acid-P averaged 2.3 mg·g(-1) , and represented, on average, 7.6% of total P. Remarkably, the ratio of phytic acid-P to total P did not increase with total P, we even detected a negative correlation of the two variables within one species, Manihot esculenta. This enigmatic finding warrants further attention.

  10. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  11. Pyroligneous acid-the smoky acidic liquid from plant biomass.

    PubMed

    Mathew, Sindhu; Zakaria, Zainul Akmar

    2015-01-01

    Pyroligneous acid (PA) is a complex highly oxygenated aqueous liquid fraction obtained by the condensation of pyrolysis vapors, which result from the thermochemical breakdown or pyrolysis of plant biomass components such as cellulose, hemicellulose, and lignin. PA produced by the slow pyrolysis of plant biomass is a yellowish brown or dark brown liquid with acidic pH and usually comprises a complex mixture of guaiacols, catechols, syringols, phenols, vanillins, furans, pyrans, carboxaldehydes, hydroxyketones, sugars, alkyl aryl ethers, nitrogenated derivatives, alcohols, acetic acid, and other carboxylic acids. The phenolic components, namely guaiacol, alkyl guaiacols, syringol, and alkyl syringols, contribute to the smoky odor of PA. PA finds application in diverse areas, as antioxidant, antimicrobial, antiinflammatory, plant growth stimulator, coagulant for natural rubber, and termiticidal and pesticidal agent; is a source for valuable chemicals; and imparts a smoky flavor for food.

  12. Tropospheric cycle of nitrous acid

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Peak, John D.; Collins, Gareth M.

    1996-06-01

    Measurements of the land surface exchange of nitrous acid over grass and sugar beet surfaces reveal both upward and downward fluxes with flux reversal occurring at an ambient concentration of nitrogen dioxide of about 10 ppb. This confirms earlier preliminary findings and strengthens the hypothesis that substantial production of nitrous acid can occur on land surfaces from reaction of nitrogen dioxide and water vapor. Detailed measurements of nitrous acid have been made in central urban, suburban, and rural environments. These measurements, in conjunction with a simple box model, indicate that the atmospheric concentrations of nitrous acid are explicable in terms of a small number of basic processes in which the most important are the surface production of nitrous acid from nitrogen dioxide, atmospheric production from the NO-OH reaction and loss of nitrous acid by photolysis and dry deposition. In the suburban atmosphere, concentrations of nitrous acid are strongly correlated with nitrogen dioxide. In the rural atmosphere a different behavior is seen, with much higher nitrous acid to nitrogen dioxide ratios occurring in more polluted air with nitrogen dioxide concentrations in excess of 10 ppb. At lower nitrogen dioxide concentrations, net deposition of nitrous acid at the ground leads to very low concentrations in advected air. The model study indicates that during daytime in the suburban atmosphere, production of HONO from the NO-OH reaction can compete with photolysis giving a HONO concentration of a few tenths of a part per billion. At the highest observed daytime concentrations of HONO, production of OH radical from its photolysis can proceed at a rate more than 10 times faster than from photolysis of ozone.

  13. Renal handling of terephthalic acid

    SciTech Connect

    Tremaine, L.M.; Quebbemann, A.J.

    1985-01-01

    By use of the Sperber in vivo chicken preparation method, infusion of radiolabeled terephthalic acid ((/sup 14/C)TPA) into the renal portal circulation revealed a first-pass excretion of the unchanged compound into the urine. This model was utilized further to characterize the excretory transport of (/sup 14/C)TPA and provide information on the structural specificity in the secretion of dicarboxylic acids. At an infusion rate of 0.4 nmol/min. 60% of the (/sup 14/C)TPA which reached the kidney was directly excreted. An infusion rate of 3 or 6 mumol/min resulted in complete removal of (/sup 14/C)TPA by the kidney. These results indicate that TPA is both actively secreted and actively reabsorbed when infused at 0.4 nmol/min and that active reabsorption is saturated with the infusion of TPA at higher concentrations. The secretory process was saturated with the infusion of TPA at 40 mumol/mn. The excretory transport of TPA was inhibited by the infusion of probenecid, salicylate, and m-hydroxybenzoic acid, indicating that these organic acids share the same organic anion excretory transport process. m-Hydroxybenzoic acid did not alter the simultaneously measured excretory transport of p-aminohippuric acid (PAH), suggesting that there are different systems involved in the secretion of TPA and PAH. The structural specificity for renal secretion of dicarboxylic acids was revealed by the use of o-phthalic acid and m-phthalic acid as possible inhibitors of TPA secretion.

  14. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  15. Docosahexaenoic acid affects arachidonic acid uptake in megakaryocytes

    SciTech Connect

    Schick, P.K.; Webster, P.

    1987-05-01

    Dietary omega 3 fatty acids are thought to prevent atherosclerosis, possibly by modifying platelet (PT) function and arachidonic acid (20:4) metabolism. The study was designed to determine whether omega 3 fatty acids primarily affect 20:4 metabolism in megakaryocytes (MK), bone marrow precursors of PT, rather than in circulating PT. MK and PT were isolated from guinea pigs and incubated with (/sup 14/C)-20:4 (0.13uM). Docosahexaenoic acid (22:6) is a major omega 3 fatty acid in marine oils. The incubation of MK with 22:6 (0.1, 1.0 uM) resulted in the decrease of incorporation of (/sup 14/C)-20:4 into total MK phospholipids, 16% and 41% respectively. Alpha-linolenic acid (18:3), a major omega 3 fatty acid present in American diets, had no effect on 20:4 uptake in MK. 22:6 primarily affected the uptake of (/sup 14/C)-20:4 into phosphatidylethanolamine (PE) and phosphatidylserine (PS) in MK. In MK, 22:6 (0.1, 1.0 uM) caused a decrease of incorporation of (/sup 14/C)-20:4 into PE, 21% and 55% respectively; a decrease into PS, 16% and 48% respectively; but only a decrease of 4% and 18%, respectively, into phosphatidylcholine; and a decrease of 3% and 21% into phosphatidylinositol 22:6 (3.0 uM) had no effect on the uptake of AA into PT phospholipids. The study shows that 22:6 has a selective effect on AA uptake in MK and that the acylation or transacylation of PE and PS are primarily affected. 22:6 and other marine omega 3 fatty acids appear to primarily affect megakaryocytes which may result in the production of platelets with abnormal content and compartmentalization of AA.

  16. gamma-Carboxyglutamic acid distribution.

    PubMed

    Zytkovicz, T H; Nelsestuen, G L

    1976-09-24

    The distribution of the vitamin K-dependent amino acid, gamma-carboxyglutamic acid was examined in proteins from a variety of sources. Proteins examined include purified rat and bovine coagulation proteins, barium citrate-adsorbing proteins from trout plasma, lamprey plasma, earthworm hemolymph, army worm hemolymph, lobster hemolymph, E. coli B/5, soybean leaf, the protein lysate from the hemolymph cell of the horseshoe crab and parathyroid extract. Other purified proteins examined included human alpha-1-antitrypsin, pepsinogen, S-100, fetuin, tropomyosin-troponin and complement protein C-3. Of these, only the blood-cotting proteins and the vertebrate plasma samples were shown to contain gamma-carboxyglutamic acid.

  17. Abscission: Role of Abscisic Acid

    PubMed Central

    Cracker, L. E.; Abeles, F. B.

    1969-01-01

    The effect of abscisic acid on cotton (Gossypium hirsutum L. cv. Acala 4-42) and bean (Phaseolus vulgaris L. cv. Red Kidney) explants was 2-fold. It increased ethylene production from the explants, which was found to account for some of its ability to accelerate abscission. Absci is acid also increased the activity of cellulase. Increased synthesis of cellulase was not du to an increase in aging of the explants but rather was an effect of abscisic acid on the processes that lead to cellulase synthesis or activity. PMID:16657181

  18. Chemiluminescent measurement of atmospheric acid

    NASA Technical Reports Server (NTRS)

    Stedman, D. H.; Kok, G. L.

    1974-01-01

    The design and construction of a gas phase acid sensitive analyzer are reported. These studies showed that the chemical system was a practical analytical method. A complete instrument was developed and prepared for field testing. A Titan 3-C rocket was scheduled for launching on February 11, 1974. Through preparations made by NASA Langley the instrument was set up to monitor the acid concentration in the rocket exhaust. Due to adverse wind conditions no acid was detected. This entire trip is described in detail.

  19. Be an acid rain detective

    SciTech Connect

    Atwill, L.

    1982-07-01

    Acid rain is discussed in a question and answer format. The article is aimed at educating sport fishermen on the subject, and also to encourage them to write their congressmen, senators, and the President about the acid rain problem. The article also announces the availability of an acid rain test kit available through the magazine, ''Sports Afield.'' The kit consists of pH-test paper that turns different shades of pink and blue according to the pH of the water tested. The color of the test paper is then compared to a color chart furnished in the kit and an approximate pH can be determined.

  20. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  1. Can crops tolerate acid rain

    SciTech Connect

    Kaplan, J.K.

    1989-11-01

    This brief article describes work by scientists at the ARS Air Quality-Plant Growth and Development Laboratory in Raleigh, North Carolina, that indicates little damage to crops as a result of acid rain. In studies with simulated acid rain and 216 exposed varieties of 18 crops, there were no significant injuries nor was there reduced growth in most species. Results of chronic and acute exposures were correlated in sensitive tomato and soybean plants and in tolerant winter wheat and lettuce plants. These results suggest that 1-hour exposures could be used in the future to screen varieties for sensitivity to acid rain.

  2. Free acidity measurement - a review.

    PubMed

    Srinivasan, T G; Vasudeva Rao, P R

    2014-01-01

    Free acidity is an important parameter especially in the presence of hydrolysable ions. Several methods have been developed for the determination of free acidity, attributing due importance to the accuracy and the precision of the measurement with the aim of the easiness of the methodology as well as post-measurement recovery in mind. This review covers important methods for the determination of free acidity with emphasis on actinide containing solutions, reported in the literature over the past several decades classifying them into different categories.

  3. Amino Acids from a Comet

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  4. 40 CFR 721.10679 - Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester (generic). 721.10679 Section 721... Carboxylic acid, substituted alkylstannylene ester, reaction products with inorganic acid tetra alkyl ester... identified generically as carboxylic acid, substituted alkylstannylene ester, reaction products...

  5. Oleic acid-based gemini surfactants with carboxylic acid headgroups.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Matsuda, Wataru; Takamatsu, Yuichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Anionic gemini surfactants with carboxylic acid headgroups have been synthesized from oleic acid. The hydrocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via an ester bond, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via disuccinyl units. The surfactants exhibit pH-dependent protonation-deprotonation behavior in aqueous solutions. In alkaline solutions (pH 9 in the presence of 10 mmol dm(-3) NaCl as the background electrolyte), the surfactants can lower the surface tension as well as form molecular assemblies, even in the region of low surfactant concentrations. Under acidic (pH 3) or neutral (pH 6-7) conditions, the surfactants are intrinsically insoluble in aqueous media and form a monolayer at the air/water interface. In this study, we have investigated physicochemical properties such as the function of the hydrocarbon chain length by means of static surface tension, pyrene fluorescence, dynamic light scattering, surface pressure-area isotherms, and infrared external reflection measurements.

  6. Capillary electrophoretic study of dibasic acids of different structures: Relation to separation of oxidative intermediates in remediation

    SciTech Connect

    Yu, Z.; Cocke, D.L.

    1998-09-01

    Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current, temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.

  7. In vitro assessment of potential intestinal absorption of some phenolic families and carboxylic acids from commercial instant coffee samples.

    PubMed

    López-Froilán, R; Ramírez-Moreno, E; Podio, N S; Pérez-Rodríguez, M L; Cámara, M; Baroni, M V; Wunderlin, D A; Sánchez-Mata, M C

    2016-06-15

    Coffee is one of the most consumed beverages in the world, being a source of bioactive compounds as well as flavors. Hydroxycinnamic acids, flavonols, and carboxylic acids have been studied in the samples of instant coffee commercialized in Spain. The studies about contents of food components should be complemented with either in vitro or in vivo bioaccessibility studies to know the amount of food components effectively available for functions in the human body. In this sense, a widely used in vitro model has been applied to assess the potential intestinal absorption of phenolic compounds and organic acids. The contents of hydroxycinnamic acids and flavonols were higher in instant regular coffee samples than in the decaffeinated ones. Bioaccessible phenolic compounds in most analyzed samples account for 20-25% of hydroxycinnamic acids and 17-26% of flavonols. This could mean that a great part of them can remain in the gut, acting as potential in situ antioxidants. Quinic, acetic, pyroglutamic, citric and fumaric acids were identified in commercial instant coffee samples. Succinic acid was found in the coffee blend containing chicory. All carboxylic acids showed a very high bioaccessibility. Particularly, acetic acid and quinic acid were found in higher contents in the samples treated with the in vitro simulation of gastrointestinal processes, compared to the original ones, which can be explained by their cleavage from chlorogenic acid during digestion. This is considered as a positive effect, since quinic acid is considered as an antioxidant inducer.

  8. In situ gels improve formation acidizing

    SciTech Connect

    Yeager, V.; Shuchart, C.

    1997-01-20

    Viscosity-controlled acid effectively improves acid placement, provides more uniform damage removal, improves surface etching, and controls acid fluid loss. Viscosity-controlled acid (VCA) contains gels that break back to original viscosity 1 day after being pumped. These acids have been used for: matrix-acidizing long horizontal and vertical well intervals; controlling fluid loss in fracture acidizing to obtain longer fractures and deeper live-acid penetration. Fluid pH controls gel formation and breaking. In one operator`s horizontal wells, viscosity-controlled acid increased production by 2.5--6 fold. In carbonate formation fracture-acidizing, these acids have shown production improvements of 170 to 375%. VCA acid can be used in both cased or open hole, in vertical or deviated/horizontal wells.

  9. Treatment of Amino Acid Metabolism Disorders

    MedlinePlus

    ... amino acid metabolism disorders Treatment of amino acid metabolism disorders E-mail to a friend Please fill ... This is an amino acid that helps remove ammonia from the blood. Babies with HCY may need ...

  10. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  11. Genetics Home Reference: sialic acid storage disease

    MedlinePlus

    ... Home Health Conditions sialic acid storage disease sialic acid storage disease Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Sialic acid storage disease is an inherited disorder that primarily ...

  12. Genetics Home Reference: lysosomal acid lipase deficiency

    MedlinePlus

    ... Home Health Conditions lysosomal acid lipase deficiency lysosomal acid lipase deficiency Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Lysosomal acid lipase deficiency is an inherited condition characterized by ...

  13. L-(-)-malic acid production by Saccharomyces spp. during the alcoholic fermentation of wine (1).

    PubMed

    Yéramian, N; Chaya, C; Suárez Lepe, J A

    2007-02-07

    In an attempt to increase the acidity of wine by biological means, malate-producing yeasts were selected from a collection of 282 strains isolated in different parts of Spain. Only 4% of these strains (all of which belonged to Saccharomyces cerevisiae) produced l-(-)-malic acid in the range of 0.5-1 g/L. This was formed between days 2 and 6 of alcoholic fermentation, reaching a maximum on days 3 and 4; the concentration remained stable from day 7. Malic acid production was favored by temperatures in the 18-25 degrees C range and by musts with a high pH and low concentrations of sugar, initial malic acid, and yeast-assimilable nitrogen. Oxaloacetic acid, a precursor of malic acid, had no influence on malate production. The precursors pyruvic and fumaric acid did, however, have a significant effect on the production of this acid in some strains. No direct relation between pyruvate and malate metabolism was observed.

  14. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  15. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  16. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  17. Low acid producing solid propellants

    NASA Technical Reports Server (NTRS)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  18. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  19. Compact oleic acid in HAMLET.

    PubMed

    Fast, Jonas; Mossberg, Ann-Kristin; Nilsson, Hanna; Svanborg, Catharina; Akke, Mikael; Linse, Sara

    2005-11-07

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.

  20. Biopreservation by lactic acid bacteria.

    PubMed

    Stiles, M E

    1996-10-01

    Biopreservation refers to extended storage life and enhanced safety of foods using the natural microflora and (or) their antibacterial products. Lactic acid bacteria have a major potential for use in biopreservation because they are safe to consume and during storage they naturally dominate the microflora of many foods. In milk, brined vegetables, many cereal products and meats with added carbohydrate, the growth of lactic acid bacteria produces a new food product. In raw meats and fish that are chill stored under vacuum or in an environment with elevated carbon dioxide concentration, the lactic acid bacteria become the dominant population and preserve the meat with a "hidden' fermentation. The same applies to processed meats provided that the lactic acid bacteria survive the heat treatment or they are inoculated onto the product after heat treatment. This paper reviews the current status and potential for controlled biopreservation of foods.

  1. Biotechnological production of citric acid

    PubMed Central

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors. Several factors affecting citric acid fermentation are discussed, including carbon source, nitrogen and phosphate limitations, pH of culture medium, aeration, trace elements and morphology of the fungus. Special attention is paid to the fundamentals of biochemistry and accumulation of citric acid. Technologies employed at industrial scale such as surface or submerged cultures, mainly employing Aspergillus niger, and processes carried out with Yarrowia lipolytica, as well as the technology for recovering the product are also described. Finally, this review summarizes the use of orange peels and other by-products as feedstocks for the bioproduction of citric acid. PMID:24031566

  2. Nucleic acid arrays and methods of synthesis

    DOEpatents

    Sabanayagam, Chandran R.; Sano, Takeshi; Misasi, John; Hatch, Anson; Cantor, Charles

    2001-01-01

    The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.

  3. 21 CFR 184.1091 - Succinic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Succinic acid. 184.1091 Section 184.1091 Food and... Substances Affirmed as GRAS § 184.1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It...

  4. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Adipic acid. 184.1009 Section 184.1009 Food and... Substances Affirmed as GRAS § 184.1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid...

  5. 21 CFR 184.1091 - Succinic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Succinic acid. 184.1091 Section 184.1091 Food and... Substances Affirmed as GRAS § 184.1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It...

  6. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Adipic acid. 184.1009 Section 184.1009 Food and... Substances Affirmed as GRAS § 184.1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid...

  7. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Adipic acid. 184.1009 Section 184.1009 Food and... Substances Affirmed as GRAS § 184.1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid...

  8. 21 CFR 184.1091 - Succinic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Succinic acid. 184.1091 Section 184.1091 Food and... Substances Affirmed as GRAS § 184.1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It...

  9. 21 CFR 184.1091 - Succinic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Succinic acid. 184.1091 Section 184.1091 Food and....1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It is commercially prepared...

  10. 21 CFR 184.1091 - Succinic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Succinic acid. 184.1091 Section 184.1091 Food and... Substances Affirmed as GRAS § 184.1091 Succinic acid. (a) Succinic acid (C4H6O4, CAS Reg. No. 110-15-6), also referred to as amber acid and ethylenesuccinic acid, is the chemical 1,4-butanedioic acid. It...

  11. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Adipic acid. 184.1009 Section 184.1009 Food and....1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid oxidation of cyclohexanol...

  12. 21 CFR 184.1009 - Adipic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Adipic acid. 184.1009 Section 184.1009 Food and... Substances Affirmed as GRAS § 184.1009 Adipic acid. (a) Adipic acid (C6H10O4, CAS Reg. No. 00124-04-9) is also known as 1,4-butanedicarboxylic acid or hexane-dioic acid. It is prepared by nitric acid...

  13. Thermometric titration of acids in pyridine.

    PubMed

    Vidal, R; Mukherjee, L M

    1974-04-01

    Thermometric titration of HClO(4), HI, HNO(3), HBr, picric acid o-nitrobenzoic acid, 2,4- and 2,5-dinitrophenol, acetic acid and benzoic acid have been attempted in pyridine as solvent, using 1,3-diphenylguanidine as the base. Except in the case of 2,5-dinitrophenol, acetic acid and benzoic acid, the results are, in general, reasonably satisfactory. The approximate molar heats of neutralization have been calculated.

  14. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  15. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  16. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  17. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Oleic acid derived from tall oil fatty acids. 172... Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and as a component in the manufacture of...

  18. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  19. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  20. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  1. Borinic acid catalysed peptide synthesis.

    PubMed

    El Dine, Tharwat Mohy; Rouden, Jacques; Blanchet, Jérôme

    2015-11-18

    The catalytic synthesis of peptides is a major challenge in the modern organic chemistry hindered by the well-established use of stoichiometric coupling reagents. Herein, we describe for the first time that borinic acid is able to catalyse this reaction under mild conditions with an improved activity compared to our recently developed thiophene-based boronic acid. This catalyst is particularly efficient for peptide bond synthesis affording dipeptides in good yields without detectable racemization.

  2. Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. It is vital to reduce corrosion costs and risks in a sustainable manner. The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys.

  3. Some factors affecting cyclopropane acid formation in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1965-01-01

    1. The fatty acid composition of the extractable lipids of Escherichia coli varied with growth conditions. 2. The principal fatty acids were palmitic acid, hexadecenoic acid, octadecenoic acid and the cyclopropane acids, methylenehexadecanoic acid and methyleneoctadecanoic acid. 3. Cyclopropane acid formation from monoenoic acids was increased by acid media, poor oxygen supply, or high growth temperature. 4. Cyclopropane acid formation was decreased by alkaline media, well oxygenated conditions, the presence of citrate, or lack of Mg2+. PMID:5324304

  4. Photodissociation dynamics of hydroxybenzoic acids

    SciTech Connect

    Yang Yilin; Dyakov, Yuri; Lee, Y. T.; Ni, Chi-Kung; Sun Yilun; Hu Weiping

    2011-01-21

    Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.

  5. Biocatalytic reduction of carboxylic acids.

    PubMed

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Winkler, Margit

    2014-06-01

    An increasing demand for non-petroleum-based products is envisaged in the near future. Carboxylic acids such as citric acid, succinic acid, fatty acids, and many others are available in abundance from renewable resources and they could serve as economic precursors for bio-based products such as polymers, aldehyde building blocks, and alcohols. However, we are confronted with the problem that carboxylic acid reduction requires a high level of energy for activation due to the carboxylate's thermodynamic stability. Catalytic processes are scarce and often their chemoselectivity is insufficient. This review points at bio-alternatives: currently known enzyme classes and organisms that catalyze the reduction of carboxylic acids are summarized. Two totally distinct biocatalyst lines have evolved to catalyze the same reaction: aldehyde oxidoreductases from anaerobic bacteria and archea, and carboxylate reductases from aerobic sources such as bacteria, fungi, and plants. The majority of these enzymes remain to be identified and isolated from their natural background in order to evaluate their potential as industrial biocatalysts.

  6. Polymer-Nucleic Acid Interactions.

    PubMed

    Shen, Zhuang-Lin; Xia, Yi-Qi; Yang, Qiu-Song; Tian, Wen-de; Chen, Kang; Ma, Yu-Qiang

    2017-04-01

    Gene therapy is an important therapeutic strategy in the treatment of a wide range of genetic disorders. Polymers forming stable complexes with nucleic acids (NAs) are non-viral gene carriers. The self-assembly of polymers and nucleic acids is typically a complex process that involves many types of interaction at different scales. Electrostatic interaction, hydrophobic interaction, and hydrogen bonds are three important and prevalent interactions in the polymer/nucleic acid system. Electrostatic interactions and hydrogen bonds are the main driving forces for the condensation of nucleic acids, while hydrophobic interactions play a significant role in the cellular uptake and endosomal escape of polymer-nucleic acid complexes. To design high-efficiency polymer candidates for the DNA and siRNA delivery, it is necessary to have a detailed understanding of the interactions between them in solution. In this chapter, we survey the roles of the three important interactions between polymers and nucleic acids during the formation of polyplexes and summarize recent understandings of the linear polyelectrolyte-NA interactions and dendrimer-NA interactions. We also review recent progress optimizing the gene delivery system by tuning these interactions.

  7. Syngas route to adipic acid

    SciTech Connect

    Kealing, H.S.

    1986-03-01

    In an era of escalating hydrocarbon prices, the development of new technology to synthesize large volume chemical intermediates from the least expensive sources of carbon and hydrogen has been a research area of increasing intensity. Adipic acid is prepared commercially by oxidative processes using either benzene or phenol as the raw material base. Since both benzene and phenol prices track with the price of crude oil, future adipic acid price will increase as the oil reserve decreases. Thus, there is a need for a new process to produce adipic acid from cheap, and readily available, raw materials such as butadiene obtained as a by-product from world scale olefin plants. One such process that capitalizes on the use of butadiene as a raw material is BASF's two-step carbonylation route to adipic acid. The butadiene in the C/sub 4/ cut from a steam cracker is transformed by a two-stage carbonylation with carbon monoxide and methanol into adipic acid dimethyl ester. Hydrolysis converts the ester into adipic acid. BASF is now engineering a 130 mm pound per year commercial plant based on this technology.

  8. Effects of acids on gravels and proppants

    SciTech Connect

    Cheung, S.K.

    1988-05-01

    The effects of acids on the integrity of gravels and proppants should be considered in acid treatments. This paper reports on the influence of acid type, acid concentration, and contact duration on the acid solubility of five sands and bauxitic materials. The effects of the acids on the mechanical strength and the size distribution of the solids are determined. The authors found that intermediate-density and low-density bauxites (IDB and LDB) are very soluble in HF acid and that sintered bauxite is weakened by HF acid.

  9. Vibrational Spectra of Selected Monohalogenated Monocarboxylic Acids.

    DTIC Science & Technology

    HALOGENATED HYDROCARBONS, INFRARED SPECTRA), (*CARBOXYLIC ACIDS, *INFRARED SPECTRA), IODINE COMPOUNDS, CHLORINE COMPOUNDS, BROMINE COMPOUNDS, ACETIC ACID , ACETATES, MOLECULAR STRUCTURE, MOLECULAR ASSOCIATION

  10. Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production.

    PubMed

    Kishino, Shigenobu; Ogawa, Jun; Yokozeki, Kenzo; Shimizu, Sakayu

    2009-08-01

    Lactobacillus plantarum AKU 1009a effectively transforms linoleic acid to conjugated linoleic acids of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11-18:2. The transformation of various polyunsaturated fatty acids by washed cells of L. plantarum AKU 1009a was investigated. Besides linoleic acid, alpha-linolenic acid [cis-9,cis-12,cis-15-octadecatrienoic acid (18:3)], gamma-linolenic acid (cis-6,cis-9,cis-12-18:3), columbinic acid (trans-5,cis-9,cis-12-18:3), and stearidonic acid [cis-6,cis-9,cis-12,cis-15-octadecatetraenoic acid (18:4)] were found to be transformed. The fatty acids transformed by the strain had the common structure of a C18 fatty acid with the cis-9,cis-12 diene system. Three major fatty acids were produced from alpha-linolenic acid, which were identified as cis-9,trans-11,cis-15-18:3, trans-9,trans-11,cis-15-18:3, and trans-10,cis-15-18:2. Four major fatty acids were produced from gamma-linolenic acid, which were identified as cis-6,cis-9,trans-11-18:3, cis-6,trans-9,trans-11-18:3, cis-6,trans-10-18:2, and trans-10-octadecenoic acid. The strain transformed the cis-9,cis-12 diene system of C18 fatty acids into conjugated diene systems of cis-9,trans-11 and trans-9,trans-11. These conjugated dienes were further saturated into the trans-10 monoene system by the strain. The results provide valuable information for understanding the pathway of biohydrogenation by anaerobic bacteria and for establishing microbial processes for the practical production of conjugated fatty acids, especially those produced from alpha-linolenic acid and gamma-linolenic acid.

  11. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    PubMed

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  12. Effect of process parameters on succinic acid production in Escherichia coli W3110 and enzymes involved in the reductive tricarboxylic acid cycle.

    PubMed

    Isar, Jasmine; Agarwal, Lata; Saran, Saurabh; Gupta, Pritesh; Saxena, Rajendra Kumar

    2006-09-01

    The effect of process optimization on succinic acid production by Escherichia coli W3110 and on enzymes involved in the reverse tricarboxylic acid cycle was studied. Approximately, 7.02 g L-1 of succinic acid was produced in 60 h at pH 7.0 in 500 mL anaerobic bottles containing 300 mL of the medium, wherein the sucrose concentration was 2.5%, the ratio of tryptone to ammonium hydrogen phosphate was 1:1, and the concentration of magnesium carbon ate was 1.5%. When these optimized fermentation conditions were employed in a 10 L bioreactor, 11.2 g L-1 of succinic acid was produced in 48 h. This is a 10-fold increase in succinic acid production from the initial titer of 0.94 g L-1. This clearly indicates the importance of process optimization, where by manipulating the media composition and production conditions, a remarkable increase in the production of the desired biomolecule can be obtained. The production of succinic acid is a multi-step reaction through the reverse tricarboxylic acid cycle. A linear relationship was observed between succinic acid production and the enzyme activities. The enzyme activities were found to increase in the order phospho-enol-pyruvate carboxylasefumarate reductase. The activity of phospho-enol-pyruvate carboxykinase was also estimated. Results indicate that this enzyme was not a very active participant in the production of succinic acid, since it catalyzes the phosphorylation of oxaloacetic acid to yield phospho-enol-pyruvate.

  13. The essentiality of arachidonic acid and docosahexaenoic acid

    PubMed Central

    Le, Hau D.; Meisel, Jonathan A.; de Meijer, Vincent E.; Gura, Kathleen M.; Puder, Mark

    2012-01-01

    Objective The purpose of this review is to correlate the clinical finding that patients receiving parenteral nutrition with a fish oil-based lipid emulsion do not develop essential fatty acid deficiency (EFAD) with an experimental murine model, thus showing that arachidonic acid (AA) and docosahexaenoic acid (DHA) are likely to be the essential fatty acids. Background Conventional belief is that linoleic acid (LA, omega-6) and alpha-linolenic acid (ALA, omega-3) are the essential fatty acids (EFAs). We have shown that a fish oil-based lipid emulsion containing AA (omega-6) and docosahexaenoic acid (DHA, omega-3) and insignificant quantities of LA and ALA is efficacious in the treatment of parenteral nutrition-associated liver disease (PNALD), a major cause of liver-related morbidity and mortality. The prospect of using a fish oil-based lipid emulsion as monotherapy has raised concerns of EFAD development, hindering its adoption into clinical practice. Design Data from patients in our institution who received PN with a fish oil-based lipid emulsion was reviewed for clinical and biochemical evidence of EFAD, defined as an elevated triene-tetraene ratio (Mead acid/AA >0.2). We also investigated the minimum amount of fish oil required to prevent EFAD in a murine model and determined whether DHA and AA alone can prevent EFAD. Results No patients receiving PN with a fish oil-based lipid emulsion in our institution have developed biochemical or clinical evidence of EFAD such as an elevated triene-tetraene ratio, growth retardation or dermatitis. This observation parallels our previously published animal studies, which demonstrated prevention of EFAD when thirteen percent of total calories were from fish oil. Moreover, current work in our laboratory shows that AA and DHA provision alone is sufficient to prevent biochemical and physiologic evidence of EFAD in a murine model. Conclusions When dosed appropriately, fish oil-based lipid emulsions contain sufficient EFAs to

  14. Molecular screening of wine lactic acid bacteria degrading hydroxycinnamic acids.

    PubMed

    de las Rivas, Blanca; Rodríguez, Héctor; Curiel, José Antonio; Landete, José María; Muñoz, Rosario

    2009-01-28

    The potential to produce volatile phenols from hydroxycinnamic acids was investigated for lactic acid bacteria (LAB) isolated from Spanish grape must and wine. A PCR assay was developed for the detection of LAB that potentially produce volatile phenols. Synthetic degenerate oligonucleotides for the specific detection of the pdc gene encoding a phenolic acid decarboxylase were designed. The pdc PCR assay amplifies a 321 bp DNA fragment from phenolic acid decarboxylase. The pdc PCR method was applied to 85 strains belonging to the 6 main wine LAB species. Lactobacillus plantarum, Lactobacillus brevis, and Pediococcus pentosaceus strains produce a positive response in the pdc PCR assay, whereas Oenococcus oeni, Lactobacillus hilgardii, and Leuconostoc mesenteroides strains did not produce the expected PCR product. The production of vinyl and ethyl derivatives from hydroxycinnamic acids in culture media was determined by high-performance liquid chromatography. A relationship was found between pdc PCR amplification and volatile phenol production, so that the LAB strains that gave a positive pdc PCR response produce volatile phenols, whereas strains that did not produce a PCR amplicon did not produce volatile phenols. The proposed method could be useful for a preliminary identification of LAB strains able to produce volatile phenols in wine.

  15. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.

    PubMed

    Yoshinaga, Naoko; Alborn, Hans T; Nakanishi, Tomoaki; Suckling, David M; Nishida, Ritsuo; Tumlinson, James H; Mori, Naoki

    2010-03-01

    Fatty acid amino acid conjugates (FACs) have been found in noctuid as well as sphingid caterpillar oral secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants. These induced volatiles, in turn, attract natural enemies of the caterpillars. In a previous study, we showed that N-linolenoyl-L-glutamine in larval Spodoptera litura plays an important role in nitrogen assimilation which might be an explanation for caterpillars synthesizing FACs despite an increased risk of attracting natural enemies. However, the presence of FACs in lepidopteran species outside these families of agricultural interest is not well known. We conducted FAC screening of 29 lepidopteran species, and found them in 19 of these species. Thus, FACs are commonly synthesized through a broad range of lepidopteran caterpillars. Since all FAC-containing species had N-linolenoyl-L-glutamine and/or N-linoleoyl-L-glutamine in common, and the evolutionarily earliest species among them had only these two FACs, these glutamine conjugates might be the evolutionarily older FACs. Furthermore, some species had glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidopteran species.

  16. Hepatoprotective bile acid 'ursodeoxycholic acid (UDCA)' Property and difference as bile acids.

    PubMed

    Ishizaki, Kaoru; Imada, Teruaki; Tsurufuji, Makoto

    2005-10-01

    Ursodeoxycholic acid (UDCA) is a bile acid, which is present in human bile at a low concentration of only 3% of total bile acids. It is a 7beta-hydroxy epimer of the primary bile acid chenodeoxycholic acid (CDCA). UDCA is isolated from the Chinese drug 'Yutan' a powder preparation derived from the dried bile of adult bears. For centuries, Yutan has been used in the treatment of hepatobiliary disorders. In Japan, it has also been in widespread use as a folk medicine from the mid-Edo period. In Japan, not only basic studies such as isolation, crystallization, definition of the chemical structure and establishment of the synthesis of UDCA have been conducted but clinical studies have been conducted. First reports on the effects of UDCA in patients with liver diseases came from Japan as early as 1961. In the 1970s, the first prospective study of patients with gallbladder stones treated with UDCA demonstrating gallstone dissolution was reported. In late 1980s, a number of controlled trials on the use of UDCA in primary biliary cirrhosis (PBC) were reported. Since then, a variety of clinical studies have shown the beneficial effect of UDCA in liver disease worldwide. To date, UDCA is utilized for the treatment of PBC for which it is the only drug approved by the U.S. Food and Drug Administration (FDA). In recent years, with the advent of molecular tools, the mechanisms of action of bile acids and UDCA have been investigated, and various bioactivities and pharmacological effects have been revealed. Based on the results of these studies, the bioactive substances in bile acids that are involved in digestive absorption may play important roles in signal transduction pathways. Furthermore, the mechanisms of action of UDCA is evidently involved. We reveal the physicochemical properties of UDCA as bile acid and overview the established pharmacological effects of UDCA from its metabolism. Furthermore, we overview the current investigations into the mechanism of action of UDCA in

  17. [Regulating acid stress resistance of lactic acid bacteria--a review].

    PubMed

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-07-04

    As cell factories, lactic acid bacteria are widely used in food, agriculture, pharmaceutical and other industries. Acid stress is one the important survival challenges encountered by lactic acid bacteria both in fermentation process and in the gastrointestinal tract. Recently, the development of systems biology and metabolic engineering brings unprecedented opportunity for further elucidating the acid tolerance mechanisms and improving the acid stress resistance of lactic acid bacteria. This review addresses physiological mechanisms of lactic acid bacteria during acid stress. Moreover, strategies to improve the acid stress resistance of lactic acid were proposed.

  18. Recovery of uranium from acid media by macroporous bifunctional phosphinic acid resin

    SciTech Connect

    Sabharwal, K.N.; Srinivasan, T.G.; Rao, P.R.V.; Nandy, K.K.

    1996-11-01

    The extraction of uranium from various acid media such as nitric acid, sulphuric acid, hydrochloric acid, phosphoric acid and perchloric acid by a macroporous bifunctional phosphinic acid resin (MPBPA) has been studied. The distribution coefficients for the extraction of uranium by the MPBPA resin are compared with the corresponding values reported in literature for the conventional sulphonic acid resin. The results clearly indicate the suitability of the MPBPA resin to recover uranium from different types of acid solutions of widely ranging acidities. 17 refs., 6 figs., 5 tabs.

  19. Extractive fermentation of acetic acid

    SciTech Connect

    Busche, R.M.

    1991-12-31

    In this technoeconomic evaluation of the manufacture of acetic acid by fermentation, the use of the bacterium: Acetobacter suboxydans from the old vinegar process was compared with expected performance of the newer Clostridium thermoaceticum bacterium. Both systems were projected to operate as immobilized cells in a continuous, fluidized bed bioreactor, using solvent extraction to recover the product. Acetobacter metabolizes ethanol aerobically to produce acid at 100 g/L in a low pH medium. This ensures that the product is in the form of a concentrated extractable free acid, rather than as an unextractable salt. Unfortunately, yields from glucose by way of the ethanol fermentation are poor, but near the biological limits of the organisms involved. Conversely, C. thermoaceticum is a thermophilic anaerobe that operates at high fermentation rates on glucose at neutral pH to produce acetate salts directly in substantially quantitative yields. However, it is severely inhibited by product, which restricts concentration to a dilute 20 g/L. An improved Acetobacter system operating with recycled cells at 50 g/L appears capable of producing acid at $0.38/lb, as compared with a $0.29/lb price for synthetic acid. However, this system has only a limited margin for process improvement. The present Clostridium system cannot compete, since the required selling price would be $0.42/lb. However, if the organism could be adapted to tolerate higher product concentrations at acid pH, selling price could be reduced to $0.22/lb, or about 80% of the price of synthetic acid.

  20. Anaerobic biotransformation of organoarsenical pesticides monomethylarsonic acid and dimethylarsinic acid

    USGS Publications Warehouse

    Sierra-Alvarez, R.; Yenal, U.; Feld, J.A.; Kopplin, M.; Gandolfi, A.J.; Garbarino, J.R.

    2006-01-01

    Monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) are extensively utilized as pesticides, introducing large quantities of arsenic into the environment. Once released into the environment, these organoarsenicals are subject to microbial reactions. Aerobic biodegradation of MMAV and DMAV has been evaluated, but little is known about their fate in anaerobic environments. The objective of this study was to evaluate the biotransformation of MMAV and DMAV in anaerobic sludge. Biologically mediated conversion occurred under methanogenic or sulfate-reducing conditions but not in the presence of nitrate. Monomethylarsonous acid (MMAIII) was consistently observed as an important metabolite of MMAV degradation, and it was recovered in molar yields ranging from 5 to 47%. The main biotransformation product identified from DMAV metabolism was MMAV, which was recovered in molar yields ranging from 8 to 65%. The metabolites indicate that reduction and demethylation are important steps in the anaerobic bioconversion of MMAV and DMAV, respectively. ?? 2006 American Chemical Society.