Science.gov

Sample records for acid functionalized gold

  1. Poly(amino acid) functionalized maghemite and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Perego, Davide; Masciocchi, Norberto; Guagliardi, Antonietta; Domínguez-Vera, José Manuel; Gálvez, Natividad

    2013-02-01

    Bimodal MRI/OI imaging probes are of great interest in nanomedicine. Although many organic polymers have been studied thoroughly for in vivo applications, reports on the use of poly(amino acid)s as coating polymers are scarce. In this paper, poly-(d-glutamic acid, d-lysine) (PGL) has been used for coating maghemite and gold nanoparticles. An advantage of this flexible and biocompatible polymer is that, once anchored to the nanoparticle surface, dangling lysine amino groups are available for the incorporation of new functionalities. As an example, Alexa Fluor derivatives have been attached to PGL-coated maghemite nanoparticles to obtain magnetic/fluorescent materials. These dual-property materials could be used as bimodal MRI/OI probes for in vivo imaging.

  2. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  3. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing.

    PubMed

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-21

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au(+) complexes, and then a class of ∼2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ∼1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au(+) complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe(3+) with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe(3+), and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs. PMID:26391420

  4. Functionalized self-assembly of gold nanoparticles functionalized with amino acids and aleurone globular protein

    NASA Astrophysics Data System (ADS)

    Tomoaia-Cotisel, Maria; Mocanu, Aurora; Horovitz, Ossi; Indrea, Emil; Tomoaia, Gheorghe; Bratu, Ioan

    2009-01-01

    Gold colloidal aqueous solutions were synthesized and characterized by UV-Vis spectroscopy and TEM. Gold films were prepared on silanized glass slides at room temperature and with thermal treatment. The interaction of gold nanoparticles with biomolecules (amino acids, protein) was studied using UV-Vis spectroscopy, AFM, TEM and X-ray diffraction.

  5. Design, Synthesis and Characterization of Nucleic Acid-Functionalized Gold Surfaces for Biomarker Detection

    PubMed Central

    Adams, Nicholas M.; Jackson, Stephen R.; Haselton, Frederick R.; Wright, David W.

    2014-01-01

    Nucleic acid-functionalized gold surfaces have been used extensively for the development of biological sensors. The development of an effective biomarker detection assay requires careful design, synthesis and characterization of probe components. In this feature article, we describe fundamental probe development constraints and provide a critical appraisal of the current methodologies and applications in the field. We discuss critical issues and obstacles that impede the sensitivity and reliability of the sensors to underscore the challenges that must be met to advance the field of biomarker detection. PMID:21905721

  6. Preparative separation of enantiomers based on functional nucleic acids modified gold nanoparticles.

    PubMed

    Huang, Rong; Wang, Daifang; Liu, Shuzhen; Guo, Longhua; Wang, Fangfang; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2013-11-01

    The preparative-scale separation of chiral compounds is vitally important for the pharmaceutical industry and related fields. Herein we report a simple approach for rapid preparative separation of enantiomers using functional nucleic acids modified gold nanoparticles (AuNPs). The separation of DL-tryptophan (DL-Trp) is demonstrated as an example to show the feasibility of the approach. AuNPs modified with enantioselective aptamers were added into a racemic mixture of DL -Trp. The aptamer-specific enantiomer (L-Trp) binds to the AuNPs surface through aptamer-L-Trp interaction. The separation of DL-Trp is then simply accomplished by centrifugation: the precipitate containing L-Trp bounded AuNPs is separated from the solution, while the D-Trp remains in the supernatant. The precipitate is then redispersed in water. The aptamer is denatured under 95 °C and a second centrifugation is then performed, resulting in the separation of AuNPs and L-Trp. The supernatant is finally collected to obtain pure L-Trp in water. The results show that the racemic mixture of DL-Trp is completely separated into D-Trp and L-Trp, respectively, after 5 rounds of repeated addition of fresh aptamer-modified AuNPs to the DL-Trp mixture solution. Additionally, the aptamer-modified AuNPs can be repeatedly used for at least eight times without significant loss of its binding ability because the aptamer can be easily denatured and renatured in relatively mild conditions. The proposed approach could be scaled up and extended to the separation of other enantiomers by the adoption of other enantioselective aptamers.

  7. Poly(methacrylic acid)-Coated Gold Nanoparticles: Functional Platforms for Theranostic Applications.

    PubMed

    Yilmaz, Gokhan; Demir, Bilal; Timur, Suna; Becer, C Remzi

    2016-09-12

    The integration of drugs with nanomaterials have received significant interest in the efficient drug delivery systems. Conventional treatments with therapeutically active drugs may cause undesired side effects and, thus, novel strategies to perform these treatments with a combinatorial approach of therapeutic modalities are required. In this study, polymethacrylic acid coated gold nanoparticles (AuNP-PMAA), which were synthesized with reversible addition-fragmentation chain transfer (RAFT) polymerization, were combined with doxorubicin (DOX) as a model anticancer drug by creating a pH-sensitive hydrazone linkage in the presence of cysteine (Cys) and a cross-linker. Drug-AuNP conjugates were characterized via spectrofluorimetry, dynamic light scattering and zeta potential measurements as well as X-ray photoelectron spectroscopy. The particle size of AuNP-PMAA and AuNP-PMAA-Cys-DOX conjugate were calculated as found as 104 and 147 nm, respectively. Further experiments with different pH conditions (pH 5.3 and 7.4) also showed that AuNP-PMAA-Cys-DOX conjugate could release the DOX in a pH-sensitive way. Finally, cell culture applications with human cervix adenocarcinoma cell line (HeLa cells) demonstrated effective therapeutic impact of the final conjugate for both chemotherapy and radiation therapy by comparing free DOX and AuNP-PMAA independently. Moreover, cell imaging study was also an evidence that AuNP-PMAA-Cys-DOX could be a beneficial candidate as a diagnostic agent. PMID:27447298

  8. Functionalization of gold nanoparticles as antidiabetic nanomaterial

    NASA Astrophysics Data System (ADS)

    Venkatachalam, M.; Govindaraju, K.; Mohamed Sadiq, A.; Tamilselvan, S.; Ganesh Kumar, V.; Singaravelu, G.

    2013-12-01

    In the present investigation, functionalization of gold nanoparticles synthesized using propanoic acid 2-(3-acetoxy-4,4,14-trimethylandrost-8-en-17-yl) (PAT) an active biocomponent isolated from Cassia auriculata is studied in detail. On reaction of PAT with aqueous HAuCl4, rapid formation of stable gold nanoparticles was achieved. Formation of gold nanoparticles was confirmed by UV-vis spectroscopy, XRD, GC-MS, FTIR, TEM and SEM with EDAX. Gold nanoparticles mostly were monodisperse, spherical in shape and ranged in size 12-41 nm. Gold nanoparticles synthesised using PAT was administered to alloxan (150 mg/kg body weight) induced diabetic male albino rats at different doses (0.25, 0.5, 0.75 and 1.0 mg/kg body weight) for 28 days. Plasma glucose level, cholesterol and triglyceride were significantly (p < 0.001) reduced in experimental animals treated with gold nanoparticles at dosage of 0.5 mg/kg body weight and plasma insulin increased significantly. The newly genre green gold nanoparticles exhibit remarkable protein tyrosine phosphatase 1B inhibitory activity.

  9. Gold nanoparticles for nucleic acid delivery.

    PubMed

    Ding, Ya; Jiang, Ziwen; Saha, Krishnendu; Kim, Chang Soo; Kim, Sung Tae; Landis, Ryan F; Rotello, Vincent M

    2014-06-01

    Gold nanoparticles provide an attractive and applicable scaffold for delivery of nucleic acids. In this review, we focus on the use of covalent and noncovalent gold nanoparticle conjugates for applications in gene delivery and RNA-interference technologies. We also discuss challenges in nucleic acid delivery, including endosomal entrapment/escape and active delivery/presentation of nucleic acids in the cell. PMID:24599278

  10. Intracellular surface-enhanced Raman scattering probe based on gold nanorods functionalized with mercaptohexadecanoic acid with reduced cytotoxicity.

    PubMed

    Liu, Min; Wang, Zhuyuan; Zong, Shenfei; Zhang, Ruohu; Yang, Jing; Cui, Yiping

    2012-01-01

    A surface-enhanced Raman scattering (SERS) probe for intracellular detection was demonstrated by utilizing gold nanorods (GNRs) coated with p-aminothiophenol as the Raman reporters. In this probe, to reduce the cytotoxicity of GNRs, cetyltrimethylammonium bromide (CTAB) molecules adsorbed on the surfaces of GNRs as ligands were replaced by mercaptohexadecanoic acid via a "round-trip" phase change method. Such a ligand exchange can reduce the toxicity of the probe compared to the original CTAB-stabilized GNRs, which were confirmed by both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bright field view of HeLa cells. Meanwhile, the transmission electron microscopy images indicated that there is no significant morphologic change of GNRs before and after the ligand exchange. Moreover, its SERS performance was adequately retained after the incorporation of the probe into living HeLa cells. This new type of SERS probe is expected to have great potential in intracellular imaging or sensing applications.

  11. Plasmonic coupling of dual gold nanoprobes for SERS imaging of sialic acids on living cells.

    PubMed

    Song, Wanyao; Ding, Lin; Chen, Yunlong; Ju, Huangxian

    2016-08-23

    This work reports a benzoic group functionalized gold nanoflower as a bridge probe for both recognition of target sialic acids and assembly of poly(N-acetylneuraminic acid) modified gold nanoparticles, which leads to plasmonic coupling of two kinds of gold nanoprobes in a single-core-multi-satellite nanostructure to produce a sensitive surface-enhanced Raman scattering (SERS) signal for the imaging of sialic acids on living cells. PMID:27500291

  12. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles.

    PubMed

    Guan, Huanan; Liu, Xiaofei; Wang, Wei; Liang, Jinzhong

    2014-01-01

    A simple and sensitive method for colorimetric detection of mercury ion (Hg(2+)) has been developed by using a poly (γ-glutamic acid) functionalized gold nanoparticles (PGA-AuNPs) system. Electrostatic self-assembly technique was used to assemble negatively charged PGA on the surface of positively charged CTAB-capped AuNPs. With the increase of Hg(2+) concentration, the color of the solution would progress from light red to purple blue. The results showed that the absorbance ratio (A750/A580) was linear with the Hg(2+) concentration in the range of 0.01-10 μM and from 50 to 300 μM, with the correlation coefficients of 0.998 and 0.991, respectively. The reported probe is suitable for real-time detection of Hg(2+) in water with the limit of detection (LOD) of 1.9 nM obtained by UV-vis spectrum, and exhibits selectivity toward one order of magnitude over other metal ions. This approach was applied successfully to the determination of Hg(2+) in tap water and mineral water, and the recoveries were from 90% to 103% and from 103.53% to 113%, respectively. The proposed method is rapid, low-cost and free of complex equipment, making it possible to analyze Hg(2+) in various water samples. PMID:24291429

  13. Synthesis of gold nanoparticles using various amino acids.

    PubMed

    Maruyama, Tatsuo; Fujimoto, Yuhei; Maekawa, Tetsuya

    2015-06-01

    Gold nanoparticles (4-7nm) were synthesized from tetraauric acid using various amino acids as reducing and capping agents. The gold nanoparticles were produced from the incubation of a AuCl4(-) solution with an amino acid at 80°C for 20min. Among the twenty amino acids tested, several amino acids produced gold nanoparticles. The color of the nanoparticle solutions varied with the amino acids used for the reduction. We adopted l-histidine as a reducing agent and investigated the effects of the synthesis conditions on the gold nanoparticles. The His and AuCl4(-) concentrations affected the size of the gold nanoparticles and their aggregates. The pH of the reaction solution also affected the reaction yields and the shape of the gold nanoparticles.

  14. Dendritic functionalization of monolayer-protected gold nanoparticles

    SciTech Connect

    Cutler, Erin C.; Lundin, Erik; Garabato, B. Davis; Choi, Daeock; Shon, Young-Seok . E-mail: young.shon@wku.edu

    2007-06-05

    This paper describes the facile synthesis of nanoparticle-cored dendrimers (NCDs) and nanoparticle megamers from monolayer-protected gold clusters using either single or multi-step reactions. First, 11-mercaptoundecanoic acid/hexanethiolate-protected gold clusters were synthesized using the Schiffrin reaction followed by the ligand place-exchange reaction. A convergent approach for the synthesis of nanoparticle-cored dendrimers uses a single step reaction that is an ester coupling reaction of hydroxy-functionalized dendrons with carboxylic acid-functionalized gold clusters. A divergent approach, which is based on multi-step reactions, employs the repetition of an amide coupling reaction and a Michael addition reaction to build polyamidoamine dendritic architectures around a nanoparticle core. Nanoparticle megamers, which are large dendrimer-induced nanoparticle aggregates with an average diameter of more than 300 nm, were prepared by the amide coupling reaction between polyamiodoamine [G-2] dendrimers and carboxylic acid-functionalized gold clusters. {sup 1}H NMR spectroscopy, FT-IR spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used for the characterization of these hybrid nanoparticles.

  15. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed.

  16. Gold-catalyzed naphthalene functionalization

    PubMed Central

    Rivilla, Iván

    2011-01-01

    Summary The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'4 (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO2Et (R = H, Me) from N2C(R)CO2Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C–H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  17. Gold-catalyzed naphthalene functionalization.

    PubMed

    Pérez, Pedro J; Díaz-Requejo, M Mar; Rivilla, Iván

    2011-01-01

    The complexes IPrMCl (IPr = 1,3-bis(diisopropylphenyl)imidazol-2-ylidene, M = Cu, 1a; M = Au, 1b), in the presence of one equiv of NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl), catalyze the transfer of carbene groups: C(R)CO(2)Et (R = H, Me) from N(2)C(R)CO(2)Et to afford products that depend on the nature of the metal center. The copper-based catalyst yields exclusively a cycloheptatriene derivative from the Buchner reaction, whereas the gold analog affords a mixture of products derived either from the formal insertion of the carbene unit into the aromatic C-H bond or from its addition to a double bond. In addition, no byproducts derived from carbene coupling were observed. PMID:21647320

  18. Functionalized gold nanorods for molecular optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Oraevsky, Alexander; Conjusteau, Andre; Copland, John A.; Kotov, Nicholas A.; Motamedi, Massoud

    2007-02-01

    The development of gold nanoparticles for molecular optoacoustic imaging is a very promising area of research and development. Enhancement of optoacoustic imaging for molecular detection of tumors requires the engineering of nanoparticles with geometrical and molecular features that can enhance selective targeting of malignant cells while optimizing the sensitivity of optoacoustic detection. In this article, cylindrical gold nanoparticles (i.e. gold nanorods) were fabricated with a plasmon resonance frequency in the near infra-red region of the spectrum, where deep irradiation of tissue is possible using an Alexandrite laser. Gold nanorods (Au-NRs) were functionalized by covalent attachment of Poly(ethylene glycol) to enhance their biocompatibility. These particles were further functionalized with the aim of targeting breast cancer cells using monoclonal antibodies that binds to Her2/neu receptors, which are over expressed on the surface of breast cancer cells. A custom Laser Optoacoustic Imaging System (LOIS) was designed and employed to image nanoparticle-targeted cancer cells in a phantom and PEGylated Au-NRs that were injected subcutaneously into a nude mouse. The results of our experiments show that functionalized Au-NRs with a plasmon resonance frequency at near infra-red region of the spectrum can be detected and imaged in vivo using laser optoacoustic imaging system.

  19. Small molecule- and amino acid-induced aggregation of gold nanoparticles.

    PubMed

    Zakaria, Hesham M; Shah, Akash; Konieczny, Michael; Hoffmann, Joan A; Nijdam, A Jasper; Reeves, M E

    2013-06-25

    To understand which organic molecules are capable of binding to gold nanoparticles and/or inducing nanoparticle aggregation, we investigate the interaction of gold nanoparticles with small molecules and amino acids at variable pH. Dynamic Light Scattering (DLS) and ultraviolet-visible (UV-vis) spectra were measured on mixtures of colloidal gold with small molecules to track the progression of the aggregation of gold nanoparticles. We introduce the 522 to 435 nm UV-vis absorbance ratio as a sensitive method for the detection of colloidal gold aggregation, whereby we delineate the ability of thiol, amine, and carboxylic acid functional groups to bind to the surfaces of gold nanoparticles and investigate how combinations of these functional groups affect colloidal stability. We present models for mechanisms of aggregation of colloidal gold, including surface charge reduction and bridging linkers. For all molecules whose addition leads to the aggregation of gold nanoparticles, the aggregation kinetics were accelerated at acidic pH values. Colloidal gold is maintained only in the presence of anionic carboxyl groups, which are neutralized by protonation at lower pH. The overall reduced charge on the stabilizing carboxyl groups accounts for the accelerated aggregation at lower pH values. PMID:23718319

  20. Tryptophan-functionalized gold nanoparticles for deep UV imaging of microbial cells.

    PubMed

    Pajović, Jelena D; Dojčilović, Radovan; Božanić, Dušan K; Kaščáková, Slavka; Réfrégiers, Matthieu; Dimitrijević-Branković, Suzana; Vodnik, Vesna V; Milosavljević, Aleksandar R; Piscopiello, Emanuela; Luyt, Adriaan S; Djoković, Vladimir

    2015-11-01

    Biocompatible fluorescent nanostructures were prepared by a functionalization of gold nanoparticles with the amino acid tryptophan. The gold-tryptophan bioconjugates were investigated by TEM and HRTEM and various spectroscopy methods (XPS, FTIR, UV-vis and photoluminescence). It was found that the gold nanoparticles, initially 8 nm in diameter, aggregate in the presence of the amino acid. From the XPS and FTIR spectroscopy results, it was concluded that the tryptophan gold interactions mainly take place via indole and carboxyl groups. Although the indole group is involved in the interaction with the gold surfaces, the tryptophan-gold hybrids showed strong fluorescence due to the presence of multilayers of tryptophan. Deep ultra violet (DUV) imaging performed at the SOLEIL synchrotron showed that it is possible to detect these hybrid nanostructures within Escherichia coli cells.

  1. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells).

    PubMed

    Kumar, C Senthil; Raja, M D; Sundar, D Sathish; Gover Antoniraj, M; Ruckmani, K

    2015-09-01

    In this study, green synthesis of gold nanoparticles (AuNPs) was achieved using the extract of eggplant as a reducing agent. Hyaluronic acid (HA) serves as a capping and targeting agent. Metformin (MET) was successfully loaded on HA capped AuNPs (H-AuNPs) and this formulation binds easily on the surface of the liver cancer cells. The synthesized nanoparticles were characterized by UV-Vis spectrophotometer, HR-TEM, particle size analyser and zeta potential measurement. Toxicity studies of H-AuNPs in zebra fish confirmed the in vivo safety of the AuNPs. The in vitro cytotoxicity results showed that the amount of MET-H-AuNPs enough to achieve 50% inhibition (IC50) was much lower than free MET. Flow cytometry analysis showed the significant reduction in G2/M phase after treatment with MET-H-AuNPs, and molecular level apoptosis were studied using western blotting. The novelty of this study is the successful synthesis of AuNPs with a higher MET loading and this formulation exhibited better targeted delivery as well as increased regression activity than free MET in HepG2 cells. PMID:26005140

  2. Comparison of amino acids interaction with gold nanoparticle.

    PubMed

    Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem

    2014-04-01

    The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.

  3. Functionalization and Characterization of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Techane, Sirnegeda D.

    2011-12-01

    Surface characterization of gold nanoparticles (AuNPs) is necessary to obtain a thorough understanding of the AuNP properties and ultimately realize their full potential in applications. The work described in this dissertation strives to the structure and composition of AuNPs using highly surface sensitive techniques such as X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) in addition to the more widely used characterization techniques such as transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR) and UV-VIS spectroscopy. Self-assembled monolayers (SAMs) of alkanethiols were used to modify AuNPs surfaces to create positively and negatively charged surfaces. Functionalization with carboxylic acid terminated alkanethiol SAMs (COON-SAMs) was first optimized to produce clean and stable negatively charged AuNPs. Using 14nm and 40nm diameter AuNPs in combination with C11 and C16 chain length COOH-SAMs, it was found that addition of NH4OH during functionalization coupled with dialysis purification produced AuNPs that did not aggregate and did not have unbound thiols. Effects of AuNP size and COOH-SAM chain lengths were studied using 14, 25 and 40nm average diameter AuNPs functionalized with C6, C8, C11 and C16 COOH-SAMs. Flat Au surfaces were also functionalized with the COOH-SAMs for comparison. It was shown that the 14nm AuNPs with C16 COOH-SAMs were the most stable and had crystalline-like, well-ordered SAM structures. The SAMs on the 40nm AuNPs had similar surface chemistry as the SAMs on the flat Au surfaces. The effective photoelectron take-off angle of the C16 COOH-SAM decreased when the size of the AuNP increased. It was also shown that when using Kratos AxisUltra DLD XPS instrument in the hybrid mode, it was important to consider effects of both the hybrid mode and the AuNPs curvature when calculating overlayer thickness of the SAMs on AuNPs. Using the Kratos in the electrostatic

  4. The electrokinetic characterization of gold nanoparticles, functionalized with cationic functional groups, and its' interaction with DNA.

    PubMed

    Lazarus, Geraldine Genevive; Revaprasadu, Neerish; López-Viota, Julián; Singh, Moganavelli

    2014-09-01

    Gold nanoparticles have attracted strong biomedical interest for drug delivery due to their low toxic nature, surface plasmon resonance and capability of increasing the stability of the payload. However, gene transfection represents another important biological application. Considering that cellular barriers keep enclosed their secret to deliver genes using nanoparticles, an important step can be achieved by studying the functionalization of nanoparticles with DNA. In the present contribution the synthesis of nanoparticles consisting of a gold core coated with one or more layers of amino acid (l-lysine), and cationic polyelectrolytes (poly-ethyleneimine and poly-l-lysine) is reported. All nanoparticles were subjected to dynamic light scattering, electrophoretic mobility measurements, UV-vis optical spectrophotometry analysis and transmission electron microscopy imaging. In addition, the adsorption of DNA plasmid (pSGS) with linear and supercoiled configurations was studied for those gold nanoparticles under the most suitable surface modifications. Preliminary results showed that the gold nanoparticles functionalized with poly-ethyleneimine and poly-l-lysine, respectively, and bound to linear DNA configurations, present in absolute value a higher electrophoretic mobility irrespective of the pH of the media, compared to the supercoiled and nicked configuration. The findings from this study suggest that poly-ethyleneimine and poly-l-lysine functionalized gold nanoparticles are biocompatible and may be promising in the chemical design and future optimization of nanostructures for biomedical applications such as gene and drug delivery.

  5. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance.

    PubMed

    Kalita, Sanjeeb; Kandimalla, Raghuram; Sharma, Kaustav Kalyan; Kataki, Amal Chandra; Deka, Manab; Kotoky, Jibon

    2016-04-01

    In this study, we have described the biosynthesis of biocompatible gold nanoparticles (GNPs) from aqueous extract of the aerial parts of a pteridophyte, "Adiantum philippense" by microwave irradiation and its surface functionalization with broad spectrum beta lactam antibiotic, amoxicillin (Amox). The functionalization of amoxicillin on GNPs (GNP-Amox) was carried out via electrostatic interaction of protonated amino group and thioether moiety mediated attractive forces. The synthesized GNPs and GNP-Amox were physicochemically characterized. UV-Vis spectroscopy, Zeta potential, XRD, FTIR and SERS (surface enhanced raman spectra) results confirmed the loading of Amox into GNPs. Loading of Amox to GNPs reduce amoxicillin cytotoxicity, whereas GNPs were found to be nontoxic to mouse fibroblast cell line (L929) as evident from MTT and acridine orange/ethidium bromide (AO/EtBr) live/dead cell assays. The GNP-Amox conjugates demonstrated enhanced broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. Furthermore, in-vitro and in-vivo assays of GNP-Amox revealed potent anti-MRSA activity and improved the survival rate. This indicates the subversion of antibiotic resistance mechanism by overcoming the effect of high levels of β-lactamase produced by methicillin resistant Staphylococcus aureus (MRSA). Taken together, this study demonstrates the positive attributes from GNP-Amox conjugates as a promising antibacterial therapeutic agent against MRSA as well as other pathogens.

  6. Shape-tailoring and catalytic function of anisotropic gold nanostructures

    PubMed Central

    2011-01-01

    We report a facile, one-pot, shape-selective synthesis of gold nanoparticles in high yield by the reaction of an aqueous potassium tetrachloroaurate(III) solution with a commercially available detergent. We prove that a commercial detergent can act as a reducing as well as stabilizing agent for the synthesis of differently shaped gold nanoparticles in an aqueous solution at an ambient condition. It is noteworthy that the gold nanoparticles with different shapes can be prepared by simply changing the reaction conditions. It is considered that a slow reduction of the gold ions along with shape-directed effects of the components of the detergent plays a vital function in the formation of the gold nanostructures. Further, the as-prepared gold nanoparticles showed the catalytic activity for the reduction reaction of 4-nitrophenol in the presence of sodium borohydride at room temperature. PMID:21974964

  7. PDMS-based gold electrode for sensing ascorbic acid.

    PubMed

    Xu, Qin; Bi, Lianhua; Zheng, Huxiang; Fan, Dahe; Wang, Wei

    2011-11-01

    Electrode with optical shapes is appreciated in microfluidics. In this article, we reported a flexible poly(dimethylsiloxane) (PDMS)-based gold electrode for ascorbic acid detection. Gold nanoparticles were chemically deposited on PDMS and the composite film was applied as working electrode. The electrode could undergo deformation and display good response performance without damage. This biosensor could give quick response to ascorbic acid (AA) (<5s) and the currents were linear with concentrations of AA in range of 0.023-7.00 mM and 30-100 mM, respectively. Limit of detection was 0.008 mM (S/N=3). This biosensor has been applied to determine ascorbic acid content in vitamin C tablets and the results were consistent with traditional iodometric method. PMID:21807485

  8. Single Chain Fragment Variable Recombinant Antibody Functionalized Gold Nanoparticles for a Highly Sensitive Colorimetric Immunoassay

    PubMed Central

    Liu, Yang; Liu, Yi; Raymond, Raymond L.; Zeng, Xiangqun

    2009-01-01

    In this report, the peptide linker connecting scFv VH and VL domains were genetically modified to contain different amino acids (i.e. cysteine (scFv-cys) or histidines ( scFv-his)) to enable the scFv to adsorb or self-assemble onto the gold nanoparticles (NPs). The scFv-cys stabilized gold NPs were used to develop a highly sensitive colorimetric immunosensor. The scFv-cys stabilized gold NPs were characterized by UV-vis spectra, transmission electron microscope (TEM) and FT-IR. After adding the antigen rabbit IgG, the solution of scFv-cys stabilized gold NPs shows obvious visible color change from deep red to light purple due to the aggregation of the gold nanoparticles. Based on the colorimetric aggregation of scFv-cys stabilized gold NPs, the immunosensor exhibits high sensitivity with detection limit of 1.7 nM and good specificity. The good properties of the colorimetric aggregation immunosensor would be attributed to the small size of scFv and the covalent link between the scFv and gold NPs that improve the better orientation and enhance the probe density. With the advantages of speed, simplicity and specificity, the colorimetric immunoassay based on the functionalized scFv stabilized gold NPs represents a promising approach for protein analysis and clinical diagnostics. PMID:19327975

  9. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  10. Rapid and efficient sonochemical formation of gold nanoparticles under ambient conditions using functional alkoxysilane.

    PubMed

    Wei, Ming-Yuan; Famouri, Leila; Carroll, Lloyd; Lee, Yongkuk; Famouri, Parviz

    2013-01-01

    Gold nanoparticles (NPs) are rapidly and efficiently formed under ambient conditions with a novel and highly-efficient sonochemical promoter. Despite of the presence of free oxygen, 3-glycidoxypropyltrimethoxysilane (GPTMS) showed remarkable efficiency in promoting the reduction rate of Au (III) than that of conventional promoters (primary alcohols). This is likely attributed to the formation of a variety of radical scavengers, which are alcoholic products from sonochemical hydrolysis of the epoxide group and methoxysilane moieties of GPTMS under weakly acidic conditions. Interestingly, the promotion is quenched by amine- or thiol-functionalized alkoxysilane, thereby producing marginal amounts of gold NPs. Furthermore, products of hydrolyzed GPTMS were confirmed to attach on the surface of gold NPs by attenuated total reflectance-Fourier transform infrared spectroscopy. However, according to transmission electron microscopy images, gold NPs that were produced in the presence of GPTMS tend to fuse with each other as condensation of silanols occurs, forming worm- or nugget-like gold nanostructures. The use of long chain surfactants (i.e. polyethylene glycol terminated with hydroxyl or carboxyl) inhibited the fusion, leading to mono-dispersed gold NPs. Additionally, the fact that this approach requires neither an ultrasound source with high frequency nor anaerobic conditions provides a huge advantage. These findings could potentially open an avenue for rapid and large-scale green-synthesis of gold NPs in future work. PMID:22938998

  11. Dilute nitric or nitrous acid solution containing halide ions as effective media for pure gold dissolution.

    PubMed

    Hojo, Masashi; Yamamoto, Masahiko; Okamura, Kei

    2015-08-14

    The greatly enhanced oxidation ability of dilute aqueous nitric acid (0.10-2.0 mol L(-1)) containing bromide and iodide salts as well as chloride salts has been examined based on the dissolution kinetics of pure gold at 30-60 °C. It has been found that bromide salts are more effective than chloride salts in gaining the ability of dissolving gold in dilute aqueous nitric acid solution. At 60 °C, a piece of gold-wire (ca. 20 mg) is dissolved in 20 mL of as low as 0.10 mol L(-1) HNO3 solution containing 1.0-5.0 mol L(-1) NaBr and the dissolution rate constant, log(k/s(-1)), increases linearly (from -5.78 to -4.52) with the increasing NaBr concentration. The addition of organic solvents, such as acetonitrile and acetic acid, causes acceleration of gold dissolution in LiBr and NaBr solutions. With increasing MeCN contents, for instance, the log(k/s(-1)) value of 0.10 mol L(-1) HNO3 solution containing 2.0 mol L(-1) NaBr increases linearly from -5.30 to -4.61 at 30% (v/v) MeCN. The bromide salts affect the gold dissolution rate constant in the order of KBr < NaBr < LiBr < CaBr2. With increasing NaI concentration (0.20-3.0 mol L(-1)), some acceleration in log(k/s(-1)) of 0.50 or 1.0 mol L(-1) HNO3 solution has been observed; however, the slope of acceleration as the function of NaI concentration is much smaller than that of NaCl or NaBr. The gold dissolution ability has been examined also for nitrous acid containing chloride and bromide ions at 35 °C. The NaNO2 solution containing twice or more amounts of HX (X = Cl, Br) gives the maximum efficiency for gold dissolution, according to the log(k/s(-1)) values of the mixed solutions of NaNO2 (0.10-2.0 mol L(-1)) and HX of various concentrations. The influence of oxidation by dilute nitric and nitrous acids on the gold dissolution is discussed from the standpoint of the redox potentials in "modified" aqueous solutions and not of the changes in the activity coefficients of ions.

  12. Self-Assembled Monolayers of Dithiophosphinic Acids on Gold

    NASA Astrophysics Data System (ADS)

    San Juan, Ronan Roca

    This dissertation reports the synthesis of derivatives of dithiophosphinic acids (R1R2DTPAs), and the formation and characterization of DTPA SAMs on gold to build a knowledge base on their nature of binding, organization of the alkyl chains and electrochemical barrier properties. The binding of DTPA molecules on gold depends on the morphology of the gold film: They bind in a mixed monodentate and bidentate modes on standard as-deposited (As-Dep) gold, while they fully chelate on smoother template-stripped (TS) gold. Chapter 2 focuses on van der Waals interactions of various alkyl chain lengths of symmetrical R2DTPA SAMs, which increase with increasing chain lengths similar to those of the analogous n-alkanethiol SAMs, but with alkyl chains that are generally less dense than those of n-alkanethiol SAMs. Chapter 3 addresses why the DTPA compounds do not chelate on the standard As-Dep gold by comparing (C16)2DTPA SAM to (C16 )2DDP SAM. Here, side chain crystallinity stabilizes DTPA SAM structure at the expense of chelation of the DTPA molecules, which leads to a mixture of bidentate and monodentate DTPA molecules, whereas the increased flexibility of the chains in DDP due to the oxygen atoms retains chelation of the DDP molecules. Chapter 4 focuses on the SAMs formed from RlongRshort DTPAs, which shows that the length of the short chain spacer affects SAM packing density and thickness. The SAMs of these molecules also show homogeneous mixing of Rlong and Rshort chains. Chapter 5 investigates PhRDTPA SAMs in preparation for molecular junction studies. The chelation of PhRDTPA molecules on TS gold allows the PhRDTPAs to act as molecular alligator clips. The length of the alkyl chains controls the density of the phenyl group and they fill in the voids between adsorbates to prevent electrical shorting. Finally, Chapter 6 incorporates OH tail group(s) to control the wettability of DTPA SAMs. The presence of OH groups in DTPAs forms hydrophilic SAMs. The symmetrical OH

  13. Development of functional gold nanorods for bioimaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Niidome, T.

    2010-06-01

    Gold nanorods have strong surface plasmon band at near-infrared light region, and are used as a photothermal converter. Since the near-infrared light penetrates into tissues deeply, it has been expected as a contrast agent for near infrared light bioimaging, a photosensitizer for photothermal therapy, and functional device for drug delivery system responding to near-infrared light irradiation. In this study, the surface plasmon bands of intravenously injected gold nanorods were monitored in the mouse abdomen using a spectrophotometer equipped with an integrating sphere, then we determined pharmacokinetics parameters of the gold nanorods after intravenous injection. Next, the PEG-modified gold nanorods were directly injected into subcutaneous tumors in mice, then, near-infrared pulsed laser light was irradiated the tumors. Significant tumor damage and suppression of the tumor growth was observed. We constructed targeted delivery system of the gold nanorods by modifying with a thermo-responsive polymer and a peptide responding to a protease activity. These modified gold nanorods are expected as functional nanodevices for photothermal therapy and drug delivery system.

  14. When gold meets chiral Brønsted acid catalysts: extending the boundaries of enantioselective gold catalysis.

    PubMed

    Inamdar, Suleman M; Konala, Ashok; Patil, Nitin T

    2014-12-14

    This review describes the development in the use of Au(I)/Brønsted acid binary catalytic systems to enable an enantioselective transformation in one-pot that cannot be achieved by gold catalysts alone. The examples discussed herein are promising since apart from using chiral ligands there exists a possibility of using chiral Brønsted acids. Clearly, the horizon for enantioselective gold catalysis has been expanded as more options to make the gold-catalyzed reactions enantioselective have become available. PMID:25177929

  15. Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.

    PubMed

    Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar

    2013-11-01

    It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.

  16. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  17. Surface functionalities of gold nanoparticles impact embryonic gene expression responses

    PubMed Central

    Truong, Lisa; Tilton, Susan C.; Zaikova, Tatiana; Richman, Erik; Waters, Katrina M.; Hutchison, James E.; Tanguay, Robert L.

    2012-01-01

    Incorporation of gold nanoparticles (AuNPs) into consumer products is increasing; however, there is a gap in available toxicological data to determine the safety of AuNPs. In this study, we utilised the embryonic zebrafish to investigate how surface functionalisation and charge influence molecular responses. Precisely engineered AuNPs with 1.5 nm cores were synthesised and functionalized with three ligands: 2-mercaptoethanesulfonic acid (MES), N,N,N-trimethylammoniumethanethiol (TMAT), or 2-(2-(2-mercaptoethoxy)ethoxy)ethanol. Developmental assessments revealed differential biological responses when embryos were exposed to the functionalised AuNPs at the same concentration. Using inductively coupled plasma–mass spectrometry, AuNP uptake was confirmed in exposed embryos. Following exposure to MES- and TMAT-AuNPs from 6 to 24 or 6 to 48 h post fertilisation, pathways involved in inflammation and immune response were perturbed. Additionally, transport mechanisms were misregulated after exposure to TMAT and MES-AuNPs, demonstrating that surface functionalisation influences many molecular pathways. PMID:22263968

  18. Synthesis and Functionalization of Gold Nanoparticles Using Chemically Modified ssDNA

    NASA Astrophysics Data System (ADS)

    Calabrese, P. G.

    In the first part of this thesis, methods for functionalizing spherical gold nanoparticles with nucleic acid binding ligands (aptamers) that target the VEGF receptor complex were developed. In order to provide a multiplexed labeling strategy for imaging the VEGF receptor complex in electron microscopy, gold nanoparticles of distinct sizes were conjugated to modified ssDNA aptamers that target the VEGF-A cytokine, the VEGFR-2 RTK receptor and a membrane associated co-receptor, Nrp-1. The modified ssDNA gold nanoparticle conjugates were applied to a human lung carcinoma cell line (A549) which has been shown to express each of these proteins and used as a model system for VEGF signaling. Binding constants for the modified aptamers were also determined using a fluorescence polarization anisotropy assay to determine KD and KOFF for the aptamers with their respective proteins. In the latter part of this thesis, a modied ssDNA SELEX protocol was also developed in order to evolve imidazole modied ssDNA sequences that assemble gold nanoparticles from Au3+ precursor ions in aqueous solution. Active sequences bound to nanoparticles were partitioned from inactive sequences based on density via ultracentrifugation through a discontinuous sucrose gradient. Colloidal gold solutions produced by the evolved pool had a distinct absorbance spectra and produced nanoparticles with a narrower distribution of sizes compared to colloidal gold solutions produced by the starting randomized pool of imidazole modified ssDNA. Sequencing data from the evolved pool shows that conserved 5 and 6 nt motifs were shared amongst many of the isolates, which indicates that these motifs could serve as chelation sites for gold atoms or help stabilize colloidal gold solutions in a base specific manner.

  19. Gold

    USGS Publications Warehouse

    Kirkemo, Harold; Newman, William L.; Ashley, Roger P.

    1998-01-01

    Through the ages, men and women have cherished gold, and many have had a compelling desire to amass great quantities of it -- so compelling a desire, in fact, that the frantic need to seek and hoard gold has been aptly named "gold fever." Gold was among the first metals to be mined because it commonly occurs in its native form -- that is, not combined with other elements -- because it is beautiful and imperishable, and because exquisite objects can be made from it.

  20. Colorimetric detection of mercury species based on functionalized gold nanoparticles.

    PubMed

    Chen, Ling; Li, Jinhua; Chen, Lingxin

    2014-09-24

    The speciation analysis of heavy metal pollutants is very important because different species induce different toxicological effects. Nanomaterial-assisted optical sensors have achieved rapid developments, displaying wide applications to heavy metal ions but few to metal speciation analysis. In this work, a novel colorimetric nanosensor strategy for mercury speciation was proposed for the first time, based on the analyte-induced aggregation of gold nanoparticles (Au NPs) with the assistance of a thiol-containing ligand of diethyldithiocarbamate (DDTC). Upon the addition of mercury species, because Hg-DDTC was more stable than Cu-DDTC, a place-displacement between Hg species and Cu(2+) would occur, and thereby the functionalized Au NPs would aggregate, resulting in a color change. Moreover, by virtue of the masking effect of ethylenediaminetetraacetic acid (EDTA), the nanosensor could readily discriminate organic mercury and inorganic mercury (Hg(2+)), and it is thus anticipated to shed some light on the colorimetric sensing of organic mercury. So, a direct, simple colorimetric assay for selective determination of Hg species was obtained, presenting high detectability, such as up to 10 nM for Hg(2+) and 15 nM for methylmercury. Meanwhile, the strategy offered excellent selectivity toward mercury species against other metal ions. The simple, rapid, and sensitive label-free colorimetric sensor for the determination of Hg species provided an attractive alternative to conventional methods, which usually involve sophisticated instruments, complicated processes, and long periods of time. More importantly, by using mercury as a model, an excellent nanomaterial-based optical sensing platform can be developed for speciation analysis of trace heavy metals, which can lead to nanomaterials stability change through smart functionalization and reasonable interactions.

  1. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching

    USGS Publications Warehouse

    Watterson, J.R.

    1994-01-01

    Microscopic filiform morphologies in gold which are indistinguishable from forms originally interpreted as bacterial in origin were produced in the laboratory by treating amalgams made from natural and artificial gold with hot nitric acid. Textures ranging from cobblestone to deeply crenulated to nodular filiform were produced in the laboratory from all tested natural and artificial gold amalgams; analogous textures widespread in Alaskan placer gold may have a similar inorganic origin. These results indicate that morphology alone cannot be considered adequate evidence of microbial involvement in gold formation. -Author

  2. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching

    USGS Publications Warehouse

    Watterson, J.R.

    1994-01-01

    Microscopic filiform morphologies in gold which are indistinguishable from forms originally interpreted as bacterial in origin were produced in the laboratory by treating amalgams made from natural and artificial gold with hot nitric acid. Textures ranging from cobblestone to deeply crenulated to nodular filiform were produced in the laboratory from all tested natural and artificial gold amalgams; analogous textures widespread in Alaskan placer gold may have a similar inorganic origin. These results indicate that morphology alone cannot be considered adequate evidence of microbial involvement in gold formation.

  3. Sensitive immunodetection through impedance measurements onto gold functionalized electrodes.

    PubMed

    Ameur, S; Martelet, C; Jaffrezic-Renault, N; Chovelon, J M

    2000-01-01

    This article deals with a direct electrochemical method of detecting antigens using new methods of functionalization of gold electrodes. Based on the reacting ability of gold with sulfhydryl groups, three protocols for the fixation of antibodies have been explored. They are based on either the self-assembling properties of functional thiols bearing long alkyl chains or the possibility of a direct coupling of antibody moieties. Coverage rates as high as 97% can be reached. The analysis of the electrochemical impedance behavior of such layers can lead to a sensitive method for the direct detection of the antibody/antigen interaction. The addition of a redox couple in the tested solution, acting as an amplifier, allowed detection limits for the antigens as low as a few picograms/milliliter to be reached. PMID:11209460

  4. Salt-mediated self-assembly of thioctic acid on gold nanoparticles.

    PubMed

    Volkert, Anna A; Subramaniam, Varuni; Ivanov, Michael R; Goodman, Amanda M; Haes, Amanda J

    2011-06-28

    Self-assembled monolayer (SAM) modification is a widely used method to improve the functionality and stability of bulk and nanoscale materials. For instance, the chemical compatibility and utility of solution-phase nanoparticles are often improved using covalently bound SAMs. Herein, solution-phase gold nanoparticles are modified with thioctic acid SAMs in the presence and absence of salt. Molecular packing density on the nanoparticle surfaces is estimated using X-ray photoelectron spectroscopy and increases by ∼20% when molecular self-assembly occurs in the presence versus the absence of salt. We hypothesize that as the ionic strength of the solution increases, pinhole and collapsed-site defects in the SAM are more easily accessible as the electrostatic interaction energy between adjacent molecules decreases, thereby facilitating the subsequent assembly of additional thioctic acid molecules. Significantly, increased SAM packing densities increase the stability of functionalized gold nanoparticles by a factor of 2 relative to nanoparticles functionalized in the absence of salt. These results are expected to improve the reproducible functionalization of solution-phase nanomaterials for various applications. PMID:21524135

  5. Method of making gold thiolate and photochemically functionalized microcantilevers

    DOEpatents

    Boiadjiev, Vassil I [Knoxville, TN; Brown, Gilbert M [Knoxville, TN; Pinnaduwage, Lal A [Knoxville, TN; Thundat, Thomas G [Knoxville, TN; Bonnesen, Peter V [Knoxville, TN; Goretzki, Gudrun [Nottingham, GB

    2009-08-25

    Highly sensitive sensor platforms for the detection of specific reagents, such as chromate, gasoline and biological species, using microcantilevers and other microelectromechanical systems (MEMS) whose surfaces have been modified with photochemically attached organic monolayers, such as self-assembled monolayers (SAM), or gold-thiol surface linkage are taught. The microcantilever sensors use photochemical hydrosilylation to modify silicon surfaces and gold-thiol chemistry to modify metallic surfaces thereby enabling individual microcantilevers in multicantilever array chips to be modified separately. Terminal vinyl substituted hydrocarbons with a variety of molecular recognition sites can be attached to the surface of silicon via the photochemical hydrosilylation process. By focusing the activating UV light sequentially on selected silicon or silicon nitride hydrogen terminated surfaces and soaking or spotting selected metallic surfaces with organic thiols, sulfides, or disulfides, the microcantilevers are functionalized. The device and photochemical method are intended to be integrated into systems for detecting specific agents including chromate groundwater contamination, gasoline, and biological species.

  6. Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles

    SciTech Connect

    Lavayen, V.; O'Dwyer, C. . E-mail: codwyer@tyndall.ie; Cardenas, G.; Gonzalez, G.; Sotomayor Torres, C.M.

    2007-04-12

    Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of {approx}0.9nm and a stability of {approx}85 days. V{sub 2}O{sub 5} nanotubes (VOx-NTs) with lengths of {approx}2{mu}m and internal hollow diameters of 20-100nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of {approx}4x10{sup -3}mol dm{sup -3}. The interchange reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane.

  7. Single-molecule DNA digestion in various alkanethiol-functionalized gold nanopores.

    PubMed

    Lee, Seungah; Kang, Seong Ho

    2013-03-30

    This paper presents the alkanethiol-functionalized environmental effects of individual DNA molecules in nanopores on enzyme digestion at the single-molecule level. A template consisting of gold deposited within a solid-state nanoporous polycarbonate membrane was used to trap individual λ-DNA and enzyme molecules. The gold surfaces were modified with various functional groups (-OH, -COOH, -NH3). The enzyme digestion rates of single DNA molecules increased with decreasing nanopore diameters. Surprisingly, the digestion rates in the l-cysteine chemisorbed nanopores were 2.1-2.6 times faster than in the mercaptoethanol chemisorbed gold nanopores, even though these nanopores had equivalent interspacial areas. In addition, the membrane of chemisorbed cysteamine with ionized functional groups of H3N(+) at pH 8.2 had a greater positive influence on the enzyme digestion rate than the membrane of chemisorbed mercaptoproponic acid with ionized carboxyl groups (COO(-)). These results suggest that the three-dimensional environment effect is strongly correlated with the functional group in confined nanopores and can significantly change the enzyme digestion rates for nanopores with different internal areas. PMID:23598226

  8. Evidence for the negative work function associated with positrons in gold.

    NASA Technical Reports Server (NTRS)

    Costello, D. G.; Groce, D. E.; Herring, D. F.; Mcgowan, J. W.

    1972-01-01

    Observation that positrons which have been thermalized in various moderators and coated with approximately 200-A gold leave the gold surface with an energy which peaks between 0.75 and 2.90 eV. This energy is thought to be associated with a positron or 'negative' work function of gold.

  9. Surface Coating by Gold Nanoparticles on Functional Polymers: On-Demand Portable Catalysts for Suzuki Reactions.

    PubMed

    García-Calvo, José; García-Calvo, Víctor; Vallejos, Saúl; García, Félix C; Avella, Manuel; García, José-Miguel; Torroba, Tomás

    2016-09-28

    We have developed new functionalized polymers capable of being easily coated by gold nanoparticles, uniformly distributed on the surface of the polymers, by simply adding a gold(III) solution in water to the polymers. The polymer-supported gold nanoparticle material was used as an efficient portable and reusable catalyst for Suzuki reactions in mixed organic-aqueous solvents. PMID:27617785

  10. Trace cancer biomarker quantification using polystyrene-functionalized gold nanorods

    PubMed Central

    Wu, Jian; Li, Wei; Hajisalem, Ghazal; Lukach, Ariella; Kumacheva, Eugenia; Hof, Fraser; Gordon, Reuven

    2014-01-01

    We demonstrate the application of polystyrene-functionalized gold nanorods (AuNRs) as a platform for surface enhanced Raman scattering (SERS) quantification of the exogenous cancer biomarker Acetyl Amantadine (AcAm). We utilize the hydrophobicity of the polystyrene attached to the AuNR surface to capture the hydrophobic AcAm from solution, followed by drying and detection using SERS. We achieve a detection limit of 16 ng/mL using this platform. This result shows clinical potential for low-cost early cancer detection. PMID:25574423

  11. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide.

    PubMed

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL(-1), which is 32 times lower than that of graphene oxide-based biosensor. PMID:26944998

  12. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide.

    PubMed

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL(-1), which is 32 times lower than that of graphene oxide-based biosensor.

  13. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map.

    PubMed

    Pandey, Sunil; Mewada, Ashmi; Thakur, Mukeshchand; Shah, Ritu; Oza, Goldie; Sharon, Madhuri

    2013-10-01

    Use of biologically modified gold nanoparticles (GNPs) as molecular vehicle to ferry potential anti-cancer drug berberine hydrochloride (BHC) using folic acid (FA) as targeting molecule is reported in this work. A tropical fruit peel, Trapa bispinosa is used to fabricate highly monodispersed GNPs, passivated with essential functional groups which were used as linkers to attach FA and BHC via amide linkage. Flocculation Parameter (FP) of biologically synthesized GNPs was calculated under different salt concentrations which were found to be very ideal under a physiological condition. Various statistical models were used to find drug release profile out of which Higuchi was found to be the most ideal. GNP-FA-BHC complexes were found to be active against folic acid expressing HeLa cells.

  14. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    PubMed

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids.

  15. Efficient nucleic acid delivery to murine regulatory T cells by gold nanoparticle conjugates

    PubMed Central

    Gamrad, Lisa; Rehbock, Christoph; Westendorf, Astrid M.; Buer, Jan; Barcikowski, Stephan; Hansen, Wiebke

    2016-01-01

    Immune responses have to be tightly controlled to guarantee maintenance of immunological tolerance and efficient clearance of pathogens and tumorigenic cells without induction of unspecific side effects. CD4+ CD25+ regulatory T cells (Tregs) play an important role in these processes due to their immunosuppressive function. Genetic modification of Tregs would be helpful to understand which molecules and pathways are involved in their function, but currently available methods are limited by time, costs or efficacy. Here, we made use of biofunctionalized gold nanoparticles as non-viral carriers to transport genetic information into murine Tregs. Confocal microscopy and transmission electron microscopy revealed an efficient uptake of the bioconjugates by Tregs. Most importantly, coupling eGFP-siRNA to those particles resulted in a dose and time dependent reduction of up to 50% of eGFP expression in Tregs isolated from Foxp3eGFP reporter mice. Thus, gold particles represent a suitable carrier for efficient import of nucleic acids into murine CD4+ CD25+ Tregs, superior to electroporation. PMID:27381215

  16. Efficient nucleic acid delivery to murine regulatory T cells by gold nanoparticle conjugates.

    PubMed

    Gamrad, Lisa; Rehbock, Christoph; Westendorf, Astrid M; Buer, Jan; Barcikowski, Stephan; Hansen, Wiebke

    2016-01-01

    Immune responses have to be tightly controlled to guarantee maintenance of immunological tolerance and efficient clearance of pathogens and tumorigenic cells without induction of unspecific side effects. CD4(+) CD25(+) regulatory T cells (Tregs) play an important role in these processes due to their immunosuppressive function. Genetic modification of Tregs would be helpful to understand which molecules and pathways are involved in their function, but currently available methods are limited by time, costs or efficacy. Here, we made use of biofunctionalized gold nanoparticles as non-viral carriers to transport genetic information into murine Tregs. Confocal microscopy and transmission electron microscopy revealed an efficient uptake of the bioconjugates by Tregs. Most importantly, coupling eGFP-siRNA to those particles resulted in a dose and time dependent reduction of up to 50% of eGFP expression in Tregs isolated from Foxp3eGFP reporter mice. Thus, gold particles represent a suitable carrier for efficient import of nucleic acids into murine CD4(+) CD25(+) Tregs, superior to electroporation. PMID:27381215

  17. SERS detection of uranyl using functionalized gold nanostars promoted by nanoparticle shape and size.

    PubMed

    Lu, Grace; Forbes, Tori Z; Haes, Amanda J

    2016-08-15

    The radius of curvature of gold (Au) nanostar tips but not the overall particle dimensions can be used for understanding the large and quantitative surface-enhanced Raman scattering (SERS) signal of the uranyl (UO2)(2+) moiety. The engineered roughness of the Au nanostar architecture and the distance between the gold surface and uranyl cations are promoted using carboxylic acid terminated alkanethiols containing 2, 5, and 10 methylene groups. By systematically varying the self-assembled monolayer (SAM) thickness with these molecules, the localized surface plasmon resonance (LSPR) spectral properties are used to quantify the SAM layer thickness and to promote uranyl coordination to the Au nanostars in neutral aqueous solutions. Successful uranyl detection is demonstrated for all three functionalized Au nanostar samples as indicated by enhanced signals and red-shifts in the symmetric U(vi)-O stretch. Quantitative uranyl detection is achieved by evaluating the integrated area of these bands in the uranyl fingerprint window. By varying the concentration of uranyl, similar free energies of adsorption are observed for the three carboxylic acid terminated functionalized Au nanostar samples indicating similar coordination to uranyl, but the SERS signals scale inversely with the alkanethiol layer thickness. This distance dependence follows previously established models assuming that roughness features associated with the radius of curvature of the tips are considered. These results indicate that SERS signals using functionalized Au nanostar substrates can provide quantitative detection of small molecules and that the tip architecture plays an important role in understanding the resulting SERS intensities. PMID:27326897

  18. Decarboxylative functionalization of cinnamic acids.

    PubMed

    Borah, Arun Jyoti; Yan, Guobing

    2015-08-14

    Decarboxylative functionalization of α,β-unsaturated carboxylic acids is an emerging area that has been developed significantly in recent years. This critical review focuses on the different decarboxylative functionalization reactions of cinnamic acids leading to the formation of various C-C and C-heteroatom bonds. Apart from metal carboxylates, decarboxylation in cinnamic acids has been achieved efficiently under metal-free conditions, particularly via the use of hypervalent iodine reagents. We believe this review will encourage organic chemists to develop vinylic decarboxylation in a more appealing way with an understanding of new mechanistic insight.

  19. One pot, rapid and efficient synthesis of water dispersible gold nanoparticles using alpha-amino acids.

    PubMed

    Wangoo, Nishima; Kaur, Sarabjit; Bajaj, Manish; Jain, D V S; Sharma, Rohit K

    2014-10-31

    A detailed study on the synthesis of spherical and monodispersed gold nanoparticles (AuNPs) using all of the 20 naturally occurring α-amino acids has been reported. The synthesized nanoparticles have been further characterized using various techniques such as absorbance spectroscopy, transmission electron microscopy, dynamic light scattering and nuclear magnetic resonance. Size control of the nanoparticles has been achieved by varying the ratio of the gold ion to the amino acid. These monodispersed water soluble AuNPs synthesized using non-toxic, naturally occurring α-amino acids as reducing and capping/stabilizing agents serve as a remarkable example of green chemistry.

  20. One pot, rapid and efficient synthesis of water dispersible gold nanoparticles using alpha-amino acids

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Kaur, Sarabjit; Bajaj, Manish; Jain, D. V. S.; Sharma, Rohit K.

    2014-10-01

    A detailed study on the synthesis of spherical and monodispersed gold nanoparticles (AuNPs) using all of the 20 naturally occurring α-amino acids has been reported. The synthesized nanoparticles have been further characterized using various techniques such as absorbance spectroscopy, transmission electron microscopy, dynamic light scattering and nuclear magnetic resonance. Size control of the nanoparticles has been achieved by varying the ratio of the gold ion to the amino acid. These monodispersed water soluble AuNPs synthesized using non-toxic, naturally occurring α-amino acids as reducing and capping/stabilizing agents serve as a remarkable example of green chemistry.

  1. Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes.

    PubMed

    Li, Wenchen; Liu, Qingsheng; Liu, Lingyun

    2014-10-28

    We report two new amino acid based antifouling zwitterionic polymers, poly(N(4)-(2-methacrylamidoethyl)asparagine) (pAspAA) and poly(N(5)-(2-methacrylamidoethyl)glutamine) (pGluAA). The vinyl monomers were developed from aspartic acid and glutamic acid. Surface-initiated photoiniferter-mediated polymerization was employed to graft polymer brushes from gold surfaces. Different thickness of polymer brushes was controlled by varying UV irradiation time. The nonspecific adsorption from undiluted human blood serum and plasma was studied by surface plasmon resonance (SPR). With the polymer film as thin as 11-12 nm, the adsorption on pAspAA from serum and plasma was as low as 0.75 and 5.18 ng/cm(2), respectively, and 1.88 and 10.15 ng/cm(2), respectively, for pGluAA. The adsorption amount is comparable to or even better than other amino acid based zwitterionic polymers such as poly(serine methacrylate), poly(lysine methacrylamide), and poly(ornithine methacrylamide) and other widely used antifouling polymers such as poly(sulfobetaine methacrylate), even under thinner polymer film thickness. The pAspAA and pGluAA grafted surfaces also showed strong resistance to endothelial cell attachment. The possession of both zwitterionic structure and hydrophilic amide groups, biomimetic property, and multifunctionality make pAspAA and pGluAA promising candidates for biocompatible antifouling functionalizable materials. PMID:25262768

  2. Antifouling gold surfaces grafted with aspartic acid and glutamic acid based zwitterionic polymer brushes.

    PubMed

    Li, Wenchen; Liu, Qingsheng; Liu, Lingyun

    2014-10-28

    We report two new amino acid based antifouling zwitterionic polymers, poly(N(4)-(2-methacrylamidoethyl)asparagine) (pAspAA) and poly(N(5)-(2-methacrylamidoethyl)glutamine) (pGluAA). The vinyl monomers were developed from aspartic acid and glutamic acid. Surface-initiated photoiniferter-mediated polymerization was employed to graft polymer brushes from gold surfaces. Different thickness of polymer brushes was controlled by varying UV irradiation time. The nonspecific adsorption from undiluted human blood serum and plasma was studied by surface plasmon resonance (SPR). With the polymer film as thin as 11-12 nm, the adsorption on pAspAA from serum and plasma was as low as 0.75 and 5.18 ng/cm(2), respectively, and 1.88 and 10.15 ng/cm(2), respectively, for pGluAA. The adsorption amount is comparable to or even better than other amino acid based zwitterionic polymers such as poly(serine methacrylate), poly(lysine methacrylamide), and poly(ornithine methacrylamide) and other widely used antifouling polymers such as poly(sulfobetaine methacrylate), even under thinner polymer film thickness. The pAspAA and pGluAA grafted surfaces also showed strong resistance to endothelial cell attachment. The possession of both zwitterionic structure and hydrophilic amide groups, biomimetic property, and multifunctionality make pAspAA and pGluAA promising candidates for biocompatible antifouling functionalizable materials.

  3. Thermally controlled photocatalytic coalescence of functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Cohen, Moshik; Zalevsky, Zeev; Pocoví-Martínez, Salvador; Shahmoon, Asaf; Pérez-Prieto, Julia

    2014-05-01

    The selective synthesis of gold nanoparticles of any desired size is of great interest. Benzophenone in THF has proved to act as an efficient photocatalyst for the growth of thiolate-capped nanoparticles in the presence and in the absence of gold salts. Consequently, we explored the effect of applying thermal energy to control these processes. These studies have provided key information for the effective growth of gold nanoparticles tailored to specific applications.

  4. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  5. Synthesis of Gold Nanoflowers Encapsulated with Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels.

    PubMed

    Bae, Saet-Byeol; Lee, Sang-Wha

    2015-10-01

    In this work, hydrogel-coated gold nanoflowers (AuNFs@hydrogel) were facilely prepared. First, gold nanoflowers (AuNFs) were synthesized by reducing gold acid with ascorbic acid in the presence of chitosan biopolymers, and the chitosan-mediated AuNFs were subsequently conjugated with oleic acid with carboxylate groups. Finally, the olefin-conjugated AuNFs were encapsulated with P(NIPAM-co-AAC) hydrogels via a radical polymerization reaction with co-monomer ratio of [NIPAM:AAc = 91:9 wt%]. The encapsulated hydrogels had a lower critical solution temperature (LCST) slightly above the physiological temperature and demonstrated a thermo-sensitive variation of particle size. The hydrogel-coated AuNFs can be utilized as a promising thermo-responsive drug delivery system with a unique optical property. As-prepared samples were characterized by DLS, SEM, TEM, UV-vis and Zeta potential meter. PMID:26726447

  6. Structure and Function Evolution of Thiolate Monolayers on Gold

    SciTech Connect

    Grant Alvin Edwards

    2006-05-01

    The use of n-alkanethiolate self-assembled monolayers on gold has blossomed in the past few years. These systems have functioned as models for common interfaces. Thiolate monolayers are ideal because they are easily modified before or after deposition. The works contained within this dissertation include interfacial characterization (inbred reflection absorption spectroscopy, ellipsometry, contact angle, scanning probe microscopy, and heterogeneous electron-transfer kinetics) and various modeling scenarios. The results of these characterizations present ground-breaking insights into the structure, function, and reproducible preparation of these monolayers. Surprisingly, three interfacial properties (electron-transfer, contact angle, and ellipsometry) were discovered to depend directly on the odd-even character of the monolayer components. Molecular modeling was utilized to investigate adlayer orientation, and suggests that these effects are adlayer structure specific. Finally, the electric force microscopy and theoretical modeling investigations of monolayer samples are presented, which show that the film dielectric constant, thickness, and dipole moment directly affect image contrast. In addition, the prospects for utilization of this emerging technique are outlined.

  7. Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene-gold nanogap electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Longlong; Zhang, Qian; Tao, Shuhui; Zhao, Cezhou; Almutib, Eman; Al-Galiby, Qusiy; Bailey, Steven W. D.; Grace, Iain; Lambert, Colin J.; Du, Jun; Yang, Li

    2016-07-01

    Graphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that the transport is consistent with phase-coherent tunneling, but with an attenuation factor of βN = 0.69 per methyl unit, which is lower than the value measured for Au-molecule-Au junctions. Comparison with density-functional-theory calculations of electron transport through graphene-molecule-Au junctions and Au-molecule-Au junctions reveals that this difference is due to the difference in Fermi energies of the two types of junction, relative to the frontier orbitals of the molecules. For most molecules, their electrical conductance in graphene-molecule-Au junctions is higher than that in Au-molecule-Au junctions, which suggests that graphene offers superior electrode performance, when utilizing carboxylic acid anchor groups.Graphene-based electrodes are attractive for single-molecule electronics due to their high stability and conductivity and reduced screening compared with metals. In this paper, we use the STM-based matrix isolation I(s) method to measure the performance of graphene in single-molecule junctions with one graphene electrode and one gold electrode. By measuring the length dependence of the electrical conductance of dicarboxylic-acid-terminated alkanes, we find that the transport is consistent with phase-coherent tunneling, but with an attenuation factor of βN = 0.69 per methyl unit, which is lower than the value measured for Au-molecule-Au junctions. Comparison with density-functional-theory calculations of electron transport through graphene-molecule-Au junctions and Au

  8. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Wang, Sijia; Xu, Hao; Wang, Bo; Yao, Cuiping

    2015-05-01

    There are three possible mechanisms for 5-aminolevulinic acid (5-ALA) conjugated gold nanoparticles (GNPs) through electrostatic bonding for photodynamic therapy (PDT) of cancer: GNPs delivery function, singlet oxygen generation (SOG) by GNPs irradiated by light, and surface resonance enhancement (SRE) of SOG. Figuring out the exact mechanism is important for further clinical treatment. 5-ALA-GNPs and human chronic myeloid leukemia K562 cells were used to study delivery function and SOG by GNPs. The SRE of SOG enabled by GNPs was explored by protoporphyrin IX (PpIX)-GNPs conjugate through electrostatic bonding. Cell experiments show that the GNPs can improve the efficiency of PDT, which is due to the vehicle effect of GNPs. PpIX-GNPs conjugate experiments demonstrated that SOG can be improved about 2.5 times over PpIX alone. The experiments and theoretical results show that the local field enhancement (LFE) via localized surface plasmon resonance (LSPR) of GNPs is the major role; the LFE was dependent on the irradiation wavelength and the GNP's size. The LFE increased with an increase of the GNP size (2R ≤50 nm). However, the LSPR function of the GNPs was not found in cell experiments. Our study shows that in 5-ALA-conjugated GNPs PDT, the delivery function of GNPs is the major role.

  9. Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer.

    PubMed

    Zhang, Zhenxi; Wang, Sijia; Xu, Hao; Wang, Bo; Yao, Cuiping

    2015-05-01

    There are three possible mechanisms for 5-aminolevulinic acid (5-ALA) conjugated gold nanoparticles (GNPs) through electrostatic bonding for photodynamic therapy (PDT) of cancer: GNPs delivery function,singlet oxygen generation (SOG) by GNPs irradiated by light, and surface resonance enhancement (SRE) of SOG. Figuring out the exact mechanism is important for further clinical treatment. 5-ALA-GNPs and human chronic myeloid leukemia K562 cells were used to study delivery function and SOG by GNPs. The SRE of SOG enabled by GNPs was explored by protoporphyrin IX (PpIX)-GNPs conjugate through electrostatic bonding.Cell experiments show that the GNPs can improve the efficiency of PDT, which is due to the vehicle effect of GNPs. PpIX–GNPs conjugate experiments demonstrated that SOG can be improved about 2.5 times over PpIX alone. The experiments and theoretical results show that the local field enhancement (LFE) via localized surface plasmon resonance (LSPR) of GNPs is the major role; the LFE was dependent on the irradiation wavelength and the GNP's size. The LFE increased with an increase of the GNP size (2R ≤ 50 nm). However, the LSPR function of the GNPs was not found in cell experiments. Our study shows that in 5-ALA-conjugated GNPs PDT, the delivery function of GNPs is the major role.

  10. Ultrafast laser functionalized rare phased gold-silicon/silicon oxide nanostructured hybrid biomaterials.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-12-01

    We introduce a hybrid nanostructured biomaterial that is a combination of rare phases of immiscible gold and silicon oxide, functionalized via ultrafast laser synthesis. For the first time, we show cancer controlling properties of rare phases of gold silicides, which include Au7Si, Au5Si, Au0.7Si2.3 and Au8Si2. Conventionally, pure forms of gold and silicon/silicon oxide are extensively employed in targeted therapy and drug delivery systems due to their unique properties. While silicon and silicon oxide nanoparticles have shown biocompatibility, gold nanoparticles show conflicting results based on their size and material properties. Several studies have shown that gold and silicon combinations produce cell controlling properties, however, these studies were not able to produce a homogenous combination of gold and silicon, owing to its immiscibility. A homogenous combination of gold and silicon may potentially enable properties that have not previously been reported. We describe rare phased gold-silicon oxide nanostructured hybrid biomaterials and its unique cancer controlling properties, owing to material properties, concentration, size and density. The gold-silicon oxide nanostructured hybrid is composed of individual gold-silicon oxide nanoparticles in various concentrations of gold and silicon, some nanoparticles possess a gold-core and silicon-shell like structure. The individual nanoparticles are bonded together forming a three dimensional nanostructured hybrid. The interaction of the nanostructured hybrids with cervical cancer cells showed a 96% reduction in 24h. This engineered nanostructured hybrid biomaterial presents significant potential due to the combination of immiscible gold and silicon oxide in varying phases and can potentially satiate the current vacuum in cancer therapy.

  11. Ultrafast laser functionalized rare phased gold-silicon/silicon oxide nanostructured hybrid biomaterials.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-12-01

    We introduce a hybrid nanostructured biomaterial that is a combination of rare phases of immiscible gold and silicon oxide, functionalized via ultrafast laser synthesis. For the first time, we show cancer controlling properties of rare phases of gold silicides, which include Au7Si, Au5Si, Au0.7Si2.3 and Au8Si2. Conventionally, pure forms of gold and silicon/silicon oxide are extensively employed in targeted therapy and drug delivery systems due to their unique properties. While silicon and silicon oxide nanoparticles have shown biocompatibility, gold nanoparticles show conflicting results based on their size and material properties. Several studies have shown that gold and silicon combinations produce cell controlling properties, however, these studies were not able to produce a homogenous combination of gold and silicon, owing to its immiscibility. A homogenous combination of gold and silicon may potentially enable properties that have not previously been reported. We describe rare phased gold-silicon oxide nanostructured hybrid biomaterials and its unique cancer controlling properties, owing to material properties, concentration, size and density. The gold-silicon oxide nanostructured hybrid is composed of individual gold-silicon oxide nanoparticles in various concentrations of gold and silicon, some nanoparticles possess a gold-core and silicon-shell like structure. The individual nanoparticles are bonded together forming a three dimensional nanostructured hybrid. The interaction of the nanostructured hybrids with cervical cancer cells showed a 96% reduction in 24h. This engineered nanostructured hybrid biomaterial presents significant potential due to the combination of immiscible gold and silicon oxide in varying phases and can potentially satiate the current vacuum in cancer therapy. PMID:26539809

  12. Spectroscopic studies of nucleic acid additions during seed-mediated growth of gold nanoparticles

    PubMed Central

    Tapp, Maeling; Sullivan, Rick; Dennis, Patrick; Naik, Rajesh R.

    2015-01-01

    The effect of adding nucleic acids to gold seeds during the growth stage of either nanospheres or nanorods was investigated using UV-Vis spectroscopy to reveal any oligonucleotide base or structure-specific effects on nanoparticle growth kinetics or plasmonic signatures. Spectral data indicate that the presence of DNA duplexes during seed ageing drastically accelerated nanosphere growth while the addition of single-stranded polyadenine at any point during seed ageing induces nanosphere aggregation. For seeds added to a gold nanorod growth solution, single-stranded polythymine induces a modest blue-shift in the longitudinal peak wavelength. Moreover, a particular sequence comprised of 50% thymine bases was found to induce a faster, more dramatic blue-shift in the longitudinal peak wavelength compared to any of the homopolymer incubation cases. Monomeric forms of the nucleic acids, however, do not yield discernable spectral differences in any of the gold suspensions studied. PMID:25960601

  13. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity.

  14. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water.

    PubMed

    Sener, Gulsu; Uzun, Lokman; Denizli, Adil

    2014-01-01

    A facile colorimetric sensor array for detection of multiple toxic heavy metal ions (Hg(2+), Cd(2+), Fe(3+), Pb(2+), Al(3+), Cu(2+), and Cr(3+)) in water is demonstrated using 11-mercaptoundecanoic acid (MUA)-capped gold nanoparticles (AuNPs) and five amino acids (lysine, cysteine, histidine, tyrosine, and arginine). The presence of amino acids (which have functional groups that can form complexes with metal ions and MUA) regulates the aggregation of MUA-capped particles; it can either enhance or diminish the particle aggregation. The combinatorial colorimetric response of all channels of the sensor array (i.e., color change in each of AuNP and amino acid couples) enables naked-eye discrimination of all of the metal ions tested in this study with excellent selectivity. PMID:25330256

  15. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters.

    PubMed

    He, Liangcan; Mao, Chenchen; Cho, Suehyun; Ma, Ke; Xi, Weixian; Bowman, Christopher N; Park, Wounjhang; Cha, Jennifer N

    2015-11-01

    Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on photoluminescence. These studies showed that while UCNP fluorescence enhancement was observed from the AuNPs conjugated UCNPs, AuNSs tended to quench fluorescence. However, conjugating lower ratios of AuNSs to UCNPs led to reduced quenching. Simulation studies both confirmed the experimental results and demonstrated that the orientation and distance of the UCNP with respect to the core and arms of the gold nanostructures played a significant role in PL. In addition, the AuNS-UCNP assemblies were able to cause rapid gains in temperature of the surrounding medium enabling their potential use as a photoimaging-photodynamic-photothermal agent. PMID:26427014

  16. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters.

    PubMed

    He, Liangcan; Mao, Chenchen; Cho, Suehyun; Ma, Ke; Xi, Weixian; Bowman, Christopher N; Park, Wounjhang; Cha, Jennifer N

    2015-11-01

    Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on photoluminescence. These studies showed that while UCNP fluorescence enhancement was observed from the AuNPs conjugated UCNPs, AuNSs tended to quench fluorescence. However, conjugating lower ratios of AuNSs to UCNPs led to reduced quenching. Simulation studies both confirmed the experimental results and demonstrated that the orientation and distance of the UCNP with respect to the core and arms of the gold nanostructures played a significant role in PL. In addition, the AuNS-UCNP assemblies were able to cause rapid gains in temperature of the surrounding medium enabling their potential use as a photoimaging-photodynamic-photothermal agent.

  17. ELECTROCHEMICALLY DEPOSITED POLYMER-COATED GOLD ELECTRODES SELECTIVE FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    Electropolymerized membranes on gold electrodes doped with 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared from a solution containing resorcinol, o-phenylenediamine and 2,4-D. Fourier Transform Infrared (FTIR) spectroscopy was used to evaluate the incorporation and interact...

  18. Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-08-01

    A better understanding of the binding preference of amino acids for gold nanoparticles of different diameters could aid in the design of peptides that bind specifically to nanoparticles of a given diameter. Here we identify the binding preference of 19 natural amino acids for three gold nanoparticles with diameters of 1.0, 2.0, and 4.0 nm, and investigate the mechanisms that govern these preferences. We calculate potentials of mean force between 36 entities (19 amino acids and 17 side chains) and the three gold nanoparticles in explicit water using well-tempered metadynamics simulations. Comparing these potentials of mean force determines the amino acids' nanoparticle binding preferences and if these preferences are controlled by the backbone, the side chain, or both. Twelve amino acids prefer to bind to the 4.0 nm gold nanoparticle, and seven prefer to bind to the 2.0 nm one. We also use atomistic molecular dynamics simulations to investigate how water molecules near the nanoparticle influence the binding of the amino acids. The solvation shells of the larger nanoparticles have higher water densities than those of the smaller nanoparticles while the orientation distributions of the water molecules in the shells of all three nanoparticles are similar. The nanoparticle preferences of the amino acids depend on whether their binding free energy is determined mainly by their ability to replace or to reorient water molecules in the nanoparticle solvation shell. The amino acids whose binding free energy depends mainly on the replacement of water molecules are likely to prefer to bind to the largest nanoparticle and tend to have relatively simple side chain structures. Those whose binding free energy depends mainly on their ability to reorient water molecules prefer a smaller nanoparticle and tend to have more complex side chain structures.

  19. Two-photon Luminescence Imaging of Bacillus Spores Using Peptide-functionalized Gold Nanorods

    PubMed Central

    He, Wei; Henne, Walter A.; Wei, Qingshan; Zhao, Yan; Doorneweerd, Derek D.; Cheng, Ji-Xin; Low, Philip S.; Wei, Alexander

    2009-01-01

    Bacillus subtilis spores (a simulant of Bacillus anthracis) have been imaged by two-photon luminescence (TPL) microscopy, using gold nanorods (GNRs) functionalized with a cysteine-terminated homing peptide. Control experiments using a peptide with a scrambled amino acid sequence confirmed that the GNR targeting was highly selective for the spore surfaces. The high sensitivity of TPL combined with the high affinity of the peptide labels enables spores to be detected with high fidelity using GNRs at femtomolar concentrations. It was also determined that GNRs are capable of significant TPL output even when irradiated at near infrared (NIR) wavelengths far from their longitudinal plasmon resonance (LPR), permitting considerable flexibility in the choice of GNR aspect ratio or excitation wavelength for TPL imaging. PMID:20098661

  20. Surface crystallographic dependence of voltammetric oxidation of polyhydric alcohols and related systems at monocrystalline gold-acidic aqueous interfaces

    NASA Astrophysics Data System (ADS)

    Hamelin, Antoinette; Ho, Yeunghaw; Chang, Si-Chung; Gao, Xiaoping; Weaver, Michael J.

    1992-02-01

    The voltammetric oxidation in aqueous 0.1 Molar perchloric acid of four polyhydric alcohols, ethylene glycol, glycerol, meso-erythritol, and d-mannitol, on seven oriented gold surfaces is reported with the objective of assessing the role of surface crystallographic orientation on the catalytic electrooxidation of such poly-functional reactants. The automatically well-ordered nature of these gold surfaces has been scrutinized by in-situ scanning tunneling microscopy. In particular, the Au(221) and (533) faces were selected since they provide stepped surfaces, 4(111)-(111) and 4(111)-(100), respectively. The results are compared with corresponding data for simple unifunctional reactants, specifically for formic acid oxidation and with results reported previously for carbon monoxide oxidation. In contrast to the last reaction, the electrooxidation rates for both the polyhydric alcoholic and formic acid are greatest on Au(111), with Au(110) displaying unusually low activity. While formic acid electrooxidation is insensitive to the presence of monoatomic surface steps, the polyhydric alcohols (especially mannitol) are substantially less reactive on AU(221) and (533) relative to Au(111).

  1. Optical and electronic properties of polyaniline sulfonic acid-ribonucleic acid-gold nanobiocomposites.

    PubMed

    Routh, Parimal; Garai, Ashesh; Nandi, Arun K

    2011-08-14

    Finely fibrillar polyaniline sulfonic acid (PSA)/ribonucleic acid (RNA) hybrids are developed by wrapping PSA with RNA from a mixture of aqueous PSA (P) and RNA (R) solutions of different compositions. FTIR spectra suggest H-bonding and π-π interactions in the hybrids and dedoping of self doped PSA during hybrid formation. UV-vis spectra exhibit a blue shift of the π-band to polaron band transition of PSA from 870 to 581 nm due to dedoping. The PR hybrids show enhanced PL-properties when excited at 540 nm relative to PSA which also exhibits rectification behavior in current (I)-voltage (V) curves. Gold nanoparticles (Au NPs) grown on these PR hybrids by the reduction of Au(3+) by PSA show different morphologies with varying composition. FTIR spectra of the nanobiocomposites indicate that Au NPs are stabilized by the co-ordination of the nitrogen atoms of -N=Q=N- bonds of PSA (Q = quinonoid ring). The intensity of the Au plasmon band gradually decreases with time but the PL-intensities of the PAu/PRAu nanocomposites increase with time. The PL-intensity of the nanocomposites is higher than that of PSA and PR hybrids. The DC-conductivity of the PR hybrids increases by an order of magnitude on addition of Au NPs. I-V curves of the nanobiocomposites show negative differential resistance (NDR) in PSA rich systems with a stable NDR ratio of 7 in the PRAu21 and PRAu11 hybrids. Possible reasons from the accumulation of charges on the Au NPs and its stabilization through the π-clouds of RNA bases are discussed. The PRAu11 system also exhibits rectification properties with a rectification ratio of 14.

  2. Optical and electronic properties of polyaniline sulfonic acid-ribonucleic acid-gold nanobiocomposites.

    PubMed

    Routh, Parimal; Garai, Ashesh; Nandi, Arun K

    2011-08-14

    Finely fibrillar polyaniline sulfonic acid (PSA)/ribonucleic acid (RNA) hybrids are developed by wrapping PSA with RNA from a mixture of aqueous PSA (P) and RNA (R) solutions of different compositions. FTIR spectra suggest H-bonding and π-π interactions in the hybrids and dedoping of self doped PSA during hybrid formation. UV-vis spectra exhibit a blue shift of the π-band to polaron band transition of PSA from 870 to 581 nm due to dedoping. The PR hybrids show enhanced PL-properties when excited at 540 nm relative to PSA which also exhibits rectification behavior in current (I)-voltage (V) curves. Gold nanoparticles (Au NPs) grown on these PR hybrids by the reduction of Au(3+) by PSA show different morphologies with varying composition. FTIR spectra of the nanobiocomposites indicate that Au NPs are stabilized by the co-ordination of the nitrogen atoms of -N=Q=N- bonds of PSA (Q = quinonoid ring). The intensity of the Au plasmon band gradually decreases with time but the PL-intensities of the PAu/PRAu nanocomposites increase with time. The PL-intensity of the nanocomposites is higher than that of PSA and PR hybrids. The DC-conductivity of the PR hybrids increases by an order of magnitude on addition of Au NPs. I-V curves of the nanobiocomposites show negative differential resistance (NDR) in PSA rich systems with a stable NDR ratio of 7 in the PRAu21 and PRAu11 hybrids. Possible reasons from the accumulation of charges on the Au NPs and its stabilization through the π-clouds of RNA bases are discussed. The PRAu11 system also exhibits rectification properties with a rectification ratio of 14. PMID:21698302

  3. Electrochemical investigations of 3-(3-thienyl) acrylic acid protected nanoclusters and planar gold surfaces.

    PubMed

    Nirmal, R G; Kavitha, A L; Berchmans, Sheela; Yegnaraman, V

    2007-06-01

    Formation of self assembled monolayers on gold surface by thiols and disulphides is a well known phenomenon and extensive research work has been carried out in this area with envisaged applications in the area of sensors, molecular electronics, lithography, device fabrication using bottom-up approach, etc. Recently, it has been established that thiophene molecules can self assemble on gold surface due to Au-S interactions. 3-(3-thienyl) acrylic acid, a bifunctional ligand is used in this work to form self-assembled monolayers on planar gold surfaces (two dimensional assemblies) and to prepare monolayer protected gold nano clusters (three-dimensional assemblies). The electron transfer blocking properties of the two-dimensional monolayers were evaluated by using standard redox probes like ferrocyanide anions and Ruthenium hexamine cations. The functionalisation of the two-dimensional and three-dimensional assemblies has been carried out with ferrocene carboxylic acid and the functionalised monolayers were characterized by Cyclic voltammetry. The formation of thienyl acrylic acid protected nanoclusters has been verified by TEM and surface plasmon resonance absorption. It has been observed that when thiophene based ligands are used as stabilizers for the formation of metal nanoparticles, they tend to aggregate as a result of pi-pi interactions between adjacent thiophene ligands. In this case it is found that aggregation is prevented. The substituent at the thiophene ring hinders pi-pi interactions. The quantised nature of electrochemical charging of these nanoparticles has been demonstrated by differential pulse voltammetry (DPV), which exhibit peak like features (coulomb's staircase). This work also explores the possibility of using 3-(3-thienyl) acrylic acid as building blocks or spacers on planar and colloidal gold surfaces for potential applications in the field of sensors and devices.

  4. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    PubMed

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    2016-01-01

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water. PMID:27438241

  5. Templating gold surfaces with function: a self-assembled dendritic monolayer methodology based on monodisperse polyester scaffolds.

    PubMed

    Öberg, Kim; Ropponen, Jarmo; Kelly, Jonathan; Löwenhielm, Peter; Berglin, Mattias; Malkoch, Michael

    2013-01-01

    The antibiotic resistance developed among several pathogenic bacterial strains has spurred interest in understanding bacterial adhesion down to a molecular level. Consequently, analytical methods that rely on bioactive and multivalent sensor surfaces are sought to detect and suppress infections. To deliver functional sensor surfaces with an optimized degree of molecular packaging, we explore a library of compact and monodisperse dendritic scaffolds based on the nontoxic 2,2-bis(methylol)propionic acid (bis-MPA). A self-assembled dendritic monolayer (SADM) methodology to gold surfaces capitalizes on the design of aqueous soluble dendritic structures that bear sulfur-containing core functionalities. The nature of sulfur (either disulfide or thiol), the size of the dendritic framework (generation 1-3), the distance between the sulfur and the dendritic wedge (4 or 14 Å), and the type of functional end group (hydroxyl or mannose) were key structural elements that were identified to affect the packaging densities assembled on the surfaces. Both surface plasmon resonance (SPR) and resonance-enhanced surface impedance (RESI) experiments revealed rapid formation of homogenously covered SADMs on gold surfaces. The array of dendritic structures enabled the fabrication of functional gold surfaces displaying molecular covering densities of 0.33-2.2 molecules·nm(-2) and functional availability of 0.95-5.5 groups·nm(-2). The cell scavenging ability of these sensor surfaces for Escherichia coli MS7fim+ bacteria revealed 2.5 times enhanced recognition for G3-mannosylated surfaces when compared to G3-hydroxylated SADM surfaces. This promising methodology delivers functional gold sensor surfaces and represents a facile route for probing surface interactions between multivalently presented motifs and cells in a controlled surface setting.

  6. Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics.

    PubMed

    Nicol, James R; Dixon, Dorian; Coulter, Jonathan A

    2015-01-01

    With several gold nanoparticle-based therapies currently undergoing clinical trials, these treatments may soon be in the clinic as novel anticancer agents. Gold nanoparticles are the subject of a wide ranging international research effort with preclinical studies underway for multiple applications including photoablation, diagnostic imaging, radiosensitization and multifunctional drug-delivery vehicles. These applications require an increasingly complex level of surface modification in order to achieve efficacy and limit off-target toxicity. This review will discuss the main obstacles in relation to surface functionalization and the chemical approaches commonly utilized. Finally, we review a range of recent preclinical studies that aim to advance gold nanoparticle treatments toward the clinic.

  7. Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development.

    PubMed

    Taylor, Ulrike; Tiedemann, Daniela; Rehbock, Christoph; Kues, Wilfried A; Barcikowski, Stephan; Rath, Detlef

    2015-01-01

    The use of engineered nanoparticles has risen exponentially over the last decade. Applications are manifold and include utilisation in industrial goods as well as medical and consumer products. Gold and silver nanoparticles play an important role in the current increase of nanoparticle usage. However, our understanding concerning possible side effects of this increased exposure to particles, which are frequently in the same size regime as medium sized biomolecules and accessorily possess highly active surfaces, is still incomplete. That particularly applies to reproductive aspects, were defects can be passed onto following generations. This review gives a brief overview of the most recent findings concerning reprotoxicological effects. The here presented data elucidate how composition, size and surface modification of nanoparticles influence viablility and functionality of reproduction relevant cells derived from various animal models. While in vitro cultured embryos displayed no toxic effects after the microinjection of gold and silver nanoparticles, sperm fertility parameters deteriorated after co-incubation with ligand free gold nanoparticles. However, the effect could be alleviated by bio-coating the nanoparticles, which even applies to silver and silver-rich alloy nanoparticles. The most sensitive test system appeared to be in vitro oocyte maturation showing a dose-dependent response towards protein (BSA) coated gold-silver alloy and silver nanoparticles leading up to complete arrest of maturation. Recent biodistribution studies confirmed that nanoparticles gain access to the ovaries and also penetrate the blood-testis and placental barrier. Thus, the design of nanoparticles with increased biosafety is highly relevant for biomedical applications. PMID:25821705

  8. Hematite spindles with optical functionalities: growth of gold nanoshells and assembly of gold nanorods.

    PubMed

    Spuch-Calvar, Miguel; Pérez-Juste, Jorge; Liz-Marzán, Luis M

    2007-06-01

    The layer-by-layer (LBL) assembly method, combined with the seeded growth technique, have been used to deposit gold shells on the surface of hematite (alpha-Fe(2)O(3)) spindles. While the LBL method yields dense coatings of preformed Au nanoparticles, when AuCl(-)(4) ions are further reduced by a mild reducing agent, thicker, rough nanostructured shells can be grown. The deposition process was monitored by TEM and UV-visible spectroscopy, demonstrating a gradual change in the optical features of the colloids as the surface is more densely covered. The particles so-prepared can find useful applications in cancer therapy and as SERS substrates. Additionally, we show that Au nanorods can be assembled on hematite spindles, providing a flexible way to tune the optical properties of the resulting composite colloids. PMID:17306291

  9. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria.

    PubMed

    Li, Xiaoning; Robinson, Sandra M; Gupta, Akash; Saha, Krishnendu; Jiang, Ziwen; Moyano, Daniel F; Sahar, Ali; Riley, Margaret A; Rotello, Vincent M

    2014-10-28

    We present the use of functionalized gold nanoparticles (AuNPs) to combat multi-drug-resistant pathogenic bacteria. Tuning of the functional groups on the nanoparticle surface provided gold nanoparticles that were effective against both Gram-negative and Gram-positive uropathogens, including multi-drug-resistant pathogens. These AuNPs exhibited low toxicity to mammalian cells, and bacterial resistance was not observed after 20 generations. A strong structure-activity relationship was observed as a function of AuNP functionality, providing guidance to activity prediction and rational design of effective antimicrobial nanoparticles.

  10. Sequence-Specific Electrical Purification of Nucleic Acids with Nanoporous Gold Electrodes.

    PubMed

    Daggumati, Pallavi; Appelt, Sandra; Matharu, Zimple; Marco, Maria L; Seker, Erkin

    2016-06-22

    Nucleic-acid-based biosensors have enabled rapid and sensitive detection of pathogenic targets; however, these devices often require purified nucleic acids for analysis since the constituents of complex biological fluids adversely affect sensor performance. This purification step is typically performed outside the device, thereby increasing sample-to-answer time and introducing contaminants. We report a novel approach using a multifunctional matrix, nanoporous gold (np-Au), which enables both detection of specific target sequences in a complex biological sample and their subsequent purification. The np-Au electrodes modified with 26-mer DNA probes (via thiol-gold chemistry) enabled sensitive detection and capture of complementary DNA targets in the presence of complex media (fetal bovine serum) and other interfering DNA fragments in the range of 50-1500 base pairs. Upon capture, the noncomplementary DNA fragments and serum constituents of varying sizes were washed away. Finally, the surface-bound DNA-DNA hybrids were released by electrochemically cleaving the thiol-gold linkage, and the hybrids were iontophoretically eluted from the nanoporous matrix. The optical and electrophoretic characterization of the analytes before and after the detection-purification process revealed that low target DNA concentrations (80 pg/μL) can be successfully detected in complex biological fluids and subsequently released to yield pure hybrids free of polydisperse digested DNA fragments and serum biomolecules. Taken together, this multifunctional platform is expected to enable seamless integration of detection and purification of nucleic acid biomarkers of pathogens and diseases in miniaturized diagnostic devices.

  11. Gold(I) thiolates containing amino acid moieties. Cytotoxicity and structure-activity relationship studies.

    PubMed

    Gutiérrez, Alejandro; Gracia-Fleta, Lucia; Marzo, Isabel; Cativiela, Carlos; Laguna, Antonio; Gimeno, M Concepción

    2014-12-01

    Several gold(I) complexes containing a thiolate ligand functionalised with several amino acid or peptide moieties of the type [Au(SPyCOR)(PPh2R')] (where R = OH, amino acid or dipeptide and R' = Ph or Py) were prepared. These thiolate gold complexes bearing biological molecules possess potential use as antitumor agents. Cytotoxicity assays in different tumour cell lines such as A549 (lung carcinoma), Jurkat (T-cell leukaemia) and MiaPaca2 (pancreatic carcinoma) revealed that the complexes exhibit good antiproliferative activity, with IC50 values in the low micromolar range. Several structural modifications such as in the type of phosphine, number of metal atoms and amino acid (type, stereochemistry and functionalisation) were carried out in order to establish the structure-activity relationship in this family of complexes, which has led to the design of new and more potent cytotoxic complexes. Observations of different cellular events after addition of the complexes indicated the possible mechanism of action or the biological targets of this type of new gold(I) drug.

  12. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.

    PubMed

    Doyen, Matthieu; Goole, Jonathan; Bartik, Kristin; Bruylants, Gilles

    2016-02-15

    Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate. In order to help elucidate this issue, the interaction between gold colloids and different amino acids, modified amino acids and molecules mimicking their side-chain was monitored by UV-Vis absorption, DLS and TEM. The results show that phenomenon can be rationalized in terms of the Diffusion Limited Colloid Aggregation (DLCA) model which gives rise to the fractal aggregation colloids. The global charge of the compound, which influences the ionic strength of the solution, and the ease with which the compound can interact with the GNPs and affect their surface potential, are, the two parameters which control the DLCA regime. Calculations based on the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory confirm all the experimental observations. PMID:26613335

  13. Amino acid induced fractal aggregation of gold nanoparticles: Why and how.

    PubMed

    Doyen, Matthieu; Goole, Jonathan; Bartik, Kristin; Bruylants, Gilles

    2016-02-15

    Gold colloids are the object of many studies as they are reported to have potential biological sensing, imaging and drug delivery applications. In the presence of certain amino acids the aggregation of the gold nanoparticles into linear structures is observed, as highlighted by the appearance of a second plasmon band in the UV-Vis spectra of the colloid. The mechanism behind this phenomenon is still under debate. In order to help elucidate this issue, the interaction between gold colloids and different amino acids, modified amino acids and molecules mimicking their side-chain was monitored by UV-Vis absorption, DLS and TEM. The results show that phenomenon can be rationalized in terms of the Diffusion Limited Colloid Aggregation (DLCA) model which gives rise to the fractal aggregation colloids. The global charge of the compound, which influences the ionic strength of the solution, and the ease with which the compound can interact with the GNPs and affect their surface potential, are, the two parameters which control the DLCA regime. Calculations based on the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory confirm all the experimental observations.

  14. Synthesis of new gold(I) thiolates containing amino acid moieties with potential biological interest.

    PubMed

    Gutiérrez, Alejandro; Bernal, Javier; Villacampa, M Dolores; Cativiela, Carlos; Laguna, Antonio; Gimeno, M Concepción

    2013-06-01

    The reaction of the gold(I) complex [Au(SpyCOOH)(PPh3)], which contains nicotinic acid thiolate, with several amino acid esters such as glycine methyl ester or the enantiomerically pure L isomers of alanine methyl ester, phenylalanine methyl ester, valine methyl ester, methionine methyl ester, and proline methyl ester produces the gold(I) derivatives with the new thiolate containing amino acid ester ligands [Au{SpyCONHCH(R)COOMe}(PPh3)]. The reaction of these amino acid ester derivatives with LiOH in methanol and acidification with KHSO4 until pH 3-4 afford the corresponding acids, which are water-soluble species. These amino acid compounds can be further coupled with other amines, such as, for example, isopropylamine, to give the corresponding amide derivatives. The species with glycine methyl ester and valine methyl ester have been characterized by X-ray crystallography, showing, in the second case, only one of the enantiomers, which proves that retention of the configuration after reaction occurs.

  15. Toward spatial control of gold nanorod surface functionalization

    NASA Astrophysics Data System (ADS)

    Eller, Jonathan R.

    Gold nanorods (GNRs) show much promise for applications in biological, optoelectronic and energy applications. The resonant generation of a localized surface plasmon resonance (LSPR) at the GNR surface results in interesting optical properties and unique interactions with molecules. Combined with their biocompatibility, ease of synthesis and facile surface functionalization, these anisotropic metal particles are excellent scaffolds for the study of the interactions between nanoscale surfaces and their chemical/biological environments. Regardless of the application, however, GNR utility will not be fully realized until the chemical nature of the surface is understood and controlled. GNRs can enhance various photophysical properties of molecules. In the case of two-photon absorption (TPA), cross-section enhancements have been shown to increase with strong distance-dependence. Here, a dual approach for the conjugation of a TPA chromophore to GNRs is presented, relying on layer-by- layer (LbL) polymer wrapping and direct thiol coating of the same parent chromophore structure. Together, these approaches allow for estimated chromophore-particle distances from <1nm to more than 15 nm. Composites were confirmed using conventional nanoparticle characterization methods. Imaging of GNR polymer shells indicated anisotropic composite structures, as confirmed by both conventional and cryo-TEM. Optical characterizations were performed using two-photon excited fluorescence and Z-scan techniques, to probe the TPA enhancement. The intrinsic nonlinear optical properties of GNRs is shown to contribute strongly to these measurements, suggesting the utility of these materials for bi-modal imaging platforms. GNR properties, like their shape, are anisotropic. The LSPR-induced near- fields are heterogeneously distributed on the nanorod surface, with the tips being much "hotter" than the sides. To understand and utilize fully the spatially- dependent interactions of GNRs with their

  16. Elucidating the influence of gold nanoparticles on the binding of salvianolic acid B and rosmarinic acid to bovine serum albumin.

    PubMed

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs.

  17. Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization

    PubMed Central

    2011-01-01

    Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand. PMID:21711615

  18. Synthesis of gold nanorods and their functionalization with bovine serum albumin for optical hyperthermia.

    PubMed

    Zhang, Liming; Xia, Kai; Bai, Ying-Ying; Tang, Yongjun; Deng, Yan; Chen, Juan; Qian, Weiping; Shen, He; Zhang, Zhijun; Ju, Shenghong; He, Nongyue

    2014-08-01

    Although gold nanorods (GNRs) have been investigated extensively for optical hyperthermia therapies, the synthesis of rods is far from ideal. In this report, we optimized the synthesis of gold nanorods using hydroquinone as a reducing agent. Compared with the GNRs prepared by traditional ways, the as-synthesized rods have a flexibly tunable size and wider range of longitudinal surface plasmon resonance (LSPR). Furthermore, a series of small-length gold nanorods with length ranging from 30 to 90 nm were synthesized and they are more suitable for in vivo biomedical applications. Finally, we exploited a convenient approach for preparing water-soluble GNRs with less toxicity, better dispersion and flexible functionalization by exchanging hexadecyltrimethylammonium bromide (CTAB) on the surface of the rods with carboxylated bovine serum albumin (BSA) derivative, the BSA modified GNRs showed significant anticancer efficacy through near infrared (NIR) hyperthermia. We believe that the as-prepared gold nanorods will find promising applications in biomedical fields, especially in cancer therapy.

  19. Protein-gold nanoclusters for identification of amino acids by metal ions modulated ratiometric fluorescence.

    PubMed

    Wang, Min; Mei, Qingsong; Zhang, Kui; Zhang, Zhongping

    2012-04-01

    Here we report that the dual fluorescence emissions from protein-gold (Au) nanoclusters can greatly be modulated by metal ions and the resultant fluorescence ratiometric responses provide a novel sensory method for the identification of amino acids. The protein-gold (Au) nanoclusters were simply synthesized by the reduction of chloroauric acid with bovine serum albumin (BSA), which exhibit dual emissions: the blue at 425 nm from the oxides of BSA, and the red at 635 nm from Au nanoclusters. It has been demonstrated that different metal ions react with BSA-Au nanoclusters and thus greatly affect the two emissions in different ways by fluorescence enhancement or quenching. Interestingly, the addition of amino acids leads to fluorescence ratiometric changes through the interactions with the bound metal ions. When BSA-Au nanocluster probes modulated by four different metal ions were used together to construct a sensor array, different amino acids were clearly discriminated by the distinctive patterns of four ratiometric fluorescence responses. Results and methods reported here provide a unique strategy for the determination of amino acids.

  20. Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?

    PubMed

    Park, Sujung; Woodhall, James; Ma, Guibin; Veinot, Jonathan G C; Boxall, Alistair B A

    2015-04-01

    Because of the widespread use of engineered nanoparticles (ENPs) in consumer and industrial products, it is inevitable that these materials will enter the environment. It is often stated that the uptake of ENPs into organisms in the environment is related to the particle size and surface functionality. To test this assumption, the present study investigated the uptake and depuration of gold nanoparticle (Au NPs) coated with either citrate (Au-citrate NPs), mercaptoundecanoic acid (Au-MUDA NPs), amino polyethylene glycol (PEG) thiol (Au-NH2 NPs), or PEG (Au-PEG NP) by the aquatic invertebrate Gammarus pulex. The studies were performed using a range of standard ecotoxicity media and natural waters, resulting in varying degrees of aggregation of the different NPs. Uptake of gold by G. pulex varied depending on the surface coatings, with Au-MUDA and Au-citrate NPs being taken up to a greater extent than Au-NH2 and Au-PEG NPs in all test media and natural waters. In all test media evaluated, higher amounts of amino and PEG-coated ENPs were eliminated compared with MUDA- and citrate-coated ENPs. No obvious relationships were seen between the aggregation state of the different Au NPs in treatment and uptake, suggesting that the widely accepted assumption that Au NP uptake is related to particle size does not hold for the range of aggregation states studied (67.1-178.8 nm). Positive correlations between particle number concentration in the media and uptake were observed, indicating that this factor might partly explain the differences in uptake of a particle from different media types.

  1. Synthesis and functionalization of nitrogen-doped carbon nanotube cups with gold nanoparticles as cork stoppers.

    PubMed

    Zhao, Yong; Tang, Yifan; Star, Alexander

    2013-05-13

    Nitrogen-doped carbon nanotubes consist of many cup-shaped graphitic compartments termed as nitrogen-doped carbon nanotube cups (NCNCs). These as-synthesized graphitic nanocups from chemical vapor deposition (CVD) method were stacked in a head-to-tail fashion held only through noncovalent interactions. Individual NCNCs can be isolated out of their stacking structure through a series of chemical and physical separation processes. First, as-synthesized NCNCs were oxidized in a mixture of strong acids to introduce oxygen-containing defects on the graphitic walls. The oxidized NCNCs were then processed using high-intensity probe-tip sonication which effectively separated the stacked NCNCs into individual graphitic nanocups. Owing to their abundant oxygen and nitrogen surface functionalities, the resulted individual NCNCs are highly hydrophilic and can be effectively functionalized with gold nanoparticles (GNPs), which preferentially fit in the opening of the cups as cork stoppers. These graphitic nanocups corked with GNPs may find promising applications as nanoscale containers and drug carriers.

  2. Synthesis and Functionalization of Nitrogen-doped Carbon Nanotube Cups with Gold Nanoparticles as Cork Stoppers

    PubMed Central

    Zhao, Yong; Tang, Yifan; Star, Alexander

    2013-01-01

    Nitrogen-doped carbon nanotubes consist of many cup-shaped graphitic compartments termed as nitrogen-doped carbon nanotube cups (NCNCs). These as-synthesized graphitic nanocups from chemical vapor deposition (CVD) method were stacked in a head-to-tail fashion held only through noncovalent interactions. Individual NCNCs can be isolated out of their stacking structure through a series of chemical and physical separation processes. First, as-synthesized NCNCs were oxidized in a mixture of strong acids to introduce oxygen-containing defects on the graphitic walls. The oxidized NCNCs were then processed using high-intensity probe-tip sonication which effectively separated the stacked NCNCs into individual graphitic nanocups. Owing to their abundant oxygen and nitrogen surface functionalities, the resulted individual NCNCs are highly hydrophilic and can be effectively functionalized with gold nanoparticles (GNPs), which preferentially fit in the opening of the cups as cork stoppers. These graphitic nanocups corked with GNPs may find promising applications as nanoscale containers and drug carriers. PMID:23712285

  3. Gold liposomes

    SciTech Connect

    Hainfeld, J.F.

    1996-12-31

    Lipids are an important class of molecules, being found in membranes, HDL, LDL, and other natural structures, serving essential roles in structure and with varied functions such as compartmentalization and transport. Synthetic liposomes are also widely used as delivery and release vehicles for drugs, cosmetics, and other chemicals; soap is made from lipids. Lipids may form bilayer or multilammellar vesicles, micelles, sheets, tubes, and other structures. Lipid molecules may be linked to proteins, carbohydrates, or other moieties. EM study of this essential ingredient of life has lagged, due to lack of direct methods to visualize lipids without extensive alteration. OsO4 reacts with double bonds in membrane phospholipids, forming crossbridges. This has been the method of choice to both fix and stain membranes, thus far. An earlier work described the use of tungstate clusters (W{sub 11}) attached to lipid moieties to form lipid structures and lipid probes. With the development of gold clusters, it is now possible to covalently and specifically link a dense gold sphere to a lipid molecule; for example, reacting a mono-N-hydroxysuccinimide Nanogold cluster with the amino group on phosphatidyl ethanolaminine. Examples of a gold-fatty acid and a gold-phospholipid are shown.

  4. Dietary amino acids and brain function.

    PubMed

    Fernstrom, J D

    1994-01-01

    Two groups of amino acids--the aromatic and the acidic amino acids--are reputed to influence brain function when their ingestion in food changes the levels of these amino acids in the brain. The aromatic amino acids (tryptophan, tyrosine, phenylalanine) are the biosynthetic precursors for the neurotransmitters serotonin, dopamine, and norepinephrine. Single meals, depending on their protein content, can rapidly influence uptake of aromatic amino acid into the brain and, as a result, directly modify their conversion to neurotransmitters. Such alterations in the production of transmitters can directly modify their release from neurons and, thus, influence brain function. The acidic amino acids glutamate and aspartate are themselves brain neurotransmitters. However, they do not have ready access to the brain from the circulation or the diet. As a result, the ingestion of proteins, which are naturally rich in aspartate and glutamate, has no effect on the level of acidic amino acid in the brain (or, thus, on brain function by this mechanism). Nevertheless, the food additives monosodium glutamate and aspartame (which contains aspartate) have been reputed to raise the level of acidic amino acid in the brain (when ingested in enormous amounts), to modify brain function, and even to cause neuronal damage. Despite such claims, a substantial body of published evidence clearly indicates that the brain is not affected by ingestion of aspartame and is affected by glutamate only when the amino acid is administered alone in extremely large doses. Therefore, when consumed in the diet neither compound presents a risk to normal brain function.

  5. Polyglycerolsulfate Functionalized Gold Nanorods as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Rheumatoid Arthritis

    PubMed Central

    Vonnemann, Jonathan; Beziere, Nicolas; Böttcher, Christoph; Riese, Sebastian B.; Kuehne, Christian; Dernedde, Jens; Licha, Kai; von Schacky, Claudio; Kosanke, Yvonne; Kimm, Melanie; Meier, Reinhard; Ntziachristos, Vasilis; Haag, Rainer

    2014-01-01

    We have synthesized a targeted imaging agent for rheumatoid arthritis based on polysulfated gold nanorods. The CTAB layer on gold nanorods was first replaced with PEG-thiol and then with dendritic polyglycerolsulfate at elevated temperature, which resulted in significantly reduced cytotoxicity compared to polyanionic gold nanorods functionalized by non-covalent approaches. In addition to classical characterization methods, we have established a facile UV-VIS based BaCl2 agglomeration assay to confirm a quantitative removal of unbound ligand. With the help of a competitive surface plasmon resonance-based L-selectin binding assay and a leukocyte adhesion-based flow cell assay, we have demonstrated the high inflammation targeting potential of the synthesized gold nanorods in vitro. In combination with the surface plasmon resonance band of AuNRs at 780 nm, these findings permitted the imaging of inflammation in an in vivo mouse model for rheumatoid arthritis with high contrast using multispectral optoacoustic tomography. The study offers a robust method for otherwise difficult to obtain covalently functionalized polyanionic gold nanorods, which are suitable for biological applications as well as a low-cost, actively targeted, and high contrast imaging agent for the diagnosis of rheumatoid arthritis. This paves the way for further research in other inflammation associated pathologies, in particular, when photothermal therapy can be applied. PMID:24723984

  6. Is It Real Gold?

    ERIC Educational Resources Information Center

    Harris, Harold H.

    1999-01-01

    Features acid tests for determining whether jewelry is "real" gold or simply gold-plated. Describes the carat system of denoting gold content and explains how alloys are used to create various shades of gold jewelry. Addresses the question of whether gold jewelry can turn a wearer's skin green by considering various oxidation reactions. (WRM)

  7. Nonenzymatic amperometric sensor for ascorbic acid based on hollow gold/ruthenium nanoshells.

    PubMed

    Jo, Ara; Kang, Minkyung; Cha, Areum; Jang, Hye Su; Shim, Jun Ho; Lee, Nam-Suk; Kim, Myung Hwa; Lee, Youngmi; Lee, Chongmok

    2014-03-28

    We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu-Ru) nanoshells, which exhibited decent sensing characteristics. The hAu-Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu-Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu-Ru loaded on GC electrode (hAu-Ru/GC) showed sensitivity of 426 μA mM(-1) cm(-2) (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu-Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing. PMID:24636416

  8. Gold Nanoparticles Enhance the Anticancer Activity of Gallic Acid against Cholangiocarcinoma Cell Lines.

    PubMed

    Rattanata, Narintorn; Daduang, Sakda; Wongwattanakul, Molin; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lekphrom, Ratsami; Sandee, Alisa; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Daduang, Jureerut

    2015-01-01

    Gold nanoparticles (GNPs) were conjugated with gallic acid (GA) at various concentrations between 30 and 150 μM and characterized using transmission electron microscopy (TEM) and UV-Vis spectroscopy (UV-VIS). The anticancer activities of the gallic acid-stabilized gold nanoparticles against well-differentiated (M213) and moderately differentiated (M214) adenocarcinomas were then determined using a neutral red assay. The GA mechanism of action was evaluated using Fourier transform infrared (FTIR) microspectroscopy. Distinctive features of the FTIR spectra between the control and GA-treated cells were confirmed by principal component analysis (PCA). The surface plasmon resonance spectra of the GNPs had a maximum absorption at 520 nm, whereas GNPs-GA shifted the maximum absorption values. In an in vitro study, the complexed GNPs-GA had an increased ability to inhibit the proliferation of cancer cells that was statistically significant (P<0.0001) in both M213 and M214 cells compared to GA alone, indicating that the anticancer activity of GA can be improved by conjugation with GNPs. Moreover, PCA revealed that exposure of the tested cells to GA resulted in significant changes in their cell membrane lipids and fatty acids, which may enhance the efficacy of this anticancer activity regarding apoptosis pathways.

  9. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGES

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  10. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  11. Gold Electrodes Modified with Self-Assembled Monolayers for Measuring L-Ascorbic Acid: An Undergraduate Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Ito, Takashi; Perera, D. M. Neluni T.; Nagasaka, Shinobu

    2008-01-01

    This article describes an undergraduate electrochemistry laboratory experiment in which the students measure the L-ascorbic acid content of a real sample. Gold electrodes modified with self-assembled monolayers (SAMs) of thioctic acid and cysteamine are prepared to study the effects of surface modification on the electrode reaction of L-ascorbic…

  12. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  13. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    PubMed

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides. PMID:27102225

  14. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    PubMed

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides.

  15. Interaction of gold nanoparticles with free radicals and their role in enhancing the scavenging activity of ascorbic acid.

    PubMed

    Razzaq, Humaira; Saira, Farhat; Yaqub, Azra; Qureshi, Rumana; Mumtaz, Misbah; Saleemi, Samia

    2016-08-01

    The present study investigates the interaction of citrate stabilized gold nanoparticles (12±1.5nm) (GNPs) with free radicals; 1,1-diphenyl-2-picrylhydrazyl (DPPH) stable and electrochemically generated superoxide, O2(-). Different experiments were designed to understand the interaction between GNPs and DPPH by employing cyclic voltammetry, UV-vis spectroscopy and computational chemistry using 6-311G basis set. The increase in heterogeneous rate constant, ksh, of DPPH upon addition of GNPs pointed towards possible complex formation, DPPH-GNPs which were further explained by a model assuming surface adsorption of DPPH on GNPs. Further, the model was validated by studying interaction of GNPs with a biologically important free radical, O2(-). Exciting result in terms of disappearance of anodic peak after GNPs addition confirmed that gold nanoparticles interacted with stable as well as unstable free radicals. Also, the stoichiometry of the most stable complex GNP-DPPH was determined from UV-vis spectroscopy by applying Job's method. The GNP-DPPH complex was found to be active with 46.0% reduction of the IC50 value of standard antioxidant, ascorbic acid (AA), indicating its role in enhancing antioxidant activity. Hence, this study presents a simple and potential approach to enhance the efficiency of natural antioxidants without modifying their structure, or involving the complex functionalization of GNPs with antioxidants.

  16. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    NASA Astrophysics Data System (ADS)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  17. Influence of green and gold kiwifruit on indices of large bowel function in healthy rats.

    PubMed

    Paturi, Gunaranjan; Butts, Christine A; Bentley-Hewitt, Kerry L; Ansell, Juliet

    2014-08-01

    The effects of kiwifruit on large bowel health were investigated in healthy rats. Four-week old Sprague-Dawley rats were given diets containing 10% homogenized green kiwifruit, gold kiwifruit or 10% glucose solution (control) over 4 or 6 wk. Green kiwifruit increased the fecal output compared to control. Growth of certain bacterial species in cecum was influenced by both green and gold kiwifruit. A significant increase in cecal Lachnospiraceae in rats fed the green kiwifruit diet was observed at week 4. At week 6, green and gold kiwifruit diets assisted in improving colonic barrier function by upregulating the expression of mucin (MUC)-2, MUC3, Toll-like receptor (TLR)-4 or trefoil factor-3 genes. Gold kiwifruit consumption increased the colonic goblet cells per crypt at week 6. Significant negative correlations between E. coli and β-defensin 1 and TLR4 expression were observed. Consuming green and gold kiwifruit for 6 wk significantly altered the biomarkers of large bowel health; indicating that regularly consuming kiwifruit helps attain optimal digestive health.

  18. Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles.

    PubMed

    Ashokkumar, Thirunavukkarasu; Prabhu, Durai; Geetha, Ravi; Govindaraju, Kasivelu; Manikandan, Ramar; Arulvasu, Chinnasamy; Singaravelu, Ganesan

    2014-11-01

    An ethnopharmacological approach for biosynthesis of gold nanoparticles is being demonstrated using seed coat of Cajanus cajan. Medicinal value of capping molecule investigated for anticancer activity and results disclose its greater potential. The active principle of the seed coat [3-butoxy-2-hydroxypropyl 2-(2,4-dihydroxyphenyl) acetate] is elucidated. Rapid one-step synthesis yields highly stable, monodisperse (spherical) gold nanoparticles in the size ranging from 9 to 41 nm. Anticancer activity has been studied using liver cancer cells and cytotoxic mechanism has been evaluated using MTT, Annexin-V/PI Double-Staining Assay, Cell cycle, Comet assay and Flow cytometric analysis for apoptosis. The present investigation will open up a new possibility of functionalizing gold nanoparticles for apoptosis studies in liver cancer cells. PMID:25444656

  19. ACID EVAPORATION OF ULTIMA GOLD TM AB LIQUID SCINTILLATION COCKTAIL RESIDUE

    SciTech Connect

    Kyser, E.; Fondeur, F.; Crump, S.

    2011-12-21

    Prior analyses of samples from the F/H Lab solutions showed the presence of diisopropylnapthalene (DIN), a major component of Ultima Gold{trademark} AB liquid scintillation cocktail (LSC). These solutions are processed through H-Canyon Tank 10.5 and ultimately through the 17.8E evaporator. Similar solutions originated in SRNL streams sent to the same H Canyon tanks. This study examined whether the presence of these organics poses a process-significant hazard for the evaporator. Evaporation and calorimetry testing of surrogate samples containing 2000 ppm of Ultima Gold{trademark} AB LSC in 8 M nitric acid have been completed. These experiments showed that although reactions between nitric acid and the organic components do occur, they do not appear to pose a significant hazard for runaway reactions or generation of energetic compounds in canyon evaporators. The amount of off-gas generated was relatively modest and appeared to be well within the venting capacity of the H-Canyon evaporators. A significant fraction of the organic components likely survives the evaporation process primarily as non-volatile components that are not expected to represent any new process concerns during downstream operations such as neutralization. Laboratory Waste solutions containing minor amounts of DIN can be safely received, stored, transferred, and processed through the canyon waste evaporator.

  20. Layer-by-layer assembled gold nanoparticles for the delivery of nucleic acids.

    PubMed

    Wurster, Eva-Christina; Elbakry, Asmaa; Göpferich, Achim; Breunig, Miriam

    2013-01-01

    The delivery of nucleic acids to mammalian cells requires a potent particulate carrier system. The physicochemical properties of the used particles, such as size and surface charge, strongly influence the cellular uptake and thereby the extent of the subsequent biological effect. However the knowledge of this process is still fragmentary because heterogeneous particle collectives are applied. Therefore we present a strategy to synthesize carriers with a highly specific appearance on the basis of gold nanoparticles (AuNPs) and the Layer-by-Layer (LbL) technique. The LbL method is based on the alternate deposition of oppositely charged (bio-)polymers, in our case poly(ethylenimine) and nucleic acids. The size and surface charge of those particles can be easily modified and accordingly systematic studies on cellular uptake are accessible.

  1. Surface Analysis of Gold Nanoparticles Functionalized with Thiol-Modified Glucose SAMs for Biosensor Applications

    PubMed Central

    Spampinato, Valentina; Parracino, Maria Antonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-01-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behavior of the glucose-modified particles in the presence of the maltose binding protein. PMID:26973830

  2. Chemical functionalization of diatom silica microparticles for adsorption of gold (III) ions.

    PubMed

    Yu, Yang; Addai-Mensah, Jonas; Losic, Dusan

    2011-12-01

    Diatom silica microparticles from natural diatomaceous earth (DE) silica have been functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) and their application for adsorption of gold (III) ions from aqueous solutions is demonstrated. Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS) analyses of the MPTMS modified diatom microparticles revealed that the silane layer with functional group (-SH) was successfully introduced to the diatom surface. The adsorption study of Au(III) ions using MPTMS-DE indicated that the process depends on initial gold (III) concentration and pH showing maximum adsorption capacity at pH = 3. The Au(III) adsorption kinetics results showed that the adsorption was very fast and followed a pseudo-second-order reaction model. The Langmuir model was used to provide a sound mechanistic basis for the theoretical of the adsorption equilibrium data. Gold recovery from MPTMS-DE structures was also investigated by using acidified thiourea solution and found to be high (> 95%). These results show that chemically modified DE microparticles can be used as a new, cost effective and environmentally benign adsorbent suitable for adsorption of gold metal ions from aqueous solutions. PMID:22408909

  3. UV-Visible Spectroscopy Detection of Iron(III) Ion on Modified Gold Nanoparticles With a Hydroxamic Acid

    NASA Astrophysics Data System (ADS)

    Karami, C.; Alizadeh, A.; Taher, M. A.; Hamidi, Z.; Bahrami, B.

    2016-09-01

    The present work describes the preparation of gold nanoparticles (AuNPs) functionalized with hydroxamic acid and the use of them in UV-visible spectroscopy detection of iron(III) ions. The prepared AuNPs were thoroughly characterized by using UV-visible spectroscopy, TEM, and 1H NMR techniques. The newly synthesized hydroxamic acid-AuNPs are brown in color due to the intense surface plasmon absorption band centered at 527 nm. In the presence of Fe(III), the surface plasmon absorption band is centered at 540 nm. However, the sensitivity of hydroxamic acid-AuNPs towards other metal ions such as Mg(II), Ca(II), Ag(I), Cu(II), Mn(II), Cr(II), Ni(II), Co(II),Fe(II), Hg(II), and Pb(II) can be negligible. This highly selective sensor allows a direct quantitative assay of Fe(III) with a UVvisible spectroscopy detection limited to 45.8 nM.

  4. EGF Functionalized Polymer-Coated Gold Nanoparticles Promote EGF Photostability and EGFR Internalization for Photothermal Therapy

    PubMed Central

    Silva, Catarina Oliveira; Petersen, Steffen B.; Reis, Catarina Pinto; Rijo, Patrícia; Molpeceres, Jesús; Fernandes, Ana Sofia; Gonçalves, Odete; Gomes, Andreia C.; Correia, Isabel; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2016-01-01

    The application of functionalized nanocarriers on photothermal therapy for cancer ablation has wide interest. The success of this application depends on the therapeutic efficiency and biocompatibility of the system, but also on the stability and biorecognition of the conjugated protein. This study aims at investigating the hypothesis that EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization, making these conjugated particles suitable for photothermal therapy. The conjugated gold nanoparticles (100–200 nm) showed a plasmon absorption band located within the near-infrared range (650–900 nm), optimal for photothermal therapy applications. The effects of temperature, of polymer-coated gold nanoparticles and of UVB light (295nm) on the fluorescence properties of EGF have been investigated with steady-state and time-resolved fluorescence spectroscopy. The fluorescence properties of EGF, including the formation of Trp and Tyr photoproducts, is modulated by temperature and by the intensity of the excitation light. The presence of polymeric-coated gold nanoparticles reduced or even avoided the formation of Trp and Tyr photoproducts when EGF is exposed to UVB light, protecting this way the structure and function of EGF. Cytotoxicity studies of conjugated nanoparticles carried out in normal-like human keratinocytes showed small, concentration dependent decreases in cell viability (0–25%). Moreover, conjugated nanoparticles could activate and induce the internalization of overexpressed Epidermal Growth Factor Receptor in human lung carcinoma cells. In conclusion, the gold nanoparticles conjugated with Epidermal Growth Factor and coated with biopolymers developed in this work, show a potential application for near infrared photothermal therapy, which may efficiently destroy solid tumours, reducing the damage of the healthy tissue. PMID:27788212

  5. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  6. MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe.

    PubMed

    Liu, Jintong; Zhang, Lei; Lei, Jianping; Ju, Huangxian

    2015-09-01

    Integration of cancer cell imaging and therapy is critical to enhance the theranostic efficacy and prevent under- or overtreatment. Here, a multifunctional gold nanoprobe is designed for simultaneous miRNA-responsive fluorescence imaging and therapeutic monitoring of cancer. By assembling with folic acid as the targeted moiety and a dye-labeled molecular beacon (MB) as the recognition element and signal switch, the gold nanoprobe is folate receptor-targeted delivered into the cancer cells, and the fluorescence is lighted with the unfolding of MB by intracellular microRNA (miRNA), resulting in an efficient method for imaging and detecting nucleic acid. The average quantity of miRNA-21 is measured to be 1.68 pg in a single HeLa cell. Upon the near-infrared irradiation at 808 nm, the real-time monitoring and assessing of photothermal therapeutic efficacy is achieved from the further enhanced fluorescence of the dye-labeled MB, caused by the high photothermal transformation efficiency of the gold nanocarrier to unwind the remaining folded MB and depart the dye from the nanocarrier. The fluorescence monitoring is also feasible for applications in vivo. This work provides a simple but powerful protocol with great potential in cancer imaging, therapy, and therapeutic monitoring.

  7. MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe.

    PubMed

    Liu, Jintong; Zhang, Lei; Lei, Jianping; Ju, Huangxian

    2015-09-01

    Integration of cancer cell imaging and therapy is critical to enhance the theranostic efficacy and prevent under- or overtreatment. Here, a multifunctional gold nanoprobe is designed for simultaneous miRNA-responsive fluorescence imaging and therapeutic monitoring of cancer. By assembling with folic acid as the targeted moiety and a dye-labeled molecular beacon (MB) as the recognition element and signal switch, the gold nanoprobe is folate receptor-targeted delivered into the cancer cells, and the fluorescence is lighted with the unfolding of MB by intracellular microRNA (miRNA), resulting in an efficient method for imaging and detecting nucleic acid. The average quantity of miRNA-21 is measured to be 1.68 pg in a single HeLa cell. Upon the near-infrared irradiation at 808 nm, the real-time monitoring and assessing of photothermal therapeutic efficacy is achieved from the further enhanced fluorescence of the dye-labeled MB, caused by the high photothermal transformation efficiency of the gold nanocarrier to unwind the remaining folded MB and depart the dye from the nanocarrier. The fluorescence monitoring is also feasible for applications in vivo. This work provides a simple but powerful protocol with great potential in cancer imaging, therapy, and therapeutic monitoring. PMID:26271820

  8. Selective oxidation of cyclohexene through gold functionalized silica monolith microreactors

    NASA Astrophysics Data System (ADS)

    Alotaibi, Mohammed T.; Taylor, Martin J.; Liu, Dan; Beaumont, Simon K.; Kyriakou, Georgios

    2016-04-01

    Two simple, reproducible methods of preparing evenly distributed Au nanoparticle containing mesoporous silica monoliths are investigated. These Au nanoparticle containing monoliths are subsequently investigated as flow reactors for the selective oxidation of cyclohexene. In the first strategy, the silica monolith was directly impregnated with Au nanoparticles during the formation of the monolith. The second approach was to pre-functionalize the monolith with thiol groups tethered within the silica mesostructure. These can act as evenly distributed anchors for the Au nanoparticles to be incorporated by flowing a Au nanoparticle solution through the thiol functionalized monolith. Both methods led to successfully achieving even distribution of Au nanoparticles along the length of the monolith as demonstrated by ICP-OES. However, the impregnation method led to strong agglomeration of the Au nanoparticles during subsequent heating steps while the thiol anchoring procedure maintained the nanoparticles in the range of 6.8 ± 1.4 nm. Both Au nanoparticle containing monoliths as well as samples with no Au incorporated were tested for the selective oxidation of cyclohexene under constant flow at 30 °C. The Au free materials were found to be catalytically inactive with Au being the minimum necessary requirement for the reaction to proceed. The impregnated Au-containing monolith was found to be less active than the thiol functionalized Au-containing material, attributable to the low metal surface area of the Au nanoparticles. The reaction on the thiol functionalized Au-containing monolith was found to depend strongly on the type of oxidant used: tert-butyl hydroperoxide (TBHP) was more active than H2O2, likely due to the thiol induced hydrophobicity in the monolith.

  9. Luminescent gold(I) metallo-acids and their hydrogen bonded supramolecular liquid crystalline derivatives with decyloxystilbazole as hydrogen acceptor.

    PubMed

    Coco, Silverio; Cordovilla, Carlos; Domínguez, Cristina; Espinet, Pablo

    2008-12-28

    Gold complexes of 4-isocyanobenzoic acid, [AuX(CNC(6)H(4)CO(2)H)] (X = C[triple bond]C-C(6)H(4)-C(9)H(19), C(6)F(5), C(6)F(4)OC(6)H(13), C(6)F(4)C(6)F(4)Br) and [(mu-4,4'-C(6)F(4)C(6)F(4)){Au(CNC(6)H(4)CO(2)H)}(2)], have been isolated. These metallo-acids are luminescent. The single crystal X-ray diffraction study of [Au(C(6)F(5))(CNC(6)H(4)CO(2)H)](infinity) confirms a rod-like structure of the molecule, with a linear coordination around the gold atom, which extends into a supramolecular entity supported by hydrogen bond, gold-gold, and fluorophilic (F(ortho) ... F(meta)) interactions. The carboxylic acid group of the gold isocyanide complexes acts also as a hydrogen donor towards the hydrogen acceptor decyloxystilbazole, affording some hydrogen-bonded supramolecular liquid crystals.

  10. Colorimetric Detection of Cadmium Ions Using DL-Mercaptosuccinic Acid-Modified Gold Nanoparticles.

    PubMed

    Chen, Na; Chen, Jun; Yang, Jing-Hua; Bai, Lian-Yang; Zhang, Yu-Ping

    2016-01-01

    A colorimetric assay has been developed for detection of Cd²⁺ utilizing DL-mercaptosuccinic acid-modified gold nanoparticles (MSA-AuNPs). The method showed good selectivity for Cd²⁺ over other metal ions. As a result, the linear relationships (r > 0.9606) between concentration 0.07 mM and 0.20 mM for cadmium ion were obtained. The detection limit was as low as 0.07 mM by the naked eye. The effect of pH on the aggregation was optimized. The MSA-AuNPs probe could be used to detect Cd²⁺ in an aqueous solution based on the aggregation-induced color change of MSA-AuNPs. PMID:27398533

  11. Resolution of a gold latensification-elon ascorbic acid developer for Ilford L4 emulsion.

    PubMed

    Ginsel, L A; Onderwater, J J; Daems, W T

    1979-07-11

    The electron-microscopical autoradiographical resolution of a gold latensification-elon ascorbic acid (GEA) developer for Ilford L4 emulsion was determined experimentally, using radioactive line sources of tritiated albumin (Heijnen and Geuze, 1977). For sections with a thickness of 62 nm (SD +/- 11), which were covered with a carbon layer about 5 nm thick and a slightly overlapping monolayer of L4 silver bromide crystals, the measured half-distance (HD) of resolution was 115 nm. This improvement in resolution, the high efficiency of the GEA developer for L4 emulsion (Wisse and Tates, 1968), and the excellent visibility of the cellular structures under the small silver grains, mean that the L4-GEA combination deserves preverence as a method for quantitative electron-microscopical autoradiography.

  12. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.

    PubMed

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  13. Label-free and selective sensing of uric acid with gold nanoclusters as optical probe.

    PubMed

    Wang, Jian; Chang, Yong; Wu, Wen Bi; Zhang, Pu; Lie, Shao Qing; Huang, Cheng Zhi

    2016-05-15

    Clinically, the amount of uric acid (UA) in biological fluids is closely related to some diseases such as hyperuricemia and gout, thus it is of great significance to sense UA in clinical samples. In this work, red gold nanoclusters (AuNCs) with relatively high fluorescence quantum yield and strong fluorescence emission were facilely available using bovine serum albumin (BSA) as template. The fluorescence of BSA-protected AuNCs can be sensitively quenched by H2O2, which is further capable of sensing UA through the specific catalytic oxidation with uricase, since it generates stoichiometric quantity of H2O2 by-product. The proposed assay allows for the selective detection of UA in the range of 10-800 μM with a detection limit of 6.6 μM, which is applicable to sense UA in clinical samples with satisfactory results, suggesting its great potential for diagnostic purposes. PMID:26992526

  14. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    PubMed Central

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  15. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge

  16. Fluctuation-enhanced sensing with organically functionalized gold nanoparticle gas sensors targeting biomedical applications.

    PubMed

    Lentka, Łukasz; Kotarski, Mateusz; Smulko, Janusz; Cindemir, Umut; Topalian, Zareh; Granqvist, Claes G; Calavia, Raul; Ionescu, Radu

    2016-11-01

    Detection of volatile organic compounds is a useful approach to non-invasive diagnosis of diseases through breath analysis. Our experimental study presents a newly developed prototype gas sensor, based on organically-functionalized gold nanoparticles, and results on formaldehyde detection using fluctuation-enhanced gas sensing. Formaldehyde was easily detected via intense fluctuations of the gas sensor's resistance, while the cross-influence of ethanol vapor (a confounding factor in exhaled breath, related to alcohol consumption) was negligible. PMID:27591581

  17. Synthesis of a drug delivery vehicle for cancer treatment utilizing DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Brann, Tyler

    The treatment of cancer with chemotherapeutic agents has made great strides in the last few decades but still introduces major systemic side effects. The potent drugs needed to kill cancer cells often cause irreparable damage to otherwise healthy organs leading to further morbidity and mortality. A therapy with intrinsic selective properties and/or an inducible activation has the potential to change the way cancer can be treated. Gold nanoparticles (GNPs) are biocompatible and chemically versatile tools that can be readily functionalized to serve as molecular vehicles. The ability of these particles to strongly absorb light with wavelengths in the therapeutic window combined with the heating effect of surface plasmon resonance makes them uniquely suited for noninvasive heating in biologic applications. Specially designed DNA aptamers have shown their ability to serve as drug carriers through intercalation as well as directly acting as therapeutic agents. By combining these separate molecules a multifaceted drug delivery vehicle can be created with great potential as a selective and controllable treatment for cancer. Oligonucleotide-coated GNPs have been created using spherical GNPs but little work has been reported using gold nanoplates in this way. Using the Diasynth method gold nanoplates were produced to absorb strongly in the therapeutic near infrared (nIR) window. These particles were functionalized with two DNA oligonucleotides: one serving as an intercalation site for doxorubicin, and another, AS1411, serving directly as an anticancer targeting/therapeutic agent. These functional particles were fully synthesized and processed along with confirmation of DNA functionalization and doxorubicin intercalation. Doxorubicin is released via denaturation of the DNA structure into which doxorubicin is intercalated upon the heating of the gold nanoplate well above the DNA melting temperature. This temperature increase, due to light stimulation of surface plasmon

  18. Acid-functionalized nanoparticles for biomass hydrolysis

    NASA Astrophysics Data System (ADS)

    Pena Duque, Leidy Eugenia

    Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe2O4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe2O4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the beta-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during

  19. Enzymatically catalytic deposition of gold nanoparticles by glucose oxidase-functionalized gold nanoprobe for ultrasensitive electrochemical immunoassay.

    PubMed

    Cheng, Hui; Lai, Guosong; Fu, Li; Zhang, Haili; Yu, Aimin

    2015-09-15

    A novel ultrasensitive immunoassay method was developed by combination of the enzymatically catalytic gold deposition with the prepared gold nanoprobe and the gold stripping analysis at an electrochemical chip based immunosensor. The immunosensor was constructed through covalently immobilizing capture antibody at a carbon nanotube (CNT) modified screen-printed carbon electrode. The gold nanoprobe was prepared by loading signal antibody and high-content glucose oxidase (GOD) on the nanocarrier of gold nanorod (Au NR). After sandwich immunoreaction, the GOD-Au NR nanoprobe could be quantitatively captured onto the immunosensor surface and then induce the deposition of gold nanoparticles (Au NPs) via the enzymatically catalytic reaction. Based on the electrochemical stripping analysis of the Au NR nanocarriers and the enzymatically produced Au NPs, sensitive electrochemical signal was obtained for the immunoassay. Both the GOD-induced deposition of Au NPs by the nanoprobe and the sensitive electrochemical stripping analysis on the CNTs based sensing surface greatly amplified the signal response, leading to the ultrahigh sensitivity of this method. Using carcinoembryonic antigen as a model analyte, excellent analytical performance including a wide linear range from 0.01 to 100 ng/mL and a detection limit down to 4.2 pg/mL was obtained. In addition, this immunosensor showed high specificity and satisfactory reproducibility, stability and reliability. The relatively positive detection potential excluded the conventional interference from dissolved oxygen. Thus this electrochemical chip based immunosensing method provided great potentials for practical applications.

  20. A rapid ICP-OES strategy for determination of gold and silver in blister copper by nitric acid digestion

    NASA Astrophysics Data System (ADS)

    Zhang, Gai; Tian, Min

    2014-03-01

    A rapid strategy for the analysis of gold and silver in blister copper by inductively coupled plasma optical emission spectrometry (ICP-OES) was firstly proposed. Nitric acid was used to digest blister copper instead of commonly used sulfuric acid. This prevented forming the salt of copper sulfate in the filtration process when the volume of the mixture is very small. Thus, the time of filtration was saved. After filtrating, aqua regia was used to digest the residue and acidize the filter liquor. Two parts of gotten solution were directly determined by ICP-OES. The cycle of analysis was shortened compared with sulfuric acid-fire assay. The proposed method was successfully applied to determine gold and silver in blister copper, and the results were in good agreement with those obtained by lead fire assay.

  1. Molecular beacon-functionalized gold nanoparticles as probes in dry-reagent strip biosensor for DNA analysis.

    PubMed

    Mao, Xun; Xu, Hui; Zeng, Qingxiang; Zeng, Lingwen; Liu, Guodong

    2009-06-01

    The highly specific molecule recognition properties of molecular beacons (MB) are combined with the unique optical properties of gold nanoparticles (Au-NPs) for the development of a dry-reagent strip-type nucleic acid biosensor (DSNAB) that enables sensitive and low-cost detection of nucleic acid samples within 15 min.

  2. Optimizing P,N-Bidentate Ligands for Oxidative Gold Catalysis: Highly Efficient Intermolecular Trapping of α-Oxo Gold Carbenes by Carboxylic Acids

    PubMed Central

    Ji, Kegong; Zhao, Yulong; Zhang, Liming

    2013-01-01

    Steric Bulk or Conformation Control? Optimization of P,N-bidentate ligands reveals the importance of conformation control in the development of highly efficient intermolecular trapping of reactive α-oxo gold carbene intermediates. While a pendant piperidine ring offers suitable steric bulk, fixing its conformation to provide better shielding to the highly electrophilic carbene center turned out to be crucial for the excellent reaction efficiency. A generally highly efficient and broadly applicable synthesis of carboxymethyl ketones from readily available carboxylic acids and terminal alkynes is developed under exceptionally mild reaction conditions. PMID:23640818

  3. Applications of Hairpin DNA-Functionalized Gold Nanoparticles for Imaging mRNA in Living Cells.

    PubMed

    Jackson, S R; Wong, A C; Travis, A R; Catrina, I E; Bratu, D P; Wright, D W; Jayagopal, A

    2016-01-01

    Molecular imaging agents are useful for imaging molecular processes in living systems in order to elucidate the function of molecular mediators in health and disease. Here, we demonstrate a technique for the synthesis, characterization, and application of hairpin DNA-functionalized gold nanoparticles (hAuNPs) as fluorescent hybridization probes for imaging mRNA expression and spatiotemporal dynamics in living cells. These imaging probes feature gold colloids linked to fluorophores via engineered oligonucleotides to resemble a molecular beacon in which the gold colloid serves as the fluorescence quencher in a fluorescence resonance energy transfer system. Target-specific hybridization of the hairpin oligonucleotide enables fluorescence de-quenching and subsequent emission with high signal to noise ratios. hAuNPs exhibit high specificity without adverse toxicity or the need for transfection reagents. Furthermore, tunability of hAuNP emission profiles by selection of spectrally distinct fluorophores enables multiplexed mRNA imaging applications. Therefore, hAuNPs are promising tools for imaging gene expression in living cells. As a representative application of this technology, we discuss the design and applications of hAuNP targeted against distinct matrix metalloproteinase enzymes for the multiplexed detection of mRNA expression in live breast cancer cells using flow cytometry and fluorescence microscopy. PMID:27241751

  4. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    NASA Astrophysics Data System (ADS)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  5. Applications of Hairpin DNA-Functionalized Gold Nanoparticles for Imaging mRNA in Living Cells.

    PubMed

    Jackson, S R; Wong, A C; Travis, A R; Catrina, I E; Bratu, D P; Wright, D W; Jayagopal, A

    2016-01-01

    Molecular imaging agents are useful for imaging molecular processes in living systems in order to elucidate the function of molecular mediators in health and disease. Here, we demonstrate a technique for the synthesis, characterization, and application of hairpin DNA-functionalized gold nanoparticles (hAuNPs) as fluorescent hybridization probes for imaging mRNA expression and spatiotemporal dynamics in living cells. These imaging probes feature gold colloids linked to fluorophores via engineered oligonucleotides to resemble a molecular beacon in which the gold colloid serves as the fluorescence quencher in a fluorescence resonance energy transfer system. Target-specific hybridization of the hairpin oligonucleotide enables fluorescence de-quenching and subsequent emission with high signal to noise ratios. hAuNPs exhibit high specificity without adverse toxicity or the need for transfection reagents. Furthermore, tunability of hAuNP emission profiles by selection of spectrally distinct fluorophores enables multiplexed mRNA imaging applications. Therefore, hAuNPs are promising tools for imaging gene expression in living cells. As a representative application of this technology, we discuss the design and applications of hAuNP targeted against distinct matrix metalloproteinase enzymes for the multiplexed detection of mRNA expression in live breast cancer cells using flow cytometry and fluorescence microscopy.

  6. Size control in the synthesis of 1-6 nm gold nanoparticles using folic acid-chitosan conjugate as a stabilizer

    NASA Astrophysics Data System (ADS)

    Liu, Lili; Zhang, Xianwen; Chaudhuri, Jharna

    2014-09-01

    We report a simple and practical method for the preparation of folic acid (FA)-chitosan functionalized gold nanoparticles (AuNPs) with a very small size (1-6 nm). Sodium borohydride was used as a reducing agent. The size of the AuNPs was controlled by adjusting the mass fraction of FA-chitosan conjugate to Au. The AuNPs were characterized using UV-vis spectroscopy and transmission electron microscopy (TEM). The results indicated that the size distribution of AuNPs decreased ranging from 6 nm to 1 nm with increasing the fraction of FA-chitosan conjugate in the reaction systems.

  7. Ligand- and Brønsted acid/base-switchable reaction pathways in gold(I)-catalyzed cycloisomerizations of allenoic acids.

    PubMed

    Handa, Sachin; Subramanium, Sri S; Ruch, Aaron A; Tanski, Joseph M; Slaughter, LeGrande M

    2015-04-01

    Gold-promoted cyclizations of 2,2-diaryl substituted γ-allenoic acids were found to give three isomeric lactone products, each of which could be obtained selectively by exploiting Brønsted acid/base and ligand effects. Simple 5-exo-trig cyclization products were favored by strong donor ligands or base additives, whereas weak donor ligands and a Brønsted acid additive gave isomeric enelactones resulting from double bond migration. Further optimization afforded a class of medicinally relevant bridged tricyclic lactones via a tandem hydroacyloxylation/hydroarylation process. Kinetic studies and control experiments indicated that the initial 5-exo-trig cyclization product serves as a branch point for further isomerization to the other lactone products via cooperative gold(I)/Brønsted acid catalysis.

  8. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules

    PubMed Central

    DeLong, Robert K; Reynolds, Christopher M; Malcolm, Yaneika; Schaeffer, Ashley; Severs, Tiffany; Wanekaya, Adam

    2010-01-01

    Nanotechnology has virtually exploded in the last few years with seemingly limitless opportunity across all segments of our society. If gene and RNA therapy are to ever realize their full potential, there is a great need for nanomaterials that can bind, stabilize, and deliver these macromolecular nucleic acids into human cells and tissues. Many researchers have turned to gold nanomaterials, as gold is thought to be relatively well tolerated in humans and provides an inert material upon which nucleic acids can attach. Here, we review the various strategies for associating macromolecular nucleic acids to the surface of gold nanoparticles (GNPs), the characterization chemistries involved, and the potential advantages of GNPs in terms of stabilization and delivery. PMID:24198471

  9. Interaction of gold nanoparticles mediated by captopril and S-nitrosocaptopril: the effect of manganese ions in mild acid medium.

    PubMed

    Iglesias, Emilia; Prado-Gotor, Rafael

    2015-01-01

    We report herein results regarding reactivity and assembly of citrate-capped gold nanoparticles (AuNPs) mediated by captopril (cap) and S-nitrosocaptopril (NOcap), two angiotensin converting enzyme inhibitors and antihypertensive agents. The results were compared with that of cysteine (Cys), a thiol-containing amino acid found in plasma. The interparticle interactions were characterized by monitoring the evolution of the surface plasmon resonance band using the spectrophotometric method. The original gold nanoparticles were efficiently modified by small amounts of Mn(+2) ions, which are adsorbed onto the surface of 15.4 nm citrate-capped gold nanoparticles, giving rise to manganese-gold nanoparticles (Mn-AuNPs) that, in mild acid medium, have proved to be highly sensitive and a rapid colorimetric detection method for thiols. Depending on the concentration of the Mn(+2) ions the aggregation of AuNPs can be rapidly induced. The kinetics of the assembly process has been studied. Good first-order kinetics has been observed, with the exception of captopril-mediated nanoparticle aggregation at low concentration of either cap or acid. The rate of Cys-mediated assembly of gold nanoparticles in aqueous 10 mM acetic acid is more than 20-times faster than pure AuNPs and concentrations of Cys as low as 34 nM can be detected in less than 40 min under conditions of stable Mn-AuNPs. Similar effects were observed with cap or NOcap. The assembly-disassembly reversibility is shown with cap and NOcap and depends highly on pH.

  10. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  11. Colorimetric determination of thiram based on formation of gold nanoparticles using ascorbic acid.

    PubMed

    Rastegarzadeh, S; Abdali, Sh

    2013-01-30

    A novel optical method for the determination of thiram has been developed using surface plasmon resonance peak of gold nanoparticles (AuNPs). The stable and dispersed AuNPs were directly synthesized by reduction of HAuCl4 with ascorbic acid in micellar media according to a simple approach. The presence of thiram during formation of AuNPs results in the decrease of the intensity of plasmon resonance peak. The variation in the plasmon absorbance allows the colorimetric determination of thiram. The effect of different variables such as pH, ascorbic acid and CTAB concentrations was studied and optimized. The proposed method is capable of determining thiram over a range of 2.0×10(-7)-1.0×10(-5) mol L(-1) with a limit of detection 1.7×10(-7) mol L(-1). The relative standard deviation of the method was <3.7%. The method was successfully applied to the determination of thiram in water and plant seed samples.

  12. Enhanced 5-aminolevulinic acid-gold nanoparticle conjugate-based photodynamic therapy using pulse laser

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yao, Cuiping; Wang, Jing; Chang, Zhennan; Zhang, Zhenxi

    2016-02-01

    The low bioavailability is a crucial limitation for the application of 5-aminolevulinic acid (ALA) in theranostics. In this research, 5-aminolevulinic acid and gold nanoparticle conjugates (ALA-GNPs) were synthesized to improve the bioavailability of ALA and to investigate the impact of ALA photodynamic therapy (ALA-PDT) in Hela cells. A 532 nm pulse laser and light-emitting diode (central wavelengths 502 nm) were jointly used as light sources in PDT research. The results show a 532 nm pulse laser can control ALA release from ALA-GNPs by adjusting the pulse laser dose. This laser control release may be attributed to the heat generation from GNPs under pulse laser irradiation, which indicates accurately adjusting the pulse laser dose to control the drug release in the cell interior can be considered as a new cellular surgery modality. Furthermore, the PDT results in Hela cells indicate the enhancement of ALA release by pulse laser before PDT can promote the efficacy of cell eradication in the light-emitting diode PDT (LED-PDT). This laser mediated drug release system can provide a new online therapy approach in PDT and it can be utilized in the optical monitor technologies based individual theranostics.

  13. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences. PMID:27555764

  14. Selective extraction of melamine using 11-mercaptoundecanoic acid-capped gold nanoparticles followed by capillary electrophoresis.

    PubMed

    Chang, Chung-Wei; Chu, Shang-Ping; Tseng, Wei-Lung

    2010-12-01

    This study describes the use of 11-mercaptoundecanoic acid-capped gold nanoparticles (MUA-AuNPs) for selective extraction of melamine prior to analysis by capillary electrophoresis with UV detection. The highest degree of melamine-induced aggregation of MUA-AuNPs was found to occur at pH 5.0, indicating that the NP aggregation is mainly because of hydrogen bonding between the carboxylate groups of MUA and the amine groups of melamine. Moreover, the degree of melamine-induced NP aggregation gradually increased when the chain length of the mercaptoalkanoic acid was increased from two to 12 carbon atoms. At pH 5.0, the extraction efficiency of melamine was highly dependent on the concentration of MUA-AuNPs, the concentration of dithiothreitol (DTT), the extraction time between MUA-AuNPs and melamine, and the incubation time between melamine-adsorbed AuNPs and DTT. The separation of the extracted melamine and DTT (releasing agent) was accomplished using a solution of 10 mM phosphate (pH 6.0) containing 1.6% (v/v) poly(diallyldimethylammonium chloride). Under the optimum extraction and separation conditions, the limit of detection at a signal-to-noise ratio of 3 was estimated to be 77 pM for melamine, with linear range of 1-1000 nM. The proposed method was successfully applied to the determination of melamine in tap water and in milk.

  15. Oxidation of citronellal to citronellic acid by molecular oxygen using supported gold catalysts.

    PubMed

    Martin, A; Armbruster, U; Decker, D; Gedig, T; Köckritz, A

    2008-01-01

    The oxidation of citronellal to citronellic acid was studied using molecular oxygen as oxidant and gold-containing supported catalysts under aqueous conditions. The reactions were carried out at 60-90 degrees C, with 200 Nml min(-1) O2 and at pH values from 9 to 12. The alumina- or titania-supported catalysts were synthesized according to the deposition-precipitation procedure using urea or NaOH. Mechanistic studies have revealed that radical-initiated reactions lead to undesired by-products especially at pH <9, that is, the C=C bond is attacked and a diol is primarily formed probably via an epoxide intermediate. This side reaction can be suppressed to a large extent by increasing the pH to 12 and by raising the catalyst/oxygen ratio. Furthermore, detailed studies on the influence of reaction time, pH value, reactant concentration and amount of catalyst show that citronellic acid can be obtained in over 90% yield with total conversion of citronellal at pH 12 and a temperature of 80 degrees C.

  16. Monitoring the Photocleaving Dynamics of Colloidal MicroRNA-Functionalized Gold Nanoparticles Using Second Harmonic Generation.

    PubMed

    Kumal, Raju R; Landry, Corey R; Abu-Laban, Mohammad; Hayes, Daniel J; Haber, Louis H

    2015-09-15

    Photoactivated drug delivery systems using gold nanoparticles provide the promise of spatiotemporal control of delivery that is crucial for applications ranging from regenerative medicine to cancer therapy. In this study, we use second harmonic generation (SHG) spectroscopy to monitor the light-activated controlled release of oligonucleotides from the surface of colloidal gold nanoparticles. MicroRNA is functionalized to spherical gold nanoparticles using a nitrobenzyl linker that undergoes photocleaving upon ultraviolet irradiation. The SHG signal generated from the colloidal nanoparticle sample is shown to be a sensitive probe for monitoring the photocleaving dynamics in real time. The photocleaving irradiation wavelength is scanned to show maximum efficiency on resonance at 365 nm, and the kinetics are investigated at varying irradiation powers to demonstrate that the nitrobenzyl photocleaving is a one-photon process. Additional characterization methods including electrophoretic mobility measurements, extinction spectroscopy, and fluorimetry are used to verify the SHG results, leading to a better understanding of the photocleaving dynamics for this model oligonucleotide therapeutic delivery system.

  17. Monitoring the Photocleaving Dynamics of Colloidal MicroRNA-Functionalized Gold Nanoparticles Using Second Harmonic Generation.

    PubMed

    Kumal, Raju R; Landry, Corey R; Abu-Laban, Mohammad; Hayes, Daniel J; Haber, Louis H

    2015-09-15

    Photoactivated drug delivery systems using gold nanoparticles provide the promise of spatiotemporal control of delivery that is crucial for applications ranging from regenerative medicine to cancer therapy. In this study, we use second harmonic generation (SHG) spectroscopy to monitor the light-activated controlled release of oligonucleotides from the surface of colloidal gold nanoparticles. MicroRNA is functionalized to spherical gold nanoparticles using a nitrobenzyl linker that undergoes photocleaving upon ultraviolet irradiation. The SHG signal generated from the colloidal nanoparticle sample is shown to be a sensitive probe for monitoring the photocleaving dynamics in real time. The photocleaving irradiation wavelength is scanned to show maximum efficiency on resonance at 365 nm, and the kinetics are investigated at varying irradiation powers to demonstrate that the nitrobenzyl photocleaving is a one-photon process. Additional characterization methods including electrophoretic mobility measurements, extinction spectroscopy, and fluorimetry are used to verify the SHG results, leading to a better understanding of the photocleaving dynamics for this model oligonucleotide therapeutic delivery system. PMID:26313536

  18. Targeting Aquaporin Function: Potent Inhibition of Aquaglyceroporin-3 by a Gold-Based Compound

    PubMed Central

    Martins, Ana Paula; Marrone, Alessandro; Ciancetta, Antonella; Galán Cobo, Ana; Echevarría, Miriam; Moura, Teresa F.; Re, Nazzareno; Casini, Angela; Soveral, Graça

    2012-01-01

    Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC50 = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development. PMID:22624030

  19. Growth of various Au Ag nanocomposites from gold seeds in amino acid solutions

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Fen; Lin, Yang-Wei; Chang, Huan-Tsung

    2006-10-01

    In this paper, we describe an easy procedure for the preparation of differently shaped and sized Au-Ag nanocomposites from gold nanorod (AuNR) seeds in various amino acid solutions—arginine (Arg), cysteine (Cys), glycine (Gly), glutamate (Glu), glutamine (Gln), histidine (His), lysine (Lys), and methionine (Met), respectively—at values of pH ranging from 8.0 to 11.5. Our results suggest that the pH, the nature of the amino acid, and its concentration all have significant impact on the preparation of Au-Ag nanocomposites; these factors exhibit their effects mainly through control over the reducing ability of ascorbate and/or its recognition capability, as well as through control over the surface charges of the amino acids on the AuNRs. Depending on the value of pH, we were able to prepare I-shaped, dumbbell-shaped, and/or sphere-shaped Au-Ag nanocomposites in 0.1 M solutions of Arg, Gly, Glu, Gln, Lys, and Met. In His solutions at pH 8.0 and 9.0, we obtained peanut-shaped Au-Ag nanocomposites. Corn-shaped Au-Ag nanocomposites were prepared in 0.1 M Met solutions (pH 9.0 and 10.0). By controlling the Lys concentration at pH 10.0, we synthesized pearl-necklace-shaped Au-Ag nanoparticles and Au-Ag wires. Based on the TEM images, we conclude that this simple and reproducible synthetic approach allows preparation of high-quality (>87%, beside>77% in His solutions) Au-Ag nanocomposites with various shapes and sizes under different conditions.

  20. Integrating Retinoic Acid Signaling with Brain Function

    ERIC Educational Resources Information Center

    Luo, Tuanlian; Wagner, Elisabeth; Drager, Ursula C.

    2009-01-01

    The vitamin A derivative retinoic acid (RA) regulates the transcription of about a 6th of the human genome. Compelling evidence indicates a role of RA in cognitive activities, but its integration with the molecular mechanisms of higher brain functions is not known. Here we describe the properties of RA signaling in the mouse, which point to…

  1. Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Bergeron, Eric; Boutopoulos, Christos; Martel, Rosalie; Torres, Alexandre; Rodriguez, Camille; Niskanen, Jukka; Lebrun, Jean-Jacques; Winnik, Françoise M.; Sapieha, Przemyslaw; Meunier, Michel

    2015-10-01

    Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm2 and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44+ MDA-MB-231 and CD44+ ARPE-19 cells than to non-targeted CD44- 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm-2 at 250 Hz or 60-80 mJ cm-2 at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions.Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS

  2. Large work function shift of gold induced by a novel perfluorinated azobenzene-based self-assembled monolayer.

    PubMed

    Crivillers, Núria; Osella, Silvio; Van Dyck, Colin; Lazzerini, Giovanni M; Cornil, David; Liscio, Andrea; Di Stasio, Francesco; Mian, Shabbir; Fenwick, Oliver; Reinders, Federica; Neuburger, Markus; Treossi, Emanuele; Mayor, Marcel; Palermo, Vincenzo; Cacialli, Franco; Cornil, Jérôme; Samorì, Paolo

    2013-01-18

    Tune it with light! Self-assembled monolayers on gold based on a chemisorbed novel azobenzene derivative with a perfluorinated terminal phenyl ring are prepared. The modified substrate shows a significant work function increase compared to the bare metal. The photo-conversion between trans and cis isomers chemisorbed on the surface shows great perspectives for being an accessible route to tune the gold properties by means of light.

  3. Facile Synthesis of Gold Nanoparticles by Amino Acid Asparagine: Selective Sensing of Arsenic.

    PubMed

    Ghodake, Gajanan; Vassiliadis, Vassilios S; Choi, Jeong-Hak; Jang, Jiseon; Lee, Dae Sung

    2015-09-01

    The amino acid asparagine (ASP) was used as a benign reducing and stabilizing agent for the production of monodisperse gold nanoparticles (AuNPs) using green chemistry principles. With an increasing concentration of ASP (0.5 to 10 mM), the absorbance intensity at 525 nm increased; however, no effects on the color, size, or shape of the AuNPs were observed. Transmission electron microscope (TEM) images showed that the AuNPs were either hexagonal or spherical in shape and had an average size of approximately 10 ± 5 nm. Facile colorimetric assays of the AuNPs were applied to detect a variety of heavy metal ion species in water. In this study, the selective detection of arsenic ions (As (III) ions) by quenching, aggregation, and/or red-shifting of the surface plasmon resonance (SPR) was successfully achieved. The AuNPs sensor was sustainable as a visual colorimetric detection system and spectral assay of hazardous As (III) ions in the reaction medium; thus, it will be useful for aqueous assessment without using any sophisticated or expensive instruments. PMID:26716315

  4. Preparation, Characterization and Intracellular Imaging of 2,4-Dichlorophenoxyacetic Acid Conjugated Gold Nanorods.

    PubMed

    Jia, Jin-Liang; Jin, Xiao-Yong; Liu, Qing-Le; Liang, Wen-Long; Lin, Miao-Shan; Xu, Han-Hong

    2016-05-01

    Visualizing the biodistribution of pesticides inside living cells is great importance for enhancing targeting of pesticides. Here we reported for the first time that gold nanorods (Au NRs) with size of 39.4 nm x 11.3 nm could be used as a fluorescent tracer to examine the distribution of a typical herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), in tobacco bright yellow 2 (BY-2) cells. The nanostructures of hybrid materials were analyzed by using Raman spectra and X-ray photoelectron spectroscopy (XPS), including spectra assignments and electronic property. These data revealed 2,4-D has successfully conjugated MP-Au NRs according to Raman and XPS. The biodistribution of the conjugates inside BY-2 cells was directly examined at 12 and 24 h by the two-photon microscopy. The intensity of two-photon luminescence (TPL) inside cells demonstrated that the conjugates could be localized and excluded by BY-2 cells. Thus, this labeling approach opens up new avenues to the facile and efficient labeling of pesticides.

  5. Preparation, Characterization and Intracellular Imaging of 2,4-Dichlorophenoxyacetic Acid Conjugated Gold Nanorods.

    PubMed

    Jia, Jin-Liang; Jin, Xiao-Yong; Liu, Qing-Le; Liang, Wen-Long; Lin, Miao-Shan; Xu, Han-Hong

    2016-05-01

    Visualizing the biodistribution of pesticides inside living cells is great importance for enhancing targeting of pesticides. Here we reported for the first time that gold nanorods (Au NRs) with size of 39.4 nm x 11.3 nm could be used as a fluorescent tracer to examine the distribution of a typical herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), in tobacco bright yellow 2 (BY-2) cells. The nanostructures of hybrid materials were analyzed by using Raman spectra and X-ray photoelectron spectroscopy (XPS), including spectra assignments and electronic property. These data revealed 2,4-D has successfully conjugated MP-Au NRs according to Raman and XPS. The biodistribution of the conjugates inside BY-2 cells was directly examined at 12 and 24 h by the two-photon microscopy. The intensity of two-photon luminescence (TPL) inside cells demonstrated that the conjugates could be localized and excluded by BY-2 cells. Thus, this labeling approach opens up new avenues to the facile and efficient labeling of pesticides. PMID:27483849

  6. A recovery of gold from electronic scrap by mechanical separation, acid leaching and electrowinning

    SciTech Connect

    Rhee, K.I.; Lee, J.C.; Lee, C.K.; Joo, K.H.; Yoon, J.K.; Kang, H.R.; Kim, Y.S.; Sohn, H.J.

    1995-12-31

    A series of processes to recover the gold from electronic scrap which contains initially about 200--600 ppm Au have been developed. First, mechanical beneficiation including shredding, crushing and screening was employed. Results showed that 99 percent of gold component leaves in the fraction of under 1 mm of crushed scrap and its concentration was enriched to about 800 ppm without incineration. The scrap was leached in 50% aqua regia solution and gold was dissolved completely at 60 C within 2 hours. Other valuable metals such as silver, copper, nickel and iron were also dissolved. This resulting solution was boiled to remove nitrous compounds in the leachate. Finally, a newly designed electrolyzer was tested to recover the gold metal. More than 99% of gold and silver were recovered within an hour in electrowinning process.

  7. Surface enhanced Raman scattering of amino acids assisted by gold nanoparticles and Gd(3+) ions.

    PubMed

    López-Neira, Juan Pablo; Galicia-Hernández, José Mario; Reyes-Coronado, Alejandro; Pérez, Elías; Castillo-Rivera, Francisco

    2015-05-01

    The surface enhanced raman scattering (SERS) signal from the l-tyrosine (tyr) molecule adsorbed on gold nanoparticles (Au-tyr) is compared with the SERS signal assisted by the presence of gadolinium ions (Gd(3+)) coordinated with the Au-tyr system. An enhancement factor of the SERS signal in the presence of Gd(3+) ions was ∼5 times higher than that produced by l-tyrosine adsorbed on gold nanoparticles. The enhancement of the SERS signal can be attributed to a corresponding increase in the local electric field due to the presence of Gd(3+) ions in the vicinity of a gold dimer configuration. This scenario was confirmed by solving numerically Maxwell equations, showing an increase of 1 order of magnitude in the local electric scattered field when the Gd(3+) ion is located in between a gold dimer compared with naked gold nanoparticles.

  8. Self-Assembly of Pyridine-Modified Lipoic Acid Derivatives on Gold and Their Interaction with Thyroxine (T4)

    PubMed Central

    Albers, Willem M.; Milani, Roberto; Tappura, Kirsi; Munter, Tony; Resnati, Giuseppe; Metrangolo, Pierangelo

    2013-01-01

    Pyridyl derivatives of lipoic acid were prepared as ligands for the study of the interaction with thyroxine (T4). Thin self-assembled films of the ligands were prepared in 70% ethanol on gold and their interaction with T4 was studied by titration experiments in an aqueous buffer solution using Surface Plasmon Resonance (SPR). The thickness and refractive index of the ligand layers were calculated from SPR spectra recorded in two media, also allowing for surface coverage and the density of the layers to be estimated. Two ligands, a 4-pyridyl and a bis(2-hydroxyethyl) derivative of lipoic acid, were selected to investigate the feasibility for producing molecularly imprinted self-assembled layers on gold for T4. The methodology was to co-assemble T4 and the ligand onto the gold surface, elute the T4 from the layer under alkaline conditions, and study the rebinding of T4 to the layer. Multiple elution/rebinding cycles were conducted in different buffer solutions, and rebinding of T4 could be observed, with a moderate binding affinity that depended greatly on the solvent used. More optimal binding was observed in HBS buffer, and the affinity of the interaction could be slightly increased when the 4-pyridyl and bis(2-hydroxy-ethyl) derivatives of lipoic acid were combined in the imprinted layer. PMID:23389045

  9. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study

    NASA Astrophysics Data System (ADS)

    Sousa, Fernanda; Mandal, Subhra; Garrovo, Chiara; Astolfo, Alberto; Bonifacio, Alois; Latawiec, Diane; Menk, Ralf Hendrik; Arfelli, Fulvia; Huewel, Sabine; Legname, Giuseppe; Galla, Hans-Joachim; Krol, Silke

    2010-12-01

    In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex.In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c0nr00345j

  10. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin

    NASA Astrophysics Data System (ADS)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik

    2016-03-01

    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  11. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid.

    PubMed

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu(2+) through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10(-3)-10(-6) M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments. PMID:26703268

  12. Specific ionic effect for simple and rapid colorimetric sensing assays of amino acids using gold nanoparticles modified with task-specific ionic liquid.

    PubMed

    Wu, Datong; Cai, Pengfei; Tao, Zhihao; Pan, Yuanjiang

    2016-01-01

    In this study, a novel task-specific ionic liquid functionalized gold nanoparticle (TSIL-GNP) was successfully prepared and applied in the recognition of amino acids. Particularly, the surface of GNP was modified with the ionic liquid containing carbamido and ester group via thiol, which was characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The stability of this material in aqueous solution improves apparently and can remain unchanged for more than three months. The effect of pH was also discussed in this study. Attractive ionic interaction would effectively weaken intensity of the covalent coupling between the metal ion and the functional groups of amino acids. Thus, TSIL-GNP was successfully applied to recognizing serine, aspartic acid, lysine, arginine, and histidine in the presence of Cu(2+) through distinctive color changes. Suspension would be generated once a spot of cysteine was added into the GNPs solution. Results indicated that it had a good linear relationship between extinction coefficients and concentration of amino acids in a wide range of 10(-3)-10(-6) M. Moreover, the proposed strategy was successfully used to analyze the histidine in urinary samples. In brief, TSIL-GNP is a suitable substrate for discrimination of five amino acids in a rapid and simple way without sophisticated instruments.

  13. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy.

    PubMed

    Huang, Peng; Bao, Le; Zhang, Chunlei; Lin, Jing; Luo, Teng; Yang, Dapeng; He, Meng; Li, Zhiming; Gao, Guo; Gao, Bing; Fu, Shen; Cui, Daxiang

    2011-12-01

    Multifunctional nanoprobes are designed to own various functions such as tumor targeting, imaging and selective therapy, which offer great promise for the future of cancer prevention, diagnosis, imaging and treatment. Herein, silica was applied to replace cetyltrimethylammonium bromide (CTAB) molecules on the surface of gold nanorods (GNRs) by the classic Stöber method, thus eliminating their cytotoxicity and improving their biocompatibility. Folic acid molecule was covalently anchored on the surface of GNRs with silane coupling agent. The resultant folic acid-conjugated silica-modified GNRs show highly selective targeting, enhanced radiation therapy (RT) and photo-thermal therapy (PTT) effects on MGC803 gastric cancer cells, and also exhibited strong X-ray attenuation for in vivo X-ray and computed tomography (CT) imaging. In conclusion, the as-prepared nanoprobe is a good candidate with excellent imaging and targeting ability for X-ray/CT imaging-guided targeting dual-mode enhanced RT and PTT.

  14. Quantitative high-pressure pair distribution function analysis of nanocrystalline gold

    NASA Astrophysics Data System (ADS)

    Martin, C. David; Antao, Sytle M.; Chupas, Peter J.; Lee, Peter L.; Shastri, Sarvjit D.; Parise, John B.

    2005-02-01

    Using a diamond anvil cell with high-energy monochromatic x rays, we have studied the total scattering of nanocrystalline gold to 20Å-1 at pressures up to 10GPa in a hydrostatic alcohol pressure-medium. Through direct Fourier transformation of the structure function [S(Q)], pair distribution functions (PDFs) [G(r)] are calculated without Kaplow-type iterative corrections. Quantitative high-pressure PDF (QHP-PDF) analysis is performed via full-profile least-squares modeling and confirmed through comparison of Rietveld analysis of Bragg diffraction. The quality of the high pressure PDFs obtained demonstrates the integrity of our technique and suggests the feasibility of future QHP-PDF studies of liquids, disordered solids, and materials at phase transition under pressure.

  15. Solubility of gold nanoparticles as a function of ligand shell and alkane solvent.

    PubMed

    Lohman, Brandon C; Powell, Jeffrey A; Cingarapu, Sreeram; Aakeroy, Christer B; Chakrabarti, Amit; Klabunde, Kenneth J; Law, Bruce M; Sorensen, Christopher M

    2012-05-14

    The solubility of ca. 5.0 nm gold nanoparticles was studied systematically as a function of ligand shell and solvent. The ligands were octane-, decane-, dodecane- and hexadecanethiols; the solvents were the n-alkanes from hexane to hexadecane and toluene. Supernatant concentrations in equilibrium with precipitated superclusters of nanoparticles were measured at room temperature (23 °C) with UV-Vis spectrophotometry. The solubility of nanoparticles ligated with decane- and dodecanethiol was greatest in n-decane and n-dodecane, respectively. In contrast, the solubility of nanoparticles ligated with octane- and hexadecanethiol showed decreasing solubility with increasing solvent chain length. In addition the solubility of the octanethiol ligated system showed a nonmonotonic solvent carbon number functionality with even numbered solvents being better solvents than neighboring odd numbered solvents. PMID:22456604

  16. Solubility of gold nanoparticles as a function of ligand shell and alkane solvent.

    PubMed

    Lohman, Brandon C; Powell, Jeffrey A; Cingarapu, Sreeram; Aakeroy, Christer B; Chakrabarti, Amit; Klabunde, Kenneth J; Law, Bruce M; Sorensen, Christopher M

    2012-05-14

    The solubility of ca. 5.0 nm gold nanoparticles was studied systematically as a function of ligand shell and solvent. The ligands were octane-, decane-, dodecane- and hexadecanethiols; the solvents were the n-alkanes from hexane to hexadecane and toluene. Supernatant concentrations in equilibrium with precipitated superclusters of nanoparticles were measured at room temperature (23 °C) with UV-Vis spectrophotometry. The solubility of nanoparticles ligated with decane- and dodecanethiol was greatest in n-decane and n-dodecane, respectively. In contrast, the solubility of nanoparticles ligated with octane- and hexadecanethiol showed decreasing solubility with increasing solvent chain length. In addition the solubility of the octanethiol ligated system showed a nonmonotonic solvent carbon number functionality with even numbered solvents being better solvents than neighboring odd numbered solvents.

  17. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  18. ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity.

    PubMed

    Biener, Monika M; Biener, Juergen; Wichmann, Andre; Wittstock, Arne; Baumann, Theodore F; Bäumer, Marcus; Hamza, Alex V

    2011-08-10

    Nanoporous metals have many technologically promising applications, but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only 1 nm thick oxide films can stabilize the nanoscale morphology of np-Au up to 1,000°C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO(2) ALD coatings. Our results open the door to high-temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  19. Imaging Functional Nucleic Acid Delivery to Skin.

    PubMed

    Kaspar, Roger L; Hickerson, Robyn P; González-González, Emilio; Flores, Manuel A; Speaker, Tycho P; Rogers, Faye A; Milstone, Leonard M; Contag, Christopher H

    2016-01-01

    Monogenic skin diseases arise from well-defined single gene mutations, and in some cases a single point mutation. As the target cells are superficial, these diseases are ideally suited for treatment by nucleic acid-based therapies as well as monitoring through a variety of noninvasive imaging technologies. Despite the accessibility of the skin, there remain formidable barriers for functional delivery of nucleic acids to the target cells within the dermis and epidermis. These barriers include the stratum corneum and the layered structure of the skin, as well as more locally, the cellular, endosomal and nuclear membranes. A wide range of technologies for traversing these barriers has been described and moderate success has been reported for several approaches. The lessons learned from these studies include the need for combinations of approaches to facilitate nucleic acid delivery across these skin barriers and then functional delivery across the cellular and nuclear membranes for expression (e.g., reporter genes, DNA oligonucleotides or shRNA) or into the cytoplasm for regulation (e.g., siRNA, miRNA, antisense oligos). The tools for topical delivery that have been evaluated include chemical, physical and electrical methods, and the development and testing of each of these approaches has been greatly enabled by imaging tools. These techniques allow delivery and real time monitoring of reporter genes, therapeutic nucleic acids and also triplex nucleic acids for gene editing. Optical imaging is comprised of a number of modalities based on properties of light-tissue interaction (e.g., scattering, autofluorescence, and reflectance), the interaction of light with specific molecules (e.g., absorbtion, fluorescence), or enzymatic reactions that produce light (bioluminescence). Optical imaging technologies operate over a range of scales from macroscopic to microscopic and if necessary, nanoscopic, and thus can be used to assess nucleic acid delivery to organs, regions, cells

  20. Imaging Functional Nucleic Acid Delivery to Skin.

    PubMed

    Kaspar, Roger L; Hickerson, Robyn P; González-González, Emilio; Flores, Manuel A; Speaker, Tycho P; Rogers, Faye A; Milstone, Leonard M; Contag, Christopher H

    2016-01-01

    Monogenic skin diseases arise from well-defined single gene mutations, and in some cases a single point mutation. As the target cells are superficial, these diseases are ideally suited for treatment by nucleic acid-based therapies as well as monitoring through a variety of noninvasive imaging technologies. Despite the accessibility of the skin, there remain formidable barriers for functional delivery of nucleic acids to the target cells within the dermis and epidermis. These barriers include the stratum corneum and the layered structure of the skin, as well as more locally, the cellular, endosomal and nuclear membranes. A wide range of technologies for traversing these barriers has been described and moderate success has been reported for several approaches. The lessons learned from these studies include the need for combinations of approaches to facilitate nucleic acid delivery across these skin barriers and then functional delivery across the cellular and nuclear membranes for expression (e.g., reporter genes, DNA oligonucleotides or shRNA) or into the cytoplasm for regulation (e.g., siRNA, miRNA, antisense oligos). The tools for topical delivery that have been evaluated include chemical, physical and electrical methods, and the development and testing of each of these approaches has been greatly enabled by imaging tools. These techniques allow delivery and real time monitoring of reporter genes, therapeutic nucleic acids and also triplex nucleic acids for gene editing. Optical imaging is comprised of a number of modalities based on properties of light-tissue interaction (e.g., scattering, autofluorescence, and reflectance), the interaction of light with specific molecules (e.g., absorbtion, fluorescence), or enzymatic reactions that produce light (bioluminescence). Optical imaging technologies operate over a range of scales from macroscopic to microscopic and if necessary, nanoscopic, and thus can be used to assess nucleic acid delivery to organs, regions, cells

  1. Adsorption of small molecules on helical gold nanorods: a relativistic density functional study.

    PubMed

    Liu, Xiao-Jing; Hamilton, Ian

    2014-10-15

    We study the adsorption of a variety of small molecules on helical gold nanorods using relativistic density functional theory. We focus on Au40 which consists of a central linear strand of five gold atoms with seven helical strands of five gold atoms on a coaxial tube. All molecules preferentially adsorb at a single low-coordinated gold atom on the coaxial tube at an end of Au40. In most cases, there is significant charge transfer (CT) between Au40 and the adsorbate, for CO and NO2, there is CT from the Au40 to adsorbate while for all other molecules there is CT from the adsorbate to Au40. Thus, Au40-adsorbate can be described as a donor-accepter complex and we use charge decomposition analysis to better understand the adsorption process. We determine the adsorption energy order to be C5H5N >NO2  > CO > NH3  > CH2=CH2  > CH2=CH-CHO > NO > HC≡CH > H2S > SO2  > HCN > CH3OH > H2C=O > O2  > H2O > CH4  > N2. We find that the Au-C, Au-N, Au-S, and Au-O bonds are surprisingly strong, with clear implications for reactivity enhancement of the adsorbate. The Au-H bond is relatively weak but, for interactions via an H atom that is bonded to a carbon atom (e.g., CH4), we find that there is large charge polarization of the Au-H-C moiety and partial activation of the inert C-H bond. Although the Au-S and Au-O bonds are generally weaker than the Au-C and Au-N bonds, we find that adsorption of H2S or H2O causes greater distortion of Au40 in the binding region. However, the degree of distortion is small and the helical structure is retained, demonstrating the stability of the helical Au40 nanorod under perturbations.

  2. Mass spectrometry signal amplification for ultrasensitive glycoprotein detection using gold nanoparticle as mass tag combined with boronic acid based isolation strategy.

    PubMed

    Liu, Minbo; Zhang, Lijuan; Xu, Yawei; Yang, Pengyuan; Lu, Haojie

    2013-07-25

    We describe a novel method for rapid and ultrasensitive detection of intact glycoproteins without enzymatic pretreatment which was commonly used in proteomic research. This method is based on using gold nanoparticle (AuNP) as signal tag in laser desorption/ionization mass spectrometry (LDI-MS) analysis combined with boronic acid assisted isolation strategy. Briefly speaking, target glycoproteins were firstly isolated from sample solution with boronic acid functionalized magnetic microparticles, and then the surface modified gold nanoparticles were added to covalently bind to the glycoproteins. After that, these AuNP tagged glycoproteins were eluted from magnetic microparticles and applied to LDI-MS analysis. The mass signal of AuNP rather than that of glycoprotein was detected and recorded in this strategy. Through data processing of different standard glycoproteins, we have demonstrated that the signal of AuNP could be used to quantitatively represent glycoprotein. This method allows femtomolar detection of intact glycoproteins. We believe that the successful validation of this method on three different kinds of glycoproteins suggests the potential use for tracking trace amount of target glycoproteins in real biological samples in the near future.

  3. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    PubMed

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities.

  4. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    PubMed

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. PMID:25009101

  5. A facile strategy to functionalize gold nanorods with polycation brushes for biomedical applications.

    PubMed

    Yan, Peng; Zhao, Nana; Hu, Hao; Lin, Xinyi; Liu, Fusheng; Xu, Fu-Jian

    2014-08-01

    The fabrication of highly efficient nonviral gene carriers with low cytotoxicity remains a challenge in gene therapy. This paper reports a facile strategy to combine the advantages of gold nanorods (Au NRs) and polycations through surface functionalization. Different Au NR carriers with a controlled amount of poly(2-(N,N-dimethyl amino)ethyl methacrylate) (PDAEMA) brushes could be readily synthesized via surface-initiated atom transfer radical polymerization to achieve optimized nanohybrids for gene transfection. The obtained gene carriers demonstrate much higher gene transfection efficiency and lower cytotoxicity compared with polyethylenimine (∼25kDa, gold standard of nonviral gene vector) in both COS7 and HepG2 cell lines. In addition, the potential of the PDMAEMA-grafted Au NR carriers to be utilized as a computed tomography contrast agent for the imaging of cancer cells has also been investigated. This strategy may realize the gene therapy and real-time imaging within one nanostructure and facilitate biomedical applications. PMID:24814878

  6. Highly sensitive free radical detection by nitrone-functionalized gold nanoparticles.

    PubMed

    Du, Libo; Huang, Saipeng; Zhuang, Qianfen; Jia, Hongying; Rockenbauer, Antal; Liu, Yangping; Liu, Ke Jian; Liu, Yang

    2014-01-01

    The detection of free radicals and related species has attracted significant attention in recent years because of their critical roles in physiological and pathological processes. Among the methods for the detection of free radicals, electron spin resonance (ESR) coupled with the use of the spin trapping technique has been an effective approach for characterization and quantification of these species due to its high specificity. However, its application in biological systems, especially in in vivo systems, has been greatly limited partially due to the low reaction rate between the currently available spin traps with biological radicals. To overcome this drawback, we herein report the first example of nitrone functionalized gold nanoparticles (Au@EMPO) as highly efficient spin traps in which the thiolated EMPO (2-(ethoxycarbonyl)-2-methyl-3,4-dihydro-2H-pyrrole 1-oxide) derivative was self-assembled on gold nanoparticles. Kinetic studies showed that Au@EMPO has a 137-fold higher reaction rate constant with ˙OH than PBN (N-tert-butyl-α-phenylnitrone). Owing to the high rate of trapping ˙OH by Au@EMPO as well as the high stability of the resulting spin adduct (t½ ∼ 56 min), Au@EMPO affords 124-fold higher sensitivity for ˙OH than EMPO. Thus, this new nanospin trap shows great potential in trapping the important radicals such as ˙OH in various biological systems and provides a novel strategy to design spin traps with much improved properties. PMID:24336899

  7. Catalytic role of gold nanoparticle in GaAs nanowire growth: a density functional theory study.

    PubMed

    Kratzer, Peter; Sakong, Sung; Pankoke, Volker

    2012-02-01

    The energetics of Ga, As, and GaAs species on the Au(111) surface (employed as a model for Au nanoparticles) is investigated by means of density functional calculations. Apart from formation of the compound Au(7)Ga(2), Ga is found to form a surface alloy with gold with comparable ΔH ~ -0.5 eV for both processes. Dissociative adsorption of As(2) is found to be exothermic by more than 2 eV on both clean Au(111) and AuGa surface alloys. The As-Ga species formed by reaction of As with the surface alloy is sufficiently stable to cover the surface of an Au particle in vacuo in contact with a GaAs substrate. The results of the calculations are interpreted in the context of Au-catalyzed growth of GaAs nanowires. We argue that arsenic is supplied to the growth zone of the nanowire mainly by impingement of molecules on the gold particle and identify a regime of temperatures and As(2) partial pressures suitable for Au-catalyzed nanowire growth in molecular beam epitaxy.

  8. Molecular Dynamics Studies of Self-Assembling Biomolecules and DNA-functionalized Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Cho, Vince Y.

    This thesis is organized as following. In Chapter 2, we use fully atomistic MD simulations to study the conformation of DNA molecules that link gold nanoparticles to form nanoparticle superlattice crystals. In Chapter 3, we study the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber by using CGMD simulations. Compared to fully atomistic MD simulations, CGMD simulations prove to be computationally cost-efficient and reasonably accurate for exploring self-assembly, and are used in all subsequent chapters. In Chapter 4, we apply CGMD methods to study the self-assembly of small molecule-DNA hybrid (SMDH) building blocks into well-defined cage-like dimers, and reveal the role of kinetics and thermodynamics in this process. In Chapter 5, we extend the CGMD model for this system and find that the assembly of SMDHs can be fine-tuned by changing parameters. In Chapter 6, we explore superlattice crystal structures of DNA-functionalized gold nanoparticles (DNA-AuNP) with the CGMD model and compare the hybridization.

  9. Nucleation of Amyloid Oligomers by RepA-WH1-Prionoid-Functionalized Gold Nanorods.

    PubMed

    Fernández, Cristina; González-Rubio, Guillermo; Langer, Judith; Tardajos, Gloria; Liz-Marzán, Luis M; Giraldo, Rafael; Guerrero-Martínez, Andrés

    2016-09-01

    Understanding protein amyloidogenesis is an important topic in protein science, fueled by the role of amyloid aggregates, especially oligomers, in the etiology of a number of devastating human degenerative diseases. However, the mechanisms that determine the formation of amyloid oligomers remain elusive due to the high complexity of the amyloidogenesis process. For instance, gold nanoparticles promote or inhibit amyloid fibrillation. We have functionalized gold nanorods with a metal-chelating group to selectively immobilize soluble RepA-WH1, a model synthetic bacterial prionoid, using a hexa-histidine tag (H6). H6-RepA-WH1 undergoes stable amyloid oligomerization in the presence of catalytic concentrations of anisotropic nanoparticles. Then, in a physically separated event, such oligomers promote the growth of amyloid fibers of untagged RepA-WH1. SERS spectral changes of H6-RepA-WH1 on spherical citrate-AuNP substrates provide evidence for structural modifications in the protein, which are compatible with a gradual increase in β-sheet structure, as expected in amyloid oligomerization. PMID:27489029

  10. Gold Nanoparticle Clusters in Quasinematic Layers of Liquid-Crystalline Dispersion Particles of Double-Stranded Nucleic Acids

    PubMed Central

    Yevdokimov, Yu.M.; Salyanov, V.I.; Katz, E.I.; Skuridin, S.G.

    2012-01-01

    The interaction between gold nanoparticles and particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA and poly(I)×poly(C) molecules is considered. It is shown that small-sized (~ 2 nm) gold nanoparticles induce two different structural processes. First, they facilitate the reorganization of the spatial cholesteric structure of the particles into a nematic one. This process is accompanied by a fast decrease in the amplitude of an abnormal band in the CD spectrum. Second, they induce cluster formation in a “free space” between neighboring nucleic acid molecules fixed in the structure of the quasinematic layers of liquid-crystalline particles. This process is accompanied by slow development of the surface plasmon resonance band in the visible region of the absorption spectrum. Various factors influencing these processes are outlined. Some assumptions concerning the possible mechanism(s) of fixation of gold nanoparticles between the neighboring double-stranded nucleic acid molecules in quasinematic layers are formulated. PMID:23346383

  11. Interfacial properties of asymmetrically functionalized citrate-stabilized gold and silver nanoparticles related to molecular adsorption

    NASA Astrophysics Data System (ADS)

    Park, Jong-Won

    A detailed understanding of the conformation of adsorbed molecules and regional surface functionalization of metal nanoparticles (MNPs) is challenging for nanometer-size (10 -- 100 m) materials and necessary for fundamental studies and applications. The studies are motivated by open questions related to surface chemistry of noble MNPs. Although citrate-stabilized gold NPs (AuNPs) have been widely used, the citrate layer is not well-understood. Thiols have been suggested to displace citrate anions adsorbed on metal surfaces due to strong gold-sulfur interaction, but quantitative experimental evidence of the extent of ligand-exchange has not been reported. Whereas asymmetrically-functionalized AuNPs are utilized for nanoparticle assembly due to the interparticle coupling of localized surface plasmons, the interface between asymmetric nanoparticles in single assemblies has not been studied. Noble MNPs with sizes smaller than citrate-stabilized AuNPs also need to be surface-modified for stability in water for biological applications. The dissertation presents investigations of the chemical and physical properties of gold and silver NPs (AgNPs) related to ligand adsorption at the metal surface. Firstly, self-assembled layers of citrate adsorbed on AuNP (111), (110), and (100) surfaces were proposed, based on geometric considerations and spectroscopic investigations by infrared (IR) and X-ray photoelectron spectroscopy (XPS). Adsorption characteristics of citrate are the unique structure of adsorbed species, intermolecular interactions through hydrogen bonds and van der Waals attractions, bilayer formation, surface coverage, nanoparticle-stabilization role, and chirality. Secondly, IR and XPS studies showed coadsorption of thiolate on the surface of citrate-stabilized AuNPs. Steric, chelating effects and intermolecular interactions are the origins of the strong adsorption of citrate on AuNP surfaces. Surface coverage was determined from XPS analyses. Thirdly, an

  12. A direct in situ fingerprinting method for acid rock drainage using voltammetric techniques with a single renewable gold microelectrode.

    PubMed

    Nuzzio, Donald B; Zettler, Erik R; Aguilera, Angeles; Amaral-Zettler, Linda A

    2011-04-15

    Electrochemistry allows for rapid identification of multiple metals and other chemical complexes common in acid rock drainage (ARD) systems. Voltammetric scans using a single gold microelectrode of water samples from geochemically distinct areas of the Río Tinto (RT) in southwestern Spain were clearly recognizable in the field and in samples stored at room temperature for over 6 months. Major voltammetric peaks of iron(III) and copper(II) were identified on a single constantly renewable gold microelectrode. Confirmation of these peaks was performed by spiking with standard metal solutions in the laboratory. This voltammetric technique is a rapid, direct and inexpensive in situ method for identification of water sources and their chemical characteristics, as well as an economical way to monitor environmental changes and remediation efforts.

  13. Colloidal Synthesis of Gold Semishells

    PubMed Central

    Rodríguez-Fernández, Denis; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2012-01-01

    This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical properties were characterized by visible near-infrared (vis-NIR) spectroscopy and compared with simulations performed using the boundary element method (BEM). These revealed that the main optical features are located beyond the NIR region because of the large core size. PMID:24551496

  14. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    PubMed

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences.

  15. Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles.

    PubMed

    La, Ju A; Lim, Sora; Park, Hyo Jeong; Heo, Min-Ji; Sang, Byoung-In; Oh, Min-Kyu; Cho, Eun Chul

    2016-08-24

    We present a plasmonic-based strategy for the colourimetric and spectroscopic differentiation of various organic acids produced by bacteria. The strategy is based on our discovery that particular concentrations of dl-lactic, acetic, and butyric acids induce different assembly structures, colours, and optical spectra of gold nanoparticles. We selected wild-type (K-12 W3110) and genetically-engineered (JHL61) Escherichia coli (E. coli) that are known to primarily produce acetic and butyric acid, respectively. Different assembly structures and optical properties of gold nanoparticles were observed when different organic acids, obtained after the removal of acid-producing bacteria, were mixed with gold nanoparticles. Moreover, at moderate cell concentrations of K-12 W3110 E. coli, which produce sufficient amounts of acetic acid to induce the assembly of gold nanoparticles, a direct estimate of the number of bacteria was possible based on time-course colour change observations of gold nanoparticle aqueous suspensions. The plasmonic-based colourimetric and spectroscopic methods described here may enable onsite testing for the identification of organic acids produced by bacteria and the estimation of bacterial numbers, which have applications in health and environmental sciences. PMID:27497013

  16. Diamondoid-functionalized gold nanogaps as sensors for natural, mutated, and epigenetically modified DNA nucleotides.

    PubMed

    Sivaraman, Ganesh; Amorim, Rodrigo G; Scheicher, Ralph H; Fyta, Maria

    2016-05-21

    Modified tiny hydrogen-terminated diamond structures, known as diamondoids, show a high efficiency in sensing DNA molecules. These diamond cages, as recently proposed, could offer functionalization possibilities for gold junction electrodes. In this investigation, we report on diamondoid-functionalized electrodes, showing that such a device would have a high potential in sensing and sequencing DNA. The smallest diamondoid including an amine modification was chosen for the functionalization. Here, we report on the quantum tunneling signals across diamondoid-functionalized Au(111) electrodes. Our work is based on quantum-transport calculations and predicts the expected signals arising from different DNA units within the break junctions. Different gating voltages are proposed in order to tune the sensitivity of the functionalized electrodes with respect to specific nucleotides. The relation of this sensitivity to the coupling or decoupling of the electrodes is discussed. Our results also shed light on the sensing capability of such a device in distinguishing the DNA nucleotides, in their natural and mutated forms. PMID:27121677

  17. Simple and Flexible Model for Laser-Driven Antibody-Gold Surface Interactions: Functionalization and Sensing.

    PubMed

    Della Ventura, Bartolomeo; Ambrosio, Antonio; Fierro, Annalisa; Funari, Riccardo; Gesuele, Felice; Maddalena, Pasquale; Mayer, Dirk; Pica Ciamarra, Massimo; Velotta, Raffaele; Altucci, Carlo

    2016-08-24

    Interactions between biomolecules and between substrates and biomolecules is a crucial issue in physics and applications to topics such as biotechnology and organic electronics. The efficiency of bio- and mechanical sensors, of organic electronics systems, and of a number of other devices critically depends on how molecules are deposited on a surface so that these acquire specific functions. Here, we tackle this vast problem by developing a coarse grained model of biomolecules having a recognition function, such as antibodies, capable to quantitatively describe in a simple manner essential phenomena: antigen-antibody and antibody substrate interactions. The model is experimentally tested to reproduce the results of a benchmark case, such as (1) gold surface functionalization with antibodies and (2) antibody-antigen immune-recognition function. The agreement between experiments and model prediction is excellent, thus unveiling the mechanism for antibody immobilization onto metals at the nanoscale in various functionalization schemes. These results shed light on the geometrical packing properties of the deposited molecules, and may open the way to a novel coarse-grained based approach to describe other processes where molecular packing is a key issue with applications in a huge number of fields from nano- to biosciences.

  18. Diamondoid-functionalized gold nanogaps as sensors for natural, mutated, and epigenetically modified DNA nucleotides

    NASA Astrophysics Data System (ADS)

    Sivaraman, Ganesh; Amorim, Rodrigo G.; Scheicher, Ralph H.; Fyta, Maria

    2016-05-01

    Modified tiny hydrogen-terminated diamond structures, known as diamondoids, show a high efficiency in sensing DNA molecules. These diamond cages, as recently proposed, could offer functionalization possibilities for gold junction electrodes. In this investigation, we report on diamondoid-functionalized electrodes, showing that such a device would have a high potential in sensing and sequencing DNA. The smallest diamondoid including an amine modification was chosen for the functionalization. Here, we report on the quantum tunneling signals across diamondoid-functionalized Au(111) electrodes. Our work is based on quantum-transport calculations and predicts the expected signals arising from different DNA units within the break junctions. Different gating voltages are proposed in order to tune the sensitivity of the functionalized electrodes with respect to specific nucleotides. The relation of this sensitivity to the coupling or decoupling of the electrodes is discussed. Our results also shed light on the sensing capability of such a device in distinguishing the DNA nucleotides, in their natural and mutated forms.

  19. Functionalized carbon dots as sensors for gold nanoparticles in spiked samples: formation of nanohybrids.

    PubMed

    Cayuela, Angelina; Soriano, M Laura; Carrión, M Carmen; Valcárcel, Miguel

    2014-04-11

    This paper reports the synthesis, passivation and functionalization of luminescent carbon dots (CDs) possessing surface thiol ending groups. A simple procedure involving amidation of passivated carbon dots (p-CDs) with cysteamine boosts their photoluminescent properties and enables their use as easily controlled fluorescent nanosensors for determining citrate-gold nanoparticles (AuNPs). The mechanism behind the quenching phenomenon was established from fluorescence measurements at high temperatures and lifetime tests, and found to involve static quenching leading to the formation of CD-AuNP nanohybrids. A method for determining AuNPs in complex matrices was developed and validated by application to spiked drinking water and mussel tissues. The limits of detection and quantitation for AuNPs thus obtained were 0.20 and 0.66 nmol L(-1), respectively.

  20. Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis.

    PubMed

    Bessar, Hagar; Venditti, Iole; Benassi, Luisa; Vaschieri, Cristina; Azzoni, Paola; Pellacani, Giovanni; Magnoni, Cristina; Botti, Elisabetta; Casagrande, Viviana; Federici, Massimo; Costanzo, Antonio; Fontana, Laura; Testa, Giovanna; Mostafa, Fawzia Farag; Ibrahim, Samia Ali; Russo, Maria Vittoria; Fratoddi, Ilaria

    2016-05-01

    Gold nanoparticles (AuNPs) represent an effective choice for topical drug delivery systems thanks to their small size, general non-toxicity, ease of functionalization and high surface to volume ratio. Even if systemic, methotrexate still plays an important role in psoriasis treatment: its topical use shows insufficient percutaneus penetration owing to limited passive diffusion, high molecular weight and dissociation at physiological pH. The aim of our study was to design a new drug delivery nanocarrier for Methotrexate and to improve its solubility, stability and biodistribution. AuNPs were on purpose prepared with a hydrophilic stabilizing layer, in order to improve the colloidal stability in water. Water-soluble gold nanoparticles functionalized by sodium 3-mercapto-1-propansulfonate (Au-3MPS) were prepared and loaded with methotrexate (MTX). The loading efficiency of MTX on Au-3MPS was assessed in the range 70-80%, with a fast release (80% in one hour). The release was studied up to 24h reaching the value of 95%. The Au-3MPS@MTX conjugate was fully characterized by spectroscopic techniques (UV-vis, FTIR) and DLS. Preliminary toxicity tests in the presence of keratinocytes monolayers allowed to assess that the used Au-3MPS are not toxic. The conjugate was then topically used on C57BL/6 mouse normal skin in order to trace the absorption behavior. STEM images clearly revealed the distribution of gold nanoparticles inside the cells. In vitro studies showed that Methotrexate conjugated with Au-3MPS is much more efficient than Methotrexate alone. Moreover, DL50, based on MTT analysis, is 20 folds reduced at 48 h, by the presence of nanoparticles conjugation. UV-vis spectra for in vivo tracing of the conjugate on bare mouse skin after 24h of application, show increased delivery of Methotrexate in the epidermis and dermis using Au-3MPS@MTX conjugate, compared to MTX alone. Moreover we observed absence of the Au-3MPS in the dermis and in the epidermis, suggesting that

  1. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging

    NASA Astrophysics Data System (ADS)

    Li, Li; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; He, Dinggeng; Guo, Xi; Wan, Lan; He, Xiaoxiao; Wang, Kemin

    2016-03-01

    Amino acid-dithiocarbamate (amino acid-DTC) was developed as both the reductant and ligand stabilizer for biomimetic synthesis of gold nanoparticles (AuNPs), which served as an excellent surface-enhanced Raman scattering (SERS) contrast nanoprobe for cell imaging. Glycine (Gly), glutamic acid (Glu), and histidine (His) with different isoelectric points were chosen as representative amino acid candidates to synthesize corresponding amino acid-DTC compounds through mixing with carbon disulfide (CS2), respectively. The pyrogenic decomposition of amino acid-DTC initiated the reduction synthesis of AuNPs, and the strong coordinating dithiocarbamate group of amino acid-DTC served as a stabilizer that grafted onto the surface of the AuNPs, which rendered the as-prepared nanoparticles a negative surface charge and high colloidal stability. MTT cell viability assay demonstrated that the biomimetic AuNPs possessed neglectful toxicity to the human hepatoma cell, which guaranteed them good biocompatibility for biomedical application. Meanwhile, the biomimetic AuNPs showed a strong SERS effect with an enhancement factor of 9.8 × 105 for the sensing of Rhodamine 6G, and two distinct Raman peaks located at 1363 and 1509 cm-1 could be clearly observed in the cell-imaging experiments. Therefore, biomimetic AuNPs can be explored as an excellent SERS contrast nanoprobe for biomedical imaging, and the amino acid-DTC mediated synthesis of the AuNPs has a great potential in bio-engineering and biomedical imaging applications.

  2. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.

    PubMed

    Liebeschuetz, John W; Cole, Jason C; Korb, Oliver

    2012-06-01

    The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions.

  3. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test.

    PubMed

    Liebeschuetz, John W; Cole, Jason C; Korb, Oliver

    2012-06-01

    The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions. PMID:22371207

  4. Detection of saccharides with a fluorescent sensing device based on a gold film modified with 4-mercaptophenylboronic acid monolayer

    NASA Astrophysics Data System (ADS)

    Chen, Shu-Jen; Chang, Jui-Feng; Cheng, Nai-Jen; Yih, Jeng-Nan; Chiu, Kuo-Chi

    2013-09-01

    An extremely sensitive fluorescent sensor based on a phenylboronic acid monolayer was developed for detecting saccharide molecules. The fluorescent sensor was prepared by assembling a monolayer of 4-mercaptophenylboronic acid (4-MPBA) onto a gold-coated compact disk. The change in the fluorescence of the 4-MPBA monolayer was extremely obvious in basic methanolic buffer containing monosaccharides down to the picomolar level. The fluorescence spectra demonstrated that the 4-MPBA monolayer was sensitive to monosaccharides and disaccharides, and the affinity of the monolayer toward saccharides was in the order of glucose < fructose < mannose < galactose < maltose > lactose > sucrose. Additionally, the fluorescence intensity of 4-MPBA monolayer was restorable after cleaning with weak acid, indicating that the reported fluorescent sensor with the detection limit of glucose down to the picomolar level is reusable for sensing saccharides.

  5. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline

    NASA Astrophysics Data System (ADS)

    He, Yi; Peng, Rufang

    2014-11-01

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  6. Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline.

    PubMed

    He, Yi; Peng, Rufang

    2014-11-14

    In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl₄ with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (∼25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.

  7. Phytosynthesis of gold nanoparticles using Mappia foetida leaves extract and their conjugation with folic acid for delivery of doxorubicin to cancer cells.

    PubMed

    Yallappa, S; Manjanna, J; Dhananjaya, B L; Vishwanatha, U; Ravishankar, B; Gururaj, H

    2015-09-01

    Mappia foetida leaves extract is used as bioreductant for the synthesis of gold nanoparticles and their application in the efficient delivery of doxorubicin to human cancer cells is reported here. The formation of gold nanoparticles is evident from their characteristic optical absorption at ~560 nm. X-ray diffraction pattern of gold nanoparticles confirmed their fcc structure. Fourier transform infrared spectroscopy shows the bioactive molecules from plant extract capped on the surface of gold nanoparticles and conjugation of doxorubicin along with activated folic acid as navigational molecules for targeted drug delivery. Such a conjugation of gold nanoparticles is characterized by their weight loss, ~35-40 %, due to thermal degradation of plant biomass and conjugated drug along with receptor, as observed in thermogravimetric analysis. The spherical shaped gold nanoparticles (Φ 10-20 nm) are observed by field emission scanning electron microscopy and transmission electron microscopy images and the expected elemental composition by energy dispersive X-ray spectroscopy. Gold nanoparticles conjugated with activated folic acid and doxorubicin complex is found to be toxic for human cancer cells viz., MDA-MB-231, HeLa, SiHa and Hep-G2. Furthermore, the amount of drug released was maximum at pH 5.3 (an ambient condition for intravenous cancer drugs) followed by pH 7.2 and pH 6.8.

  8. Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study.

    PubMed

    Laref, Slimane; Cao, Jiangrong; Asaduzzaman, Abu; Runge, Keith; Deymier, Pierre; Ziolkowski, Richard W; Miyawaki, Mamoru; Muralidharan, Krishna

    2013-05-20

    Physical properties of materials are known to be different from the bulk at the nanometer scale. In this context, the dependence of optical properties of nanometric gold thin films with respect to film thickness is studied using density functional theory (DFT). We find that the in-plane plasma frequency of the gold thin film decreases with decreasing thickness and that the optical permittivity tensor is highly anisotropic as well as thickness dependent. Quantitative knowledge of planar metal film permittivity's thickness dependence can improve the accuracy and reliability of the designs of plasmonic devices and electromagnetic metamaterials. The strong anisotropy observed may become an alternative method of realizing indefinite media.

  9. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold.

    PubMed

    Hou, Shuyu; Burton, Erik A; Simon, Karen A; Blodgett, Dustin; Luk, Yan-Yeung; Ren, Dacheng

    2007-07-01

    Bacterial biofilms cause serious problems, such as antibiotic resistance and medical device-related infections. To further understand bacterium-surface interactions and to develop efficient control strategies, self-assembled monolayers (SAMs) of alkanethiols presenting different functional groups on gold films were analyzed to determine their resistance to biofilm formation. Escherichia coli was labeled with green florescence protein, and its biofilm formation on SAM-modified surfaces was monitored by confocal laser scanning microscopy. The three-dimensional structures of biofilms were analyzed with the COMSTAT software to obtain information about biofilm thickness and surface coverage. SAMs presenting methyl, L-gulonamide (a sugar alcohol tethered with an amide bond), and tri(ethylene glycol) (TEG) groups were tested. Among these, the TEG-terminated SAM was the most resistant to E. coli biofilm formation; e.g., it repressed biofilm formation by E. coli DH5alpha by 99.5% +/- 0.1% for 1 day compared to the biofilm formation on a bare gold surface. When surfaces were patterned with regions consisting of methyl-terminated SAMs surrounded by TEG-terminated SAMs, E. coli formed biofilms only on methyl-terminated patterns. Addition of TEG as a free molecule to growth medium at concentrations of 0.1 and 1.0% also inhibited biofilm formation, while TEG at concentrations up to 1.5% did not have any noticeable effects on cell growth. The results of this study suggest that the reduction in biofilm formation on surfaces modified with TEG-terminated SAMs is a result of multiple factors, including the solvent structure at the interface, the chemorepellent nature of TEG, and the inhibitory effect of TEG on cell motility.

  10. Functional gold nanoparticles coupled with microporous membranes: a flow controlled assay for colorimetric visualization of proteins.

    PubMed

    Chen, Yu-Yuan; Unnikrishnan, Binesh; Li, Yu-Jia; Huang, Chih-Ching

    2014-11-21

    We report a rapid and simple assay for colorimetric visualization of thrombin at nanomolar levels using functional gold nanoparticles (FAuNPs) coupled with microporous membranes. We used a 29-mer thiolated-thrombin-binding-aptamer (TBA29) to prepare TBA29 functionalized AuNPs (TBA29-AuNPs) for the selective detection of human thrombin. The sensing mechanism is based on the principle of TBA29-AuNPs flowing down through the nitrocellulose membrane (NCM) pores at different flow rates after binding to thrombin. Compared with free TBA29-AuNPs, when thrombin-TBA29-AuNPs were dropped on the NCM, the particles flowed down more easily through the NCM pores along with the buffer solution due to the increase in the gravity of particles. Therefore, color intensities of TBA29-AuNPs on the NCM depended on the concentration of thrombin; the color intensity was lighter when the concentration of thrombin was higher. Thrombin can be detected at the nanomolar level with the naked eye using this colorimetric probe. A protein G modified AuNP based probe (PG-AuNPs/NCM) was employed to detect human immunoglobulin G (hIgG) in plasma samples to demonstrate the practicality of our sensing system. Also, fibrinogen modified Au NPs were analyzed to demonstrate that this concept of detection could be extended to other proteins or systems, by functionalizing with suitable molecules.

  11. Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery After Spinal Cord Injury

    PubMed Central

    Papastefanaki, Florentia; Jakovcevski, Igor; Poulia, Nafsika; Djogo, Nevena; Schulz, Florian; Martinovic, Tamara; Ciric, Darko; Loers, Gabrielle; Vossmeyer, Tobias; Weller, Horst; Schachner, Melitta; Matsas, Rebecca

    2015-01-01

    Failure of the mammalian central nervous system (CNS) to regenerate effectively after injury leads to mostly irreversible functional impairment. Gold nanoparticles (AuNPs) are promising candidates for drug delivery in combination with tissue-compatible reagents, such as polyethylene glycol (PEG). PEG administration in CNS injury models has received interest for potential therapy, but toxicity and low bioavailability prevents clinical application. Here we show that intraspinal delivery of PEG-functionalized 40-nm-AuNPs at early stages after mouse spinal cord injury is beneficial for recovery. Positive outcome of hind limb motor function was accompanied by attenuated inflammatory response, enhanced motor neuron survival, and increased myelination of spared or regrown/sprouted axons. No adverse effects, such as body weight loss, ill health, or increased mortality were observed. We propose that PEG-AuNPs represent a favorable drug-delivery platform with therapeutic potential that could be further enhanced if PEG-AuNPs are used as carriers of regeneration-promoting molecules. PMID:25807288

  12. Density functional theory approach to gold-ligand interactions: Separating true effects from artifacts

    NASA Astrophysics Data System (ADS)

    Koppen, Jessica V.; Hapka, Michał; Modrzejewski, Marcin; Szcześniak, Małgorzata M.; Chałasiński, Grzegorz

    2014-06-01

    Donor-acceptor interactions are notoriously difficult and unpredictable for conventional density functional theory (DFT) methodologies. This work presents a reliable computational treatment of gold-ligand interactions of the donor-acceptor type within DFT. These interactions require a proper account of the ionization potential of the electron donor and electron affinity of the electron acceptor. This is accomplished in the Generalized Kohn Sham framework that allows one to relate these properties to the frontier orbitals in DFT via the tuning of range-separated functionals. A donor and an acceptor typically require different tuning schemes. This poses a problem when the binding energies are calculated using the supermolecular method. A two-parameter tuning for the monomer properties ensures that a common functional, optimal for both the donor and the acceptor, is found. A reliable DFT approach for these interactions also takes into account the dispersion contribution. The approach is validated using the water dimer and the (HAuPH3)2 aurophilic complex. Binding energies are computed for Au4 interacting with the following ligands: SCN-, benzenethiol, benzenethiolate anion, pyridine, and trimethylphosphine. The results agree for the right reasons with coupled-cluster reference values.

  13. Sensing the charge state of single gold nanoparticles via work function measurements.

    PubMed

    Zhang, Yingjie; Pluchery, Olivier; Caillard, Louis; Lamic-Humblot, Anne-Félicie; Casale, Sandra; Chabal, Yves J; Salmeron, Miquel

    2015-01-14

    Electrostatic interactions at the nanoscale can lead to novel properties and functionalities that bulk materials and devices do not have. Here we used Kelvin probe force microscopy (KPFM) to study the work function (WF) of gold nanoparticles (NPs) deposited on a Si wafer covered by a monolayer of alkyl chains, which provide a tunnel junction. We find that the WF of Au NPs is size-dependent and deviates strongly from that of the bulk Au. We attribute the WF change to the charging of the NPs, which is a consequence of the difference in WF between Au and the substrate. For an NP with 10 nm diameter charged with ∼ 5 electrons, the WF is found to be only ∼ 3.6 eV. A classical electrostatic model is derived that explains the observations in a quantitative way. We also demonstrate that the WF and charge state of Au NPs are influenced by chemical changes of the underlying substrate. Therefore, Au NPs could be used for chemical and biological sensing, whose environmentally sensitive charge state can be read out by work function measurements.

  14. Self-assembly of indole-2-carboxylic acid at graphite and gold surfaces

    NASA Astrophysics Data System (ADS)

    De Marchi, Fabrizio; Cui, Daling; Lipton-Duffin, Josh; Santato, Clara; MacLeod, Jennifer M.; Rosei, Federico

    2015-03-01

    Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.

  15. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances

    NASA Astrophysics Data System (ADS)

    Nima, Zeid A.; Mahmood, Meena; Xu, Yang; Mustafa, Thikra; Watanabe, Fumiya; Nedosekin, Dmitry A.; Juratli, Mazen A.; Fahmi, Tariq; Galanzha, Ekaterina I.; Nolan, John P.; Basnakian, Alexei G.; Zharov, Vladimir P.; Biris, Alexandru S.

    2014-05-01

    Nanotechnology has been extensively explored for cancer diagnostics. However, the specificity of current methods to identify simultaneously several cancer biomarkers is limited due to color overlapping of bio-conjugated nanoparticles. Here, we present a technique to increase both the molecular and spectral specificity of cancer diagnosis by using tunable silver-gold nanorods with narrow surface-enhanced Raman scattering (SERS) and high photothermal contrast. The silver-gold nanorods were functionalized with four Raman-active molecules and four antibodies specific to breast cancer markers and with leukocyte-specific CD45 marker. More than two orders of magnitude of SERS signal enhancement was observed from these hybrid nanosystems compared to conventional gold nanorods. Using an antibody rainbow cocktail, we demonstrated highly specific detection of single breast cancer cells in unprocessed human blood. By integrating multiplex targeting, multicolor coding, and multimodal detection, our approach has the potential to improve multispectral imaging of individual tumor cells in complex biological environments.

  16. Dual Reaction-Based Multimodal Assay for Dopamine with High Sensitivity and Selectivity Using Functionalized Gold Nanoparticles.

    PubMed

    Zeng, Zhanghua; Cui, Bo; Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Haixin

    2015-08-01

    A simple and dual chemical reaction-based multimodal assay for dopamine with high sensitivity and selectivity using two types of functionalized gold nanoparticles (FB-AuNPs/NsNHS-AuNPs), i.e. fluorescein modified gold nanoparticles (FB-AuNPs) and Nile blue modified gold nanoparticles (NsNHS-AuNPs), was successfully fabricated. This assay for dopamine presents colorimetric visualization and double channel fluorescence enhancement at 515 and 665 nm. The absorbance and fluorescence changes were linearly proportional to the amounts of dopamine in the range of nanomolar scale (5-100 nM). The detection limits for absorbance and fluorescence were as low as 1.2 nM and 2.9 nM (S/N = 3), respectively. Furthermore, the extent application of this multimodal assay has been successfully demonstrated in human urine samples with high reliability and applicability, showing remarkable promise in diagnostic purposes.

  17. Circulating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances

    PubMed Central

    Nima, Zeid A.; Mahmood, Meena; Xu, Yang; Mustafa, Thikra; Watanabe, Fumiya; Nedosekin, Dmitry A.; Juratli, Mazen A.; Fahmi, Tariq; Galanzha, Ekaterina I.; Nolan, John P.; Basnakian, Alexei G.; Zharov, Vladimir P.; Biris, Alexandru S.

    2014-01-01

    Nanotechnology has been extensively explored for cancer diagnostics. However, the specificity of current methods to identify simultaneously several cancer biomarkers is limited due to color overlapping of bio-conjugated nanoparticles. Here, we present a technique to increase both the molecular and spectral specificity of cancer diagnosis by using tunable silver-gold nanorods with narrow surface-enhanced Raman scattering (SERS) and high photothermal contrast. The silver-gold nanorods were functionalized with four Raman-active molecules and four antibodies specific to breast cancer markers and with leukocyte-specific CD45 marker. More than two orders of magnitude of SERS signal enhancement was observed from these hybrid nanosystems compared to conventional gold nanorods. Using an antibody rainbow cocktail, we demonstrated highly specific detection of single breast cancer cells in unprocessed human blood. By integrating multiplex targeting, multicolor coding, and multimodal detection, our approach has the potential to improve multispectral imaging of individual tumor cells in complex biological environments. PMID:24810323

  18. Rapid Non-Crosslinking Aggregation of DNA-Functionalized Gold Nanorods and Nanotriangles for Colorimetric Single-Nucleotide Discrimination.

    PubMed

    Wang, Guoqing; Akiyama, Yoshitsugu; Takarada, Tohru; Maeda, Mizuo

    2016-01-01

    Gold nanoparticles modified with DNA duplexes are rapidly and spontaneously aggregated at high ionic strength. In contrast, this aggregation is greatly suppressed when the DNA duplex has a single-base mismatch or a single-nucleotide overhang located at the outermost surface of the particle. These colloidal features emerge irrespective of the size and composition of the particle core; however, the effects of the shape remain unexplored. Using gold nanorods and nanotriangles (nanoplatelets), we show herein that both remarkable rapidity in colloidal aggregation and extreme susceptibility to DNA structural perturbations are preserved, regardless of the shape and aspect ratio of the core. It is also demonstrated that the DNA-modified gold nanorods and nanotriangles are applicable to naked-eye detection of a single-base difference in a gene model. The current study corroborates the generality of the unique colloidal properties of DNA-functionalized nanoparticles, and thus enhances the feasibility of their practical use.

  19. Synthesis, Spectral Characterization and Crystals Structure of some Arsane Derivatives of Gold (I) Complexes: A Comparative Density Functional Theory Study

    PubMed Central

    Shawkataly, Omar bin; Goh, Chin-Ping; Tariq, Abu; Khan, Imthyaz Ahmad; Fun, Hoong-Kun; Rosli, Mohd Mustaqim

    2015-01-01

    A series of complexes of the type LAuCl where L = tris(p-tolylarsane), tris(m-tolylarsane), bis(diphenylarsano)ethane, and tris(naphthyl)arsane have been synthesized. All of the new complexes, 1-4, have been fully characterized by means of 1H NMR and 13C NMR spectroscopy and single crystal X-ray crystallography. The structures of complexes 1-4 have been determined from X-ray diffraction data. The linear molecules have an average bond distance between gold-arsenic and gold-chlorine of 2.3390Å and 2.2846Å, respectively. Aurophilic interaction was prominent in complex 1 and 3, whereas complex 2 and 4 do not show any such interaction. The intermolecular gold interaction bond length was affected by the electronegativity of the molecule. The computed values calculated at DFT level using B3LYP function are in good agreement with the experimental results. PMID:25798915

  20. Amyloid Templated Gold Aerogels.

    PubMed

    Nyström, Gustav; Fernández-Ronco, María P; Bolisetty, Sreenath; Mazzotti, Marco; Mezzenga, Raffaele

    2016-01-20

    Amyloid fibril-based ultralow-density aerogels are designed by functionalization with gold nanoparticles and microcrystals, leading to hybrids of unprecedented lightness and functionality. By changing the colloidal gold shape, size, and concentration, the gold composition can be tuned to reach contents ≥20 kt equivalent, yet at densities ≈10(3) lighter than any equivalent gold alloys, and combining unique features such as porosity, catalytic properties, pressure sensing, and autofluorescence.

  1. Fischer carbene mediated covalent grafting of a peptide nucleic acid on gold surfaces and IR optical detection of DNA hybridization with a transition metalcarbonyl label

    NASA Astrophysics Data System (ADS)

    Srivastava, Pratima; Ghasemi, Mahsa; Ray, Namrata; Sarkar, Amitabha; Kocabova, Jana; Lachmanova, Stepanka; Hromadova, Magdalena; Boujday, Souhir; Cauteruccio, Silvia; Thakare, Pramod; Licandro, Emanuela; Fosse, Céline; Salmain, Michèle

    2016-11-01

    Amine-reactive surfaces comprising N-hydroxysuccinimide ester groups as well as much more unusual Fischer alkoxymetallocarbene groups were generated on gold-coated surfaces via self-assembled monolayers of carboxy- and azido-terminated thiolates, respectively. These functions were further used to immobilize homothymine peptide nucleic acid (PNA) decamer in a covalent fashion involving the primary amine located at its N-terminus. These stepwise processes were monitored by polarization modulation reflection - absorption infrared spectroscopy (PM-RAIRS) that gave useful information on the molecular composition of the organic layers. PNA grafting and hybridization with complementary DNA strand were successfully transduced by quartz crystal microbalance (QCM) measurements. Unfortunately, attempts to transduce the hybridization optically by IR in a label-free fashion were inconclusive. Therefore we undertook to introduce an IR reporter group, namely a transition metalcarbonyl (TMC) entity at the 5‧ terminus of complementary DNA. Evidence for the formation of PNA-DNA heteroduplex was brought by the presence of ν(Ctbnd O) bands in the 2000 cm-1 region of the IR spectrum of the gold surface owing to the metalcarbonyl label.

  2. A Novel Controlled Release Immunosensor based on Benzimidazole Functionalized SiO2 and Cyclodextrin Functionalized Gold

    PubMed Central

    Ma, Hongmin; Wang, Yaoguang; Wu, Dan; Zhang, Yong; Gao, Jian; Ren, Xiang; Du, Bin; Wei, Qin

    2016-01-01

    A novel controlled release system-based sandwich-type immunosensor is fabricated to detect squamous cell carcinoma antigen (SCCA). The 1-methyl-1H-benzimidazole functionalized mesoporous SiO2 (MBI-MS) is used to load methylene blue (MB). β-cyclodextrin functionalized gold (CD-Au) is introduced as the gatekeeper for encapsulating MB and capturing the adamantly functional detection antibody (ADA-Ab2). And pH stimulus serves as the trigger system to control the MB release. After the load of MB, the CD-Au blocks the pores of the MBI-MS by the host-guest interaction in the neutral condition. However, when the pH is below 7.0, CD-Au is separated from the surface of MBI-MS owing to the protonation of the aromatic amines. The encapsulated MB is released from the pores of MBI-MS and detected by square wave voltammetry. The controlled release immunosensor shows a relatively wide linear range from 0.001 to 20 ng·mL−1 with a low detection limit of 0.25 pg·mL−1. The immunosensor also shows good reproducibility and selectivity, which endows it broad application prospect in clinical research. PMID:26791418

  3. Synthesis and characterization of functional multicomponent nanosized gallium chelated gold crystals.

    PubMed

    Zambre, Ajit; Silva, Francisco; Upendran, Anandhi; Afrasiabi, Zahra; Xin, Yan; Paulo, António; Kannan, Raghuraman

    2014-03-28

    In this communication, we describe a novel synthetic method for fabricating multicomponent gold nanoparticles containing both gallium ions and biomolecules on the surface. Detailed compositional analysis, using STEM-HAADF and EELS spectroscopy, confirmed the crystalline nature of gold and chelation of gallium ions. The presence of the biomolecule was validated using conventional ELISA.

  4. Functional analysis of abscisic acid 8'-hydroxylase.

    PubMed

    Endo, Akira; Kimura, Mitsuhiro; Kawakami, Naoto; Nambara, Eiji

    2011-01-01

    Abscisic acid (ABA) plays an important role in the control of seed dormancy and germination. Identification of hormone metabolism genes from a particular plant species of interest is an essential step in hormone research. The function of these gene products is validated by biochemical analysis using heterologous expression systems, such as E. coli and yeast. ABA 8'-hydroxylase is a subfamily of P450 monooxygenases and is encoded by CYP707A genes. CYP707A catalyzes the committed step in the major ABA catabolic pathway. In this chapter, we describe the methods for RNA extraction from seeds, cloning the CYP707A cDNAs, protein expression in yeast, and biochemical analysis of their gene products.

  5. Using L-arginine-functionalized gold nanorods for visible detection of mercury(II) ions.

    PubMed

    Guan, Jiehao; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2015-04-01

    A rapid and simple approach for visible determination of mercury ions (Hg(2+) ) in aqueous solutions was developed based on surface plasmon resonance phenomenon using L-arginine-functionalized gold nanorods (AuNRs). At pH greater than 9, the deprotonated amine group of L-arginine on the AuNRs bound with Hg(2+) leading to the side-by-side assembly of AuNRs, which was verified by transmission electron microscopy images. Thus, when Hg(2+) was present in the test solution, a blue shift of the typical longitudinal plasmon band of the AuNRs was observed in the ultra violet-visible-near infrared (UV-Vis-NIR) spectra, along with a change in the color of the solution, which occurred within 5 min. After carefully optimizing the potential factors affecting the performance, the L-arginine/AuNRs sensing system was found to be highly sensitive to Hg(2+) , with the limit of detection of 5 nM (S/N = 3); it is also very selective and free of interference from 10 other metal ions (Ba(2+) , Ca(2+) , Cd(2+) , Co(2+) , Cs(+) , Cu(2+) , K(+) , Li(+) , Ni(2+) , Pb(2+) ). The result suggests that the L-arginine-functionalized AuNRs can potentially serve as a rapid, sensitive, and easy-to-use colorimetric biosensor useful for determining Hg(2+) in food and environmental samples. PMID:25754066

  6. Functionalization of gold nanoparticles and CdS quantum dots with cell penetrating peptides

    NASA Astrophysics Data System (ADS)

    Berry, Catherine C.; de la Fuente, Jesus M.

    2009-02-01

    During the last decade, there has been great deal of interest in the self-assembly fabrication of hybrid materials from inorganic nanoparticles and biomolecules. Nanoparticles are similar in size range to many common biomolecules, thus, nanoparticles appear to be natural companions in hybrid systems. At present, it is straightforward to control and modify properties of nanostructures to better suit their integration with biological systems; for example, controlling their size, modifying their surface layer for enhanced aqueous solubility, biocompatibility, or biorecognition. A particularly desirable target for therapeutic uses is the cell nucleus, because the genetic information is there. We review in this article the synthesis developed by our research group of water-soluble gold nanoparticles and CdS nanocrystals functionalized with a Tat protein-derived peptide sequence by straightforward and economical methodologies. The particles were subsequently tested in vitro with a human fibroblast cell line using optical and transmission electron microscopy to determine the biocompatibility of these nanoparticles and whether the functionalization with the cell penetrating peptide allowed particles to transfer across the cell membrane and locate into the nucleus.

  7. Plasmonic Enhancement of Dye Sensitized Solar Cells via a Tailored Size-Distribution of Chemically Functionalized Gold Nanoparticles

    PubMed Central

    Andrei, Codrin; Lestini, Elena; Crosbie, Stephen; de Frein, Caoimhe; O'Reilly, Thomas; Zerulla, Dominic

    2014-01-01

    A substantial and stable increase of the current density Jsc of ruthenium (Ru) dye sensitized solar cells (DSC) of up to 16.18% and of the power efficiency of up to 25.5% is demonstrated in this article via plasmonic enhancement. The key aspect of this work is the use of a tailored bimodal size distribution of functionalized gold nanoparticles (AuNPs) that have been chemically immobilized onto the mesoporous titanium dioxide (TiO2) layer via short, stable dithiodibutyric acid linkers. The size distribution of the AuNPs is a result of theoretical calculations that aimed at the perfection of the absorption characteristics of the complete solar cell system over a wide range of wavelengths. The functionalization of the AuNPs serves to bind them at a close but defined distance to TiO2-particles and additionally to chemically protect them against potential corrosion by the electrolyte. Simulations of near field (enhanced absorption) and far field (scattering) contributions have been used to tailor a complex AuNPs bimodal size distribution that had subsequently demonstrated experimentally a close to optimum improvement of the absorbance over a wide wavelength range (500–675 nm) and therefore an impressive DSC efficiency enhancement. Finally, the modified DSCs are exhibiting pronounced longevity and stable performance as confirmed via long time measurements. In summary, the presented systems show increased performance compared to non plasmonic enhanced cells with otherwise identical composition, and are demonstrating a previously unpublished longevity for iodide electrolyte/AuNPs combinations. PMID:25354362

  8. Protein-mediated autoreduction of gold salts to gold nanoparticles.

    PubMed

    Basu, Nivedita; Bhattacharya, Resham; Mukherjee, Priyabrata

    2008-09-01

    Here we report for the first time that proteins can function as unique reducing agents to produce gold nanoparticles from gold salts. We demonstrate that three different proteins, namely, bovine serum albumin (BSA), Rituximab (RIT--an anti-CD20 antibody) and Cetuximab (C225--anti-EGFR antibody), reduce gold salts to gold nanoparticles (GNP). Interestingly, among all the three proteins tested, only BSA can reduce gold salts to gold nanotriangles (GNT). BSA-induced formation of GNT can be controlled by carefully selecting the reaction condition. Heating or using excess of ascorbic acid (AA) as additional reducing agent shifts the reaction towards the formation of GNP with flower-like morphology, whereas slowing down the reaction either by cooling or by adding small amount of AA directs the synthesis towards GNT formation. GNT is formed only at pH 3; higher pHs (pH 7 and pH 10) did not produce any nanoparticles, suggesting the involvement of specific protein conformation in GNT formation. The nanomaterials formed by this method were characterized using UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). This is an important finding that will have uses in various nanotechnological applications, particularly in the green synthesis of novel nanomaterials based on protein structure.

  9. Synthesis and characterization of gold glyconanoparticles functionalized with sugars of sweet Sorghum syrup.

    PubMed

    Kumar, C Ganesh; Mamidyala, Suman Kumar; Sreedhar, Bojja; Reddy, Belum V S

    2011-01-01

    Gold glyconanoparticles were synthesized by a simple, rapid, and eco-friendly method by using sweet Sorghum syrup for application in biomedicine and biotechnology. The nanostructures of the prepared gold nanoparticles were confirmed by using UV-visible absorbance, TEM, SAED, FTIR, EDAX, XRD, and photoluminescence analyses. The formation of gold nanoparticles at both room and boiling temperatures and kinetics of the reaction were monitored by UV-visible spectroscopy and TEM studies. TEM analysis revealed that the obtained nanoparticles were mono-dispersed and spherical in shape with an average particle size of 7 nm. The size of the nanoparticles was influenced by the concentration of Sorghum syrup. The presence of elemental gold was confirmed by EDAX analysis. Based on the FTIR analysis, it was observed that the sugars present in the Sorghum syrup possibly acts as capping agents. The zeta potential analysis revealed that the glyconanoparticles were negatively charged with a potential of -25 mV. The XRD and SAED patterns also suggest that the nanoparticles were crystalline in nature and these particles were found to exhibit visible photoluminescence. Fructose and glucose present in sweet Sorghum syrup were demonstrated as responsible sugars for the reduction of gold ions, and sucrose stabilized the formed nanoparticles. The proposed mechanism for the formation and stabilization of gold glyconanoparticles is based on the phenomenon of "macromolecular crowding." This is the first report on the use of sweet Sorghum syrup for the green synthesis of gold glyconanoparticles at both room and boiling temperatures.

  10. Influence of epoxyeicosatrienoic acids on uterine function.

    PubMed

    Gonzalez, E; Jawerbaum, A; Novaro, V; Gimeno, M A

    1997-01-01

    In spite of the large quantities of epoxyeicosatrienoic acids (EEts) released by reproductive tissues, their function has not yet been determined. In order to analyze the influence of epoxygenase products on isolated uterine function, Clotrimazole, a cytochrome P450 inhibitor was used. The drug decreased isolated rat uterine isometric developed tension (IDT) and frequency (FC). 14,15 EEt induced a contractile response when added at 10(11) M, 8,9 EEt and 11,12 EEt produced an increment of IDT when added to 10(-7) M and 5,6 EEt did not modify IDT values. A contractile stimulatory effect was observed when 14,15 EEt (10(-7) M) was added to a tissue bath preparation containing Clotrimazole (20 microM). On the other hand, uterine contractile response to 14,15 EEt addition was partially abolished by indomethacin (10(-6) M), a well known cyclooxygenase inhibitor. Uterine response to 5,6; 8,9 and 11,12 EEts was not modified by indomethacin. This is the first evidence of 14-15 EEt uterotonic properties, possibly exerted in part through the cyclooxygenase pathway.

  11. Functional amino acids in nutrition and health.

    PubMed

    Wu, Guoyao

    2013-09-01

    The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).

  12. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  13. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    PubMed

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine). PMID:24679256

  14. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging.

    PubMed

    Li, Li; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; He, Dinggeng; Guo, Xi; Wan, Lan; He, Xiaoxiao; Wang, Kemin

    2016-03-11

    Amino acid-dithiocarbamate (amino acid-DTC) was developed as both the reductant and ligand stabilizer for biomimetic synthesis of gold nanoparticles (AuNPs), which served as an excellent surface-enhanced Raman scattering (SERS) contrast nanoprobe for cell imaging. Glycine (Gly), glutamic acid (Glu), and histidine (His) with different isoelectric points were chosen as representative amino acid candidates to synthesize corresponding amino acid-DTC compounds through mixing with carbon disulfide (CS2), respectively. The pyrogenic decomposition of amino acid-DTC initiated the reduction synthesis of AuNPs, and the strong coordinating dithiocarbamate group of amino acid-DTC served as a stabilizer that grafted onto the surface of the AuNPs, which rendered the as-prepared nanoparticles a negative surface charge and high colloidal stability. MTT cell viability assay demonstrated that the biomimetic AuNPs possessed neglectful toxicity to the human hepatoma cell, which guaranteed them good biocompatibility for biomedical application. Meanwhile, the biomimetic AuNPs showed a strong SERS effect with an enhancement factor of 9.8 × 10(5) for the sensing of Rhodamine 6G, and two distinct Raman peaks located at 1363 and 1509 cm(-1) could be clearly observed in the cell-imaging experiments. Therefore, biomimetic AuNPs can be explored as an excellent SERS contrast nanoprobe for biomedical imaging, and the amino acid-DTC mediated synthesis of the AuNPs has a great potential in bio-engineering and biomedical imaging applications. PMID:26867113

  15. Cell-specific optoporation with near-infrared ultrafast laser and functionalized gold nanoparticles.

    PubMed

    Bergeron, Eric; Boutopoulos, Christos; Martel, Rosalie; Torres, Alexandre; Rodriguez, Camille; Niskanen, Jukka; Lebrun, Jean-Jacques; Winnik, Françoise M; Sapieha, Przemyslaw; Meunier, Michel

    2015-11-14

    Selective targeting of diseased cells can increase therapeutic efficacy and limit off-target adverse effects. We developed a new tool to selectively perforate living cells with functionalized gold nanoparticles (AuNPs) and near-infrared (NIR) femtosecond (fs) laser. The receptor CD44 strongly expressed by cancer stem cells was used as a model for selective targeting. Citrate-capped AuNPs (100 nm in diameter) functionalized with 0.01 orthopyridyl-disulfide-poly(ethylene glycol) (5 kDa)-N-hydroxysuccinimide (OPSS-PEG-NHS) conjugated to monoclonal antibodies per nm(2) and 5 μM HS-PEG (5 kDa) were colloidally stable in cell culture medium containing serum proteins. These AuNPs attached mostly as single particles 115 times more to targeted CD44(+) MDA-MB-231 and CD44(+) ARPE-19 cells than to non-targeted CD44(-) 661W cells. Optimally functionalized AuNPs enhanced the fs laser (800 nm, 80-100 mJ cm(-2) at 250 Hz or 60-80 mJ cm(-2) at 500 Hz) to selectively perforate targeted cells without affecting surrounding non-targeted cells in co-culture. This novel highly versatile treatment paradigm can be adapted to target and perforate other cell populations by adapting to desired biomarkers. Since living biological tissues absorb energy very weakly in the NIR range, the developed non-invasive tool may provide a safe, cost-effective clinically relevant approach to ablate pathologically deregulated cells and limit complications associated with surgical interventions. PMID:26459958

  16. Self-doped anthranilic acid-pyrrole copolymer/gold electrodes for selective preconcentration and determination of Cu(I) by differential pulse anodic stripping voltammetry.

    PubMed

    Nateghi, M R; Fallahian, M H

    2007-05-01

    Electropolymerization of anthranilic acid/pyrrole (AA/PY) at solid substrate electrodes (platinum, gold, and glassy carbon) gave stable and water-insoluble films under a wide range of pH. Combining high conductivity of the polypyrrole (PPY) and pH independence of the electrochemical activity of the self-doped carboxylic acid-substituted polyaniline allows us to prepare an improved functionalized PPY-modified electrode to collect and measure Cu(I) species. The differential pulse stripping analysis of the copper ions using a polyanthranilic acid-co-polypyrrole (PAA/PPY)-modified electrode consisted of three steps: accumulation, electrochemical reduction to the elemental copper and stripping step. Factors affecting these steps, including electropolymerization conditions, accumulation and stripping medium, reduction potential, reduction time and accumulation time, were systematically investigated. A detection limit of 5.3 x 10(-9) M Cu(I) was achieved for a 7.0 min accumulation. For 12 determinations of Cu(I) at concentrations of 1.0 x 10(-8) M, an RSD of 3.5% was obtained. The log I(p) was found to vary linearly with log[Cu(I)] in the concentration range from 7.0 x 10(-9) to 1.0 x 10(-5) M.

  17. Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles.

    PubMed

    Paliwoda, Rebecca E; Li, Feng; Reid, Michael S; Lin, Yanwen; Le, X Chris

    2014-06-17

    Functionalizing nanomaterials for diverse analytical, biomedical, and therapeutic applications requires determination of surface coverage (or density) of DNA on nanomaterials. We describe a sequential strand displacement beacon assay that is able to quantify specific DNA sequences conjugated or coconjugated onto gold nanoparticles (AuNPs). Unlike the conventional fluorescence assay that requires the target DNA to be fluorescently labeled, the sequential strand displacement beacon method is able to quantify multiple unlabeled DNA oligonucleotides using a single (universal) strand displacement beacon. This unique feature is achieved by introducing two short unlabeled DNA probes for each specific DNA sequence and by performing sequential DNA strand displacement reactions. Varying the relative amounts of the specific DNA sequences and spacing DNA sequences during their coconjugation onto AuNPs results in different densities of the specific DNA on AuNP, ranging from 90 to 230 DNA molecules per AuNP. Results obtained from our sequential strand displacement beacon assay are consistent with those obtained from the conventional fluorescence assays. However, labeling of DNA with some fluorescent dyes, e.g., tetramethylrhodamine, alters DNA density on AuNP. The strand displacement strategy overcomes this problem by obviating direct labeling of the target DNA. This method has broad potential to facilitate more efficient design and characterization of novel multifunctional materials for diverse applications. PMID:24848126

  18. Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces

    NASA Astrophysics Data System (ADS)

    Dharanivasan, Gunasekaran; Rajamuthuramalingam, Thangavelu; Michael Immanuel Jesse, Denison; Rajendiran, Nagappan; Kathiravan, Krishnan

    2015-01-01

    We demonstrated citrate-capped gold nanoparticles assisted characterization of amine functionalized polystyrene plate and glass slide surfaces through AuNPs staining method. The effect of AuNPs concentration on the characterization of amine modified surfaces was also studied with different concentration of AuNPs (ratios 1.0-0.0). 3-Aminopropylyl triethoxy silane has been used as amine group source for the surface modification. The interactions of AuNPs on modified and unmodified surfaces were investigated using atomic force microscopy and the dispersibility, and the aggregation of AuNPs was analyzed using UV-visible spectrophotometer. Water contact angle measurement and X-ray photoelectron spectroscopy (XPS) were used to further confirmation of amine modified surfaces. The aggregation of AuNPs in modified multiwell plate leads to the color change from red to purple and they are found to be adsorped on the modified surfaces. Aggregation and adsorption of AuNPs on the modified surfaces through the electrostatic interactions and the hydrogen bonds were revealed by XPS analysis. Remarkable results were found even in the very low concentration of AuNPs (ratio 0.2). This AuNPs staining method is simple, cost-effective, less time consuming, and required very low concentration of AuNPs. These results can be read out through the naked eye without the help of sophisticated equipments.

  19. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles

    PubMed Central

    Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521

  20. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  1. The Janus-SAM approach for the flexible functionalization of gold and titanium oxide surfaces.

    PubMed

    Bhat, Rahila; Sell, Stephan; Wagner, Ralf; Zhang, Jian Tao; Pan, Changjiang; Garipcan, Bora; Boland, Wilhelm; Bossert, Jörg; Klemm, Elisabeth; Jandt, Klaus D

    2010-02-01

    A novel approach is developed to address the requirement of multiple stamps and inks for microcontact printing (microCP) onto different substrate surfaces. This approach relies on microCP one divalent molecule, which is able to form Janus self-assembled monolayers (JSAMs) with a labile cleavable centre, thus providing a facile method for the chemical derivatization of different substrate surfaces. This study presents an answer to the challenges presented within a highly versatile application, microCP. N-(3-diethylphosphatoxy)propyl-11-mercaptoundecanamide is used for the first time as an ink for microCP onto both gold and titanium oxide surfaces, utilizing the same polydimethylsiloxane stamp. Following printing, the JSAMs are enzymatically treated on these two different substrates to reveal different functional groups. The newly formed surfaces are subjected to additional surface reactions and used for the chemisorption of bovine serum albumin. At each stage, these JSAMs are characterized by X-ray photoelectron spectroscopy and dynamic water-contact-angle measurements. Confocal laser scanning microscopy is used for the characterization of the adsorbed proteins.

  2. Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles.

    PubMed

    Paliwoda, Rebecca E; Li, Feng; Reid, Michael S; Lin, Yanwen; Le, X Chris

    2014-06-17

    Functionalizing nanomaterials for diverse analytical, biomedical, and therapeutic applications requires determination of surface coverage (or density) of DNA on nanomaterials. We describe a sequential strand displacement beacon assay that is able to quantify specific DNA sequences conjugated or coconjugated onto gold nanoparticles (AuNPs). Unlike the conventional fluorescence assay that requires the target DNA to be fluorescently labeled, the sequential strand displacement beacon method is able to quantify multiple unlabeled DNA oligonucleotides using a single (universal) strand displacement beacon. This unique feature is achieved by introducing two short unlabeled DNA probes for each specific DNA sequence and by performing sequential DNA strand displacement reactions. Varying the relative amounts of the specific DNA sequences and spacing DNA sequences during their coconjugation onto AuNPs results in different densities of the specific DNA on AuNP, ranging from 90 to 230 DNA molecules per AuNP. Results obtained from our sequential strand displacement beacon assay are consistent with those obtained from the conventional fluorescence assays. However, labeling of DNA with some fluorescent dyes, e.g., tetramethylrhodamine, alters DNA density on AuNP. The strand displacement strategy overcomes this problem by obviating direct labeling of the target DNA. This method has broad potential to facilitate more efficient design and characterization of novel multifunctional materials for diverse applications.

  3. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles.

    PubMed

    Zhang, Hongji; Zhao, Yue

    2013-12-26

    Shape-memory and stimuli-healable polymers (SMP and SHP) are two types of emerging smart materials. Among the many stimuli that can be used to control SMP and SHP, light is unique because of its unparalleled remote activation and spatial control. Generally, light-triggered shape memory and optically healable polymers are different polymers and it is challenging to endow the same polymer with the two light-triggered functions because of their structural incompatibility. In this paper, we describe a general polymer design that allows a single material to exhibit both light-controlled shape memory and optical healing capabilities. We show that by chemically cross-linking a crystalline polymer and loading it with a small amount of gold nanoparticles (AuNPs), the polymer displays optically controllable shape memory and fast optical healing based on the same localized heating effect arising from the surface plasmon resonance of AuNPs. The photothermal effect controls, on the one hand, the shape memory process by tuning the temperature with respect to Tm of the crystalline phase and, on the other hand, activates the damage healing through crystal melting and recrystallization. Moreover, we show that these two features can be triggered separately in a sequential manner. PMID:24308556

  4. Coating fabrics with gold nanorods for colouring, UV-protection, and antibacterial functions

    NASA Astrophysics Data System (ADS)

    Zheng, Yidan; Xiao, Manda; Jiang, Shouxiang; Ding, Feng; Wang, Jianfang

    2012-12-01

    Gold nanorods exhibit rich colours owing to the nearly linear dependence of the longitudinal plasmon resonance wavelength on the length-to-diameter aspect ratio. This property of Au nanorods has been utilized in this work for dyeing fabrics. Au nanorods of different aspect ratios were deposited on both cotton and silk fabrics by immersing them in Au nanorod solutions. The coating of Au nanorods makes the fabrics exhibit a broad range of colours varying from brownish red through green to purplish red, which are essentially determined by the longitudinal plasmon wavelength of the deposited Au nanorods. The colorimetric values of the coated fabrics were carefully measured for examining the colouring effects. The nanorod-coated cotton fabrics were found to be commercially acceptable in washing fastness to laundering tests and colour fastness to dry cleaning tests. Moreover, the nanorod-coated cotton and silk fabrics show significant improvements on both UV-protection and antibacterial functions. Our study therefore points out a promising approach for the use of noble metal nanocrystals as dyeing materials for textile applications on the basis of their inherent localized plasmon resonance properties.

  5. Polymers with dual light-triggered functions of shape memory and healing using gold nanoparticles.

    PubMed

    Zhang, Hongji; Zhao, Yue

    2013-12-26

    Shape-memory and stimuli-healable polymers (SMP and SHP) are two types of emerging smart materials. Among the many stimuli that can be used to control SMP and SHP, light is unique because of its unparalleled remote activation and spatial control. Generally, light-triggered shape memory and optically healable polymers are different polymers and it is challenging to endow the same polymer with the two light-triggered functions because of their structural incompatibility. In this paper, we describe a general polymer design that allows a single material to exhibit both light-controlled shape memory and optical healing capabilities. We show that by chemically cross-linking a crystalline polymer and loading it with a small amount of gold nanoparticles (AuNPs), the polymer displays optically controllable shape memory and fast optical healing based on the same localized heating effect arising from the surface plasmon resonance of AuNPs. The photothermal effect controls, on the one hand, the shape memory process by tuning the temperature with respect to Tm of the crystalline phase and, on the other hand, activates the damage healing through crystal melting and recrystallization. Moreover, we show that these two features can be triggered separately in a sequential manner.

  6. Hairpin DNA-functionalized gold colloids for the imaging of mRNA in live cells.

    PubMed

    Jayagopal, Ashwath; Halfpenny, Kristin C; Perez, Jonas W; Wright, David W

    2010-07-21

    A strategy is presented for the live cell imaging of messenger RNA using hairpin DNA-functionalized gold nanoparticles (hAuNP). hAuNP improve upon technologies for studying RNA trafficking by their efficient internalization within live cells without transfection reagents, improved resistance to DNase degradation, low cytotoxicity, and the incorporation of hairpin DNA molecular beacons to confer high specificity and sensitivity to the target mRNA sequence. Furthermore, the targeted nanoparticle-beacon construct, once bound to the target mRNA sequence, remains hybridized to the target, enabling spatial and temporal studies of RNA trafficking and downstream analysis. Targeted hAuNP exhibited high specificity for glyceraldehyde 3-phosphate dehydrogenase (GADPH) mRNA in live normal HEp-2 cells and respiratory syncytial virus (RSV) mRNA in live RSV-infected HEp-2 cells with high target to background ratios. Multiplexed fluorescence imaging of distinct mRNAs in live cells and simultaneous imaging of mRNAs with immunofluorescently stained protein targets in fixed cells was enabled by appropriate selection of molecular beacon fluorophores. Pharmacologic analysis suggested that hAuNP were internalized within cells via membrane-nanoparticle interactions. hAuNP are a promising approach for the real-time analysis of mRNA transport and processing in live cells for elucidation of biological processes and disease pathogenesis.

  7. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics.

    PubMed

    Hart, Traver; Brown, Kevin R; Sircoulomb, Fabrice; Rottapel, Robert; Moffat, Jason

    2014-01-01

    Technological advancement has opened the door to systematic genetics in mammalian cells. Genome-scale loss-of-function screens can assay fitness defects induced by partial gene knockdown, using RNA interference, or complete gene knockout, using new CRISPR techniques. These screens can reveal the basic blueprint required for cellular proliferation. Moreover, comparing healthy to cancerous tissue can uncover genes that are essential only in the tumor; these genes are targets for the development of specific anticancer therapies. Unfortunately, progress in this field has been hampered by off-target effects of perturbation reagents and poorly quantified error rates in large-scale screens. To improve the quality of information derived from these screens, and to provide a framework for understanding the capabilities and limitations of CRISPR technology, we derive gold-standard reference sets of essential and nonessential genes, and provide a Bayesian classifier of gene essentiality that outperforms current methods on both RNAi and CRISPR screens. Our results indicate that CRISPR technology is more sensitive than RNAi and that both techniques have nontrivial false discovery rates that can be mitigated by rigorous analytical methods.

  8. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.

    PubMed

    Liu, Kang; Zheng, Yuanhui; Lu, Xun; Thai, Thibaut; Lee, Nanju Alice; Bach, Udo; Gooding, J Justin

    2015-05-01

    The conjugation of gold nanorods (AuNRs) with polyethylene glycol (PEG) is one of the most effective ways to reduce their cytotoxicity arising from the cetyltrimethylammonium bromide (CTAB) and silver ions used in their synthesis. However, typical PEGylation occurs only at the tips of the AuNRs, producing partially modified AuNRs. To address this issue, we have developed a novel, facile, one-step surface functionalization method that involves the use of Tween 20 to stabilize AuNRs, bis(p-sulfonatophenyl)phenylphosphine (BSPP) to activate the AuNR surface for the subsequent PEGylation, and NaCl to etch silver from the AuNRs. This method allows for the complete removal of the surface-bound CTAB and the most active surface silver from the AuNRs. The produced AuNRs showed far lower toxicity than other methods to PEGylate AuNRs, with no apparent toxicity when their concentration is lower than 5 μg/mL. Even at a high concentration of 80 μg/mL, their cell viability is still four times higher than that of the tip-modified AuNRs. PMID:25874503

  9. Förster resonance energy transfer studies of luminescent gold nanoparticles functionalized with ruthenium(II) and rhenium(I) complexes: modulation via esterase hydrolysis.

    PubMed

    Leung, Frankie Chi-Ming; Tam, Anthony Yiu-Yan; Au, Vonika Ka-Man; Li, Mei-Jin; Yam, Vivian Wing-Wah

    2014-05-14

    A number of ruthenium(II) and rhenium(I) bipyridine complexes functionalized with lipoic acid moieties have been synthesized and characterized. Functionalization of gold nanoparticles with these chromophoric ruthenium(II) and rhenium(I) complexes has resulted in interesting supramolecular assemblies with Förster resonance energy transfer (FRET) properties that could be modulated via esterase hydrolysis. The luminescence of the metal complex chromophores was turned on upon cleavage of the ester bond linkage by esterase to reduce the efficiency of FRET quenching. The prepared nanoassembly conjugates have been characterized by transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), UV-visible spectroscopy, and emission spectroscopy. The quenching mechanism has also been studied by transient absorption and time-resolved emission decay measurements. The FRET efficiencies were found to vary with the nature of the chromophores and the length of the spacer between the donor (transition metal complexes) and the acceptor (gold nanoparticles).

  10. Coinhibition of overexpressed genes in acute myeloid leukemia subtype M2 by gold nanoparticles functionalized with five antisense oligonucleotides and one anti-CD33(+)/CD34(+) aptamer.

    PubMed

    Zaimy, M A; Jebali, A; Bazrafshan, B; Mehrtashfar, S; Shabani, S; Tavakoli, A; Hekmatimoghaddam, S H; Sarli, A; Azizi, H; Izadi, P; Kazemi, B; Shojaei, A; Abdalaian, A; Tavakkoly-Bazzaz, J

    2016-09-01

    The aim of this study was to evaluate an engineered nanostructure to silence five important oncogenes, including BAG1, MDM2, Bcl-2, BIRC5 (survivin) and XIAP, in acute myeloid leukemia subtype 2 (AML-M2). The smart nanostructures were functionalized gold nanoparticles (FGNs) containing five antisense oligonucleotides (AOs) and one anti-CD33(+)/CD34(+) aptamer. First, the best AO for each gene was selected with the OligoWalk online software, and then different arrangements of AOs were evaluated with the RNAstructure software. Thereafter, naked gold nanoparticles (NGNs) were synthesized by the reaction of 1000 mm HAuCl4 with 10 μg ml(-1) ascorbic acid. Next, five AOs and one anti-CD33(+)/CD34(+) aptamer were attached to NGNs through serial reactions. Later, 5 ml of heparinized blood samples from five AML-M2 patients were prepared, cancerous cells were isolated and then incubated with three concentrations (75, 150 and 300 μg ml(-1)) each of FGNs, NGNs, gold nanoparticles functionalized with scrambled oligonucleotides (GNFSONs) and doxorubicin. Finally, cell death percentage and gene expressions were measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and real-time PCR, respectively. This study showed that FGNs and doxorubicin led to more cell death compared with NGNs and GNFSONs (P<0.05). Interestingly, all concentrations of FGNs led to a decrease in gene expression. As an important finding, although all concentrations of doxorubicin could also inhibit the expression of genes, FGNs had more effect (P<0.05). Moreover, both NGNs and GNFSONs could silence all genes only at a concentration of 300 μg ml(-1). For BCL2 and XIAP, a dose-dependent pattern was observed, but there was no similar pattern for others. PMID:27514505

  11. Functionalized gold nanoclusters as fluorescent labels for immunoassays: Application to human serum immunoglobulin E determination.

    PubMed

    Alonso, María Cruz; Trapiella-Alfonso, Laura; Fernández, José M Costa; Pereiro, Rosario; Sanz-Medel, Alfredo

    2016-03-15

    A quantitative immunoassay for the determination of immunoglobulin E (IgE) in human serum using gold nanoclusters (AuNCs) as fluorescent label was developed. Water soluble AuNCs were synthesized using lipoic acid and then thoroughly characterized. The obtained AuNCs have a particle size of 2.7 ± 0.1 nm and maximum fluorescence emission at 710 nm. The synthesized AuNCs showed very good stability of the fluorescent signal with light exposure and at neutral and slightly basic media. A covalent bioconjugation of these AuNCs with the desired antibody was carried out by the carbodiimide reaction. After due optimization of such bioconjugation reaction, a molar ratio 1:3 (antibody:AuNCs) was selected. The bioconjugate maintained an intense luminescence emission, slightly red-shifted as compared to the free AuNCs. Two typical immunoassay configurations, competitive and sandwich, were assayed and their performance for IgE determination critically compared. After the different immunoassay steps were accomplished, the fluorescence emission of the bioconjugate was measured. While the sandwich format provided a detection limit (DL) of 10 ng/mL and a linear range between 25 and 565 ng/mL of IgE, the competitive format revealed a DL of 0.2 ng/mL with a linear range between 0.3 and 7.1 ng/mL The applicability of the more sensitive competitive fluorescent immunoassay was assessed by successful analysis of the IgE in human serum and comparison of results with those from a commercial kit. The main advantages of the proposed AuNCs-based fluorimetric method include a low DL and a simple immunoassay protocol involving few reagents.

  12. Mammalian cell cultures on micropatterned surfaces of weak-acid, polyelectrolyte hyperbranched thin films on gold.

    PubMed

    Amirpour, M L; Ghosh, P; Lackowski, W M; Crooks, R M; Pishko, M V

    2001-04-01

    A four-step soft lithographic process based on micro-contact printing of organic monolayers, hyperbranched polymer grafting, and subsequent polymer functionalization results in polymer/n-alkanethiol patterns that direct the growth and migration of mammalian cells. The functional units on these surfaces are three-dimensional cell "corrals" that have walls 52+/-2 nm in height and lateral dimensions on the order of 60 microm. The corrals have hydrophobic, methyl-terminated n-alkanethiol bottoms, which promote cell adhesion, and walls consisting of hydrophilic poly(acrylic acid)/poly(ethylene glycol) layered nanocomposites that inhibit cell growth. Cell viability studies indicate that cells remain viable on the patterned surfaces for up to 21 days, and fluorescence microscopy studies of stained cells demonstrate that cell growth and spreading does not occur outside of the corral boundaries. This simple, chemically flexible micropatterning method provides spatial control over growth of IC-21 murine peritoneal macrophages, human umbilical vein endothelial cells, and murine hepatocytes. PMID:11321309

  13. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications

    NASA Astrophysics Data System (ADS)

    Peng, Chen; Li, Kangan; Cao, Xueyan; Xiao, Tingting; Hou, Wenxiu; Zheng, Linfeng; Guo, Rui; Shen, Mingwu; Zhang, Guixiang; Shi, Xiangyang

    2012-10-01

    We report a facile approach to forming dendrimer-stabilized gold nanoparticles (Au DSNPs) through the use of amine-terminated fifth-generation poly(amidoamine) (PAMAM) dendrimers modified by diatrizoic acid (G5.NH2-DTA) as stabilizers for enhanced computed tomography (CT) imaging applications. In this study, by simply mixing G5.NH2-DTA dendrimers with gold salt in aqueous solution at room temperature, dendrimer-entrapped gold nanoparticles (Au DENPs) with a mean core size of 2.5 nm were able to be spontaneously formed. Followed by an acetylation reaction to neutralize the dendrimer remaining terminal amines, Au DSNPs with a mean size of 6 nm were formed. The formed DTA-containing [(Au0)50-G5.NHAc-DTA] DSNPs were characterized via different techniques. We show that the Au DSNPs are colloid stable in aqueous solution under different pH and temperature conditions. In vitro hemolytic assay, cytotoxicity assay, flow cytometry analysis, and cell morphology observation reveal that the formed Au DSNPs have good hemocompatibility and are non-cytotoxic at a concentration up to 3.0 μM. X-ray absorption coefficient measurements show that the DTA-containing Au DSNPs have enhanced attenuation intensity, much higher than that of [(Au0)50-G5.NHAc] DENPs without DTA or Omnipaque at the same molar concentration of the active element (Au or iodine). The formed DTA-containing Au DSNPs can be used for CT imaging of cancer cells in vitro as well as for blood pool CT imaging of mice in vivo with significantly improved signal enhancement. With the two radiodense elements of Au and iodine incorporated within one particle, the formed DTA-containing Au DSNPs may be applicable for CT imaging of various biological systems with enhanced X-ray attenuation property and detection sensitivity.We report a facile approach to forming dendrimer-stabilized gold nanoparticles (Au DSNPs) through the use of amine-terminated fifth-generation poly(amidoamine) (PAMAM) dendrimers modified by diatrizoic acid

  14. Energetic stabilities of thiolated pyrimidines on gold nanoparticles investigated by Raman spectroscopy and density functional theory calculations.

    PubMed

    Ganbold, Erdene-Ochir; Yoon, Jinha; Cho, Kwang-Hwi; Joo, Sang-Woo

    2015-01-01

    The adsorption structures of 2-thiocytosine (2TC) on gold surfaces were examined by means of vibrational Raman spectroscopy and quantum mechanical density functional theory calculations. The 1H-thione-amino form was calculated to be most stable among the six examined tautomers. The three plausible binding geometries of sulfur, pyrimidine nitrogen, and amino group binding modes were calculated to estimate the binding energies of the 1H-thione-amino form with six gold cluster atoms. Thiouracils including 2-thiouracil (2TU), 4-thiouracil (4TU), and 6-methyl-2-thiouracil (6M2TU) were also studied to compare their relative binding energies on gold atoms. The intracellular localization of a DNA base analog of 2TC on gold nanoparticles (AuNPs) in HeLa cells was identified by means of surface-enhanced Raman scattering. AuNPs were modified with 2TC by self-assembly. Our dark-field microscopy and z-depth-dependent confocal Raman spectroscopy indicated that 2TC-assembled AuNPs could be found inside cancer cells. On the other hand, we did not observe noticeably strong Raman peaks in the cases of thiouracils including 2TU, 4TU, and 6M2TU. This may be due to the additional amino group of 2TC, which can lead to a stronger binding of adsorbates on AuNPs.

  15. Bioinspired Gold Nanorod Functionalization Strategies for MUC1-Targeted Imaging and Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Zelasko-Leon, Daria Cecylia

    The majority of cancers diagnosed in 2016 are epithelial in origin, constituting 85% of all new cases and predicted to account for 78% of all cancer deaths this year. Given these statistics, improving patient outcomes by providing personalized, multimodal, and minimally invasive medical interventions is critically needed. Mucin 1 (MUC1), a transmembrane glycoprotein, extends over 100 nm from cell membranes and is a key marker promoting epithelial carcinogenesis. Due to its antenna-like manifestation, MUC1 is a unique yet underexplored candidate for targeted cancer therapy, with overexpression in >64% of epithelial cancers. To overcome the limitations of existing treatment strategies for epithelial cancer, this dissertation describes a novel platform for nanomedicine, highlighting bioinspired modifications of gold nanorod (AuNR) surfaces for diagnostic cancer imaging and photothermal therapy. An ongoing challenge in the field of nanomedicine is the need for simple and effective strategies for simple surface modification of nanoparticles to facilitate targeting and enhance efficacy. Here, biofunctionalization of AuNRs was achieved with polydopamine (PD) and tannic acid (TA), polyphenolic compounds found in the marine mussel and throughout the plant kingdom that exhibit promiscuous interfacial binding properties. AuNR stabilization was achieved via PD or TA coatings followed by secondary modification with the serum protein, bovine serum albumin (BSA), or glycoprotein-mimetic polymers. The resultant constructs demonstrated good biocompatibility, enabled diagnostic imaging, and facilitated MUC1-specific photothermal treatment of breast and oral cancer cells. The in vivo performance of BSA and PD modified AuNRs was evaluated in two orthotopic animal models of breast cancer. Clinically relevant hyperthermia and high response rates with MUC1-targeted formulations were found, with significant enhancement of progression-free survival and several complete tumor regressions

  16. Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality.

    PubMed

    Heo, Jun Hyuk; Kim, Kyung-Il; Cho, Hui Hun; Lee, Jin Woong; Lee, Byoung Sang; Yoon, Seokyoung; Park, Kyung Jin; Lee, Seungwoo; Kim, Jaeyun; Whang, Dongmok; Lee, Jung Heon

    2015-12-29

    The stability of gold nanoparticles (AuNPs) in biological samples is very important for their biomedical applications. Although various molecules such as polystyrenesulfonate (PSS), phosphine, DNA, and polyethylene glycol (PEG) have been used to stabilize AuNPs, it is still very difficult to stabilize large AuNPs. As a result, biomedical applications of large (30-100 nm) AuNPs are limited, even though they possess more favorable optical properties and are easier to be taken up by cells than smaller AuNPs. To overcome this limitation, we herein report a novel method of preparing large (30-100 nm) AuNPs with a high colloidal stability and facile chemical or biological functionality, via surface passivation with an amphiphilic polymer polyvinylpyrrolidone (PVP). This PVP passivation results in an extraordinary colloidal stability for 13, 30, 50, 70, and 100 nm AuNPs to be stabilized in PBS for at least 3 months. More importantly, the PVP capped AuNPs (AuNP-PVP) were also resistant to protein adsorption in the presence of serum containing media and exhibit a negligible cytotoxicity. The AuNP-PVPs functionalized with a DNA aptamer AS1411 remain biologically active, resulting in significant increase in the uptake of the AuNPs (∼12,200 AuNPs per cell) in comparison with AuNPs capped by a control DNA of the same length. The novel method developed in this study to stabilize large AuNPs with high colloidal stability and biological activity will allow much wider applications of these large AuNPs for biomedical applications, such as cellular imaging, molecular diagnosis, and targeted therapy.

  17. In vitro selection of functional nucleic acids

    NASA Technical Reports Server (NTRS)

    Wilson, D. S.; Szostak, J. W.

    1999-01-01

    In vitro selection allows rare functional RNA or DNA molecules to be isolated from pools of over 10(15) different sequences. This approach has been used to identify RNA and DNA ligands for numerous small molecules, and recent three-dimensional structure solutions have revealed the basis for ligand recognition in several cases. By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified. Selection experiments have also been carried out to identify ribozymes that catalyze a variety of chemical transformations, including RNA cleavage, ligation, and synthesis, as well as alkylation and acyl-transfer reactions and N-glycosidic and peptide bond formation. The existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis. New in vitro protein selection techniques should allow for a direct comparison of the frequency of ligand binding and catalytic structures in pools of random sequence polynucleotides versus polypeptides.

  18. Gold Functionalized Mesoporous Silica Nanoparticle Mediated Protein and DNA Codelivery to Plant Cells Via the Biolistic Method

    SciTech Connect

    Martin-Ortigosa, Susana; Valenstein, Justin S.; Lin, Victor S.-Y.; Trewyn, Brian G.; Wang, Kan

    2012-09-11

    The synthesis and characterization of a gold nanoparticle functionalized mesoporous silica nanoparticle (Au-MSN) platform for codelivery of proteins and plasmid DNA to plant tissues using a biolistic particle delivery system is reported. The in vitro uptake and release profiles of fluorescently labeled bovine serum albumin (BSA) and enhanced green fluorescent protein (eGFP) are investigated. As a proof-of-concept demonstration, Au-MSN with large average pore diameters (10 nm) are shown to deliver and subsequently release proteins and plasmid DNA to the same cell after passing through the plant cell wall upon bombardment. Release of fluorescent eGFP indicates the delivery of active, non-denatured proteins to plant cells. This advance represents the first example of biolistic-mediated codelivery of proteins and plasmid DNA to plant cells via gold-functionalized MSN and provides a powerful tool for both fundamental and applied research of plant sciences.

  19. Gold-Catalyzed Intermolecular Ynamide Amination-Initiated Aza-Nazarov Cyclization: Access to Functionalized 2-Aminopyrroles.

    PubMed

    Shu, Chao; Wang, Yong-Heng; Shen, Cang-Hai; Ruan, Peng-Peng; Lu, Xin; Ye, Long-Wu

    2016-07-01

    A novel gold-catalyzed intermolecular ynamide amination-initiated aza-Nazarov cyclization has been developed, allowing the facile and efficient synthesis of various 2-aminopyrroles in moderate to good yields. Furthermore, a mechanistic rationale for this tandem sequence, especially for the observed high regioselectivity, is also well supported by DFT (density functional theory) computations. The high flexibility, broad substrate scope, and mild nature of this reaction render it a viable alternative for the construction of 2-aminopyrroles. PMID:27331406

  20. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications

    PubMed Central

    Makowski, M. S.; Kim, S.; Gaillard, M.; Janes, D.; Manfra, M. J.; Bryan, I.; Sitar, Z.; Arellano, C.; Xie, J.; Collazo, R.; Ivanisevic, A.

    2013-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to measure electrical characteristics of physisorbed gold nanoparticles (Au NPs) functionalized with alkanethiols with a terminal methyl, amine, or carboxyl functional group. Additional alkanethiol was physisorbed onto the NP treated devices to distinguish between the effects of the Au NPs and alkanethiols on HEMT operation. Scanning Kelvin probe microscopy and electrical measurements were used to characterize the treatment effects. The HEMTs were operated near threshold voltage due to the greatest sensitivity in this region. The Au NP/HEMT system electrically detected functional group differences on adsorbed NPs which is pertinent to biosensor applications. PMID:23509411

  1. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications.

    PubMed

    Makowski, M S; Kim, S; Gaillard, M; Janes, D; Manfra, M J; Bryan, I; Sitar, Z; Arellano, C; Xie, J; Collazo, R; Ivanisevic, A

    2013-02-18

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to measure electrical characteristics of physisorbed gold nanoparticles (Au NPs) functionalized with alkanethiols with a terminal methyl, amine, or carboxyl functional group. Additional alkanethiol was physisorbed onto the NP treated devices to distinguish between the effects of the Au NPs and alkanethiols on HEMT operation. Scanning Kelvin probe microscopy and electrical measurements were used to characterize the treatment effects. The HEMTs were operated near threshold voltage due to the greatest sensitivity in this region. The Au NP/HEMT system electrically detected functional group differences on adsorbed NPs which is pertinent to biosensor applications.

  2. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications

    NASA Astrophysics Data System (ADS)

    Makowski, M. S.; Kim, S.; Gaillard, M.; Janes, D.; Manfra, M. J.; Bryan, I.; Sitar, Z.; Arellano, C.; Xie, J.; Collazo, R.; Ivanisevic, A.

    2013-02-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to measure electrical characteristics of physisorbed gold nanoparticles (Au NPs) functionalized with alkanethiols with a terminal methyl, amine, or carboxyl functional group. Additional alkanethiol was physisorbed onto the NP treated devices to distinguish between the effects of the Au NPs and alkanethiols on HEMT operation. Scanning Kelvin probe microscopy and electrical measurements were used to characterize the treatment effects. The HEMTs were operated near threshold voltage due to the greatest sensitivity in this region. The Au NP/HEMT system electrically detected functional group differences on adsorbed NPs which is pertinent to biosensor applications.

  3. A porphyrin complex of Gold(I): (Phosphine)gold(I) azides as cation precursors

    PubMed Central

    Partyka, David V.; Robilotto, Thomas J.; Zeller, Matthias; Hunter, Allen D.; Gray, Thomas G.

    2008-01-01

    A silver- and Brönsted acid-free protocol for generating the (tricyclohexylphosphine)gold(I) cation from the corresponding azide complexes is disclosed. The gold(I) cations so liberated are trapped by complexation with octaethylporphyrin. The first structurally authenticated gold(I) porphyrin complex crystallizes with formula C72H112Au2F12N4P2Sb2, space group C2/c, a = 21.388 (4), b = 19.679 (4), c = 19.231 (3) Å; β = 111.030 (3)°. Solution spectroscopic studies indicate that the di-gold complex fragments on dissolution in organic solvents. Approximate density-functional theory calculations find an electrostatic origin for the binding of two gold(I) centers to the unprotonated nitrogen atoms, despite greater orbital density on the porphyrin meso carbons. PMID:18780788

  4. Lipoic acid functionalized amino acids cationic lipids as gene vectors.

    PubMed

    Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zheng, Li-Ting; Zhao, Zhi-Gang

    2016-10-01

    A series of reducible cationic lipids 4a-4f with different amino acid polar-head groups were prepared. The novel lipid contains a hydrophobic lipoic acid (LA) moiety, which can be reduced under reductive conditions to release of the encapsulated plasmid DNA. The particle size, zeta potential and cellular uptake of lipoplexes formed with DNA, as well as the transfection efficacy (TE) were characterized. The TE of the cationic lipid based on arginine was especially high, and was 2.5times higher than that of a branched polyethylenimine in the presence of 10% serum.

  5. Label-free detection of cardiac troponin-I using gold nanoparticles functionalized single-walled carbon nanotubes based chemiresistive biosensor

    NASA Astrophysics Data System (ADS)

    Rajesh, Sharma, Vikash; Puri, Nitin K.; Singh, Rajiv K.; Biradar, Ashok M.; Mulchanadani, Ashok

    2013-11-01

    We report a specific and ultrasensitive, label-free chemiresistive biosensor based on mercaptopropionic acid capped gold nanoparticles (GNP) functionalized single walled carbon nanotube (SWNT) hybrid for the detection of cardiac specific biomarker troponin-I (cTnI). GNPs were attached to SWNTs through a molecular linker 1-pyrenemethylamine. The highly specific cTnI antibody was covalently immobilized on GNPs through capping agent using carbodiimide coupling reaction. The cTnI interaction to its corresponding antibody was studied with respect to changes in conductance in SWNTs channel, and a detailed field-effect transistor characteristic was delineated. The device exhibited a linear response to cTnI from 0.01 to 10 ng ml-1.

  6. Bisphosphonate-functionalized gold nanoparticles for contrast-enhanced X-ray detection of breast microcalcifications.

    PubMed

    Cole, Lisa E; Vargo-Gogola, Tracy; Roeder, Ryan K

    2014-02-01

    Microcalcifications are one of the most common abnormalities detected by mammography for the diagnosis of breast cancer. However, the detection of microcalcifications and correct diagnosis of breast cancer are limited by the sensitivity and specificity of mammography. Therefore, the objective of this study was to investigate the potential of bisphosphonate-functionalized gold nanoparticles (BP-Au NPs) for contrast-enhanced radiographic detection of breast microcalcifications using two models of breast microcalcifications, which allowed for precise control over levels of hydroxyapatite (HA) mineral within a low attenuating matrix. First, an in vitro imaging phantom was prepared with varying concentrations of HA uniformly dispersed in an agarose hydrogel. The X-ray attenuation of HA-agarose compositions labeled by BP-Au NPs was increased by up to 26 HU compared to unlabeled compositions for HA concentrations ranging from 1 to 10 mg/mL. Second, an ex vivo tissue model was developed to more closely mimic the heterogeneity of breast tissue by injecting varying concentrations of HA in a Matrigel carrier into murine mammary glands. The X-ray attenuation of HA-Matrigel compositions labeled by BP-Au NPs was increased by up to 289 HU compared to unlabeled compositions for HA concentrations ranging from 0.5 to 25 mg/mL, which included an HA concentration (0.5 mg/mL) that was otherwise undetectable by micro-computed tomography. Cumulatively, both models demonstrated the ability of BP-Au NPs to enhance contrast for radiographic detection of microcalcifications, including at a clinically-relevant imaging resolution. Therefore, BP-Au NPs may have potential to improve clinical detection of breast microcalcifications by mammography. PMID:24360718

  7. Bisphosphonate-Functionalized Gold Nanoparticles for Contrast-Enhanced X-Ray Detection of Breast Microcalcifications

    PubMed Central

    Cole, Lisa E.; Vargo-Gogola, Tracy; Roeder, Ryan K.

    2014-01-01

    Microcalcifications are one of the most common abnormalities detected by mammography for the diagnosis of breast cancer. However, the detection of microcalcifications and correct diagnosis of breast cancer are limited by the sensitivity and specificity of mammography. Therefore, the objective of this study was to investigate the potential of bisphosphonate-functionalized gold nanoparticles (BP-Au NPs) for contrast-enhanced radiographic detection of breast microcalcifications using two models of breast microcalcifications which allowed for precise control over levels of hydroxyapatite (HA) mineral within a low attenuating matrix. First, an in vitro imaging phantom was prepared with varying concentrations of HA uniformly dispersed in an agarose hydrogel. The X-ray attenuation of HA-agarose compositions labeled by BP-Au NPs was increased by up to 26 HU compared to unlabeled compositions for HA concentrations ranging from 1–10 mg/mL. Second, an ex vivo tissue model was developed to more closely mimic the heterogeneity of breast tissue by injecting varying concentrations of HA in a Matrigel carrier into murine mammary glands. The X-ray attenuation of HA-Matrigel compositions labeled by BP-Au NPs was increased by up to 289 HU compared to unlabeled compositions for HA concentrations ranging from 0.5–25 mg/mL, which included an HA concentration (0.5 mg/mL) that was otherwise undetectable by micro-computed tomography. Cumulatively, both models demonstrated the ability of BP-Au NPs to enhance contrast for radiographic detection of microcalcifications, including at a clinically-relevant imaging resolution. Therefore, BP-Au NPs may have potential to improve clinical detection of breast microcalcifications by mammography. PMID:24360718

  8. Enhancement of electrogenerated chemiluminescence of luminol by ascorbic acid at gold nanoparticle/graphene modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Dong, Yongping; Gao, Tingting; Zhou, Ying; Chu, Xiangfeng; Wang, Chengming

    2015-01-01

    Gold nanoparticle/graphene (GNP/GR) nanocomposite was one-pot synthesized from water soluble graphene and HAuCl4 by hydrothermal method and characterized by TEM, Raman spectroscopy, XRD, XPS, UV-vis spectroscopy, and electrochemical impedance spectroscopy (EIS). Electrogenerated chemiluminescence (ECL) of luminol was investigated at the GNP/GR modified glassy carbon electrode (GNP/GR/GCE) and the GNP modified glassy carbon electrode (GNP/GCE) in aqueous solution respectively. The results revealed that one strong anodic ECL peak could be observed at ∼0.8 V at two modified electrodes compared with that at the bare electrode. The intensity of the anodic ECL at the GNP/GR/GCE is weaker than that at the GNP/GCE, which should be due to the synergic effect of the enhancing effect of gold nanoparticles and the inhibiting effect of graphene on anodic luminol ECL. One strong cathodic ECL peak located at ∼-0.8 V could be observed at the GNP/GR/GCE but not at the GNP/GCE, which should be result from the adsorbed oxygen at the graphene film. In the presence of ascorbic acid, the anodic ECL at the GNP/GR/GCE was enhanced more than 8-times, which is more apparent than that at the GNP/GCE. Whereas, the cathodic ECL peak was seriously inhibited at the GNP/GR/GCE. The enhanced ECL intensity at the GNP/GR/GCE varied linearly with the logarithm of ascorbic acid concentration in the range of 1.0 × 10-8 to 1.0 × 10-6 mol L-1 with a detection limit of 1.0 × 10-9 mol L-1. The possible ECL mechanism was also discussed.

  9. The effect of gold nanoparticle structure on the conformation and function of adsorbed proteins

    NASA Astrophysics Data System (ADS)

    Gagner, Jennifer E.

    Many applications of nanobiomaterials rely on or are enhanced by specific, protein-mediated interactions with biological systems. These interactions can be engineered by chemically modifying the surface of the material to affect protein adsorption, or by altering the topography of the nanoscale surface. The attachment or adsorption of proteins onto materials can greatly affect the structure and subsequent function of those proteins, giving rise to unpredictable and potentially undesirable effects. Thus, it is essential to develop a detailed understanding of how nanostructured surface characteristics, such as atomic-scale topography, surface energy, and chemical structure may affect protein adsorption, structure, function, and stability. The presented work on gold nanoparticles (AuNP) in the forms of spheres (AuNS), rods (AuNR), cubes (AuNC) and octahedra (AuNO) will elucidate the effect of nanoparticle morphology on adsorbed model proteins lysozyme (Lyz) and α-chymotrypsin (ChT). It has been found that nanoparticle morphology does affect the structure of adsorbed proteins as well as the extent of the surface coverage; however, the final form of the nano-bio conjugate is protein specific. Lyz conjugates underwent loss of structure and rapid aggregation regardless of AuNP morphology; however, ChT conjugates exhibited no structure loss when immobilized on AuNS, and a significant, loading specific structure loss when adsorbed on AuNR. Further work will be presented on efforts to determine the role of crystal structure, surface energy, and ligand chemistry on adsorbed proteins. Wet chemical methods are used to synthesize AuNC with f100g facets and AuNO with f111g facets. Nanoparticles are characterized through electron microscopy, X-ray and electron diffraction, X-ray photoelectron spectroscopy and inductively coupled plasma mass spectroscopy. Protein conjugation and changes in protein structure are monitored through a variety of physical and spectroscopic techniques

  10. Novel ascorbic acid based ionic liquids for the in situ synthesis of quasi-spherical and anisotropic gold nanostructures in aqueous medium.

    PubMed

    Dinda, Enakshi; Si, Satyabrata; Kotal, Atanu; Mandal, Tarun K

    2008-01-01

    A series of newly designed ascorbic acid based room temperature ionic liquids were successfully used to prepare quasi-spherical and anisotropic gold nanostructures in an aqueous medium at ambient temperature. The synthesis of these room temperature ionic liquids involves, first, the preparation of a 1-alkyl (such as methyl, ethyl, butyl, hexyl, octyl, and decyl) derivative of 3-methylimidazolium hydroxide followed by the neutralization of the derivatised product with ascorbic acid. These ionic liquids show significantly better thermal stability and their glass transition temperature (Tg) decreases with increasing alkyl chain length. The ascorbate counter anion of these ionic liquids acts as a reducing agent for HAuCl4 to produce metallic gold and the alkylated imidazolium counter cation acts as a capping/shape-directing agent. It has been found that the nature of the ionic liquids and the mole ratio of ionic liquid to HAuCl4 has a significant effect on the morphology of the formed gold nanostructures. If an equimolar mixture of ionic liquid and HAuCl4 is used, predominantly anisotropic gold nanostructures are formed and by varying the alkyl chain length attached to imidazolium cation of the ionic liquids, various particle morphologies can formed, such as quasispherical, raspberry-like, flakes or dendritic. A probable formation mechanism for such anisotropic gold nanostructures has been proposed, which is based on the results of some control experiments.

  11. Synthesis, functionalization, and characterization of rod-shaped gold nanoparticles as potential optical contrast agents

    NASA Astrophysics Data System (ADS)

    Rayavarapu, R. G.; Petersen, W.; Le Gac, S.; Ungureanu, C.; van Leeuwen, T. G.; Manohar, S.

    2007-07-01

    Gold nanoparticles exhibit intense and narrow optical extinction bands due to the phenomenon of plasmon resonance making them useful as contrast agents for light-based imaging techniques. Localized heating results from the absorbed light energy, which shows potential for these particles in photothermal therapy as well. The bioconjugation of gold nanoparticles to appropriate antibodies targeted to tumors in vivo, could make highly selective detection and therapy of tumors possible. We have synthesised gold nanorods based on seed mediated protocols using two methods. The first method is based on using a mono-surfactant silver assisted method which produces gold nanorods having plasmon peaks between 670-850 nm within the "optical imaging and therapeutic window". These nanorods have aspect ratios between 2.3 - 3.7. A second method is a silver assisted bi-surfactant method which produce nanorods with peaks in the range of 850-1100 nm having aspect ratios between 5 - 11. Typical concentrations of these particles in aqueous dispersions are in the range of 1x10 10 - 1x10 11 particles per mL. We have bioconjugated these gold nanorods with anti-HER2/neu mouse monoclonal antibodies (MAb). Since the as-prepared CTAB-stabilized nanorods were found to be toxic to SKBR3 cells, we decided to coat the gold nanorods with polyethylene glycol (PEG). Characterization and size estimation of the nanoparticles were performed using electron microscopies, optical spectroscopy and confocal microscopy. We present these results and implications for use of these nanoparticles for in vivo biomedical applications.

  12. A New Porphyrin for the Preparation of Functionalized Water-Soluble Gold Nanoparticles with Low Intrinsic Toxicity

    PubMed Central

    Penon, Oriol; Patiño, Tania; Barrios, Lleonard; Nogués, Carme; Amabilino , David B; Wurst, Klaus; Pérez-García, Lluïsa

    2015-01-01

    A potential new photosensitizer based on a dissymmetric porphyrin derivative bearing a thiol group was synthesized. 5-[4-(11-Mercaptoundecyloxy)-phenyl-10,15,20-triphenylporphyrin (PR-SH) was used to functionalize gold nanoparticles in order to obtain a potential drug delivery system. Water-soluble multifunctional gold nanoparticles GNP-PR/PEG were prepared using the Brust–Schiffrin methodology, by immobilization of both a thiolated polyethylene glycol (PEG) and the porphyrin thiol compound (PR-SH). The nanoparticles were fully characterized by transmission electron microscopy and 1H nuclear magnetic resonance spectroscopy, UV/Vis absorption spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, the ability of GNP-PR/PEGs to induce singlet oxygen production was analyzed to demonstrate the activity of the photosensitizer. Cytotoxicity experiments showed the nanoparticles are nontoxic. Finally, cellular uptake experiments demonstrated that the functionalized gold nanoparticles are internalized. Therefore, this colloid can be considered to be a novel nanosystem that could potentially be suitable as an intracellular drug delivery system of photosensitizers for photodynamic therapy. PMID:25969810

  13. Bioactive Glass Shell Growth of a Si-Na-Ca-P Layer on Gold Nanoparticles Functionalized with Mercaptopropyltrimethyloxysilane-Silicate

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Kuang; Chen, Szu-Hsien; Li, Wan-Yun; Lai, Chern-Hsiung; Chen, Wen-Cheng

    Calcium phosphate and silicate-modified gold surfaces have potential applications in orthopedic and dental reconstruction, especially when combined with bone cement or dental resins. The aim of this study was to evaluate the formation of a Si-Na-Ca-P glass system nanoshell on functionalized gold nanoparticles. Stable gold nanoparticle suspensions were prepared by controlled reduction of HAuCl4 using the sodium citrate method to obtain a nanogold-mercaptopropyltrimethyloxysilane (MPTS)-silicate-tetraethylothosilicate (TEOS)-capped particle solution. The nanoshells were formed when directly reacted with a 10-4 M calcium phosphate ion solution. The median nanoparticle diameter was observed to be 15 nm. The MPTS-silicate-TEOS-functionalized nanoshell more effectively formed a glass shell as compared with a nonsilicate nanoshell. The changes in the surface morphology and composition were observed by a scanning transmission electron microscope equipped with energy-dispersive X-ray spectroscopy. As seen using EDS, the nanoshell was in a glass phase with CaO-poor layers.

  14. Ultra-sensitive immunosensor for detection of hepatitis B surface antigen using multi-functionalized gold nanoparticles.

    PubMed

    Shourian, M; Ghourchian, H; Boutorabi, M

    2015-10-01

    The signal amplification for analytical purposes has considerable potential in detecting trace levels of analytes for clinical, security or environmental applications. In the present report a strategy based on a sandwich type immunoassay system was designed for the detection of hepatitis B surface antigen which exploits the specific affinity interaction between streptavidin and biotin recognition systems. The method involves the specific coupling of multi-functionalized gold nanoparticles (bearing biotin and luminol molecules) to the streptavidin modified by secondary antibody. The chemiluminescent signal is produced by the gold nanoparticles in the presence of HAuCl4 as catalyst and hydrogen peroxide as oxidant. The immunosensor was able to detect hepatitis B surface antigen in the linear concentration range from 1.7 to 1920 pg mL(-1) and the detection limit of 0.358 pg mL(-1), at signal/noise = 3.

  15. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids.

    PubMed

    Carpini, Guido; Lucarelli, Fausto; Marrazza, Giovanna; Mascini, Marco

    2004-09-15

    An electrochemical genosensor for the detection of specific sequences of DNA has been developed using disposable screen-printed gold electrodes. Screen-printed gold electrodes were firstly modified with a mixed monolayer of a 25-mer thiol-tethered DNA probe and a spacer thiol, 6-mercapto-1-hexanol (MCH). The DNA probe sequence was internal to the sequence of the 35S promoter, which sequence is inserted in the genome of GMOs regulating the transgene expression. An enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalysed the hydrolysis of the electroinactive alpha-naphthyl phosphate to alpha-naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. The assay was, firstly, characterised using synthetic oligonucleotides. Relevant parameters, such as the probe concentration and the immobilisation time, the use of the MCH and different enzymatic conjugates, were investigated and optimised. The genosensor response was found to be linearly related to the target concentration between 0 and 25 nmol/L; the detection limit was 0.25 nmol/L. The analytical procedure was then applied for the detection of the 35S promoter sequence, which was amplified from the pBI121 plasmid by polymerase chain reaction (PCR). Hybridisation conditions (i.e., hybridisation buffer and hybridisation time) were further optimised. The selectivity of the assay was confirmed using biotinylated non-complementary amplicons and PCR blanks. The results showed that the genosensor enabled sensitive (detection limit: 1 nmol/L) and specific detection of GMO-related sequences, thus providing a useful tool for the screening analysis of bioengineered food samples.

  16. Gold nanoparticles functionalized with a fragment of the neural cell adhesion molecule L1 stimulate L1-mediated functions

    NASA Astrophysics Data System (ADS)

    Schulz, Florian; Lutz, David; Rusche, Norman; Bastús, Neus G.; Stieben, Martin; Höltig, Michael; Grüner, Florian; Weller, Horst; Schachner, Melitta; Vossmeyer, Tobias; Loers, Gabriele

    2013-10-01

    The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1 sequence of the third fibronectin type III domain of murine L1 was identified and conjugated to gold nanoparticles (AuNPs) to obtain constructs that interact homophilically with the extracellular domain of L1 and trigger the cognate beneficial L1-mediated functions. Covalent conjugation was achieved by reacting mixtures of two cysteine-terminated forms of this L1 peptide and thiolated poly(ethylene) glycol (PEG) ligands (~2.1 kDa) with citrate stabilized AuNPs of two different sizes (~14 and 40 nm in diameter). By varying the ratio of the L1 peptide-PEG mixtures, an optimized layer composition was achieved that resulted in the expected homophilic interaction of the AuNPs. These AuNPs were stable as tested over a time period of 30 days in artificial cerebrospinal fluid and interacted with the extracellular domain of L1 on neurons and Schwann cells, as could be shown by using cells from wild-type and L1-deficient mice. In vitro, the L1-derivatized particles promoted neurite outgrowth and survival of neurons from the central and peripheral nervous system and stimulated Schwann cell process formation and proliferation. These observations raise the hope that, in combination with other therapeutic approaches, L1 peptide-functionalized AuNPs may become a useful tool to ameliorate the deficits resulting from acute and chronic injuries of the mammalian nervous system.The neural cell adhesion molecule L1 is involved in nervous system development and promotes regeneration in animal models of acute and chronic injury of the adult nervous system. To translate these conducive functions into therapeutic approaches, a 22-mer peptide that encompasses a minimal and functional L1

  17. Gold-catalyzed construction of two adjacent quaternary stereocenters via sequential C-H functionalization and aldol annulation.

    PubMed

    Yu, Zhunzhun; Qiu, Haile; Liu, Lu; Zhang, Junliang

    2016-02-01

    Herein, a novel and efficient gold-catalyzed intermolecular C(sp(2))-H functionalization (Friedel-Crafts alkylation) and aldol annulation strategy is presented. This cascade process allows the synthesis of a series of indanol and tetrahydronaphthalenol derivatives with two adjacent quaternary stereocenters. The attractive reaction features are the use of readily available starting materials, good diastereoselectivity, good functional-group tolerance and mild reaction conditions. Furthermore, preliminary results indicate that this transformation is amenable to enantioselectivitive synthesis with further chiral ligand screening and design. PMID:26725981

  18. Linear light-scattering of gold nanostars for versatile biosensing of nucleic acids and proteins using exonuclease III as biocatalyst to signal amplification.

    PubMed

    Bi, Sai; Jia, Xiaoqiang; Ye, Jiayan; Dong, Ying

    2015-09-15

    Gold nanomaterials promise a wide range of potential applications in chemical and biological sensing, imaging, and catalysis. In this paper, we demonstrate a facile method for room-temperature synthesis of gold nanostars (AuNSs) with a size of ~50 nm via seeded growth. Significantly, the AuNSs are found to have high light-scattering properties, which are successfully used as labels for sensitive and selective detection of nucleic acids and proteins by using exonuclease III (Exo III) as a biocatalyst. For DNA detection, the binding of targets to the functionalized AuNS probes leads to the Exo III-stimulated cascade recycling amplification. As a result, a large amount of AuNSs are released from magnetic nanoparticles (MNPs) into solution, providing a greatly enhanced light-scattering signal for amplified sensing process. Moreover, a binding-induced DNA three-way junction (DNA TWJ) is introduced to thrombin detection, in which the binding of two aptamers to thrombin triggers assembly of the DNA motifs and initiates the subsequent DNA strand displacement reaction (SDR) and Exo III-assisted cascade recycling amplification. The detection limits of 89 fM and 5.6 pM are achieved for DNA and thrombin, respectively, which are comparable to or even exceed that of the reported isothermal amplification methods. It is noteworthy that based on the DNA TWJ strategy the sequences are independent on target proteins. Additionally, the employment of MNPs in the assays can not only simplify the operations but also improve the detection sensitivity. Therefore, the proposed amplified light-scattering assay with high sensitivity and selectivity, acceptable accuracy, and satisfactory versatility of analytes provides various applications in bioanalysis.

  19. Surface-enhanced infrared absorption of nucleic acids on gold substrate in FTIR reflectance mode

    NASA Astrophysics Data System (ADS)

    Dovbeshko, G. I.; Chegel, Vladimir I.; Gridina, Nina Y.; Repnytska, O. P.; Sekirin, I. V.; Shirshov, Yuri M.

    2001-06-01

    Data on surface enhanced infrared absorption (SEIRA) of nucleic acids deposited on the metal surface have been obtained in the experiment in FTIR reflectance mode. As metal surface, we used Au of 200 - 500 Angstrom thickness on quartz substrate. Roughness of Au was not greater than 50 Angstrom. In our experimental conditions, the enhancement factor of SEIRA was about 3 - 7. We obtained different enhancement factors for different vibrations of nuclei acids. Application of this method to the tumour brain nucleic acid gave a possibility to reveal some structural peculiarities of their sugar-phosphate backbone.

  20. Structural characterization of functionalized gold nanoparticles for drug delivery in cancer therapy: a NMR based approach.

    PubMed

    Coelho, Sílvia C; Rangel, Maria; Pereira, Maria C; Coelho, Manuel A N; Ivanova, Galya

    2015-07-15

    In the present paper, we report results from a study of the structure and physicochemical properties of gold nanoparticles modified with poly(ethylene glycol) (PEG) designed for the drug delivery of the proteasome inhibitor Bortezomib (BTZ) in cancer therapy. A number of advanced analytical techniques were used to define important physicochemical characteristics such as composition, structure, surface properties, particle size and morphology. A new approach based on detailed NMR studies was employed to define specific intermolecular interactions and mechanisms of drug immobilization and location into surface modified gold nanoparticles (AuNPs). Particularly important information was gained from analysis of NMR spectroscopic parameters such as the spectral line shape, translation diffusion, the nuclear Overhauser effect (NOE) and spin-lattice relaxation (T1). The results confirmed the coexistence of two different types of BTZ inclusion into polyethylene glycol coated gold nanoparticles: (i) association with the polymer chains by weak H-bonds and/or dipole-charge interactions and (ii) adsorption on the surface of the gold nanoparticles. The results allowed for determination of the overall structure of Bortezomib loaded PEG coated AuNPs, which is related to the therapeutic drug efficacy and activity in the treatment of cancer.

  1. Multiple morphologies of gold-magnetite heterostructure nanoparticles are effectively functionalized with protein for cell targeting.

    PubMed

    Krystofiak, Evan S; Mattson, Eric C; Voyles, Paul M; Hirschmugl, Carol J; Albrecht, Ralph M; Gajdardziska-Josifovska, Marija; Oliver, Julie A

    2013-08-01

    Nanoparticles composed of a magnetic iron oxide core surrounded by a metal shell have utility in a broad range of biomedical applications. However, the presence of surface energy differences between the two components makes wetting of oxide with metal unfavorable, precluding a "core-shell" structure of an oxide core completely surrounded by a thin metal shell. Three-dimensional island growth followed by island coalescence into thick shells is favored over the two-dimensional layer-by-layer growth of a thin, continuous metal coating of a true core-shell. Aqueous synthesis of gold-coated magnetite nanoparticles with analysis by infrared, energy-dispersive X-ray, and electron energy loss spectroscopies; high-resolution transmission electron microscopy; selected area electron diffraction; and high-angle annular dark-field scanning transmission electron microscopy showed two distinct morphologies that are inconsistent with an idealized core-shell. The majority were isolated ~16-22-nm-diameter nanoparticles consisting of ~7-nm-diameter magnetite and a thick deposition of gold, most often discontinuous, with some potentially "sandwiched" morphologies. A minority were aggregates of agglomerated magnetite decorated with gold but displaying significant bare magnetite. Both populations were successfully conjugated to fibrinogen and targeted to surface-activated platelets, demonstrating that iron oxide-gold nanoparticles produced by aqueous synthesis do not require an ideal core-shell structure for biological activity in cell labeling and targeting applications.

  2. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate.

    PubMed

    Konował, Emilia; Modrzejewska-Sikorska, Anna; Motylenko, Mykhailo; Klapiszewski, Łukasz; Wysokowski, Marcin; Bazhenov, Vasilii V; Rafaja, David; Ehrlich, Hermann; Milczarek, Grzegorz; Jesionowski, Teofil

    2016-04-01

    It is shown that lignosulfonate (LS) can be used as an effective reducing agent for gold ions and simultaneously as a stabilizing agent for gold nanoparticles (AuNPs). When organically modified silica is introduced to the reaction mixture, most of the AuNPs grow on the surface of the silica due to hydrophobic interactions between LS and organic layers covering the solid particles. It was also found that the structure of the organic layer is crucial for the effective deposition of gold nanoparticles onto silica spheres in terms of particle size and gold content in the final SiO2-LS-AuNPs composites. Due to the hydrophobicity of the modified silica it was necessary to carry out the modification in mixed organic/aqueous solvent. The polarity of the organic co-solvent was found to have an effect on the size of the deposited Au-NPs and their quantity. The physical appearance of the obtained hybrids was analyzed by colorimetry, and their structure and composition were evaluated using transmission electron microscopy (TEM). Additionally dispersive and thermal properties were examined by dynamic light scattering (DLS) and thermogravimetry (TG), respectively. The obtained multifunctional hybrid materials exhibits remarkable catalytic activity for the reduction of C.I. Basic Blue 9 (Methylene Blue) by borohydride.

  3. Detection of Glucose with Atomic Absorption Spectroscopy by Using Oligonucleotide Functionalized Gold Nanoparticle.

    PubMed

    Zhang, Hong; Yan, Honglian; Ling, Liansheng

    2016-06-01

    A novel method for the detection of glucose was established with atomic absorption spectroscopy by using the label of gold nanoparticle (AuNP). Silver-coated glass assembled with oligonucleotide 5'-SH-T12-AGA CAA GAG AGG-3' (Oligo 1) was acted as separation probe, oligonucleotide 5'-CAA CAG AGA ACG-T12-SH-3' modified gold nanoparticle (AuNP-Oligo 2) was acted as signal-reporting probe. Oligonucleotide 5'-CGT TCT CTG TTG CCT CTC TTG TCT-3' (Oligo 3) could hybridize with Oligo 1 on the surface of silver-coated glass and AuNP-Oligo 2, and free AuNP-Oligo 2 could be removed by rinsing with buffer. Hence the concentration of Oligo 3 was transformed into the concentration of gold element. In addition, Oligo 3 could be cleaved into DNA fragments by glucose, glucose oxidase and Fe(2+)-EDTA through Fenton reaction. Thereby the concentration of glucose could be transformed to the absorbance of gold element. Under the optimum conditions, the integrated absorbance decreased proportionally to the concentration of glucose over the range from 50.0 μM to 1.0 mM with a detection limit of 40.0 μM. Moreover, satisfactory result was obtained when the assay was used to determinate glucose in human serum. PMID:27427698

  4. Detection of Glucose with Atomic Absorption Spectroscopy by Using Oligonucleotide Functionalized Gold Nanoparticle.

    PubMed

    Zhang, Hong; Yan, Honglian; Ling, Liansheng

    2016-06-01

    A novel method for the detection of glucose was established with atomic absorption spectroscopy by using the label of gold nanoparticle (AuNP). Silver-coated glass assembled with oligonucleotide 5'-SH-T12-AGA CAA GAG AGG-3' (Oligo 1) was acted as separation probe, oligonucleotide 5'-CAA CAG AGA ACG-T12-SH-3' modified gold nanoparticle (AuNP-Oligo 2) was acted as signal-reporting probe. Oligonucleotide 5'-CGT TCT CTG TTG CCT CTC TTG TCT-3' (Oligo 3) could hybridize with Oligo 1 on the surface of silver-coated glass and AuNP-Oligo 2, and free AuNP-Oligo 2 could be removed by rinsing with buffer. Hence the concentration of Oligo 3 was transformed into the concentration of gold element. In addition, Oligo 3 could be cleaved into DNA fragments by glucose, glucose oxidase and Fe(2+)-EDTA through Fenton reaction. Thereby the concentration of glucose could be transformed to the absorbance of gold element. Under the optimum conditions, the integrated absorbance decreased proportionally to the concentration of glucose over the range from 50.0 μM to 1.0 mM with a detection limit of 40.0 μM. Moreover, satisfactory result was obtained when the assay was used to determinate glucose in human serum.

  5. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate.

    PubMed

    Konował, Emilia; Modrzejewska-Sikorska, Anna; Motylenko, Mykhailo; Klapiszewski, Łukasz; Wysokowski, Marcin; Bazhenov, Vasilii V; Rafaja, David; Ehrlich, Hermann; Milczarek, Grzegorz; Jesionowski, Teofil

    2016-04-01

    It is shown that lignosulfonate (LS) can be used as an effective reducing agent for gold ions and simultaneously as a stabilizing agent for gold nanoparticles (AuNPs). When organically modified silica is introduced to the reaction mixture, most of the AuNPs grow on the surface of the silica due to hydrophobic interactions between LS and organic layers covering the solid particles. It was also found that the structure of the organic layer is crucial for the effective deposition of gold nanoparticles onto silica spheres in terms of particle size and gold content in the final SiO2-LS-AuNPs composites. Due to the hydrophobicity of the modified silica it was necessary to carry out the modification in mixed organic/aqueous solvent. The polarity of the organic co-solvent was found to have an effect on the size of the deposited Au-NPs and their quantity. The physical appearance of the obtained hybrids was analyzed by colorimetry, and their structure and composition were evaluated using transmission electron microscopy (TEM). Additionally dispersive and thermal properties were examined by dynamic light scattering (DLS) and thermogravimetry (TG), respectively. The obtained multifunctional hybrid materials exhibits remarkable catalytic activity for the reduction of C.I. Basic Blue 9 (Methylene Blue) by borohydride. PMID:26724689

  6. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review.

    PubMed

    Upadhyayula, Venkata K K

    2012-02-17

    There is a great necessity for development of novel sensory concepts supportive of smart sensing capabilities in defense and homeland security applications for detection of chemical and biological threat agents. A smart sensor is a detection device that can exhibit important features such as speed, sensitivity, selectivity, portability, and more importantly, simplicity in identifying a target analyte. Emerging nanomaterial based sensors, particularly those developed by utilizing functionalized gold nanoparticles (GNPs) as a sensing component potentially offer many desirable features needed for threat agent detection. The sensitiveness of physical properties expressed by GNPs, e.g. color, surface plasmon resonance, electrical conductivity and binding affinity are significantly enhanced when they are subjected to functionalization with an appropriate metal, organic or biomolecular functional groups. This sensitive nature of functionalized GNPs can be potentially exploited in the design of threat agent detection devices with smart sensing capabilities. In the presence of a target analyte (i.e., a chemical or biological threat agent) a change proportional to concentration of the analyte is observed, which can be measured either by colorimetric, fluorimetric, electrochemical or spectroscopic means. This article provides a review of how functionally modified gold colloids are applied in the detection of a broad range of threat agents, including radioactive substances, explosive compounds, chemical warfare agents, biotoxins, and biothreat pathogens through any of the four sensory means mentioned previously.

  7. Optical Properties of Gold Nanoclusters Functionalized with a Small Organic Compound: Modeling by an Integrated Quantum-Classical Approach.

    PubMed

    Li, Xin; Carravetta, Vincenzo; Li, Cui; Monti, Susanna; Rinkevicius, Zilvinas; Ågren, Hans

    2016-07-12

    Motivated by the growing importance of organometallic nanostructured materials and nanoparticles as microscopic devices for diagnostic and sensing applications, and by the recent considerable development in the simulation of such materials, we here choose a prototype system - para-nitroaniline (pNA) on gold nanoparticles - to demonstrate effective strategies for designing metal nanoparticles with organic conjugates from fundamental principles. We investigated the motion, adsorption mode, and physical chemistry properties of gold-pNA particles, increasing in size, through classical molecular dynamics (MD) simulations in connection with quantum chemistry (QC) calculations. We apply the quantum mechanics-capacitance molecular mechanics method [Z. Rinkevicius et al. J. Chem. Theory Comput. 2014, 10, 989] for calculations of the properties of the conjugate nanoparticles, where time dependent density functional theory is used for the QM part and a capacitance-polarizability parametrization of the MM part, where induced dipoles and charges by metallic charge transfer are considered. Dispersion and short-range repulsion forces are included as well. The scheme is applied to one- and two-photon absorption of gold-pNA clusters increasing in size toward the nanometer scale. Charge imaging of the surface introduces red-shifts both because of altered excitation energy dependence and variation of the relative intensity of the inherent states making up for the total band profile. For the smaller nanoparticles the difference in the crystal facets are important for the spectral outcome which is also influenced by the surrounding MM environment. PMID:27224666

  8. Optical Properties of Gold Nanoclusters Functionalized with a Small Organic Compound: Modeling by an Integrated Quantum-Classical Approach.

    PubMed

    Li, Xin; Carravetta, Vincenzo; Li, Cui; Monti, Susanna; Rinkevicius, Zilvinas; Ågren, Hans

    2016-07-12

    Motivated by the growing importance of organometallic nanostructured materials and nanoparticles as microscopic devices for diagnostic and sensing applications, and by the recent considerable development in the simulation of such materials, we here choose a prototype system - para-nitroaniline (pNA) on gold nanoparticles - to demonstrate effective strategies for designing metal nanoparticles with organic conjugates from fundamental principles. We investigated the motion, adsorption mode, and physical chemistry properties of gold-pNA particles, increasing in size, through classical molecular dynamics (MD) simulations in connection with quantum chemistry (QC) calculations. We apply the quantum mechanics-capacitance molecular mechanics method [Z. Rinkevicius et al. J. Chem. Theory Comput. 2014, 10, 989] for calculations of the properties of the conjugate nanoparticles, where time dependent density functional theory is used for the QM part and a capacitance-polarizability parametrization of the MM part, where induced dipoles and charges by metallic charge transfer are considered. Dispersion and short-range repulsion forces are included as well. The scheme is applied to one- and two-photon absorption of gold-pNA clusters increasing in size toward the nanometer scale. Charge imaging of the surface introduces red-shifts both because of altered excitation energy dependence and variation of the relative intensity of the inherent states making up for the total band profile. For the smaller nanoparticles the difference in the crystal facets are important for the spectral outcome which is also influenced by the surrounding MM environment.

  9. Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles.

    PubMed

    He, Yuqing; Zeng, Kang; Gurung, Anant S; Baloda, Meenu; Xu, Hui; Zhang, Xibao; Liu, Guodong

    2010-09-01

    We report a simple, fast, and sensitive approach for visual detection of single-nucleotide polymorphism (SNP) based on hairpin oligonucleotide-functionalized gold nanoparticle (HO-Au-NP) and lateral flow strip biosensor (LFSB). The results presented here expand on prior work ( Mao , X. , Xu , H. , Zeng , Q. , Zeng , L. , and Liu , G. Chem. Commun. 2009 , 3065-3067 .) by providing new approach to prepare HO-Au-NP conjugates with a deoxyadenosine triphosphate (dATP) blocker, which shortens the preparation time of the conjugates from 50 to 8 h and lowers the detection limit 500 times. A hairpin oligonucleotide modified with a thiol at the 5'-end and a biotin at the 3'-end was conjugated with Au-NP through a self-assembling process. Following a blocking step with dATP, the hairpin structure of HO and dATP embed the biotin groups, and make the biotin groups in close proximity to the Au-NP surface, leading to the biotins being "inactive". The strategy of detecting SNP depends on the unique molecular recognition properties of HO to the perfect-matched DNA and single-base-mismatched DNA to generate different quantities of "active" biotin groups on the Au-NP surface. After hybridization reactions, the Au-NPs associated with the activated biotins are captured on the test zone of LFSB via the specific reaction between the activated biotin and preimmobilized streptavidin. Accumulation of Au-NPs produces the characteristic red bands, enabling visual detection of SNP. The preparations of HO-Au-NP conjugates with dATP and the parameters of assay were optimized systematically, and the abilities of detecting SNP were examined in details. The current approach is capable of discriminating as low as 10 pM of perfect-matched DNA and single-base-mismatched DNA within 25 min without instrumentation. Moreover, the approach provides a lower background and higher selectivity compared to the current molecular beacon-based SNP detection. The protocol should facilitate the simple, fast, and

  10. Simulation and modeling of self-assembled monolayers of carboxylic acid thiols on flat and nanoparticle gold surfaces.

    PubMed

    Techane, Sirnegeda; Baer, Donald R; Castner, David G

    2011-09-01

    Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) software and X-ray photoelectron spectroscopy (XPS) experimental measurements. XPS measurements of C16 COOH-SAMs on flat gold surfaces were made at nine different photoelectron emission angles (5-85° in 10° increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. On the basis of the glancing-angle results, it was found that inclusion of a hydrocarbon-contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1 Å/CH(2) group, an RSA of 1.05, and a 1.5 Å CH(2)-contamination overlayer (total film thickness = 21.5 Å) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat-surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs indicated a slightly thinner overlayer with parameters of 0.9 Å/CH(2) group in the SAM, an RSA of 1.06 RSA, and a 1.5 Å CH(2)-contamination overlayer (total film thickness = 18.5 Å). The 3 Å difference in SAM thickness between the flat Au and AuNP surfaces suggests that the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces.

  11. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor.

    PubMed

    Liu, Juewen; Lu, Yi

    2004-03-15

    Previous work has shown that DNAzyme-directed assembly of gold nanoparticles can be utilized to make effective colorimetric biosensors. However, the method is restricted to analytes that are directly involved in phosphodiester cleavage. To expand the methodology to a broader range of analytes, a colorimetric adenosine biosensor based on the aptazyme-directed assembly of gold nanoparticles is reported here. The aptazyme is based on the 8-17 DNAzyme with an adenosine aptamer motif that can modulate the DNAzyme activity through allosteric interactions depending on the presence of adenosine. In the absence of adenosine, the aptazyme is inactive and the substrate strands can serve as linkers to assemble DNA-functionalized 13-nm-diameter gold nanoparticles, resulting in a blue color. However, the presence of adenosine activates the aptazyme, which cleaves the substrate strand, disrupting the formation of nanoparticle aggregates. A red color of separated gold nanoparticles is observed. Concentrations of adenosine of up to 1 mM can be measured semiquantitatively by the degree of blue to red color changes or quantitatively by the extinction ratio at 520 and 700 nm. Under the same conditions, 5 mM guanosine, cytidine, or uridine resulted in a blue color only, indicating good selectivity of the sensor. The color difference can be clearly observed by the naked eye by spotting the resulting sensor solution onto an alumina TLC plate. Since aptamers that can target many classes of important analytes have already been selected, they can be adapted into aptazyme systems through rational design or further selection. Thus, colorimetric biosensors for many analytes of interest can be designed using the method presented here, regardless of whether the analytes are directly involved in the cleavage reaction or not.

  12. Geophysical delineation of acidity and salinity in the Central Manitoba gold mine tailings pile, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Tycholiz, C.; Ferguson, I. J.; Sherriff, B. L.; Cordeiro, M.; Sri Ranjan, R.; Pérez-Flores, M. A.

    2016-08-01

    Surface electrical and electromagnetic geophysical methods can map enhanced electrical conductivity caused by acid mine drainage in mine tailings piles. In this case study, we investigate quantitative relationships between geophysical responses and the electrical conductivity, acidity and salinity of tailing samples at the Central Manitoba Mine tailings in Manitoba, Canada. Previous electromagnetic surveys at the site identified zones of enhanced conductivity that were hypothesized to be caused by acid mine drainage. In the present study, high-resolution EM31 and DC-resistivity measurements were made on a profile through a zone of enhanced conductivity and laboratory measurements of salinity and pH were made on saturation paste extracts from an array of tailing samples collected from the upper 2 m of tailings along the profile. Observed spatial correlation of pH and pore-fluid salinity in the tailings samples confirms that the enhanced conductivity in the Central Manitoba Mine tailings is due to acid mine drainage. Contoured cross-sections of the data indicate that the acid mine drainage is concentrated near the base of the oxidized zone in the thicker parts of the tailings pile. The zone of increased acidity extends to the surface on sloping margins causing an increase in apparent conductivity in shallow penetrating geophysical responses. The quantitative relationship between measured pH and salinity shows that the conductivity increase associated with the acid mine drainage is due only in part to conduction by ions produced from dissociation of sulfuric acid. Comparison of the observations with fluid conductivity estimates based on statistical relationships of pH and ion concentrations in water samples from across the tailings pile shows that Ca2 + and Mg2 + ions also make significant contributions to the conductivity at all values of pH and Cu2 +, Al3 + and Fe3 + ions make additional contributions at low pH. Variability in the measured conductivity at constant

  13. "Naked" gold nanoparticles supported on HOPG: melanin functionalization and catalytic activity.

    PubMed

    González Orive, A; Grumelli, D; Vericat, C; Ramallo-López, J M; Giovanetti, L; Benitez, G; Azcárate, J C; Corthey, G; Fonticelli, M H; Requejo, F G; Hernández Creus, A; Salvarezza, R C

    2011-04-01

    Reductive electrodesorption has been used to produce "naked" gold nanoparticles (AuNPs) 3 nm in size on HOPG from different thiolate-capped AuNPs. The clean AuNPs transform the electrocatalytic inert HOPG into an active surface for hydrogen peroxide electroreduction, causing a lowering of the cathodic overpotential of 0.25 V with respect to the Au(111) surface. Compared to the plain gold substrates, the nanostructures promote only a slight increase in the hydrogen evolution reaction. In a second modification step a ∼1 nm thick melanin-iron coating is electrochemically formed around the AuNPs. This ultrathin melanin-iron coating largely improves the catalytic activity of the bare AuNPs for both hydrogen peroxide electroreduction and hydrogen evolution reaction. This strategy, which integrates electrochemistry and nanotechnology, can be applied to the preparation of efficient "naked" AuNPs and organic-iron capped AuNPs catalysts.

  14. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  15. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    SciTech Connect

    Nan, Alexandrina Bunge, Alexander; Turcu, Rodica

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  16. Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field.

    PubMed

    Majouga, Alexander; Sokolsky-Papkov, Marina; Kuznetsov, Artem; Lebedev, Dmitry; Efremova, Maria; Beloglazkina, Elena; Rudakovskaya, Polina; Veselov, Maxim; Zyk, Nikolay; Golovin, Yuri; Klyachko, Natalia; Kabanov, Alexander

    2015-01-01

    The possibility of remotely inducing a defined effect on NPs by means of electromagnetic radiation appears attractive. From a practical point of view, this effect opens horizons for remote control of drug release systems, as well as modulation of biochemical functions in cells. Gold-coated magnetite nanoparticles are perfect candidates for such application. Herein, we have successfully synthesized core-shell NPs having magnetite cores and gold shells modified with various sulphur containing ligands and developed a new, simple and robust procedure for the purification of the resulting nanoparticles. The carboxylic groups displayed at the surface of the NPs were utilized for NP conjugation with a model enzyme (ChT). In the present study, we report the effect of the low-frequency AC magnetic field on the catalytic activity of the immobilized ChT. We show that the enzyme activity decreases upon exposure of the NPs to the field.

  17. Enzyme-functionalized gold-coated magnetite nanoparticles as novel hybrid nanomaterials: synthesis, purification and control of enzyme function by low-frequency magnetic field.

    PubMed

    Majouga, Alexander; Sokolsky-Papkov, Marina; Kuznetsov, Artem; Lebedev, Dmitry; Efremova, Maria; Beloglazkina, Elena; Rudakovskaya, Polina; Veselov, Maxim; Zyk, Nikolay; Golovin, Yuri; Klyachko, Natalia; Kabanov, Alexander

    2015-01-01

    The possibility of remotely inducing a defined effect on NPs by means of electromagnetic radiation appears attractive. From a practical point of view, this effect opens horizons for remote control of drug release systems, as well as modulation of biochemical functions in cells. Gold-coated magnetite nanoparticles are perfect candidates for such application. Herein, we have successfully synthesized core-shell NPs having magnetite cores and gold shells modified with various sulphur containing ligands and developed a new, simple and robust procedure for the purification of the resulting nanoparticles. The carboxylic groups displayed at the surface of the NPs were utilized for NP conjugation with a model enzyme (ChT). In the present study, we report the effect of the low-frequency AC magnetic field on the catalytic activity of the immobilized ChT. We show that the enzyme activity decreases upon exposure of the NPs to the field. PMID:25460600

  18. Robust Maleimide-Functionalized Gold Surfaces and Nanoparticles Generated Using Custom-Designed Bidentate Adsorbates.

    PubMed

    Park, Chul Soon; Lee, Han Ju; Jamison, Andrew C; Lee, T Randall

    2016-07-26

    A series of custom-designed alkanethioacetate ligands were synthesized to provide a facile method of attaching maleimide-terminated adsorbates to gold nanostructures via thiolate bonds. Monolayers on flat gold substrates derived from both mono- and dithioacetates, with and without oligo(ethylene glycol) (OEG) moieties in their alkyl spacers, were characterized using X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, ellipsometry, and contact angle goniometry. For all adsorbates, the resulting monolayers revealed that a higher packing density and more homogeneous surface were generated when the film was formed in EtOH, but a higher percentage of bound thiolate was obtained in THF. A series of gold nanoparticles (AuNPs) capped with each adsorbate were prepared to explore how adsorbate structure influences aqueous colloidal stability under extreme conditions, as examined visually and spectroscopically. The AuNPs coated with adsorbates that include OEG moieties exhibited enhanced stability under high salt concentration, and AuNPs capped with dithioacetate adsorbates exhibited improved stability against ligand exchange in competition with dithiothreitol (DTT). Overall, the best results were obtained with a chelating dithioacetate adsorbate that included OEG moieties in its alkyl spacer, imparting improved stability via enhanced solubility in water and superior adsorbate attachment owing to the chelate effect. PMID:27385466

  19. Electrodeposition of gold nanoparticles on aryl diazonium monolayer functionalized HOPG surfaces.

    PubMed

    González, M C R; Orive, A G; Salvarezza, R C; Creus, A H

    2016-01-21

    Gold nanoparticle electrodeposition on a modified HOPG surface with a monolayer organic film based on aryl diazonium chemistry has been studied. This organic monolayer is electrochemically grown with the use of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a radical scavenger. The electrodeposition of gold on this modified surface is highly favored resulting in an AuNP surface density comparable to that found on glassy carbon. AuNPs grow only in the areas covered by the organic monolayer leaving free clean HOPG zones. A progressive mechanism for the nucleation and growth is followed giving hemispherical AuNPs, homogeneously distributed on the surface and their sizes can be well controlled by the applied electrodeposition potential. By using AFM, C-AFM and electrochemical measurements with the aid of two redox probes, namely Fe(CN)6(4-)/Fe(CN)6(3-) and dopamine, relevant results about the electrochemical modified surface as well as the gold nanoparticles electrodeposited on them are obtained.

  20. Modified enzyme-linked immunosorbent assay strategy using graphene oxide sheets and gold nanoparticles functionalized with different antibody types.

    PubMed

    Lin, Hongjun; Liu, Yingfu; Huo, Jingrui; Zhang, Aihong; Pan, Yiting; Bai, Haihong; Jiao, Zhang; Fang, Tian; Wang, Xin; Cai, Yun; Wang, Qingming; Zhang, Yangjun; Qian, Xiaohong

    2013-07-01

    Gold nanoparticles (GNPs) and graphene oxide (GO) sheets are excellent nano carriers in many analytical methods. In this study, a modified enzyme-linked immunosorbent assay (ELISA) strategy was developed using antibody-functionalized GO sheets and GNPs. This modification significantly reduced the limit of detection (LOD) and cost greatly of this assay. The applicability of the method was demonstrated by detecting HSP70 in a human serum sample. This result suggests that the 3G-ELISA method is feasible to detect an antigen in a complex mixture, and the LOD is up to 64-fold and the cost is as low as one-tenth of the conventional ELISA method.

  1. Affibody-functionalized gold-silica nanoparticles for Raman molecular imaging of the epidermal growth factor receptor.

    PubMed

    Jokerst, Jesse V; Miao, Zheng; Zavaleta, Cristina; Cheng, Zhen; Gambhir, Sanjiv S

    2011-03-01

    The affibody functionalization of fluorescent surface-enhanced Raman scattering gold-silica nanoparticles as multimodal contrast agents for molecular imaging specific to epidermal growth factor receptor (EGFR) is reported. This nanoparticle bioconjugate reports EGFR-positive A431 tumors with a signal nearly 35-fold higher than EGFR-negative MDA-435S tumors. The low-level EGFR expression in adjacent healthy tissue is 7-fold lower than in the positive tumors. Validation via competitive inhibition reduces the signal by a factor of six, and independent measurement of EGFR via flow cytometry correlates at R(2) = 0.92. PMID:21302357

  2. A one-pot gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxidation of oxalic acid

    NASA Astrophysics Data System (ADS)

    Bai, Juan; Fang, Chun-Long; Liu, Zong-Huai; Chen, Yu

    2016-01-01

    Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than did commercial Pt black.Three-dimensional (3D) noble metal nanoassemblies composed of one-dimensional (1D) nanowires have been attracting much interest due to the unique physical and chemical properties of 1D nanowires as well as the particular interconnected open-pore structure of 3D nanoassemblies. In this work, well-defined Au/Pt wire nanoassemblies were synthesized by using a facile NaBH4 reduction method in the presence of a branched form of polyethyleneimine (PEI). A study of the growth mechanism indicated the morphology of the final product to be highly related to the molecular structure of the polymeric amine. Also, the preferred Pt-on-Pt deposition contributed to the formation of the 1D Pt nanowires. The Au/Pt wire nanoassemblies were functionalized with PEI at the same time that these nanoassemblies were synthesized due to the strong N-Pt bond. The chemically functionalized Au/Pt wire nanoassemblies exhibited better electrocatalytic activity for the electro-oxidation of oxalic acid than

  3. Functionalized gold nanorod-based labels for amplified electrochemical immunoassay of E. coli as indicator bacteria relevant to the quality of dairy product.

    PubMed

    Zhang, Xinai; Zhang, Fan; Zhang, Hongyin; Shen, Jianzhong; Han, En; Dong, Xiaoya

    2015-01-01

    In this paper, we report an amplified electrochemical immunoassay for Escherichia coli as indicator bacteria relevant to the quality of dairy product using the functionalized gold nanorod-based labels ({dAb-AuNR-FCA}). The {dAb-AuNR-FCA} labels were designed by exploiting silica-functionalized gold nanorods (AuNR@SiO2) as the carriers for immobilization of detection antibody (dAb) and ferrocenecarboxylic acid (FCA), in which dAb was used for recognition of E. coli and FCA tags served as signal-generating molecule. Greatly amplified signal was achieved in the sandwich-type immunoassay when enormous FCA linked to AuNR@SiO2. Compared with the commercially available {dAb-FCA}, the {dAb-AuNR-FCA} labels exhibited a better performance for E. coli assay due to the advantages of AuNR@SiO2 as carriers. Under optimal experimental conditions, it showed a linear relationship between the peak current of FCA and the logarithmic value of E. coli concentration ranging from 1.0×10(2) to 5.0×10(4) cfu mL(-1) with a detection limit of 60 cfu mL(-1) (S/N=3), and the electrochemical detection of E. coli could be achieved in 3h. Moreover, the proposed strategy was used to determine E. coli in dairy product (pure fresh milk, yogurt in shelf-life, and expired yogurt), and the recoveries of standard additions were in the range of 95.1-106%. This proposed strategy exhibited rapid response, high sensitivity and specificity for E. coli assay in dairy product, and could become a promising technique to estimate the quality of dairy product.

  4. Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum.

    PubMed

    Wang, Zhan; Wei, Fang; Liu, Sheng-Yi; Xu, Qiao; Huang, Jun-Yan; Dong, Xu-Yan; Yu, Jiu-Hong; Yang, Qin; Zhao, Yuan-Di; Chen, Hong

    2010-01-15

    Salicylic acid (SA) is a biological substance that acts as a phytohormone and plays an important role in signal transduction in plants. It is important to accurately and sensitively detect SA levels. A gold electrode modified with copper nanoparticles was used to assay the electrocatalytic oxidation of salicylic acid. It was found that the electrochemical behavior of salicylic acid was greatly improved at copper nanoparticles, indicating that anodic oxidation could be catalyzed at copper nanoparticles. And the pH had remarkable effect on the electrochemical process, a very well-defined oxidation peak appeared at pH 13.3 (0.2M NaOH). The kinetics parameters of this process were calculated and the heterogeneous electron transfer rate constant (k) was determined to be 1.34x10(-3)cms(-1), and (1-alpha)n(alpha) was 1.22. The gold electrode modified with copper nanoparticles could detect SA at a higher sensitivity than common electrodes. The electrode was used to detect the SA levels in oilseed rape infected with the fungal pathogen Sclerotinia sclerotiorum. The results showed that the SA concentration reached a maximum during the 10th-25th hours after infection. This result was very similar to that determined by HPLC, indicating that the gold electrodes modified with copper nanoparticles could be used as salicylic acid sensors.

  5. Vancomycin-Functionalized Gold and Silver Nanoparticles as an Antibacterial Nanoplatform Against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Hur, Ye Eun; Park, Youmie

    2016-06-01

    The functionalization of metallic nanoparticles using antibiotics is a promising nanoplatform to combat bacterial resistance. In the current report, vancomycin was used to functionalize gold nanoparticles (Van-AuNPs) and silver nanoparticles (Van-AgNPs) through a one-step, one-pot process. The process is facile and employs a green synthetic route. Vancomycin was used as a reducing agent to generate Van-AuNPs and Van-AgNPs from gold and silver ions, respectively. Surface plasmon resonance was observed at 520 nm for Van-AuNPs and at 405 nm for Van-AgNPs. Both Van-AuNPs and Van-AgNPs were spherically shaped, with average diameters of 11.01 ± 3.62 nm and 12.08 ± 2.13 nm, respectively. Strong diffraction peaks in the X-ray diffraction profiles of both nanoparticles confirmed their face-centered cubic structures. The Van-AgNPs presented higher in vitro antibacterial activity (2.4-4.8-fold increase) than Van-AuNPs against methicillin-resistant Staphylococcus aureus (MRSA). These results suggest that AgNPs provide a more effective anti-MRA nanoplatform than AuNPs for vancomvcin functionalization.

  6. Vancomycin-Functionalized Gold and Silver Nanoparticles as an Antibacterial Nanoplatform Against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Hur, Ye Eun; Park, Youmie

    2016-06-01

    The functionalization of metallic nanoparticles using antibiotics is a promising nanoplatform to combat bacterial resistance. In the current report, vancomycin was used to functionalize gold nanoparticles (Van-AuNPs) and silver nanoparticles (Van-AgNPs) through a one-step, one-pot process. The process is facile and employs a green synthetic route. Vancomycin was used as a reducing agent to generate Van-AuNPs and Van-AgNPs from gold and silver ions, respectively. Surface plasmon resonance was observed at 520 nm for Van-AuNPs and at 405 nm for Van-AgNPs. Both Van-AuNPs and Van-AgNPs were spherically shaped, with average diameters of 11.01 ± 3.62 nm and 12.08 ± 2.13 nm, respectively. Strong diffraction peaks in the X-ray diffraction profiles of both nanoparticles confirmed their face-centered cubic structures. The Van-AgNPs presented higher in vitro antibacterial activity (2.4-4.8-fold increase) than Van-AuNPs against methicillin-resistant Staphylococcus aureus (MRSA). These results suggest that AgNPs provide a more effective anti-MRA nanoplatform than AuNPs for vancomvcin functionalization. PMID:27427725

  7. Targeting Cell Membrane Lipid Rafts by Stoichiometric Functionalization of Gold Nanoparticles With a Sphingolipid-Binding Domain Peptide.

    PubMed

    Paramelle, David; Nieves, Daniel; Brun, Benjamin; Kraut, Rachel S; Fernig, David G

    2015-04-22

    A non-membrane protein-based nanoparticle agent for the tracking of lipid rafts on live cells is produced by stoichiometric functionalization of gold nanoparticles with a previously characterized sphingolipid- and cell membrane microdomain-binding domain peptide (SBD). The SBD peptide is inserted in a self-assembled monolayer of peptidol and alkane thiol ethylene glycol, on gold nanoparticles surface. The stoichiometric functionalization of nanoparticles with the SBD peptide, essential for single molecule tracking, is achieved by means of non-affinity nanoparticle purification. The SBD-nanoparticles have remarkable long-term resistance to electrolyte-induced aggregation and ligand-exchange and have no detectable non-specific binding to live cells. Binding and diffusion of SBD-nanoparticles bound to the membrane of live cells is measured by real-time photothermal microscopy and shows the dynamics of sphingolipid-enriched microdomains on cells membrane, with evidence for clustering, splitting, and diffusion over time of the SBD-nanoparticle labeled membrane domains. The monofunctionalized SBD-nanoparticle is a promising targeting agent for the tracking of lipid rafts independently of their protein composition and the labelling requires no prior modification of the cells. This approach has potential for further functionalization of the particles to manipulate the organization of, or targeting to microdomains that control signaling events and thereby lead to novel diagnostics and therapeutics.

  8. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Afraz, Ahmadreza; Rafati, Amir Abbas; Najafi, Mojgan

    2014-11-01

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.

  9. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  10. Detection of the nanomolar level of total Cr[(iii) and (vi)] by functionalized gold nanoparticles and a smartphone with the assistance of theoretical calculation models

    NASA Astrophysics Data System (ADS)

    Chen, Wenwen; Cao, Fengjing; Zheng, Wenshu; Tian, Yue; Xianyu, Yunlei; Xu, Peng; Zhang, Wei; Wang, Zhuo; Deng, Ke; Jiang, Xingyu

    2015-01-01

    We report a method for rapid, effective detection of both Cr(iii) and Cr(vi) (in the form of Cr3+ and Cr2O72-, the main species of chromium in the natural environment) by making use of meso-2,3-dimercaptosuccinic acid (DMSA)-functionalized gold nanoparticles (Au NPs). The limit of detection (LOD) is 10 nM with the naked eye and the assay can be applied in detecting chromium in polluted soil from Yun-Nan Province in Southwest China. We use density functional theory to calculate the change of the Gibbs free energy (ΔG) of the interactions between the DMSA-Au NP system and various metal ions, which shows that DMSA-Au NPs have high specificity for both Cr3+ and Cr2O72-.We report a method for rapid, effective detection of both Cr(iii) and Cr(vi) (in the form of Cr3+ and Cr2O72-, the main species of chromium in the natural environment) by making use of meso-2,3-dimercaptosuccinic acid (DMSA)-functionalized gold nanoparticles (Au NPs). The limit of detection (LOD) is 10 nM with the naked eye and the assay can be applied in detecting chromium in polluted soil from Yun-Nan Province in Southwest China. We use density functional theory to calculate the change of the Gibbs free energy (ΔG) of the interactions between the DMSA-Au NP system and various metal ions, which shows that DMSA-Au NPs have high specificity for both Cr3+ and Cr2O72-. Electronic supplementary information (ESI) available: ΔG of the interactions between the DMSA-AuNPs and various metal ions, models of the metal ions (Mn+) and six water molecules, DLS results for DMSA-Au NPs before and after adding Cr3+, Cr2O72-, Cr3+ and Cr2O72- mixtures, comparison of the performance of different sensors. See DOI: 10.1039/c4nr06726f

  11. Isolable gold(I) complexes having one low-coordinating ligand as catalysts for the selective hydration of substituted alkynes at room temperature without acidic promoters.

    PubMed

    Leyva, Antonio; Corma, Avelino

    2009-03-01

    Hydration of a wide range of alkynes to the corresponding ketones has been afforded in high yields at room temperature by using gold(I)-phosphine complexes as catalyst, with no acidic cocatalysts required. Suitable substrates covering alkyl and aryl terminal alkynes, enynes, internal alkynes, and propargylic alcohols, including enantiopure forms, are cleanly transformed to the corresponding ketones in nearly quantitative yields. Acid-labile groups present in the substrates are preserved. The catalytic activity strongly depends on both the nature of the phosphine coordinated to the gold (I) center and the softness of the counteranion, the complex AuSPhosNTf(2) showing the better activity. A plausible mechanism for the hydration of alkynes through ketal intermediates is proposed on the basis of kinetic studies. The described catalytic system should provide an efficient alternative to mercury-based methodologies and be useful in synthetic programs.

  12. Amino Acid-Dependent Attenuation of Toll-like Receptor Signaling by Peptide-Gold Nanoparticle Hybrids.

    PubMed

    Yang, Hong; Fung, Shan-Yu; Xu, Shuyun; Sutherland, Darren P; Kollmann, Tobias R; Liu, Mingyao; Turvey, Stuart E

    2015-07-28

    Manipulation of immune responsiveness using nanodevices provides a potential approach to treat human diseases. Toll-like receptor (TLR) signaling plays a central role in the pathophysiology of many acute and chronic human inflammatory diseases, and pharmacological regulation of TLR responses is anticipated to be beneficial in many of these inflammatory conditions. Here we describe the discovery of a unique class of peptide-gold nanoparticle hybrids that exhibit a broad inhibitory activity on TLR signaling, inhibiting signaling through TLRs 2, 3, 4, and 5. As exemplified using TLR4, the nanoparticles were found to inhibit both arms of TLR4 signaling cascade triggered by the prototypical ligand, lipopolysaccharide (LPS). Through structure-activity relationship studies, we identified the key chemical components of the hybrids that contribute to their immunomodulatory activity. Specifically, the hydrophobicity and aromatic ring structure of the amino acids on the peptides were essential for modulating TLR4 responses. This work enhances our fundamental understanding of the role of nanoparticle surface chemistry in regulating innate immune signaling, and identifies specific nanoparticle hybrids that may represent a unique class of anti-inflammatory therapeutics for human inflammatory diseases.

  13. Signal amplification architecture for electrochemical aptasensor based on network-like thiocyanuric acid/gold nanoparticle/ssDNA.

    PubMed

    Chen, Zhengbo; Li, Lidong; Tian, Yu; Mu, Xiaojiao; Guo, Lin

    2012-01-01

    In this work, we described signal amplification architecture for electronic aptamer-based sensor (E-AB), which is applicable to a wide range of aptamers. Herein, we only take lysozyme as the representative sensing target. The amplification method was based on the network of thiocyanuric acid (TCA)/gold nanoparticles (AuNPs) modified with ssDNA. The binding event can be detected by a decrease in the integrated charge of the surface-bound [Ru(NH(3))(6)](3+) which electrostatically absorbed onto the negatively charged phosphate backbones of DNA. In the presence of target molecules, a large amount of TCA/AuNP/ssDNA network associated with [Ru(NH(3))(6)](3+) would be removed from the electrode surface, leading to a significant decrease of redox current. Cyclic voltammetry (CV) signals of [Ru(NH(3))(6)](3+) provides quantitative measures of the concentrations of lysozyme, with a linear calibration ranging from 5 pM to 1 nM and a detection limit is 0.1 pM. The detection limit of the proposed sensor is one order of magnitude and three orders of magnitude more sensitive than the detection limits in the absence of TCA (5 pM) and in the absence of TCA/AuNP/ssDNA network (0.5 nM). This amplification method is promising for broad potential application in clinic assay and various protein analysis.

  14. Oxidation and sensing of ascorbic acid and dopamine on self-assembled gold nanoparticles incorporated within polyaniline film

    NASA Astrophysics Data System (ADS)

    Chu, Wenya; Zhou, Qun; Li, Shuangshuang; Zhao, Wei; Li, Na; Zheng, Junwei

    2015-10-01

    Electrochemical biosensors based on conducting polymers incorporated with metallic nanoparticles can greatly enhance sensitivity and selectivity. Herein, we report a facile fabrication approach for polyaniline (PAN) incorporated with a gold nanoparticle (AuNP) composite electrode by electrodeposition of PAN on a self-assembled AuNP layer on the surface of an indium tin oxide electrode. The resulting AuNP/PAN composite electrode exhibits a remarkable synergistic effect on the electrocatalytic oxidation of ascorbic acid (AA) and dopamine (DA). It is demonstrated that the oxidation reaction of AA mainly occurs at AuNPs inside the PAN film as the ascorbate anions are doped into the polymer during the oxidation of the PAN film. Conversely, the oxidation of positively charged DA may only take place at the PAN/solution interface. The different mechanisms of the electrode reactions result in the oxidation of AA and DA occurring at different potentials. As a result, the AuNP/PAN composite electrode can be employed to simultaneously detect AA and DA with a good linear range, high sensitivity, and low detection limit.

  15. 4-Mercaptophenylboronic acid functionalized graphene oxide composites: Preparation, characterization and selective enrichment of glycopeptides.

    PubMed

    Jiang, Bo; Qu, Yanyan; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2016-03-17

    Selective enrichment and isolation of glycopeptides from complex biological samples was indispensable for mass spectrometry (MS)-based glycoproteomics, however, it remained a great challenge due to the low abundance of glycoproteins and the ion suppression of non-glycopeptides. In this work, 4-mercaptophenylboronic acid functionalized graphene oxide composites were synthesized via loading gold nanoparticles on polyethylenimine modified graphene oxide surface, followed by 4-mercaptophenylboronic acid immobilization by the formation of Au-S bonding (denoted as GO/PEI/Au/4-MPB composites). The composites showed highly specific and efficient capture of glycopeptides due to their excellent hydrophilicity and abundant boronic acid groups. The composites could selectively capture the glycopeptides from the mixture of glycopeptides and nonglycopeptides, even when the amounts of non-glycopeptides were 100 times more than glycopeptides. Compared with commercial meta-amino phenylboronic acid agarose, the composites showed better selectivity when the sample was decreased to 10 ng. These results clearly verified that the GO/PEI/Au/4-MPB composites might be a promising material for glycoproteomics analysis.

  16. Formation of substrate-based gold nanocage chains through dealloying with nitric acid

    PubMed Central

    Yan, Ziren; Wu, Ying

    2015-01-01

    Summary Metal nanocages have raised great interest because of their new properties and wide applications. Here, we report on the use of galvanic replacement reactions to synthesize substrate-supported Ag–Au nanocages from silver templates electrodeposited on transparent indium tin oxide (ITO) film coated glass. The residual Ag in the composition was dealloyed with 10% nitric acid. It was found that chains of Au nanocages were formed on the substrate surface during dealloying. When the concentration of HNO3 increased to 20%, the structures of nanocages were damaged and formed crescent or semi-circular shapes. The transfer process on the substrate surface was discussed. PMID:26199839

  17. Preparation of ferrocene-functionalized gold nanoparticles by primer extension reaction on the particle surface.

    PubMed

    Takada, Tadao; Tochi, Takaaki; Nakamura, Mitsunobu; Yamana, Kazushige

    2014-06-15

    DNA molecules possessing multiple ferrocene (Fc) molecules as a redox active probe were prepared by the primer extension (PEX) reaction using a 2'-deoxyuridine-5'-triphosphate derivative in which Fc was connected to the C5-position of the uridine by a diethylene glycol linker. Gold nanoparticles (AuNP) covered with DNA possessing the Fc molecules were prepared by the PEX reaction on the surface. The AuNP-FcDNA conjugates exhibit a detectable electrochemical signal due to the Fc molecules. Possible application of the PEX reaction on AuNP is demonstrated for the detection of a single nucleotide mutation in the target DNA.

  18. Nucleic acid functionalized graphene for biosensing.

    PubMed

    Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin

    2012-02-01

    There is immense demand for complex nanoarchitectures based on graphene nanostructures in the fields of biosensing or nanoelectronics. DNA molecules represent the most versatile and programmable recognition element and can provide a unique massive parallel assembly strategy with graphene nanomaterials. Here we demonstrate a facile strategy for covalent linking of single stranded DNA (ssDNA) to graphene using carbodiimide chemistry and apply it to genosensing. Since graphenes can be prepared by different methods and can contain various oxygen containing groups, we thoroughly investigated the utility of four different chemically modified graphenes for functionalization by ssDNA. The materials were characterized in detail and the different DNA functionalized graphene platforms were then employed for the detection of DNA hybridization and DNA polymorphism by using impedimetric methods. We believe that our findings are very important for the development of novel devices that can be used as alternatives to classical techniques for sensitive and fast DNA analysis. In addition, covalent functionalization of graphene with ssDNA is expected to have broad implications, from biosensing to nanoelectronics and directed, DNA programmable, self-assembly.

  19. Synthesis of sub-nanometer gold particles on modified silica.

    PubMed

    Beloqui Redondo, A; Ranocchiari, M; van Bokhoven, J A

    2016-02-21

    The deposition of gold on silica tends to give large particles when using conventional techniques. We report the preparation of 0.8 ± 0.2 nm particles on a modified SBA-15 support. The method involves the functionalization of silica with amine groups and deposition of gold at basic pH. These catalysts are highly active and selective in the dehydrogenation of formic acid. PMID:26754911

  20. Stability and Biodistribution of Thiol-Functionalized and (177)Lu-Labeled Metal Chelating Polymers Bound to Gold Nanoparticles.

    PubMed

    Yook, Simmyung; Lu, Yijie; Jeong, Jenny Jooyoung; Cai, Zhongli; Tong, Lemuel; Alwarda, Ramina; Pignol, Jean-Philippe; Winnik, Mitchell A; Reilly, Raymond M

    2016-04-11

    We are studying a novel radiation nanomedicine approach to treatment of breast cancer using 30 nm gold nanoparticles (AuNP) modified with polyethylene glycol (PEG) metal-chelating polymers (MCP) that incorporate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelators for complexing the β-particle emitter, (177)Lu. Our objective was to compare the stability of AuNP conjugated to MCP via a single thiol [DOTA-PEG-ortho-pyridyl disulfide (OPSS)], a dithiol [DOTA-PEG-lipoic acid (LA)] or multithiol end-group [PEG-pGlu(DOTA)8-LA4] and determine the elimination and biodistribution of these (177)Lu-labeled MCP-AuNP in mice. Stability to aggregation in the presence of thiol-containing dithiothreitol (DTT), L-cysteine or glutathione was assessed and dissociation of (177)Lu-MCP from AuNP in human plasma measured. Elimination of radioactivity from the body of athymic mice and excretion into the urine and feces was measured up to 168 h post-intravenous (i.v.) injection of (177)Lu-MCP-AuNP and normal tissue uptake was determined. ICP-AES was used to quantify Au in the liver and spleen and these were compared to (177)Lu. Our results showed that PEG-pGlu(DOTA)8-LA4-AuNP were more stable to aggregation in vitro than DOTA-PEG-LA-AuNP and both forms of AuNP were more stable to thiol challenge than DOTA-PEG-OPSS-AuNP. PEG-pGlu((177)Lu-DOTA)8-LA4 was the most stable in plasma. Whole body elimination of (177)Lu was most rapid for mice injected with (177)Lu-DOTA-PEG-OPSS-AuNP. Urinary excretion accounted for >90% of eliminated (177)Lu. All (177)Lu-MCP-AuNP accumulated in the liver and spleen. Liver uptake was lowest for PEG-pGlu((177)Lu-DOTA)8-LA4-AuNP but these AuNP exhibited the greatest spleen uptake. There were differences in Au and (177)Lu in the liver for PEG-pGlu((177)Lu-DOTA)8-LA4-AuNP. These differences were not correlated with in vitro stability of the (177)Lu-MCP-AuNP. We conclude that conjugation of AuNP with PEG-pGlu((177)Lu-DOTA)8-LA4 via a multithiol

  1. Fatty acids as modulators of neutrophil recruitment, function and survival.

    PubMed

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed.

  2. An Alternative Reaction Course in O-Glycosidation with O-Glycosyl Trichloroacetimidates as Glycosyl Donors and Lewis Acidic Metal Salts as Catalyst: Acid-Base Catalysis with Gold Chloride-Glycosyl Acceptor Adducts.

    PubMed

    Peng, Peng; Schmidt, Richard R

    2015-10-01

    Gold(III) chloride as catalyst for O-glycosyl trichloroacetimidate activation revealed low affinity to the glycosyl donor but high affinity to the hydroxy group of the acceptor alcohol moiety, thus leading to catalyst-acceptor adduct formation. Charge separation in this adduct, increasing the proton acidity and the oxygen nucleophilicity, permits donor activation and concomitant acceptor transfer in a hydrogen-bond mediated S(N)2-type transition state. Hence, the sequential binding between acceptor and catalyst and then with the glycosyl donor enables self-organization of an ordered transition-state. This way, with various acceptors, even at temperatures below -60 °C, fast and high yielding glycosidations in high anomeric selectivities were recorded, showing the power of this gold(III) chloride acid-base catalysis. Alternative reaction courses via hydrogen chloride or HAuCl4 activation or intermediate generation of glycosyl chloride as the real donor could be excluded. With partially O-protected acceptors, prone to bidentate ligation to gold(III) chloride, particularly high reactivities and anomeric selectivities were observed. Gold(I) chloride follows the same catalyst-acceptor adduct driven acid-base catalysis reaction course.

  3. Cytotoxicity, intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells.

    PubMed

    Tlotleng, Nonhlanhla; Vetten, Melissa A; Keter, Frankline K; Skepu, Amanda; Tshikhudo, Robert; Gulumian, Mary

    2016-08-01

    Surface-modified gold nanoparticles (AuNPs) are nanomaterials that hold promise in drug delivery applications. In this study, the cytotoxicity, uptake, intracellular localization, and the exocytosis of citrate-stabilized (Cit-AuNP) and polyethylene glycol (PEG)-modified gold nanoparticles with the carboxyl (COOH) terminal functional group were assessed in human embryonic kidney (HEK 293) and the human caucasian hepatocytes carcinoma (Hep G2) cell systems, representing two major accumulation sites for AuNPs. The zeta (ζ)-potential measurements confirmed the negative surface charge of the AuNPs in water and in cell growth medium. The transmission electron microscopy confirmed the size and morphology of the AuNPs. Both types of AuNPs were shown to induce cytotoxic effects in cells. The Hep G2 cells were more sensitive cell type, with the COOH-PEG-AuNPs inducing the highest toxicity at higher concentrations. Dark field microscopy and TEM images revealed that the AuNPs were internalized in cells, mostly as agglomerates. TEM micrographs further revealed that the AuNPs were confined as agglomerates inside vesicle-like compartments, likely to be endosomal and lysosomal structures as well as in the cytosol, mostly as individual particles. The AuNPs were shown to remain in cellular compartments for up to 3 weeks, but thereafter, clearance of the gold nanoparticles from the cells by exocytosis was evident. The results presented in this study may therefore give an indication on the fate of AuNPs on long-term exposure to cells and may also assist in safety evaluation of AuNPs. PMID:27184667

  4. Biocatalytic Formation of Gold Nanoparticles Decorated with Functional Proteins inside Recombinant Escherichia coli Cells.

    PubMed

    Hosomomi, Yukiho; Niide, Teppei; Wakabayashi, Rie; Goto, Masahiro; Kamiya, Noriho

    2016-01-01

    A novel strategy for the preparation of protein-decorated gold nanoparticles (Au NPs) was developed inside Escherichia coli cells, where an artificial oxidoreductase, composed of antibody-binding protein (pG), Bacillus stearothermophilus glycerol dehydrogenase (BsGLD) and a peptide tag with gold-binding affinity (H6C), was overexpressed in the cytoplasm. In situ formation of Au NPs was promoted by a natural electron-donating cofactor, nicotinamide adenine dinucleotide (NAD), which was regenerated to the reduced form of NADH by the catalytic activity of the fusion protein (pG-BsGLD-H6C) overexpressed in the cytoplasm of E. coli, with the concomitant addition of exogenous glycerol to the reaction system. The fusion protein was self-immobilized on Au NPs inside the E. coli cells, which was confirmed by SDS-PAGE and western blotting analyses of the resultant Au NPs. Finally, the IgG binding ability of the pG moiety displayed on Au NPs was evaluated by an enzyme-linked immunosorbent assay. PMID:26960608

  5. Ochratoxin A Detection on Antibody- Immobilized on BSA-Functionalized Gold Electrodes

    PubMed Central

    2016-01-01

    Ochratoxin A (OTA)—a toxin produced by Aspergillus carbonarius, Aspergillus ochraceus, and Penicillium verrucosum—is one of the most-abundant food-contaminating mycotoxins. To avoid the risk of OTA consumption for humans and animals, the rapid detection and quantitation of OTA level in different commodities are of great importance. In this work, an impedimetric immunosensor for ochratoxin A (OTA) detection, a common toxic botanical contaminant, was developed via the immobilization of anti-OTA antibody on bovine serum albumin modified gold electrodes. A four-step reaction protocol was tested to modify the gold electrode and obtain the sensing substrate. All the steps of the immunosensor elaboration and also the immunochemical reaction between surface-bound antibody and ochratoxin A were analyzed using cyclic voltammetry and electrochemical impedance spectroscopy. Modification of the impedance due to the specific antigen-antibody reaction at immunosensor surface, was used in order to detect ochratoxin A. Linear proportionality of the charge transfer resistance to the concentration of OTA allows ochratoxin A detection in the range of 2.5–100 ng/mL. PMID:27467684

  6. Ochratoxin A Detection on Antibody- Immobilized on BSA-Functionalized Gold Electrodes.

    PubMed

    Badea, Mihaela; Floroian, Laura; Restani, Patrizia; Cobzac, Simona Codruta Aurora; Moga, Marius

    2016-01-01

    Ochratoxin A (OTA)-a toxin produced by Aspergillus carbonarius, Aspergillus ochraceus, and Penicillium verrucosum-is one of the most-abundant food-contaminating mycotoxins. To avoid the risk of OTA consumption for humans and animals, the rapid detection and quantitation of OTA level in different commodities are of great importance. In this work, an impedimetric immunosensor for ochratoxin A (OTA) detection, a common toxic botanical contaminant, was developed via the immobilization of anti-OTA antibody on bovine serum albumin modified gold electrodes. A four-step reaction protocol was tested to modify the gold electrode and obtain the sensing substrate. All the steps of the immunosensor elaboration and also the immunochemical reaction between surface-bound antibody and ochratoxin A were analyzed using cyclic voltammetry and electrochemical impedance spectroscopy. Modification of the impedance due to the specific antigen-antibody reaction at immunosensor surface, was used in order to detect ochratoxin A. Linear proportionality of the charge transfer resistance to the concentration of OTA allows ochratoxin A detection in the range of 2.5-100 ng/mL. PMID:27467684

  7. In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics

    PubMed Central

    2007-01-01

    Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains,Escherichia coli DH5α,Micrococcus luteusandStaphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications.

  8. Rapid and selective lead (II) colorimetric sensor based on azacrown ether-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Alizadeh, A.; Khodaei, M. M.; Karami, Ch; Workentin, M. S.; Shamsipur, M.; Sadeghi, M.

    2010-08-01

    A gold nanoparticle (AuNPs)-based simple and fast colorimetric sensor for selective detecting of Pb(II) in aqueous solution has been developed. Monodisperse AuNPs (approx. 2.0 nm diameter) has been prepared facilely and further modified with an alkanethiol-bearing monoazacrown ether terminus. These AuNPs are shown to selectively sense Pb2 + through color change, which is visually discernible by an appearance of the surface plasmon band (SPB) at 520 nm. The recognition mechanism is attributed to the unique structure of the monoazacrown ether attached to AuNPs and metal sandwich coordination between two azacrown ether moieties that are attached to separate nanoparticles. This inter-particle cross-linking results in an aggregation and apparent color change from brown to purple. Additionally, TEM experiments support the optical absorption data proving the aggregation between azacrown ether-capped gold nanoparticles. This AuNP-based colorimetric assay is a facile and robust method and allows fast detection of Pb2 + at ambient temperatures. More importantly, the developed technique does not utilize enzymatic reactions, light-sensitive dye molecules, lengthy protocols or sophisticated instrumentation.

  9. Density functional theory study of the oligomerization of carboxylic acids.

    PubMed

    Di Tommaso, Devis; Watson, Ken L

    2014-11-20

    We present a density functional theory [M06-2X/6-31+G(d,p)] study of the structures and free energies of formation of oligomers of four carboxylic acids (formic acid, acetic acid, tetrolic acid, and benzoic acid) in water, chloroform, and carbon tetrachloride. Solvation effects were treated using the SMD continuum solvation model. The low-lying energy structures of molecular complexes were located by adopting an efficient search procedure to probe the potential energy surfaces of the oligomers of carboxylic acids (CA)n (n = 2-6). The free energies of the isomers of (CA)n in solution were determined as the sum of the electronic energy, vibrational-rotational-translational gas-phase contribution, and solvation free energy. The assessment of the computational protocol adopted in this study with respect to the dimerization of acetic acid, (AA)2, and formic acid, (FA)2, located new isomers of (AA)2 and (FA)2 and gave dimerization constants in good agreement with the experimental values. The calculation of the self-association of acetic acid, tetrolic acid, and benzoic acid shows the following: (i) Classic carboxylic dimers are the most stable isomer of (CA)2 in both the gas phase and solution. (ii) Trimers of carboxylic acid are stable in apolar aprotic solvents. (iii) Molecular clusters consisting of two interacting classic carboxylic dimers (CA)4,(D+D) are the most stable type of tetramers, but their formation from the self-association of classic carboxylic dimers is highly unfavorable. (iv) For acetic acid and tetrolic acid the reactions (CA)2 + 2CA → (CA)4,(D+D) and (CA)3 + CA → (CA)4,(D+D) are exoergonic, but these aggregation pathways go through unstable clusters that could hinder the formation of tetrameric species. (v) For tetrolic acid the prenucleation species that are more likely to form in solution are dimeric and trimeric structures that have encoded structural motifs resembling the α and β solid forms of tetrolic acid. (vi) Stable tetramers of

  10. Fabrication of nickel and gold nanowires by controlled electrodeposition on deoxyribonucleic acid molecules

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Jin, Helena; Dai, Kun

    2009-01-01

    Magnetic and electrical nanowires are two important materials in the development of futuristic nanoelectronics, data storage media and nanosensors. Ni and Au nanowires with a diameter of a few tens of nanometres have been fabricated using deoxyribonucleic acid (DNA) molecules as a template through nanoparticle-controlled electroless deposition (ELD). Nanowire precursors, 1-3 nm Pt(0)-DNA and 1.4 nm Au(0)-DNA, were assembled using two different methods. Chemical reduction was used to deposit Pt(0) particles on DNA which catalyzed Ni nanowire growth. Positively charged Au nanoparticles were directly assembled on phosphate groups of DNA which were stretched and anchored between micrometre-spaced electrodes. Electrical measurement has shown that Au nanowires, catalyzed by Au(0)-DNA in a subsequent ELD, are highly conductive and show linear I-V characteristics. The major factors for the resistivity of nanowires were discussed in detail. This work involves important aspects in the field of DNA-based self-assembly, such as DNA and surface interaction, DNA nanoparticle assembly and electrical property of fabricated nanowires.

  11. Role of Acid Functionality and Placement on Morphological Evolution and Strengthening of Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert; Schwartz, Eric; Winey, Karen

    Functional polymers with specific interactions produce hierarchical morphologies that directly impact mechanical properties. We recently reported that the formation of acid-rich layered morphologies in precise poly(ethylene-co-acrylic acid) copolymers improves tensile strength. We now explore the generality of this phenomenon through variations in pendant acid chemistries, acid content and precision in placement of acid groups in polyethylene-based copolymers. In situ X-ray scattering measurements during tensile deformation reveal that the precision in acid group placement is critical to forming well-defined layered morphologies. This phenomenon was observed in both semi-crystalline and amorphous precise acid copolymers with varied acid chemistries (acrylic, geminal acrylic and phosphonic acids). Compositionally identical polymers but with pseudo random acid placement do not form layered morphologies. Acid chemistry and acid content influence morphological evolution predominately though modification of the copolymer Tg and crystallinity. Our results indicate that hierarchical layered structures, commensurate with improved mechanical properties, form in the presence of uniformity in chemical structure and sufficient chain mobility to strongly align during deformation.

  12. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure.

    PubMed

    Wang, Nan; Lin, Meng; Dai, Hongxiu; Ma, Houyi

    2016-05-15

    A sensitive, selective and reusable electrochemical biosensor for the determination of mercury ions (Hg(2+)) has been developed based on thymine (T) modified gold nanoparticles/reduced graphene oxide (AuNPs/rGO) nanocomposites. Graphene oxide (GO) was electrochemically reduced on a glassy carbon substrate. Subsequently, AuNPs were deposited onto the surface of rGO by cyclic voltammetry. For functionalization of the electrode, the carboxylic group of the thymine-1-acetic acid was covalently coupled with the amine group of the cysteamine which self-assembled onto AuNPs. The structural features of the T bases functionalized AuNPs/rGO electrode were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy and scanning electron microscopy (SEM) spectroscopy. Each step of the modification process was characterized by cyclic voltammetry (CV) and electrochemical impedence spectroscopy (EIS). The T bases modified AuNPs/rGO electrode was applied to detect various trace metal ions by differential pulse voltammetry (DPV). The proposed biosensor was found to be highly sensitive to Hg(2+) in the range of 10 ng/L-1.0 µg/L. The biosensor afforded excellent selectivity for Hg(2+) against other heavy metal ions such as Zn(2+), Cd(2+), Pb(2+), Cu(2+), Ni(2+), and Co(2+). Furthermore, the developed sensor exhibited a high reusability through a simple washing. In addition, the prepared biosensor was successfully applied to assay Hg(2+) in real environmental samples.

  13. Non-linear optical response by functionalized gold nanospheres: identifying design principles to maximize the molecular photo-release.

    PubMed

    Bergamini, Luca; Voliani, Valerio; Cappello, Valentina; Nifosì, Riccardo; Corni, Stefano

    2015-08-28

    In a recent study by Voliani et al. [Small, 2011, 7, 3271], the electromagnetic field enhancement in the vicinity of the gold nanoparticle surface has been exploited to achieve photocontrolled release of a molecular cargo conjugated to the nanoparticles via 1,2,3-triazole, a photocleavable moiety. The aim of the present study is to investigate the mechanism of the photorelease by characterizing the nanoparticle aggregation status within the cells and simulating the electric field enhancement in a range of experimentally realistic geometries, such as single Au nanoparticles, dimers, trimers and random aggregates. Two plasmon-enhanced processes are examined for triazole photocleavage, i.e. three-photon excitation and third-harmonic-generation (one-photon) excitation. Taking into account the absorption cross sections of the triazole, we conclude that the latter mechanism is more efficient, and provides a photocleavage rate that explains the experimental findings. Moreover, we determine which aggregate geometries are required to maximize the field enhancement, and the dependence of such enhancement on the excitation wavelength. Our results provide design principles for maximizing the multiphoton molecular photorelease by such functionalized gold nanoparticles.

  14. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles.

    PubMed

    Sutariya, Pinkesh G; Pandya, Alok; Lodha, Anand; Menon, Shobhana K

    2016-01-15

    A new, simple, ultra-sensitive and selective approach has been reported for the "on spot" colorimetric detection of creatinine based on calix[4]arene functionalized gold nanoparticles (AuNPs) with excellent discrimination in the presence of other biomolecules. The lower detection limit of the method is 2.16nM. The gold nanoparticles and p-tert-butylcalix[4]arene were synthesized by microwave assisted method. Specifically, in our study, we used dynamic light scattering (DLS) which is a powerful method for the determination of small changes in particle size, improved selectivity and sensitivity of the creatinine detection system over colorimetric method. The nanoassembly is characterized by Transmission electron microscopy (TEM), DLS, UV-vis and ESI-MS spectroscopy, which demonstrates the binding affinity due its ability of hydrogen bonding and electrostatic interaction between -NH group of creatinine and pSDSC4. It exhibits fast response time (<60s) to creatinine and has long shelf-life (>5 weeks). The developed pSDSC4-AuNPs based creatinine biosensor will be established as simple, reliable and accurate tool for the determination of creatinine in human urine samples.

  15. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: an experimental and density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj K.; Jagannathan, Ramya; Khandelwal, Puneet; Abraham, Priya Mary; Poddar, Pankaj

    2013-02-01

    Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic potential, but its poor bioavailability remains a major challenge. In order to improve the bioavailability of curcumin, various approaches have been used. One of the possible approaches to increase the bioavailability of curcumin is its conjugation on the surface of metal nanoparticles. Therefore, in the present study, we report the binding of curcumin on the surface of gold nanoparticles (AuNPs). The AuNPs were synthesized by the direct reduction of HAuCl4 using curcumin in the aqueous phase, without the use of any other reducing agents. We found that curcumin acts both as a reducing and capping agent, stabilizing the gold sol for many months. Moreover, these curcumin-capped AuNPs also show good antioxidant activity which was confirmed by the DPPH (2,2-diphenyl-l-picrylhydrazyl) radical test. Thus, the surface functionalization of AuNPs with curcumin may pave a new way of using the curcuminoids towards possible drug delivery and therapeutics. Apart from the experimental study, a detailed quantum chemical calculation using density functional theory (DFT) has been performed, in order to investigate the formation of a complex of curcumin with Au3+ ions in different possible conformational isomeric forms. Our theoretical calculations indicate the evidence of electron transfer from curcumin into the Au center and essentially indicate that as a consequence of complexation, Au3+ ions are reduced to Au0. Our theoretical results also propose that it is the breakage of intramolecular H-bonding that probably leads to the increased availability of curcumin in the presence of gold ions and water molecules.Curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is an active component of turmeric; it is responsible for its characteristic yellow color and therapeutic

  16. Catalytic behavior of `Pt-atomic chain encapsulated gold nanotube': A density functional study

    NASA Astrophysics Data System (ADS)

    Nigam, Sandeep; Majumder, Chiranjib

    2016-05-01

    With an aim to design novel material and explore its catalytic performance towards CO oxidation, Pt atomic chain was introduced inside gold nanotube (Au-NT). Theoretical calculations at the level of first principles formalism was carried out to investigate the atomic and electronic properties of the composite. Geometrically Pt atoms prefer to align in zig-zag fashion. Significant electronic charge transfer from inside Pt atoms to the outer wall Au atoms is observed. Interaction of O2 with Au-NT wall follows by injection of additional electronic charge in the anti-bonding orbital of oxygen molecule leading to activation of the O-O bond. Further interaction of CO molecule with the activated oxygen molecule leads to spontaneous oxidation reaction and formation of CO2.

  17. Non-invasive molecular profiling of cancer using photoacoustic imaging of functionalized gold nanorods

    NASA Astrophysics Data System (ADS)

    Shah, Anant J.; Alles, Erwin J.; Box, Carol; Eccles, Suzanne A.; Robinson, Simon P.; deSouza, Nandita; Bamber, Jeffrey C.

    2014-03-01

    Although molecularly targeted cancer therapies have shown great promise, it is now evident that responses are dependent upon the molecular genetic context. Spatial and temporal tumour heterogeneity renders biopsy of solid tumours unsuitable for determining the genetic profile of the disease, making adaptation of appropriate therapy difficult. We have utilized the tunable optical absorption characteristic of gold nanorods to assess the potential of photoacoustics for non-invasive multiplexed molecular imaging. Gold nanorods with resonance peaks at 700nm and 900nm were functionalised with in-house antibodies ICR55 and ICR62, targeted to HER2 and EGFR transmembrane receptors, respectively. Three human squamous carcinoma cell lines (LICR-LON-HN4 expressing high HER2 and low EGFR, LICR-LON-HN3 expressing intermediate levels of HER2 and EGFR and A431 expressing high EGFR and low HER2) were incubated with the targeted nanorods for 24 hours. Cells were then incorporated as simulated tumours in tissue-like phantoms composed of 7.5% gelatin containing 0.5% Intralipid® for optical scattering and imaged at a depth of 2.5 cm, using a new clinical in-house multi-spectral photoacoustic imaging system. Images were obtained from the cell inclusions for wavelengths ranging from 710 to 950 nm at 40 nm intervals, and the mean amplitude of the photoacoustic image was computed for each wavelength, to determine their relative receptor expression levels. The molecular profile of the cells obtained using multi-wavelength photoacoustics had substantial similarity to that obtained using flow cytometry. These preliminary results confirm selective uptake of the functionalised nanorods, which reflects the cellular expression of therapeutically important oncoproteins, and give an indication of the potential of photoacoustics for multiplexed molecular profiling.

  18. Chemical functionalization of hyaluronic acid for drug delivery applications.

    PubMed

    Vasi, Ana-Maria; Popa, Marcel Ionel; Butnaru, Maria; Dodi, Gianina; Verestiuc, Liliana

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H(1) NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications.

  19. Chemical functionalization of hyaluronic acid for drug delivery applications.

    PubMed

    Vasi, Ana-Maria; Popa, Marcel Ionel; Butnaru, Maria; Dodi, Gianina; Verestiuc, Liliana

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H(1) NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications. PMID:24656366

  20. Phosphatidic acid modulation of Kv channel voltage sensor function.

    PubMed

    Hite, Richard K; Butterwick, Joel A; MacKinnon, Roderick

    2014-01-01

    Membrane phospholipids can function as potent regulators of ion channel function. This study uncovers and investigates the effect of phosphatidic acid on Kv channel gating. Using the method of reconstitution into planar lipid bilayers, in which protein and lipid components are defined and controlled, we characterize two effects of phosphatidic acid. The first is a non-specific electrostatic influence on activation mediated by electric charge density on the extracellular and intracellular membrane surfaces. The second is specific to the presence of a primary phosphate group, acts only through the intracellular membrane leaflet and depends on the presence of a particular arginine residue in the voltage sensor. Intracellular phosphatidic acid accounts for a nearly 50 mV shift in the midpoint of the activation curve in a direction consistent with stabilization of the voltage sensor's closed conformation. These findings support a novel mechanism of voltage sensor regulation by the signaling lipid phosphatidic acid. PMID:25285449

  1. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide.

    PubMed

    Megarajan, Sengan; Ayaz Ahmed, Khan Behlol; Rajendra Kumar Reddy, G; Suresh Kumar, P; Anbazhagan, Veerappan

    2016-02-01

    Herein, we present a simple and green method for the synthesis of gold nanoparticles (AuNPs) using the phytoproteins of spinach leaves. Under ambient sunlight irradiation, the isolated phytoprotein complex from spinach leaves reduces the gold chloride aqueous solution and stabilizes the formed AuNPs. As prepared nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, zeta potential, transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The surface plasmon resonance (SPR) maximum for AuNPs was observed at 520 nm. The zeta potential value estimated for the AuNPs is -27.0 mV, indicating that the NPs are well separated. Transmission electron micrographs revealed that the particles are spherical in nature with the size range from 10 to 15 nm. AuNPs act as a catalyst in the degradation of an azo dye, methyl orange in an aqueous environment. The reduction rate was determined to be pseudo-first order. Electrocatalytic efficiency of the synthesized AuNPs via this green approach was studied by chronoamperometry using ascorbic acid and hydrogen peroxide as a model compound for oxidation and reduction, respectively. Electrocatalytic studies indicate that the gold nanoparticles can be used to detect ascorbic acid and hydrogen peroxide in micromolar concentrations with response time less than 3s.

  2. Phytoproteins in green leaves as building blocks for photosynthesis of gold nanoparticles: An efficient electrocatalyst towards the oxidation of ascorbic acid and the reduction of hydrogen peroxide.

    PubMed

    Megarajan, Sengan; Ayaz Ahmed, Khan Behlol; Rajendra Kumar Reddy, G; Suresh Kumar, P; Anbazhagan, Veerappan

    2016-02-01

    Herein, we present a simple and green method for the synthesis of gold nanoparticles (AuNPs) using the phytoproteins of spinach leaves. Under ambient sunlight irradiation, the isolated phytoprotein complex from spinach leaves reduces the gold chloride aqueous solution and stabilizes the formed AuNPs. As prepared nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, zeta potential, transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The surface plasmon resonance (SPR) maximum for AuNPs was observed at 520 nm. The zeta potential value estimated for the AuNPs is -27.0 mV, indicating that the NPs are well separated. Transmission electron micrographs revealed that the particles are spherical in nature with the size range from 10 to 15 nm. AuNPs act as a catalyst in the degradation of an azo dye, methyl orange in an aqueous environment. The reduction rate was determined to be pseudo-first order. Electrocatalytic efficiency of the synthesized AuNPs via this green approach was studied by chronoamperometry using ascorbic acid and hydrogen peroxide as a model compound for oxidation and reduction, respectively. Electrocatalytic studies indicate that the gold nanoparticles can be used to detect ascorbic acid and hydrogen peroxide in micromolar concentrations with response time less than 3s. PMID:26722997

  3. Gold-catalysed cross-coupling between aryldiazonium salts and arylboronic acids: probing the usefulness of photoredox conditions.

    PubMed

    Cornilleau, Thomas; Hermange, Philippe; Fouquet, Eric

    2016-08-21

    The synthesis of biaryl compounds from aryldiazonium salts and arylboronic acids was achieved using PPh3AuCl as catalyst, CsF as base and acetonitrile as solvent. Combined to photosensitizers, irradiation by blue LEDs allowed accelerating the reaction and expanding its scope. Various functional groups were compatible including bromoaryls, iodoaryls, aldehydes and alcohols. A 2-iodobenzyl alcohol moiety was smoothly introduced by this method, enabling its consecutive isotopic labelling by a Pd-catalysed alkoxycarbonylation. PMID:27452177

  4. Biological functions of iduronic acid in chondroitin/dermatan sulfate

    PubMed Central

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-01-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler–Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. PMID:23441919

  5. Electrokinetic characterization of magnetite nanoparticles functionalized with amino acids.

    PubMed

    Viota, J L; Arroyo, F J; Delgado, A V; Horno, J

    2010-04-01

    The synthesis of nanoparticles consisting of a magnetite core coated with one or more layers of amino acid (L-arginine, L-lysine, glycine, and L-glutamine) is described in this paper. For all the amino acids it is found that adsorption increases with concentration in solution in the range 0.5-10 mg/mL. The adsorption, however, differs substantially from one amino acid to another, depending on the length of the hydrocarbon chain and the polarity and charge of the side group. Thus, for given concentration and pH, adsorption is found to increase in the order L-arginine < L-lysine < L-glutamine < glycine. This order corresponds roughly to amino acids with decreasing chain length; in addition, the presence of the less polarizable guanidine group in the arginine molecule may explain why this amino acid is slightly less adsorbed than lysine. The pH dependence of the adsorption of each amino acid is reasonably explained considering the surface charge of magnetite and the charge of the amino acid molecules for different pHs, indicating a significant role of electrostatics in adsorption. This is further checked by means of determinations of the electrophoretic mobility of amino acid-coated magnetite as a function of pH: the results indicate a shift of the isoelectric point of the raw magnetite toward more basic pHs, an indication of adsorption of positive species, as confirmed by the tendency of the mobility of amino acid-coated magnetite toward more positive values below neutral pH. The electrophoretic mobility of coated particles was also measured as a function of the concentration of amino acid, and it was found that for low concentrations the four amino acids provoke charge inversion and overcharging of the magnetite surface at pH 6. Finally, the dependence of the electrophoretic mobility on the ionic strength indicated that from an electrophoretic point of view, the functionalized magnetite-amino acid particles do not behave as soft particles, and that the amino acid

  6. Broadband gain in poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer

    SciTech Connect

    Melancon, Justin M.; Živanović, Sandra R.

    2014-10-20

    Substantial broadband photoconductive gain has been realized for organic, thin-film photodetectors with a poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester (P3HT:PCBM) active layer at low bias voltages. External quantum efficiencies upwards of 1500% were achieved when a semicontinuous gold layer was introduced at the anode interface. Significant gain was also observed in the sub-band gap, near infrared region where the external quantum efficiency approached 100% despite the lack of a sensitizer. The gain response was highly dependent on the thickness of the active layer of the photodetector with the best results achieved with the thinnest devices. The gain is the result of the injection of secondary electrons due to hole charge trapping at the semicontinuous gold layer.

  7. Structural studies on drop-cast film based on functionalized gold nanoparticles network: The effect of thermal treatment

    NASA Astrophysics Data System (ADS)

    Fontana, Laura; Fratoddi, Ilaria; Venditti, Iole; Ksenzov, Dmitriy; Russo, Maria Vittoria; Grigorian, Souren

    2016-04-01

    In the present work the role of the thermal treatment on the reorganization of gold nanoparticles (AuNPs) functionalized with a π-conjugated dithiol ligand, namely 9,9-didodecyl-2,7-bis-thiofluorene, is studied by grazing incidence X-ray diffraction technique. For a detailed investigation of the structural changes and reorganization occurring in the AuNPs network and of the monitoring of complex interactions between nanoparticles, the line profiles are analyzed in out-of-plane and in-plane directions. The obtained data support the idea of the formation of a uniform network of nanoparticles that after annealing are extended from hexagonal to cubic arrangement.

  8. Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone-gelatin composites

    NASA Astrophysics Data System (ADS)

    Babu, Punuri Jayasekhar; Saranya, Sibyala; Sharma, Pragya; Tamuli, Ranjan; Bora, Utpal

    2012-09-01

    Gold nanoparticles (AuNPs) were synthesized by sonication using ethanolic leaf extract of Andrographis paniculata. We investigated the optimum parameters for AuNP synthesis and functionalization with polycaprolactone-gelatin (PCL-GL) composites. The AuNPs were characterized with various biophysical techniques such as TEM, XRD, FT-IR and EDX spectroscopy. TEM images showed that nanoparticles were spherical in shape with a size range from 5 to 75 nm. EDX analysis revealed the presence of molecular oxygen and carbon on the surface of AuNPs. The synthesized AuNPs were tested for their effect on HeLa (human cervical cancer) and MCF-7 (human breast cancer) cell lines and found to be nontoxic and biocompatible, which are potential carriers for hydrophobic drugs.

  9. Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

    NASA Astrophysics Data System (ADS)

    Song, Ji Eun; Cho, Eun Chul

    2016-10-01

    We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes).

  10. Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

    PubMed Central

    Song, Ji Eun; Cho, Eun Chul

    2016-01-01

    We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes). PMID:27703195

  11. Molecular conformation changes in alkylthiol ligands as a function of size in gold nanoparticles: X-ray absorption studies

    SciTech Connect

    Ramallo-Lopez, J. M.; Giovanetti, L. J.; Requejo, F. G.; Isaacs, S. R.; Shon, Y. S.; Salmeron, M.

    2006-08-15

    The bonding of hexanethiols to gold nanoparticles of 1.5, 2.0, and 3 nm was studied using x-ray absorption near-edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS). The XANES spectra revealed that a substantial fraction of weakly bound hexanethiol molecules are present in addition to those forming covalent bonds with Au atoms. The weakly bound molecules can be removed by washing in dichloromethane. After removal of the weakly bound molecules the S K-edge XANES reveals peaks due to S-Au and S-C bonds with intensities that change as a function of particle size. Au L{sub 3}-edge EXAFS results indicate that these changes follow the changes in coordination number of Au to the S atoms at the surface of the particles.

  12. Chemistry for oncotheranostic gold nanoparticles.

    PubMed

    Trouiller, Anne Juliette; Hebié, Seydou; El Bahhaj, Fatima; Napporn, Teko W; Bertrand, Philippe

    2015-06-24

    This review presents in a comprehensive ways the chemical methods used to functionalize gold nanoparticles with focus on anti-cancer applications. The review covers the parameters required for the synthesis gold nanoparticles with defined shapes and sizes, method for targeted delivery in tumours, and selected examples of anti-cancers compounds delivered with gold nanoparticles. A short survey of bioassays for oncology based on gold nanoparticles is also presented.

  13. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Shiang, Yen-Chun; Ou, Chung-Mao; Chen, Shih-Ju; Ou, Ting-Yu; Lin, Han-Jia; Huang, Chih-Ching; Chang, Huan-Tsung

    2013-03-01

    We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45-Au NPs shows inhibitory efficiency in the retroviral replication cycle with a decreasing infectivity (40.2%).We have developed aptamer (Apt)-conjugated gold nanoparticles (Apt-Au NPs, 13 nm in diameter) as highly effective inhibitors for human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Two Apts, RT1t49 (Aptpol) and ODN 93 (AptRH), which recognize the polymerase and RNase H regions of HIV-1 RT, are used to conjugate Au NPs to prepare Aptpol-Au NPs and AptRH-Au NPs, respectively. In addition to DNA sequence, the surface density of the aptamers on Au NPs (nApt-Au NPs; n is the number of aptamer molecules on each Au NP) and the linker length number (Tm; m is the base number of the deoxythymidine linker) between the aptamer and Au NPs play important roles in determining their inhibition activity. A HIV-lentiviral vector-based antiviral assay has been applied to determine the inhibitory effect of aptamers or Apt-Au NPs on the early stages of their replication cycle. The nuclease-stable G-quadruplex structure of 40AptRH-T45

  14. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells.

    PubMed

    Radde, Brandie N; Alizadeh-Rad, Negin; Price, Stephanie M; Schultz, David J; Klinge, Carolyn M

    2016-11-01

    Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc. PMID:26990649

  15. Electrowetting of nitro-functionalized oligoarylene thiols self-assembled on polycrystalline gold.

    PubMed

    Casalini, Stefano; Berto, Marcello; Bortolotti, Carlo A; Foschi, Giulia; Operamolla, Alessandra; Di Lauro, Michele; Omar, Omar Hassan; Liscio, Andrea; Pasquali, Luca; Montecchi, Monica; Farinola, Gianluca M; Borsari, Marco

    2015-02-25

    Four linear terarylene molecules (i) 4-nitro-terphenyl-4″-methanethiol (NTM), (ii) 4-nitro-terphenyl-3″,5″-dimethanethiol (NTD), (iii) ([1,1';4',1″] terphenyl-3,5-diyl)methanethiol (TM), and (iv) ([1,1';4',1″] terphenyl-3,5-diyl)dimethanethiol (TD) have been synthesized and their self-assembled monolayers (SAMs) have been obtained on polycrystalline gold. NTM and NTD SAMs have been characterized by X-ray photoelectron spectroscopy, Kelvin probe measurements, electrochemistry, and contact angle measurements. The terminal nitro group (-NO2) is irreversibly reduced to hydroxylamine (-NHOH), which can be reversibly turned into nitroso group (-NO). The direct comparison between NTM/NTD and TM/TD SAMs unambiguously shows the crucial influence of the nitro group on electrowetting properties of polycrystalline Au. The higher grade of surface tension related to NHOH has been successfully exploited for basic operations of digital μ-fluidics, such as droplets motion and merging.

  16. DNA interaction probed by evanescent wave cavity ring-down absorption spectroscopy via functionalized gold nanoparticles.

    PubMed

    Yao, Yi-Ju; Lin, King-Chuen

    2014-04-11

    Evanescent wave cavity ring-down absorption spectroscopy (EW-CRDS) is employed to study interaction and binding kinetics of DNA strands by using gold nanoparticles (Au NPs) as sensitive reporters. These Au NPs are connected to target DNA of study that hybridizes with the complementary DNA fixed on the silica surface. By the absorbance of Au NPs, the interaction between two DNA strands may be examined to yield an adsorption equilibrium constant of 2.2×10(10) M(-1) using Langmuir fit. The binding efficiency that is affected by ion concentration, buffer pH and temperature is also examined. This approach is then applied to the label-free detection of the DNA mutation diseases using the sandwich hybridization assay. For monitoring a gene associated with sickle-cell anemia, the detection limit and the adsorption equilibrium constant is determined to be 1.2 pM and (3.7±0.8)×10(10) M(-1), distinct difference from the perfectly matched DNA sequence that yields the corresponding 0.5 pM and (1.1±0.2)×10(11) M(-1). The EW-CRDS method appears to have great potential for the investigation of the kinetics of a wide range of biological reactions.

  17. A DFT study of a new class of gold nanocluster-photochrome multi-functional switches.

    PubMed

    Fihey, Arnaud; Maurel, François; Perrier, Aurélie

    2014-12-21

    With the help of a computational scheme combining molecular dynamics, DFT and TD-DFT methods, the conformational, electronic and optical properties of a new class of hybrid compounds where a photochromic molecule belonging to the dithienylethene family (DTE) is covalently linked to a Au25 nanocluster (gold nanocluster or GNC) are investigated. We compare two types of hybrid GNC-DTE systems where the aromatic linker between the metallic and the DTE moieties is either a phenyl or a thiophene ring. By examining the perturbation of the DTE electronic structure after grafting upon the GNC, we show that the hybrid system with a phenyl linker should preserve its photochromic activity. For the latter system, we have then studied the possible energy and electron transfer between the GNC and the DTE units. The energy transfer between the two moieties can be a priori discarded while a uni-directional electron transfer should take place from the GNC to the excited DTE. We show that this transfer can be controlled by switching the state of the molecule. PMID:25363237

  18. A DFT study of a new class of gold nanocluster-photochrome multi-functional switches.

    PubMed

    Fihey, Arnaud; Maurel, François; Perrier, Aurélie

    2014-12-21

    With the help of a computational scheme combining molecular dynamics, DFT and TD-DFT methods, the conformational, electronic and optical properties of a new class of hybrid compounds where a photochromic molecule belonging to the dithienylethene family (DTE) is covalently linked to a Au25 nanocluster (gold nanocluster or GNC) are investigated. We compare two types of hybrid GNC-DTE systems where the aromatic linker between the metallic and the DTE moieties is either a phenyl or a thiophene ring. By examining the perturbation of the DTE electronic structure after grafting upon the GNC, we show that the hybrid system with a phenyl linker should preserve its photochromic activity. For the latter system, we have then studied the possible energy and electron transfer between the GNC and the DTE units. The energy transfer between the two moieties can be a priori discarded while a uni-directional electron transfer should take place from the GNC to the excited DTE. We show that this transfer can be controlled by switching the state of the molecule.

  19. Enhanced and selective permeability of gold nanoparticles functionalized with cell penetrating peptide derived from maurocalcine animal toxin.

    PubMed

    Khamehchian, Sedigheh; Nikkhah, Maryam; Madani, Rasool; Hosseinkhani, Saman

    2016-11-01

    Functionalization of gold nanoparticles (GNPs) is suitable for many applications such as biomedical imaging, clinical diagnosis, and targeted delivery by conjugating cell-penetrating peptides (CPPs). Here, we investigated intracellular uptake of GNP conjugated to MCaUF1-9(Ala) , a CPP derived from maurocalcine (MCa) animal toxin, and compared it with TAT functionalized GNP. Peptide conjugated GNP was characterized using UV-Visible spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. Uptake of MCaUF1-9(Ala) and TAT functionalized GNPs was evaluated in three cell lines, HeLa, MDA-MB-231, and A431, using dark field imaging and atomic absorption spectroscopy. According to peptide sequences and type of cells different cell penetrating activity was observed. Peptide functionalized GNP had little effect on cell viability and respect to net charge difference between peptide, showed interesting selectivity against three cell types. Peptide conjugated to GNPs displayed higher uptake than bare GNPs in the all cell lines except HeLa cell with lowest internalization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2693-2700, 2016.

  20. Interrogating the Role of Receptor-Mediated Mechanisms: Biological Fate of Peptide-Functionalized Radiolabeled Gold Nanoparticles in Tumor Mice.

    PubMed

    Silva, Francisco; Zambre, Ajit; Campello, Maria Paula Cabral; Gano, Lurdes; Santos, Isabel; Ferraria, Ana Maria; Ferreira, Maria João; Singh, Amolak; Upendran, Anandhi; Paulo, António; Kannan, Raghuraman

    2016-04-20

    To get a better insight on the transport mechanism of peptide-conjugated nanoparticles to tumors, we performed in vivo biological studies of bombesin (BBN) peptide functionalized gold nanoparticles (AuNPs) in human prostate tumor bearing mice. Initially, we sought to compare AuNPs with thiol derivatives of acyclic and macrocyclic chelators of DTPA and DOTA types. The DTPA derivatives were unable to provide a stable coordination of (67)Ga, and therefore, the functionalization with the BBN analogues was pursued for the DOTA-containing AuNPs. The DOTA-coated AuNPs were functionalized with BBN[7-14] using a unidentate cysteine group or a bidentate thioctic group to attach the peptide. AuNPs functionalized with thioctic-BBN displayed the highest in vitro cellular internalization (≈ 25%, 15 min) in gastrin releasing peptide (GRP) receptor expressing cancer cells. However, these results fail to translate to in vivo tumor uptake. Biodistribution studies following intravenous (IV) and intraperitoneal (IP) administration of nanoconjugates in tumor bearing mice indicated that the presence of BBN influences to some degree the biological profile of the nanoconstructs. For IV administration, the receptor-mediated pathway appears to be outweighed by the EPR effect. By contrast, in IP administration, it is reasoned that the GRPr-mediated mechanism plays a role in pancreas uptake. PMID:27003101

  1. Glassy carbon electrodes sequentially modified by cysteamine-capped gold nanoparticles and poly(amidoamine) dendrimers generation 4.5 for detecting uric acid in human serum without ascorbic acid interference.

    PubMed

    Ramírez-Segovia, A S; Banda-Alemán, J A; Gutiérrez-Granados, S; Rodríguez, A; Rodríguez, F J; Godínez, Luis A; Bustos, E; Manríquez, J

    2014-02-17

    Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7×10(-4) and 5.8×10(-4) mg dL(-1), respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles. PMID:24491759

  2. A highly enantioselective amino acid-catalyzed route to functionalized alpha-amino acids.

    PubMed

    Córdova, Armando; Notz, Wolfgang; Zhong, Guofu; Betancort, Juan M; Barbas, Carlos F

    2002-03-01

    The development of syntheses providing enantiomerically pure alpha-amino acids has intrigued generations of chemists and been the subject of intense research. This report describes a general approach to functionalized alpha-amino acids based on catalytic asymmetric synthesis. Proline catalyzed Mannich-type reactions of N-PMP-protected alpha-imino ethyl glyoxylate with a variety of unmodified ketones to provide functionalized alpha-amino acids in high yields with excellent regio-, diastereo-, and enantioselectivities. Study of seven examples yielded six with product ee values of > or = 99%. In reactions involving ketone donors where diastereoisomeric products could be formed, two adjacent stereogenic centers were created simultaneously upon carbon-carbon bond formation with complete syn-stereocontrol. Significantly, this methodology utilizes readily available and rather inexpensive starting materials, does not require any preactivation of substrates or metal ion assistance, and can be carried out on a gram scale under operationally simple reaction conditions. The keto-functionality present in the products provides a particularly attractive site for versatile modifications. This study compliments and extends our bioorganic approach to asymmetric synthesis to a versatile synthon class. Given that we have shown that a variety of optically active amino acids can be synthesized with proline catalysis, where an L-amino acid begets other L-amino acids, our results may stimulate thoughts concerning prebiotic syntheses of optically active amino acids based on this route.

  3. Sialic acid metabolism and sialyltransferases: natural functions and applications

    PubMed Central

    Li, Yanhong

    2012-01-01

    Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases. PMID:22526796

  4. Transport Function of Rice Amino Acid Permeases (AAPs).

    PubMed

    Taylor, Margaret R; Reinders, Anke; Ward, John M

    2015-07-01

    The transport function of four rice (Oryza sativa) amino acid permeases (AAPs), OsAAP1 (Os07g04180), OsAAP3 (Os06g36180), OsAAP7 (Os05g34980) and OsAAP16 (Os12g08090), was analyzed by expression in Xenopus laevis oocytes and electrophysiology. OsAAP1, OsAAP7 and OsAAP16 functioned, similarly to Arabidopsis AAPs, as general amino acid permeases. OsAAP3 had a distinct substrate specificity compared with other rice or Arabidopsis AAPs. OsAAP3 transported the basic amino acids lysine and arginine well but selected against aromatic amino acids. The transport of basic amino acids was further analyzed for OsAAP1 and OsAAP3, and the results support the transport of both neutral and positively charged forms of basic amino acids by the rice AAPs. Cellular localization using the tandem enhanced green fluorescent protein (EGFP)-red fluorescent protein (RFP) reporter pHusion showed that OsAAP1 and OsAAP3 localized to the plasma membrane after transient expression in onion epidermal cells or stable expression in Arabidopsis. PMID:25907566

  5. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles.

    PubMed

    Liu, Yuanjian; Zhang, Linqun; Wei, Wei; Zhao, Hongyu; Zhou, Zhenxian; Zhang, Yuanjian; Liu, Songqin

    2015-06-21

    Early and accurate diagnosis is considered the key issue to prevent the further spread of viruses and facilitate influenza therapy. Herein, we report a colorimetric immunosensor for influenza A virus (IAV) based on gold nanoparticles (AuNPs) modified with monoclonal anti-hemagglutinin antibody (mAb). The immunosensor allows for a fast, simple, and selective detection of IAV. In this assay, influenza-specific antibodies are conjugated to AuNPs to create mAb-AuNP probes. Since IAV has multiple recognition sites for probes on the surface, the mAb-AuNP probes can be specifically arranged on the virus surface due to their very specific antigen recognition. In this case, this aggregation of the mAb-AuNP probes produces a red shift in the absorption spectrum due to plasmon coupling between adjacent AuNPs, and it can be detected with the naked eye as a color change from red to purple and quantified with the absorption spectral measurements. The aggregate formation is also confirmed with transmission electron microscopy (TEM) imaging and dynamic light scattering (DLS). Under the optimal conditions, the present immunoassay can sensitively measure H3N2 IAV (A/Brisbane/10/2007) with a detection limit of 7.8 hemagglutination units (HAU). This proposed immunosensor revealed high specificity, accuracy, and good stability. Notably, it is a single-step detection using AuNP probes and UV-vis spectrophotometer for readout, and no additional amplification, e.g., enzymatic, is needed to read the result. This assay depends on an ordered AuNP structure covering the virus surface and can be applied to any virus pathogen by incorporating the appropriate pathogen-specific antibody. PMID:25899840

  6. Two-dimensional self-assembly of DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Hagen, Noah; Kuzmenko, Ivan; Akinc, Mufit; Travesset, Alex; Mallapragada, Surya; Vaknin, David

    2D superlattices of nanoparticles (NPs) are promising candidates for nano-devices. It is still challenging to develop a simple yet efficient protocol to assemble NPs in a controlled manner. Here, we report on formation of 2D Gibbs monolayers of single-stranded DNA-coated gold nanoparticles (ssDNA-AuNPs) at the air-water interface by manipulation of salts contents. MgCl2 and CaCl2 in solutions facilitate the accumulation of the non-complementary ssDNA-AuNPs on aqueous surfaces. Grazing-incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity show that the surface AuNPs assembly forms a mono-particle layer and undergoes a transformation from short-range to long-range (hexagonal) order above a threshold of [MgCl2] or [CaCl2]. For solutions that include two kinds of ssDNA-AuNPs with complementary base-pairing, the surface AuNPs form a thicker film and only in-plane short-range order is observed. By using other salts (NaCl or LaCl3) at concentrations of similar ionic strength to those of MgCl2 or CaCl2, we find that surface adsorbed NPs lack any orders. X-ray fluorescence measurements provide direct evidence of surface enrichment of AuNPs and divalent ions (Ca2 +) . The work was supported by the Office of Basic Energy Sciences, USDOE under Contract No. DE-AC02-07CH11358 and DE-AC02-06CH11357.

  7. Colorimetric detection of influenza A virus using antibody-functionalized gold nanoparticles.

    PubMed

    Liu, Yuanjian; Zhang, Linqun; Wei, Wei; Zhao, Hongyu; Zhou, Zhenxian; Zhang, Yuanjian; Liu, Songqin

    2015-06-21

    Early and accurate diagnosis is considered the key issue to prevent the further spread of viruses and facilitate influenza therapy. Herein, we report a colorimetric immunosensor for influenza A virus (IAV) based on gold nanoparticles (AuNPs) modified with monoclonal anti-hemagglutinin antibody (mAb). The immunosensor allows for a fast, simple, and selective detection of IAV. In this assay, influenza-specific antibodies are conjugated to AuNPs to create mAb-AuNP probes. Since IAV has multiple recognition sites for probes on the surface, the mAb-AuNP probes can be specifically arranged on the virus surface due to their very specific antigen recognition. In this case, this aggregation of the mAb-AuNP probes produces a red shift in the absorption spectrum due to plasmon coupling between adjacent AuNPs, and it can be detected with the naked eye as a color change from red to purple and quantified with the absorption spectral measurements. The aggregate formation is also confirmed with transmission electron microscopy (TEM) imaging and dynamic light scattering (DLS). Under the optimal conditions, the present immunoassay can sensitively measure H3N2 IAV (A/Brisbane/10/2007) with a detection limit of 7.8 hemagglutination units (HAU). This proposed immunosensor revealed high specificity, accuracy, and good stability. Notably, it is a single-step detection using AuNP probes and UV-vis spectrophotometer for readout, and no additional amplification, e.g., enzymatic, is needed to read the result. This assay depends on an ordered AuNP structure covering the virus surface and can be applied to any virus pathogen by incorporating the appropriate pathogen-specific antibody.

  8. Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin.

    PubMed

    Chen, Yuanbo; Deng, Nan; Wu, Ci; Liang, Yu; Jiang, Bo; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-07-01

    Low abundant proteins of body fluids participate nearly all physiological processes and indicate various kinds of diseases. The development of specific enrichment techniques is the key to identify and quantify the low abundant proteins. Herein, a novel kind of aptamer functionalized hydrophilic polymer monolith was developed for the specific enrichment and detection of human α-thrombin from the human plasma. Human α-thrombin aptamer, with thiol group modified at the 5' terminal, was immobilized on the gold nanoparticles (AuNPs) modified poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) monolithic column, with the binding capacity of 277.1μmol/L. Due to the hydrophilic poly(ethylene glycol) diacrylate) as the cross-linking monomer, the detection recovery of the aptamer-functionalized hydrophilic polymer monolithic column could reach to 92.6±5.2% (n=3) and the dynamic range could reach 0.5-300ng/μL (S/N>10) with on-line UV detection. Meanwhile, the column could run over 100 times, because the poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) stability structure and the AuNPs improved the stability of the matrix material. Furthermore, this column could even capture the target α-thrombin, which was spiked in 1000 folds of original human plasma. All these results demonstrated the great potential of the prepared aptamer functionalized hydrophilic polymer monolith for the recognition of the trace proteins in the biological samples. PMID:27154714

  9. Aptamer functionalized hydrophilic polymer monolith with gold nanoparticles modification for the sensitive detection of human α-thrombin.

    PubMed

    Chen, Yuanbo; Deng, Nan; Wu, Ci; Liang, Yu; Jiang, Bo; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-07-01

    Low abundant proteins of body fluids participate nearly all physiological processes and indicate various kinds of diseases. The development of specific enrichment techniques is the key to identify and quantify the low abundant proteins. Herein, a novel kind of aptamer functionalized hydrophilic polymer monolith was developed for the specific enrichment and detection of human α-thrombin from the human plasma. Human α-thrombin aptamer, with thiol group modified at the 5' terminal, was immobilized on the gold nanoparticles (AuNPs) modified poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) monolithic column, with the binding capacity of 277.1μmol/L. Due to the hydrophilic poly(ethylene glycol) diacrylate) as the cross-linking monomer, the detection recovery of the aptamer-functionalized hydrophilic polymer monolithic column could reach to 92.6±5.2% (n=3) and the dynamic range could reach 0.5-300ng/μL (S/N>10) with on-line UV detection. Meanwhile, the column could run over 100 times, because the poly(glycidyl methacrylate-co-poly(ethylene glycol) diacrylate) stability structure and the AuNPs improved the stability of the matrix material. Furthermore, this column could even capture the target α-thrombin, which was spiked in 1000 folds of original human plasma. All these results demonstrated the great potential of the prepared aptamer functionalized hydrophilic polymer monolith for the recognition of the trace proteins in the biological samples.

  10. Surface passivation improves the synthesis of highly stable and specific DNA-functionalized gold nanoparticles with variable DNA density.

    PubMed

    Deka, Jashmini; Měch, Rostislav; Ianeselli, Luca; Amenitsch, Heinz; Cacho-Nerin, Fernando; Parisse, Pietro; Casalis, Loredana

    2015-04-01

    We report a novel and multifaceted approach for the quick synthesis of highly stable single-stranded DNA (ssDNA) functionalized gold nanoparticles (AuNPs). The method is based on the combined effect of surface passivation by (1-mercaptoundec-11-yl)hexa(ethylene glycol) and low pH conditions, does not require any salt pretreatment or high excess of ssDNA, and can be generalized for oligonucleotides of any length or base sequence. The synthesized ssDNA-coated AuNPs conjugates are stable at salt concentrations as high as 3.0 M, and also functional and specific toward DNA-DNA hybridization, as shown from UV-vis spectrophotometry, scanning electron microscopy, gel electrophoresis, fluorescence, and small angle X-ray scattering based analyses. The method is highly flexible and shows an additional advantage of creating ssDNA-AuNP conjugates with a predefined number of ssDNA strands per particle. Its simplicity and tenability make it widely applicable to diverse biosensing applications involving ssDNA functionalized AuNPs.

  11. Synthesis, characterization and optical properties of an amino-functionalized gold thiolate cluster: Au10(SPh-pNH2)10.

    PubMed

    Lavenn, Christophe; Albrieux, Florian; Tuel, Alain; Demessence, Aude

    2014-03-15

    Research interest in ultra small gold thiolate clusters has been rising in recent years for the challenges they offer to bring together properties of nanoscience and well-defined materials from molecular chemistry. Here, a new atomically well-defined Au10 gold nanocluster surrounded by ten 4-aminothiophenolate ligands is reported. Its synthesis followed the similar conditions reported for the elaboration of Au144(SR)60, but because the reactivity of thiophenol ligands is different from alkanethiol derivates, smaller Au10 clusters were formed. Different techniques, such as ESI-MS, elemental analysis, XRD, TGA, XPS and UV-vis-NIR experiments, have been carried out to determine the Au10(SPh-pNH2)10 formula. Photoemission experiment has been done and reveals that the Au10 clusters are weakly luminescent as opposed to the amino-based ultra-small gold clusters. This observation points out that the emission of gold thiolate clusters is highly dependent on both the structure of the gold core and the type of the ligands at the surface. In addition, ultra-small amino-functionalized clusters offer the opportunity for extended work on self-assembling networks or deposition on substrates for nanotechnologies or catalytic applications.

  12. Enzymatically catalytic signal tracing by a glucose oxidase and ferrocene dually functionalized nanoporous gold nanoprobe for ultrasensitive electrochemical measurement of a tumor biomarker.

    PubMed

    Cheng, Hui; Xu, Lingling; Zhang, Haili; Yu, Aimin; Lai, Guosong

    2016-07-21

    A nanoporous gold nanosphere (pAu NS) was synthesized to load high-content glucose oxidase (GOx) and ferrocene (Fc) for the successful preparation of a new gold nanoprobe. After the specific recognition of the tumor biomarker of carcinoembryonic antigen (CEA) at a gold electrode based aptasensor, this GOx and Fc dually functionalized pAu NS nanoprobe was further used for sandwich immunoreaction and signal tracing. Based on the Fc-mediated GOx-catalytic reaction, the gold nanoprobes quantitatively captured onto the electrode surface produced a sensitive electrochemical signal corresponding to the protein recognition events, which led to the development of a new biosensing method for CEA measurement. Both the high loading of GOx and Fc on the pAu NS nanocarrier and the enzymatically catalytic reaction of the nanoprobe greatly amplify the electrochemical signal; meanwhile, the immobilization of the Fc mediator on this enzyme nanoprobe and the highly specific aptamer recognition drastically decrease the background current, resulting in the achievement of ultrahigh sensitivity of the method. Under optimum conditions, this method shows an excellent analytical performance including a wide linear relationship of five-order of magnitude and a low detection limit down to 0.45 pg mL(-1). Thus this pAu NS based gold nanoprobe and the proposed immunoassay method provide great potential for practical applications. PMID:27186605

  13. Specific Neuron Placement on Gold and Silicon Nitride-Patterned Substrates through a Two-Step Functionalization Method.

    PubMed

    Mescola, Andrea; Canale, Claudio; Prato, Mirko; Diaspro, Alberto; Berdondini, Luca; Maccione, Alessandro; Dante, Silvia

    2016-06-28

    The control of neuron-substrate adhesion has been always a challenge for fabricating neuron-based cell chips and in particular for multielectrode array (MEA) devices, which warrants the investigation of the electrophysiological activity of neuronal networks. The recent introduction of high-density chips based on the complementary metal oxide semiconductor (CMOS) technology, integrating thousands of electrodes, improved the possibility to sense large networks and raised the challenge to develop newly adapted functionalization techniques to further increase neuron electrode localization to avoid the positioning of cells out of the recording area. Here, we present a simple and straightforward chemical functionalization method that leads to the precise and exclusive positioning of the neural cell bodies onto modified electrodes and inhibits, at the same time, cellular adhesion in the surrounding insulator areas. Different from other approaches, this technique does not require any adhesion molecule as well as complex patterning technique such as μ-contact printing. The functionalization was first optimized on gold (Au) and silicon nitride (Si3N4)-patterned surfaces. The procedure consisted of the introduction of a passivating layer of hydrophobic silane molecules (propyltriethoxysilane [PTES]) followed by a treatment of the Au surface using 11-amino-1-undecanethiol hydrochloride (AT). On model substrates, well-ordered neural networks and an optimal coupling between a single neuron and single micrometric functionalized Au surface were achieved. In addition, we presented the preliminary results of this functionalization method directly applied on a CMOS-MEA: the electrical spontaneous spiking and bursting activities of the network recorded for up to 4 weeks demonstrate an excellent and stable neural adhesion and functional behavior comparable with what expected using a standard adhesion factor, such as polylysine or laminin, thus demonstrating that this procedure can be

  14. Direct Synthesis and Morphological Characterization of Gold-Dendrimer Nanocomposites Prepared Using PAMAM Succinamic Acid Dendrimers: Preliminary Study of the Calcification Potential

    PubMed Central

    Vasile, E.; Serafim, A.; Petre, D.; Giol, D.; Dubruel, P.; Iovu, H.; Stancu, I. C.

    2014-01-01

    Gold-dendrimer nanocomposites were obtained for the first time by a simple colloidal approach based on the use of polyamidoamine dendrimers with succinamic acid terminal groups and dodecanediamine core. Spherical and highly crystalline nanoparticles with dimensions between 3 nm and 60 nm, and size-polydispersity depending on the synthesis conditions, have been generated. The influence of the stoichiometric ratio and the structural and architectural features of the dendrimers on the properties of the nanocomposites has been described. The self-assembling behaviour of these materials produces gold-dendrimer nanostructured porous networks with variable density, porosity, and composition. The investigations of the reaction systems, by TEM, at two postsynthesis moments, allowed to preliminary establish the control over the properties of the nanocomposite products. Furthermore, this study allowed better understanding of the mechanism of nanocomposite generation. Impressively, in the early stages of the synthesis, the organization of gold inside the dendrimer molecules has been evidenced by micrographs. Growth and ripening mechanisms further lead to nanoparticles with typical characteristics. The potential of such nanocomposite particles to induce calcification when coating a polymer substrate was also investigated. PMID:24600316

  15. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  16. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  17. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-01

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular

  18. Using ruthenium polypyridyl functionalized ZnO mesocrystals and gold nanoparticle dotted graphene composite for biological recognition and electrochemiluminescence biosensing

    NASA Astrophysics Data System (ADS)

    Liu, Suli; Zhang, Jinxing; Tu, Wenwen; Bao, Jianchun; Dai, Zhihui

    2014-01-01

    Using ruthenium polypyridyl functionalized ZnO mesocrystals as bionanolabels, a universal biological recognition and biosensing platform based on gold nanoparticle (AuNP) dotted reduced graphene oxide (rGO) composite was developed. AuNP-rGO accelerated electron transfer between the detection probe and the electrode, and increased the surface area of the working electrode to load greater amounts of the capture antibodies. The large surface area of ZnO mesocrystals was beneficial for loading a high content ruthenium polypyridyl complex, leading to an enhanced electrochemiluminescence signal. Using α-fetoprotein (AFP) as a model, a simple and sensitive sandwich-type electrochemiluminescence biosensor with tripropylamine (TPrA) as a coreactant for detection of AFP was constructed. The designed biosensor provided a good linear range from 0.04 to 500 ng mL-1 with a low detection limit of 0.031 ng mL-1 at a S/N of 3 for AFP determination. The proposed biological recognition and biosensing platform extended the application of ruthenium polypyridyl functionalized ZnO mesocrystals, which provided a new promising prospect.

  19. A Gold Nanoparticle Platform for the Delivery of Functional TGF-β1 siRNA Into Cancer Cells.

    PubMed

    Wu, Jindao; Liu, Bin; Wu, Heming; Wu, Younong; Zhang, Wei; Zhao, Shouwei; Zhang, Long; Pan, Xiongxiong; Gao, Wen; Wang, Xuehao; Yuan, Yi; Zhang, Yaqin

    2016-04-01

    Nanoparticles, especially gold nanoparticles (AuNPs), have been shown to be an efficient carrier to deliver small RNAs into cancer cells. In this study, we used cysteamine-functionalized AuNPs to effectively deliver TGF-β1 siRNA into hepatoma HepG2 cells in vitro and in vivo. We found that, compared with AuNPs-mediated NC siRNA (AuNP-siNC), AuNPs-delivered TGF-β1 siRNA (AuNP-siTGFβ1) efficiently decreased the level of TGF-β1, increased cell apoptosis, and significantly inhibited the proliferation of recipient tumour cells. Systemic administration of the AuNP-siTGFβ1 complexes into human HepG2 xenografted mice likewise reduced TGF-β1 expression and downstream TGF-β1 signalling. Functionally, AuNP-siTGFβ1 strongly inhibited tumour growth and improved the survival rate of tumour-bearing mice compared with the control groups. In conclusion, our results demonstrate that the siRNA delivery system with AuNP described here appears to be a highly effective method to deliver RNAi therapeutics into tumour cells for oncotherapy. PMID:27301206

  20. The work function of sub-monolayer cesium-covered gold: A photoelectronspectroscopy study

    SciTech Connect

    LaRue, J.L.; White, J.D.; Nahler, N.H.; Liu, Z.; Sun, Y.; Pianetta, P.A.; Auerbach, D.J.; Wodtke, A.M.; /SLAC, SSRL /UC, Santa Barbara, Chem. Dept.

    2008-06-13

    Using visible and X-ray photoelectron spectroscopy we measured the work function of a Au(111) surface at a well-defined sub-monolayer coverage of Cs. For a Cs coverage producing a photoemission maximum with a He-Ne laser, the work function is 1.61 {+-} 0.08 eV consistent with previous assumptions used to analyze vibrationally promoted electron emission. A discussion of possible Cs layer structures is also presented.

  1. Gold/Lewis Acid Catalyzed Cycloisomerization/Diastereoselective [3 + 2] Cycloaddition Cascade: Synthesis of Diverse Nitrogen-Containing Spiro Heterocycles.

    PubMed

    Wang, Bin; Liang, Man; Tang, Jian; Deng, Yuting; Zhao, Jinhong; Sun, Hao; Tung, Chen-Ho; Jia, Jiong; Xu, Zhenghu

    2016-09-16

    A novel early and late transition-metal relay catalysis has been developed by combining a gold-catalyzed cycloisomerization and a Yb(OTf)3-catalyzed diastereoselective [3 + 2] cycloaddition with aziridines in a selective C-C bond cleavage mode. Various biologically significant complex nitrogen-containing spiro heterocycles were rapidly constructed from readily available starting materials under mild conditions. PMID:27574831

  2. Branched-chain amino acids and brain function.

    PubMed

    Fernstrom, John D

    2005-06-01

    Branched-chain amino acids (BCAAs) influence brain function by modifying large, neutral amino acid (LNAA) transport at the blood-brain barrier. Transport is shared by several LNAAs, notably the BCAAs and the aromatic amino acids (ArAAs), and is competitive. Consequently, when plasma BCAA concentrations rise, which can occur in response to food ingestion or BCAA administration, or with the onset of certain metabolic diseases (e.g., uncontrolled diabetes), brain BCAA concentrations rise, and ArAA concentrations decline. Such effects occur acutely and chronically. Such reductions in brain ArAA concentrations have functional consequences: biochemically, they reduce the synthesis and the release of neurotransmitters derived from ArAAs, notably serotonin (from tryptophan) and catecholamines (from tyrosine and phenylalanine). The functional effects of such neurochemical changes include altered hormonal function, blood pressure, and affective state. Although the BCAAs thus have biochemical and functional effects in the brain, few attempts have been made to characterize time-course or dose-response relations for such effects. And, no studies have attempted to identify levels of BCAA intake that might produce adverse effects on the brain. The only "model" of very high BCAA exposure is a very rare genetic disorder, maple syrup urine disease, a feature of which is substantial brain dysfunction but that probably cannot serve as a useful model for excessive BCAA intake by normal individuals. Given the known biochemical and functional effects of the BCAAs, it should be a straightforward exercise to design studies to assess dose-response relations for biochemical and functional effects and, in this context, to explore for adverse effect thresholds. PMID:15930466

  3. Ionic liquid-stabilized non-spherical gold nanofluids synthesized using a one-step method

    PubMed Central

    2012-01-01

    Ionic liquid (IL)-stabilized non-spherical gold nanofluids have been synthesized by a one-step method in aqueous solution. The whole reaction proceeded in room temperature. In the presence of amino-functionalized ionic liquids, gold nanofluids with long-wave surface plasmon resonance (SPR) absorption (>600 nm) could be obtained by adopting tannic acid as the reductant. The specific SPR absorption was related to the non-spherical gold nanoparticles including gold triangle, decahedra, and icosahedra nanocrystals. All the nanocrystals were observed by transmission electron microscopy. It was deduced that the formation of non-spherical gold nanofluids was related to the hydroxyls in tannic acid while IL acted as the synthesis template. PMID:23092303

  4. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    PubMed Central

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  5. Functional fermented whey-based beverage using lactic acid bacteria.

    PubMed

    Pescuma, Micaela; Hébert, Elvira María; Mozzi, Fernanda; de Valdez, Graciela Font

    2010-06-30

    Whey protein concentrate (WPC) is employed as functional food ingredient because of its nutritional value and emulsifying properties. However, the major whey protein beta-lactoglobulin (BLG) is the main cause of milk allergy. The aim of this study was to formulate a fermented whey beverage using selected lactic acid bacteria and WPC35 (WPC containing 35% of proteins) to obtain a fermented product with low lactose and BLG contents and high essential amino acid concentration. Cell viability, lactose consumption, lactic acid production, proteolytic activity, amino acid release and BLG degradation by the selected strains Lactobacillus acidophilus CRL 636, Lactobacillus delbrueckii subsp. bulgaricus CRL 656 and Streptococcus thermophilus CRL 804, as single or mixed (SLaB) cultures were evaluated in WPC35 (10%, w/v) incubated at 37 degrees C for 24h. Then, the fermented WPC35 was mixed with peach juice and calcium lactate (2%, w/v) and stored at 10 degrees C for 28 days. During fermentation, single cultures grew 1.7-3.1 log CFU/ml and produced 25.1-95.0 mmol/l of lactic acid as consequence of lactose consumption (14.0-41.8 mmol/l) after 12h fermentation. L. delbrueckii subsp. bulgaricus CRL 656 was the most proteolytic strain (626 microg/ml Leu) and released the branched-chain essential amino acids Leu (16 microg/ml), Ile (27 microg/ml) and Val (43 microg/ml). All strains were able to degrade BLG in a range of 41-85% after 12h incubation. The starter culture SLaB grew 3.0 log CFU/ml, showed marked pH reduction, produced 122.0 mmol/l of lactic acid, displayed high proteolytic activity (484 microg/ml Leu) releasing Leu (13 microg/ml), Ile (18 microg/ml) and Val (35 microg/ml), and hydrolyzed 92% of BLG. The addition of calcium lactate to WPC35 maintained the drink pH stable during shelf life; no contamination was detected during this period. After 28 days, a decrease in cell viability of all strains was observed being more pronounced for L. delbrueckii subsp. bulgaricus

  6. DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers.

    PubMed

    Wang, Zidong; Zhang, Jieqian; Ekman, Jonathan M; Kenis, Paul J A; Lu, Yi

    2010-05-12

    The effects of different DNA molecules of the same length on the morphology of gold nanoparticles during synthesis are investigated. While spherical nanoparticles (AuNS) are observed in the presence of 30-mer poly T, like that in the absence of DNA, 30-mer poly A or poly C induces formation of the flower-shaped gold nanoparticle (AuNF). Detailed mechanistic studies indicate that the difference in DNA affinity to the AuNP plays a major role in the different morphology control processes. The DNA adsorbed on the AuNS surface could act as template to mediate the formation of flower-like gold nanoparticles. The formation of the AuNF can result from either selective deposition of the reduced gold metal on AuNS templated by surface bound DNA or uneven growth of the AuNS due to the binding of DNA to the surface. Furthermore, DNA functionalization with high stability was realized in situ during the one-step synthesis while retaining their biorecognition ability, allowing programmable assembly of new nanostructures. We have also shown that the DNA-functionalized nanoflowers can be readily uptaken by cells and visualized under dark-field microscopy.

  7. Probing the Structures and Electronic Properties of Dual-Phosphorus-Doped Gold Cluster Anions (AunP-2, n = 1–8): A Density functional Theory Investigation

    SciTech Connect

    Xu, Kang-Ming; Huang, Teng; Liu, Yi-Rong; Jiang, Shuai; Zhang, Yang; Lv, Yu-Zhou; Gai, Yan-Bo; Huang, Wei

    2015-07-29

    The geometries of gold clusters doped with two phosphorus atoms, (AunP-2, n = 1–8) were investigated using density functional theory (DFT) methods. Various two-dimensional (2D) and three-dimensional (3D) structures of the doped clusters were studied. The results indicate that the structures of dual-phosphorus-doped gold clusters exhibit large differences from those of pure gold clusters with small cluster sizes. In our study, as for Au6P-2, two cis–trans isomers were found. The global minimum of Au8P-2 presents a similar configuration to that of Au-20, a pyramid-shaped unit, and the potential novel optical and catalytic properties of this structure warrant further attention. The higher stability of AunP-2 clusters relative to Au-n+2 (n = 1–8) clusters was verified based on various energy parameters, and the results indicate that the phosphorus atom can improve the stabilities of the gold clusters. We then explored the evolutionary path of (n = 1–8) clusters. We found that AunP-2 clusters exhibit the 2D–3D structural transition at n = 6, which is much clearer and faster than that of pure gold clusters and single-phosphorus-doped clusters. The electronic properties of AunP-2 (n = 1–8) were then investigated. The photoelectron spectra provide additional fundamental information on the structures and molecular orbitals shed light on the evolution of AunP-2 (n = 1–8). Natural bond orbital (NBO) described the charge distribution in stabilizing structures and revealed the strong relativistic effects of the gold atoms.

  8. Fatty Acid Signaling: The New Function of Intracellular Lipases

    PubMed Central

    Papackova, Zuzana; Cahova, Monika

    2015-01-01

    Until recently, intracellular triacylglycerols (TAG) stored in the form of cytoplasmic lipid droplets have been considered to be only passive “energy conserves”. Nevertheless, degradation of TAG gives rise to a pleiotropic spectrum of bioactive intermediates, which may function as potent co-factors of transcription factors or enzymes and contribute to the regulation of numerous cellular processes. From this point of view, the process of lipolysis not only provides energy-rich equivalents but also acquires a new regulatory function. In this review, we will concentrate on the role that fatty acids liberated from intracellular TAG stores play as signaling molecules. The first part provides an overview of the transcription factors, which are regulated by fatty acids derived from intracellular stores. The second part is devoted to the role of fatty acid signaling in different organs/tissues. The specific contribution of free fatty acids released by particular lipases, hormone-sensitive lipase, adipose triacylglycerol lipase and lysosomal lipase will also be discussed. PMID:25674855

  9. Functional properties and fatty acids profile of different beans varieties.

    PubMed

    Lo Turco, Vincenzo; Potortì, Angela Giorgia; Rando, Rossana; Ravenda, Pietro; Dugo, Giacomo; Di Bella, Giuseppa

    2016-10-01

    Dried seeds of four varieties of Phaseolus vulgaris, three of Vigna unguiculata ssp. unguiculata and two of Vigna angularis grown and marketed in Italy, Mexico, India, Japan, Ghana and Ivory Coast were analysed for fatty acids content. In oils from seeds of P. vulgaris, the main fatty acids were linolenic (34.7-41.5%) and linoleic (30.7-40.3%), followed by palmitic (10.7-16.8%). The first three aforementioned fatty acids in the lipid fraction of V. unguiculata varieties were 28.4, 28.7 and 26.2%, respectively; while in V. angularis varieties, main fatty acids were linoleic (36.4-39.1%) and palmitic (26.9-33.3%), followed by linolenic (17.9-22.2%). Statistical analyses indicate that botanical species play a rule in bean fatty acids distribution, while the same was not verified for geographical origin. Furthermore, the atherogenic index (AI) and the thrombogenic index (TI) were investigated for health and nutritional information. The results showed that these wide spread legumes have functional features to human health.

  10. Functional properties and fatty acids profile of different beans varieties.

    PubMed

    Lo Turco, Vincenzo; Potortì, Angela Giorgia; Rando, Rossana; Ravenda, Pietro; Dugo, Giacomo; Di Bella, Giuseppa

    2016-10-01

    Dried seeds of four varieties of Phaseolus vulgaris, three of Vigna unguiculata ssp. unguiculata and two of Vigna angularis grown and marketed in Italy, Mexico, India, Japan, Ghana and Ivory Coast were analysed for fatty acids content. In oils from seeds of P. vulgaris, the main fatty acids were linolenic (34.7-41.5%) and linoleic (30.7-40.3%), followed by palmitic (10.7-16.8%). The first three aforementioned fatty acids in the lipid fraction of V. unguiculata varieties were 28.4, 28.7 and 26.2%, respectively; while in V. angularis varieties, main fatty acids were linoleic (36.4-39.1%) and palmitic (26.9-33.3%), followed by linolenic (17.9-22.2%). Statistical analyses indicate that botanical species play a rule in bean fatty acids distribution, while the same was not verified for geographical origin. Furthermore, the atherogenic index (AI) and the thrombogenic index (TI) were investigated for health and nutritional information. The results showed that these wide spread legumes have functional features to human health. PMID:26949141

  11. Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups

    PubMed Central

    2012-01-01

    We report on how to quantify the binding affinity between a nanoparticle and chemical functional group using various experimental methods such as cantilever assay, PeakForce quantitative nanomechanical property mapping, and lateral force microscopy. For the immobilization of Au nanoparticles (AuNPs) onto a microscale silicon substrate, we have considered two different chemical functional molecules of amine and catecholamine (here, dopamine was used). It is found that catecholamine-modified surface is more effective for the functionalization of AuNPs onto the surface than the amine-modified surface, which has been shown from our various experiments. The dimensionless parameter (i.e., ratio of binding affinity) introduced in this work from such experiments is useful in quantitatively depicting such binding affinity, indicating that the binding affinity and stability between AuNPs and catecholamine is approximately 1.5 times stronger than that between amine and AuNPs. Our study sheds light on the experiment-based quantitative characterization of the binding affinity between nanomaterial and chemical groups, which will eventually provide an insight into how to effectively design the functional material using chemical groups. PMID:23113991

  12. Polysilicon-chromium-gold intracellular chips for multi-functional biomedical applications

    NASA Astrophysics Data System (ADS)

    Patiño, Tania; Soriano, Jorge; Amirthalingam, Ezhil; Durán, Sara; González-Campo, Arántzazu; Duch, Marta; Ibáñez, Elena; Barrios, Leonardo; Plaza, Jose Antonio; Pérez-García, Lluïsa; Nogués, Carme

    2016-04-01

    The development of micro- and nanosystems for their use in biomedicine is a continuously growing field. One of the major goals of such platforms is to combine multiple functions in a single entity. However, achieving the design of an efficient and safe micro- or nanoplatform has shown to be strongly influenced by its interaction with the biological systems, where particle features or cell types play a critical role. In this work, the feasibility of using multi-material pSi-Cr-Au intracellular chips (MMICCs) for multifunctional applications by characterizing their interactions with two different cell lines, one tumorigenic and one non-tumorigenic, in terms of biocompatibility, internalization and intracellular fate, has been explored. Moreover, the impact of MMICCs on the induction of an inflammatory response has been assessed by evaluating TNFα, IL1b, IL6, and IL10 human inflammatory cytokines secretion by macrophages. Results show that MMICCs are biocompatible and their internalization efficiency is strongly dependent on the cell type. Finally as a proof-of-concept, MMICCs have been dually functionalized with transferrin and pHrodo™ Red, SE to target cancer cells and detect intracellular pH, respectively. In conclusion, MMICCs can be used as multi-functional devices due to their high biocompatibility, non-inflammatory properties and the ability of developing multiple functions.

  13. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification.

    PubMed

    Liu, Shufeng; Wei, Wenji; Wang, Yanqun; Fang, Li; Wang, Li; Li, Feng

    2016-06-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the development of isothermal and ultrasensitive electrochemical DNA biosensor is very essential for biological studies and medical diagnostics. Herein, the autonomous cascade DNA replication strategy was effectively married with the enzyme/gold nanoparticle-based post-amplification strategy to promote the detection performance toward target DNA. A hairpin DNA probe (HP) is designed that consists of an overhang at 3'-end as the recognition unit for target DNA, a recognition site for nicking endonuclease, and an alkane spacer to terminate polymerization reaction. The autonomous DNA replication-scission-displacement reaction operated by the nicking endonuclease/KF polymerase induced the autocatalytic opening of HP, which was then specifically bound by the enzyme/gold nanoparticles for further dual-signal amplification toward target-related sensing events. A low detection limit of 0.065 fM with an excellent selectivity toward target DNA could be achieved. The proposed biosensor could be also easily regenerated for target detection. The developed biosensor creates an opportunity for the effective coupling of the target replication with post-amplification strategies and thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine.

  14. Loss of lung function associated with exposure to silica dust and with smoking and its relation to disability and mortality in South African gold miners.

    PubMed Central

    Hnizdo, E

    1992-01-01

    The data from a lung function study on 2209 white 45-54 year old South African gold miners in 1968-71 and at a five year follow up examination, were analysed to establish the actual loss of lung function associated with exposure to silica dust and with smoking. Ex-smokers were excluded from the analysis. Of the remaining 1625 subjects, 1249 had the five year follow up test of lung function. The estimated excess loss of lung function for a 50 year old gold miner, associated with 24 years of underground dust exposure of an average respirable dust concentration of 0.30 mg m-3 (14.4 ghm-3) was 236 ml of FEV1 (95% confidence interval (95% CI 134-337) and 217 ml of FVC (95% CI 110-324). By comparison, the effect of smoking one packet of cigarettes a day over 30 years was associated with an estimated loss of 552 ml of FEV1 (95% CI 461-644) and 335 ml of FVC (95% CI 170-500). The cumulative dust exposure was not associated with the longitudinal loss of FEV1 or FVC when the initial FEV1 and FVC were adjusted in the models. According to the predicted values, however, gold miners appear to have a greater loss of lung function from 50 to 55 years of age than that predicted for a general population. PMID:1322158

  15. Pharmacokinetic and toxicological evaluation of multi-functional thiol-6-fluoro-6-deoxy-d-glucose gold nanoparticles in vivo

    NASA Astrophysics Data System (ADS)

    Roa, Wilson; Xiong, Yeping; Chen, Jie; Yang, Xiaoyan; Song, Kun; Yang, Xiaohong; Kong, Beihua; Wilson, John; Xing, James Z.

    2012-09-01

    We synthesized a novel, multi-functional, radiosensitizing agent by covalently linking 6-fluoro-6-deoxy-d-glucose (6-FDG) to gold nanoparticles (6-FDG-GNPs) via a thiol functional group. We then assessed the bio-distribution and pharmacokinetic properties of 6-FDG-GNPs in vivo using a murine model. At 2 h, following intravenous injection of 6-FDG-GNPs into the murine model, approximately 30% of the 6-FDG-GNPs were distributed to three major organs: the liver, the spleen and the kidney. PEGylation of the 6-FDG-GNPs was found to significantly improve the bio-distribution of 6-FDG-GNPs by avoiding unintentional uptake into these organs, while simultaneously doubling the cellular uptake of GNPs in implanted breast MCF-7 adenocarcinoma. When combined with radiation, PEG-6-FDG-GNPs were found to increase the apoptosis of the MCF-7 breast adenocarinoma cells by radiation both in vitro and in vivo. Pharmacokinetic data indicate that GNPs reach their maximal concentrations at a time window of two to four hours post-injection, during which optimal radiation efficiency can be achieved. PEG-6-FDG-GNPs are thus novel nanoparticles that preferentially accumulate in targeted cancer cells where they act as potent radiosensitizing agents. Future research will aim to substitute the 18F atom into the 6-FDG molecule so that the PEG-6-FDG-GNPs can also function as radiotracers for use in positron emission tomography scanning to aid cancer diagnosis and image guided radiation therapy planning.

  16. Gold-Catalyzed Synthesis of Heterocycles

    NASA Astrophysics Data System (ADS)

    Arcadi, Antonio

    2014-04-01

    The following sections are included: * Introduction * Synthesis of Heterocycles via Gold-Catalyzed Heteroatom Addition to Unsaturated C-C Bonds * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cyclization of Polyunsaturated Compounds * Synthesis of Heterocyclic Compounds via α-Oxo Gold Carbenoid * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Cycloaddition Reactions * Synthesis of Heterocyclic Derivatives through Gold-Catalyzed Activation of Carbonyl Groups and Alcohols * Synthesis of Heterocyclic Compounds through Gold-Mediated C-H Bond Functionalization * Gold-Catalyzed Domino Cyclization/Oxidative Coupling Reactions * Conclusions * References

  17. One step electrodeposition of dendritic gold nanostructures on β-lactoglobulin-functionalized reduced graphene oxide for glucose sensing.

    PubMed

    Du, Xin; Zhang, Zhenguo; Miao, Zhiying; Ma, Min; Zhang, Yanyan; Zhang, Cong; Wang, Weizhen; Han, Bingkai; Chen, Qiang

    2015-11-01

    Dendritic gold nanostructures (AuNDs) were successfully synthesized by one step electrodeposition on reduced graphene oxide (rGO) functionalized by a globular protein, β-lactoglobulin (BLG), for the first time. Owing to its sulfhydryl groups, water-soluble BLG-rGO provided a superb platform for the growth of AuNDs. Scanning electron microscopy, Raman spectroscopy and X-ray spectroscopy analysis were used to investigate the as prepared BLG-rGO-AuNDs nanocomposite. Electrocatalytic ability of the nanocomposite was evaluated by cyclic voltammetry and chronoamperometric method. In order to prove the superiority of BLG-rGO-AuNDs, we developed a novel glucose biosensor on the nanocomposite modified glassy carbon electrode (GCE) through a cross-linking method. The biosensor exhibited a remarkable sensitivity of 46.2 μA mM(-1) cm(-2), a wide linear range of 0.05-6 mM glucose, a low detection limit of 22.9 µM (S/N=3), and a rapid response time (within 6 s). The prepared biosensor also used to detect glucose in human serum and statistical analysis in the respect of reproducibility was done. PMID:26452896

  18. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Karczewski, Jakub; Śliwiński, Gerard

    2015-12-01

    The production and properties of the indium-tin-oxide (ITO) electrodes functionalized by Au nanoparticle (NP) arrays of a relatively large area formed by pulsed laser nanostructuring of thin gold films are reported and discussed. The SEM inspection of modified electrodes reveals the presence of the nearly spherical and disc-shaped particles of dimensions in the range of 40-120 nm. The NP-array geometry can be controlled by selection of the laser processing conditions. It is shown that particle size and packing density of the array are important factors which determine the electrode performance. In the case of NP-modified electrodes the peak current corresponding to the glucose direct oxidation process shows rise with increasing glucose concentration markedly higher comparing to the reference Au disc electrode. The detection limit reaches 12 μM and linear response of the sensor is observed from 0.1 to 47 mM that covers the normal physiological range of the blood sugar detection.

  19. Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro.

    PubMed

    Tomić, Sergej; Ðokić, Jelena; Vasilijić, Saša; Ogrinc, Nina; Rudolf, Rebeka; Pelicon, Primož; Vučević, Dragana; Milosavljević, Petar; Janković, Srđa; Anžel, Ivan; Rajković, Jelena; Rupnik, Marjan Slak; Friedrich, Bernd; Colić, Miodrag

    2014-01-01

    Gold nanoparticles (GNPs) are claimed as outstanding biomedical tools for cancer diagnostics and photo-thermal therapy, but without enough evidence on their potentially adverse immunological effects. Using a model of human dendritic cells (DCs), we showed that 10 nm- and 50 nm-sized GNPs (GNP10 and GNP50, respectively) were internalized predominantly via dynamin-dependent mechanisms, and they both impaired LPS-induced maturation and allostimulatory capacity of DCs, although the effect of GNP10 was more prominent. However, GNP10 inhibited LPS-induced production of IL-12p70 by DCs, and potentiated their Th2 polarization capacity, while GNP50 promoted Th17 polarization. Such effects of GNP10 correlated with a stronger inhibition of LPS-induced changes in Ca2+ oscillations, their higher number per DC, and more frequent extra-endosomal localization, as judged by live-cell imaging, proton, and electron microscopy, respectively. Even when released from heat-killed necrotic HEp-2 cells, GNP10 inhibited the necrotic tumor cell-induced maturation and functions of DCs, potentiated their Th2/Th17 polarization capacity, and thus, impaired the DCs' capacity to induce T cell-mediated anti-tumor cytotoxicity in vitro. Therefore, GNP10 could potentially induce more adverse DC-mediated immunological effects, compared to GNP50. PMID:24802102

  20. Depth profiling of gold nanoparticles and characterization of point spread functions in reconstructed and human skin using multiphoton microscopy.

    PubMed

    Labouta, Hagar I; Hampel, Martina; Thude, Sibylle; Reutlinger, Katharina; Kostka, Karl-Heinz; Schneider, Marc

    2012-01-01

    Multiphoton microscopy has become popular in studying dermal nanoparticle penetration. This necessitates studying the imaging parameters of multiphoton microscopy in skin as an imaging medium, in terms of achievable detection depths and the resolution limit. This would simulate real-case scenarios rather than depending on theoretical values determined under ideal conditions. This study has focused on depth profiling of sub-resolution gold nanoparticles (AuNP) in reconstructed (fixed and unfixed) and human skin using multiphoton microscopy. Point spread functions (PSF) were determined for the used water-immersion objective of 63×/NA = 1.2. Factors such as skin-tissue compactness and the presence of wrinkles were found to deteriorate the accuracy of depth profiling. A broad range of AuNP detectable depths (20-100 μm) in reconstructed skin was observed. AuNP could only be detected up to ∼14 μm depth in human skin. Lateral (0.5 ± 0.1 μm) and axial (1.0 ± 0.3 μm) PSF in reconstructed and human specimens were determined. Skin cells and intercellular components didn't degrade the PSF with depth. In summary, the imaging parameters of multiphoton microscopy in skin and practical limitations encountered in tracking nanoparticle penetration using this approach were investigated.

  1. Electrochemical functionalization of gold and silicon surfaces by a maleimide group as a biosensor for immunological application.

    PubMed

    Zhang, Xin; Tretjakov, Aleksei; Hovestaedt, Marc; Sun, Guoguang; Syritski, Vitali; Reut, Jekaterina; Volkmer, Rudolf; Hinrichs, Karsten; Rappich, Joerg

    2013-03-01

    In the present study we investigated the preparation of biofunctionalized surfaces using the direct electrochemical grafting of maleimidophenyl molecules with subsequent covalent immobilization of specific peptide to detect target antibody, thereby extending the application of the biosensing systems towards immunodiagnostics. Para-maleimidophenyl (p-MP) functional groups were electrochemically grafted on gold and silicon surfaces from solutions of the corresponding diazonium salt. A specially synthesized peptide modified with cysteine (Cys-peptide) was then immobilized on the p-MP grafted substrates by cross-linking between the maleimide groups and the sulfhydryl group of the cysteine residues. Accordingly, the Cys-peptide worked as an antigen that was able to bind specifically the target antibody (anti-GST antibody), while it was non-sensitive to a negative contrast antibody (i.e. anti-Flag β). The immobilization of both specific and non-specific antibodies on the Cys-peptide-modified surfaces was monitored by infrared spectroscopic ellipsometry, a quartz crystal microbalance integrated in flow injection analysis system and potentiometric response. The results obtained clearly demonstrated that the direct modification of a surface with maleimidophenyl provides a very simple and reliable way of preparing biofunctionalized surfaces suitable for the construction of immunological biosensors.

  2. One step electrodeposition of dendritic gold nanostructures on β-lactoglobulin-functionalized reduced graphene oxide for glucose sensing.

    PubMed

    Du, Xin; Zhang, Zhenguo; Miao, Zhiying; Ma, Min; Zhang, Yanyan; Zhang, Cong; Wang, Weizhen; Han, Bingkai; Chen, Qiang

    2015-11-01

    Dendritic gold nanostructures (AuNDs) were successfully synthesized by one step electrodeposition on reduced graphene oxide (rGO) functionalized by a globular protein, β-lactoglobulin (BLG), for the first time. Owing to its sulfhydryl groups, water-soluble BLG-rGO provided a superb platform for the growth of AuNDs. Scanning electron microscopy, Raman spectroscopy and X-ray spectroscopy analysis were used to investigate the as prepared BLG-rGO-AuNDs nanocomposite. Electrocatalytic ability of the nanocomposite was evaluated by cyclic voltammetry and chronoamperometric method. In order to prove the superiority of BLG-rGO-AuNDs, we developed a novel glucose biosensor on the nanocomposite modified glassy carbon electrode (GCE) through a cross-linking method. The biosensor exhibited a remarkable sensitivity of 46.2 μA mM(-1) cm(-2), a wide linear range of 0.05-6 mM glucose, a low detection limit of 22.9 µM (S/N=3), and a rapid response time (within 6 s). The prepared biosensor also used to detect glucose in human serum and statistical analysis in the respect of reproducibility was done.

  3. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way To Reversibly Concentrate Functionalized Nanoparticles.

    PubMed

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-12-17

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.

  4. Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein.

    PubMed

    Hui, Ni; Sun, Xiaotian; Song, Zhiling; Niu, Shuyan; Luo, Xiliang

    2016-12-15

    An ultrasensitive biosensor for alpha-fetoprotein was developed based on electrochemically synthesized polyaniline (PANI) nanowires, which were functionalized with gold nanoparticles (AuNPs) and polyethylene glycols (PEG). The prepared PEG/AuNPs/PANI composite, combining the electrical conductivity of the AuNPs/PANI with the robust antifouling ability of PEG, offered an ideal substrate for the development of low fouling electrochemical biosensors. Alpha-fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker, was used as a model analyte, and its antibody was immobilized on the PEG/AuNPs/PANI for the construction of the AFP immunosensor. Using the redox current of PANI as the sensing signal, in addition to the good biocompatibility of PEG/AuNPs and the anti-biofouling property of PEG, the developed immunosensor showed improved biosensing performances, such as wide linear range and ultralow detection limit (0.007pgmL(-1)). More importantly, it is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling.

  5. Epoxyeicosatrienoic Acids and 20-Hydroxyeicosatetraenoic Acid on Endothelial and Vascular Function.

    PubMed

    Imig, J D

    2016-01-01

    Endothelial and vascular smooth cells generate cytochrome P450 (CYP) arachidonic acid metabolites that can impact endothelial cell function and vascular homeostasis. The objective of this review is to focus on the physiology and pharmacology of endothelial CYP metabolites. The CYP pathway produces two types of eicosanoid products: epoxyeicosatrienoic acids (EETs), formed by CYP epoxygenases, and hydroxyeicosatetraenoic acids (HETEs), formed by CYP hydroxylases. Advances in CYP enzymes, EETs, and 20-HETE by pharmacological and genetic means have led to a more complete understanding of how these eicosanoids impact on endothelial cell function. Endothelial-derived EETs were initially described as endothelial-derived hyperpolarizing factors. It is now well recognized that EETs importantly contribute to numerous endothelial cell functions. On the other hand, 20-HETE is the predominant CYP hydroxylase synthesized by vascular smooth muscle cells. Like EETs, 20-HETE acts on endothelial cells and impacts importantly on endothelial and vascular function. An important aspect for EETs and 20-HETE endothelial actions is their interactions with hormonal and paracrine factors. These include interactions with the renin-angiotensin system, adrenergic system, puringeric system, and endothelin. Alterations in CYP enzymes, 20-HETE, or EETs contribute to endothelial dysfunction and cardiovascular diseases such as ischemic injury, hypertension, and atherosclerosis. Recent advances have led to the development of potential therapeutics that target CYP enzymes, 20-HETE, or EETs. Thus, future investigation is required to obtain a more complete understanding of how CYP enzymes, 20-HETE, and EETs regulate endothelial cell function.

  6. Gold nanoprobes for theranostics

    PubMed Central

    Panchapakesan, Balaji; Book-Newell, Brittany; Sethu, Palaniappan; Rao, Madhusudhana; Irudayaraj, Joseph

    2011-01-01

    Gold nanoprobes have become attractive diagnostic and therapeutic agents in medicine and life sciences research owing to their reproducible synthesis with atomic level precision, unique physical and chemical properties, versatility of their morphologies, flexibility in functionalization, ease of targeting, efficiency in drug delivery and opportunities for multimodal therapy. This review highlights some of the recent advances and the potential for gold nanoprobes in theranostics. PMID:22122586

  7. ELECTROLYTIC CORROSION OF GOLD AND THE FORMATION OF Au//2(SO//4)//3 IN CONCENTRATED SULFURIC ACID.

    USGS Publications Warehouse

    Senftle, Frank E.; Wright, Donald B.

    1985-01-01

    The authors have examined the direct anodic oxidation of gold in concentrated H//2SO//4 to more fully understand the chemical reactions. Au//2(SO//4)//3 is unstable and cannot be isolated for chemical analysis, but our experiments are consistent with the formation of Au//2(SO//4)//3 in concentrated H//2SO//4, in which it is stable. Equations describing chemical reactions which are compatible with the experimental data are presented.

  8. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation.

    PubMed

    Bhat, Ravishankar; Sharanabasava, V G; Deshpande, Raghunandan; Shetti, Ullas; Sanjeev, Ganesh; Venkataraman, A

    2013-08-01

    A green chemistry approach to the synthesis of gold nanoparticles using edible mushroom Pleurotus florida (Oyster mushroom) by photo-irradiation method has been attempted. The mixture containing the aqueous gold ions and the mushroom extract was exposed to sunlight; this resulted in the formation of biofunctionalized gold nanoparticles. These nanoparticles were characterized using various techniques like UV-visible spectroscopy; X-ray diffraction studies, Energy dispersive X-ray analysis, Field emission scanning electron microscopy, Atomic force microscopy, Transmission electron microscopy and Fourier transform infrared spectrometry. The obtained biofunctionalized gold nanoparticles showed effective anti-cancer property against four different cancer cell lines A-549 (Human lung carcinoma), K-562 (Human chronic myelogenous leukemia bone marrow), HeLa (Human cervix) and MDA-MB (Human adenocarcinoma mammary gland) and no lethal effect is observed in Vero (African green monkey kidney normal cell) cell lines. PMID:23747539

  9. Alkanephosphonates on hafnium-modified gold: a new class of self-assembled organic monolayers.

    PubMed

    Jespersen, Michael L; Inman, Christina E; Kearns, Gregory J; Foster, Evan W; Hutchison, James E

    2007-03-14

    A new method for assembling organic monolayers on gold is reported that employs hafnium ions as linkers between a phosphonate headgroup and the gold surface. Monolayers of octadecylphosphonic acid (ODPA) formed on gold substrates that had been pretreated with hafnium oxychloride are representative of this new class of organic thin films. The monolayers are dense enough to completely block assembly of alkanethiols and resist displacement by alkanethiols. The composition and structure of the monolayers were investigated by contact angle goniometry, XPS, PM-IRRAS, and TOF-SIMS. From these studies, it was determined that this assembly strategy leads to the formation of ODPA monolayers similar in quality to those typically formed on metal oxide substrates. The assembly method allows for the ready generation of patterned surfaces that can be easily prepared by first patterning hafnium on the gold surface followed by alkanephosphonate assembly. Using the bifunctional (thiol-phosphonate) 2-mercaptoethylphosphonic acid (2-MEPA), we show that this new assembly chemistry is compatible with gold-thiol chemistry and use TOF-SIMS to show that the molecule attaches through the phosphonate functionality in the patterned region and through the thiol in the bare gold regions. These results demonstrate the possibility of functionalizing metal substrates with monolayers typically formed on metal oxide surfaces and show that hafnium-gold chemistry is complementary and orthogonal to well-established gold-thiol assembly strategies.

  10. Use of Spectroscopic Techniques to Reveal the Nature of the Interactions of Two Sialic Acid Specific Lectins with Gold Nanoparticles.

    PubMed

    Singha, Shuvendu; Dutta, Gopa; Bose, Partha P; Das, Subrata; Bardhan, Munmun; Chatterjee, Bishnu P; Ganguly, Tapan

    2016-01-01

    From UV-vis absorption, steady state and time resolved fluorescence measurements coupled with circular dichroism (CD) spectral studies, it was revealed that among the two lectins: Sambucus nigra agglutinin (SNA) and Saraca indica (saracin II), SNA forms stronger binding complex in the ground state with gold nanoparticles (GNPs). From the measurements of Stern-Volmer (SV) constants Ksv, and binding constants K(A) and number of binding sites two important inferences could be drawn. Firstly, the fluorescence quenching is primarily due to static quenching and secondly SNA forms stronger binding with GNPs relative to the other lectin saracin II. Synchronous fluorescence spectral measurements further substantiate this proposition of exhibiting the fully exposed tryptophan residue in case of SNA. It appears that the lectin SNA adopted a relatively looser conformation with the extended polypeptide structures leading to the exposure of the hydrophobic cavities which favoured stronger binding with GNPs. CD measurements demonstrate that gold nanoparticles when interact with the lectins (glycoproteins), no significant distortion in the structural pattern of the later occurs. The unaltered identity in the secondary structural pattern of both SNA and saracin II in presence of gold nanoparticles hints that GNPs may be used as useful drug or drug delivery systems. PMID:27398481

  11. Density functional study of gold and iron clusters on perfect and defected graphene

    NASA Astrophysics Data System (ADS)

    Srivastava, Manoj K.; Wang, Yan; Kemper, A. F.; Cheng, Hai-Ping

    2012-04-01

    Metal clusters adsorbed on graphene can give rise to interesting physical properties. Using density-functional theory calculations, we investigate Aun and Fen (n=1-5) clusters adsorbed on perfect and defected graphene with a single vacancy. With the exception of Fe clusters on defected graphene, clusters are bonded to graphene through an anchor atom. Geometries of clusters on graphene are similar to their free-standing structures except for the Fe5 cluster on perfect graphene. Compared to Au, Fe clusters are more strongly bonded to graphene. We find that it is important to include long-range van der Waals interactions for Au clusters adsorbed on perfect graphene. An Au5 cluster becomes parallel to the graphene only when the van der Waals interactions are taken into account. Charge transfer between clusters and graphene shows strong size dependency, and the amount is larger in the presence of the single vacancy on the graphene than a pristine sheet. Perfect graphene is found to be doped for Au clusters with an odd number of atoms and undoped with an even number of atoms. Magnetic moments are also calculated as a function of cluster size and an odd-even oscillation is observed in Aun-perfect as well as defected graphene system. While Fen clusters remain to be magnetic for all n, the spin of a single Fe atom on a defect site is very small due to a covalent bonding to C atoms.

  12. Synthesis and functionalization of gold nanorods for probing plasmonic enhancement mechanisms in organic photovoltaic active layers

    NASA Astrophysics Data System (ADS)

    Wadams, Robert Christopher

    DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing other nanoparticles, proteins and chemical groups. By leveraging these molecules, DNA nanostructures can be used to direct the organization of complex bio-inspired materials that may serve as smart drug delivery systems and in vitro or in vivo bio-molecular computing and diagnostic devices. In this dissertation I describe a systematic study of the thermodynamic properties of complex DNA nanostructures, including 2D and 3D DNA origami, in order to understand their assembly, stability and functionality and inform future design endeavors. It is conceivable that a more thorough understanding of DNA self-assembly can be used to guide the structural design process and optimize the conditions for assembly, manipulation, and functionalization, thus benefiting both upstream design and downstream applications. As a biocompatible nanoscale motif, the successful integration, stabilization and separation of DNA nanostructures from cells/cell lysate suggests its potential to serve as a diagnostic platform at the cellular level. Here, DNA origami was used to capture and identify multiple T cell receptor mRNA species from single cells within a mixed cell population. This demonstrates the potential of DNA nanostructure as an ideal nano scale tool for biological applications.

  13. Mechanistic study of synthesis of gold nanoparticles using multi-functional polymer

    NASA Astrophysics Data System (ADS)

    Yu, Taekyung; Kim, Rayoung; Park, Hoseok; Yi, Jonghyup; Kim, Woo-Sik

    2014-01-01

    This Letter presents a mechanistic study of the large-scale synthesis of Au nanoparticles when using branched polyethyleneimine (BPEI) as a multi-functional reducing agent, capping agent, and stabilizer. During the synthesis, the molar ratio of BPEI/HAuCl4, reaction temperature, and pH of the reacting solution were all found to be important factors in the formation, size control, and stabilization of the Au nanoparticles. The proposed synthetic route provided a highly concentrated product of Au nanoparticles (above 40 g/L), at least 10- to 200-fold more than previous methods, and can be readily applied to a large-scale process due to its simple and mild reaction conditions.

  14. Plant amino acid-derived vitamins: biosynthesis and function.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  15. Surface science investigations of oxidative chemistry on gold.

    PubMed

    Gong, Jinlong; Mullins, C Buddie

    2009-08-18

    Because of gold's resistance to oxidation and corrosion, historically chemists have considered this metal inert. However, decades ago, researchers discovered that highly dispersed gold particles on metal oxides are highly chemically active, particularly in low-temperature CO oxidations. These seminal findings spurred considerable interest in investigations and applications of gold-based materials. Since the discovery of gold's chemical activity at the nanoscale, researchers found that bulk gold also has interesting catalytic properties. Thus, it is important to understand and contrast the intrinsic chemical properties of bulk gold with those of nanoparticle Au. Despite numerous studies, the structure and active site of supported Au nanoclusters and the active oxygen species remain elusive, and model studies under well-controlled conditions could help identify these species. The {111} facet has the lowest surface energy and is the most stable and prevalent configuration of most supported gold nanoparticles. Therefore, a molecular-level understanding of the physical properties and surface chemistry of Au(111) could provide mechanistic details regarding the nature of Au-based catalysts and lead to improved catalytic processes. This Account focuses on our current understanding of oxidative chemistry on well-defined gold single crystals, predominantly from recent investigations on Au(111) that we have performed using modern surface science techniques. Our model system strategy allows us to control reaction conditions, which assists in the identification of reaction intermediates, the determination of the elementary reaction steps, and the evaluation of reaction energetics for rate-limiting steps. We have employed temperature-programmed desorption (TPD), molecular beam reactive scattering (MBRS), and Auger electron spectroscopy (AES) to evaluate surface oxidative chemistry. In some cases, we have combined these results with density functional theory (DFT) calculations

  16. Fatty acid synthesis: from CO2 to functional genomics.

    PubMed

    Ohlrogge, J; Pollard, M; Bao, X; Focke, M; Girke, T; Ruuska, S; Mekhedov, S; Benning, C

    2000-12-01

    For over 25 years there has been uncertainty over the pathway from CO(2) to acetyl-CoA in chloroplasts. On the one hand, free acetate is the most effective substrate for fatty acid synthesis by isolated chloroplasts, and free acetate concentrations reported in leaf tissue (0.1-1 mM) appear adequate to saturate fatty acid synthase. On the other hand, a clear mechanism to generate sufficient free acetate for fatty acid synthesis is not established and direct production of acetyl-CoA from pyruvate by a plastid pyruvate dehydrogenase seems a more simple and direct path. We have re-examined this question and attempted to distinguish between the alternatives. The kinetics of (13)CO(2) and (14)CO(2) movement into fatty acids and the absolute rate of fatty acid synthesis in leaves was determined in light and dark. Because administered (14)C appears in fatty acids within < 2-3 min our results are inconsistent with a large pool of free acetate as an intermediate in leaf fatty acid synthesis. In addition, these studies provide an estimate of the turnover rate of fatty acid in leaves. Studies similar to the above are more complex in seeds, and some questions about the regulation of plant lipid metabolism seem difficult to solve using conventional biochemical or molecular approaches. For example, we have little understanding of why or how some seeds produce >50% oil whereas other seeds store largely carbohydrate or protein. Major control over complex plant biochemical pathways may only become possible by understanding regulatory networks which provide 'global' control over these pathways. To begin to discover such networks and provide a broad analysis of gene expression in developing oilseeds, we have produced microarrays that display approx. 5000 seed-expressed Arabidopsis genes. Sensitivity of the arrays was 1-2 copies of mRNA/cell. The arrays have been hybridized with probes derived from seeds, leaves and roots, and analysis of expression ratios between the different tissues

  17. Dynamics of ultrathin gold layers on vitreous silica probed by density functional theory.

    PubMed

    Hühn, Carolin; Wondraczek, Lothar; Sierka, Marek

    2015-11-01

    The structure and properties of Au ultrathin films on hydroxyl-free and hydroxylated silica glass surfaces are investigated using ab initio molecular dynamics simulations. Substantial surface structure dependence of Au agglomeration behavior (solid-state dewetting) is found. On hydroxyl-free surfaces, the Au film virtually undergoes instantaneous agglomeration accompanied by the formation of voids exposing a bare silica glass surface. In contrast, simulated annealing of the Au film on hydroxylated surface models leaves its structure unchanged within the simulation time. This points to a key role of reactive defect sites in the kinetics of solid-state dewetting processes of metals deposited on the glass surface. Such sites are important for initial void nucleation and formation of metal clusters. In addition, our calculations demonstrate the crucial role of the appropriate inclusion of dispersion interactions in density functional theory simulations of metals deposited on glass surfaces. For defective, hydroxyl-free glass surfaces the dispersion correction accounts for 35% of the total adhesion energy. The effect is even more dramatic for hydroxylated glass surfaces, where adhesion energies are almost entirely due to dispersion interactions. The Au adhesion energies of 200 and 160 kJ (mol nm(2))(-1) calculated for hydroxylated glass surfaces are in good agreement with the experimental data. PMID:26426934

  18. Structural and functional organization of the animal fatty acid synthase.

    PubMed

    Smith, Stuart; Witkowski, Andrzej; Joshi, Anil K

    2003-07-01

    The entire pathway of palmitate synthesis from malonyl-CoA in mammals is catalyzed by a single, homodimeric, multifunctional protein, the fatty acid synthase. Each subunit contains three N-terminal domains, the beta-ketoacyl synthase, malonyl/acetyl transferase and dehydrase separated by a structural core from four C-terminal domains, the enoyl reductase, beta-ketoacyl reductase, acyl carrier protein and thiosterase. The kinetics and specificities of the substrate loading reaction catalyzed by the malonyl/acetyl transferase, the condensation reaction catalyzed by beta-ketoacyl synthase and chain-terminating reaction catalyzed by the thioesterase ensure that intermediates do not leak off the enzyme, saturated chains exclusively are elongated and palmitate is released as the major product. Only in the fatty acid synthase dimer do the subunits adopt conformations that facilitate productive coupling of the individual reactions for fatty acid synthesis at the two acyl carrier protein centers. Introduction of a double tagging and dual affinity chromatographic procedure has permitted the engineering and isolation of heterodimeric fatty acid synthases carrying different mutations on each subunit. Characterization of these heterodimers, by activity assays and chemical cross-linking, has been exploited to map the functional topology of the protein. The results reveal that the two acyl carrier protein domains engage in substrate loading and condensation reactions catalyzed by the malonyl/acetyl transferase and beta-ketoacyl synthase domains of either subunit. In contrast, the reactions involved in processing of the beta-carbon atom, following each chain elongation step, together with the release of palmitate, are catalyzed by the cooperation of the acyl carrier protein with catalytic domains of the same subunit. These findings suggest a revised model for the fatty acid synthase in which the two polypeptides are oriented such that head-to-tail contacts are formed both between

  19. Impact of fatty acids on brain circulation, structure and function.

    PubMed

    Haast, Roy A M; Kiliaan, Amanda J

    2015-01-01

    The use of dietary intervention has evolved into a promising approach to prevent the onset and progression of brain diseases. The positive relationship between intake of omega-3 long chain polyunsaturated fatty acids (ω3-LCPUFAs) and decreased onset of disease- and aging-related deterioration of brain health is increasingly endorsed across epidemiological and diet-interventional studies. Promising results are found regarding to the protection of proper brain circulation, structure and functionality in healthy and diseased humans and animal models. These include enhanced cerebral blood flow (CBF), white and gray matter integrity, and improved cognitive functioning, and are possibly mediated through increased neurovascular coupling, neuroprotection and neuronal plasticity, respectively. Contrary, studies investigating diets high in saturated fats provide opposite results, which may eventually lead to irreversible damage. Studies like these are of great importance given the high incidence of obesity caused by the increased and decreased consumption of respectively saturated fats and ω3-LCPUFAs in the Western civilization. This paper will review in vivo research conducted on the effects of ω3-LCPUFAs and saturated fatty acids on integrity (circulation, structure and function) of the young, aging and diseased brain.

  20. Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties.

    PubMed

    Breucker, Laura; Landfester, Katharina; Taden, Andreas

    2015-11-11

    A facile route to phosphorus-functionalized polyurethane dispersions (P-PUDs) with improved adhesion properties is presented. (Bis)phosphonic acid moieties serve as adhesion promoting sites that are covalently attached via an end-capping reaction to isocyanate-reactive polyurethane particles under aqueous conditions. The synthetic approach circumvents solubility issues, offers great flexibility in terms of polyurethane composition, and allows for the synthesis of semicrystalline systems with thermomechanical response due to reversible physical cross-linking. Differential scanning calorimetry (DSC) is used to investigate the effect of functionalization on the semicrystallinity. The end-capping conversion was determined via inductively-coupled plasma optical emission spectroscopy (ICP-OES) and was surprisingly found to be almost independent of the stoichiometry of reaction, suggesting an adsorption-dominated process. Particle charge detection (PCD) experiments reveal that a dense surface coverage of phosphonic acid groups can be attained and that, at high functionalization degrees, the phosphonic adhesion moieties are partially dragged inside the colloidal P-PUD particle. Quartz crystal microbalance with dissipation (QCMD) investigations conducted with hydroxyapatite (HAP) and stainless steel sensors as model surfaces show a greatly enhanced affinity of the aqueous P-PUDs and furthermore indicate polymer chain rearrangements and autonomous film formation under wet conditions. Due to their facile synthesis, significantly improved adhesion, and variable film properties, P-PUD systems such as the one described here are believed to be of great interest for multiple applications, e.g., adhesives, paints, anticorrosion, or dentistry. PMID:26491881

  1. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  2. Structure and function analysis of protein–nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein–nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  3. Gold electrode modified with a self-assembled glucose oxidase and 2,6-pyridinedicarboxylic acid as novel glucose bioanode for biofuel cells

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Fransaer, Jan

    2014-07-01

    In this study, we have constructed a gold electrode modified with (3-aminopropyl)trimethoxysilane/2,6-pyridinedicarboxylic acid/glucose oxidase (abbreviated as, Au/ATS/PDA/GOx) by sequential chemical adsorption. Au/ATS/PDA/GOx electrode was characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and Electrochemical Impedance Spectroscopy (EIS). The data from FT-IR illustrated deposition of ATS, PDA and GOx on the surface of gold electrode. The latter has been confirmed by EIS which showed that the electron transfer resistance of the electrode increases after adsorption of each supplementary layer. Linear sweep voltammetry (LSV) in phosphate buffer solution containing 5 mM glucose displayed that compared to Au/ATS/GOx, oxidation of glucose at Au/ATS/PDA/GOx electrode starts 461 mV earlier. This gain in potential is attributed to presence of PDA in the constructed Au/ATS/PDA/GOx electrode, which plays some sort of electron mediator for glucose oxidation. The Au/ATS/PDA/GOx electrode was stabilized by an outer layer of polystyrene sulfonate (PSS) and was connected to a Pt electrode as cathode and the non-compartmentalized cell was studied under air in phosphate buffer solution pH 7.4 containing 10 mM glucose. Under these conditions, the maximum power density reaches 0.25 μW mm-2 (25 μW cm-2) for the deposited GOx layer that has an estimated surface coverage of ∼70% of a monolayer.

  4. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  5. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

    PubMed

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G

    2015-08-19

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.

  6. Maternal dietary omega-3 fatty acids and placental function.

    PubMed

    Jones, Megan L; Mark, Peter J; Waddell, Brendan J

    2014-05-01

    The developing fetus requires substantial amounts of fatty acids to support rapid cellular growth and activity. Although the fatty acid composition delivered to the fetus is largely determined by maternal circulating levels, the placenta preferentially transfers physiologically important long-chain polyunsaturated fatty acids (LC-PUFAs), particularly omega-3 (n-3) PUFAs. Maternal dietary supplementation with n-3 PUFAs during pregnancy has been shown to increase gestation length, enhance fetal growth, and reduce the risk of pregnancy complications, although the precise mechanisms governing these effects remain uncertain. Omega-3 PUFAs are involved in several physiological pathways which could account for these effects, including anti-inflammatory, pro-resolving, and anti-oxidative pathways. Recent studies have shown that maternal dietary n-3 PUFA supplementation during rat pregnancy can reduce placental oxidative damage and increase placental levels of pro-resolving mediators, effects associated with enhanced fetal and placental growth. Because several placental disorders, such as intrauterine growth restriction, preeclampsia, and gestational diabetes mellitus, are associated with heightened placental inflammation and oxidative stress, there is considerable interest in the potential for dietary n-3 PUFAs as a therapeutic intervention for these disorders. In this study, we review the impact of dietary n-3 PUFAs on placental function, with particular focus on placental inflammation, inflammatory resolution, and oxidative stress.

  7. Maternal dietary omega-3 fatty acids and placental function.

    PubMed

    Jones, Megan L; Mark, Peter J; Waddell, Brendan J

    2014-05-01

    The developing fetus requires substantial amounts of fatty acids to support rapid cellular growth and activity. Although the fatty acid composition delivered to the fetus is largely determined by maternal circulating levels, the placenta preferentially transfers physiologically important long-chain polyunsaturated fatty acids (LC-PUFAs), particularly omega-3 (n-3) PUFAs. Maternal dietary supplementation with n-3 PUFAs during pregnancy has been shown to increase gestation length, enhance fetal growth, and reduce the risk of pregnancy complications, although the precise mechanisms governing these effects remain uncertain. Omega-3 PUFAs are involved in several physiological pathways which could account for these effects, including anti-inflammatory, pro-resolving, and anti-oxidative pathways. Recent studies have shown that maternal dietary n-3 PUFA supplementation during rat pregnancy can reduce placental oxidative damage and increase placental levels of pro-resolving mediators, effects associated with enhanced fetal and placental growth. Because several placental disorders, such as intrauterine growth restriction, preeclampsia, and gestational diabetes mellitus, are associated with heightened placental inflammation and oxidative stress, there is considerable interest in the potential for dietary n-3 PUFAs as a therapeutic intervention for these disorders. In this study, we review the impact of dietary n-3 PUFAs on placental function, with particular focus on placental inflammation, inflammatory resolution, and oxidative stress. PMID:24451224

  8. Chlamydia pneumoniae encodes a functional aromatic amino acid hydroxylase.

    PubMed

    Abromaitis, Stephanie; Hefty, P Scott; Stephens, Richard S

    2009-03-01

    Chlamydia pneumoniae is a community-acquired respiratory pathogen that has been associated with the development of atherosclerosis. Analysis of the C. pneumoniae genome identified a gene (Cpn1046) homologous to eukaryotic aromatic amino acid hydroxylases (AroAA-Hs). AroAA-Hs hydroxylate phenylalanine, tyrosine, and tryptophan into tyrosine, dihydroxyphenylalanine, and 5-hydroxytryptophan, respectively. Sequence analysis of Cpn1046 demonstrated that residues essential for AroAA-H enzymatic function are conserved and that a subset of Chlamydia species contain an AroAA-H homolog. The chlamydial AroAA-Hs are transcriptionally linked to a putative bacterial membrane transport protein. We determined that recombinant Cpn1046 is able to hydroxylate phenylalanine, tyrosine, and tryptophan with roughly equivalent activity for all three substrates. Cpn1046 is expressed within 24 h of infection, allowing C. pneumoniae to hydroxylate host stores of aromatic amino acids during the period of logarithmic bacterial growth. From these results we can conclude that C. pneumoniae, as well as a subset of other Chlamydia species, encode an AroAA-H that is able to use all three aromatic amino acids as substrates. The maintenance of this gene within a number of Chlamydia suggests that the enzyme may have an important role in shaping the metabolism or overall pathogenesis of these bacteria. PMID:19141112

  9. Fabrication of folic acid-sensitive gold nanoclusters for turn-on fluorescent imaging of overexpression of folate receptor in tumor cells.

    PubMed

    Li, Hongchang; Cheng, Yuqing; Liu, Yong; Chen, Bo

    2016-09-01

    Based on the fluorescence quenching of folic acid-sensitive bovine serum albumin-directed gold nanoclusters (BSA-AuNCs) via folic acid-induced the change of environment around BSA-AuNCs, we have constructed a turn on fluorescence imaging of folate receptor overexpressed tumor cells. In this paper, the primary fluorescence intensity of BSA-AuNCs was quenched via self-assembly of folic acid onto BSA-AuNCs to produce negligible fluorescence background, the linear range of the method was 0.1-100μg/mL with the limit of detection (LOD) of 30ng/mL (S/N=3); In the presence of overexpression of folate receptor on the surface of tumor cells, the primary fluorescence intensity of BSA-AuNCs turned on by folic acid desorbing from BSA-AuNCs, the linear range of method was 0.12-2μg/mL with the LOD of 20ng/mL (S/N=3). Additionally, due to specific and high affinity of folic acid and folate receptor, the probe had high selectivity for folate receptor, other interferences hardly changed the fluorescence intensity of the probe. Moreover, the text for cytotoxicity implied that the probe had no toxicity for tumor cells. Consequently, using the fluorescence probe, satisfactory results for the turn on imaging of folate receptor overexpressed tumor cells were obtained. A novel turn-on and red fluorescent probe for folate receptor overexpressed tumor cells was developed based on the recovery of fluorescence intensity of folic acid-sensitive BSA-AuNCs.

  10. Development of phenylboronic acid-functionalized nanoparticles for emodin delivery

    PubMed Central

    Wang, Bo; Chen, Limin; Sun, Yingjuan; Zhu, Youliang; Sun, Zhaoyan; An, Tiezhu; Li, Yuhua; Lin, Yuan; Fan, Daping; Wang, Qian

    2015-01-01

    Stable and monodisperse phenylboronic acid-functionalized nanoparticles (PBA-NPs) were fabricated using 3-((acrylamido)methyl)phenylboronic acid homopolymer (PBAH) via solvent displacement technique. The effect of operating parameters, including stirring time, initial polymer concentration and the proportion of methanol on the self-assembly process were systematically investigated. The diameters of the PBA-NPs were increased as increasing the initial PBAH concentration and the proportion of methanol. Likewise, there was a linear dependence between the size of self-assembled nanoparticles and the polymer concentration. Moreover, the dissipative particle dynamics (DPD) simulation technique was used to investigate the mechanism of self-assembly behavior of PBAH, which indicated that the interior of PBA-NPs was hydrophobic and compact, and the boronic acid groups were displayed on both the outermost and interior of PBA-NPs. The resulting PBA-NPs could successfully encapsulate emodin through PBA-diol interaction and the encapsulation efficiency (EE%) and drug loading content (DLC%) of drug-loaded PBA-NPs were 78% and 2.1%, respectively. Owing to the acid-labile feature of the boronate linkage, a reduction in environmental pH from pH 7.4 to 5.0 could trigger the disassociation of the boronate ester bonds, which could accelerate the drug release from PBA-Emodin-NPs. Besides, PBA-Emodin-NPs showed a much higher cytotoxicity to HepG2 cells (cancer cells) than that to MC-3T3-E1 cells (normal cells). These results imply that PBA-NPs would be a promising scaffold for the delivery of polyphenolic drugs. PMID:25960874

  11. Pulmonary function and clearance after prolonged sulfuric acid aerosol exposure

    SciTech Connect

    Ives, P.J. ); Gerrity, T.R.; DeWitt, P.; Folinsbee, L.J. )

    1991-03-15

    The authors studied pulmonary function and clearance responses after a 4 H exposure to 75-100 {mu}g/m{sup 3} sulfuric acid aerosol (SAA). Healthy subjects, who exercised for 30 min/H at ventilation of about 25 L/min, were exposed once to clean air and once to SAA. Oral hygiene and acidic juice gargle were used to minimize oral ammonia. Lung function tests, including spirometry, plethysmography, and partial flow-volume (PEFV) curves were performed before and after exposure. Clearance of 99m-Technetium labeled iron oxide was assessed after each exposure. The first moment of fractional tracheobronchial retention (M1TBR), after correcting for 24 H retention and normalizing to time zero, was used as an index of clearance. There were no significant changes in lung volumes, airways resistance, or maximum expiratory flows after SAA exposure. Flow at 40% of total lung capacity on PEFV curves decreased 17% (NS) after SAA exposure. Tracheobronchial clearance was accelerated after a single exposure to SAA; M1TBR decreased from 73 {plus minus} 5 min (air) to 69 {plus minus} 5 min (SAA). These results suggest that acute prolonged exposure to low levels of SAA has minimal effects on lung mechanics in healthy subjects but does produce a modest acceleration of particle clearance.

  12. Functional nucleic-acid-based sensors for environmental monitoring.

    PubMed

    Sett, Arghya; Das, Suradip; Bora, Utpal

    2014-10-01

    Efforts to replace conventional chromatographic methods for environmental monitoring with cheaper and easy to use biosensors for precise detection and estimation of hazardous environmental toxicants, water or air borne pathogens as well as various other chemicals and biologics are gaining momentum. Out of the various types of biosensors classified according to their bio-recognition principle, nucleic-acid-based sensors have shown high potential in terms of cost, sensitivity, and specificity. The discovery of catalytic activities of RNA (ribozymes) and DNA (DNAzymes) which could be triggered by divalent metallic ions paved the way for their extensive use in detection of heavy metal contaminants in environment. This was followed with the invention of small oligonucleotide sequences called aptamers which can fold into specific 3D conformation under suitable conditions after binding to target molecules. Due to their high affinity, specificity, reusability, stability, and non-immunogenicity to vast array of targets like small and macromolecules from organic, inorganic, and biological origin, they can often be exploited as sensors in industrial waste management, pollution control, and environmental toxicology. Further, rational combination of the catalytic activity of DNAzymes and RNAzymes along with the sequence-specific binding ability of aptamers have given rise to the most advanced form of functional nucleic-acid-based sensors called aptazymes. Functional nucleic-acid-based sensors (FNASs) can be conjugated with fluorescent molecules, metallic nanoparticles, or quantum dots to aid in rapid detection of a variety of target molecules by target-induced structure switch (TISS) mode. Although intensive research is being carried out for further improvements of FNAs as sensors, challenges remain in integrating such bio-recognition element with advanced transduction platform to enable its use as a networked analytical system for tailor made analysis of environmental

  13. UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids.

    PubMed

    Li, Zong-Yu; Wu, Yun-Tse; Tseng, Wei-Lung

    2015-10-28

    The use of DNA as a template has been demonstrated as an effective method for synthesizing different-sized silver nanoclusters. Although DNA-templated silver nanoclusters show outstanding performance as fluorescent probes for chemical sensing and cellular imaging, the synthesis of DNA-stabilized gold nanoclusters (AuNCs) with high fluorescence intensity remains a challenge. Here a facile, reproducible, scalable, NaBH4-free, UV-light-assisted method was developed to prepare AuNCs using repeats of 30 adenosine nucleotides (A30). The maximal fluorescence of A30-stabilized AuNCs appeared at 475 nm with moderate quantum yield, two fluorescence lifetimes, and a small amount of Au(+) on the surface of the Au core. Results of size-exclusion chromatography revealed that A30-stabilized AuNCs were more compact than A30. A series of control experiments showed that UV light played a dual role in the reduction of gold-ion precursors and the decomposition of citrate ions. A30 also acted as a stabilizer to prevent the aggregation of AuNCs. In addition, single-stranded DNA (ssDNA) consisting of an AuNC-nucleation sequence and a hybridization sequence was utilized to develop a AuNC-based ratiometric fluorescent probe in the presence of the double-strand-chelating dye SYBR Green I (SG). Under conditions of single-wavelength excitation, the combination of AuNC/SG-bearing ssDNA and perfectly matched DNA emitted fluorescence at 475 and 525 nm, respectively. The formed AuNC/SG-bearing ssDNA enabled the sensitive, selective, and ratiometric detection of specific nucleic acid targets. Finally, the AuNC-based ratiometric probes were successfully applied to determine specific nucleic acid targets in human serum.

  14. Acid-sensing ion channels: trafficking and synaptic function

    PubMed Central

    2013-01-01

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels. PMID:23281934

  15. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  16. AHL-priming functions via oxylipin and salicylic acid

    PubMed Central

    Schenk, Sebastian T.; Schikora, Adam

    2015-01-01

    Collaborative action between the host plant and associated bacteria is crucial for the establishment of an efficient interaction. In bacteria, the synchronized behavior of a population is often achieved by a density-dependent communication called quorum sensing. This behavior is based on signaling molecules, which influence bacterial gene expression. N-acyl homoserine lactones (AHLs) are such molecules in many Gram-negative bacteria. Moreover, some AHLs are responsible for the beneficial effect of bacteria on plants, for example the long chain N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) can prime Arabidopsis and barley plants for an enhanced defense. This AHL-induced resistance phenomenon, named AHL-priming, was observed in several independent laboratories during the last two decades. Very recently, the mechanism of priming with oxo-C14-HSL was shown to depend on an oxylipin and salicylic acid (SA). SA is a key element in plant defense, it accumulates during different plant resistance responses and is the base of systemic acquired resistance. In addition, SA itself can prime plants for an enhanced resistance against pathogen attack. On the other side, oxylipins, including jasmonic acid (JA) and related metabolites, are lipid-derived signaling compounds. Especially the oxidized fatty acid derivative cis-OPDA, which is the precursor of JA, is a newly described player in plant defense. Unlike the antagonistic effect of SA and JA in plant–microbe interactions, the recently described pathway functions through a synergistic effect of oxylipins and SA, and is independent of the JA signaling cascade. Interestingly, the oxo-C14-HSL-induced oxylipin/SA signaling pathway induces stomata defense responses and cell wall strengthening thus prevents pathogen invasion. In this review, we summarize the findings on AHL-priming and the related signaling cascade. In addition, we discuss the potential of AHL-induced resistance in new strategies of plant protection. PMID

  17. Design of chitosan-based nanoparticles functionalized with gallic acid.

    PubMed

    Lamarra, J; Rivero, S; Pinotti, A

    2016-10-01

    Active nanoparticles based on chitosan could be applied as a support for the modulation of gallic acid delivery. In this sense, these nanostructures could be employed in different fields such as food, packaging, and pharmaceutical areas. The design parameters of chitosan-based nanoparticles functionalized with gallic acid (GA) were optimized through RSM by means of the analysis of zeta potential (ZP) and percentage encapsulation efficiency (PEE). The nanoparticles were prepared by ionotropic gelation using tripolyphosphate (TPP), at different combinations of chitosan (CH) concentration, CH:TPP ratio and GA. Global desirability methodology allowed finding the optimum formulation that included CH 0.76% (w/w), CH:TPP ratio of 5 and 37mgGA/gCH leading to ZP of +50mV and 82% of PEE. Analysis through QuickScan and turbidity demonstrated that the most stable nanoparticle suspensions were achieved combining concentrations of chitosan ranging between 0.5 and 0.75% with CH:TPP ratios higher than 3. These suspensions had high stability confirmed by means ZP and transmittance values which were higher than +25mV and 0.21 on average, respectively, as well as nanoparticle diameters of about 140nm. FTIR revealed the occurrence of both hydrogen bond and ionic interactions of CH-TPP which allowed the encapsulation and the improvement of the stability of the active agent. PMID:27287172

  18. Density Functional Investigation of the Inclusion of Gold Clusters on a CH 3 S Self-Assembled Lattice on Au(111)

    DOE PAGES

    Allen, Darnel J.; Archibald, Wayne E.; Harper, John A.; Saputo, John C.; Torres, Daniel

    2016-01-01

    We employ first-principles density functional theoretical calculations to address the inclusion of gold (Au) clusters in a well-packed CH 3 S self-assembled lattice. We compute CH 3 S adsorption energies to quantify the energetic stability of the self-assembly and gold adsorption and dissolution energies to characterize the structural stability of a series of Au clusters adsorbed at the SAM-Au interface. Our results indicate that the inclusion of Au clusters with less than four Au atoms in the SAM-Au interface enhances the binding of CH 3 S species. In contrast, larger Au clusters destabilize the self-assembly. We attribute this effectmore » to the low-coordinated gold atoms in the cluster. For small clusters, these low-coordinated sites have significantly different electronic properties compared to larger islands, which makes the binding with the self-assembly energetically more favorable. Our results further indicate that Au clusters in the SAM-Au interface are thermodynamically unstable and they will tend to dissolve, producing Au adatoms incorporated in the self-assembly in the form of CH 3 S-Au-SCH 3 species. This is due to the strong S-Au bond which stabilizes single Au adatoms in the self-assembly. Our results provide solid insight into the impact of adatom islands at the CH 3 S-Au interface.« less

  19. Synthesis of liquid crystal silane-functionalized gold nanoparticles and their effects on the optical and electro-optic properties of a structurally related nematic liquid crystal.

    PubMed

    Mirzaei, Javad; Urbanski, Martin; Kitzerow, Heinz-S; Hegmann, Torsten

    2014-05-19

    Chemically and thermally robust liquid crystal silane-functionalized gold nanoparticles (i.e. AuNP1-AuNP3) were synthesized through silane conjugation. Colloidal dispersions of these particles with mesogenic ligands that are structurally identical (as in AuNP1, AuNP2) or compatible (as in AuNP3) with molecules of the nematic liquid crystal (N-LC) host showed superior colloidal stability and dispersibility. The thermal, optical, and electro-optic behaviors of the N-LC composites at different concentrations of each gold nanoparticle were investigated. All dispersions showed lower values for the rotational viscosity and elastic constant, but only AuNP3 with a dissimilar structure between the nanoparticle ligand and the host displayed the most drastic thermal effects and overall strongest impact on the electro-optic properties of the host. The observed results were explained considering both the structure and the density of the surface ligands of each gold nanoparticle.

  20. Fatty acid metabolism in the regulation of T cell function.

    PubMed

    Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2015-02-01

    The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes. PMID:25592731

  1. Colorimetric detection of platelet-derived growth factors through competitive interactions between proteins and functional gold nanoparticles.

    PubMed

    Lin, Tzu-En; Chen, Wei-His; Shiang, Yen-Chun; Huang, Chih-Ching; Chang, Huan-Tsung

    2011-11-15

    We have developed a colorimetric assay-using aptamer modified 13-nm gold nanoparticles (Apt-Au NPs) and fibrinogen adsorbed Au NPs (Fib-Au NPs, 56nm)-for the highly selective and sensitive detection of platelet-derived growth factors (PDGF). Apt-Au NPs and Fib-Au NPs act as recognition and reporting units, respectively. PDGF-binding-aptamer (Apt(PDGF)) and 29-base-long thrombin-binding-aptamer (Apt(thr29)) are conjugated with Au NPs to prepare functional Apt-Au NPs (Apt(PDGF)/Apt(thr29)-Au NPs) for specific interaction with PDGF and thrombin, respectively. Thrombin interacts with Fib-Au NPs in solutions to catalyze the formation of insoluble fibrillar fibrin-Au NPs agglutinates through the polymerization of the unconjugated and conjugated fibrinogen. The activity of thrombin is suppressed once it interacts with the Apt(PDGF)/Apt(thr29)-Au NPs. The suppression decreases due to steric effects through the specific interaction of PDGF with Apt(PDGF), occurring on the surfaces of Apt(PDGF)/Apt(thr29)-Au NPs. Under optimal conditions [Apt(PDGF)/Apt(thr29)-Au NPs (25pM), thrombin (400pM) and Fib-Au NPs (30pM)], the Apt(PDGF)/Apt(thr29)-Au NPs/Fib-Au NPs probe responds linearly to PDGF over the concentration range of 0.5-20nM with a correlation coefficient of 0.96. The limit of detection (LOD, signal-to-noise ratio=3) for each of the three PDGF isoforms is 0.3nM in the presence of bovine serum albumin at 100μM. When using the Apt(PDGF)/Apt(thr29)-Au NPs as selectors for the enrichment of PDGF and for the removal of interferences from cell media, the LOD for PDGF provided by this probe is 35pM. The present probe reveals that the concentration of PDGF in the three cell media is 230 (±20)pM, showing its advantages of simplicity, sensitivity, and specificity.

  2. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    PubMed

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  3. Rapid label-free visual assay for the detection and quantification of viral RNA using peptide nucleic acid (PNA) and gold nanoparticles (AuNPs).

    PubMed

    Joshi, Vinay G; Chindera, Kantaraja; Singh, Arvind Kumar; Sahoo, Aditya P; Dighe, Vikas D; Thakuria, Dimpal; Tiwari, Ashok K; Kumar, Satish

    2013-09-17

    A rapid label-free visual assay for the detection of viral RNA using peptide nucleic acid (PNA) probes and gold nanoparticles (AuNPs) is presented in this study. Diagnosis is a crucial step for the molecular surveillance of diseases, and a rapid visual test with high specificity could play a vital role in the management of viral diseases. In this assay, the specific agglomerative behavior of PNA with gold nanoparticles was manipulated by its complementation with viral RNA. The assay was able to detect 5-10 ng of viral RNA from various biological samples, such as allantoic fluids, cell culture fluids and vaccines, in 100 μl of test solution. The developed assay was more sensitive than a hemagglutination (HA) test, a routine platform test for the detection of Newcastle disease virus (NDV), and the developed assay was able to visually detect NDV with as little as 0.25 HA units of virus. In terms of the specificity, the test could discriminate single nucleotide differences in the target RNA and hence could provide visual viral genotyping/pathotyping. This observation was confirmed by pathotyping different known isolates of NDV. Further, the PNA-induced colorimetric changes in the presence of the target RNA at different RNA to PNA ratios yielded a standard curve with a linear coefficient of R(2)=0.990, which was comparable to the value of R(2)=0.995 from real-time PCR experiments with the same viral RNA. Therefore, the viral RNA in a given samples could be quantified using a simple visual spectrophotometer available in any clinical laboratory. This assay may find application in diagnostic assays for other RNA viruses, which are well known to undergo mutations, thus presenting challenges for their molecular surveillance, genotyping and quantification.

  4. Extraction of gold(III) from hydrochloric acid solutions by CTAB/n-heptane/iso-amyl alcohol/Na2SO3 microemulsion.

    PubMed

    Lu, Wenjuan; Lu, Yanmin; Liu, Fei; Shang, Kai; Wang, Wei; Yang, Yanzhao

    2011-02-28

    The extraction of Au(III) from hydrochloric acid solutions by microemulsion was studied. The extraction experiments were carried out using cetyltrimethylammonium bromide (CTAB) as surfactant and iso-amyl alcohol as co-surfactant. Au(III) was found to be extracted into the microemulsion phase due to ion pair formation such as AuCl(4)(-)CTAB(+). The influence of temperature on the extraction of Au(III) has been investigated at temperatures ranging from 288 to 313 K. Temperature was found to decrease the distribution of Au(III). Thermodynamic parameters like enthalpy and entropy of the extraction, calculated by applying Van't Hoff equation, were -36.76 kJ mol(-1) and -84.87 J mol(-1) K(-1), respectively. Furthermore, the influence of the concentrations of hydrogen ion and chloride anion on the extraction efficiency (E%) were verified. Au(III) was extracted quantitatively (E%>99%) and selectively at the whole range of HCl concentrations (0.2-5 M). Recovery of gold from electrical waste and treatment of CTAB wastewater generated from the extraction were also discussed. Thus, the extraction of Au(III) from hydrochloric acid solutions by microemulsion is an effective approach.

  5. Chains, Sheets and Droplets: Assemblies of Hydrophobic Gold Nanocrystals with Saturated Phosphatidylcholine Lipid and Squalene

    PubMed Central

    Rasch, Michael R.; Bosoy, Christian; Yu, Yixuan; Korgel, Brian A.

    2012-01-01

    Assemblies of saturated 1,2-diacyl-phosphatidylcholine lipid and hydrophobic dodecanethiol-capped 1.8 nm diameter gold nanocrystals were studied as a function of lipid chain length and the addition of the naturally-occurring oil, squalene. The gold nanocrystals formed various lipid-stabilized agglomerates, sometimes fusing with lipid vesicle bilayers. The nanocrystal assembly structure depended on the hydrocarbon chain length of the lipid fatty acids. Lipid with the shortest fatty acid length studied, dilauroyl-phosphatidylcholine, created extended chains of gold nanocrystals. Lipid with slightly longer fatty acid chains created planar sheets of nanocrystals. Further increases of the fatty acid chain length led to spherical agglomerates. The inclusion of squalene led to lipid- and nanocrystal-coated oil droplets. PMID:23033891

  6. Biologically inspired stealth peptide-capped gold nanoparticles.

    PubMed

    Nowinski, Ann K; White, Andrew D; Keefe, Andrew J; Jiang, Shaoyi

    2014-02-25

    Introduction into the human body makes most nanoparticle systems susceptible to aggregation via nonspecific protein binding. Here, we developed a peptide-capped gold nanoparticle platform that withstands aggregation in undiluted human serum at 37 °C for 24 h. This biocompatible and natural system is based on mimicking human proteins which are enriched in negatively charged glutamic acid and positively charged lysine residues on their surface. The multifunctional EKEKEKE-PPPPC-Am peptide sequence consists of a stealth glutamic acid/lysine portion combined with a surface anchoring linker containing four prolines and a cysteine. Particle stability was measured via optical spectroscopy and dynamic light scattering in single protein, high salt, and undiluted human serum solutions. In vitro cell experiments demonstrate EKEKEKE-PPPPC-Am capped gold nanoparticles effectively minimize nonspecific cell uptake by nonphagocytic bovine aortic endothelial cells and phagocytic murine macrophage RAW 264.7 cells. Cytotoxicity studies show that peptide-capped gold nanoparticles do not affect cell viability. Finally, the peptide EKEKEKE-PPPPC-Am was extended with cyclic RGD to demonstrate specific cell targeting and stealth without using poly(ethylene glycol). Adding the functional peptide via peptide sequence extension avoids complex conjugation chemistries that are used for connection to synthetic materials. Inductively coupled plasma mass spectroscopy results indicate high aortic bovine endothelial cell uptake of c[RGDfE(SGG-KEKEKE-PPPPC-Am)] capped gold nanoparticles and low uptake of the control scrambled sequence c[RDGfE(SGG-KEKEKE-PPPPC-Am)] capped gold nanoparticles.

  7. Di-heterometalation of thiol-functionalized peptide nucleic acids

    PubMed Central

    Joshi, Tanmaya; Patra, Malay; Spiccia, Leone; Gasser, Gilles

    2013-01-01

    As a proof-of-principle, two hetero-bimetallic PNA oligomers containing a ruthenium(II) polypyridyl and a cyclopentadienyl manganese tricarbonyl complex have been prepared by serial combination of solid-phase peptide coupling and in-solution thiol chemistry. Solid-phase N-terminus attachment of Ru(II)-polypyridyl carboxylic acid derivative, C1, onto the thiol-functionalized PNA backbone (H-a-a-g-t-c-t-g-c-linker-cys-NH2) has been performed by standard peptide coupling method. As two parallel approaches, the strong affinity of thiols for maleimide and haloacetyl group has been exploited for subsequent post-SPPS addition of cymantrene-based organometallic cores, C2 and C3. Michael-like addition and thioether ligation of thiol functionalized PNA1 (H-gly-a-a-g-t-c-t-g-c-linker-cys-NH2) and PNA2 (C1-a-a-g-t-c-t-g-c-linker-cys-NH2) to cymantrene maleimide and chloroacetyl derivatives, C2 and C3, respectively, has been performed. The synthesized ruthenium(II)-cymantrenyl PNA oligomers have been characterized by mass spectrometry (ESI-MS) and IR spectroscopy. The distinct Mn-CO vibrational IR stretches, between 1,924–2,074 cm−1, have been used as markers to confirm the presence of cymantrenyl units in the PNA sequences and the purity of the HPLC-purified PNA thioethers assessed using LC-MS. PMID:23422249

  8. Surface functionalization of hyaluronic acid hydrogels by polyelectrolyte multilayer films.

    PubMed

    Yamanlar, Seda; Sant, Shilpa; Boudou, Thomas; Picart, Catherine; Khademhosseini, Ali

    2011-08-01

    Hyaluronic acid (HA), an anionic polysaccharide, is one of the major components of the natural extracellular matrix (ECM). Although HA has been widely used for tissue engineering applications, it does not support cell attachment and spreading and needs chemical modification to support cellular adhesion. Here, we present a simple approach to functionalize photocrosslinked HA hydrogels by deposition of poly(l-lysine) (PLL) and HA multilayer films made by the layer-by-layer (LbL) technique. PLL/HA multilayer film formation was assessed by using fluorescence microscopy, contact angle measurements, cationic dye loading and confocal microscopy. The effect of polyelectrolyte multilayer film (PEM) formation on the physicochemical and mechanical properties of hydrogels revealed polyelectrolyte diffusion inside the hydrogel pores, increased hydrophobicity of the surface, reduced equilibrium swelling, and reduced compressive moduli of the modified hydrogels. Furthermore, NIH-3T3 fibroblasts seeded on the surface showed improved cell attachment and spreading on the multilayer functionalized hydrogels. Thus, modification of HA hydrogel surfaces with multilayer films affected their physicochemical properties and improved cell adhesion and spreading on these surfaces. This new hydrogel/PEM composite system may offer possibilities for various biomedical and tissue engineering applications, including growth factor delivery and co-culture systems.

  9. Surface Functionalization of Hyaluronic Acid Hydrogels by Polyelectrolyte Multilayer Films

    PubMed Central

    Yamanlar, Seda; Sant, Shilpa; Boudou, Thomas; Picart, Catherine; Khademhosseini, Ali

    2011-01-01

    Hyaluronic acid (HA), an anionic polysaccharide, is one of the major components of the natural extracellular matrix (ECM). Although HA has been widely used for tissue engineering applications, it does not support cell attachment and spreading and needs chemical modification to support cellular adhesion. Here, we present a simple approach to functionalize photocrosslinked HA hydrogels by deposition of poly(L-lysine) (PLL) and HA multilayer films made by the layer-by-layer (LbL) technique. PLL/HA multilayer film formation was assessed by using fluorescence microscopy, contact angle measurements, cationic dye loading and confocal microscopy. The effect of polyelectrolyte multilayer film formation on the physicochemical and mechanical properties of hydrogels revealed polyelectrolyte diffusion inside the hydrogel pores, increased hydrophobicity of the surface, reduced equilibrium swelling, and reduced compressive moduli of the modified hydrogels. Furthermore, NIH-3T3 fibroblasts seeded on the surface showed improved cell attachment and spreading on the multilayer functionalized hydrogels. Thus, modification of HA hydrogel surfaces with multilayer films affected their physicochemical properties and improved cell adhesion and spreading on these surfaces. This new hydrogel/PEM composite system may offer possibilities for various biomedical and tissue engineering applications, including growth factor delivery and co-culture systems. PMID:21571364

  10. Reduction of brain kynurenic acid improves cognitive function.

    PubMed

    Kozak, Rouba; Campbell, Brian M; Strick, Christine A; Horner, Weldon; Hoffmann, William E; Kiss, Tamas; Chapin, Douglas S; McGinnis, Dina; Abbott, Amanda L; Roberts, Brooke M; Fonseca, Kari; Guanowsky, Victor; Young, Damon A; Seymour, Patricia A; Dounay, Amy; Hajos, Mihaly; Williams, Graham V; Castner, Stacy A

    2014-08-01

    The elevation of kynurenic acid (KYNA) observed in schizophrenic patients may contribute to core symptoms arising from glutamate hypofunction, including cognitive impairments. Although increased KYNA levels reduce excitatory neurotransmission, KYNA has been proposed to act as an endogenous antagonist at the glycine site of the glutamate NMDA receptor (NMDAR) and as a negative allosteric modulator at the α7 nicotinic acetylcholine receptor. Levels of KYNA are elevated in CSF and the postmortem brain of schizophrenia patients, and these elevated levels of KYNA could contribute to NMDAR hypofunction and the cognitive deficits and negative symptoms associated with this disease. However, the impact of endogenously produced KYNA on brain function and behavior is less well understood due to a paucity of pharmacological tools. To address this issue, we identified PF-04859989, a brain-penetrable inhibitor of kynurenine aminotransferase II (KAT II), the enzyme responsible for most brain KYNA synthesis. In rats, systemic administration of PF-04859989 dose-dependently reduced brain KYNA to as little as 28% of basal levels, and prevented amphetamine- and ketamine-induced disruption of auditory gating and improved performance in a sustained attention task. It also prevented ketamine-induced disruption of performance in a working memory task and a spatial memory task in rodents and nonhuman primates, respectively. Together, these findings support the hypotheses that endogenous KYNA impacts cognitive function and that inhibition of KAT II, and consequent lowering of endogenous brain KYNA levels, improves cognitive performance under conditions considered relevant for schizophrenia.

  11. Gold Nanorods as Colorful Chromogenic Substrates for Semiquantitative Detection of Nucleic Acids, Proteins, and Small Molecules with the Naked Eye.

    PubMed

    Ma, Xiaoming; Chen, Zhitao; Kannan, Palanisamy; Lin, Zhenyu; Qiu, Bin; Guo, Longhua

    2016-03-15

    Herein, we report for the first time a colorful chromogenic substrate, which displays vivid color responses in the presence of different concentration of analytes. Our investigation reveals that the selective shortening of gold nanorods (AuNRs) could generate a series of distinct colors that covers nearly the whole visible range from 400 to 760 nm. These vivid colors can be easily distinguished by the naked eye; as a result, the accuracy of visual inspection could be greatly improved. Next, we demonstrate the utility of AuNRs as multicolor chromogenic substrate to develop a number of colorimetric immunoassay methods, e.g., multicolor enzyme-linked immunosorbent assay (ELISA), multicolor competitive ELISA, and multicolor magnetic immunoassay (MIA). These methods allow us to visually quantify the concentration of a broad range of target molecules with the naked eye, and the obtained results are highly consistent with those state-of-the-art techniques that are tested by the sophisticated apparatus. These multicolor portable and cost-effective immunoassay approaches could be potentially useful for a number of applications, for example, in-home personal healthcare, on-site environmental monitoring, and food inspection in the field.

  12. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    PubMed

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.

  13. In Vitro Administration of Gold Nanoparticles Functionalized with MUC-1 Protein Fragment Generates Anticancer Vaccine Response via Macrophage Activation and Polarization Mechanism

    PubMed Central

    Mocan, Teodora; Matea, Cristian; Tabaran, Flaviu; Iancu, Cornel; Orasan, Remus; Mocan, Lucian

    2015-01-01

    Therapeutic cancer vaccines (or active immunotherapy) aim to guide the patient's personal immune system to eradicate cancer cells. An exciting approach to cancer vaccines has been offered by nanoscale drug delivery systems containing tumor associated antigens (TAAs). Their capacity to stimulate the immune system has been suggested during late years. However, the role of the macrophages as key-elements in antigen-presentation process following TAAs-containing nanosystems is not completely understood. We aimed to evaluate the effect of gold nanoparticles functionalized with mucin-1 peptide (MUC-1) on murine peritoneal macrophages. Gold nanoparticles, obtained using a modified Turkevich method, were functionalized with MUC-1 protein using Clealand's reagent. The obtained GNP-MUC-1 solution was used to treat at various concentrations monolayers of peritoneum-derived macrophages that were further analyzed using confocal and hyperspectral microscopy, ELISA assays and spectroscopic techniques. The GNP-MUC-1 nano-construct had proven to function as a powerful macrophage activator with consequent release of cytokines such as: TNF-ɑ, IL-6, IL-10 and IL-12 on peritoneal macrophages we have isolated from mice. Our results demonstrate optimization of antigen-presenting process and predominant M1 polarization following exposure GNP-MUC-1. To our best knowledge this is the first study to evaluate the anticancer effects of a newly designed nano-biocompound on the complex antigen- processing apparatus of peritoneal macrophages. PMID:26000051

  14. Lactobacillus casei combats acid stress by maintaining cell membrane functionality.

    PubMed

    Wu, Chongde; Zhang, Juan; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-07-01

    Lactobacillus casei strains have traditionally been recognized as probiotics and frequently used as adjunct culture in fermented dairy products where lactic acid stress is a frequently encountered environmental condition. We have investigated the effect of lactic acid stress on the cell membrane of L. casei Zhang [wild type (WT)] and its acid-resistant mutant Lbz-2. Both strains were grown under glucose-limiting conditions in chemostats; following challenge by low pH, the cell membrane stress responses were investigated. In response to acid stress, cell membrane fluidity decreased and its fatty acid composition changed to reduce the damage caused by lactic acid. Compared with the WT, the acid-resistant mutant exhibited numerous survival advantages, such as higher membrane fluidity, higher proportions of unsaturated fatty acids, and higher mean chain length. In addition, cell integrity analysis showed that the mutant maintained a more intact cellular structure and lower membrane permeability after environmental acidification. These results indicate that alteration in membrane fluidity, fatty acid distribution, and cell integrity are common mechanisms utilized by L. casei to withstand severe acidification and to reduce the deleterious effect of lactic acid on the cell membrane. This detailed comparison of cell membrane responses between the WT and mutant add to our knowledge of the acid stress adaptation and thus enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. PMID:22366811

  15. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates.

    PubMed

    Izac, Marie; Garnier, Dominique; Speck, Denis; Lindley, Nic D

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium's growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports.

  16. A Functional Tricarboxylic Acid Cycle Operates during Growth of Bordetella pertussis on Amino Acid Mixtures as Sole Carbon Substrates

    PubMed Central

    Garnier, Dominique; Speck, Denis

    2015-01-01

    It has been claimed that citrate synthase, aconitase and isocitrate dehydrogenase activities are non-functional in Bordetella pertussis and that this might explain why this bacterium’s growth is sometimes associated with accumulation of polyhydroxybutyrate (PHB) and/or free fatty acids. However, the sequenced genome includes the entire citric acid pathway genes. Furthermore, these genes were expressed and the corresponding enzyme activities detected at high levels for the pathway when grown on a defined medium imitating the amino acid content of complex media often used for growth of this pathogenic microorganism. In addition, no significant PHB or fatty acids could be detected. Analysis of the carbon balance and stoichiometric flux analysis based on specific rates of amino acid consumption, and estimated biomass requirements coherent with the observed growth rate, clearly indicate that a fully functional tricarboxylic acid cycle operates in contrast to previous reports. PMID:26684737

  17. Cinchonidine adsorption on gold and gold-containing bimetallic platinum metal surfaces: an attenuated total reflection infrared and density functional theory study.

    PubMed

    Behzadi, Bahar; Vargas, Angelo; Ferri, Davide; Ernst, Karl-Heinz; Baiker, Alfons

    2006-08-31

    Adsorption of cinchonidine on monometallic Au and bimetallic Pt-Au and Pd-Au thin model films prepared by physical vapor deposition has been investigated with attenuated total reflection infrared (ATR-IR) spectroscopy. On Au the alkaloid forms an adsorbed layer that shows higher stability against desorption than the corresponding adsorption on Pt. In this adsorption layer the intermolecular interactions dominate over metal-adsorbate interactions as indicated by the absence of the spectroscopic features attributed to strongly flat adsorbed species. This behavior is further supported by Density Functional Theory (DFT) calculations indicating that flat and tilted orientations of the quinoline ring have comparable adsorption energy on Au but lower (7-10 kcal/mol) compared to adsorption on Pt (ca. 40 kcal/mol). As a consequence, the creation of a metal surface with isolated chiral sites is prevented by formation of an adsorbed structure formed by intermolecularly bound cinchonidine molecules on Au. While the binding to Pt is due to the formation of sigma-bonds to surface atoms, such aggregates are bound to Au mainly by van der Waals forces. Given this different nature of bonding of cinchonidine to Au and Pt, addition of Au to Pt and Pd films could be used to probe the changes of fractional coverage of the different adsorbed species of cinchonidine on the platinum metals. It is demonstrated that the lowering of the domain size of the platinum group metal by Au can simulate the effect of particle size on the distribution of the surface conformations of the alkaloid on a metal surface.

  18. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples.

  19. 1,4-Benzenediboronic-Acid-Induced Aggregation of Gold Nanoparticles: Application to Hydrogen Peroxide Detection and Biotin-Avidin-Mediated Immunoassay with Naked-Eye Detection.

    PubMed

    Yang, Ya-Chun; Tseng, Wei-Lung

    2016-05-17

    Hydrogen-peroxide (H2O2)-induced growth of small-sized gold nanoparticles (AuNPs) is often implemented for H2O2 sensing and plasmonic immunoassay. In contrast, there is little-to-no information in the literature regarding the application of H2O2-inhibited aggregation of citrate-capped AuNPs. This study discloses that benzene-1,4-diboronic acid (BDBA) was effective in driving the aggregation of citrate-capped AuNPs through an interaction between α-hydroxycarboxylate of citrate and boronic acids of BDBA. The H2O2-mediated oxidation of BDBA resulted in the conversion of boronic acid groups to phenol groups. The oxidized BDBA was incapable of triggering the aggregation of citrate-capped AuNPs. Thus, the presence of H2O2 prohibited BDBA-induced aggregation of citrate-capped AuNPs. The BDBA-induced aggregation of citrate-capped AuNPs can be paired with the glucose oxidase (GOx)-glucose system to design a colorimetric probe for glucose. Moreover, a H2O2·BDBA·AuNP probe was integrated with sandwich immunoassay, biotinylated antibody, and avidin-conjugated GOx for the selective naked-eye detection of rabbit immunoglobulin G (IgG) and human-prostate-specific antigen (PSA). The lowest detectable concentrations of rabbit IgG and human PSA by the naked eye were down to 0.1 and 4 ng/mL, respectively. More importantly, the proposed plasmonic immunoassay allowed the naked-eye quantification of 0-10 ng/mL PSA at an interval of 2 ng/mL in plasma samples. PMID:27091002

  20. Synthesis and characterisation of glucose-functional glycopolymers and gold nanoparticles: study of their potential interactions with ovine red blood cells.

    PubMed

    Wilkins, Laura E; Phillips, Daniel J; Deller, Robert C; Davies, Gemma-Louise; Gibson, Matthew I

    2015-03-20

    Carbohydrate-protein interactions can assist with the targeting of polymer- and nano-delivery systems. However, some potential protein targets are not specific to a single cell type, resulting in reductions in their efficacy due to undesirable non-specific cellular interactions. The glucose transporter 1 (GLUT-1) is expressed to different extents on most cells in the vasculature, including human red blood cells and on cancerous tissue. Glycosylated nanomaterials bearing glucose (or related) carbohydrates, therefore, could potentially undergo unwanted interactions with these transporters, which may compromise the nanomaterial function or lead to cell agglutination, for example. Here, RAFT polymerisation is employed to obtain well-defined glucose-functional glycopolymers as well as glycosylated gold nanoparticles. Agglutination and binding assays did not reveal any significant binding to ovine red blood cells, nor any haemolysis. These data suggest that gluco-functional nanomaterials are compatible with blood, and their lack of undesirable interactions highlights their potential for delivery and imaging applications.

  1. Transient changes in thyroid functions tests after zoledronic acid infusion.

    PubMed

    Karga, Helen; Giagourta, Irene; Papaioannou, Garyphallia; Katsichti, Paraskevi; Pardalakis, Argyris; Kassi, Georgia; Zagoreou, Apostolia; Triantaphyllopoulou, Maria; Zerva, Cherry

    2011-01-01

    Zoledronic acid (ZA) induces an acute phase response in association with elevation of serum cytokines, which possibly alter the 3 types of iodothyronine deiodinase activity. We therefore studied the possible alteration in thyroid function tests by ZA. We investigated the acute changes in serum thyroid hormones, TSH, cortisol, white blood cells, CRP, interleukin-6 (IL-6) and tumor necrosis factor (TNF-α), before (0) and 1, 2 and 3 days after iv infusion of 5 mg ZA in 24 asymptomatic postmenopausal women with osteoporosis (ZA group) in comparison with a placebo group. In the majority of patients the ZA infusion was associated with acute phase response and fever within 24h after infusion which became attenuated on day three. Concurrently with increase in serum cortisol, CRP, IL-6 and TNF-α, on day 1 and 2, total serum T3 (TT3), free T3 (fT3), total T4 (TT4) and fT4 decreased with a nadir on day 2 in association with an increase in the fT4/fT3 ratio and reverse T3 (rT3) levels. All thyroid function changes returned to the baseline levels on day 3, with cytokines still at higher levels, although lower than those on day 2. Serum TSH remained essentially unchanged throughout the study. The changes in thyroid hormones were at least in part explained by the increased TNF-α, but not by IL-6. ZA induces short term changes in thyroid hormones, characteristic of nonthyroidal illness syndrome (NTIS), in association with an increase in TNF-α and IL-6.

  2. Preparation and characterization of SPION functionalized via caffeic acid

    NASA Astrophysics Data System (ADS)

    Baykal, A.; Amir, Md.; Günerb, S.; Sözeri, H.

    2015-12-01

    Caffeic acid coated superparamagnetic iron oxide nanoparticles (SPION-CFA) was synthesized by reflux method. The structural, spectroscopic and magnetic properties were studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and Vibrating sample magnetometer (VSM) techniques. Thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of CA on the surface of SPION. The theoretical analyzes performed on recorded room temperature VSM spectrum confirmed the formation of superparamagnetic nature of SPION-CFA. The particle size dependent Langevin function was applied to determine the average magnetic particle dimension (Dmag) around 11.93 nm. In accordance, the average crystallite and particle sizes were obtained as 11.40 nm and ~12.00 nm from XRD and TEM measurements. The extrapolated specific saturation magnetization (σs) is 44.11 emu/g and measured magnetic moment is 1.83 μB. These parameters assign small order of magnetization for NPs with respect to bulk Fe3O4. Magnetic anisotropy was offered as uniaxial and calculated effective anisotropy constant (Keff) is 34.82×104 Erg/g. The size-dependent saturation magnetization suggests the existence of a magnetically inactive layer as 1.035 nm for SPION-CFA.

  3. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tripathi, Bijay P.; Schieda, M.; Shahi, Vinod K.; Nunes, Suzana P.

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm -1 at 30 °C and 16.8 × 10 -2 S cm -1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level.

  4. Colloidal gold nanorods: from reduction to growth

    NASA Astrophysics Data System (ADS)

    Park, Kyoungweon; El-Sayed, Mostafa; Srinivasarao, Mohan

    2005-03-01

    Formation of gold nanorods(NRs) in controlled reduction condition was investigated. Gold NRs were synthesized by seed mediated method where pre-made gold nanospheres were added to a growth solution containing surfactants, reducing agent and compound of gold ion and surfactant. Reduction mechanism was manipulated by changing catalytic activity of seed. Seed of different size and capping agent coverage led to different dispersity of NRs since seed plays a role as catalyst as well as nucleation site. The difference between the redox potentials of gold species and reducing agent(δE) was controlled by the strength of reducing agent and the stability of the gold compound. As δE leading to changing the morphology of resulting gold NRs. The surface of gold NRs with a series of aspect ratio was functionalized by thiolated beta cyclodextrin which binds preferentially to the end of NRs and promotes the orientation of rod-rod pair even without host-guest interaction.

  5. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  6. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

    PubMed

    Metin, Önder; Sun, Xiaolian; Sun, Shouheng

    2013-02-01

    Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives. PMID:23254519

  7. Spectroscopy of homo- and heterodimers of silver and gold nanocubes as a function of separation: a DDA simulation.

    PubMed

    Hooshmand, Nasrin; O'Neil, Daniel; Asiri, Abdullah M; El-Sayed, Mostafa

    2014-09-18

    The plasmonic fields of silver and gold nanocubes are known to be among the strongest of any plasmonic metallic nanoparticles. Aggregation dominates their use in imaging and sensing applications due to the resulting enhancement of the plasmonic field in between the nanoparticles (hot spots). The first step in the aggregation process is dimerization. In the present work, we used the discrete dipole approximation (DDA) to calculate the interdimer separation dependence of the absorption and scattering components of the localized surface plasmon resonance (LSPR) extinction of homo and heterodimers of Ag and Au nanocubes when excited parallel to their interparticle axis. We also examined the changes in the nanocube surface plasmonic field distributions as the dimer separation was varied. The results from the homodimers were as expected: as the cubes were brought together, there was a red shift in the primary plasmon band in accordance with the universal scaling law. Additionally, as the particles moved together, scattering contributed more to the overall extinction. By examining the E-field distributions, we found that the hot spot geometry changes abruptly at small separations. At very short distances, the hot spot is located between the adjacent faces and away from the corners of these faces. At larger separations it moves toward the adjacent corners. We observed apparently anomalous behavior for the heterodimer. First, the E-field resulting from excitation of the Ag dominated plasmon resonance was significantly weaker than expected. Second, the red shift of the gold dominated plasmon resonance did not follow the universal scaling law. The most likely explanation for these observations is that the silver plasmon mixes strongly with the energetically resonant, but nonplasmonic, gold interband transition to form a hybrid resonance that produces weaker overall field intensity on the two nanocubes at short separation.

  8. Titration of gold nanoparticles in phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-01

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity. PMID:26523548

  9. Titration of gold nanoparticles in phase extraction.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2015-12-01

    In the organic-aqueous phase transfer process of gold nanoparticles, there are two types of distinctive interfaces involving hydrophilic and hydrophobic ligands, the understanding of which is important for the design of functional nanomaterials for analytical/bioanalytical applications and the control over the nanoparticles' nanoactivity and nanotoxicity in different phases. This report describes new findings of an investigation of the quantitative aspect of ligand ion pairing at the capping monolayer structure that drives the phase extraction of gold nanoparticles. Alkanethiolate-capped gold nanoparticles of 8 nm diameter with high size monodispersity (RSD ∼ 5%) were first derivatized by a ligand place exchange reaction with 11-mercaptoundecanoic acid to form a mixed monolayer shell consisting of both hydrophobic (-CH3) and hydrophilic (-COOH) groups. It was followed by quantitative titration of the resulting nanoparticles with a cationic species (-NR4(+)) in a toluene phase, yielding ion pairing of -NR4(+) and -COO(-) on part of the capping monolayer. Analysis of the phase extraction allowed a quantitative determination of the percentage of ion pairing and structural changes in the capping monolayer on the nanoparticles. The results, along with morphological characterization, are discussed in terms of the interfacial structural changes and their implications on the rational design of surface-functionalized nanoparticles and fine tuning of the interfacial reactivity.

  10. Effect of acid hydrolysis on starch structure and functionality: a review.

    PubMed

    Wang, Shujun; Copeland, Les

    2015-01-01

    Acid hydrolysis is an important chemical modification that can significantly change the structural and functional properties of starch without disrupting its granular morphology. A deep understanding of the effect of acid hydrolysis on starch structure and functionality is of great importance for starch scientific research and its industrial applications. During acid hydrolysis, amorphous regions are hydrolyzed preferentially, which enhances the crystallinity and double helical content of acid hydrolyzed starch. This review discusses current understanding of the effect of acid hydrolysis on starch structure and functionality. The effects of acid hydrolysis on amylose content, chain length distribution of amylopectin molecules, molecular and crystalline organization (including lamellar structure) and granular morphology are considered. Functional properties discussed include swelling power, gelatinization, retrogradation, pasting, gel texture, and in vitro enzyme digestibility. The paper also highlights some promising applications of acid hydrolyzed starch (starch nanocrystals) in the preparation of biodegradable nanocomposites, bio-hydrogen, and slowly digestible starch-based healthy foods.

  11. Silver coated gold nanocolloids entrapped in organized Langmuir-Blodgett Film of stearic acid: Potential evidence of a new SERS active substrate

    NASA Astrophysics Data System (ADS)

    Saha, Somsubhra; Ghosh, Manash; Dutta, Bipan; Chowdhury, Joydeep

    2016-01-01

    SERS active substrate containing silver coated gold (Au@Ag) nanocolloids entrapped in the Langmuir-Blodgett (LB) film matrix of stearic acid (SA) has been reported. The SERS efficacy of the as prepared substrate has been tested with trace concentrations of Rhodamine 6G (R6G) molecules. Enhancement factors ranging from 104-1013 orders of magnitude have been estimated for the characteristic vibrational signatures of R6G molecule. The colossal enhancement factors also signify the superiority of the as prepared substrate in comparison to Au@Ag nanocolloids. The optical responses and the morphological features of the substrates are estimated with aid of UV-vis absorption spectra and FESEM, AFM images respectively. Correlations between the surface morphologies, fractal dimensions and roughness features of the as prepared substrates are also drawn. The electric field distributions around the aggregated nanocolloids entrapped in the SA matrix have been envisaged with the aid of three dimensional finite difference time domain (3D-FDTD) simulations. Tuning the interparticle localized surface plasmon (LSP) coupling between the aggregated nanocolloids may be achieved by lifting the LB film of SA at different surface pressures.

  12. Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating

    NASA Astrophysics Data System (ADS)

    Candiani, Alessandro; Bertucci, Alessandro; Giannetti, Sara; Konstantaki, Maria; Manicardi, Alex; Pissadakis, Stavros; Cucinotta, Annamaria; Corradini, Roberto; Selleri, Stefano

    2013-05-01

    We describe a novel sensing approach based on a functionalized microstructured optical fiber-Bragg grating for specific DNA target sequences detection. The inner surface of a microstructured fiber, where a Bragg grating was previously inscribed, has been functionalized by covalent linking of a peptide nucleic acid probe targeting a DNA sequence bearing a single point mutation implicated in cystic fibrosis (CF) disease. A solution of an oligonucleotide (ON) corresponding to a tract of the CF gene containing the mutated DNA has been infiltrated inside the fiber capillaries and allowed to hybridize to the fiber surface according to the Watson-Crick pairing. In order to achieve signal amplification, ON-functionalized gold nanoparticles were then infiltrated and used in a sandwich-like assay. Experimental measurements show a clear shift of the reflected high order mode of a Bragg grating for a 100 nM DNA solution, and fluorescence measurements have confirmed the successful hybridization. Several experiments have been carried out on the same fiber using the identical concentration, showing the same modulation trend, suggesting the possibility of the reuse of the sensor. Measurements have also been made using a 100 nM mismatched DNA solution, containing a single nucleotide mutation and corresponding to the wild-type gene, and the results demonstrate the high selectivity of the sensor.

  13. Gold Nanoantennas

    SciTech Connect

    2012-01-01

    An array of gold nanoantennas laced into an artificial membrane enhances the fluorescence intensity of three different molecules when they pass through plasmonic hot spots in the array. Watch for the blue, green and red flashes. The photobleaching at the end of each fluorescence event (white flashes) is indicative of single molecule observations.

  14. Glutathione-induced aggregation of gold nanoparticles: electromagnetic interactions in a closely packed assembly.

    PubMed

    Basu, Soumen; Pal, Tarasankar

    2007-06-01

    Gold nanoparticles of variable sizes have been prepared by reducing HAuCl4 with trisodium citrate by Frens' method. The synthesized gold particles show intense surface plasmon band in the visible region. The optical resonances in the visible are due to the surface plasmon oscillation, which is a function of geometry of the particles. The work reported here describes the interaction between nanoscale gold particles and a biomolecule, glutathione at low pH. Glutathione, which is a major cellular antioxidant and consists of amino acids glutamic acid, cysteine, and glycine, has been used as a molecular linker between the gold nanoparticles. In glutathione, the reactivity of the a-amines (adjacent to -COOH) is found to be pH-dependent. Linking via the a-amines are activated at low pH but suppressed at high pH due to electrostatic repulsive forces between the gold surfaces and the charged carboxylate groups. In colloidal solutions, the colour of gold nanoparticles may range from red to purple to blue, depending on the degree of aggregation as well as orientation of the individual particles within the aggregates. The citrate-functionalized gold nanoparticles with glutathione in variable acidic pH condition produce different but well-ordered aggregates. It is observed that a new peak appearing at a longer wavelength intensifies and shifts further to the red from the original peak position depending on the particle size, concentration of glutathione, and pH of the solution. The aggregates have been characterized by UV/Vis, FTIR, XRD, and TEM. On the basis of the first appearance of a clearly defined new peak at longer wavelength, a higher sensitivity of glutathione detection has been achieved with gold nanoparticles of larger dimension.

  15. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhi; Luo, Yu; Yang, Shuohui; Lin, Jiang; Gao, Dongmei; Zhao, Yan; Liu, Jinguo; Shi, Xiangyang; Wang, Xiaolin

    2016-09-01

    Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. The early and effective diagnosis has always been desired. Herein, we present the preparation and characterization of hyaluronic acid (HA)-modified, multifunctional nanoparticles (NPs) targeting CD44 receptor-expressing cancer cells for computed tomography (CT)/magnetic resonance (MR) dual-mode imaging. We first modified amine-terminated generation 5 poly(amidoamine) dendrimers (G5.NH2) with an Mn chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), fluorescein isothiocyanate (FI), and HA. Then, gold nanoparticles (AuNPs) were entrapped within the above raw product, denoted as G5.NH2-FI-DOTA-HA. The designed multifunctional NPs were formed after further Mn chelation and purification and were denoted as {(Au0)100G5.NH2-FI-DOTA(Mn)-HA}. These NPs were characterized via several different techniques. We found that the {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} NPs exhibited good water dispersibility, stability under different conditions, and cytocompatibility within a given concentration range. Because both AuNPs and Mn were present in the product, {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} displayed a high X-ray attenuation intensity and favorable r1 relaxivity, which are advantageous properties for targeted CT/MR dual-mode imaging. This approach was used to image HCC cells in vitro and orthotopically transplanted HCC tumors in a unique in vivo model through the CD44 receptor-mediated endocytosis pathway. This work introduces a novel strategy for preparing multifunctional NPs via dendrimer nanotechnology.

  16. Hyaluronic acid-modified manganese-chelated dendrimer-entrapped gold nanoparticles for the targeted CT/MR dual-mode imaging of hepatocellular carcinoma

    PubMed Central

    Wang, Ruizhi; Luo, Yu; Yang, Shuohui; Lin, Jiang; Gao, Dongmei; Zhao, Yan; Liu, Jinguo; Shi, Xiangyang; Wang, Xiaolin

    2016-01-01

    Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. The early and effective diagnosis has always been desired. Herein, we present the preparation and characterization of hyaluronic acid (HA)-modified, multifunctional nanoparticles (NPs) targeting CD44 receptor-expressing cancer cells for computed tomography (CT)/magnetic resonance (MR) dual-mode imaging. We first modified amine-terminated generation 5 poly(amidoamine) dendrimers (G5.NH2) with an Mn chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), fluorescein isothiocyanate (FI), and HA. Then, gold nanoparticles (AuNPs) were entrapped within the above raw product, denoted as G5.NH2-FI-DOTA-HA. The designed multifunctional NPs were formed after further Mn chelation and purification and were denoted as {(Au0)100G5.NH2-FI-DOTA(Mn)-HA}. These NPs were characterized via several different techniques. We found that the {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} NPs exhibited good water dispersibility, stability under different conditions, and cytocompatibility within a given concentration range. Because both AuNPs and Mn were present in the product, {(Au0)100G5.NH2-FI-DOTA(Mn)-HA} displayed a high X-ray attenuation intensity and favorable r1 relaxivity, which are advantageous properties for targeted CT/MR dual-mode imaging. This approach was used to image HCC cells in vitro and orthotopically transplanted HCC tumors in a unique in vivo model through the CD44 receptor-mediated endocytosis pathway. This work introduces a novel strategy for preparing multifunctional NPs via dendrimer nanotechnology. PMID:27653258

  17. Benzylidene Acetal Protecting Group as Carboxylic Acid Surrogate: Synthesis of Functionalized Uronic Acids and Sugar Amino Acids.

    PubMed

    Banerjee, Amit; Senthilkumar, Soundararasu; Baskaran, Sundarababu

    2016-01-18

    Direct oxidation of the 4,6-O-benzylidene acetal protecting group to C-6 carboxylic acid has been developed that provides an easy access to a wide range of biologically important and synthetically challenging uronic acid and sugar amino acid derivatives in good yields. The RuCl3 -NaIO4 -mediated oxidative cleavage method eliminates protection and deprotection steps and the reaction takes place under mild conditions. The dual role of the benzylidene acetal, as a protecting group and source of carboxylic acid, was exploited in the efficient synthesis of six-carbon sialic acid analogues and disaccharides bearing uronic acids, including glycosaminoglycan analogues.

  18. Enhanced functional properties of tannic acid after thermal hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal hydrolysis processing of fresh tannic acid was carried out in a closed reactor at four different temperatures (65, 100, 150 and 200°C). Pressures reached in the system were 1.3 and 4.8 MPa at 150 and 200°C, respectively. Hydrolysis products (gallic acid and pyrogallol) were separated and qua...

  19. Gold-Catalyzed Highly Selective Photoredox C(sp(2) )-H Difluoroalkylation and Perfluoroalkylation of Hydrazones.

    PubMed

    Xie, Jin; Zhang, Tuo; Chen, Fei; Mehrkens, Nina; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-02-18

    The first gold-catalyzed photoredox C(sp(2) )-H difluoroalkylation and perfluoroalkylation of hydrazones with readily available RF -Br reagents is reported. The resulting gem-difluoromethylated and perfluoroalkylated hydrazones are highly functionalized, versatile molecules. A mild reduction of the coupling products can efficiently produce gem-difluoromethylated β-amino phosphonic acids and β-amino acid derivatives. In mechanistic studies, a difluoroalkyl radical intermediate was detected by an EPR spin-trapping experiment, indicating that a gold-catalyzed radical pathway is operating. PMID:26800002

  20. Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers

    PubMed Central

    2013-01-01

    Background Polylactic acid (PLA) is considered to be a sustainable alternative to petroleum-based polymers for many applications. Using cellulose fiber to reinforce PLA is of great interest recently due to its complete biodegradability and potential improvement of the mechanical performance. However, the dispersion of hydrophilic cellulose fibers in the hydrophobic polymer matrix is usually poor without using hazardous surfactants. The goal of this study was to develop homogenously dispersed cellulose nanowhisker (CNW) reinforced PLA composites using whole milk casein protein, which is an environmentally compatible dispersant. Results In this study, whole milk casein was chosen as a dispersant in the PLA-CNW system because of its potential to interact with the PLA matrix and cellulose. The affinity of casein to PLA was studied by surface plasmon resonance (SPR) imaging. CNWs were functionalized with casein and used as reinforcements to make PLA composites. Fluorescent staining of CNWs in the PLA matrix was implemented as a novel and simple way to analyze the dispersion of the reinforcements. The dispersion of CNWs in PLA was improved when casein was present. The mechanical properties of the composites were studied experimentally. Compared to pure PLA, the PLA composites had higher Young’s modulus. Casein (CS) functionalized CNW reinforced PLA (PLA-CS-CNW) at 2 wt% filler content maintained higher strain at break compared to normal CNW reinforced PLA (PLA-CNW). The Young’s modulus of PLA-CS-CNW composites was also higher than that of PLA-CNW composites at higher filler content. However, all composites exhibited lower strain at break and tensile strength at high filler content. Conclusions The presence of whole milk casein improved the dispersion of CNWs in the PLA matrix. The improved dispersion of CNWs provided higher modulus of the PLA composites at higher reinforcement loading and maintained the strain and stress at break of the composites at relatively low

  1. Biological Function of Acetic Acid-Improvement in Obesity and Glucose Tolerance by Acetic Acid in Type 2 Diabetic Rats.

    PubMed

    Yamashita, Hiromi

    2016-07-29

    Fatty acids derived from adipose tissue are oxidized by β-oxidation to form ketone bodies as final products under the starving condition. Previously, we found that free acetic acid was formed concomitantly with the production of ketone bodies in isolated rat liver perfusion, and mitochondrial acetyl CoA hydrolase was appeared to be involved with the acetic acid production. It was revealed that acetic acid was formed as a final product of enhanced β-oxidation of fatty acids and utilized as a fuel in extrahepatic tissues under the starving condition. Under the fed condition, β-oxidation is suppressed and acetic acid production is decreased. When acetic acid was taken daily by obesity-linked type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats under the fed condition, it protected OLETF rats against obesity. Furthermore, acetic acid contributed to protect from the accumulation of lipid in the liver as well as abdominal fat in OLETF rats. Transcripts of lipogenic genes in the liver were decreased, while transcripts of myoglobin and Glut4 genes in abdominal muscles were increased in the acetic acid-administered OLETF rats. It is indicated that exogenously administered acetic acid would have effects on lipid metabolism in both the liver and the skeletal muscles, and have function that works against obesity and obesity-linked type 2 diabetes.

  2. Acute exposure to realistic acid fog: Effects on respiratory function and airway responsiveness in asthmatics

    SciTech Connect

    Leduc, D.; De Vuyst, P.; Yernault, J.C.

    1995-11-01

    The biological effects of acid fog composed primarily of ammonium ions and sulfate are described. Subjects with asthma were exposed for one hour to sulfuric acid aerosol. Significant changes were not observed. Other asthma subjects were exposed to acid fog containing sulfate and ammonium ions. Again, pulmonary and bronchial function were not modified after inhalation.

  3. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus.

    PubMed

    Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua

    2016-08-15

    Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments.

  4. Density functional theory calculations on dipeptide gallic acid interaction

    NASA Astrophysics Data System (ADS)

    Madhan, B.; Parthasarathi, R.; Subramanian, V.; Raghava Rao, J.; Nair, Balachandran Unni; Ramasami, T.

    2003-02-01

    In the present investigation, an attempt has been made to study the interaction of dipeptides with gallic acid, using Becke3 parameter Lee Yang Parr (B3LYP) method employing 3-21G*, 6-31G* and 6-31+G* basis sets. The interaction energies of the dipeptide-gallic acid complexes are in the range of -5 to -18 kcal/mol depending on the mode of intermolecular complexation. Calculated molecular electrostatic potential (MESP) for the various intermolecular complexes revealed the electrostatic nature of the interaction. Qualitative estimations based on chemical hardness and chemical potential demonstrated fractional electron transfer from dipeptide to gallic acid.

  5. A highly sensitive gold nanoparticle-based colorimetric probe for pyrophosphate using a competition assay approach.

    PubMed

    Kim, Sudeok; Eom, Min Sik; Kim, Seung Kyung; Seo, Seong Hyeok; Han, Min Su

    2013-01-01

    In this study, a mixture of [Zn(2)(1,3-bis[bis(2-pyridylmethyl)aminomethyl]benzene)](4+) ([Zn(2)(BBPAB)](4+)) and 11-mercaptoundecylphosphoric acid functionalized gold nanoparticles (Phos-AuNPs) is shown to be a highly sensitive colorimetric probe that can easily detect pyrophosphate (PPi) at less than 200 nM with the naked eye.

  6. Gold-catalyzed cyclization reactions of allenol and alkynol derivatives.

    PubMed

    Alcaide, Benito; Almendros, Pedro

    2014-03-18

    Although gold is chemically inert as a bulk metal, the landmark discovery that gold nanoparticles can be effective catalysts has opened up new and exciting research opportunities in the field. In recent years, there has been growth in the number of reactions catalyzed by gold complexes [gold(I) and gold(III)], usually as homogeneous catalysts, because they are soft Lewis acids. In addition, alkynes and allenes have interesting reactivities and selectivities, notably their ability to produce complex structures in very few steps. In this Account, we describe our work in gold catalysis with a focus on the formation of C-C and C-O bonds using allenes and alkynes as starting materials. Of these, oxa- and carbo-cyclizations are perhaps the best known and most frequently studied. We have divided those contributions into sections arranged according to the nature of the starting material (allene versus alkyne). Gold-catalyzed carbocyclizations in allenyl C2-linked indoles, allenyl-β-lactams, and allenyl sugars follow different mechanistic pathways. The cyclization of indole-tethered allenols results in the efficient synthesis of carbazole derivatives, for example. However, the compound produced from gold-catalyzed 9-endo carbocyclization of (aryloxy)allenyl-tethered 2-azetidinones is in noticeable contrast to the 5-exo hydroalkylation product that results from allenyl sugars. We have illustrated the unusual preference for the 4-exo-dig cyclization in allene chemistry, as well as the rare β-hydride elimination reaction, in gold catalysis from readily available α-allenols. We have also observed in γ-allenols that a (methoxymethyl)oxy protecting group not only masks a hydroxyl functionality but also exerts directing effects as a controlling unit in a gold-catalyzed regioselectivity reversal. Our recent work has also led to a combined experimental and computational study on regioselective gold-catalyzed synthetic routes to 1,3-oxazinan-2-ones (kinetically controlled

  7. Growing gold fractal nano-structures and studying changes in their morphology as a function of film growth rate

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Banerjee, S. S.

    2016-10-01

    We investigate the formation of fractal like nano-structures on free standing gold films grown via surfactant mediated thin film growth process. We determine these structures to be confined within the first few monolayers of the thin film. Their chemical composition is identical to that of the Au film, although their density is different from the surrounding film. We observe changes in the morphology of these fractal structures by controlling the film growth rate, which spans across three orders of magnitude. From our study, we quantify the morphological changes in the fractal structure via a roundness parameter and we suggest an empirical relation between the roundness parameter and the growth rate. The study shows an inverse relationship between the roundness parameter and the growth rate and also that the fractal to compact morphological transition is continuous.

  8. A Comparison of Contemporary Gold Versus Platinum Thermocouples with NIST SRM 1749-Based Thermocouples and Reference Function

    NASA Astrophysics Data System (ADS)

    Coleman, M. J.; Wiandt, T. J.; Harper, T.

    2015-12-01

    Fluke Calibration (formerly Hart Scientific) in American Fork, Utah, USA is a manufacturer of temperature calibration instruments. The company manufactured reference standard gold versus platinum (Au-Pt) thermocouples from 1992 to about 2002. Manufacturing was halted in 2002 because a trend of poor curve-fit results was observed in new batches of wire. After reviewing the possible sources of the problem, it was decided to sample wire from multiple manufacturers and investigate ways to make the curve-fit work better. This paper presents the results from the study of the wire and a characterization technique to help improve characterization of thermocouples made with lower purity wire. Calibration results from NIST SRM material and older Fluke thermocouples are included as well to provide a means of comparison of contemporary wire to NIST SRM era wire.

  9. GOLD: The Genomes Online Database

    DOE Data Explorer

    Kyrpides, Nikos; Liolios, Dinos; Chen, Amy; Tavernarakis, Nektarios; Hugenholtz, Philip; Markowitz, Victor; Bernal, Alex

    Since its inception in 1997, GOLD has continuously monitored genome sequencing projects worldwide and has provided the community with a unique centralized resource that integrates diverse information related to Archaea, Bacteria, Eukaryotic and more recently Metagenomic sequencing projects. As of September 2007, GOLD recorded 639 completed genome projects. These projects have their complete sequence deposited into the public archival sequence databases such as GenBank EMBL,and DDBJ. From the total of 639 complete and published genome projects as of 9/2007, 527 were bacterial, 47 were archaeal and 65 were eukaryotic. In addition to the complete projects, there were 2158 ongoing sequencing projects. 1328 of those were bacterial, 59 archaeal and 771 eukaryotic projects. Two types of metadata are provided by GOLD: (i) project metadata and (ii) organism/environment metadata. GOLD CARD pages for every project are available from the link of every GOLD_STAMP ID. The information in every one of these pages is organized into three tables: (a) Organism information, (b) Genome project information and (c) External links. [The Genomes On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata, Konstantinos Liolios, Konstantinos Mavromatis, Nektarios Tavernarakis and Nikos C. Kyrpides, Nucleic Acids Research Advance Access published online on November 2, 2007, Nucleic Acids Research, doi:10.1093/nar/gkm884]

    The basic tables in the GOLD database that can be browsed or searched include the following information:

    • Gold Stamp ID
    • Organism name
    • Domain
    • Links to information sources
    • Size and link to a map, when available
    • Chromosome number, Plas number, and GC content
    • A link for downloading the actual genome data
    • Institution that did the sequencing
    • Funding source
    • Database where information resides
    • Publication status and information

    • Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid.

      PubMed

      Li, Jing; Lin, Xiang-Qin

      2007-07-23

      A novel biosensor was fabricated by electrochemical deposition of gold nanoclusters on ultrathin overoxidized polypyrrole (PPyox) film, formed a nano-Au/PPyox composite on glassy carbon electrode (nano-Au/PPyox/GCE). The properties of the nanocomposite have been characterized by field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and electrochemical investigations. The nano-Au/PPyox/GCE had strongly catalytic activity toward the oxidation of epinephrine (EP), uric acid (UA) and ascorbic acid (AA), and resolved the overlapping voltammetric response of EP, UA and AA into three well-defined peaks with a large anodic peak difference. The catalytic peak currents obtained from differential pulse voltammetry increased linearly with increasing EP and UA concentrations in the range of 3.0x10(-7) to 2.1x10(-5) M and 5.0x10(-8) to 2.8x10(-5) M with a detection limit of 3.0x10(-8) and 1.2x10(-8) M (s/n=3), respectively. The results showed that the modified electrode can selectively determine EP and UA in the coexistence of a large amount of AA. In addition, the sensor exhibited excellent sensitivity, selectivity and stability. The nano-Au/PPyox/GCE has been applied to determination of EP in epinephrine hydrochloride injection and UA in urine samples with satisfactory results.

    • Synthesis and Characterization of Curcumin-Functionalized HP-β-CD-Modified GoldMag Nanoparticles as Drug Delivery Agents.

      PubMed

      Lian, Ting; Peng, Mingli; Vermorken, Alphons J M; Jin, Yanyan; Luo, Zhiyi; Van de Ven, Wim J M; Wan, Yinsheng; Hou, Peng; Cui, Yali

      2016-06-01

      Curcumin, a polyphenol extracted from turmeric (Curcuma longa), has emerged as a potent multimodal cancer-preventing agent. It may attenuate the spread of cancer and render chemotherapy more effective. However, curcumin is neither well absorbed nor well retained in the blood, resulting in low efficacy. In an attempt to enhance the potency and to improve the bioavailability of curcumin, new delivery agents, hydroxypropyl-beta-cyclodextrin (HP-β-CD)-modified GoldMag nanoparticles (CD-GMNs) were designed and synthesized to incorporate curcumin. The CD-GMNs were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-gravimetric Analysis (TGA), X-ray Diffraction (XRD), Dynamic Light Scattering measurements (DLS), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM) analyses. For the magnetic carrier of CD-GMNs, the content of HP-β-CD was 26.9 wt%. CD-GMNs have a saturation magnetization of 22.7 emu/g with an average hydrodynamic diameter of 80 nm. The curcumin loading, encapsulation efficiency and releasing properties in vitro were also investigated. The results showed that the drug encapsulation ratio was 88% and the maximum curcumin loading capacity of CD-GMNs was 660 μg/5 mg. In vitro drug release studies showed a controlled and pH-sensitive curcumin release over a period of one week. Collectively, our data suggest that HP-β-CD-modified GoldMag nanoparticles can be considered to form a promising delivery system for curcumin to tumor sites. Targeting can be achieved by the combined effects of the application of an external magnetic field and the effect on drug release of lower pH values often found in the tumor microenvironment.

    • Synthesis and Characterization of Curcumin-Functionalized HP-β-CD-Modified GoldMag Nanoparticles as Drug Delivery Agents.

      PubMed

      Lian, Ting; Peng, Mingli; Vermorken, Alphons J M; Jin, Yanyan; Luo, Zhiyi; Van de Ven, Wim J M; Wan, Yinsheng; Hou, Peng; Cui, Yali

      2016-06-01

      Curcumin, a polyphenol extracted from turmeric (Curcuma longa), has emerged as a potent multimodal cancer-preventing agent. It may attenuate the spread of cancer and render chemotherapy more effective. However, curcumin is neither well absorbed nor well retained in the blood, resulting in low efficacy. In an attempt to enhance the potency and to improve the bioavailability of curcumin, new delivery agents, hydroxypropyl-beta-cyclodextrin (HP-β-CD)-modified GoldMag nanoparticles (CD-GMNs) were designed and synthesized to incorporate curcumin. The CD-GMNs were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-gravimetric Analysis (TGA), X-ray Diffraction (XRD), Dynamic Light Scattering measurements (DLS), Transmission Electron Microscopy (TEM) and Vibrating Sample Magnetometer (VSM) analyses. For the magnetic carrier of CD-GMNs, the content of HP-β-CD was 26.9 wt%. CD-GMNs have a saturation magnetization of 22.7 emu/g with an average hydrodynamic diameter of 80 nm. The curcumin loading, encapsulation efficiency and releasing properties in vitro were also investigated. The results showed that the drug encapsulation ratio was 88% and the maximum curcumin loading capacity of CD-GMNs was 660 μg/5 mg. In vitro drug release studies showed a controlled and pH-sensitive curcumin release over a period of one week. Collectively, our data suggest that HP-β-CD-modified GoldMag nanoparticles can be considered to form a promising delivery system for curcumin to tumor sites. Targeting can be achieved by the combined effects of the application of an external magnetic field and the effect on drug release of lower pH values often found in the tumor microenvironment. PMID:27427699

    • Xenobiotic, bile acid, and cholesterol transporters: function and regulation.

      PubMed

      Klaassen, Curtis D; Aleksunes, Lauren M

      2010-03-01

      Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of

    • Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

      PubMed Central

      Aleksunes, Lauren M.

      2010-01-01

      Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

    • Gold supported on zirconia polymorphs for hydrogen generation from formic acid in base-free aqueous medium

      NASA Astrophysics Data System (ADS)

      Bi, Qing-Yuan; Lin, Jian-Dong; Liu, Yong-Mei; He, He-Yong; Huang, Fu-Qiang; Cao, Yong

      2016-10-01

      Formic acid (FA) has attracted considerable attention as a safe and convenient hydrogen storage material for renewable energy transformation. However, development of an efficient heterogeneous catalyst for selective FA decomposition for ultraclean H2 gas in the absence of any alkalis or additives under mild conditions remains a major challenge. Based on our previous work on Au/ZrO2 as a robust and efficient catalyst for FA dehydrogenation in amine system, we report here ZrO2 with different nanocrystal polymorphs supported Au nanoparticles can achieve near completion of FA dehydrogenation in base-free aqueous medium. Of significant importance is that an excellent rate of up to 81.8 L H2 gAu-1 h-1 in open system and highly pressurized gas of 5.9 MPa in closed one can be readily attained at 80 °C for Au/m-ZrO2. In situ diffuse reflectance infrared Fourier transform (DRIFT) and CO2-temperature programmed desorption (TPD) techniques revealed that Au/m-ZrO2 exhibits a higher density of surface basic sites than Au/t-ZrO2 and Au/a-ZrO2. Basic sites in surface can substantially facilitate crucial FA deprotonation process which appears to be a key factor for achieving high dehydrogenation activity. The H/D exchange between solvent of H2O and substrate of FA was observed by the kinetic isotope effect experiments.

    • High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid.

      PubMed

      Jia, Jin-Liang; Xu, Han-Hong; Zhang, Gui-Rong; Hu, Zhun; Xu, Bo-Qing

      2012-12-14

      Nearly monodisperse Au nanorods (NRs) with different aspect ratios were separated from home-synthesized polydisperse samples using a gradient centrifugation method. The morphology, size and its distribution, and photo-absorption property were analyzed by transmission electron microscopy, atomic force microscopy and UV-visible spectroscopy. Subsequently, using colloidal Au NRs (36.2 nm ×10.7 nm) with 97.4% yield after centrifugation and Au nanospheres (NSs) (22.9 ± 1.0 nm in diameter) with 97.6% yield as Au substrates, surface-enhanced Raman scattering (SERS) spectra of 2,4-dichlorophenoxyacetic acid (2,4-D) were recorded using laser excitation at 632.8 nm. Results show that surface enhancement factors (EF) for Au NRs and NSs are 6.2 × 10(5) and 5.7 × 10(4) using 1.0 × 10(-6) M 2,4-D, respectively, illustrating that EF value is a factor of ~10 greater for Au NRs substrates than for Au NSs substrates. As a result, large EF are a mainly result of chemical enhancement mechanisms. Thus, it is expected that Au NPs can find a comprehensive SERS application in the trace detection of pesticide residues.

    • High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid

      NASA Astrophysics Data System (ADS)

      Jia, Jin-Liang; Xu, Han-Hong; Zhang, Gui-Rong; Hu, Zhun; Xu, Bo-Qing

      2012-12-01

      Nearly monodisperse Au nanorods (NRs) with different aspect ratios were separated from home-synthesized polydisperse samples using a gradient centrifugation method. The morphology, size and its distribution, and photo-absorption property were analyzed by transmission electron microscopy, atomic force microscopy and UV-visible spectroscopy. Subsequently, using colloidal Au NRs (36.2 nm ×10.7 nm) with 97.4% yield after centrifugation and Au nanospheres (NSs) (22.9 ± 1.0 nm in diameter) with 97.6% yield as Au substrates, surface-enhanced Raman scattering (SERS) spectra of 2,4-dichlorophenoxyacetic acid (2,4-D) were recorded using laser excitation at 632.8 nm. Results show that surface enhancement factors (EF) for Au NRs and NSs are 6.2 × 105 and 5.7 × 104 using 1.0 × 10-6 M 2,4-D, respectively, illustrating that EF value is a factor of ˜10 greater for Au NRs substrates than for Au NSs substrates. As a result, large EF are a mainly result of chemical enhancement mechanisms. Thus, it is expected that Au NPs can find a comprehensive SERS application in the trace detection of pesticide residues.