Science.gov

Sample records for acid gaba inhibitory

  1. The inhibitory role of γ-aminobutyric acid (GABA) on immunomodulation of Pacific oyster Crassostrea gigas.

    PubMed

    Li, Meijia; Qiu, Limei; Wang, Lingling; Wang, Weilin; Xin, Lusheng; Li, Yiqun; Liu, Zhaoqun; Song, Linsheng

    2016-05-01

    γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter to suppress the immune-mediated pro-inflammatory reactions, and it has been used in the treatment of many inflammation-related diseases in vertebrates, while its immunomodulatory role in invertebrates has never been reported. In the present study, GABA was found to exist in the hemolymph of Pacific oyster Crassostrea gigas, and its concentration decreased slightly from 8.00 ± 0.37 μmol L(-1) at normal condition to 7.73 ± 0.15 μmol L(-1) at 6 h after LPS stimulation, and then increased to 9.34 ± 0.15 μmol L(-1), 8.86 ± 0.68 μmol L(-1) at 12 h and 48 h, respectively. After LPS stimulation, the mRNA expressions of pro-inflammatory cytokines (CgIL-17 and CgTNF) and immune effectors (CgSOD and CgBPI), and the protein expression of NOS increased significantly, and these increased trends were remarkably inhibited by GABA stimulation. At the same time, the phagocytosis rate and apoptosis rate of immunocytes also increased obviously after LPS stimulation, whereas the increase was repressed with the addition of GABA. The results collectively demonstrated that GABA was an indispensable inhibitory agent for both humoral and cellular immune response, which mainly functioned at the late phase of immune response to avoid the excess immune reactions and maintain the immune homeostasis.

  2. γ-Aminobutyric Acid (GABA) Production and Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Containing Sea Tangle by the Co-Culture of Lactobacillus brevis with Aspergillus oryzae.

    PubMed

    Jang, Eun Kyeong; Kim, Nam Yeun; Ahn, Hyung Jin; Ji, Geun Eog

    2015-08-01

    To enhance the γ-aminobutyric acid (GABA) content, the optimized fermentation of soybean with added sea tangle extract was evaluated at 30°C and pH 5.0. The medium was first inoculated with Aspergillus oryzae strain FMB S46471 and fermented for 3 days, followed by the subsequent inoculation with Lactobacillus brevis GABA 100. After fermentation for 7 days, the fermented soybean showed approximately 1.9 g/kg GABA and exhibited higher ACE inhibitory activity than the traditional soybean product. Furthermore, several peptides in the fraction containing the highest ACE inhibitory activity were identified. The novel fermented soybean enriched with GABA and ACE inhibitory components has great pharmaceutical and functional food values.

  3. Production of gaba (γ – Aminobutyric acid) by microorganisms: a review

    PubMed Central

    Dhakal, Radhika; Bajpai, Vivek K.; Baek, Kwang-Hyun

    2012-01-01

    GABA (γ-aminobutyric acid) is a four carbon non-protein amino acid that is widely distributed in plants, animals and microorganisms. As a metabolic product of plants and microorganisms produced by the decarboxylation of glutamic acid, GABA functions as an inhibitory neurotransmitter in the brain that directly affects the personality and the stress management. A wide range of traditional foods produced by microbial fermentation contain GABA, in which GABA is safe and eco-friendly, and also has the possibility of providing new health-benefited products enriched with GABA. Synthesis of GABA is catalyzed by glutamate decarboxylase, therefore, the optimal fermentation condition is mainly based on the biochemical properties of the enzyme. Major GABA producing microorganisms are lactic acid bacteria (LAB), which make food spoilage pathogens unable to grow and act as probiotics in the gastrointestinal tract. The major factors affecting the production of GABA by microbial fermentation are temperature, pH, fermentation time and different media additives, therefore, these factors are summarized to provide the most up-dated information for effective GABA synthesis. There has been a huge accumulation of knowledge on GABA application for human health accompanying with a demand on natural GABA supply. Only the GABA production by microorganisms can fulfill the demand with GABA-enriched health beneficial foods. PMID:24031948

  4. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex.

    PubMed

    Chattopadhyaya, Bidisha; Di Cristo, Graziella; Wu, Cai Zhi; Knott, Graham; Kuhlman, Sandra; Fu, Yu; Palmiter, Richard D; Huang, Z Josh

    2007-06-21

    The development of GABAergic inhibitory circuits is shaped by neural activity, but the underlying mechanisms are unclear. Here, we demonstrate a novel function of GABA in regulating GABAergic innervation in the adolescent brain, when GABA is mainly known as an inhibitory transmitter. Conditional knockdown of the rate-limiting synthetic enzyme GAD67 in basket interneurons in adolescent visual cortex resulted in cell autonomous deficits in axon branching, perisomatic synapse formation around pyramidal neurons, and complexity of the innervation fields; the same manipulation had little influence on the subsequent maintenance of perisomatic synapses. These effects of GABA deficiency were rescued by suppressing GABA reuptake and by GABA receptor agonists. Germline knockdown of GAD67 but not GAD65 showed similar deficits, suggesting a specific role of GAD67 in the maturation of perisomatic innervation. Since intracellular GABA levels are modulated by neuronal activity, our results implicate GAD67-mediated GABA synthesis in activity-dependent regulation of inhibitory innervation patterns.

  5. Development of imidazole alkanoic acids as mGAT3 selective GABA uptake inhibitors.

    PubMed

    Hack, Silke; Wörlein, Babette; Höfner, Georg; Pabel, Jörg; Wanner, Klaus T

    2011-05-01

    A new series of potential GABA uptake inhibitors starting from of 1H-imidazol-4-ylacetic acid with the carboxylic acid side chain originating from different positions and varying in length have been synthesized and tested for the inhibitory potency at the four GABA uptake transporters mGAT1-4 stably expressed in HEK cells. Further two bicyclic compounds with a rigidified carboxylic acid side chain were included in this study. The results of the biological tests indicated that most ω-imidazole alkanoic and alkenoic acid derivatives exhibit the highest potencies as GABA uptake inhibitors at mGAT3.

  6. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli.

    PubMed

    Le Vo, Tam Dinh; Kim, Tae Wan; Hong, Soon Ho

    2012-05-01

    Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of L: -glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.

  7. Dual action of isoflurane on the gamma-aminobutyric acid (GABA)-mediated currents through recombinant alpha(1)beta(2)gamma(2L)-GABA(A)-receptor channels.

    PubMed

    Neumahr, S; Hapfelmeier, G; Scheller, M; Schneck, H; Franke, C; Kochs, E

    2000-05-01

    Isoflurane (ISO) increased the agonist-induced chloride flux through the gamma-aminobutyric acid A receptor (GABA(A)R). This may reflect an anesthetic-induced increase in the apparent agonist affinity. A dual effect of anesthetics was postulated for both the nicotinic acetylcholine receptor (nAChR) and the GABA(A)R. We tested the hypothesis that, in addition to a blocking effect, ISO increases gamma-aminobutyric acid (GABA)-gated currents through recombinant GABA(A)R channels. HEK293 cells were transfected with rat cDNA for alpha(1),beta(2),gamma(2L) subunits. Currents elicited by 1 mM or 0. 01 mM GABA, respectively, alone, or with increasing concentrations of ISO, were recorded by using standard patch clamp techniques. ISO reduced the peak current elicited by 1 mM GABA. Currents induced by 0.01 mM GABA were potentiated by small ISO (twofold at 0.5 mM ISO) and inhibited by larger concentrations. Withdrawal of ISO and GABA induced rebound currents, suggesting an open-channel block by ISO. These currents increased with increasing concentrations of ISO. At large concentrations of ISO, the inhibitory effect predominated and was caused by, at least partly, an open-channel block. At small concentrations of ISO, potentiation of the GABA-gated currents was more prominent. This dual action of ISO indicates different binding sites at the GABA(A)R. The balance between potentiation and block depends on the concentrations of both ISO and GABA.

  8. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system.

    PubMed

    Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T

    2007-09-01

    In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed. PMID:18066140

  9. Relating MEG measured motor cortical oscillations to resting γ-aminobutyric acid (GABA) concentration.

    PubMed

    Gaetz, W; Edgar, J C; Wang, D J; Roberts, T P L

    2011-03-15

    The human motor cortex exhibits characteristic beta (15-30 Hz) and gamma oscillations (60-90 Hz), typically observed in the context of transient finger movement tasks. The functional significance of these oscillations, such as post-movement beta rebound (PMBR) and movement-related gamma synchrony (MRGS) remains unclear. Considerable animal and human non-invasive studies, however, suggest that the networks supporting these motor cortex oscillations depend critically on the inhibitory neurotransmitter γ-Aminobutyric acid (GABA). Despite such speculation, a direct relation between MEG measured motor cortex oscillatory power and frequency with resting GABA concentrations has not been demonstrated. In the present study, motor cortical responses were measured from 9 healthy adults while they performed a cued button-press task using their right index finger. In each participant, PMBR and MRGS measures were obtained from time-frequency plots obtained from primary motor (MI) sources, localized using beamformer differential source localization. For each participant, complimentary magnetic resonance spectroscopy (MRS) GABA measures aligned to the motor hand knob of the left central sulcus were also obtained. GABA concentration was estimated as the ratio of the motor cortex GABA integral to a cortical reference NAA resonance at 2 ppm. A significant linear relation was observed between MI GABA concentration and MRGS frequency (R(2)=0.46, p<0.05), with no association observed between GABA concentration and MRGS power. Conversely, a significant linear relation was observed between MI GABA concentration and PMBR power (R(2)=0.34, p<0.05), with no relation observed for GABA concentration and PMBR frequency. Finally, a significant negative linear relation between the participant's age and MI gamma frequency was observed, such that older participants had a lower gamma frequency (R(2)=0.40, p<0.05). Present findings support a role for GABA in the generation and modulation of

  10. γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii.

    PubMed

    Ling, Yu; Chen, Tong; Jing, Yanping; Fan, Lusheng; Wan, Yinglang; Lin, Jinxing

    2013-11-01

    γ-Aminobutyric acid (GABA) is a four-carbon non-protein amino acid found in a wide range of organisms. Recently, GABA accumulation has been shown to play a role in the stress response and cell growth in angiosperms. However, the effect of GABA deficiency on pollen tube development remains unclear. Here, we demonstrated that specific concentrations of exogenous GABA stimulated pollen tube growth in Picea wilsonii, while an overdose suppressed pollen tube elongation. The germination percentage of pollen grains and morphological variations in pollen tubes responded in a dose-dependent manner to treatment with 3-mercaptopropionic acid (3-MP), a glutamate decarboxylase inhibitor, while the inhibitory effects could be recovered in calcium-containing medium supplemented with GABA. Using immunofluorescence labeling, we found that the actin cables were disorganized in 3-MP treated cells, followed by the transition of endo/exocytosis activating sites from the apex to the whole tube shank. In addition, variations in the deposition of cell wall components were detected upon labeling with JIM5, JIM7, and aniline blue. Our results demonstrated that calcium-dependent GABA signaling regulates pollen germination and polarized tube growth in P. wilsonii by affecting actin filament patterns, vesicle trafficking, and the configuration and distribution of cell wall components.

  11. Cloning of the. gamma. -aminobutyric acid (GABA). rho. sub 1 cDNA: A GABA receptor subunit highly expressed in the retina

    SciTech Connect

    Cutting, G.R.; Lu, Luo; Kasch, L.M.; Montrose-Rafizadeh, C.; Antonarakis, S.E.; Guggino, W.B.; Kazazian, H.H. Jr. ); O'Hara, B.F.; Donovan, D.M.; Shimada, Shoichi ); Uhl, G.R. Johns Hopkins Univ. School of Medicine, Baltimore, MD )

    1991-04-01

    Type A {gamma}-aminobutyric acid (GABA{sub A}) receptors are a family of ligand-gated chloride channels that are the major inhibitory neurotransmitter receptors in the nervous system. Molecular cloning has revealed diversity in the subunits that compose this heterooligomeric receptor, but each previously elucidated subunit displays amino acid similarity in conserved structural elements. The authors have used these highly conserved regions to identify additional members of this family by using the polymerase chain reaction (PCR). One PCR product was used to isolate a full-length cDNA from a human retina cDNA library. The mature protein predicted from this cDNA sequence is 458 amino acids long and displays between 30 and 38% amino acid similarity to the previously identified GABA{sub A} subunits. This gene is expressed primarily in the retina but transcripts are also detected in the brain, lung, and thymus. Injection of Xenopus oocytes with RNA transcribed in vitro produces a GABA-responsive chloride conductance and expression of the cDNA in COS cells yields GABA-displaceable muscimol binding. These features are consistent with our identification of a GABA subunit, GABA {rho}{sub 1}, with prominent retinal expression that increases the diversity and tissue specificity of this ligand-gated ion-channel receptor family.

  12. γ-Aminobutyric acid (GABA) concentration inversely correlates with basal perfusion in human occipital lobe.

    PubMed

    Donahue, Manus J; Rane, Swati; Hussey, Erin; Mason, Emily; Pradhan, Subechhya; Waddell, Kevin W; Ally, Brandon A

    2014-03-01

    Commonly used neuroimaging approaches in humans exploit hemodynamic or metabolic indicators of brain function. However, fundamental gaps remain in our ability to relate such hemo-metabolic reactivity to neurotransmission, with recent reports providing paradoxical information regarding the relationship among basal perfusion, functional imaging contrast, and neurotransmission in awake humans. Here, sequential magnetic resonance spectroscopy (MRS) measurements of the primary inhibitory neurotransmitter, γ-aminobutyric acid (GABA+macromolecules normalized by the complex N-acetyl aspartate-N-acetyl aspartyl glutamic acid: [GABA(+)]/[NAA-NAAG]), and magnetic resonance imaging (MRI) measurements of perfusion, fractional gray-matter volume, and arterial arrival time (AAT) are recorded in human visual cortex from a controlled cohort of young adult male volunteers with neurocognitive battery-confirmed comparable cognitive capacity (3 T; n=16; age=23±3 years). Regression analyses reveal an inverse correlation between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.46; P=0.037), yet no relationship between AAT and [GABA(+)]/[NAA-NAAG] (R=-0.12; P=0.33). Perfusion measurements that do not control for AAT variations reveal reduced correlations between [GABA(+)]/[NAA-NAAG] and perfusion (R=-0.13; P=0.32). These findings largely reconcile contradictory reports between perfusion and inhibitory tone, and underscore the physiologic origins of the growing literature relating functional imaging signals, hemodynamics, and neurotransmission.

  13. WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons.

    PubMed

    Friedel, Perrine; Kahle, Kristopher T; Zhang, Jinwei; Hertz, Nicholas; Pisella, Lucie I; Buhler, Emmanuelle; Schaller, Fabienne; Duan, JingJing; Khanna, Arjun R; Bishop, Paul N; Shokat, Kevan M; Medina, Igor

    2015-06-30

    Activation of Cl(-)-permeable γ-aminobutyric acid type A (GABAA) receptors elicits synaptic inhibition in mature neurons but excitation in immature neurons. This developmental "switch" in the GABA function depends on a postnatal decrease in intraneuronal Cl(-) concentration mediated by KCC2, a Cl(-)-extruding K(+)-Cl(-) cotransporter. We showed that the serine-threonine kinase WNK1 [with no lysine (K)] forms a physical complex with KCC2 in the developing mouse brain. Dominant-negative mutation, genetic depletion, or chemical inhibition of WNK1 in immature neurons triggered a hyperpolarizing shift in GABA activity by enhancing KCC2-mediated Cl(-) extrusion. This increase in KCC2 activity resulted from reduced inhibitory phosphorylation of KCC2 at two C-terminal threonines, Thr(906) and Thr(1007). Phosphorylation of both Thr(906) and Thr(1007) was increased in immature versus mature neurons. Together, these data provide insight into the mechanism regulating Cl(-) homeostasis in immature neurons, and suggest that WNK1-regulated changes in KCC2 phosphorylation contribute to the developmental excitatory-to-inhibitory GABA sequence. PMID:26126716

  14. Determination and comparison of γ-aminobutyric acid (GABA) content in pu-erh and other types of Chinese tea.

    PubMed

    Zhao, Ming; Ma, Yan; Wei, Zhen-zhen; Yuan, Wen-xia; Li, Ya-li; Zhang, Chun-hua; Xue, Xiao-ting; Zhou, Hong-jie

    2011-04-27

    Two previous studies have reported that pu-erh tea contains a high level of γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system and has several physiological functions. However, two other researchers have demonstrated that the GABA content of several pu-erh teas was low. Due to the high value and health benefits of GABA, analysis of mass-produced pu-erh tea is necessary to determine whether it is actually enriched with GABA. A high-performance liquid chromatography (HPLC) method was developed for the determination of GABA in tea, the results of which were verified by amino acid analysis using an Amino Acid Analyzer (AAA). A total of 114 samples of various types of Chinese tea, including 62 pu-erh teas, 13 green teas, 8 oolong teas, 8 black teas, 3 white teas, 4 GABA teas, and 16 process samples from two industrial fermentations of pu-erh tea (including the raw material and the first to seventh turnings), were analyzed using HPLC. Statistical analysis demonstrated that the GABA content in pu-erh tea was significantly lower than that in other types of tea (p < 0.05) and that the GABA content decreased during industrial fermentation of pu-erh tea (p < 0.05). This mass analysis and comparison suggested GABA was not a major bioactive constituent and resolved the disagreement GABA content in pu-erh tea. In addition, the GABA content in white tea was found to be significantly higher than that in the other types of tea (p < 0.05), leading to the possibility of producing GABA-enriched white tea.

  15. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    PubMed

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts.

  16. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA

    PubMed Central

    Wang, Ping; Eshaq, Randa S.; Meshul, Charles K.; Moore, Cynthia; Hood, Rebecca L.; Leidenheimer, Nancy J.

    2015-01-01

    GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors. PMID

  17. Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats.

    PubMed

    Takeshima, Kazuhito; Yamatsu, Atsushi; Yamashita, Yusuke; Watabe, Kazuya; Horie, Noriko; Masuda, Kazuyuki; Kim, Mujo

    2014-06-01

    γ-Aminobutyric acid (GABA) is an amino acid compound contained in vegetables such as tomatoes and also widely distributed in mammals. GABA acts as an inhibitory neurotransmitter and promotes parasympathetic activity to provide several beneficial effects, for instance, relaxation, anti-stress, and insomnia. GABA, produced via a fermentation process, has been available as a functional food ingredient. As part of a program to assess its safety, GABA was administered by oral gavage at doses of 500, 1250, and 2500mg/kg body weight to groups of 10 male and 10 female Sprague-Dawley rats for 13weeks. Treatment was not associated with the test substance-related mortality and appeared to be well tolerated. There were no toxicologically and statistically significant changes in urinalysis, hematology, clinical chemistry parameters, and in necropsy findings. A few statistically significant changes in food consumption and body weights were noted in the male groups while any significant changes were not noted in female groups. There was no effect of treatment on organ weights or on the results of the histopathological examinations. The results of toxicity evaluation support the safety use of GABA and the potential use as a functional food ingredient.

  18. Characterization of Inhibitory GABA-A Receptor Activation during Spreading Depolarization in Brain Slice

    PubMed Central

    Aiba, Isamu; Shuttleworth, C. William

    2014-01-01

    Spreading depolarization (SD) is a slowly propagating wave of near complete depolarizations of neurons and glia. Previous studies have reported large GABA releases during SD, but there is limited understanding of how GABA release and receptor activation are regulated and influence the propagating SD wavefront, as well as an excitatory phase immediately following the passage of SD. The present study characterized GABA-A type receptor (GABAAR) currents during SD generated by KCl microinjection in acute hippocampal slices from adult mice. Spontaneous GABAAR-mediated currents (sIPSCs) were initially enhanced, and were followed by a large outward current at the wavefront. sIPSC were then transiently supressed during the late SD phase, resulting in a significant reduction of the sIPSC/sEPSC ratio. The large outward current generated during SD was eliminated by the GABAAR antagonist gabazine, but the channel potentiator/agonist propofol failed to potentiate the current, likely because of a ceiling effect. Extracellular Cl− decreases recorded during SD were reduced by the antagonist but were not increased by the potentiator. Together with effects of GABAAR modulators on SD propagation rate, these results demonstrate a significant inhibitory role of the initial GABAAR activation and suggest that intracellular Cl− loading is insufficient to generate excitatory GABAAR responses during SD propagation. These results provide a mechanistic explanation for facilitating effects of GABAAR antagonists, and the lack of inhibitory effect of GABAAR potentiators on SD propagation. In addition, selective suppression of GABA transmission in the late SD period and the lack of effect of GABAA modulators on the duration of SD suggests that GABA modulation may not be effective approach to protect neurons during the vulnerable phase of SD. PMID:25338191

  19. Parvalbumin and neuropeptide Y expressing hippocampal GABA-ergic inhibitory interneuron numbers decline in a model of Gulf War illness

    PubMed Central

    Megahed, Tarick; Hattiangady, Bharathi; Shuai, Bing; Shetty, Ashok K.

    2015-01-01

    Cognitive dysfunction is amongst the most conspicuous symptoms in Gulf War illness (GWI). Combined exposure to the nerve gas antidote pyridostigmine bromide (PB), pesticides and stress during the Persian Gulf War-1 (PGW-1) are presumed to be among the major causes of GWI. Indeed, our recent studies in rat models have shown that exposure to GWI-related (GWIR) chemicals and mild stress for 4 weeks engenders cognitive impairments accompanied with several detrimental changes in the hippocampus. In this study, we tested whether reduced numbers of hippocampal gamma-amino butyric acid (GABA)-ergic interneurons are among the pathological changes induced by GWIR-chemicals and stress. Animals were exposed to low doses of GWIR-chemicals and mild stress for 4 weeks. Three months after this exposure, subpopulations of GABA-ergic interneurons expressing the calcium binding protein parvalbumin (PV), the neuropeptide Y (NPY) and somatostatin (SS) in the hippocampus were stereologically quantified. Animals exposed to GWIR-chemicals and stress for 4 weeks displayed reduced numbers of PV-expressing GABA-ergic interneurons in the dentate gyrus and NPY-expressing interneurons in the CA1 and CA3 subfields. However, no changes in SS+ interneuron population were observed in the hippocampus. Furthermore, GABA-ergic interneuron deficiency in these animals was associated with greatly diminished hippocampus neurogenesis. Because PV+ and NPY+ interneurons play roles in maintaining normal cognitive function and neurogenesis, and controlling the activity of excitatory neurons in the hippocampus, reduced numbers of these interneurons may be one of the major causes of cognitive dysfunction and reduced neurogenesis observed in GWI. Hence, strategies that improve inhibitory neurotransmission in the hippocampus may prove beneficial for reversing cognitive dysfunction in GWI. PMID:25620912

  20. The inhibitory neurotransmitter GABA evokes long‐lasting Ca2+ oscillations in cortical astrocytes

    PubMed Central

    Mariotti, Letizia; Losi, Gabriele; Sessolo, Michele; Marcon, Iacopo

    2015-01-01

    Studies over the last decade provided evidence that in a dynamic interaction with neurons glial cell astrocytes contribut to fundamental phenomena in the brain. Most of the knowledge on this derives, however, from studies monitoring the astrocyte Ca2+ response to glutamate. Whether astrocytes can similarly respond to other neurotransmitters, including the inhibitory neurotransmitter GABA, is relatively unexplored. By using confocal and two photon laser‐scanning microscopy the astrocyte response to GABA in the mouse somatosensory and temporal cortex was studied. In slices from developing (P15‐20) and adult (P30‐60) mice, it was found that in a subpopulation of astrocytes GABA evoked somatic Ca2+ oscillations. This response was mediated by GABAB receptors and involved both Gi/o protein and inositol 1,4,5‐trisphosphate (IP3) signalling pathways. In vivo experiments from young adult mice, revealed that also cortical astrocytes in the living brain exibit GABAB receptor‐mediated Ca2+ elevations. At all astrocytic processes tested, local GABA or Baclofen brief applications induced long‐lasting Ca2+ oscillations, suggesting that all astrocytes have the potential to respond to GABA. Finally, in patch‐clamp recordings it was found that Ca2+ oscillations induced by Baclofen evoked astrocytic glutamate release and slow inward currents (SICs) in pyramidal cells from wild type but not IP3R2−/− mice, in which astrocytic GABAB receptor‐mediated Ca2+ elevations are impaired. These data suggest that cortical astrocytes in the mouse brain can sense the activity of GABAergic interneurons and through their specific recruitment contribut to the distinct role played on the cortical network by the different subsets of GABAergic interneurons. GLIA 2016;64:363–373 PMID:26496414

  1. Three types of inhibitory miniature potentials in frog spinal cord motoneurons: possible GABA and glycine cotransmission.

    PubMed

    Polina, Yu A; Amakhin, D V; Kozhanov, V M; Kurchavyi, G G; Veselkin, N P

    2007-03-01

    Miniature inhibitory postsynaptic potentials (mIPSP) of motoneurons in isolated frog spinal cord were recorded in conditions of blockade of the conduction of nerve spikes and ionotropic glutamate receptors (TTX, 1 microM, CNQX, 25 microM, D-AP5, 50 microM). Three types of mIPSP were identified: those with fast and slow time characteristics and mIPSP with two-component decays. Two-component mIPSP accounted for 8.7% of all selected responses, fast mIPSP for 64.5%, and slow mIPSP for 26.8%. Blockade of GABA(A) receptors with bicuculline (20 microM) led to decreases in the numbers of slow and two-component mIPSP and an increase in the number of mIPSP with fast kinetics. Strychnine (1 microM), a blocker of glycine receptors, led to a reduction in the number of fast receptors and an increase in the number of slow potentials. These data suggest that frog spinal cord motoneurons have three types of inhibitory mIPSP, mediated by GABA, glycine, and simultaneous release of these two transmitters from the same presynaptic terminals. PMID:17294103

  2. Suppression of γ-aminobutyric acid (GABA) transaminases induces prominent GABA accumulation, dwarfism and infertility in the tomato (Solanum lycopersicum L.).

    PubMed

    Koike, Satoshi; Matsukura, Chiaki; Takayama, Mariko; Asamizu, Erika; Ezura, Hiroshi

    2013-05-01

    Tomatoes accumulate γ-aminobutyric acid (GABA) at high levels in the immature fruits. GABA is rapidly converted to succinate during fruit ripening through the activities of GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH). Although three genes encoding GABA-T and both pyruvate- and α-ketoglutarate-dependent GABA-T activities have been detected in tomato fruits, the mechanism underlying the GABA-T-mediated conversion of GABA has not been fully understood. In this work, we conducted loss-of-function analyses utilizing RNA interference (RNAi) transgenic plants with suppressed pyruvate- and glyoxylate-dependent GABA-T gene expression to clarify which GABA-T isoforms are essential for its function. The RNAi plants with suppressed SlGABA-T gene expression, particularly SlGABA-T1, showed severe dwarfism and infertility. SlGABA-T1 expression was inversely associated with GABA levels in the fruit at the red ripe stage. The GABA contents in 35S::SlGABA-T1(RNAi) lines were 1.3-2.0 times and 6.8-9.2 times higher in mature green and red ripe fruits, respectively, than the contents in wild-type fruits. In addition, SlGABA-T1 expression was strongly suppressed in the GABA-accumulating lines. These results indicate that pyruvate- and glyoxylate-dependent GABA-T is the essential isoform for GABA metabolism in tomato plants and that GABA-T1 primarily contributes to GABA reduction in the ripening fruits.

  3. Co-localization of glutamic acid decarboxylase and vesicular GABA transporter in cytochrome oxidase patches of macaque striate cortex.

    PubMed

    Adams, Daniel L; Economides, John R; Horton, Jonathan C

    2015-01-01

    The patches in primary visual cortex constitute hot spots of metabolic activity, manifested by enhanced levels of cytochrome oxidase (CO) activity. They are also labeled preferentially by immunostaining for glutamic acid decarboxylase (GAD), γ-aminobutyric acid (GABA), and parvalbumin. However, calbindin shows stronger immunoreactivity outside patches. In light of this discrepancy, the distribution of the vesicular GABA transporter (VGAT) was examined in striate cortex of two normal macaques. VGAT immunoreactivity was strongest in layers 4B, 4Cα, and 5. In tangential sections, the distribution of CO, GAD, and VGAT was compared in layer 2/3. There was a close match between all three labels. This finding indicates that GABA synthesis is enriched in patches, and that inhibitory synapses are more active in patches than interpatches. PMID:26579566

  4. GABA[subscript A] Receptor Downregulation in Brains of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Thuras, Paul D.

    2009-01-01

    Gamma-aminobutyric acid A (GABA[subscript A]) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the…

  5. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen.

  6. [Influence of exogenous gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid contents in roots of melon seedling under hypoxia stress].

    PubMed

    Wang, Chun-Yan; Li, Jing-Rui; Xia, Qing-Ping; Wu, Xiao-Lei; Gao, Hong-Bo

    2014-07-01

    This paper investigated the influence of gamma-aminobutyric acid (GABA) on GABA metabolism and amino acid content under hypoxia stress by accurately controlling the level of dissolved oxygen in hydroponics, using the roots of melon 'Xiyu 1' seedlings as the test material. The results showed that compared with the control, the growth of roots was inhibited seriously under hypoxia stress. Meanwhile, the hypoxia-treated roots had significantly higher activities of glutamate decarboxylase (GAD), glutamate dehydrogenase (GDH), glutamate synthase (GOGAT), glutamine synthetase (GS), alanine aminotransferase (ALT), aspartate aminotransferase (AST) as well as the contents of GABA, pyruvic acid, alanine (Ala) and aspartic acid (Asp). But the contents of glutamic acid (Glu) and alpha-keto glutaric acid in roots under hypoxia stress was obviously lower than those of the control. Exogenous treatment with GABA alleviated the inhibition effect of hypoxia stress on root growth, which was accompanied by an increase in the contents of endogenous GABA, Glu, alpha-keto glutaric acid and Asp. Furthermore, under hypoxia stress, the activities of GAD, GDH, GOGAT, GS, ALT, AST as well as the contents of pyruvic acid and Ala significantly decreased in roots treated with GABA. However, adding GABA and viny-gamma-aminobutyric acid (VGB) reduced the alleviation effect of GABA on melon seedlings under hypoxia stress. The results suggested that absorption of GABA by roots could alleviate the injury of hypoxia stress to melon seedlings. This meant that GABA treatment allows the normal physiological metabolism under hypoxia by inhibiting the GAD activity through feedback and maintaining higher Glu content as well as the bal- ance of carbon and nitrogen. PMID:25345052

  7. Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli.

    PubMed

    Pham, Van Dung; Somasundaram, Sivachandiran; Park, Si Jae; Lee, Seung Hwan; Hong, Soon Ho

    2016-04-28

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid, which is an important inhibitor of neurotransmission in the human brain. GABA is also used as the precursor of biopolymer Nylon-4 production. In this study, the carbon flux from the tricarboxylic acid cycle was directed to the GABA shunt pathway for the production of GABA from glucose. The GABA shunt enzymes succinate-semialdehyde dehydrogenase (GabD) and GABA aminotransferase (GabT) were co-localized along with the GABA transporter (GadC) by using a synthetic scaffold complex. The co-localized enzyme scaffold complex produced 0.71 g/l of GABA from 10 g/l of glucose. Inactivation of competing metabolic pathways in mutant E. coli strains XBM1 and XBM6 increased GABA production 13% to reach 0.80 g/l GABA by the enzymes co-localized and expressed in the mutant strains. The recombinant E. coli system developed in this study demonstrated the possibility of the pathway of the GABA shunt as a novel GABA production pathway.

  8. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2.

    PubMed

    Leonzino, Marianna; Busnelli, Marta; Antonucci, Flavia; Verderio, Claudia; Mazzanti, Michele; Chini, Bice

    2016-04-01

    Oxytocin and its receptor (Oxtr) play a crucial role in the postnatal transition of neuronal GABA neurotransmission from excitatory to inhibitory, a developmental process known as the GABA switch. Using hippocampal neurons from Oxtr-null mice, we show that (1) Oxtr is necessary for the correct timing of the GABA switch by upregulating activity of the chloride cotransporter KCC2, (2) Oxtr, in a very early and narrow time window, directly modulates the functional activity of KCC2 by promoting its phosphorylation and insertion/stabilization at the neuronal surface, and (3) in the absence of Oxtr, electrophysiological alterations are recorded in mature neurons, a finding consistent with a reduced level of KCC2 and increased susceptibility to seizures observed in adult Oxtr-null mice. These data identify KCC2 as a key target of oxytocin in postnatal events that may be linked to pathogenesis of neurodevelopmental disorders. PMID:27052180

  9. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2

    PubMed Central

    Leonzino, Marianna; Busnelli, Marta; Antonucci, Flavia; Verderio, Claudia; Mazzanti, Michele; Chini, Bice

    2016-01-01

    Summary Oxytocin and its receptor (Oxtr) play a crucial role in the postnatal transition of neuronal GABA neurotransmission from excitatory to inhibitory, a developmental process known as the GABA switch. Using hippocampal neurons from Oxtr-null mice, we show that (1) Oxtr is necessary for the correct timing of the GABA switch by upregulating activity of the chloride cotransporter KCC2, (2) Oxtr, in a very early and narrow time window, directly modulates the functional activity of KCC2 by promoting its phosphorylation and insertion/stabilization at the neuronal surface, and (3) in the absence of Oxtr, electrophysiological alterations are recorded in mature neurons, a finding consistent with a reduced level of KCC2 and increased susceptibility to seizures observed in adult Oxtr-null mice. These data identify KCC2 as a key target of oxytocin in postnatal events that may be linked to pathogenesis of neurodevelopmental disorders. PMID:27052180

  10. Synthesis and proton NMR spectroscopy of intra-vesicular gamma-aminobutyric acid (GABA).

    PubMed

    Wang, Luke Y-J; Tong, Rong; Kohane, Daniel S

    2013-01-01

    We report the synthesis of vesicles containing gamma-aminobutyric acid (GABA), and their proton nuclear magnetic resonance ((1)H NMR) spectra. These vesicles were constructed to more closely mimic the intracellular environment wherein GABA exists. For this study, these GABA-containing vesicles were examined under (1)H NMR as a potential platform for future studies on the differences between aqueous phantoms, ex vivo brain extracts, and in vivo magnetic resonance spectroscopy results. We found that intra-vesicular GABA faithfully yielded the chemical shifts and J-coupling constants of free aqueous GABA, alongside the chemical shift signals of the vesicle wall.

  11. GABA(B) receptors in neuroendocrine regulation.

    PubMed

    Lux-Lantos, Victoria A; Bianchi, María S; Catalano, Paolo N; Libertun, Carlos

    2008-09-01

    Gamma-amino butyric acid (GABA), in addition to being a metabolic intermediate and the main inhibitory neurotransmitter in the synaptic cleft, is postulated as a neurohormone, a paracrine signaling molecule, and a trophic factor. It acts through pre- and post-synaptic receptors, named GABA(A) and GABA(C) (ionotropic receptors) and GABA(B) (metabotropic receptor). Here we reviewed the participation of GABA(B) receptors in the regulation of the hypothalamic-pituitary-gonadal axis, using physiological, biochemical, and pharmacological approaches in rats, as well as in GABA(B1) knock-out mice, that lack functional GABA(B) receptors. Our general conclusion indicates that GABA(B )receptors participate in the regulation of pituitary hormone secretion acting both in the central nervous system and directly on the gland. PRL and gonadotropin axes are affected by GABA(B) receptor activation, as demonstrated in the rat and also in the GABA(B1) knock-out mouse. In addition, hypothalamic and pituitary GABA(B) receptor expression is modulated by steroid hormones. GABA participation in the brain control of pituitary secretion through GABA(B) receptors depends on physiological conditions, being age and sex critical factors.These results indicate that patients receiving GABA(B) agonists/antagonists should be monitored for possible endocrine side effects.

  12. Vesicular Inhibitory Amino Acid Transporter Is a Cl−/γ-Aminobutyrate Co-transporter*

    PubMed Central

    Juge, Narinobu; Muroyama, Akiko; Hiasa, Miki; Omote, Hiroshi; Moriyama, Yoshinori

    2009-01-01

    The vesicular inhibitory amino acid transporter (VIAAT) is a synaptic vesicle protein responsible for the vesicular storage of γ-aminobutyrate (GABA) and glycine which plays an essential role in GABAergic and glycinergic neurotransmission. The transport mechanism of VIAAT remains largely unknown. Here, we show that proteoliposomes containing purified VIAAT actively took up GABA upon formation of membrane potential (Δψ) (positive inside) but not ΔpH. VIAAT-mediated GABA uptake had an absolute requirement for Cl− and actually accompanied Cl− movement. Kinetic analysis indicated that one GABA molecule and two Cl− equivalents were transported during one transport cycle. VIAAT in which Glu213 was specifically mutated to alanine completely lost the ability to take up both GABA and Cl−. Essentially the same results were obtained with glycine, another substrate of VIAAT. These results demonstrated that VIAAT is a vesicular Cl− transporter that co-transports Cl− with GABA or glycine in a Δψ dependent manner. It is concluded that Cl− plays an essential role in vesicular storage of GABA and glycine. PMID:19843525

  13. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1.

    PubMed

    Wu, Yuanming; Wang, Wengang; Díez-Sampedro, Ana; Richerson, George B

    2007-12-01

    GABA transporters play an important but poorly understood role in neuronal inhibition. They can reverse, but this is widely thought to occur only under pathological conditions. Here we use a heterologous expression system to show that the reversal potential of GAT-1 under physiologically relevant conditions is near the normal resting potential of neurons and that reversal can occur rapidly enough to release GABA during simulated action potentials. We then use paired recordings from cultured hippocampal neurons and show that GABAergic transmission is not prevented by four methods widely used to block vesicular release. This nonvesicular neurotransmission was potently blocked by GAT-1 antagonists and was enhanced by agents that increase cytosolic [GABA] or [Na(+)] (which would increase GAT-1 reversal). We conclude that GAT-1 regulates tonic inhibition by clamping ambient [GABA] at a level high enough to activate high-affinity GABA(A) receptors and that transporter-mediated GABA release can contribute to phasic inhibition.

  14. A Sensitive Period of Mice Inhibitory System to Neonatal GABA Enhancement by Vigabatrin is Brain Region Dependent

    PubMed Central

    Levav-Rabkin, Tamar; Melamed, Osnat; Clarke, Gerard; Farber, Malca; Cryan, John F; Dinan, Timothy G; Grossman, Yoram; Golan, Hava M

    2010-01-01

    Neurodevelopmental disorders, such as schizophrenia and autism, have been associated with disturbances of the GABAergic system in the brain. We examined immediate and long-lasting influences of exposure to the GABA-potentiating drug vigabatrin (GVG) on the GABAergic system in the hippocampus and cerebral cortex, before and during the developmental switch in GABA function (postnatal days P1–7 and P4–14). GVG induced a transient elevation of GABA levels. A feedback response to GABA enhancement was evident by a short-term decrease in glutamate decarboxylase (GAD) 65 and 67 levels. However, the number of GAD65/67-immunoreactive (IR) cells was greater in 2-week-old GVG-treated mice. A long-term increase in GAD65 and GAD67 levels was dependent on brain region and treatment period. Vesicular GABA transporter was insensitive to GVG. The overall effect of GVG on the Cl− co-transporters NKCC1 and KCC2 was an enhancement of their synthesis, which was dependent on the treatment period and brain region studied. In addition, a short-term increase was followed by a long-term decrease in KCC2 oligomerization in the cell membrane of P4–14 hippocampi and cerebral cortices. Analysis of the Ca2+ binding proteins expressed in subpopulations of GABAergic cells, parvalbumin and calbindin, showed region-specific effects of GVG during P4–14 on parvalbumin-IR cell density. Moreover, calbindin levels were elevated in GVG mice compared to controls during this period. Cumulatively, these results suggest a particular susceptibility of the hippocampus to GVG when exposed during days P4–14. In conclusion, our studies have identified modifications of key components in the inhibitory system during a critical developmental period. These findings provide novel insights into the deleterious consequences observed in children following prenatal and neonatal exposure to GABA-potentiating drugs. PMID:20043003

  15. The sushi domains of secreted GABA(B1) isoforms selectively impair GABA(B) heteroreceptor function.

    PubMed

    Tiao, Jim Y; Bradaia, Amyaouch; Biermann, Barbara; Kaupmann, Klemens; Metz, Michaela; Haller, Corinne; Rolink, Antonius G; Pless, Elin; Barlow, Paul N; Gassmann, Martin; Bettler, Bernhard

    2008-11-01

    GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. GABA(B) receptors are promising drug targets for a wide spectrum of psychiatric and neurological disorders. Receptor subtypes exhibit no pharmacological differences and are based on the subunit isoforms GABA(B1a) and GABA(B1b). GABA(B1a) differs from GABA(B1b) in its ectodomain by the presence of a pair of conserved protein binding motifs, the sushi domains (SDs). Previous work showed that selectively GABA(B1a) contributes to heteroreceptors at glutamatergic terminals, whereas both GABA(B1a) and GABA(B1b) contribute to autoreceptors at GABAergic terminals or to postsynaptic receptors. Here, we describe GABA(B1j), a secreted GABA(B1) isoform comprising the two SDs. We show that the two SDs, when expressed as a soluble protein, bind to neuronal membranes with low nanomolar affinity. Soluble SD protein, when added at nanomolar concentrations to dissociated hippocampal neurons or to acute hippocampal slices, impairs the inhibitory effect of GABA(B) heteroreceptors on evoked and spontaneous glutamate release. In contrast, soluble SD protein neither impairs the activity of GABA(B) autoreceptors nor impairs the activity of postsynaptic GABA(B) receptors. We propose that soluble SD protein scavenges an extracellular binding partner that retains GABA(B1a)-containing heteroreceptors in proximity of the presynaptic release machinery. Soluble GABA(B1) isoforms like GABA(B1j) may therefore act as dominant-negative inhibitors of heteroreceptors and control the level of GABA(B)-mediated inhibition at glutamatergic terminals. Of importance for drug discovery, our data also demonstrate that it is possible to selectively impair GABA(B) heteroreceptors by targeting their SDs.

  16. GODZ-mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses.

    PubMed

    Fang, Cheng; Deng, Lunbin; Keller, Cheryl A; Fukata, Masaki; Fukata, Yuko; Chen, Gong; Lüscher, Bernhard

    2006-12-01

    Golgi-specific DHHC (Asp-His-His-Cys) zinc finger protein (GODZ) is a DHHC family palmitoyl acyltransferase that is implicated in palmitoylation and regulated trafficking of diverse substrates that function either at inhibitory or excitatory synapses. Of particular interest is the gamma2 subunit of GABA(A) receptors, which is required for targeting these receptors to inhibitory synapses. Here, we report that GODZ and, to a lesser extent, its close paralog sertoli cell gene with a zinc finger domain-beta (SERZ-beta) are the main members of the DHHC family of enzymes that are able to palmitoylate the gamma2 subunit in heterologous cells. Yeast two-hybrid and colocalization assays in human embryonic kidney 293T (HEK293T) cells indicate that GODZ and SERZ-beta show indistinguishable palmitoylation-dependent interaction with the gamma2 subunit. After coexpression in HEK293T cells, they form homomultimers and heteromultimers, as shown by coimmunoprecipitation and in vivo cross-linking experiments. Analyses in neurons transfected with dominant-negative GODZ (GODZ(C157S)) or plasmid-based GODZ-specific RNAi indicate that GODZ is required for normal accumulation of GABA(A) receptors at synapses, for normal whole-cell and synaptic GABAergic inhibitory function and, indirectly, for GABAergic innervation. Unexpectedly, GODZ was found to be dispensable for normal postsynaptic AMPA receptor-mediated glutamatergic transmission. We conclude that GODZ-mediated palmitoylation of GABA(A) receptors and possibly other substrates contributes selectively to the formation and normal function of GABAergic inhibitory synapses.

  17. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids.

    PubMed

    Gasnier, Bruno

    2004-02-01

    The SLC32 family comprises a single member: the vesicular inhibitory amino acid transporter (VIAAT) or vesicular GABA transporter (VGAT). It belongs to a eukaryotic-specific superfamily of H(+)-coupled amino acid transporters, which also comprises the mammalian SLC36 and SLC38 transporters. VIAAT exchanges GABA or glycine for protons. It is present on synaptic vesicles of GABAergic and glycinergic neurons, and in some endocrine cells, where it ensures the H(+)-ATPase-driven uptake, and subsequent exocytotic release, of inhibitory amino acids. Despite a similar function in vesicular neurotransmitter loading, VIAAT is not related to the vesicular glutamate transporter (VGLUT, SLC17) or the vesicular monoamine transporter/vesicular acetylcholine transporter (VMAT/VACHT, SLC18) proteins.

  18. A functional role for both γ-aminobutyric acid (GABA) transporter-1 and GABA transporter-3 in the modulation of extracellular GABA and GABAergic tonic conductances in the rat hippocampus

    PubMed Central

    Kersanté, Flavie; Rowley, Samuel C S; Pavlov, Ivan; Gutièrrez-Mecinas, María; Semyanov, Alexey; Reul, Johannes M H M; Walker, Matthew C; Linthorst, Astrid C E

    2013-01-01

    Tonic γ-aminobutyric acid (GABA)A receptor-mediated signalling controls neuronal network excitability in the hippocampus. Although the extracellular concentration of GABA (e[GABA]) is critical in determining tonic conductances, knowledge on how e[GABA] is regulated by different GABA transporters (GATs) in vivo is limited. Therefore, we studied the role of GATs in the regulation of hippocampal e[GABA] using in vivo microdialysis in freely moving rats. Here we show that GAT-1, which is predominantly presynaptically located, is the major GABA transporter under baseline, quiescent conditions. Furthermore, a significant contribution of GAT-3 in regulating e[GABA] was revealed by administration of the GAT-3 inhibitor SNAP-5114 during simultaneous blockade of GAT-1 by NNC-711. Thus, the GABA transporting activity of GAT-3 (the expression of which is confined to astrocytes) is apparent under conditions in which GAT-1 is blocked. However, sustained neuronal activation by K+-induced depolarization caused a profound spillover of GABA into the extrasynaptic space and this increase in e[GABA] was significantly potentiated by sole blockade of GAT-3 (i.e. even when uptake of GAT-1 is intact). Furthermore, experiments using tetrodotoxin to block action potentials revealed that GAT-3 regulates extrasynaptic GABA levels from action potential-independent sources when GAT-1 is blocked. Importantly, changes in e[GABA] resulting from both GAT-1 and GAT-3 inhibition directly precipitate changes in tonic conductances in dentate granule cells as measured by whole-cell patch-clamp recording. Thus, astrocytic GAT-3 contributes to the regulation of e[GABA] in the hippocampus in vivo and may play an important role in controlling the excitability of hippocampal cells when network activity is increased. PMID:23381899

  19. Inhibitory interaction between P2X4 and GABA(C) rho1 receptors.

    PubMed

    Xia, Rong; Mei, Zhu-Zhong; Milligan, Carol; Jiang, Lin-Hua

    2008-10-10

    Reciprocal functional inhibition between P2X and GABA(A/C) receptors represents a novel mechanism fine-tuning neuronal excitability. However, the participating receptors and underlying mechanisms are not fully understood. P2X(4) receptor is widely found in neurons that express GABA(C) rho1 receptor. Thus, we co-expressed P2X(4) and rho1 receptors in HEK293 cells and, using patch-clamp recording, examined whether they have mutual functional inhibition. Currents evoked by simultaneous application of ATP and GABA (I(ATP+GABA)) were significantly smaller compared to the addition of I(ATP) and I(GABA). Furthermore, I(ATP) were strongly suppressed during rho1 receptor activation. Similarly, I(GABA) were greatly attenuated during P2X(4) receptor activation. Such mutual inhibition was absent in cells only expressing P2X(4) or rho1 receptor. Taken together, these functional data support negative cross-talk between P2X(4) and rho1 receptors.

  20. Attenuation of γ-aminobutyric acid (GABA) transaminase activity contributes to GABA increase in the cerebral cortex of mice exposed to β-cypermethrin.

    PubMed

    Han, Y; Cao, D; Li, X; Zhang, R; Yu, F; Ren, Y; An, L

    2014-03-01

    The current study investigated the γ-aminobutyric acid (GABA) levels and GABA metabolic enzymes (GABA transaminase (GABA(T)) and glutamate decarboxylase (GAD)) activities at 2 and 4 h after treatment, using a high-performance liquid chromatography with ultraviolet detectors and colorimetric assay, in the cerebral cortex of mice treated with 20, 40 or 80 mg/kg β-cypermethrin by a single oral gavage, with corn oil as vehicle control. In addition, GABA protein (4 h after treatment), GABA(T) protein (2 h after treatment) and GABA receptors messenger RNA (mRNA) expression were detected by immunohistochemistry, Western blot and real-time quantitative reverse transcriptase polymerase chain reaction, respectively. β-Cypermethrin (80 mg/kg) significantly increased GABA levels in the cerebral cortex of mice, at both 2 and 4 h after treatment, compared with the control. Also, GABA immunohistochemistry results suggested that the number of positive granules was increased in the cerebral cortex of mice 4 h after exposure to 80 mg/kg β-cypermethrin when compared with the control. Furthermore, the results also showed that GABA(T) activity detected was significantly decreased in the cerebral cortex of mice 2 h after β-cypermethrin administration (40 or 80 mg/kg). No significant changes were found in GAD activity, or the expression of GABA(T) protein and GABAB receptors mRNA, in the cerebral cortex of mice, except that 80 mg/kg β-cypermethrin caused a significant decrease, compared with the vehicle control, in GABAA receptors mRNA expression 4 h after administration. These results suggested that attenuated GABA(T) activity induced by β-cypermethrin contributed to increased GABA levels in the mouse brain. The downregulated GABAA receptors mRNA expression is most likely a downstream event.

  1. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop.

    PubMed

    Fenalti, Gustavo; Law, Ruby H P; Buckle, Ashley M; Langendorf, Christopher; Tuck, Kellie; Rosado, Carlos J; Faux, Noel G; Mahmood, Khalid; Hampe, Christiane S; Banga, J Paul; Wilce, Matthew; Schmidberger, Jason; Rossjohn, Jamie; El-Kabbani, Ossama; Pike, Robert N; Smith, A Ian; Mackay, Ian R; Rowley, Merrill J; Whisstock, James C

    2007-04-01

    Gamma-aminobutyric acid (GABA) is synthesized by two isoforms of the pyridoxal 5'-phosphate-dependent enzyme glutamic acid decarboxylase (GAD65 and GAD67). GAD67 is constitutively active and is responsible for basal GABA production. In contrast, GAD65, an autoantigen in type I diabetes, is transiently activated in response to the demand for extra GABA in neurotransmission, and cycles between an active holo form and an inactive apo form. We have determined the crystal structures of N-terminal truncations of both GAD isoforms. The structure of GAD67 shows a tethered loop covering the active site, providing a catalytic environment that sustains GABA production. In contrast, the same catalytic loop is inherently mobile in GAD65. Kinetic studies suggest that mobility in the catalytic loop promotes a side reaction that results in cofactor release and GAD65 autoinactivation. These data reveal the molecular basis for regulation of GABA homeostasis.

  2. A Fluorescence-Coupled Assay for Gamma Aminobutyric Acid (GABA) Reveals Metabolic Stress-Induced Modulation of GABA Content in Neuroendocrine Cancer

    PubMed Central

    Ippolito, Joseph E.; Piwnica-Worms, David

    2014-01-01

    Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies. PMID:24551133

  3. A fluorescence-coupled assay for gamma aminobutyric acid (GABA) reveals metabolic stress-induced modulation of GABA content in neuroendocrine cancer.

    PubMed

    Ippolito, Joseph E; Piwnica-Worms, David

    2014-01-01

    Pathways involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA) have been implicated in the pathogenesis of high grade neuroendocrine (NE) neoplasms as well as neoplasms from a non-NE lineage. Using The Cancer Genome Atlas, overexpression of the GABA synthetic enzyme, glutamate decarboxylase 1 (GAD1), was found to be associated with decreased disease free-survival in prostate adenocarcinoma and decreased overall survival in clear cell renal cell carcinomas. Furthermore, GAD1 was found to be expressed in castrate-resistant prostate cancer cell lines, but not androgen-responsive cell lines. Using a novel fluorescence-coupled enzymatic microplate assay for GABA mediated through reduction of resazurin in a prostate neuroendocrine carcinoma (PNEC) cell line, acid microenvironment-induced stress increased GABA levels while alkaline microenvironment-induced stress decreased GABA through modulation of GAD1 and glutamine synthetase (GLUL) activities. Moreover, glutamine but not glucose deprivation decreased GABA through modulation of GLUL. Consistent with evidence in prokaryotic and eukaryotic organisms that GABA synthesis mediated through GAD1 may play a crucial role in surviving stress, GABA may be an important mediator of stress survival in neoplasms. These findings identify GABA synthesis and metabolism as a potentially important pathway for regulating cancer cell stress response as well as a potential target for therapeutic strategies.

  4. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition.

    PubMed

    Snowden, Christopher J; Thomas, Benjamin; Baxter, Charles J; Smith, J Andrew C; Sweetlove, Lee J

    2015-03-01

    Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development.

  5. Production of gamma-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100.

    PubMed

    Kim, Ja Young; Lee, Moo Young; Ji, Geun Eog; Lee, Yeon Sook; Hwang, Keum Taek

    2009-03-15

    Black raspberry juice was fermented to produce gamma-aminobutyric acid (GABA) using lactic acid bacteria (Lactobacillus brevis GABA 100) at different temperatures (25, 30, or 37 degrees C) and pHs (3.5, 4, 4.5, 5, 5.5, or 6) for 15 days. Concentrations of GABA in the juices were determined during fermentation using HPLC. GABA was produced continuously even if the viable bacterial counts markedly decreased. The fermentation at 30 degrees C generally showed higher production of GABA in the juices than those at 25 and 37 degrees C. The GABA in the juices fermented at 30 degrees C reached the maximum levels on the 12th day. The juices fermented at lower pH and lower temperature showed a lower degradation of monomeric anthocyanins. The results suggest that black raspberry juice can be GABA enriched using lactic acid bacteria.

  6. Contents of Neo-flavored Tea (GABA Kintaro) Containing γ-Aminobutyric Acid

    NASA Astrophysics Data System (ADS)

    Shiraki, Yoshiya

    The contents of γ-aminobutyric acid (GABA), catechins, theaflavins, caffeine and pheophorbide-a in neo-flavored tea (GABA Kintaro tea) were analyzed. 1)The amounts of GABA were increased over 1.5mg/g by means of infrared ray irradiation with agitation treatment. 2)There was a tendency for the amount of catechins to be decreased by this treatment, whereas the amount of theaflavins tended to increase with the same treatment. The composition of these contents in this GABA Kintaro tea was almost the same as that of black tea. 3)There was a tendency for the amount of caffeine to be decreased by this treatment. 4)There was a tendency for the amount of pheophorbide-a to be increased by this treatment. 5)The result of this study showed that the amounts of GABA and theaflavins in this GABA Kintaro tea were higher than ordinary green tea but contained few catechins.It became clear that the amount of pheophorbide-a in this GABA Kintaro tea was less than the standard value established in processed chlorella.

  7. Identification of a lithium interaction site in the gamma-aminobutyric acid (GABA) transporter GAT-1.

    PubMed

    Zhou, Yonggang; Zomot, Elia; Kanner, Baruch I

    2006-08-01

    The sodium- and chloride-dependent electrogenic gamma-aminobutyric acid (GABA) transporter GAT-1, which transports two sodium ions together with GABA, is essential for synaptic transmission by this neurotransmitter. Although lithium by itself does not support GABA transport, it has been proposed that lithium can replace sodium at one of the binding sites but not at the other. To identify putative lithium selectivity determinants, we have mutated the five GAT-1 residues corresponding to those whose side chains participate in the sodium binding sites Na1 and Na2 of the bacterial leucine-transporting homologue LeuT(Aa). In GAT-1 and in most other neurotransmitter transporter family members, four of these residues are conserved, but aspartate 395 replaces the Na2 residue threonine 354. At varying extracellular sodium, lithium stimulated sodium-dependent transport currents as well as [3H]GABA uptake in wild type GAT-1. The extent of this stimulation was dependent on the GABA concentration. In mutants in which aspartate 395 was replaced by threonine or serine, the stimulation of transport by lithium was abolished. Moreover, these mutants were unable to mediate the lithium leak currents. This phenotype was not observed in mutants at the four other positions, although their transport properties were severely impacted. Thus at saturating GABA, the site corresponding to Na2 behaves as a low affinity sodium binding site where lithium can replace sodium. We propose that GABA participates in the other sodium binding site, just like leucine does in the Na1 site, and that at limiting GABA, this site determines the apparent sodium affinity of GABA transport.

  8. [Autoantibodies to glutamate and GABA in opiate addiction].

    PubMed

    Vetrile, L A; Fomina, V G; Nevidimova, T I; Vetlugina, T P; Batukhtina, E I; Savochkina, D N; Zakharova, I A; Davydova, T V

    2015-01-01

    Blood serum from 129 patients with opium addiction at different stages of the disease and 63 donors (control group) was examined for the presence of autoantibodies to the exciting and inhibitory amino acids glutamate and GABA. It was shown enhanced production of autoantibodies to glutamate and GABA. Dependence of the level and frequency of detec- tion of autoantibodies to glutamate and GABA on the stage of the disease was revealed.

  9. [Autoantibodies to glutamate and GABA in opiate addiction].

    PubMed

    Vetrile, L A; Fomina, V G; Nevidimova, T I; Vetlugina, T P; Batukhtina, E I; Savochkina, D N; Zakharova, I A; Davydova, T V

    2015-01-01

    Blood serum from 129 patients with opium addiction at different stages of the disease and 63 donors (control group) was examined for the presence of autoantibodies to the exciting and inhibitory amino acids glutamate and GABA. It was shown enhanced production of autoantibodies to glutamate and GABA. Dependence of the level and frequency of detec- tion of autoantibodies to glutamate and GABA on the stage of the disease was revealed. PMID:26852594

  10. Two groups of amino acids interact with GABA-A receptors coupled to t-[35S]butylbicyclophosphorothionate binding sites: possible involvement with seizures associated with hereditary amino acidemias.

    PubMed

    Squires, R F; Saederup, E; Lajtha, A

    1988-09-01

    Seven L-amino acids (Trp, Arg, Lys, Met, Ile, Val, and Phe) partially (28-81%) reversed the inhibitory action of 1 microM gamma-aminobutyric acid (GABA) on t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to rat brain membranes, with EC50 values ranging from 5 to 120 mM. D-Trp, D-Arg, D-Lys, D-Met, D-Val, and D-Phe were approximately equipotent with their L-isomers. Tyramine, phenethylamine, and tryptamine, the decarboxylation products of the aromatic amino acids (Tyr, Phe, and Trp, respectively), reversed the inhibitory action of 1 microM GABA on [35S]TBPS binding more potently than the parent amino acids (EC50 values = 1.5-3.0 mM). Human hereditary amino acidemias involving Arg, Lys, Ile, Val, and Phe are associated with seizures, and these amino acids and/or their metabolites may block GABA-A receptors. Five other L-amino acids (ornithine, His, Glu, Pro, and Ala) as well as Gly and beta-Ala inhibited [35S]TBPS binding with IC50 values ranging from 0.1 to 37 mM, and these inhibitions were reversed by the GABA-A receptor blocker R 5135 in all cases. The inhibitory effects of L-ornithine, L-Ala, L-Glu, and L-Pro were stereospecific, because the corresponding D-isomers were considerably less inhibitory. L-His, D-His, and L-Glu gave incomplete (plateau) inhibitions. Human hereditary amino acidemias involving L-ornithine, His, Pro, Gly, and beta-Ala are also associated with seizures, and we speculate that these GABA-mimetic amino acids may desensitize GABA-A receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera)

    PubMed Central

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  12. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-07-26

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis.

  13. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    PubMed

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  14. Utilization of barley or wheat bran to bioconvert glutamate to γ-aminobutyric acid (GABA).

    PubMed

    Jin, Wen-Jie; Kim, Min-Ju; Kim, Keun-Sung

    2013-09-01

    This study deals with the utilization of agro-industrial wastes created by barley and wheat bran in the production of a value-added product, γ-aminobutyric acid (GABA). The simple and eco-friendly reaction requires no pretreatment or microbial fermentation steps but uses barley or wheat bran as an enzyme source, glutamate as a substrate, and pyridoxal 5'-phosphate (PLP) as a cofactor. The optimal reaction conditions were determined on the basis of the temperatures and times used for the decarboxylation reactions and the initial concentrations of barley or wheat bran, glutamate, and PLP. The optimal reactions produced 9.2 mM of GABA from 10 mM glutamate, yielding a 92% GABA conversion rate, when barley bran was used and 6.0 mM of GABA from 10 mM glutamate, yielding a 60% GABA conversion rate, when wheat bran was used. The results imply that barley bran is more efficient than wheat bran in the production of GABA.

  15. Modulation of GABA receptors expressed in Xenopus oocytes by 13-L-hydroxylinoleic acid and food additives.

    PubMed

    Aoshima, H; Tenpaku, Y

    1997-12-01

    To study the effects of 13-L-hydroxylinoleic acid (LOH) and food additives on gamma-aminobutyric acid (GABA) receptors, ionotropic GABA receptors were expressed in Xenopus oocytes by injecting mRNAs prepared from rat whole brain. LOH, which was prepared by reduction of 13-L-hydroperoxylinoleic acid (LOOH), inhibited the response of GABA receptors in the presence of high concentrations of GABA. LOH also inhibited nicotinic acetylcholine, glycine, and kainate receptors, while it had little effect on NMDA receptors expressed in Xenopus oocytes. However, LOH potentiated the response of GABA receptors as well as LOOH in the presence of low concentrations of GABA, possibly increasing the affinity of GABA for the receptors, while linoleic acid did not. Since some modification of the compounds seemed to change their effects on GABA receptors, the responses of GABA receptors elicited by 10 microM GABA were measured in the presence of compounds with various kinds of functional groups or the structural isomers of pentanol. Potentiation of GABA receptors depended strongly on the species of functional groups and also depended on the structure of the isomers. Then effects of various kinds of food additives on GABA receptors were also examined; perfumes such as alcohols or esters potentiated the responses strongly, while hexylamine, nicotinamide, or caffeine inhibited the responses, mainly in a competitive manner, and vanillin inhibited the responses noncompetitively. These results suggest the possibility that production of LOOH and LOH, or intake of much of some food additives, modulates the neural transmission in the brain, especially through ionotropic GABA receptors and changes the frame of the human mind, as alcohol or tobacco does.

  16. Upregulated GABA Inhibitory Function in ADHD Children with Child Behavior Checklist–Dysregulation Profile: 123I-Iomazenil SPECT Study

    PubMed Central

    Nagamitsu, Shinichiro; Yamashita, Yushiro; Tanigawa, Hitoshi; Chiba, Hiromi; Kaida, Hayato; Ishibashi, Masatoshi; Kakuma, Tatsuyuki; Croarkin, Paul E.; Matsuishi, Toyojiro

    2015-01-01

    The child behavior checklist–dysregulation profile (CBCL–DP) refers to a pattern of elevated scores on the attention problems, aggression, and anxiety/depression subscales of the child behavior checklist. The aim of the present study was to investigate the potential role of GABA inhibitory neurons in children with attention deficit/hyperactivity disorder (ADHD) and dysregulation assessed with a dimensional measure. Brain single photon emission computed tomography (SPECT) was performed in 35 children with ADHD using 123I-iomazenil, which binds with high affinity to benzodiazepine receptors. Iomazenil binding activities were assessed with respect to the presence or absence of a threshold CBCL–DP (a score ≥210 for the sum of the three subscales: Attention Problems, Aggression, and Anxiety/Depression). We then attempted to identify which CBCL–DP subscale explained the most variance with respect to SPECT data, using “age,” “sex,” and “history of maltreatment” as covariates. Significantly higher iomazenil binding activity was seen in the posterior cingulate cortex (PCC) of ADHD children with a significant CBCL–DP. The Anxiety/Depression subscale on the CBCL had significant effects on higher iomazenil binding activity in the left superior frontal, middle frontal, and temporal regions, as well as in the PCC. The present brain SPECT findings suggest that GABAergic inhibitory neurons may play an important role in the neurobiology of the CBCL–DP, in children with ADHD. PMID:26082729

  17. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  18. Generation of Functional Inhibitory Synapses Incorporating Defined Combinations of GABA(A) or Glycine Receptor Subunits

    PubMed Central

    Dixon, Christine L.; Zhang, Yan; Lynch, Joseph W.

    2015-01-01

    Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR) and glycine receptor (GlyR) isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of individual isoforms under synaptic stimulation conditions in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2–5 weeks. PMID:26778954

  19. [The contribution of glycine and GABA(A) receptors to generation of the inhibitory postsynaptic potentials in the frog spinal cord motoneurones].

    PubMed

    Kurchavyĭ, G G; Kalinina, N I; Veselkin, N P

    2010-06-01

    The contribution of glycine and GABA(A) receptors to generation of the inhibitory postsynaptic potentials (IPSPs) evoked by microstimulation of the inhibitory fibers was studied intracellularly in the motoneurones of the isolated frog spinal cord. IPSPs were isolated by bloking EPSPs with kynurenate or CNQX and AP-5. The reversion under the small depolarising current (1-10) nA was used for the identification of IPSPs. The selective GlyR antagonist strychnine (1-5 microM) reduced the amplitude of IPSPs by a factor of 4.7 on the average in all studied motoneurones, while the selective GABA(A)R antagonist bicuculline (50-70 microM)--only by a factor of 1.6 and had no effect in 44% of motoneurones. Sequential applications of strychnine and bicuculline completely blocked the IPSPs. The results suggest that postsynaptic inhibition in the frog motoneurones is mediated by glycine (predominantly) and GABA(A) (to a smaller extent) receptors. It is possible the GABA(A) receptors are partly extrasynaptic. PMID:20795472

  20. Distribution of 3H-GABA uptake sites in the nematode Ascaris

    SciTech Connect

    Guastella, J.; Stretton, A.O. )

    1991-05-22

    The distribution of uptake sites for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in the nematode Ascaris suum was examined by autoradiography of 3H-GABA uptake. Single neural processes in both the ventral and dorsal nerve cords were labeled with 3H-GABA. Serial section analysis identified the cells of origin of these processes as the RMEV-like and RMED-like neurons. These cells belong to a set of four neurons in the nerve ring, all of which are labeled by 3H-GABA. 3H-GABA labeling of at least two other sets of cephalic neurons was seen. One of these pairs consists of medium-sized lateral ganglia neurons, located at the level of the amphid commissure bundle. A second pair is located in the lateral ganglia at the level of the deirid commissure bundle. The position and size of these lateral ganglia cells suggest that they are the GABA-immunoreactive lateral ganglia cells frequently seen in whole-mount immunocytochemical preparations. Four neuronal cell bodies located in the retrovesicular ganglion were also labeled with 3H-GABA. These cells, which are probably cholinergic excitatory motor neurons, do not contain detectable GABA-like immunoreactivity. Heavy labeling of muscle cells was also observed. The ventral and dorsal nerve cord inhibitory motor neurons, which are known to contain GABA-like immunoreactivity, were not labeled above background with 3H-GABA. Together with the experiments reported previously, these results define three classes of GABA-associated neurons in Ascaris: (1) neurons that contain endogenous GABA and possess a GABA uptake system; (2) neurons that contain endogenous GABA, but that either lack a GABA uptake system or possess a GABA uptake system of low activity; (3) neurons that possess a GABA uptake system, but that lack endogenous GABA.

  1. Correlation Between Hepatocyte Growth Factor (HGF) and Gamma-Aminobutyric Acid (GABA) Plasma Levels in Autistic Children.

    PubMed

    Russo, Anthony J

    2013-01-01

    There is much support for the role of Gamma-Aminobutyric acid (GABA) in the etiology of autism. Recent research has shown that hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility. This study was designed to determine and correlate plasma levels of HGF, GABA, as well as symptom severity, in autistic children and neurotypical controls. Plasma from 48 autistic children and 29 neurotypical controls was assessed for HGF and GABA concentration using ELISAs. Symptom severity was assessed in these autistic individuals and compared to HGF and GABA concentrations. We previously reported that autistic children had significantly decreased levels of HGF. In this study, the same autistic children had significantly increased plasma levels of GABA (P = 0.002) and decreased HGF levels correlated with these increased GABA levels (r = 0.3; P = 0.05). High GABA levels correlated with increasing hyperactivity (r = 0.6; P = 0.0007) and impulsivity severity (r = 0.5; P = 0.007), tip toeing severity (r = 0.35; P = 0.03), light sensitivity (r = 0.4; P = 0.02), and tactile sensitivity (r = 0.4; P = 0.01). HGF levels did not correlate significantly with any symptom severity. These results suggest an association between HGF and GABA levels and suggest that plasma GABA levels are related to symptom severity in autistic children.

  2. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-γ-aminobutyric acid (GABA)-producing lactic acid bacteria.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2015-02-01

    High γ-aminobutyric acid (GABA)-producing lactobacilli are promising for the manufacture of GABA-rich foods and to synthesize GRAS (generally recognized as safe)-grade GABA. However, common chromatography-based screening is time-consuming and inefficient. In the present study, Korean kimchi was used as a model of lactic acid-based fermented foods, and a gas release-based prescreening of potential GABA producers was developed. The ability to produce GABA by potential GABA producers in de Man, Rogosa, and Sharpe medium supplemented with or without monosodium glutamate was further determined by HPLC. Based on the results, 9 isolates were regarded as high GABA producers, and were further genetically identified as Lactobacillus brevis based on the sequences of 16S rRNA gene. Gas release-based prescreening combined with reversed-phase HPLC confirmation was an efficient and cost-effective method to identify high-GABA-producing LAB, which could be good candidates for probiotics. The GABA that is naturally produced by these high-GABA-producing LAB could be used as a food additive.

  3. EXP-1 is an excitatory GABA-gated cation channel.

    PubMed

    Beg, Asim A; Jorgensen, Erik M

    2003-11-01

    Gamma-aminobutyric acid (GABA) mediates fast inhibitory neurotransmission by activating anion-selective ligand-gated ion channels. Although electrophysiological studies indicate that GABA may activate cation-selective ligand-gated ion channels in some cell types, such a channel has never been characterized at the molecular level. Here we show that GABA mediates enteric muscle contraction in the nematode Caenorhabditis elegans via the EXP-1 receptor, a cation-selective ligand-gated ion channel. The EXP-1 protein resembles ionotropic GABA receptor subunits in almost all domains. In the pore-forming domain of EXP-1, however, the residues that confer anion selectivity are exchanged for those that specify cation selectivity. When expressed in Xenopus laevis oocytes, EXP-1 forms a GABA receptor that is permeable to cations and not anions. We conclude that some of the excitatory functions assigned to GABA are mediated by cation channels rather than by anion channels.

  4. Changes in inhibitory amino acid release linked to pontine-induced atonia: an in vivo microdialysis study.

    PubMed

    Kodama, Tohro; Lai, Yuan-Yang; Siegel, Jerome M

    2003-02-15

    We hypothesized that cessation of brainstem monoaminergic systems and an activation of brainstem inhibitory systems are both involved in pontine inhibitory area (PIA) stimulation-induced muscle atonia. In our previous study (Lai et al., 2001), we found a decrease in norepinephrine and serotonin release in motoneuron pools during PIA stimulation-induced muscle tone suppression. We now demonstrate an increase in inhibitory amino acid release in motor nuclei during PIA stimulation in the decerebrate cat using in vivo microdialysis and HPLC analysis techniques. Microinjection of acetylcholine into the PIA elicited muscle atonia and simultaneously produced a significant increase in both glycine and GABA release in both the hypoglossal nucleus and the lumbar ventral horn. Glycine release increased by 74% in the hypoglossal nucleus and 50% in the spinal cord. GABA release increased by 31% in the hypoglossal nucleus and 64% in the spinal cord during atonia induced by cholinergic stimulation of the PIA. As with cholinergic stimulation, 300 msec train electrical stimulation of the PIA elicited a significant increase in glycine release in the hypoglossal nucleus and ventral horn. GABA release was significantly increased in the hypoglossal nucleus but not in the spinal cord during electrical stimulation of the PIA. Glutamate release in the motor nuclei was not significantly altered during atonia induced by electrical or acetylcholine stimulation of the PIA. We suggest that both glycine and GABA play important roles in the regulation of upper airway and postural muscle tone. A combination of decreased monoamine and increased inhibitory amino acid release in motoneuron pools causes PIA-induced atonia and may be involved in atonia linked to rapid eye-movement sleep.

  5. Prolonged treatment with gamma-aminobutyric acid (GABA)-mimetic substances in prepubertal male rats.

    PubMed

    Debeljuk, L; Díaz, M D; Maines, V M; Seilicovich, A

    1983-06-01

    The effect of chronic treatment with a gamma-aminobutyric acid (GABA)-mimetic compound, progabide, and an inhibitor of GABA-transaminase, gamma-acetylenic GABA (GAG), was tested in prepubertal male rats. The effect of gamma-butyrolactone (GBL), given orally, was also tested. The rats treated with progabide did not show any difference in body, testicular, or seminal vesicle weights or serum prolactin levels, as compared with control rats. Treatment with GAG, at both dose levels used, did not significantly affect body weight. Testicular weight was significantly lower in the group of rats treated with the low dosage of GAG (5 mg/kg), and serum prolactin was significantly lower in the rats treated with the high dosage of GAG (20 mg/kg) as compared with control rats. In the first experiment performed with GBL, the rats given this compound had significantly lower body and testicular weights as compared with control rats. In the second experiment, GBL-treated rats had body weights similar to those of control rats, but testicular weights were significantly decreased. Prolonged treatment with GABA mimetics may affect the hypothalamic-pituitary-testicular axis.

  6. Comparison of Steroid Modulation of Spontaneous Inhibitory Postsynaptic Currents in Cultured Hippocampal Neurons and Steady-State Single-Channel Currents from Heterologously Expressed α1β2γ2L GABA(A) Receptors.

    PubMed

    Chakrabarti, Sampurna; Qian, Mingxing; Krishnan, Kathiresan; Covey, Douglas F; Mennerick, Steven; Akk, Gustav

    2016-04-01

    Neuroactive steroids are efficacious modulators of γ-aminobutyric acid type A receptor (GABA(A)) receptor function. The effects of steroids on the GABA(A) receptor are typically determined by comparing steady-state single-channel open probability or macroscopic peak responses elicited by GABA in the absence and presence of a steroid. Due to differences in activation conditions (exposure duration, concentration of agonist), it is not obvious whether modulation measured using typical experimental protocols can be used to accurately predict the effect of a modulator on native receptors under physiologic conditions. In the present study, we examined the effects of 14 neuroactive steroids and analogs on the properties of spontaneous inhibitory postsynaptic currents (sIPSCs) in cultured rat hippocampal neurons. The goal was to determine whether the magnitude of modulation of the decay time course of sIPSCs correlates with the extent of modulation and kinetic properties of potentiation as determined in previous single-channel studies. The steroids were selected to cover a wide range of efficacy on heterologously expressed rat α1β2γ2L GABA(A) receptors, ranging from essentially inert to highly efficacious (strong potentiators of single-channel and macroscopic peak responses). The data indicate a strong correlation between prolongation of the decay time course of sIPSCs and potentiation of single-channel open probability. Furthermore, changes in intracluster closed time distributions were the single best predictor of prolongation of sIPSCs. We infer that the information obtained in steady-state single-channel recordings can be used to forecast modulation of synaptic currents.

  7. Gamma-amino butyric acid (GABA) release in the ciliated protozoon Paramecium occurs by neuronal-like exocytosis.

    PubMed

    Ramoino, P; Milanese, M; Candiani, S; Diaspro, A; Fato, M; Usai, C; Bonanno, G

    2010-04-01

    Paramecium primaurelia expresses a significant amount of gamma-amino butyric acid (GABA). Paramecia possess both glutamate decarboxylase (GAD)-like and vesicular GABA transporter (vGAT)-like proteins, indicating the ability to synthesize GABA from glutamate and to transport GABA into vesicles. Using antibodies raised against mammalian GAD and vGAT, bands with an apparent molecular weight of about 67 kDa and 57 kDa were detected. The presence of these bands indicated a similarity between the proteins in Paramecium and in mammals. VAMP, syntaxin and SNAP, putative proteins of the release machinery that form the so-called SNARE complex, are present in Paramecium. Most VAMP, syntaxin and SNAP fluorescence is localized in spots that vary in size and density and are primarily distributed near the plasma membrane. Antibodies raised against mammal VAMP-3, sintaxin-1 or SNAP-25 revealed protein immunoblot bands having molecular weights consistent with those observed in mammals. Moreover, P. primaurelia spontaneously releases GABA into the environment, and this neurotransmitter release significantly increases after membrane depolarization. The depolarization-induced GABA release was strongly reduced not only in the absence of extracellular Ca(2+) but also by pre-incubation with bafilomycin A1 or with botulinum toxin C1 serotype. It can be concluded that GABA occurs in Paramecium, where it is probably stored in vesicles capable of fusion with the cell membrane; accordingly, GABA can be released from Paramecium by stimulus-induced, neuronal-like exocytotic mechanisms.

  8. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence.

    PubMed

    Park, Duck Hwan; Mirabella, Rossana; Bronstein, Philip A; Preston, Gail M; Haring, Michel A; Lim, Chun Keun; Collmer, Alan; Schuurink, Robert C

    2010-10-01

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.

  9. Effect of diphenylhydantoin on gamma aminobutyric acid (GABA) and succinate activity in rat Purkinje cells.

    PubMed Central

    Hitchcock, E; Gabra-Sanders, T

    1977-01-01

    A study has been made of the effect of diphenylhydantoin (DPH) upon the levels of gamma aminobutyric acid (GABA) and succinic dehydrogenase in rat Purkinje cells. DPH was administered over 26 days in chronic experiments using controls receiving the same injection vehicle without DPH. Animals in this group received daily 1.25 mg/kg body weight, 12.5 mg/kg body weight, and 50 mg/kg body weight DPH. Acute experiments were carried out over the course of not more than four days, three groups of animals receiving 75 mg/kg body weight, 87.5 mg/kg body weight, and 100 mg/kg body weight DPH. No effect upon succinic dehydrogenase could be demonstrated at any dose level. There was a significant progressive loss of GABA with increasing dosage of DPH. Images PMID:903771

  10. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter.

    PubMed

    Dung Pham, Van; Somasundaram, Sivachandiran; Lee, Seung Hwan; Park, Si Jae; Hong, Soon Ho

    2016-01-01

    Gamma-aminobutyric acid (GABA) is an important bio-product, which is used in pharmaceutical formulations, nutritional supplements, and biopolymer monomer. The traditional GABA process involves the decarboxylation of glutamate. However, the direct production of GABA from glucose is a more efficient process. To construct the recombinant strains of Escherichia coli, a novel synthetic scaffold was introduced. By carrying out the co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter, we redirected the TCA cycle flux to GABA pathway. The genetically engineered E. coli strain produced 1.08 g/L of GABA from 10 g/L of initial glucose. Thus, with the introduction of a synthetic scaffold, we increased GABA production by 2.2-fold. The final GABA concentration was increased by 21.8% by inactivating competing pathways.

  11. Involvement of gamma-amino butyric acid (GABA) in the anticonvulsant action of methaqualone.

    PubMed

    Naik, S R; Naid, P R; Sheth, U K

    1978-04-14

    The effects of methaqualone on isonicotinic acid hydrazide, 6-mercapto propionic acid, picrotoxin, and strychnine-induced convulsion were studied in mice and the results compared with diazepam. Methaqualone, like diazepam, was found to be a selective antagonist of isoniazid-induced convulsion and a much less effective inhibitor of strychnine convulsion. Methaqualone elicits muscle-relaxant, sedative, and anticonvulsant effects at different dose levels. At low, nonsedative doses the drug produces anticonvulsant effects, and at higher doses, muscle-relaxant and sedative effects. It appears that the mechanism(s) of action of methaqualone in on GABA deficiency or receptor blockade, rather than on glycine receptors.

  12. Mutations in y-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid '-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome h...

  13. The central nervous system convulsant pentylenetetrazole stimulates gamma-aminobutyric acid (GABA)-activated current in picrotoxin-resistant GABA(A) receptors in HEK293 cells.

    PubMed

    Dibas, M I; Dillon, G H

    2000-05-19

    We tested the ability of the central nervous system convulsant pentylenetetrazole (PTZ) to inhibit gamma-aminobutyric acid (GABA)-gated current in receptors expressing a mutation that rendered them resistant to picrotoxin. Consistent with previous reports, receptors expressing beta2(T246F), along with alpha3 and gamma2 subunits, resulted in a greatly diminished sensitivity to picrotoxin. Sensitivity to PTZ was completely abolished in the mutant receptor, confirming the hypothesis that PTZ acts at the picrotoxin site. Quite unexpected, however, was our finding that PTZ elicited marked stimulation (up to 400% of control) in the mutated receptors. This stimulatory effect was not mediated via an interaction with the benzodiazepine site, as preincubation with the benzodiazepine antagonist flumazenil did not block the PTZ-induced stimulation. Our results reveal the existence of a novel stimulatory domain of PTZ in GABA(A) receptors.

  14. Setting the time course of inhibitory synaptic currents by mixing multiple GABA(A) receptor α subunit isoforms.

    PubMed

    Eyre, Mark D; Renzi, Massimiliano; Farrant, Mark; Nusser, Zoltan

    2012-04-25

    The kinetics of IPSCs influence many neuronal processes, such as the frequencies of oscillations and the duration of shunting inhibition. The subunit composition of recombinant GABA(A) receptors (GABA(A)Rs) strongly affects the deactivation kinetics of GABA-evoked currents. However, for GABAergic synapses, the relationship between subunit composition and IPSC decay is less clear. Here we addressed this by combining whole-cell recordings of miniature IPSCs (mIPSCs) and quantitative immunolocalization of synaptic GABA(A)R subunits. In cerebellar stellate, thalamic relay, and main olfactory bulb (MOB) deep short-axon cells of Wistar rats, the only synaptic α subunit was α1, and zolpidem-sensitive mIPSCs had weighted decay time constants (τ(w)) of 4-6 ms. Nucleus reticularis thalami neurons expressed only α3 as the synaptic α subunit and exhibited slow (τ(w) = 28 ms), zolpidem-insensitive mIPSCs. By contrast, MOB external tufted cells contained two α subunit types (α1 and α3) at their synapses. Quantitative analysis of multiple immunolabeled images revealed small within-cell, but large between-cell, variability in synaptic α1/α3 ratios. This corresponded to large cell-to-cell variability in the decay (τ(w) = 3-30 ms) and zolpidem sensitivity of mIPSCs. Currents evoked by rapid application of GABA to patches excised from HEK cells expressing different mixtures of α1 and α3 subunits displayed highly variable deactivation times that correlated with the α1/α3 cDNA ratio. Our results demonstrate that diversity in the decay of IPSCs can be generated by varying the expression of different GABA(A)R subunits that alone confer different decay kinetics, allowing the time course of inhibition to be tuned to individual cellular requirements.

  15. Effects of NaCl Replacement with Gamma-Aminobutyric acid (GABA) on the Quality Characteristics and Sensorial Properties of Model Meat Products

    PubMed Central

    Chun, Ji-Yeon; Cho, Hyung-Yong; Min, Sang-Gi

    2014-01-01

    This study investigated the effects of γ-aminobutylic acid (GABA) on the quality and sensorial properties of both the GABA/NaCl complex and model meat products. GABA/NaCl complex was prepared by spray-drying, and the surface dimensions, morphology, rheology, and saltiness were characterized. For model meat products, pork patties were prepared by replacing NaCl with GABA. For characteristics of the complex, increasing GABA concentration increased the surface dimensions of the complex. However, GABA did not affect the rheological properties of solutions containing the complex. The addition of 2% GABA exhibited significantly higher saltiness than the control (no GABA treatment). In the case of pork patties, sensory testing indicated that the addition of GABA decreased the saltiness intensity. Both the intensity of juiciness and tenderness of patties containing GABA also scored lower than the control, based on the NaCl reduction. These results were consistent with the quality characteristics (cooking loss and texture profile analysis). Nevertheless, overall acceptability of the pork patties showed that up to 1.5%, patties containing GABA did not significantly differ from the control. Consequently, the results indicated that GABA has a potential application in meat products, but also manifested a deterioration of quality by the NaCl reduction, which warrants further exploration. PMID:26761294

  16. Presence of Gamma-Aminobutyric Acid (Gaba) in the Pedal Mucus of the Critically Endangered Species Patella ferruginea.

    PubMed

    Rivera-Ingraham, G A; Espinosa, F; Krock, B

    2015-05-01

    Patella ferruginea is a giant patellid limpet endemic to the Mediterranean Sea. It presently is in danger of extinction, and many have called for developing conservation measures including the mass production of spats for re-introduction projects. However, so far all attempts have been relatively unsuccessful. Previous work analyzing the effects of gamma-aminobutyric acid (GABA) on the recruitment of patellid limpets has shown that larvae respond to the presence of this signaling molecule. This response could explain the gregarious distribution typical of this species. In the present study, we demonstrated that GABA is naturally secreted by P. ferruginea in the pedal mucus. GABA is preferentially secreted during the summer, coinciding with the reproductive resting period of the species. Further research should aim to analyze the effects of GABA on larval development and metamorphosis in order to assess its potential use to improve conservation efforts.

  17. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    PubMed

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. PMID:25266692

  18. Oxo-4-methylpentanoic acid directs the metabolism of GABA into the Krebs cycle in rat pancreatic islets.

    PubMed

    Hernández-Fisac, Inés; Fernández-Pascual, Sergio; Ortsäter, Henrik; Pizarro-Delgado, Javier; Martín del Río, Rafael; Bergsten, Peter; Tamarit-Rodriguez, Jorge

    2006-11-15

    OMP (oxo-4-methylpentanoic acid) stimulates by itself a biphasic secretion of insulin whereas L-leucine requires the presence of L-glutamine. L-Glutamine is predominantly converted into GABA (gamma-aminobutyric acid) in rat islets and L-leucine seems to promote its metabolism in the 'GABA shunt' [Fernández-Pascual, Mukala-Nsengu-Tshibangu, Martín del Río and Tamarit-Rodríguez (2004) Biochem. J. 379, 721-729]. In the present study, we have investigated how 10 mM OMP affects L-glutamine metabolism to uncover possible differences with L-leucine that might help to elucidate whether they share a common mechanism of stimulation of insulin secretion. In contrast with L-leucine, OMP alone stimulated a biphasic insulin secretion in rat perifused islets and decreased the islet content of GABA without modifying its extracellular release irrespective of the concentration of L-glutamine in the medium. GABA was transaminated to L-leucine whose intracellular concentration did not change because it was efficiently transported out of the islet cells. The L-[U-14C]-Glutamine (at 0.5 and 10.0 mM) conversion to 14CO2 was enhanced by 10 mM OMP within 30% and 70% respectively. Gabaculine (250 microM), a GABA transaminase inhibitor, suppressed OMP-induced oxygen consumption but not L-leucine- or glucose-stimulated respiration. It also suppressed the OMP-induced decrease in islet GABA content and the OMP-induced increase in insulin release. These results support the view that OMP promotes islet metabolism in the 'GABA shunt' generating 2-oxo-glutarate, in the branched-chain alpha-amino acid transaminase reaction, which would in turn trigger GABA deamination by GABA transaminase. OMP, but not L-leucine, suppressed islet semialdehyde succinic acid reductase activity and this might shift the metabolic flux of the 'GABA shunt' from gamma-hydroxybutyrate to succinic acid production.

  19. Reproducibility and effect of tissue composition on cerebellar γ-aminobutyric acid (GABA) MRS in an elderly population.

    PubMed

    Long, Zaiyang; Dyke, Jonathan P; Ma, Ruoyun; Huang, Chaorui C; Louis, Elan D; Dydak, Ulrike

    2015-10-01

    MRS provides a valuable tool for the non-invasive detection of brain γ-aminobutyric acid (GABA) in vivo. GABAergic dysfunction has been observed in the aging cerebellum. The study of cerebellar GABA changes is of considerable interest in understanding certain age-related motor disorders. However, little is known about the reproducibility of GABA MRS in an aged population. Therefore, this study aimed to explore the feasibility and reproducibility of GABA MRS in the aged cerebellum at 3.0 T and to examine the effect of differing tissue composition on GABA measurements. MRI and (1)H MRS examinations were performed on 10 healthy elderly volunteers (mean age, 75.2 ± 6.5 years) using a 3.0-T Siemens Tim Trio scanner. Among them, five subjects were scanned twice to assess the short-term reproducibility. The MEGA-PRESS (Mescher-Garwood point-resolved spectroscopy) J-editing sequence was used for GABA detection in two volumes of interest (VOIs) in the left and right cerebellar dentate. MRS data processing and quantification were performed with LCModel 6.3-0L using two separate basis sets, generated from density matrix simulations using published values for chemical shifts and J couplings. Raw metabolite levels from LCModel outputs were corrected for cerebrospinal fluid contamination and relaxation. GABA-edited spectra yielded robust and stable GABA measurements with averaged intra-individual coefficients of variation for corrected GABA+ between 4.0 ± 2.8% and 13.4 ± 6.3%, and inter-individual coefficients of variation between 12.6% and 24.2%. In addition, there was a significant correlation between GABA+ obtained with the two LCModel basis sets. Overall, our results demonstrated the feasibility and reproducibility of cerebellar GABA-edited MRS at 3.0 T in an elderly population. This information might be helpful for studies using this technique to study GABA changes in normal or diseased aging brain, e.g. for power calculations and the interpretation of longitudinal

  20. Reproducibility and effect of tissue composition on cerebellar γ-aminobutyric acid (GABA) MRS in an elderly population.

    PubMed

    Long, Zaiyang; Dyke, Jonathan P; Ma, Ruoyun; Huang, Chaorui C; Louis, Elan D; Dydak, Ulrike

    2015-10-01

    MRS provides a valuable tool for the non-invasive detection of brain γ-aminobutyric acid (GABA) in vivo. GABAergic dysfunction has been observed in the aging cerebellum. The study of cerebellar GABA changes is of considerable interest in understanding certain age-related motor disorders. However, little is known about the reproducibility of GABA MRS in an aged population. Therefore, this study aimed to explore the feasibility and reproducibility of GABA MRS in the aged cerebellum at 3.0 T and to examine the effect of differing tissue composition on GABA measurements. MRI and (1)H MRS examinations were performed on 10 healthy elderly volunteers (mean age, 75.2 ± 6.5 years) using a 3.0-T Siemens Tim Trio scanner. Among them, five subjects were scanned twice to assess the short-term reproducibility. The MEGA-PRESS (Mescher-Garwood point-resolved spectroscopy) J-editing sequence was used for GABA detection in two volumes of interest (VOIs) in the left and right cerebellar dentate. MRS data processing and quantification were performed with LCModel 6.3-0L using two separate basis sets, generated from density matrix simulations using published values for chemical shifts and J couplings. Raw metabolite levels from LCModel outputs were corrected for cerebrospinal fluid contamination and relaxation. GABA-edited spectra yielded robust and stable GABA measurements with averaged intra-individual coefficients of variation for corrected GABA+ between 4.0 ± 2.8% and 13.4 ± 6.3%, and inter-individual coefficients of variation between 12.6% and 24.2%. In addition, there was a significant correlation between GABA+ obtained with the two LCModel basis sets. Overall, our results demonstrated the feasibility and reproducibility of cerebellar GABA-edited MRS at 3.0 T in an elderly population. This information might be helpful for studies using this technique to study GABA changes in normal or diseased aging brain, e.g. for power calculations and the interpretation of longitudinal

  1. Manganese accumulation in membrane fractions of primary astrocytes is associated with decreased γ-aminobutyric acid (GABA) uptake, and is exacerbated by oleic acid and palmitate.

    PubMed

    Fordahl, Steve C; Erikson, Keith M

    2014-05-01

    Manganese (Mn) exposure interferes with GABA uptake; however, the effects of Mn on GABA transport proteins (GATs) have not been identified. We sought to characterize how Mn impairs GAT function in primary rat astrocytes. Astrocytes exposed to Mn (500 μM) had significantly reduced (3)H-GABA uptake despite no change in membrane or cytosolic GAT3 protein levels. Co-treatment with 100 μM oleic or palmitic acids (both known to be elevated in Mn neurotoxicity), exacerbated the Mn-induced decline in (3)H-GABA uptake. Mn accumulation in the membrane fraction of astrocytes was enhanced with fatty acid administration, and was negatively correlated with (3)H-GABA uptake. Furthermore, control cells exposed to Mn only during the experimental uptake had significantly reduced (3)H-GABA uptake, and the addition of GABA (50 μM) blunted cytosolic Mn accumulation. These data indicate that reduced GAT function in astrocytes is influenced by Mn and fatty acids accumulating at or interacting with the plasma membrane.

  2. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase.

    PubMed

    Yu, Guang-Hui; Zou, Jie; Feng, Jing; Peng, Xiong-Bo; Wu, Ju-You; Wu, Ying-Liang; Palanivelu, Ravishankar; Sun, Meng-Xiang

    2014-07-01

    γ-Aminobutyric acid (GABA) is implicated in pollen tube growth, but the molecular and cellular mechanisms that it mediates are largely unknown. Here, it is shown that exogenous GABA modulates putative Ca(2+)-permeable channels on the plasma membranes of tobacco pollen grains and pollen tubes. Whole-cell voltage-clamp experiments and non-invasive micromeasurement technology (NMT) revealed that the influx of Ca(2+) increases in pollen tubes in response to exogenous GABA. It is also demonstrated that glutamate decarboxylase (GAD), the rate-limiting enzyme of GABA biosynthesis, is involved in feedback controls of Ca(2+)-permeable channels to fluctuate intracellular GABA levels and thus modulate pollen tube growth. The findings suggest that GAD activity linked with Ca(2+)-permeable channels relays an extracellular GABA signal and integrates multiple signal pathways to modulate tobacco pollen tube growth. Thus, the data explain how GABA mediates the communication between the style and the growing pollen tubes.

  3. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    PubMed

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway. PMID:23017406

  4. GABA shunt and polyamine degradation pathway on γ-aminobutyric acid accumulation in germinating fava bean (Vicia faba L.) under hypoxia.

    PubMed

    Yang, Runqiang; Guo, Qianghui; Gu, Zhenxin

    2013-01-01

    GABA shunt and polyamine degradation pathway on γ-aminobutyric acid (GABA) accumulation in germinating fava bean under hypoxia was investigated. GABA content, GAD and DAO activity were significantly increased under hypoxia treatment. Glu and polyamine contents enhanced largely and thus supplied as sufficient substrates for GABA formation. In contrast, GABA content decreased, mainly in the embryo, after removing the hypoxia stress. DAO activity, Glu and polyamines contents decreased, while an increment of GAD activity was observed. This indicated that GAD activity can be not only regulated by hypoxia, but by the rapid growth of embryo after the recovery from hypoxia stress. When treated with AG, DAO activity was almost inhibited completely, and the GABA content decreased by 32.96% and 32.07% after treated for 3 and 5 days, respectively. Hence, it can be inferred that about 30% of GABA formed in germinating fava bean under hypoxia was supplied by polyamine degradation pathway.

  5. Focal Uncaging of GABA Reveals a Temporally Defined Role for GABAergic Inhibition during Appetitive Associative Olfactory Conditioning in Honeybees

    ERIC Educational Resources Information Center

    Raccuglia, Davide; Mueller, Uli

    2013-01-01

    Throughout the animal kingdom, the inhibitory neurotransmitter ?-aminobutyric acid (GABA) is a key modulator of physiological processes including learning. With respect to associative learning, the exact time in which GABA interferes with the molecular events of learning has not yet been clearly defined. To address this issue, we used two…

  6. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize

    PubMed Central

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L-1 and 50 mg L-1, in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms. PMID:27446149

  7. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms.

  8. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms. PMID:27446149

  9. Determination of γ-Aminobutyric Acid (GABA) in Rambutan Fruit cv. Rongrian by HPLC-ELSD and Separation of GABA from Rambutan Fruit Using Dowex 50W-X8 Column.

    PubMed

    Meeploy, Maneerat; Deewatthanawong, Rujira

    2016-03-01

    A high-performance liquid chromatography method coupled with an evaporative light scattering detector (ELSD) was validated for the determination of γ-aminobutyric acid (GABA) in rambutan fruit without any sample pretreatment or derivatization. In the concentration range of 0.05-1.0 mg/mL GABA, the ELSD response was linear with a correlation coefficient (r) >0.999. Limit of detection and limit of quantitation were found to be 0.7 and 2.0 µg/mL, respectively. The method enabled the complete separation of GABA in the aqueous extract of rambutan flesh from the impurity peaks at 45.7 min. The recoveries of sample added GABA were obtained in the range of 92.0-99.3%. Intraday and interday relative standard deviations were <5.3%. Repeatability of the extraction process showed the acceptable precision. From the analysis of GABA content in rambutan flesh, 0.71 ± 0.23 mg of GABA was found in 1 g fresh weight. The recovery of GABA after passing through the Dowex 50W-X8 column was 96.65%. The analytical methodology could be potentially applied to the detection and quantification of GABA in other fruits and complex matrices when a sufficient quantity is available. PMID:26590236

  10. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    PubMed Central

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  11. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0

    NASA Astrophysics Data System (ADS)

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  12. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-05-23

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes.

  13. Artificial Autopolyploidization Modifies the Tricarboxylic Acid Cycle and GABA Shunt in Arabidopsis thaliana Col-0.

    PubMed

    Vergara, Fredd; Kikuchi, Jun; Breuer, Christian

    2016-01-01

    Autopolyploidy is a process whereby the chromosome set is multiplied and it is a common phenomenon in angiosperms. Autopolyploidy is thought to be an important evolutionary force that has led to the formation of new plant species. Despite its relevance, the consequences of autopolyploidy in plant metabolism are poorly understood. This study compares the metabolic profiles of natural diploids and artificial autotetraploids of Arabidopsis thaliana Col-0. Different physiological parameters are compared between diploids and autotetraploids using nuclear magnetic resonance (NMR), elemental analysis (carbon:nitrogen balance) and quantitative real-time PCR (qRT-PCR). The main difference between diploid and autotetraploid A. thaliana Col-0 is observed in the concentration of metabolites related to the tricarboxylic acid cycle (TCA) and γ-amino butyric acid (GABA) shunt, as shown by multivariate statistical analysis of NMR spectra. qRT-PCR shows that genes related to the TCA and GABA shunt are also differentially expressed between diploids and autotetraploids following similar trends as their corresponding metabolites. Solid evidence is presented to demonstrate that autopolyploidy influences core plant metabolic processes. PMID:27212081

  14. Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli.

    PubMed

    Le Vo, Tam Dinh; Ko, Ji-seun; Park, Si Jae; Lee, Seung Hwan; Hong, Soon Ho

    2013-08-01

    Gamma-aminobutyric acid (GABA) is a precursor of one of the most promising heat-resistant biopolymers, Nylon-4, and can be produced by the decarboxylation of monosodium glutamate (MSG). In this study, a synthetic protein complex was applied to improve the GABA conversion in engineered Escherichia coli. Complexes were constructed by assembling a single protein-protein interaction domain SH3 to the glutamate decarboxylase (GadA and GadB) and attaching a cognate peptide ligand to the glutamate/GABA antiporter (GadC) at the N-terminus, C-terminus, and the 233rd amino acid residue. When GadA and GadC were co-overexpressed via the C-terminus complex, a GABA concentration of 5.65 g/l was obtained from 10 g/l MSG, which corresponds to a GABA yield of 93 %. A significant increase of the GABA productivity was also observed where the GABA productivity increased 2.5-fold in the early culture period due to the introduction of the synthetic protein complex. The GABA pathway efficiency and GABA productivity were enhanced by the introduction of the complex between Gad and glutamate/GABA antiporter.

  15. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    PubMed

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production.

  16. Evaluation of commercial soy sauce koji strains of Aspergillus oryzae for γ-aminobutyric acid (GABA) production.

    PubMed

    Ab Kadir, Safuan; Wan-Mohtar, Wan Abd Al Qadr Imad; Mohammad, Rosfarizan; Abdul Halim Lim, Sarina; Sabo Mohammed, Abdulkarim; Saari, Nazamid

    2016-10-01

    In this study, four selected commercial strains of Aspergillus oryzae were collected from soy sauce koji. These A. oryzae strains designated as NSK, NSZ, NSJ and NST shared similar morphological characteristics with the reference strain (A. oryzae FRR 1675) which confirmed them as A. oryzae species. They were further evaluated for their ability to produce γ-aminobutyric acid (GABA) by cultivating the spore suspension in a broth medium containing 0.4 % (w/v) of glutamic acid as a substrate for GABA production. The results showed that these strains were capable of producing GABA; however, the concentrations differed significantly (P < 0.05) among themselves. Based on the A. oryzae strains, highest GABA concentration was obtained from NSK (194 mg/L) followed by NSZ (63 mg/L), NSJ (51.53 mg/L) and NST (31.66 mg/L). Therefore, A. oryzae NSK was characterized and the sequence was found to be similar to A. oryzae and A. flavus with 99 % similarity. The evolutionary distance (K nuc) between sequences of identical fungal species was calculated and a phylogenetic tree prepared from the K nuc data showed that the isolate belonged to the A. oryzae species. This finding may allow the development of GABA-rich ingredients using A. oryzae NSK as a starter culture for soy sauce production. PMID:27541157

  17. Stable expression of the vesicular GABA transporter following photothrombotic infarct in rat brain.

    PubMed

    Frahm, C; Siegel, G; Grass, S; Witte, O W

    2006-07-01

    Before exocytotic release of the inhibitory neurotransmitter GABA, this amino acid has to be stored in synaptic vesicles. Accumulation of GABA in vesicles is achieved by a specific membrane-integrated transporter termed vesicular GABA transporter. This vesicular protein is mainly located at presynaptic terminals of GABAergic interneurons. In the present study we investigated the effects of focal ischemia on the expression of the vesicular GABA transporter. Vesicular GABA transporter mRNA and protein expression was examined after photothrombosis in different cortical and hippocampal brain regions of Wistar rats. In situ hybridization and quantitative real-time RT-PCR were performed to analyze vesicular GABA transporter mRNA. Both vesicular GABA transporter mRNA-stained perikarya and mRNA expression levels remained unaffected. Vesicular GABA transporter protein-containing synaptic terminals and somata were visualized by immunohistochemistry. The pattern of vesicular GABA transporter immunoreactivity as well as the protein expression level revealed by semiquantitative image analysis and by Western blot remained stable after stroke. The steady expression of vesicular GABA transporter mRNA and protein after photothrombosis indicates that the exocytotic release mechanism of GABA is not affected by ischemia.

  18. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity.

  19. Impact of Precooling and Controlled-Atmosphere Storage on γ-Aminobutyric Acid (GABA) Accumulation in Longan (Dimocarpus longan Lour.) Fruit.

    PubMed

    Zhou, Molin; Ndeurumio, Kessy H; Zhao, Lei; Hu, Zhuoyan

    2016-08-24

    Longan (Dimocarpus longan Lour.) fruit cultivars 'Chuliang' and 'Shixia' were analyzed for γ-aminobutyric acid (GABA) accumulation after precooling and in controlled-atmosphere storage. Fruit were exposed to 5% O2 plus 3%, 5%, or 10% CO2 at 4 °C, and GABA and associated enzymes, aril firmness, and pericarp color were measured. Aril softening and pericarp browning were delayed by 5% CO2 + 5% O2. GABA concentrations and glutamate decarboxylase (GAD; EC 4.1.1.15) activities declined during storage at the higher-CO2 treatments. However, GABA aminotransferase (GABA-T; EC 2.6.1.19) activities in elevated CO2-treated fruit fluctuated during storage. GABA concentrations increased after precooling treatments. GAD activity and GABA-T activity were different between cultivars after precooling. GABA concentrations in fruit increased after 3 days of 10% CO2 + 5% O2 treatment and then declined as storage time increased. GABA accumulation was associated with stimulation of GAD activity rather than inhibition of GABA-T activity. PMID:27412947

  20. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons.

    PubMed

    Kim, Jae-Ick; Ganesan, Subhashree; Luo, Sarah X; Wu, Yu-Wei; Park, Esther; Huang, Eric J; Chen, Lu; Ding, Jun B

    2015-10-01

    Midbrain dopamine neurons are an essential component of the basal ganglia circuitry, playing key roles in the control of fine movement and reward. Recently, it has been demonstrated that γ-aminobutyric acid (GABA), the chief inhibitory neurotransmitter, is co-released by dopamine neurons. Here, we show that GABA co-release in dopamine neurons does not use the conventional GABA-synthesizing enzymes, glutamate decarboxylases GAD65 and GAD67. Our experiments reveal an evolutionarily conserved GABA synthesis pathway mediated by aldehyde dehydrogenase 1a1 (ALDH1a1). Moreover, GABA co-release is modulated by ethanol (EtOH) at concentrations seen in blood alcohol after binge drinking, and diminished ALDH1a1 leads to enhanced alcohol consumption and preference. These findings provide insights into the functional role of GABA co-release in midbrain dopamine neurons, which may be essential for reward-based behavior and addiction.

  1. gamma-Aminobutyric acidA (GABAA) receptors modulate [3H]GABA release from isolated neuronal growth cones in the rat.

    PubMed

    Lockerbie, R O; Gordon-Weeks, P R

    1985-04-19

    Potassium-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) from a growth cone-enriched fraction isolated from neonatal rat forebrain was inhibited by the GABA mimetic muscimol in a dose-dependent manner (IC50 15 nM). The GABA antagonist bicuculline completely reversed the effect of muscimol. Bicuculline alone slightly potentiated the K+-induced release of [3H]GABA. Baclofen, a proposed selective agonist for a bicuculline-insensitive GABAB receptor, was found to cause only a slight reduction in the K+-induced release of [3H]GABA. These results are compatible with the presence of a negative feedback mechanism mediated by GABAA receptors for controlling [3H]GABA release from growth cones of the developing rat forebrain.

  2. Identification and functional characterization of a dual GABA/taurine transporter in the bullfrog retinal pigment epithelium

    PubMed Central

    1995-01-01

    Intracellular microelectrodes, fluorescence imaging, and radiotracer flux techniques were used to investigate the physiological response of the retinal pigment epithelium (RPE) to the major retinal inhibitory neurotransmitter, gamma-aminobutyric acid (GABA). GABA is released tonically in the dark by amphibian horizontal cells, but is not taken up by the nearby Muller cells. Addition of GABA to the apical bath produced voltage responses in the bullfrog RPE that were not blocked nor mimicked by any of the major GABA-receptor antagonists or agonists. Nipecotic acid, a substrate for GABA transport, inhibited the voltage effects of GABA. GABA and nipecotic acid also inhibited the voltage effects of taurine, suggesting that the previously characterized beta- alanine sensitive taurine carrier also takes up GABA. The voltage responses of GABA, taurine, nipecotic acid, and beta-alanine all showed first-order saturable kinetics with the following Km's: GABA (Km = 160 microM), beta-alanine (Km = 250 microM), nipecotic acid (Km = 420 microM), and taurine (Km = 850 microM). This low affinity GABA transporter is dependent on external Na, partially dependent on external Cl, and is stimulated in low [K]o, which approximates subretinal space [K]o during light onset. Apical GABA also produced a significant conductance increase at the basolateral membrane. These GABA-induced conductance changes were blocked by basal Ba2+, suggesting that GABA decreased basolateral membrane K conductance. In addition, the apical membrane Na/K ATPase was stimulated in the presence of GABA. A model for the interaction between the GABA transporter, the Na/K ATPase, and the basolateral membrane K conductance accounts for the electrical effects of GABA. Net apical-to-basal flux of [3H]-GABA was also observed in radioactive flux experiments. The present study shows that a high capacity GABA uptake mechanism with unique pharmacological properties is located at the RPE apical membrane and could play an

  3. Neurons and glia in cat superior colliculus accumulate [3H]gamma-aminobutyric acid (GABA).

    PubMed

    Mize, R R; Spencer, R F; Sterling, P

    1981-11-01

    We have examined by autoradiography the labeling pattern in the cat superior colliculus following injection of tritiated gamma-aminobutyric acid (GABA). Silver grains were heavily distributed within the zonal layer and the upper 200 micrometer of the superficial gray. Fewer grains were observed deeper within the superficial gray, and still fewer were found within the optic and intermediate gray layers. The accumulation of label was restricted to certain classes of neuron and glia. Densely labeled neurons were small (8-12 micrometer in diameter) and located primarily within the upper 200 micrometer. Dark oligodendrocytes and astrocytes showed a moderate accumulation of label while pale oligodendrocytes and microglia were unlabeled. Label was also selectively accumulated over several other types of profile within the neuropil, including presynaptic dendrites, axons, and axon terminals.

  4. Enhancement of γ-aminobutyric acid (GABA) in Nham (Thai fermented pork sausage) using starter cultures of Lactobacillus namurensis NH2 and Pediococcus pentosaceus HN8.

    PubMed

    Ratanaburee, Anussara; Kantachote, Duangporn; Charernjiratrakul, Wilawan; Sukhoom, Ampaitip

    2013-10-15

    The aim was to produce Nham that was enriched with γ-aminobutyric acid (GABA); therefore two GABA producing lactic acid bacteria (Pediococcus pentosaceus HN8 and Lactobacillus namurensis NH2) were used as starter cultures. By using the central composite design (CCD) we showed that addition of 0.5% monosodium glutamate (MSG) together with an inoculum size of roughly 6logCFU/g of each of the two strains produced a maximal amounts of GABA (4051 mg/kg) in the 'GABA Nham' product. This was higher than any current popular commercial Nham product by roughly 8 times. 'GABA Nham' with the additions of both starters and MSG (TSM) supported maximum populations of lactic acid bacteria (LAB) with a minimum of yeasts and no staphylococci or molds when compared to the controls that had no addition of any starters or MSG (TNN), or only the addition of MSG (TNM), or with only the starter (TSN). Based on proximate analysis among the Nham sets, 'GABA Nham' was low in fat, carbohydrate and energy although its texture and color were slightly different from the control (TNN). However, sensory evaluations of 'GABA Nham' were more acceptable than the controls and commercial Nham products for all tested parameters. Hence, a unique novel 'GABA Nham' fermented pork sausage was successfully developed.

  5. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress.

    PubMed

    Hu, Xiaohui; Xu, Zhiran; Xu, Weinan; Li, Jianming; Zhao, Ning; Zhou, Yue

    2015-07-01

    The effects of exogenous γ-aminobutyric acid (GABA) application on growth, polyamine and endogenous GABA metabolism in muskmelon leaves and roots were measured. Plants were treated under control or 80 mM Ca(NO3)2 stress conditions with or without foliar spraying 50 mM GABA. Ca(NO3)2 stress significantly suppressed seedling growth and GABA transaminase activity, and enhanced glutamate decarboxylase (GAD) activity and endogenous GABA levels. Polyamine (PA) biosynthesis and degradation capacity increased in parallel with increasing GAD activity. Exogenous GABA application effectively alleviated the growth inhibition caused by Ca(NO3)2 stress, and significantly enhanced the activities of arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), polyamine oxidase (PAO), and diamine oxidase (DAO). Exogenous GABA also significantly reduced the accumulation of free putrescine (Put) and increased the levels of free spermidine (Spd) and spermine (Spm) in leaves, which improved the capacity for polyamine biosynthesis. Application of exogenous GABA under Ca(NO3)2 stress enables the plants to maintain a higher ratio of free Spd and free Spm with respect to free Put. Our data suggest that exogenous GABA has an important role in improving muskmelon seedling tolerance to Ca(NO3)2 stress by improving biosynthesis of PAs and GABA, and by preventing PA degradation. There is a potential positive feedback mechanism that results from higher endogenous GABA content and the combined effects of Ca(NO3)2 stress and exogenous GABA, which coordinately alleviate Ca(NO3)2 stress injury by enhancing PA biosynthesis and converting free Put to an insoluble bound PA form, and reduce PA degradation in muskmelon seedlings.

  6. Identification and selective inhibition of the channel mode of the neuronal GABA transporter 1.

    PubMed

    Krause, Stephan; Schwarz, Wolfgang

    2005-12-01

    The function of GAT1, the transporter for the inhibitory neurotransmitter GABA, is characterized by expression in Xenopus laevis oocytes and measurements of GABA-induced uptake of [3H]GABA, 22Na+, and 36Cl-, and GABA-evoked currents under voltage-clamp conditions. N-[4,4-Diphenyl-3-butenyl]-nipecotic acid (SKF-89976-A), a specific inhibitor of GAT1, is used in our system as a pharmacological tool. The GABA-evoked current can be decomposed into a transport current, which is coupled to the GABA uptake, and a transmitter-gated current, which is uncoupled from the GABA uptake. The transport current results from a fixed stoichiometry of 1 GABA/2 Na+/1 Cl- transported during each cycle, as determined by radioactive tracer flux measurements. The transmitter-gated current is mediated by an Na+-conductance pathway. As a competitive inhibitor for GABA uptake, SKF-89976-A can separate the two current components. The GABA uptake is blocked with a K(I) value of approximately 7 microM, whereas the uncoupled transmitter-gated current is inhibited with a K(I) value of approximately 0.03 microM. Thus, the results of this study not only identify the transport mode and the channel mode of GAT1 but also raise the possibility of separating these components in a physiological environment.

  7. Urease inhibitory activities of β-boswellic acid derivatives

    PubMed Central

    2013-01-01

    Background and the purpose of the study Boswellia carterii have been used in traditional medicine for many years for management different gastrointestinal disorders. In this study, we wish to report urease inhibitory activity of four isolated compound of boswellic acid derivative. Methods 4 pentacyclic triterpenoid acids were isolated from Boswellia carterii and identified by NMR and Mass spectroscopic analysis (compounds 1, 3-O-acetyl-9,11-dehydro-β-boswellic acid; 2, 3-O-acetyl-11-hydroxy-β-boswellic acid; 3. 3-O- acetyl-11-keto-β-boswellic acid and 4, 11-keto-β-boswellic acid. Their inhibitory activity on Jack bean urease were evaluated. Docking and pharmacophore analysis using AutoDock 4.2 and Ligandscout 3.03 programs were also performed to explain possible mechanism of interaction between isolated compounds and urease enzyme. Results It was found that compound 1 has the strongest inhibitory activity against Jack bean urease (IC50 = 6.27 ± 0.03 μM), compared with thiourea as a standard inhibitor (IC50 = 21.1 ± 0.3 μM). Conclusion The inhibition potency is probably due to the formation of appropriate hydrogen bonds and hydrophobic interactions between the investigated compounds and urease enzyme active site and confirms its traditional usage. PMID:23351363

  8. GABA transporter subtype 1 and GABA transporter subtype 3 modulate glutamatergic transmission via activation of presynaptic GABA(B) receptors in the rat globus pallidus.

    PubMed

    Jin, Xiao-Tao; Paré, Jean-Francois; Smith, Yoland

    2012-08-01

    The intra-pallidal application of γ-aminobutyric acid (GABA) transporter subtype 1 (GAT-1) or GABA transporter subtype 3 (GAT-3) transporter blockers [1-(4,4-diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride (SKF 89976A) or 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP 5114)] reduces the activity of pallidal neurons in monkey. This effect could be mediated through the activation of presynaptic GABA(B) heteroreceptors in glutamatergic terminals by GABA spillover following GABA transporter (GAT) blockade. To test this hypothesis, we applied the whole-cell recording technique to study the effects of SKF 89976A and SNAP 5114 on evoked excitatory postsynaptic currents (eEPSCs) in the presence of gabazine, a GABA(A) receptor antagonist, in rat globus pallidus slice preparations. Under the condition of postsynaptic GABA(B) receptor blockade by the intra-cellular application of N-(2,6-dimethylphenylcarbamoylmethyl)-triethylammonium bromide (OX314), bath application of SKF 89976A (10 μM) or SNAP 5114 (10 μM) decreased the amplitude of eEPSCs, without a significant effect on its holding current and whole cell input resistance. The inhibitory effect of GAT blockade on eEPSCs was blocked by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid, a GABA(B) receptor antagonist. The paired-pulse ratio of eEPSCs was increased, whereas the frequency, but not the amplitude, of miniature excitatory postsynaptic currents was reduced in the presence of either GAT blocker, demonstrating a presynaptic effect. These results suggest that synaptically released GABA can inhibit glutamatergic transmission through the activation of presynaptic GABA(B) heteroreceptors following GAT-1 or GAT-3 blockade. In conclusion, our findings demonstrate that presynaptic GABA(B) heteroreceptors in putative glutamatergic subthalamic afferents to the globus pallidus are sensitive to increases in extracellular GABA induced

  9. α4βδ GABA(A) receptors are high-affinity targets for γ-hydroxybutyric acid (GHB).

    PubMed

    Absalom, Nathan; Eghorn, Laura F; Villumsen, Inge S; Karim, Nasiara; Bay, Tina; Olsen, Jesper V; Knudsen, Gitte M; Bräuner-Osborne, Hans; Frølund, Bente; Clausen, Rasmus P; Chebib, Mary; Wellendorph, Petrine

    2012-08-14

    γ-Hydroxybutyric acid (GHB) binding to brain-specific high-affinity sites is well-established and proposed to explain both physiological and pharmacological actions. However, the mechanistic links between these lines of data are unknown. To identify molecular targets for specific GHB high-affinity binding, we undertook photolinking studies combined with proteomic analyses and identified several GABA(A) receptor subunits as possible candidates. A subsequent functional screening of various recombinant GABA(A) receptors in Xenopus laevis oocytes using the two-electrode voltage clamp technique showed GHB to be a partial agonist at αβδ- but not αβγ-receptors, proving that the δ-subunit is essential for potency and efficacy. GHB showed preference for α4 over α(1,2,6)-subunits and preferably activated α4β1δ (EC(50) = 140 nM) over α4β(2/3)δ (EC(50) = 8.41/1.03 mM). Introduction of a mutation, α4F71L, in α4β1(δ)-receptors completely abolished GHB but not GABA function, indicating nonidentical binding sites. Radioligand binding studies using the specific GHB radioligand [(3)H](E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene)acetic acid showed a 39% reduction (P = 0.0056) in the number of binding sites in α4 KO brain tissue compared with WT controls, corroborating the direct involvement of the α4-subunit in high-affinity GHB binding. Our data link specific GHB forebrain binding sites with α4-containing GABA(A) receptors and postulate a role for extrasynaptic α4δ-containing GABA(A) receptors in GHB pharmacology and physiology. This finding will aid in elucidating the molecular mechanisms behind the proposed function of GHB as a neurotransmitter and its unique therapeutic effects in narcolepsy and alcoholism.

  10. A Gut Feeling about GABA: Focus on GABAB Receptors

    PubMed Central

    Hyland, Niall P.; Cryan, John F.

    2010-01-01

    γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the body and hence GABA-mediated neurotransmission regulates many physiological functions, including those in the gastrointestinal (GI) tract. GABA is located throughout the GI tract and is found in enteric nerves as well as in endocrine-like cells, implicating GABA as both a neurotransmitter and an endocrine mediator influencing GI function. GABA mediates its effects via GABA receptors which are either ionotropic GABAA or metabotropic GABAB. The latter which respond to the agonist baclofen have been least characterized, however accumulating data suggest that they play a key role in GI function in health and disease. Like GABA, GABAB receptors have been detected throughout the gut of several species in the enteric nervous system, muscle, epithelial layers as well as on endocrine-like cells. Such widespread distribution of this metabotropic GABA receptor is consistent with its significant modulatory role over intestinal motility, gastric emptying, gastric acid secretion, transient lower esophageal sphincter relaxation and visceral sensation of painful colonic stimuli. More intriguing findings, the mechanisms underlying which have yet to be determined, suggest GABAB receptors inhibit GI carcinogenesis and tumor growth. Therefore, the diversity of GI functions regulated by GABAB receptors makes it a potentially useful target in the treatment of several GI disorders. In light of the development of novel compounds such as peripherally acting GABAB receptor agonists, positive allosteric modulators of the GABAB receptor and GABA producing enteric bacteria, we review and summarize current knowledge on the function of GABAB receptors within the GI tract. PMID:21833169

  11. Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection

    PubMed Central

    Fei, Hao; Chow, Dawnis M.; Chen, Audrey; Romero-Calderón, Rafael; Ong, Wei S.; Ackerson, Larry C.; Maidment, Nigel T.; Simpson, Julie H.; Frye, Mark A.; Krantz, David E.

    2010-01-01

    The role of gamma amino butyric acid (GABA) release and inhibitory neurotransmission in regulating most behaviors remains unclear. The vesicular GABA transporter (VGAT) is required for the storage of GABA in synaptic vesicles and provides a potentially useful probe for inhibitory circuits. However, specific pharmacologic agents for VGAT are not available, and VGAT knockout mice are embryonically lethal, thus precluding behavioral studies. We have identified the Drosophila ortholog of the vesicular GABA transporter gene (which we refer to as dVGAT), immunocytologically mapped dVGAT protein expression in the larva and adult and characterized a dVGATminos mutant allele. dVGAT is embryonically lethal and we do not detect residual dVGAT expression, suggesting that it is either a strong hypomorph or a null. To investigate the function of VGAT and GABA signaling in adult visual flight behavior, we have selectively rescued the dVGAT mutant during development. We show that reduced GABA release does not compromise the active optomotor control of wide-field pattern motion. Conversely, reduced dVGAT expression disrupts normal object tracking and figure–ground discrimination. These results demonstrate that visual behaviors are segregated by the level of GABA signaling in flies, and more generally establish dVGAT as a model to study the contribution of GABA release to other complex behaviors. PMID:20435823

  12. The effects of lowered extracellular sodium on gamma-aminobutyric acid (GABA)-induced currents of Muller (glial) cells of the skate retina.

    PubMed

    Qian, H; Malchow, R P; Ripps, H

    1993-04-01

    1. The effects of external sodium on GABA-induced chloride currents were examined with whole-cell voltage-clamp recordings obtained from enzymatically dissociated solitary Muller cells in culture. Our goal was to determine whether a sodium-dependent GABA uptake mechanism influences the GABAa-mediated responses of skate Muller cells. 2. At low concentrations of GABA (0.01 to 0.5 microM), removal of sodium from the external solution resulted in a marked increase in the ligand-gated currents mediated by activation of GABAa receptors. The enhancement by lowered sodium was greatest at hyperpolarizing potentials and decreased progressively as the cell was depolarized. 3. The reversal potential for the GABA-induced response was not significantly altered by the removal of sodium, suggesting that sodium ions did not directly contribute to the GABAa-mediated current. 4. Lowering external sodium had no effect on the currents induced by the GABAa-agonist muscimol, consistent with its much lower affinity for the GABA transport carrier. 5. Application of the GABA uptake blocker nipecotic acid also abolished the effects of lowered sodium. 6. These findings suggest that the effects of lowered external sodium resulted from a decrease in the uptake of GABA into the Muller cells, thus raising the effective concentration of GABA acting upon the GABAa receptors. PMID:8394215

  13. Regulation of (/sup 3/H)GABA release from strips of guinea pig urinary bladder

    SciTech Connect

    Shirakawa, J.; Taniyama, K.; Iwai, S.; Tanaka, C.

    1988-12-01

    The presence of receptors that regulate the release of gamma-aminobutyric acid (GABA) was studied in strips of the guinea pig urinary bladder. GABA (10(-8)-10(-5) M) and muscimol (10(-8)-10(-5) M), but not baclofen (10(-5) M), reduced the Ca2+-dependent, tetrodotoxin-resistant release of (/sup 3/H)GABA evoked by high K+ from the urinary bladder strips preloaded with (/sup 3/H)GABA. The inhibitory effect of muscimol was antagonized by bicuculline and potentiated by diazepam, clonazepam, and pentobarbital sodium. The potentiating effect of clonazepam was antagonized by Ro 15-1788. Acetylcholine (ACh) inhibited the high K+-evoked release of (/sup 3/H)GABA. The inhibitory effect of ACh was antagonized by atropine sulfate and pirenzepine but not by hexamethonium. Norepinephrine (NE) inhibited the evoked release of (/sup 3/H)GABA. The inhibitory effect of NE was mimicked by clonidine, but not by phenylephrine, and was antagonized by yohimbine but not by prazosin. These results provide evidence that the release of GABA from strips of guinea pig urinary bladder is regulated via the bicuculline-sensitive GABAA receptor, M1-muscarinic, and alpha 2-adrenergic receptors.

  14. Expression of the γ-Aminobutyric Acid (GABA) Plasma Membrane Transporter-1 in Monkey and Human Retina

    PubMed Central

    Casini, Giovanni; Rickman, Dennis W.; Brecha, Nicholas C.

    2010-01-01

    Purpose To determine the expression pattern of the predominant γ-aminobutyric acid (GABA) plasma membrane transporter GAT-1 in Old World monkey (Macaca mulatta) and human retina. Methods GAT-1 was localized in retinal sections by using immunohistochemical techniques with fluorescence and confocal microscopy. Double-labeling studies were performed with the GAT-1 antibody using antibodies to GABA, vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), and the bipolar cell marker Mab115A10. Results The pattern of GAT-1 immunostaining was similar in human and monkey retinas. Numerous small immunoreactive somata were in the inner nuclear layer (INL) and were present rarely in the inner plexiform layer (IPL) of all retinal regions. Medium GAT-1 somata were in the ganglion cell layer in the parafoveal and peripheral retinal regions. GAT-1 fibers were densely distributed throughout the IPL. Varicose processes, originating from both the IPL and somata in the INL, arborized in the outer plexiform layer (OPL), forming a sparse network in all retinal regions, except the fovea. Sparsely occurring GAT-1 processes were in the nerve fiber layer in parafoveal regions and near the optic nerve head but not in the optic nerve. In the INL, 99% of the GAT-1 somata contained GABA, and 66% of the GABA immunoreactive somata expressed GAT-1. GAT-1 immunoreactivity was in all VIP-containing cells, but it was absent in TH-immunoreactive amacrine cells and in Mab115A10 immunoreactive bipolar cells. Conclusions GAT-1 in primate retinas is expressed by amacrine and displaced amacrine cells. The predominant expression of GAT-1 in the inner retina is consistent with the idea that GABA transporters influence neurotransmission and thus participate in visual information processing in the retina. PMID:16565409

  15. Analogues of gamma-aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) substituted in the 2 position as GABAC receptor antagonists.

    PubMed

    Chebib, M; Vandenberg, R J; Johnston, G A

    1997-12-01

    1. gamma-Aminobutyric acid (GABA) and trans-4-aminocrotonic acid (TACA) have been shown to activate GABAC receptors. In this study, a range of C2, C3, C4 and N-substituted GABA and TACA analogues were examined for activity at GABAC receptors. 2. The effects of these compounds were examined by use of electrophysiological recording from Xenopus oocytes expressing the human rho 1 subunit of GABAC receptors with the two-electrode voltage-clamp method. 3. trans-4-Amino-2-fluorobut-2-enoic acid was found to be a potent agonist (KD = 2.43 microM). In contrast, trans-4-amino-2-methylbut-2-enoic acid was found to be a moderately potent antagonist (IC50 = 31.0 microM and KB = 45.5 microM). These observations highlight the possibility that subtle structural substitutions may change an agonist into an antagonist. 4. 4-Amino-2-methylbutanoic acid (KD = 189 microM), 4-amino-2-methylenebutanoic acid (KD = 182 microM) and 4-amino-2-chlorobutanoic acid (KD = 285 microM) were weak partial agonists. The intrinsic activities of these compounds were 12.1%, 4.4% and 5.2% of the maximal response of GABA, respectively. These compounds more effectively blocked the effects of the agonist, GABA, giving rise to KB values of 53 microM and 101 microM, respectively. 5. The sulphinic acid analogue of GABA, homohypotaurine, was found to be a potent partial agonist (KD = 4.59 microM, intrinsic activity 69%). 6. It was concluded that substitution of a methyl or a halo group in the C2 position of GABA or TACA is tolerated at GABAC receptors. However, there was dramatic loss of activity when these groups were substituted at the C3, C4 and nitrogen positions of GABA and TACA. 7. Molecular modelling studies on a range of active and inactive compounds indicated that the agonist/competitive antagonist binding site of the GABAC receptor may be smaller than that of the GABAA and GABAB receptors. It is suggested that only compounds that can attain relatively flat conformations may bind to the GABAC receptor

  16. Dihydroasparagusic acid: antioxidant and tyrosinase inhibitory activities and improved synthesis.

    PubMed

    Venditti, Alessandro; Mandrone, Manuela; Serrilli, Anna Maria; Bianco, Armandodoriano; Iannello, Carmelina; Poli, Ferruccio; Antognoni, Fabiana

    2013-07-17

    Dihydroasparagusic acid (DHAA) is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. In this work, DHAA was synthetically produced by modifying some published protocols, and the synthesized molecule was tested in several in vitro assays (DPPH, ABTS, FRAP-ferrozine, BCB, deoxyribose assays) to evaluate its radical scavenging activity. Results show that DHAA is endowed with a significant in vitro antioxidant activity, comparable to that of Trolox. DHAA was also evaluated for its inhibitory activity toward tyrosinase, an enzyme involved, among others, in melanogenesis and in browning processes of plant-derived foods. DHAA was shown to exert an inhibitory effect on tyrosinase activity, and the inhibitor kinetics, analyzed by a Lineweaver-Burk plot, exhibited a competitive mechanism. Taken together, these results suggest that DHAA may be considered as a potentially active molecule for use in various fields of application, such as pharmaceutical, cosmetics, agronomic and food. PMID:23790134

  17. Edited Magnetic Resonance Spectroscopy Detects an Age-Related Decline in Nonhuman Primate Brain GABA Levels

    PubMed Central

    Killiany, Ronald J.

    2016-01-01

    Recent research had shown a correlation between aging and decreasing Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain. However, how GABA level varies with age in the medial portion of the brain has not yet been studied. The purpose of this study was to investigate the GABA level variation with age focusing on the posterior cingulate cortex, which is the “core hub” of the default mode network. In this study, 14 monkeys between 4 and 21 years were recruited, and MEGA-PRESS MRS was performed to measure GABA levels, in order to explore a potential link between aging and GABA. Our results showed that a correlation between age and GABA+/Creatine ratio was at the edge of significance (r = −0.523, p = 0.081). There was also a near-significant trend between gray matter/white matter ratio and the GABA+/Creatine ratio (r = −0.518, p = 0.0848). Meanwhile, the correlation between age and grey matter showed no significance (r = −0.028, p = 0.93). Therefore, age and gray matter/white matter ratio account for different part of R-squared (adjusted R-squared = 0.5187) as independent variables for predicting GABA levels. Adjusted R-squared is about 0.5 for two independent variables. These findings suggest that there is internal neurochemical variation of GABA levels in the nonhuman primates associated with normal aging and structural brain decline.

  18. Neurotransmitters as food supplements: the effects of GABA on brain and behavior

    PubMed Central

    Boonstra, Evert; de Kleijn, Roy; Colzato, Lorenza S.; Alkemade, Anneke; Forstmann, Birte U.; Nieuwenhuis, Sander

    2015-01-01

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the human cortex. The food supplement version of GABA is widely available online. Although many consumers claim that they experience benefits from the use of these products, it is unclear whether these supplements confer benefits beyond a placebo effect. Currently, the mechanism of action behind these products is unknown. It has long been thought that GABA is unable to cross the blood–brain barrier (BBB), but the studies that have assessed this issue are often contradictory and range widely in their employed methods. Accordingly, future research needs to establish the effects of oral GABA administration on GABA levels in the human brain, for example using magnetic resonance spectroscopy. There is some evidence in favor of a calming effect of GABA food supplements, but most of this evidence was reported by researchers with a potential conflict of interest. We suggest that any veridical effects of GABA food supplements on brain and cognition might be exerted through BBB passage or, more indirectly, via an effect on the enteric nervous system. We conclude that the mechanism of action of GABA food supplements is far from clear, and that further work is needed to establish the behavioral effects of GABA. PMID:26500584

  19. Edited Magnetic Resonance Spectroscopy Detects an Age-Related Decline in Nonhuman Primate Brain GABA Levels

    PubMed Central

    Killiany, Ronald J.

    2016-01-01

    Recent research had shown a correlation between aging and decreasing Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the brain. However, how GABA level varies with age in the medial portion of the brain has not yet been studied. The purpose of this study was to investigate the GABA level variation with age focusing on the posterior cingulate cortex, which is the “core hub” of the default mode network. In this study, 14 monkeys between 4 and 21 years were recruited, and MEGA-PRESS MRS was performed to measure GABA levels, in order to explore a potential link between aging and GABA. Our results showed that a correlation between age and GABA+/Creatine ratio was at the edge of significance (r = −0.523, p = 0.081). There was also a near-significant trend between gray matter/white matter ratio and the GABA+/Creatine ratio (r = −0.518, p = 0.0848). Meanwhile, the correlation between age and grey matter showed no significance (r = −0.028, p = 0.93). Therefore, age and gray matter/white matter ratio account for different part of R-squared (adjusted R-squared = 0.5187) as independent variables for predicting GABA levels. Adjusted R-squared is about 0.5 for two independent variables. These findings suggest that there is internal neurochemical variation of GABA levels in the nonhuman primates associated with normal aging and structural brain decline. PMID:27660760

  20. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat.

    PubMed

    Hao, Jianxiong; Wu, Tongjiao; Li, Huiying; Wang, Wei; Liu, Haijie

    2016-06-15

    In the present study, the dual effects of slightly acidic electrolyzed water (SAEW) treatment on γ-aminobutyric acid (GABA) and rutin accumulation of germinated buckwheat were evaluated during germination. The results showed that SAEW treatment (pH 5.83, ACC of 20.3 mg/L) could promote the accumulation of GABA and rutin in germinated buckwheat. The GABA and rutin contents of SAEW-germinated buckwheat reached 143.20 and 739.9 mg/100 g respectively, which is significantly higher than those of control (P<0.05). Moreover, SAEW treatment could increase the activity of glutamic acid decarboxylase (GAD) and phenylalanine ammonialyase (PAL) and thus result in the GABA and rutin accumulation of germinated buckwheat. The results suggested that SAEW treatment could promote the rutin accumulation of germinated buckwheat by influencing phenylpropanoid secondary metabolic pathway instead of the inhibition of rutin degrading enzyme (RDE) activity. In addition, SAEW treatment had no adverse impact on the sprouts growth and could reduce the microbial populations of germinated buckwheat during germination.

  1. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat.

    PubMed

    Hao, Jianxiong; Wu, Tongjiao; Li, Huiying; Wang, Wei; Liu, Haijie

    2016-06-15

    In the present study, the dual effects of slightly acidic electrolyzed water (SAEW) treatment on γ-aminobutyric acid (GABA) and rutin accumulation of germinated buckwheat were evaluated during germination. The results showed that SAEW treatment (pH 5.83, ACC of 20.3 mg/L) could promote the accumulation of GABA and rutin in germinated buckwheat. The GABA and rutin contents of SAEW-germinated buckwheat reached 143.20 and 739.9 mg/100 g respectively, which is significantly higher than those of control (P<0.05). Moreover, SAEW treatment could increase the activity of glutamic acid decarboxylase (GAD) and phenylalanine ammonialyase (PAL) and thus result in the GABA and rutin accumulation of germinated buckwheat. The results suggested that SAEW treatment could promote the rutin accumulation of germinated buckwheat by influencing phenylpropanoid secondary metabolic pathway instead of the inhibition of rutin degrading enzyme (RDE) activity. In addition, SAEW treatment had no adverse impact on the sprouts growth and could reduce the microbial populations of germinated buckwheat during germination. PMID:26868552

  2. An Electrostatic Funnel in the GABA-Binding Pathway

    PubMed Central

    Lightstone, Felice C.

    2016-01-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a ‘funnel’ that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  3. An Electrostatic Funnel in the GABA-Binding Pathway.

    PubMed

    Carpenter, Timothy S; Lightstone, Felice C

    2016-04-01

    The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. PMID:27119953

  4. Systematic analysis of γ-aminobutyric acid (GABA) metabolism and function in the social amoeba Dictyostelium discoideum.

    PubMed

    Wu, Yuantai; Janetopoulos, Chris

    2013-05-24

    While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several "early" developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development.

  5. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis

    PubMed Central

    Nicholas, Richard; Magliozzi, Roberta; Campbell, Graham; Mahad, Don; Reynolds, Richard

    2016-01-01

    Background: Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. Objective: The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. Methods: We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). Results: A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. Conclusion: We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures. PMID:25921040

  6. Inhibitory kinetics of chlorocinnamic acids on mushroom tyrosinase.

    PubMed

    Hu, Yong-Hua; Liu, Xuan; Jia, Yu-Long; Guo, Yun-Ji; Wang, Qin; Chen, Qing-Xi

    2014-02-01

    Tyrosinase (EC 1.14.18.1) is the key enzyme of most food enzymatic oxidation. Tyrosinase inhibitors are important in food industry. In the present paper, 2-chlorcinnamic acid and 2,4-dichlorocinnamic acid were synthesized and the inhibitory kinetics on mushroom tyrosinase were investigated. The results showed that both compounds synthesized could inhibit tyrosinase activity. For monophenolase activity, both chlorocinnamic acids could extended the lag time and decrease the steady-state activities, 2-chlorcinnamic acid extended the lag time just by 5%, and 2,4-dichlorcinnamic acid extended the lag time more than by 30.4%. For diphenolase activity, the IC50 values of 2-chlorcinnamic acid and 2,4-dichlorocinnamic acid were determined to be 0.765 mM and 0.295 mM, respectively. The inhibition kinetics showed that 2-chlorcinnamic acid and 2,4-dichlorocinnamic acid displayed a reversible and uncompetitive mechanism. The inhibition constants were determined to be 0.348 mM and 0.159 mM, respectively. The research may supply the basis for designing new tyrosinase inhibitors.

  7. The effect of folic acid on GABA(A)-B 1 receptor subunit.

    PubMed

    Vasquez, Kizzy; Kuizon, Salomon; Junaid, Mohammed; Idrissi, Abdeslem El

    2013-01-01

    Autism contains a spectrum of behavioral and cognitive disturbances of childhood development that is manifested by deficits in social interaction, impaired communication, repetitive behavior, and/or restricted interest. Much research has been dedicated to finding the genes that are responsible for autism, but less than 10% of the cases can be attributed to one gene. Autism prevalence has increased in the last decade and there may be environmental components that are leading to this increase. There are reports of disruption of epigenetic mechanisms controlling the regulation of gene expression as probable cause for autism. Folic acid (FA) is prescribed to women during pregnancy, and can cause epigenetic changes. GABAergic pathway is involved in inhibitory neurotransmission in the central nervous system and plays a crucial role during early embryonic development. Autism may entail defect or deregulation of the GABAergic receptor pathway in the brain. Gamma-aminobutyric acid (type A) beta 1 receptor (GABRB1) disruption has been implicated in autism. In the present study, we investigated GABRB1 expression in response to FA supplementation in neuronal cells. Western blot analysis showed GABRB1 protein levels increased in the FA-treated cells in a concentration-dependent manner. FA-dependent increased expression of GABRB1 was further confirmed at the mRNA level using quantitative RT-PCR. These results suggest that epigenetic control of gene expression may affect the expression of GABRB1 and disrupt inhibitory synaptic transmission during embryonic development. PMID:23392927

  8. GABA predicts visual intelligence.

    PubMed

    Cook, Emily; Hammett, Stephen T; Larsson, Jonas

    2016-10-01

    Early psychological researchers proposed a link between intelligence and low-level perceptual performance. It was recently suggested that this link is driven by individual variations in the ability to suppress irrelevant information, evidenced by the observation of strong correlations between perceptual surround suppression and cognitive performance. However, the neural mechanisms underlying such a link remain unclear. A candidate mechanism is neural inhibition by gamma-aminobutyric acid (GABA), but direct experimental support for GABA-mediated inhibition underlying suppression is inconsistent. Here we report evidence consistent with a global suppressive mechanism involving GABA underlying the link between sensory performance and intelligence. We measured visual cortical GABA concentration, visuo-spatial intelligence and visual surround suppression in a group of healthy adults. Levels of GABA were strongly predictive of both intelligence and surround suppression, with higher levels of intelligence associated with higher levels of GABA and stronger surround suppression. These results indicate that GABA-mediated neural inhibition may be a key factor determining cognitive performance and suggests a physiological mechanism linking surround suppression and intelligence. PMID:27495012

  9. 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid stimulates GABA release from interneurons projecting to CA1 pyramidal neurons in the rat hippocampus via pre-synaptic alpha7 acetylcholine receptors.

    PubMed

    Kanno, Takeshi; Yaguchi, Takahiro; Yamamoto, Satoshi; Yamamoto, Hideyuki; Fujikawa, Hirokazu; Nagata, Tetsu; Tanaka, Akito; Nishizaki, Tomoyuki

    2005-11-01

    Nicotinic acetylcholine (ACh) receptors, such as alpha7, alpha3beta4 and alpha4beta2 receptors in the hippocampus, are suggested to modulate neurotransmitter release. 8-[2-(2-Pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) (100 nM), a linoleic acid derivative, potentiated responses of alpha7, alpha3beta4 and alpha4beta2 ACh receptors expressed in Xenopus oocytes that are blocked by 3-(1-[dimethylaminopropyl] indol-3-yl)-4-[indol-3-yl] maleimide (GF109203X), a selective inhibitor of protein kinase C (PKC), except for alpha3beta4 ACh receptors. DCP-LA enhanced the nicotine-triggered release of GABA from rat hippocampal slices in the presence of tetrodotoxin in a bell-shaped dose-dependent manner at concentrations ranging from 10 nM to 10 microM, although DCP-LA by itself had no effect on GABA release. The DCP-LA action was inhibited by GF109203X or alpha-bungarotoxin, an inhibitor of alpha7 ACh receptors, but not by mecamylamine or dihydro-beta-erithroidine, an inhibitor of alpha3beta4 and alpha4beta2 ACh receptors. A similar effect on GABA release was obtained with 12-O-tetradecanoylphorbol 13-acetate, a PKC activator. DCP-LA (100 nM) also enhanced GABA release triggered by choline, an agonist of alpha7 ACh receptors, but not 3-[2(s)-azetidinylmethoxy] pyridine, an agonist of alpha4beta2 ACh receptors. In addition, DCP-LA (100 nM) increased the rate of nicotine-triggered GABA(A) receptor-mediated miniature inhibitory post-synaptic currents, monitored from CA1 pyramidal neurons of rat hippocampal slices, and the effect was also inhibited by GF109203X or alpha-bungarotoxin but not by mecamylamine. Thus, the results of the present study indicate that DCP-LA stimulates GABA release by enhancing activity of pre-synaptic alpha7 ACh receptors present on the GABAergic terminals of interneurons that transmit to CA1 pyramidal neurons via a PKC pathway. PMID:16248884

  10. Design, synthesis and SAR studies of GABA uptake inhibitors derived from 2-substituted pyrrolidine-2-yl-acetic acids.

    PubMed

    Steffan, Tobias; Renukappa-Gutke, Thejavathi; Höfner, Georg; Wanner, Klaus T

    2015-03-15

    In this paper, we disclose the design and synthesis of a series of 2-substituted pyrrolidine-2-yl-acetic acid as core structures and the N-arylalkyl derivatives thereof as potential GABA transport inhibitors. The 2-position in the side chain of pyrrolidine-2-yl-acetic acid derivatives was substituted with alkyl, hydroxy and amino groups to modulate the activity and selectivity to mGAT1 and mGAT4 proteins. SAR studies of the compounds performed for the four mouse GABA transporter proteins (mGAT1-mGAT4) implied significant potencies and subtype selectivities for 2-hydroxy-2-pyrrolidine-2-yl-acetic acid derivatives. The racemate rac-(u)-13c exhibited the highest potency (pIC50 5.67) at and selectivity for mGAT1 in GABA uptake assays. In fact, the potency of rac-(u)-13c at hGAT-1 (pIC50 6.14) was even higher than its potency at mGAT1. These uptake results for rac-(u)-13c are in line with the binding affinities to the aforesaid proteins mGAT1 (pKi 6.99) and hGAT-1 (pKi 7.18) determined by MS Binding Assay based on NO711 as marker quantified by LC-ESI-MS-MS analysis. Interestingly, the 2-hydroxy-2-pyrrolidine-2-yl-acetic acid rac-(u)-13d containing 2-{[tris(4-methoxyphenyl)]methoxy} ethyl group at the nitrogen atom of the pyrrolidine ring showed high potency at mGAT4 and a comparatively better selectivity for this protein (>15 against mGAT3) than the well known mGAT4 uptake inhibitor (S)-SNAP-5114.

  11. Kinetics of inhibitory effect of isoferulic acid on mushroom tyrosinase.

    PubMed

    Gong, Shengzhao; Yin, Meijuan; Yun, Zhimian

    2013-01-01

    A study on the kinetics of inhibitory effect of isoferulic acid on the monophenolase and diphenolase activity of mushroom tyrosinase was carried out using enzymological kinetic analysis method in a Na2HPO4-NaH2PO4 buffer solution (pH = 6.8) at 30°C. It was found that isoferulic acid efficiently inhibits both monophenolase and diphenolase activities of mushroom tyrosinase under experimental conditions. Concentrations of isoferulic acid leading to 50% rate inhibition (IC50) on monophenolase and diphenolase activity were calculated to be 0.13 mmol/L and 0.39 mmol/L, respectively, which are much lower than that of arbutin (IC50 = 5.3 mmol/L for diphenolase activity). The presence of isoferulic acid also prolongs the lag period in the oxidation process of l-tyrosine via tyrosinase-a 4.3-min lagging was observed with the presence of 0.20 mmol/L isoferulic acid-compared to a 1.1-min lagging in the absence of isoferulic acid. The Lineweaver-Burk plot demonstrates a competitive behavior of isoferulic acid in the tyrosinase oxidation of l-3,4-dihydroxyphenylalanine, with maximum reaction rate (vm) and inhibition constant (KI) at 64.5 µM/min and 0.11 mmol/L, respectively.

  12. Gestational changes of GABA levels and GABA binding in the human uterus

    SciTech Connect

    Erdoe, S.L.; Villanyi, P.; Laszlo, A.

    1989-01-01

    The concentrations of gamma-aminobutyric acid (GABA), the activities of L-glutamate decarboxylase and GABA-transaminase, and the nature of the sodium-independent binding of GABA were examined in uterine tissue pieces obtained surgically from pregnant and non-pregnant women. GABA concentrations were reduced, while the activity of GABA-transaminase and the specific binding of (/sup 3/H)GABA significantly increased in specimens from pregnant subjects. These findings suggest some gestation-related functional role for the GABA system in the human uterus.

  13. Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: Implications for schizophrenia

    PubMed Central

    Curley, Allison A.; Eggan, Stephen M.; Lazarus, Matt S.; Huang, Z. Josh; Volk, David W.; Lewis, David A.

    2012-01-01

    Markers of GABA neurotransmission are altered in multiple regions of the neocortex in individuals with schizophrenia. Lower levels of glutamic acid decarboxylase 67 (GAD67) mRNA and protein, which is responsible for most cortical GABA synthesis, are accompanied by lower levels of GABA membrane transporter 1 (GAT1) mRNA. These alterations are thought to be most prominent in the parvalbumin (PV)-containing subclass of interneurons, which also contain lower levels of PV mRNA. Since GAT1 and PV each reduce the availability of GABA at postsynaptic receptors, lower levels of GAT1 and PV mRNAs have been hypothesized to represent compensatory responses to an upstream reduction in cortical GABA synthesis in schizophrenia. However, such cause-and-effect hypotheses cannot be directly tested in a human illness. Consequently, we used two mouse models with reduced GAD67 expression specifically in PV neurons (PVGAD67+/−) or in all interneurons (GABAGAD67+/−) and quantified GAD67, GAT1 and PV mRNA levels using methods identical to those employed in studies of schizophrenia. Cortical levels of PV or GAT1 mRNAs were not altered in PVGAD67+/− mice during postnatal development or in adulthood. Furthermore, cellular analyses confirmed the predicted reduction in GAD67 mRNA, but failed to show a deficit in PV mRNA in these animals. Levels of PV and GAT1 mRNAs were also unaltered in GABAGAD67+/− mice. Thus, mouse lines with cortical reductions in GAD67 mRNA that match or exceed those present in schizophrenia, and that differ in the developmental timing and cell typespecificity of the GAD67 deficit, failed to provide proof-of-concept evidence that lower PV and GAT1 expression in schizophrenia are a consequence of lower GAD67 expression. Together, these findings suggest that the correlated decrements in cortical GAD67, PV and GAT1 mRNAs in schizophrenia may be a common consequence of some other upstream factor. PMID:23103418

  14. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis.

    PubMed

    Błaszczyk, Janusz W

    2016-01-01

    Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca(2+) hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca(2+)/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca(2+)/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca(2+)/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca(2+)/GABA functional decline. PMID:27375426

  15. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis

    PubMed Central

    Błaszczyk, Janusz W.

    2016-01-01

    Neurodegenerative diseases constitute a heterogeneous group of age-related disorders that are characterized by a slow but irreversible deterioration of brain functions. Evidence accumulated over more than two decades has implicated calcium-related homeostatic mechanisms, giving rise to the Ca2+ hypothesis of brain aging and, ultimately, cell death. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter within the central (CNS), peripheral and enteric nervous systems. It appears to be involved in a wide variety of physiological functions within and outside the nervous system, that are maintained through a complex interaction between GABA and calcium-dependent neurotransmission and cellular metabolic functions. Within CNS the Ca2+/GABA mechanism stabilizes neuronal activity both at cellular and systemic levels. Decline in the Ca2+/GABA control initiates several cascading processes leading to both weakened protective barriers (in particular the blood-brain barrier) and accumulations of intracellular deposits of calcium and Lewy bodies. Linking such a vital mechanism of synaptic transmission with metabolism (both at cellular and tissue level) by means of a common reciprocal Ca2+/GABA inhibition results in a fragile balance, which is prone to destabilization and auto-destruction. The GABA decline etiology proposed here appears to apply to all human neurodegenerative processes initiated by abnormal intracellular calcium levels. Therefore, the original description of Parkinson's disease (PD) as due to the selective damage of dopaminergic neurons in the mesencephalon should be updated into the concept of a severe multisystemic neurodegenerative disorder of the nervous system, whose clinical symptoms reflect the localization and progression of the most advanced GABA pathology. A future and more complete therapeutic approach to PD should be aimed first at slowing (or stopping) the progression of Ca2+/GABA functional decline. PMID:27375426

  16. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    PubMed

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2016-01-01

    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2)  > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus.

  17. Role of a gamma-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. The corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was partially controlled by ...

  18. Enhancing Contents of γ-Aminobutyric Acid (GABA) and Other Micronutrients in Dehulled Rice during Germination under Normoxic and Hypoxic Conditions.

    PubMed

    Ding, Junzhou; Yang, Tewu; Feng, Hao; Dong, Mengyi; Slavin, Margaret; Xiong, Shanbai; Zhao, Siming

    2016-02-10

    Biofortification of staple grains with high contents of essential micronutrients is an important strategy to overcome micronutrient malnutrition. However, few attempts have targeted at γ-aminobutyric acid (GABA), a functional nutrient for aging populations. In this study, two rice cultivars, Heinuo and Xianhui 207, were used to investigate changes in GABA and other nutritional compounds of dehulled rice after germination under normoxic and hypoxic conditions. Forty-one metabolites were identified in both cultivars treated by normoxic germination, whereas the germinated dehulled rice of Heinuo and Xianhui 207 under hypoxic treatment had 43 and 41 metabolites identified, respectively. GABA increased in dehulled rice after germination, especially under hypoxia. Meanwhile, a number of other health-beneficial and/or flavor-related compounds such as lysine and d-mannose increased after the hypoxic treatment. The accumulation of GABA exhibited genotype-specific modes in both normoxic and hypoxic treatments. With regard to GABA production, Xianhui 207 was more responsive to the germination process than Heinuo, whereas Heinuo was more responsive to hypoxia than Xianhui 207. This study provides a promising approach to biofortify dehulled rice with increased GABA and other nutrients through metabolomic-based regulation.

  19. Vesicular GABA transporter (VGAT) transports β-alanine.

    PubMed

    Juge, Narinobu; Omote, Hiroshi; Moriyama, Yoshinori

    2013-11-01

    Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In this study, we show that VGAT recognizes β-alanine as a substrate. Proteoliposomes containing purified VGAT transport β-alanine using Δψ but not ΔpH as a driving force. The Δψ-driven β-alanine uptake requires Cl(-). VGAT also facilitates Cl(-) uptake in the presence of β-alanine. A previously described VGAT mutant (Glu213Ala) that disrupts GABA and glycine transport similarly abrogates β-alanine uptake. These findings indicated that VGAT transports β-alanine through a mechanism similar to those for GABA and glycine, and functions as a vesicular β-alanine transporter. Vesicular GABA transporter (VGAT) is expressed in GABAergic and glycinergic neurons, and is responsible for vesicular storage and subsequent exocytosis of these inhibitory amino acids. In the present study, we showed that proteoliposomes containing purified VGAT transport β-alanine using Δψ as a driving force. VGAT also facilitates Cl(-) uptake. Our findings indicated that VGAT functions as a vesicular β-alanine transporter.

  20. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment.

    PubMed

    Shabel, Steven J; Proulx, Christophe D; Piriz, Joaquin; Malinow, Roberto

    2014-09-19

    The lateral habenula (LHb), a key regulator of monoaminergic brain regions, is activated by negatively valenced events. Its hyperactivity is associated with depression. Although enhanced excitatory input to the LHb has been linked to depression, little is known about inhibitory transmission. We discovered that γ-aminobutyric acid (GABA) is co-released with its functional opponent, glutamate, from long-range basal ganglia inputs (which signal negative events) to limit LHb activity in rodents. At this synapse, the balance of GABA/glutamate signaling is shifted toward reduced GABA in a model of depression and increased GABA by antidepressant treatment. GABA and glutamate co-release therefore controls LHb activity, and regulation of this form of transmission may be important for determining the effect of negative life events on mood and behavior.

  1. Gamma aminobutyric acid B and 5-hydroxy tryptamine 2A receptors functional regulation during enhanced liver cell proliferation by GABA and 5-HT chitosan nanoparticles treatment.

    PubMed

    Shilpa, Joy; Pretty, Mary Abraham; Anitha, Malat; Paulose, Cheramadathikudyil Skaria

    2013-09-01

    Liver is one of the major organs in vertebrates and hepatocytes are damaged by many factors. The liver cell maintenance and multiplication after injury and treatment gained immense interest. The present study investigated the role of Gamma aminobutyric acid (GABA) and serotonin or 5-hydroxytryptamine (5-HT) coupled with chitosan nanoparticles in the functional regulation of Gamma aminobutyric acid B and 5-hydroxy tryptamine 2A receptors mediated cell signaling mechanisms, extend of DNA methylation and superoxide dismutase activity during enhanced liver cell proliferation. Liver injury was achieved by partial hepatectomy of male Wistar rats and the GABA and 5-HT chitosan nanoparticles treatments were given intraperitoneally. The experimental groups were sham operated control (C), partially hepatectomised rats with no treatment (PHNT), partially hepatectomised rats with GABA chitosan nanoparticle (GCNP), 5-HT chitosan nanoparticle (SCNP) and a combination of GABA and 5-HT chitosan nanoparticle (GSCNP) treatments. In GABA and 5-HT chitosan nanoparticle treated group there was a significant decrease (P<0.001) in the receptor expression of Gamma aminobutyric acid B and a significant increase (P<0.001) in the receptor expression of 5-hydroxy tryptamine 2A when compared to PHNT. The cyclic adenosine monophosphate content and its regulatory protein, presence of methylated DNA and superoxide dismutase activity were decreased in GCNP, SCNP and GSCNP when compared to PHNT. The Gamma aminobutyric acid B and 5-hydroxy tryptamine 2A receptors coupled signaling elements played an important role in GABA and 5-HT chitosan nanoparticles induced liver cell proliferation which has therapeutic significance in liver disease management.

  2. Gad1 mRNA as a reliable indicator of altered GABA release from orexigenic neurons in the hypothalamus

    PubMed Central

    Dicken, Matthew S.; Hughes, Alexander R.; Hentges, Shane T.

    2016-01-01

    The strength of γ-aminobutyric acid (GABA)-mediated inhibitory synaptic input is a principle determinant of neuronal activity. However, because of differences in the number of GABA afferent inputs and the sites of synapses, it is difficult to directly assay for altered GABA transmission between specific cells. The present study tested the hypothesis that the level of mRNA for the GABA synthetic enzyme glutamate decarboxylase (GAD) can provide a reliable proxy for GABA release. This was tested in a mouse hypothalamic circuit important in the regulation of energy balance. Fluorescent in situ hybridization results show that the expression of Gad1 mRNA (encoding the GAD67 enzyme) was increased in hypothalamic neuropeptide Y/agouti-related peptide (NPY/AgRP) neurons after an overnight fast, consistent with the ability of GABA from these neurons to stimulate food intake. Optogenetic studies confirmed that the observed increase in Gad1 mRNA correlated with an increase in the probability of GABA release from NPY/AgRP neurons onto downstream proopiomelanocortin neurons. Likewise, there was an increase in the readily releasable pool of GABA in NPY/AgRP neurons. Selective inhibition of GAD activity in NPY/AgRP neurons decreased GABA release, indicating that GAD67 activity, which is largely dictated by expression level, is a key determinant of GABA release. Altogether, it appears that Gad expression may be a reliable proxy of altered GABAergic transmission. Examining changes in Gad mRNA as a proxy for GABA release may be particularly helpful when the downstream targets are not known or when limited tools exist for detecting GABA release at a particular synapse. PMID:26370162

  3. Depolarizing effect of GABA in horizontal cells of the rabbit retina.

    PubMed

    Varela, Carolina; Rivera, Luis; Blanco, Román; De la Villa, Pedro

    2005-11-01

    Gamma-amino butyric acid (GABA) has been characterized as an inhibitory neurotransmitter acting through chloride mediated channels in the adult nervous system. Using gramicidin-perforated patch clamp recordings from horizontal cells dissociated from the retinas of adult rabbits, we found that GABA is able to induce cell depolarization. Ionic currents induced by GABA in dissociated horizontal cells showed a reversal potential close to -30 mV. This value is more positive than the resting potential of these cells (ca. -70 mV). Therefore, according to the Nernst equation, the intracellular chloride concentration in horizontal cells was estimated to be of 44 mM. The depolarizing effect of GABA at the dendrites of horizontal cells may serve to shape the center-surround organization of the receptive fields in retinal cells, thereby securing the shape discrimination of visual input.

  4. Novel dose-dependent alterations in excitatory GABA during embryonic development associated with lead (Pb) neurotoxicity

    PubMed Central

    Wirbisky, Sara E.; Weber, Gregory J.; Lee, Jang-Won; Cannon, Jason R.; Freeman, Jennifer L.

    2014-01-01

    Lead (Pb) is a heavy metal that is toxic to numerous physiological processes. Its use in industrial applications is widespread and results in an increased risk of human environmental exposure. The central nervous system (CNS) is most sensitive to Pb exposure during early development due to rapid cell proliferation and migration, axonal growth, and synaptogenesis. One of the key components of CNS development is the Gamma-aminobutyric acid (GABA)ergic system. GABA is the primary inhibitory neurotransmitter in the adult brain. However, during development GABA acts as an excitatory neurotrophic factor which contributes to these cellular processes. Multiple studies report effects of Pb on GABA in the mature brain; however, little is known regarding the adverse effects of Pb exposure on the GABAergic system during embryonic development. To characterize the effects of Pb on the GABAergic system during development, zebrafish embryos were exposed to 10, 50, or 100 ppb Pb or a control treatment. Tissue up-take, gross morphological alterations, gene expression, and neurotransmitter levels were analyzed. Analysis revealed that alterations in gene expression throughout the GABAergic system and GABA levels were dose and developmental time point specific. These data provide a framework for further analysis of the effects of Pb on the GABAergic system during the excitatory phase and as GABA transitions to an inhibitory neurotransmitter during development. PMID:24875535

  5. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies

    PubMed Central

    Chiapponi, Chiara; Piras, Federica; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-01-01

    Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional–biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA

  6. GABA System in Schizophrenia and Mood Disorders: A Mini Review on Third-Generation Imaging Studies.

    PubMed

    Chiapponi, Chiara; Piras, Federica; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-01-01

    Third-generation neuroimaging research has been enriched by advances in magnetic resonance spectroscopy (MRS) measuring the concentration of important neurotrasmitters, such as the inhibitory amino acid GABA. Here, we performed a systematic mini-review on brain MRS studies measuring GABA concentration in patients affected by schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We wondered whether multimodal investigations could overcome intrinsic technical limits of MRS giving a broader view of mental disorders pathogenesis. In SZ, unimodal studies gave mixed results, as increased, decreased, or unaltered GABA levels were reported depending on region, disease phase, and treatment. Conversely, multimodal results showed reduced level of glutamate, but not of GABA, in patients mirrored by in vitro biochemical findings revealing hippocampal reduction in glutamate signaling in SZ, and no deficits in GABA synthesis. Moreover, a mouse model confirmed the unique pathological characteristic of glutamate function in SZ. Unimodal studies in BD revealed again, inconsistent results, while no multimodal investigations including MRS on GABA exist. In MDD, unimodal studies could not differentiate patients from controls nor characterize high-risk subjects and remitted patients. However, a multimodal study combining functional magnetic resonance imaging and MRS revealed that cingulate cortex activity is related to glutamate, N-acetylaspartate levels and anhedonia in patients, and to GABA concentration in healthy subjects, improving the distinction between MDD and physiology. Overall, our results show that unimodal studies do not indicate GABA as a biomarker for the psychiatric disorders considered. Conversely, multimodal studies can widen the understanding of the link between psychopathology, genetics, neuroanatomy, and functional-biochemical brain activity in mental disorders. Although scarce, multimodal approaches seem promising for moving from GABA MRS

  7. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-01

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.

  8. Potentiation of the ionotropic GABA receptor response by whiskey fragrance.

    PubMed

    Hossain, Sheikh Julfikar; Aoshima, Hitoshi; Koda, Hirofumi; Kiso, Yoshinobu

    2002-11-01

    It is well-known that the target of most mood-defining compounds is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activity in the human brain. To study the effects of whiskey fragrance on the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting rat whole brain mRNA or cRNA prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors. Most whiskey components such as phenol, ethoxy, and lactone derivatives potentiated the electrical responses of GABA(A) receptors, especially ethyl phenylpropanoate (EPP), which strongly potentiated the response. When this compound was applied to mice through respiration, the convulsions induced by pentetrazole were delayed, suggesting that EPP was absorbed by the brain, where it could potentiate the GABA(A) receptor responses. The extract of other alcoholic drinks such as wine, sake, brandy, and shochu also potentiated the responses to varying degrees. Although these fragrant components are present in alcoholic drinks at low concentrations (extremely small quantities compared with ethanol), they may also modulate the mood or consciousness of the human through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic fragrant compounds are easily absorbed into the brain through the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12405783

  9. Treating enhanced GABAergic inhibition in Down syndrome: use of GABA α5-selective inverse agonists.

    PubMed

    Martínez-Cué, Carmen; Delatour, Benoît; Potier, Marie-Claude

    2014-10-01

    Excess inhibition in the brain of individuals carrying an extra copy of chromosome 21 could be responsible for cognitive deficits observed throughout their lives. A change in the excitatory/inhibitory balance in adulthood would alter synaptic plasticity, potentially triggering learning and memory deficits. γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mature central nervous system and binds to GABAA receptors, opens a chloride channel, and reduces neuronal excitability. In this review we discuss methods to alleviate neuronal inhibition in a mouse model of Down syndrome, the Ts65Dn mouse, using either an antagonist (pentylenetetrazol) or two different inverse agonists selective for the α5-subunit containing receptor. Both inverse agonists, which reduce inhibitory GABAergic transmission, could rescue learning and memory deficits in Ts65Dn mice. We also discuss safety issues since modulation of the excitatory-inhibitory balance to improve cognition without inducing seizures remains particularly difficult when using GABA antagonists.

  10. New Pharmacotherapy Targeting Cognitive Dysfunction of Schizophrenia via Modulation of GABA Neuronal Function

    PubMed Central

    Jeon, Won Je; Sumiyoshi, Tomiki; Kurachi, Masayoshi

    2015-01-01

    Schizophrenia is considered a neurodevelopmental and neurodegenerative disorder. Cognitive impairment is a core symptom in patients with the illness, and has been suggested a major predictor of functional outcomes. Reduction of parvalbumin (PV)-positive γ-aminobutyric acid (GABA) interneurons has been associated with the pathophysiology of schizophrenia, in view of the link between the abnormality of GABA neurons and cognitive impairments of the disease. It is assumed that an imbalance of excitatory and inhibitory (E-I) activity induced by low activity of glutamatergic projections and PV-positive GABA interneurons in the prefrontal cortex resulted in sustained neural firing and gamma oscillation, leading to impaired cognitive function. Therefore, it is important to develop novel pharmacotherapy targeting GABA neurons and their activities. Clinical evidence suggests serotonin (5-HT) 1A receptor agonist improves cognitive disturbances of schizophrenia, consistent with results from preclinical studies, through mechanism that corrects E-I imbalance via the suppression of GABA neural function. On the other hand, T-817MA, a novel neurotrophic agent, ameliorated loss of PV-positive GABA neurons in the medial prefrontal cortex and reduction of gamma-band activity, as well as cognitive dysfunction in animal model of schizophrenia. In conclusion, a pharmacotherapy to alleviate abnormalities in GABA neurons through 5-HT1A agonists and T-817MA is expected to prevent the onset and/or progression of schizophrenia. PMID:26630957

  11. GABA shapes the dynamics of bistable perception.

    PubMed

    van Loon, Anouk M; Knapen, Tomas; Scholte, H Steven; St John-Saaltink, Elexa; Donner, Tobias H; Lamme, Victor A F

    2013-05-01

    Sometimes, perception fluctuates spontaneously between two distinct interpretations of a constant sensory input. These bistable perceptual phenomena provide a unique window into the neural mechanisms that create the contents of conscious perception. Models of bistable perception posit that mutual inhibition between stimulus-selective neural populations in visual cortex plays a key role in these spontaneous perceptual fluctuations. However, a direct link between neural inhibition and bistable perception has not yet been established experimentally. Here, we link perceptual dynamics in three distinct bistable visual illusions (binocular rivalry, motion-induced blindness, and structure from motion) to measurements of gamma-aminobutyric acid (GABA) concentrations in human visual cortex (as measured with magnetic resonance spectroscopy) and to pharmacological stimulation of the GABAA receptor by means of lorazepam. As predicted by a model of neural interactions underlying bistability, both higher GABA concentrations in visual cortex and lorazepam administration induced slower perceptual dynamics, as reflected in a reduced number of perceptual switches and a lengthening of percept durations. Thus, we show that GABA, the main inhibitory neurotransmitter, shapes the dynamics of bistable perception. These results pave the way for future studies into the competitive neural interactions across the visual cortical hierarchy that elicit conscious perception. PMID:23602476

  12. Luteinizing hormone releasing hormone (LHRH) neurons maintained in nasal explants decrease LHRH messenger ribonucleic acid levels after activation of GABA(A) receptors.

    PubMed

    Fueshko, S M; Key, S; Wray, S

    1998-06-01

    Inhibition of the LHRH system appears to play an important role in preventing precocious activation of the hypothalamic-pituitary-gonadal axis. Evidence points to gamma-aminobutyric acid (GABA) as the major negative regulator of postnatal LHRH neuronal activity. Changes in LHRH messenger RNA (mRNA) levels after alterations of GABAergic activity have been reported in vivo. However, the extent to which GABA acts directly on LHRH neurons to effect LHRH mRNA levels has been difficult to ascertain. The present work evaluates the effect of GABAergic activity, via GABA(A) receptors, on LHRH neuropeptide gene expression in LHRH neurons maintained in olfactory explants generated from E11.5 mouse embryos. These explants maintain large numbers of primary LHRH neurons that migrate from bilateral olfactory pits in a directed manner. Using in situ hybridization histochemistry and single cell analysis, we report dramatic alterations in LHRH mRNA levels. Inhibition of spontaneous synaptic activity by GABA(A) antagonists, bicuculline (10(-5) M) or picrotoxin (10(-4) M), or of electrical activity by tetrodotoxin (TTX, 10(-6) M) significantly increased LHRH mRNA levels. In contrast, LHRH mRNA levels decreased in explants cultured with the GABA(A) receptor agonist, muscimol (10(-4) M), or KCl (50 mM). The observed responses suggest that LHRH neurons possess functional pathways linking GABA(A) receptors to repression of neuropeptide gene expression and indicate that gene expression in embryonic LHRH neurons, outside the CNS, is highly responsive to alterations in neuronal activity.

  13. Neurotoxins from Snake Venoms and α-Conotoxin ImI Inhibit Functionally Active Ionotropic γ-Aminobutyric Acid (GABA) Receptors*

    PubMed Central

    Kudryavtsev, Denis S.; Shelukhina, Irina V.; Son, Lina V.; Ojomoko, Lucy O.; Kryukova, Elena V.; Lyukmanova, Ekaterina N.; Zhmak, Maxim N.; Dolgikh, Dmitry A.; Ivanov, Igor A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Ramerstorfer, Joachim; Sieghart, Werner; Tsetlin, Victor I.; Utkin, Yuri N.

    2015-01-01

    Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors. PMID:26221036

  14. Imidase catalyzing desymmetric imide hydrolysis forming optically active 3-substituted glutaric acid monoamides for the synthesis of gamma-aminobutyric acid (GABA) analogs.

    PubMed

    Nojiri, Masutoshi; Hibi, Makoto; Shizawa, Hiroaki; Horinouchi, Nobuyuki; Yasohara, Yoshihiko; Takahashi, Satomi; Ogawa, Jun

    2015-12-01

    The recent use of optically active 3-substituted gamma-aminobutyric acid (GABA) analogs in human therapeutics has identified a need for an efficient, stereoselective method of their synthesis. Here, bacterial strains were screened for enzymes capable of stereospecific hydrolysis of 3-substituted glutarimides to generate (R)-3-substituted glutaric acid monoamides. The bacteria Alcaligenes faecalis NBRC13111 and Burkholderia phytofirmans DSM17436 were discovered to hydrolyze 3-(4-chlorophenyl) glutarimide (CGI) to (R)-3-(4-chlorophenyl) glutaric acid monoamide (CGM) with 98.1% enantiomeric excess (e.e.) and 97.5% e.e., respectively. B. phytofirmans DSM17436 could also hydrolyze 3-isobutyl glutarimide (IBI) to produce (R)-3-isobutyl glutaric acid monoamide (IBM) with 94.9% e.e. BpIH, an imidase, was purified from B. phytofirmans DSM17436 and found to generate (R)-CGM from CGI with specific activity of 0.95 U/mg. The amino acid sequence of BpIH had a 75% sequence identity to that of allantoinase from A. faecalis NBRC13111 (AfIH). The purified recombinant BpIH and AfIH catalyzed (R)-selective hydrolysis of CGI and IBI. In addition, a preliminary investigation of the enzymatic properties of BpIH and AfIH revealed that both enzymes were stable in the range of pH 6-10, with an optimal pH of 9.0, stable at temperatures below 40 °C, and were not metalloproteins. These results indicate that the use of this class of hydrolase to generate optically active 3-substituted glutaric acid monoamide could simplify the production of specific chiral GABA analogs for drug therapeutics.

  15. GABA and GAD expression in the X-organ sinus gland system of the Procambarus clarkii crayfish: inhibition mediated by GABA between X-organ neurons.

    PubMed

    Pérez-Polanco, Paola; Garduño, Julieta; Cebada, Jorge; Zarco, Natanael; Segovia, José; Lamas, Mónica; García, Ubaldo

    2011-09-01

    In crustaceans, the X-organ-sinus gland (XO-SG) neurosecretory system is formed of distinct populations of neurons that produce two families of neuropeptides: crustacean hyperglycemic hormone and adipokinetic hormone/red pigment-concentrating hormone. On the basis of electrophysiological evidence, it has been proposed that γ-aminobutyric acid (GABA) regulates both electrical and secretory activity of the XO-SG system. In this work we observed that depolarizing current pulses to neurons located in the external rim of the X-organ induced repetitive firing that suppressed the spontaneous firing of previously active X-organ neurons. Picrotoxin reversibly blocked this inhibitory effect suggesting that the GABA released from the stimulated neuron inhibited neighboring cells. Immunoperoxidase in X-organ serial sections showed co-localization of GABA and glutamic acid decarboxylase (GAD) including the aforementioned neurons. Immunofluorescence in whole mount preparations showed that two subpopulations of crustacean hyperglycemic hormone-containing neurons colocalized with GABA. The expression of GAD mRNA was determined in crayfish tissue and X-organ single cells by RT-PCR. Bioinformatics analysis shows, within the amplified region, 90.4% consensus and 41.9% identity at the amino acid level compared with Drosophila melanogaster and Caenorhabditis elegans. We suggest that crustacean hyperglycemic hormone-GABA-containing neurons can regulate the excitability of other X-organ neurons that produce different neurohormones. PMID:21626307

  16. Aging of whiskey increases the potentiation of GABA(A) receptor response.

    PubMed

    Koda, Hirofumi; Hossain, Sheikh Julfikar; Kiso, Yoshinobu; Aoshima, Hitoshi

    2003-08-27

    It is known that the target of most mood-defining compounds such as ethanol is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activities in the human brain. Because both extracts of whiskey by pentane and fragrant components in whiskey potentiate the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting cRNAs prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors in order to study the effects of whiskey itself on the GABA(A) receptor-mediated response. Whiskey itself also potentiated the electrical responses of GABA(A) receptors generally more than ethanol at the same concentration as that of the whiskey. The potentiation of the GABA(A) receptor-mediated response increased with the aging period of the whiskey. Inhalation of whiskey to mice increased the sleeping time induced by pentobarbital more than that of the same concentration of ethanol as the whiskey. These results suggest that not only ethanol but also minor components in whiskey play an important role in the potentiation of GABA(A) receptor-mediated response and possibly the sedative effect of whiskey. Although the minor components are present in extremely small quantities compared with ethanol in alcoholic beverages, they may modulate the mood or consciousness of humans through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic compounds are easily absorbed into the brain across the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response.

  17. Microtransplantation of cellular membranes from squid stellate ganglion reveals ionotropic GABA receptors.

    PubMed

    Conti, Luca; Limon, Agenor; Palma, Eleonora; Miledi, Ricardo

    2013-02-01

    The squid has been the most studied cephalopod, and it has served as a very useful model for investigating the events associated with nerve impulse generation and synaptic transmission. While the physiology of squid giant axons has been extensively studied, very little is known about the distribution and function of the neurotransmitters and receptors that mediate inhibitory transmission at the synapses. In this study we investigated whether γ-aminobutyric acid (GABA) activates neurotransmitter receptors in stellate ganglia membranes. To overcome the low abundance of GABA-like mRNAs in invertebrates and the low expression of GABA in cephalopods, we used a two-electrode voltage clamp technique to determine if Xenopus laevis oocytes injected with cell membranes from squid stellate ganglia responded to GABA. Using this method, membrane patches containing proteins and ion channels from the squid's stellate ganglion were incorporated into the surface of oocytes. We demonstrated that GABA activates membrane receptors in cellular membranes isolated from squid stellate ganglia. Using the same approach, we were able to record native glutamate-evoked currents. The squid's GABA receptors showed an EC(50) of 98 μmol l(-1) to GABA and were inhibited by zinc (IC(50) = 356 μmol l(-1)). Interestingly, GABA receptors from the squid were only partially blocked by bicuculline. These results indicate that the microtransplantation of native cell membranes is useful to identify and characterize scarce membrane proteins. Moreover, our data also support the role of GABA as an ionotropic neurotransmitter in cephalopods, acting through chloride-permeable membrane receptors.

  18. Aging of whiskey increases the potentiation of GABA(A) receptor response.

    PubMed

    Koda, Hirofumi; Hossain, Sheikh Julfikar; Kiso, Yoshinobu; Aoshima, Hitoshi

    2003-08-27

    It is known that the target of most mood-defining compounds such as ethanol is an ionotropic gamma-aminobutyric acid receptor (GABA(A) receptor). The potentiation of the response of these inhibitory neurotransmitter receptors induces anxiolytic, sedative, and anesthetic activities in the human brain. Because both extracts of whiskey by pentane and fragrant components in whiskey potentiate the GABA(A) receptor-mediated response, GABA(A) receptors were expressed in Xenopus oocyte by injecting cRNAs prepared from the cloned cDNA for the alpha(1) and beta(1) subunits of the bovine receptors in order to study the effects of whiskey itself on the GABA(A) receptor-mediated response. Whiskey itself also potentiated the electrical responses of GABA(A) receptors generally more than ethanol at the same concentration as that of the whiskey. The potentiation of the GABA(A) receptor-mediated response increased with the aging period of the whiskey. Inhalation of whiskey to mice increased the sleeping time induced by pentobarbital more than that of the same concentration of ethanol as the whiskey. These results suggest that not only ethanol but also minor components in whiskey play an important role in the potentiation of GABA(A) receptor-mediated response and possibly the sedative effect of whiskey. Although the minor components are present in extremely small quantities compared with ethanol in alcoholic beverages, they may modulate the mood or consciousness of humans through the potentiation of the GABA(A) receptor response after absorption into the brain, because these hydrophobic compounds are easily absorbed into the brain across the blood-brain barrier and are several thousands times as potent as ethanol in the potentiation of the GABA(A) receptor-mediated response. PMID:12926865

  19. Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum.

    PubMed

    Trigo, Federico F; Chat, Mireille; Marty, Alain

    2007-11-14

    Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.

  20. trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA) and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP) can differentiate rat rho3 from human rho1 and rho2 recombinant GABA(C) receptors.

    PubMed

    Vien, Jimmy; Duke, Rujee K; Mewett, Kenneth N; Johnston, Graham A R; Shingai, Ryuzo; Chebib, Mary

    2002-02-01

    1. This study investigated the effects of a number of GABA analogues on rat rho3 GABA(C) receptors expressed in Xenopus oocytes using 2-electrode voltage clamp methods. 2. The potency order of agonists was muscimol (EC(50)=1.9 +/- 0.1 microM) (+)-trans-3-aminocyclopentanecarboxylic acids ((+)-TACP; EC(50)=2.7 +/- 0.9 microM) trans-4-aminocrotonic acid (TACA; EC(50)=3.8 +/-0.3 microM) GABA (EC(50)=4.0 +/- 0.3 microM) > thiomuscimol (EC(50)=24.8 +/- 2.6 microM) > (+/-)-cis-2-aminomethylcyclopropane-carboxylic acid ((+/-)-CAMP; EC(50)=52.6 +/-8.7 microM) > cis-4-aminocrotonic acid (CACA; EC(50)=139.4 +/- 5.2 microM). 3. The potency order of antagonists was (+/-)-trans-2-aminomethylcyclopropanecarboxylic acid ((+/-)-TAMP; K(B)=4.8+/-1.8 microM) (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA; K(B)=4.8 +/-0.8 microM) > (piperidin-4-yl)methylphosphinic acid (P4MPA; K(B)=10.2+/-2.3 microM) 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP; K(B)=10.2+/-0.3 microM) imidazole-4-acetic acid (I4AA; K(B)=12.6+/-2.7 microM) > 3-aminopropylphosphonic acid (3-APA; K(B)=35.8+/-13.5 microM). 4. trans-4-Amino-2-methylbut-2-enoic acid (2-MeTACA; 300 microM) had no effect as an agonist or an antagonist indicating that the C2 methyl substituent is sterically interacting with the ligand-binding site of rat rho3 GABA(C) receptors. 5. 2-MeTACA affects rho1 and rho2 but not rho3 GABA(C) receptors. In contrast, (plus minus)-TAMP is a partial agonist at rho1 and rho2 GABA(C) receptors, while at rat rho3 GABA(C) receptors it is an antagonist. Thus, 2-MeTACA and (+/-)-TAMP could be important pharmacological tools because they may functionally differentiate between rho1, rho2 and rho3 GABA(C) receptors in vitro. PMID:11861315

  1. GABA localization in the nematode Ascaris

    SciTech Connect

    Guastella, J.

    1988-01-01

    A histochemical approach was used to examine the distribution of GABA-associated neurons in the nematode Ascaris, an organism whose small number of morphologically simple neurons make it an excellent preparation for analyzing neuronal phenotypes. Two GABAergic markers were examined: GABA-like immunoreactivity (GLIR), a marker for endogenous stores of GABA; and ({sup 3}H)-GABA uptake, a marker for GABA uptake sites. Strong GLIR was present in the cell bodies, neurites and commissures of dorsal and ventral inhibitory motorneurons present in this region. Strong GLIR was also present in the cell bodies and processes of the four RME neurons in the nerve ring and in several other ganglionic neurons. Staining was absent in excitatory motorneurons, in ventral cord interneurons and in muscle cells and hypodermis. GABA uptake sites were found in single neural processes in both the ventral and dorsal nerve cords. ({sup 3}H)-GABA labeling was also observed in the other two RME cells and several other cephalic neurons. Four putative cholinergic excitatory motorneurons in the retrovesicular ganglion (RVG) were heavily labeled. Ventral and dorsal nerve cord inhibitory motorneurons did not take up ({sup 3}H)-GABA. Labeling of the ventral cord excitatory motorneuron somata and cell bodies was at or slightly above background. Heavy labeling of muscle cells was also observed.

  2. GABA deficiency in NF1

    PubMed Central

    Patricio, Miguel; Bernardino, Inês; Rebola, José; Abrunhosa, Antero J.; Ferreira, Nuno; Castelo-Branco, Miguel

    2016-01-01

    Objective: To provide a comprehensive investigation of the γ-aminobutyric acid (GABA) system in patients with neurofibromatosis type 1 (NF1) that allows understanding the nature of the GABA imbalance in humans at pre- and postsynaptic levels. Methods: In this cross-sectional study, we employed multimodal imaging and spectroscopy measures to investigate GABA type A (GABAA) receptor binding, using [11C]-flumazenil PET, and GABA concentration, using magnetic resonance spectroscopy (MRS). Fourteen adult patients with NF1 and 13 matched controls were included in the study. MRS was performed in the occipital cortex and in a frontal region centered in the functionally localized frontal eye fields. PET and MRS acquisitions were performed in the same day. Results: Patients with NF1 have reduced concentration of GABA+ in the occipital cortex (p = 0.004) and frontal eye fields (p = 0.026). PET results showed decreased binding of GABAA receptors in patients in the parieto-occipital cortex, midbrain, and thalamus, which are not explained by decreased gray matter levels. Conclusions: Abnormalities in the GABA system in NF1 involve both GABA concentration and GABAA receptor density suggestive of neurodevelopmental synaptopathy with both pre- and postsynaptic involvement. PMID:27473134

  3. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    PubMed Central

    2012-01-01

    Abstact Background Gamma amino butyric acid (GABA), the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. Methods In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Results Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P < 0.001) compared to control. Real Time PCR amplification of GABA receptor subunits such as GABAAά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P < 0.001) in epileptic rats. GABAAά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Conclusions Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management. PMID:22364254

  4. GABA regulates synaptic integration of newly generated neurons in the adult brain

    NASA Astrophysics Data System (ADS)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  5. Insula and anterior cingulate GABA levels in post-traumatic stress disorder: Preliminary findings using magnetic resonance spectroscopy

    PubMed Central

    Rosso, Isabelle M.; Weiner, Melissa R.; Crowley, Davidan J; Silveri, Marisa M.; Rauch, Scott L.; Jensen, J. Eric

    2013-01-01

    Background Increased reactivity of the insular cortex and decreased activity of the dorsal anterior cingulate (ACC) are seen in functional imaging studies of post-traumatic stress disorder (PTSD), and may partly explain the persistent fear- and anxiety-proneness that characterize the disorder. A possible neurochemical correlate is altered function of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We report results from what we believe is the first study applying proton magnetic resonance spectroscopy (1H-MRS) to measure brain GABA in PTSD. Methods Thirteen adults with DSM-IV PTSD and 13 matched healthy control subjects underwent single voxel 1H-MRS at 4 Tesla. GABA was measured in the right anterior insula and dorsal anterior cingulate, using MEGAPRESS spectral editing. Subjects were interviewed with the Structured Clinical Interview for DSM-IV and the Clinician Administered PTSD Scale, and also completed the State and Trait Anxiety Inventory. Results Insula GABA was significantly lower in PTSD subjects than in controls, and dorsal ACC GABA did not differ significantly between the groups. Insula GABA was not significantly associated with severity of PTSD symptoms. However, lower insula GABA was associated with significantly higher state and trait anxiety in the subject sample as a whole. Conclusions PTSD is associated with reduced GABA in the right anterior insula. This preliminary evidence of the 1H-MRS GABA metabolite as a possible biomarker of PTSD encourages replication in larger samples and examination of relations with symptom dimensions. Future studies also should examine whether insula GABA is a marker of anxiety proneness, cutting across clinical diagnostic categories. PMID:23861191

  6. A validated method for gas chromatographic analysis of gamma-aminobutyric acid in tall fescue herbage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma-Aminobutyric acid (GABA) is an inhibitory neurotransmitter in animals that is also found in plants and has been associated with plant responses to stress. A simple and relatively rapid method of GABA separation and quantification was developed from a commercially available kit for serum amino...

  7. GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation.

    PubMed

    Lemus, Mónica; Montero, Sergio; Cadenas, José Luis; Lara, José Jesús; Tejeda-Chávez, Héctor Rafael; Alvarez-Buylla, Ramón; de Alvarez-Buylla, Elena Roces

    2008-08-18

    The carotid body receptors participate in glucose regulation sensing glucose levels in blood entering the cephalic circulation. The carotid body receptors information, is initially processed within the nucleus tractus solitarius (NTS) and elicits changes in circulating glucose and brain glucose uptake. Previous work has shown that gamma-aminobutyric acid (GABA) in NTS modulates respiratory reflexes, but the role of GABA within NTS in glucose regulation remains unknown. Here we show that GABA(B) receptor agonist (baclofen) or antagonists (phaclofen and CGP55845A) locally injected into NTS modified arterial glucose levels and brain glucose retention. Control injections outside NTS did not elicit these responses. In contrast, GABA(A) agonist and antagonist (muscimol or bicuculline) produced no significant changes in blood glucose levels. When these GABAergic drugs were applied before carotid body receptors stimulation, again, only GABA(B) agonist or antagonist significantly affected glycemic responses; baclofen microinjection significantly reduced the hyperglycemic response and brain glucose retention observed after carotid body receptors stimulation, while phaclofen produced the opposite effect, increasing significantly hyperglycemia and brain glucose retention. These results indicate that activation of GABA(B), but not GABA(A), receptors in the NTS modulates the glycemic responses after anoxic stimulation of the carotid body receptors, and suggest the presence of a tonic inhibitory mechanism in the NTS to avoid hyperglycemia.

  8. 3-Chloro,4-methoxyfendiline is a potent GABA(B) receptor potentiator in rat neocortical slices.

    PubMed

    Ong, Jennifer; Parker, David A S; Marino, Victor; Kerr, David I B; Puspawati, Ni Made; Prager, Rolf H

    2005-01-10

    Using grease-gap recording from rat neocortical slices, the GABA(B) receptor agonist baclofen elicited reversible and concentration-dependent hyperpolarizing responses (EC50=18+/-2.3 microM). The hyperpolarizations were antagonised by the GABA(B) receptor antagonist Sch 50911 [(+)-(S)-5,5-dimethylmorpholinyl-2-acetic acid). (+)-N-1-(3-chloro-4-methoxyphenyl)ethyl-3,3-diphenylpropylamine (3-chloro,4-methoxyfendiline; 3-Cl,4-MeO-fendiline) reversibly potentiated baclofen-induced hyperpolarizing responses, which were reduced by Sch 50911, producing leftward shifts of the baclofen concentration-response curves, with a marked increase in the maximal hyperpolarization (EC50=2+/-0.5 microM). In slices preincubated with either [3H]GABA or [3H]glutamic acid, 3-Cl,4-MeO-fendiline (1 microM) potentiated the inhibitory effect of baclofen (2 microM) on the electrically evoked release of [3H]GABA and had a similar effect on the release of [3H]glutamic acid at a concentration of 0.5 microM, without affecting the basal release. These effects were blocked by Sch 50911 (10 microM). Our findings suggest that 3-Cl,4-MeO-fendiline is a potent potentiator of pre- and postsynaptic GABA(B) receptor-mediated functions.

  9. GABA and glycine in the developing brain.

    PubMed

    Ito, Susumu

    2016-09-01

    GABA and glycine are major inhibitory neurotransmitters in the CNS and act on receptors coupled to chloride channels. During early developmental periods, both GABA and glycine depolarize membrane potentials due to the relatively high intracellular Cl(-) concentration. Therefore, they can act as excitatory neurotransmitters. GABA and glycine are involved in spontaneous neural network activities in the immature CNS such as giant depolarizing potentials (GDPs) in neonatal hippocampal neurons, which are generated by the synchronous activity of GABAergic interneurons and glutamatergic principal neurons. GDPs and GDP-like activities in the developing brains are thought to be important for the activity-dependent functiogenesis through Ca(2+) influx and/or other intracellular signaling pathways activated by depolarization or stimulation of metabotropic receptors. However, if GABA and glycine do not shift from excitatory to inhibitory neurotransmitters at the birth and in maturation, it may result in neural disorders including autism spectrum disorders. PMID:26951057

  10. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems

    PubMed Central

    Creed, Meaghan C.; Ntamati, Niels R.; Tan, Kelly R.

    2014-01-01

    The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA) and the nucleus accumbens (NAc) as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to dopamine (DA) neurons, the VTA also contains approximately 30% γ-aminobutyric acid (GABA) neurons. The task of signaling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs), a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioral level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs) to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions. PMID:24478655

  11. Autoradiographic analysis of 3H-glutamate, 3H-dopamine, and 3H-GABA accumulation in rabbit retina after kainic acid treatment

    SciTech Connect

    Hampton, C.K.; Redburn, D.A.

    1983-01-01

    We have previously reported that exposure of isolated rabbit retina to 10(-3) M kainic acid produces profound morphological changes in specific retinal neurons (Hampton et al, 1981). We noted specific swelling of horizontal cell bodies and neurites, necrosis of cell bodies in the amacrine and ganglion cell layers, and swelling of elements in the inner plexiform layer. We now report a differential sensitivity to kainic acid of specific subclasses of amacrine cells autoradiographically labeled with 3H-glutamate, 3H-GABA, or 3H-dopamine. Three different effects were observed: (1) Labeling of neurons after incubation in 3H-glutamate was uniformly reduced while labeling of glia was much less affected. (2) The accumulation of 3H-dopamine was also decreased by kainic acid in two of the three labeled bands of the inner plexiform layer. The outermost labeled band was insensitive to kainic acid at the highest concentration tested (10(-2) M). These findings provide a basis for the subclassification of dopaminergic amacrine cells into at least two subclasses based on their sensitivity to kainic acid. (3) Kainic acid caused a dramatic increase in the labeling of GABAergic amacrine cell bodies and their terminals. This increased intensity may reflect a compensatory increase in uptake activity in response to kainic acid-induced depletion of endogenous GABA stores. These results confirm the highly toxic nature of kainic acid and demonstrate a high degree of specificity and complexity in its action in the retina.

  12. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of gamma-aminobutyric acid (GABA).

    PubMed

    Coda, Rossana; Rizzello, Carlo Giuseppe; Gobbetti, Marco

    2010-02-28

    Lactobacillus plantarum C48 and Lactococcus lactis subsp. lactis PU1, previously selected for the biosynthesis of gamma-aminobutyric acid (GABA), were used for sourdough fermentation of cereal, pseudo-cereal and leguminous flours. Chickpea, amaranth, quinoa and buckwheat were the flours most suitable to be enriched of GABA. The parameters of sourdough fermentation were optimized. Addition of 0.1mM pyridoxal phosphate, dough yield of 160, inoculum of 5 x 10(7)CFU/g of starter bacteria and fermentation for 24h at 30 degrees C were found to be the optimal conditions. A blend of buckwheat, amaranth, chickpea and quinoa flours (ratio 1:1:5.3:1) was selected and fermented with baker's yeast (non-conventional flour bread, NCB) or with Lb. plantarum C48 sourdough (non-conventional flour sourdough bread, NCSB) and compared to baker's yeast started wheat flour bread (WFB). NCSB had the highest concentration of free amino acids and GABA (ca. 4467 and 504 mg/kg, respectively). The concentration of phenolic compounds and antioxidant activity of NCSB bread was the highest, as well as the rate of in vitro starch hydrolysis was the lowest. Texture analysis showed that sourdough fermentation enhances several characteristics of NCSB with respect to NCB, thus approaching the features of WFB. Sensory analysis showed that sourdough fermentation allowed to get good palatability and overall taste appreciation.

  13. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    PubMed

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  14. Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by alpha5 subunit-containing gamma-aminobutyric acid type A receptors.

    PubMed

    Caraiscos, Valerie B; Elliott, Erin M; You-Ten, Kong E; Cheng, Victor Y; Belelli, Delia; Newell, J Glen; Jackson, Michael F; Lambert, Jeremy J; Rosahl, Thomas W; Wafford, Keith A; MacDonald, John F; Orser, Beverley A

    2004-03-01

    The principal inhibitory neurotransmitter in the mammalian brain, gamma-aminobutyric acid (GABA), is thought to regulate memory processes by activating transient inhibitory postsynaptic currents. Here we describe a nonsynaptic, tonic form of inhibition in mouse CA1 pyramidal neurons that is generated by a distinct subpopulation of GABA type A receptors (GABA(A)Rs). This tonic inhibitory conductance is predominantly mediated by alpha5 subunit-containing GABA(A)Rs (alpha5GABA(A)Rs) that have different pharmacological and kinetic properties compared to postsynaptic receptors. GABA(A)Rs that mediate the tonic conductance are well suited to detect low, persistent, ambient concentrations of GABA in the extracellular space because they are highly sensitive to GABA and desensitize slowly. Moreover, the tonic current is highly sensitive to enhancement by amnestic drugs. Given the restricted expression of alpha5GABA(A)Rs to the hippocampus and the association between reduced alpha5GABA(A)R function and improved memory performance in behavioral studies, our results suggest that tonic inhibition mediated by alpha5GABA(A)Rs in hippocampal pyramidal neurons plays a key role in cognitive processes.

  15. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model.

    PubMed

    Buhl, E H; Otis, T S; Mody, I

    1996-01-19

    In the kindling model of temporal lobe epilepsy, several physiological indicators of inhibition by gamma-aminobutyric acid (GABA) in the hippocampal dentate gyrus are consistent with an augmented, rather than a diminished, inhibition. In brain slices obtained from epileptic (kindled) rats, the excitatory drive onto inhibitory interneurons was increased and was paralleled by a reduction in the presynaptic autoinhibition of GABA release. This augmented inhibition was sensitive to zinc most likely after a molecular reorganization of GABAA receptor subunits. Consequently, during seizures, inhibition by GABA may be diminished by the zinc released from aberrantly sprouted mossy fiber terminals of granule cells, which are found in many experimental models of epilepsy and in human temporal lobe epilepsy.

  16. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    SciTech Connect

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  17. Acetylcholinesterase inhibitory properties of some benzoic acid derivatives

    NASA Astrophysics Data System (ADS)

    Yildiz, Melike; Kiliç, Deryanur; Ünver, Yaǧmur; Şentürk, Murat; Askin, Hakan; Küfrevioǧlu, Ömer Irfan

    2016-04-01

    Acetylcholinesterase (AChE) hydrolyses the neurotransmitter acetylcholine to acetic acid and choline. AChE inhibitors are used in treatment of several neurodegeneartive disorder and Alzheimer's disease. In the present study, inhibition of AChE with some benzoic acid derivatives were investigated. 3-Chloro-benzoic acid (1), 2-hydroxy-5-sulfobenzoic acid (2), 2-(sulfooxy) benzoic acid (3), 2-hydroxybenzoic acid (4), 2,3-dimethoxybenzoic (5), and 3,4,5-trimethoxybenzoic (6) were calculated IC50 values AChE enzyme. Kinetic investigations showed that similarly to AChE inhibitors. Benzoic acid derivatives (1-6) investigated are encouraging agents which may be used as lead molecules in order to derivative novel AChE inhibitors that might be useful in medical applications.

  18. Subcellular localization and complements of GABA(A) and GABA(C) receptors on bullfrog retinal bipolar cells.

    PubMed

    Du, J L; Yang, X L

    2000-08-01

    gamma-Aminobutyric acid (GABA) receptors on retinal bipolar cells (BCs) are highly relevant to spatial and temporal integration of visual signals in the outer and inner retina. In the present work, subcellular localization and complements of GABA(A) and GABA(C) receptors on BCs were investigated by whole cell recordings and local drug application via multi-barreled puff pipettes in the bullfrog retinal slice preparation. Four types of the BCs (types 1-4) were identified morphologically by injection of Lucifer yellow. According to the ramification levels of the axon terminals and the responses of these cells to glutamate (or kainate) applied at their dendrites, types 1 and 2 of BCs were supposed to be OFF type, whereas types 3 and 4 of BCs might be ON type. Bicuculline (BIC), a GABA(A) receptor antagonist, and imidazole-4-acetic acid (I4AA), a GABA(C) receptor antagonist, were used to distinguish GABA receptor-mediated responses. In all BCs tested, not only the axon terminals but also the dendrites showed high GABA sensitivity mediated by both GABA(A) and GABA(C) receptors. Subcellular localization and complements of GABA(A) and GABA(C) receptors at the dendrites and axon terminals were highly related to the dichotomy of OFF and ON BCs. In the case of OFF BCs, GABA(A) receptors were rather evenly distributed at the dendrites and axon terminals, but GABA(C) receptors were predominantly expressed at the axon terminals. Moreover, the relative contribution of GABA(C) receptors to the axon terminals was prevalent over that of GABA(A) receptors, while the situation was reversed at the dendrites. In the case of ON BCs, GABA(A) and GABA(C) receptors both preferred to be expressed at the axon terminals; relative contributions of these two GABA receptor subtypes to both the sites were comparable, while GABA(C) receptors were much less expressed than GABA(A) receptors. GABA(A), but not GABA(C) receptors, were expressed clusteringly at axons of a population of BCs. In a

  19. Acute increases in synaptic GABA detectable in the living human brain: a [¹¹C]Ro15-4513 PET study.

    PubMed

    Stokes, Paul R A; Myers, Jim F; Kalk, Nicola J; Watson, Ben J; Erritzoe, David; Wilson, Sue J; Cunningham, Vincent J; Riano Barros, Daniela; Hammers, Alexander; Turkheimer, Federico E; Nutt, David J; Lingford-Hughes, Anne R

    2014-10-01

    The inhibitory γ-aminobutyric acid (GABA) neurotransmitter system is associated with the regulation of normal cognitive functions and dysregulation has been reported in a number of neuropsychiatric disorders including anxiety disorders, schizophrenia and addictions. Investigating the role of GABA in both health and disease has been constrained by difficulties in measuring acute changes in synaptic GABA using neurochemical imaging. The aim of this study was to investigate whether acute increases in synaptic GABA are detectable in the living human brain using the inverse agonist GABA-benzodiazepine receptor (GABA-BZR) positron emission tomography (PET) tracer, [(11)C]Ro15-4513. We examined the effect of 15 mg oral tiagabine, which increases synaptic GABA by inhibiting the GAT1 GABA uptake transporter, on [(11)C]Ro15-4513 binding in 12 male participants using a paired, double blind, placebo-controlled protocol. Spectral analysis was used to examine synaptic α1 and extrasynaptic α5 GABA-BZR subtype availability in brain regions with high levels of [(11)C]Ro15-4513 binding. We also examined the test-retest reliability of α1 and a5-specific [(11)C]Ro15-4513 binding in a separate cohort of 4 participants using the same spectral analysis protocol. Tiagabine administration produced significant reductions in hippocampal, parahippocampal, amygdala and anterior cingulate synaptic α1 [(11)C]Ro15-4513 binding, and a trend significance reduction in the nucleus accumbens. These reductions were greater than test-retest reliability, indicating that they are not the result of chance observations. Our results suggest that acute increases in endogenous synaptic GABA are detectable in the living human brain using [(11)C]Ro15-4513 PET. These findings have potentially major implications for the investigation of GABA function in brain disorders and in the development of new treatments targeting this neurotransmitter system. PMID:24844747

  20. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility

    PubMed Central

    Yang, Yi; Nguyen, Thanh Thi; Jeong, Min-Hye; Crişan, Florin; Yu, Young Hyun; Ha, Hyung-Ho; Choi, Kyung Hee; Jeong, Hye Gwang; Jeong, Tae Cheon; Lee, Kwang Youl; Kim, Kyung Keun; Hur, Jae-Seoun; Kim, Hangun

    2016-01-01

    Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+)-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+)-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+)-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+)-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+)-usnic acid and cetuximab. These results implied that (+)-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+)-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action. PMID:26751081

  1. Inhibitory and excitatory amino acid neurotransmitters are utilized by the projection from the dorsal deep mesencephalic nucleus to the sublaterodorsal nucleus REM sleep induction zone.

    PubMed

    Liang, Chang-Lin; Quang Nguyen, Tin; Marks, Gerald A

    2014-06-01

    The sublaterodorsal nucleus (SLD) in the pons of the rat is a locus supporting short-latency induction of a REM sleep-like state following local application of a GABAA receptor antagonist or kainate, glutamate receptor agonist. One putatively relevant source of these neurotransmitters is from the region of the deep mesencephalic nucleus (DpMe) just ventrolateral to the periaquiductal gray, termed the dorsal DpMe (dDpMe). Here, the amino acid neurotransmitter innervation of SLD from dDpMe was studied utilizing anterograde tract-tracing with biotinylated dextranamine (BDA) and fluorescence immunohistochemistry visualized with laser scanning confocal microscopy. Both markers for inhibitory and excitatory amino acid neurotransmitters were found in varicose axon fibers in SLD originating from dDpMe. Vesicular glutamate transporter2 (VGLUT2) represented the largest number of anterogradely labeled varicosities followed by vesicular GABA transporter (VGAT). Numerous VGAT and VGLUT2 labeled varicosities were observed apposed to dDpMe-labeled axon fibers indicating both excitatory and inhibitory presynaptic, local modulation within the SLD. Some double-labeled BDA/VGAT varicosities were seen apposed to small somata labeled for glutamate consistent with being presynaptic to the phenotype of REM sleep-active SLD neurons. Results found support the current theoretical framework of the interaction of dDpMe and SLD in control of REM sleep, while also indicating operation of mechanisms with a greater level of complexity.

  2. The Uptake of GABA in Trypanosoma cruzi.

    PubMed

    Galvez Rojas, Robert L; Ahn, Il-Young; Suárez Mantilla, Brian; Sant'Anna, Celso; Pral, Elizabeth Mieko Furusho; Silber, Ariel Mariano

    2015-01-01

    Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na(+) , K(+) , and H(+) on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na(+) dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na(+) /GABA symporter energized by Na(+) -exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway.

  3. The Uptake of GABA in Trypanosoma cruzi.

    PubMed

    Galvez Rojas, Robert L; Ahn, Il-Young; Suárez Mantilla, Brian; Sant'Anna, Celso; Pral, Elizabeth Mieko Furusho; Silber, Ariel Mariano

    2015-01-01

    Gamma aminobutyric acid (GABA) is widely known as a neurotransmitter and signal transduction molecule found in vertebrates, plants, and some protozoan organisms. However, the presence of GABA and its role in trypanosomatids is unknown. Here, we report the presence of intracellular GABA and the biochemical characterization of its uptake in Trypanosoma cruzi, the etiological agent of Chagas' disease. Kinetic parameters indicated that GABA is taken up by a single transport system in pathogenic and nonpathogenic forms. Temperature dependence assays showed a profile similar to glutamate transport, but the effect of extracellular cations Na(+) , K(+) , and H(+) on GABA uptake differed, suggesting a different uptake mechanism. In contrast to reports for other amino acid transporters in T. cruzi, GABA uptake was Na(+) dependent and increased with pH, with a maximum activity at pH 8.5. The sensitivity to oligomycin showed that GABA uptake is dependent on ATP synthesis. These data point to a secondary active Na(+) /GABA symporter energized by Na(+) -exporting ATPase. Finally, we show that GABA occurs in the parasite's cytoplasm under normal culture conditions, indicating that it is regularly taken up from the culture medium or synthesized through an still undescribed metabolic pathway. PMID:25851259

  4. Inhibitory effect of lipoic acid on firefly luciferase bioluminescence.

    PubMed

    Niwa, Kazuki; Ohmiya, Yoshihiro

    2004-10-15

    Lipoic acid was found to inhibit the firefly luciferin-luciferase reaction. The inhibition is competitive and is the strongest known (Ki = 0.026 +/- 0.013 microM) compared with other reported inhibitors. Considering the structure-activity correlations, the mechanism of inhibition may originate from the sulfur atom and carboxyl moiety of lipoic acid giving it structural specificity. Subsequent addition of lipoic acid and nitric oxide accelerated the inhibition in vitro, suggesting that lipoic acid may have a functional role in regulating firefly bioluminescence.

  5. Gamma-aminobutyric acid (GABA) and neuropeptides in neural areas mediating motion-induced emesis

    NASA Technical Reports Server (NTRS)

    Damelio, F.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid and the neuropeptides substance P and Met-enkephalin in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), dorsal motor nucleus of the vagus nerve (DMNV), and lateral vestibular nucleus (LVN). Glutamic acid decarboxylase immunoreactive (GAD-IR) terminals and fibers were observed in the AP and particularly in the ASP. A gradual decrease in the density of terminals was seen towards the solitary complex. The DMNV revealed irregularly scattered GAD-IR terminals within the neuropil or closely surrounding neuronal cell bodies. The LVN, particularly the dorsal division, showed numerous axon terminals which were mostly localize around large neurons and their proximal dendrites. Substance P immunoreactive (SP-IR) terminals and fibers showed high density in the solitary complex, in particular within the lateral division. The ASP showed medium to low density of SP-IR fibers and terminals. The AP exhibited a small number of fibers and terminals irregularly distributed. The DMNV revealed a high density of SP-IR terminals and fibers that were mainly concentrated in the periphery. Very few terminals were detected in the LVN. Met-enkephalin immunoreactive (Met-Enk-IR) fibers and terminals showed high density and uniform distribution in the DMNV. Scattered terminals and fibers were observed in the AP, ASP, and NTS (particularly the lateral division). The very few fibers were observed in the LVN surrounded the neuronal cell bodies. The present report is part of a study designed to investigate the interaction between neuropeptides and conventional neurotransmitters under conditions producing motion sickness and in the process of sensory-motor adaptation.

  6. Cox-2 inhibitory effects of naturally occurring and modified fatty acids.

    PubMed

    Ringbom, T; Huss, U; Stenholm, A; Flock, S; Skattebøl, L; Perera, P; Bohlin, L

    2001-06-01

    In the search for new cyclooxygenase-2 (COX-2) selective inhibitors, the inhibitory effects of naturally occurring fatty acids and some of their structural derivatives on COX-2-catalyzed prostaglandin biosynthesis were investigated. Among these fatty acids, linoleic acid (LA), alpha-linolenic acid (alpha-LNA), myristic acid, and palmitic acid were isolated from a CH(2)Cl(2) extract of the plant Plantago major by bioassay-guided fractionation. Inhibitory effects of other natural, structurally related fatty acids were also investigated: stearic acid, oleic acid, pentadecanoic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Further, the inhibitory effects of these compounds on COX-2- and COX-1-catalyzed prostaglandin biosynthesis was compared with the inhibition of some synthesized analogues of EPA and DHA with ether or thioether functions. The most potent COX-2-catalyzed prostaglandin biosynthesis inhibitor was all-(Z)-5-thia-8,11,14,17-eicosatetraenoic acid (2), followed by EPA, DHA, alpha-LNA, LA, (7E,11Z,14Z,17Z)-5-thiaeicosa-7,11,14,17-tetraenoic acid, all-(Z)-3-thia-6,9,12,15-octadecatetraenoic acid, and (5E,9Z,12Z,15Z,18Z)-3-oxaheneicosa-5,9,12,15,18-pentaenoic acid, with IC(50) values ranging from 3.9 to180 microM. The modified compound 2 and alpha-LNA were most selective toward COX-2, with COX-2/COX-1 ratios of 0.2 and 0.1, respectively. This study shows that several of the natural fatty acids as well as all of the semisynthetic thioether-containing fatty acids inhibited COX-2-catalyzed prostaglandin biosynthesis, where alpha-LNA and compound 2 showed selectivity toward COX-2. PMID:11421736

  7. Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus.

    PubMed

    Su, Jing; Yin, Jian; Qin, Wei; Sha, Suxu; Xu, Jun; Jiang, Changbin

    2015-03-01

    In general, pro-inflammatory cytokines (PICs) contribute to regulation of epilepsy-associated pathophysiological processes in the central nerve system. In this report, we examined the specific activation of PICs, namely IL-1β, IL-6 and TNF-α in rat brain after kainic acid (KA)-induced status epilepticus (SE). Also, we examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively), which are the two important subtypes of GATs responsible for the regulation of extracellular GABA levels in the brain. Our results show that IL-1β, IL-6 and TNF-α were significantly increased in the parietal cortex, hippocampus and amygdala of KA-rats as compared with sham control animals (P < 0.05, KA rats vs. control rats). KA-induced SE also significantly increased (P < 0.05 vs. controls) the protein expression of GAT-1 and GAT-3 in those brain regions. In addition, central administration of antagonists to IL-1β and TNF-α receptors significantly attenuated amplified GAT-1 and GAT-3 (P < 0.05 vs. vehicle control for each antagonist group). However, antagonist to IL-6 receptor failed to attenuate enhancement in expression of GAT-1 and GAT-3 induced by KA-induced SE. Overall, our data demonstrate that PIC pathways are activated in the specific brain regions during SE which thereby selectively leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is increased in the brain. This support a role for PICs in engagement of the adaptive mechanisms associated with epileptic activity, and has pharmacological implications to target specific PICs for neuronal dysfunction and vulnerability related to epilepsy. PMID:25708016

  8. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    PubMed

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin

    2013-12-01

    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids. PMID:24001554

  9. Kinetic studies on the inhibition of GABA-T by gamma-vinyl GABA and taurine.

    PubMed

    Sulaiman, Saba A J; Suliman, Fakhr Eldin O; Barghouthi, Samira

    2003-08-01

    Gamma-aminobutyric acid transaminase (GABA-T, EC 2.6.1.19) is a pyridoxal phosphate (PLP) dependent enzyme that catalyzes the degradation of gamma-aminobutyric acid. The kinetics of this reaction are studied in vitro, both in the absence, and in the presence of two inhibitors: gamma-vinyl GABA (4-aminohex-5-enoic acid), and a natural product, taurine (ethylamine-2-sulfonic acid). A kinetic model that describes the transamination process is proposed. GABA-T from Pseudomonas fluorescens is inhibited by gamma-vinyl GABA and taurine at concentrations of 51.0 and 78.5 mM. Both inhibitors show competitive inhibition behavior when GABA is the substrate and the inhibition constant (Ki) values for gamma-vinyl GABA and taurine were found to be 26 +/- 3 mM and 68 +/- 7 mM respectively. The transamination process of alpha-ketoglutarate was not affected by the presence of gamma-vinyl GABA, whereas, taurine was a noncompetitive inhibitor of GABA-T when alpha-ketoglutarate was the substrate. The inhibition dissociation constant (Kii) for this system was found to be 96 +/- 10 mM. The Michaelis-Menten constant (Km) in the absence of inhibition, was found to be 0.79 +/- 0.11 mM, and 0.47 +/- 0.10 mM for GABA and alpha-ketoglutarate respectively.

  10. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus.

    PubMed

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III.

  11. A new role for GABA: inhibition of tumor cell migration.

    PubMed

    Ortega, Arturo

    2003-04-01

    GABA, the main inhibitory neurotransmitter in the vertebrate brain, participates outside the CNS in diverse functions such as platelet aggregation and the acrosomal reaction in spermatozoa. A recent study now demonstrates that GABA inhibits the migration of colon carcinoma cells, paving the way to the development of specific pharmacological agents that delay or inhibit invasion and metastasis of various cancer types.

  12. Synergistic inhibitory effect of ascorbic acid and acetylsalicylic acid on prostaglandin E2 release in primary rat microglia.

    PubMed

    Fiebich, Bernd L; Lieb, Klaus; Kammerer, Norbert; Hüll, Michael

    2003-07-01

    Ascorbic acid (vitamin C) has been suggested to protect cerebral tissue in a variety of pathophysiological situations such as head trauma, ischemia or Alzheimer's disease. Most of these protective actions have been attributed to the antioxidative capacity of ascorbic acid. Besides the presence of elevated levels of oxygen radicals, prostaglandins produced by neurones and microglial cells seem to play an important role in prolonged tissue damage. We investigated whether ascorbic acid alone inhibits prostaglandin E2 (PGE2) synthesis and may augment the inhibitory effect of acetylsalicylic acid on prostaglandin synthesis. Ascorbic acid dose-dependently inhibited PGE2 synthesis in lipopolysaccharide-treated primary rat microglial cells (IC50 = 3.70 micro m). In combination with acetylsalicylic acid (IC50 = 1.85 micro m), ascorbic acid augmented the inhibitory effect of acetylsalicylic acid on PGE2 synthesis (IC50 = 0.25 micro m in combination with 100 micro m ascorbic acid). Ascorbic acid alone or in combination with acetylsalicylic acid did not inhibit cyclooxygenase-2 (COX-2) protein synthesis but inhibited COX-2 enzyme activity. Our results show that ascorbic acid and acetylsalicylic acid act synergistically in inhibiting PGE2 synthesis, which may help to explain a possible protective effect of ascorbic acid in various brain diseases.

  13. Valerian inhibits rat hepatocarcinogenesis by activating GABA(A) receptor-mediated signaling.

    PubMed

    Kakehashi, Anna; Kato, Ayumi; Ishii, Naomi; Wei, Min; Morimura, Keiichirou; Fukushima, Shoji; Wanibuchi, Hideki

    2014-01-01

    Valerian is widely used as a traditional medicine to improve the quality of sleep due to interaction of several active components with the γ-aminobutyric acid (GABA) A receptor (GABA(A)R) system. Recently, activation of GABA signaling in stem cells has been reported to suppress cell cycle progression in vivo. Furthermore, possible inhibitory effects of GABA(A)R agonists on hepatocarcinogenesis have been reported. The present study was performed to investigate modulating effects of Valerian on hepatocarcinogenesis using a medium-term rat liver bioassay. Male F344 rats were treated with one of the most powerful Valerian species (Valeriana sitchensis) at doses of 0, 50, 500 and 5000 ppm in their drinking water after initiation of hepatocarcinogenesis with diethylnitrosamine (DEN). Formation of glutathione S-transferase placental form positive (GST-P(+)) foci was significantly inhibited by Valerian at all applied doses compared with DEN initiation control rats. Generation of 8-hydroxy-2'-deoxyguanosine in the rat liver was significantly suppressed by all doses of Valerian, likely due to suppression of Nrf2, CYP7A1 and induction of catalase expression. Cell proliferation was significantly inhibited, while apoptosis was induced in areas of GST-P(+) foci of Valerian groups associated with suppression of c-myc, Mafb, cyclin D1 and induction of p21(Waf1/Cip1), p53 and Bax mRNA expression. Interestingly, expression of the GABA(A)R alpha 1 subunit was observed in GST-P(+) foci of DEN control rats, with significant elevation associated with Valerian treatment. These results indicate that Valerian exhibits inhibitory effects on rat hepatocarcinogenesis by inhibiting oxidative DNA damage, suppressing cell proliferation and inducing apoptosis in GST-P(+) foci by activating GABA(A)R-mediated signaling. PMID:25419570

  14. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning.

    PubMed

    Brown, Matthew T C; Tan, Kelly R; O'Connor, Eoin C; Nikonenko, Irina; Muller, Dominique; Lüscher, Christian

    2012-12-20

    The ventral tegmental area (VTA) and nucleus accumbens (NAc) are essential for learning about environmental stimuli associated with motivationally relevant outcomes. The task of signalling such events, both rewarding and aversive, from the VTA to the NAc has largely been ascribed to dopamine neurons. The VTA also contains GABA (γ-aminobutyric acid)-releasing neurons, which provide local inhibition and also project to the NAc. However, the cellular targets and functional importance of this long-range inhibitory projection have not been ascertained. Here we show that GABA-releasing neurons of the VTA that project to the NAc (VTA GABA projection neurons) inhibit accumbal cholinergic interneurons (CINs) to enhance stimulus-outcome learning. Combining optogenetics with structural imaging and electrophysiology, we found that VTA GABA projection neurons selectively target NAc CINs, forming multiple symmetrical synaptic contacts that generated inhibitory postsynaptic currents. This is remarkable considering that CINs represent a very small population of all accumbal neurons, and provide the primary source of cholinergic tone in the NAc. Brief activation of this projection was sufficient to halt the spontaneous activity of NAc CINs, resembling the pause recorded in animals learning stimulus-outcome associations. Indeed, we found that forcing CINs to pause in behaving mice enhanced discrimination of a motivationally important stimulus that had been associated with an aversive outcome. Our results demonstrate that VTA GABA projection neurons, through their selective targeting of accumbal CINs, provide a novel route through which the VTA communicates saliency to the NAc. VTA GABA projection neurons thus emerge as orchestrators of dopaminergic and cholinergic modulation in the NAc.

  15. Inhibitory activities of 2-pyridinecarboxylic acid analogs on phytogrowth and enzymes.

    PubMed

    Sakagami, Y; Tsujibo, H; Hirai, Y; Yamada, T; Numata, A; Inamori, Y

    1999-11-01

    Five 2-pyridinecarboxylic acid-related compounds (1, 2 and 5-7) showed germination inhibition against the seed of Brassica campestris L. subsp. rapa HOOK fil et ANDERS at a concentration of 5.0 x 10(-4) M. These compounds also demonstrated inhibitory activity on the growth of the root of this plant at a concentration of 3.0 x 10(-4) M; among these compounds, 2-pyridylacetic acid (5) showed the strongest inhibitory activity, and the effect was slightly stronger than that of sodium 2,4-dichlorophenoxyacetate (2,4-D) used as a positive control. The amounts of chlorophyll in the cotyledons of this plant treated with these active compounds was lower than that of the control group. Four compounds (1 and 5-7) with germination inhibition also showed inhibitory activities against alpha-amylase and carboxypeptidase A, and 5 was the strongest inhibitor toward both enzymes.

  16. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    PubMed

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. PMID:24638845

  17. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    PubMed

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs.

  18. Inhibitory effect of chlorogenic acid on digestion of potato starch.

    PubMed

    Karim, Zida; Holmes, Melvin; Orfila, Caroline

    2017-02-15

    The effect of the chlorogenic acid isomer 5-O-caffeoylquinic acid (5-CQA) on digestion of potato starch by porcine pancreatic alpha amylase (PPAA) was investigated using isolated starch and cooked potato tuber as substrates. In vitro digestion was performed on five varieties of potato with varying phenolic content. Co- and pre-incubation of PPAA with 5-CQA significantly reduced PPAA activity in a dose dependent manner with an IC50 value of about 2mgmL(-1). Lineweaver-Burk plots indicated that 5-CQA exerts a mixed type inhibition as km increased and Vmax decreased. The total polyphenol content (TPC) of peeled tuber tissue ranged from 320.59 to 528.94mg 100g(-1)dry weight (DW) in raw tubers and 282.03-543.96mg 100g(-1)DW in cooked tubers. With the exception of Désirée, TPC and 5-CQA levels decreased after cooking. Principle component analysis indicated that digestibility is affected by multiple factors including phenolic, dry matter and starch content. PMID:27664664

  19. Targeting γ-aminobutyric acid (GABA) carriers to the brain: potential relevance as antiepileptic pro-drugs.

    PubMed

    Semreen, Mohammad H; El-Shorbagi, Abdel-Nasser; Al-Tel, Taleb H; Alsalahat, Izzeddin M M

    2010-05-01

    The search for antiepileptic compounds with more selective activity continues to be an area of intensive investigation in medicinal chemistry. 3,5-Disubstituted tetrahydro-2H-1,3,5-thiadiazine-2-thione (THTT) derivatives, 3a-g, potential prodrugs incorporating the neurotransmitter GABA were synthesized and studied for crossing the blood-brain barrier (BBB). Compounds were prepared from primary amines and carbon disulfide to give dithiocarbamates 2a-g which upon reaction in situ with formaldehyde provided the intermediates Ia-g. Addition of Ia-g onto GABA furnished the title compounds 3a-g. The structures were verified by spectral data and the amounts of the compounds in the brain were investigated by using HPLC. The concentration profiles of the tested compounds in mice brain were determined and the in vivo anticonvulsant activity was measured. PMID:20632978

  20. Metabolome analysis of milk fermented by γ-aminobutyric acid-producing Lactococcus lactis.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2016-02-01

    γ-Aminobutyric acid (GABA) is one of the most important functional components in fermented foods because of its physiological functions, such as neurotransmission and antihypertensive activities. However, little is known about components other than GABA in GABA-rich fermented foods. A metabolomic approach offers an opportunity to discover bioactive and flavor components in fermented food. To find specific components in milk fermented with GABA-producing Lactococcus lactis 01-7, we compared the components found in GABA-rich fermented milk with those found in control milk fermented without GABA production using capillary electrophoresis time-of-flight mass spectrometry. A principal component analysis score plot showed a clear differentiation between the control milk fermented with L. lactis 01-1, which does not produce GABA, and GABA-rich milk fermented with a combination of L. lactis strains 01-1 and 01-7. As expected, the amount of GABA in GABA-rich fermented milk was much higher (1,216-fold) than that of the control milk. Interestingly, the amount of Orn was also much higher (27-fold) than that of the control milk. Peptide analysis showed that levels of 6 putative angiotensin-I-converting enzyme (ACE)-inhibitory peptides were also higher in the GABA-rich fermented milk. Furthermore, ACE-inhibitory activity of GABA-rich fermented milk tended to be higher than that of the control milk. These results indicate that the GABA-producing strain 01-7 provides fermented milk with other functional components in addition to GABA.

  1. Presynaptic Na+-dependent transport and exocytose of GABA and glutamate in brain in hypergravity.

    NASA Astrophysics Data System (ADS)

    Borisova, T.; Pozdnyakova, N.; Krisanova, N.; Himmelreich, N.

    γ-Aminobutyric acid (GABA) and L-glutamate are the most widespread neurotransmitter amino acids in the mammalian central nervous system. GABA is now widely recognized as the major inhibitory neurotransmitter. L-glutamate mediates the most of excitatory synaptic neurotransmission in the brain. They involved in the main aspects of normal brain function. The nerve terminals (synaptosomes) offer several advantages as a model system for the study of general mechanisms of neurosecretion. Our data allowed to conclude that exposure of animals to hypergravity (centrifugation of rats at 10G for 1 hour) had a profound effect on synaptic processes in brain. Comparative analysis of uptake and release of GABA and glutamate have demonstrated that hypergravity loading evokes oppositely directed alterations in inhibitory and excitatory signal transmission. We studied the maximal velocities of [^3H]GABA reuptake and revealed more than twofold enhancement of GABA transporter activity (Vmax rises from 1.4 |pm 0.3 nmol/min/mg of protein in the control group to 3.3 ± 0.59 nmol/min/mg of protein for animals exposed to hypergravity (P ≤ 0.05)). Recently we have also demonstrated the significant lowering of glutamate transporter activity (Vmax of glutamate reuptake decreased from 12.5 ± 3.2 nmol/min/mg of protein in the control group to 5.6 ± 0.9 nmol/min/mg of protein in the group of animals, exposed to the hypergravity stress (P ≤ 0.05)). Significant changes occurred in release of neurotransmitters induced by stimulating exocytosis with the agents, which depolarized nerve terminal plasma membrane. Depolarization-evoked Ca2+-stimulated release was more abundant for GABA (7.2 ± 0.54% and 11,74 ±1,2 % of total accumulated label for control and hypergravity, respectively (P≤0.05)) and was essentially less for glutamate (14.4 ± 0.7% and 6.2 ± 1.9%) after exposure of animals to centrifuge induced artificial gravity. Changes observed in depolarization-evoked exocytotic release

  2. Differential expression of gamma-aminobutyric acid type B receptor subunit mRNAs in the developing nervous system and receptor coupling to adenylyl cyclase in embryonic neurons.

    PubMed

    Martin, Stella C; Steiger, Janine L; Gravielle, María Clara; Lyons, Helen R; Russek, Shelley J; Farb, David H

    2004-05-17

    gamma-Aminobutyric acid type B receptors (GABA(B)Rs) mediate both slow inhibitory synaptic activity in the adult nervous system and motility signals for migrating embryonic cortical cells. Previous papers have described the expression of GABA(B)Rs in the adult brain, but the expression and functional significance of these gene products in the embryo are largely unknown. Here we examine GABA(B)R expression from rat embryonic day 10 (E10) to E18 compared with adult and ask whether embryonic cortical neurons contain functional GABA(B)R. GABA(B)R1 transcript levels greatly exceed GABA(B)R2 levels in the developing neural tube at E11, and olfactory bulb and striatum at E17 but equalize in most regions of adult nervous tissue, except for the glomerular and granule cell layers of the main olfactory bulb and the striatum. Consistent with expression differences, the binding affinity of GABA for GABA(B)Rs is significantly lower in adult striatum compared with cerebellum. Multiple lines of evidence from in situ hybridization, RNase protection, and real-time PCR demonstrate that GABA(B)R1a, GABA(B)R1b, GABA(B)R1h (a subunit subtype, lacking a sushi domain, that we have identified in embryonic rat brain), GABA(B)R2, and GABA(B)L transcript levels are not coordinately regulated. Despite the functional requirement for a heterodimer of GABA(B)R subunits, the expression of each subunit mRNA is under independent control during embryonic development, and, by E18, GABA(B)Rs are negatively coupled to adenylyl cyclase in neocortical neurons. The presence of embryonic GABA(B)R transcripts and protein and functional receptor coupling indicates potentially important roles for GABA(B)Rs in modulation of synaptic transmission in the developing embryonic nervous system.

  3. Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system.

    PubMed

    Vaz, G C; Bahia, A P C O; de Figueiredo Müller-Ribeiro, F C; Xavier, C H; Patel, K P; Santos, R A S; Moreira, F A; Frézard, F; Fontes, M A P

    2015-01-29

    Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. Two days after liposome-entrapped GABA was injected intracerebroventricularly (ICV), Wistar rats were submitted to the following evaluations: (1) changes in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) to ICV injection of bicuculline methiodide (BMI) in anesthetized rats; (2) changes in cardiovascular reactivity to air jet stress in conscious rats; and (3) anxiety-like behavior in conscious rats. GABA and saline-containing pegylated liposomes were prepared with a mean diameter of 200 nm. Rats with implanted cannulas targeted to lateral cerebral ventricle (n = 5-8/group) received either GABA solution (GS), empty liposomes (EL) or GABA-containing liposomes (GL). Following (48 h) central microinjection (2 μL, 0.09 M and 99 g/L) of liposomes, animals were submitted to the different protocols. Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P < 0.05), blunted tachycardia in the stress trial (ΔHR: GS 115 ± 14, EL 117 ± 10, GL 74 ± 9 bpm; P<0.05) and spent more time in the open arms of elevated plus maze (EL 6 ± 2 vs. GL 18 ± 5%; P = 0.028) compared with GS and EL groups. These results indicate that liposome-entrapped GABA can be a potential tool for exploring the chronic effects of GABA in specific regions and pathways of the central nervous system.

  4. Receptive-field size of S1 cortical neurones is altered by methaqualone via a GABA mechanism.

    PubMed

    Hicks, T P; Kaneko, T; Oka, J I

    1990-02-01

    Methaqualone (Mtq; quaaludes or 'ludes) is a controlled substance, having a molecular structure related to the imidiazobenzodiazepine series of drugs, that has gained some notoriety recently due to its history of widespread abuse on the street. Users report experiencing peripheral paresthesia and transient numbness on body parts receiving dense cutaneous innervation (lips, fingertips, etc.). Since the receptive-field (RF)-sizes of many primary somatosensory (S1) cortical neurones are controlled by local, gamma-aminobutyric acid (GABA)-mediated inhibitory processes, we tested Mtq to see whether its clinical symptoms might have a basis in an action through central GABA-mediated synaptic processes. This report supports this contention and describes a likely pharmacological mechanism involved as one being related to the Ro 15-1788-sensitive benzodiazepine (Bzd) recognition site(s) of the GABA receptor complex. PMID:2311013

  5. Receptive-field size of S1 cortical neurones is altered by methaqualone via a GABA mechanism.

    PubMed

    Hicks, T P; Kaneko, T; Oka, J I

    1990-02-01

    Methaqualone (Mtq; quaaludes or 'ludes) is a controlled substance, having a molecular structure related to the imidiazobenzodiazepine series of drugs, that has gained some notoriety recently due to its history of widespread abuse on the street. Users report experiencing peripheral paresthesia and transient numbness on body parts receiving dense cutaneous innervation (lips, fingertips, etc.). Since the receptive-field (RF)-sizes of many primary somatosensory (S1) cortical neurones are controlled by local, gamma-aminobutyric acid (GABA)-mediated inhibitory processes, we tested Mtq to see whether its clinical symptoms might have a basis in an action through central GABA-mediated synaptic processes. This report supports this contention and describes a likely pharmacological mechanism involved as one being related to the Ro 15-1788-sensitive benzodiazepine (Bzd) recognition site(s) of the GABA receptor complex.

  6. Potent Inhibitory Effect of Chinese Dietary Spices on Fatty Acid Synthase.

    PubMed

    Jiang, Bing; Liang, Yan; Sun, Xuebing; Liu, Xiaoxin; Tian, Weixi; Ma, Xiaofeng

    2015-09-01

    Dietary spices have been adopted in cooking since ancient times to enhance flavor and also as food preservatives and disease remedies. In China, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their functions. Fatty acid synthase (FAS) has been recognized as a remedy target, and its inhibitors might be applied in disease treatment. The present work was designed to assess the inhibitory activities on FAS of spices extracts in Chinese menu. The in vitro inhibitory activities on FAS of 22 extracts of spices were assessed by spectrophotometrically monitoring oxidation of NADPH at 340 nm. Results showed that 20 spices extracts (90.9 %) exhibited inhibitory activities on FAS, with half inhibition concentration (IC(50)) values ranging from 1.72 to 810.7 μg/ml. Among them, seven spices showed strong inhibitory effect with IC(50) values lower than 10 μg/ml. These findings suggest that a large proportion of the dietary spices studied possess promising inhibitory activities on FAS, and subsequently might be applied in the treatment of obesity and obesity-related human diseases.

  7. Retrograde release of endocannabinoids inhibits presynaptic GABA release to second-order baroreceptive neurons in NTS.

    PubMed

    Chen, Chao-Yin; Bonham, Ann C; Dean, Caron; Hopp, Francis A; Hillard, Cecilia J; Seagard, Jeanne L

    2010-12-01

    In prior studies, we found that activation of cannabinoid-1 receptors in the nucleus tractus solitarii (NTS) prolonged baroreflex-induced sympathoinhibition in rats. In many regions of the central nervous system, activation of cannabinoid-1 receptors presynaptically inhibits γ-aminobutyric acid (GABA) release, disinhibiting postsynaptic neurons. To determine if cannabinoid-1 receptor-mediated presynaptic inhibition of GABA release occurs in the NTS, we recorded miniature inhibitory postsynaptic currents in anatomically identified second-order baroreceptive NTS neurons in the presence of ionotropic glutamate receptor antagonists and tetrodotoxin. The cannabinoid-1 receptor agonists, WIN 55212-2 (0.3-30 μM) and methanandamide (3 μM) decreased the frequency of miniature inhibitory postsynaptic currents in a concentration-dependent manner, an effect that was blocked by the cannabinoid-1 receptor antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251, 5 μM). Importantly, depolarization of second-order baroreceptive neurons decreased the frequency of miniature inhibitory postsynaptic currents; an effect which was blocked by the cannabinoid-1 receptor antagonist. The data indicate that depolarization of second-order baroreceptive NTS neurons induces endocannabinoid release from the neurons, leading to activation of presynaptic cannabinoid-1 receptors, inhibition of GABA release and subsequent enhanced baroreflex signaling in the NTS. The data suggest that endocannabinoid signaling in the NTS regulates short-term synaptic plasticity and provide a mechanism for endocannabinoid modulation of central baroreflex control.

  8. Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate.

    PubMed

    Ku, Bum Seung; Mamuad, Lovelia L; Kim, Seon-Ho; Jeong, Chang Dae; Soriano, Alvin P; Lee, Ho-Il; Nam, Ki-Chang; Ha, Jong K; Lee, Sang Suk

    2013-06-01

    The effects and significance of γ-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen (NH3-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation.

  9. Further evidence for involvement of the dorsal hippocampus serotonergic and γ-aminobutyric acid (GABA)ergic pathways in the expression of contextual fear conditioning in rats.

    PubMed

    Almada, Rafael C; Albrechet-Souza, Lucas; Brandão, Marcus L

    2013-12-01

    Intra-dorsal hippocampus (DH) injections of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a serotonin-1A (5-hydroxytryptamine (5-HT)-1A) receptor agonist, were previously shown to inhibit the expression of contextual fear when administered six hours after conditioning. However, further understanding of the consolidation and expression of aversive memories requires investigations of these and other mechanisms at distinct time points and the regions of the brain to which they are transferred. Thus, the purpose of the present study was to investigate the role of DH serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the expression of contextual fear 24 h after conditioning, reflected by fear-potentiated startle (FPS) and freezing behavior. The recruitment of the amygdala and medial prefrontal cortex (mPFC) in these processes was also evaluated by measuring Fos protein immunoreactivity. Although intra-DH injections of 8-OH-DPAT did not produce behavioral changes, muscimol reduced both FPS and the freezing response. Fos protein immunoreactivity revealed that contextual fear promoted wide activation of the mPFC, which was significantly reduced after intra-DH infusions of muscimol. The present findings, together with previous data, indicate that in contrast to 5-HT, which appears to play a role during the early phases of contextual aversive memory consolidation, longer-lasting GABA-mediated mechanisms are recruited during the expression of contextual fear memories.

  10. Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

    PubMed Central

    Ku, Bum Seung; Mamuad, Lovelia L.; Kim, Seon-Ho; Jeong, Chang Dae; Soriano, Alvin P.; Lee, Ho-Il; Nam, Ki-Chang; Ha, Jong K.; Lee, Sang Suk

    2013-01-01

    The effects and significance of γ-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen (NH3-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation. PMID:25049853

  11. Antioxidative and melanogenesis-inhibitory activities of caffeoylquinic acids and other compounds from moxa.

    PubMed

    Akihisa, Toshihiro; Kawashima, Kohta; Orido, Masashi; Akazawa, Hiroyuki; Matsumoto, Masahiro; Yamamoto, Ayako; Ogihara, Eri; Fukatsu, Makoto; Tokuda, Harukuni; Fuji, Jizaemon

    2013-03-01

    The MeOH extract of moxa, the processed leaves of Artemisia princeps PAMP. (Asteraceae), exhibited potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and melanogenesis-inhibitory activity in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 melanoma cells. Eight caffeoylquinic acids, 1 and 6-12, five flavonoids, 13-17, two benzoic acid derivatives, 18 and 19, three coumarin derivatives, 20-22, four steroids, 23-26, and six triterpenoids, 27-32, were isolated from the MeOH extract. Upon evaluation of compounds 1, 6-23, and four semisynthetic caffeoylquinic acid esters, 2-5, for their DPPH radical-scavenging activity, 15 compounds, 1-13, 17, and 19, showed potent activities (IC(50) 3.1-16.8 μM). The 15 compounds exhibited, moreover, potent inhibitory activities (51.1-92.5% inhibition) against peroxidation of linoleic acid emulsion at 10 μg/ml concentration. In addition, when 27 compounds, 1-8, 10, 12, 13, 15-18, 20-25, and 27-32, were evaluated for their inhibitory activity against melanogenesis in α-MSH-stimulated B16 melanoma cells, five caffeoylquinic acids, i.e., chlorogenic acid (1), ethyl chlorogenate (3), propyl chlorogenate (4), isopropyl chlorogenate (5), and butyl chlorogenate (6), along with homoorientin (17) and vanillic acid (18), exhibited inhibitory activities with 33-62% reduction of melanin content at 100 μM concentration with no or almost no toxicity to the cells (89-114% of cell viability at 100 μM). Western blot analysis showed that compound 6 reduced the protein levels of microphtalmia-associated transcription factor (MITF), tyrosinase, tyrosine-related protein 1 (TRP-1), and TRP-2 mostly in a concentration-dependent manner, suggesting that this compound inhibits melanogenesis on α-MSH-stimulated B16 melanoma cells by, at least in part, inhibiting the expression of MITF, followed by decreasing the expression of tyrosinase, TRP-1, and TRP-2. Furthermore, four compounds, 13, 15, 16, and 30, exhibited

  12. The influence of fig proteases on the inhibition of angiotensin I-converting and GABA formation in meat.

    PubMed

    Li, Jinyue; Izumimoto, Masatoshi; Yonehara, Makiko; Hirotsu, Seiya; Kuriki, Takayoshi; Naito, Ichiro; Yamada, Hidenori

    2009-12-01

    The purposes of this research were to use fig protease for texture tenderizing, and to inhibit angiotensin I-converting enzyme (ACE) action and gamma-aminobutyric acid (GABA) formation of meat. Liberated peptides by the enzymatic action of fig protease in processing meat and free amino acids were determined and ACE inhibitory activity was assayed. Meat treated with fig protease became tender as indicated by shear force value (SFV) which was half of those of non-fig treated meat during storage even at 5 degrees C. Liberated peptides, free amino acids and GABA increased while extremely low levels of Glu were detected after storage. The optimal temperature of fig protease against meat was 80 degrees C. However, the activity of fig protease decreased after pre-heating more than 40 degrees C. High ACE inhibitory activity of a mixture of fig and meat was found around 80 degrees C, and the value corresponded to the amount of liberated peptide. A lot of liberated peptides were found at 60-80 degrees C and pasterization of meat product becomes convenient to produce peptides. Production of ACE inhibitory peptides and GABA can be expected as the healthy functional meat product such as antihypertensive activity and improve brain function.

  13. Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1.

    PubMed

    Miletic, Gordana; Draganic, Pero; Pankratz, Matthew T; Miletic, Vjekoslav

    2003-09-01

    The inhibitory activity of gamma-aminobutyric acid (GABA) is considered critical in setting the conditions for synaptic plasticity, and many studies support an important role of GABA in the suppression of nociceptive transmission in the dorsal horn. Consequently, any injury-induced modification of the GABA action has the potential to critically modify spinal synaptic plasticity. We have previously reported that chronic constriction injury of the sciatic nerve was accompanied by long-lasting potentiation of superficial spinal dorsal horn field potentials following high-frequency tetanus. In this study we examined whether the GABA-A receptor agonist muscimol would modify post-tetanic responses in rats with chronic constriction injury. In animals exhibiting maximal thermal hyperalgesia as one sign of neuropathic pain 7 days after loose ligation of the sciatic nerve, spinal application of muscimol (5, 10 or 20 microg) before the high-frequency (50 Hz) tetanus produced a long-lasting depression (rather than potentiation) of spinal dorsal horn field potentials. In separate but related Western immunoblot experiments, we also established that the chronic constriction injury was accompanied by significant decreases in the content of the GABA transporter GAT-1. These data demonstrated that GABA-A receptor agonists may effectively influence the expression of long-lasting synaptic plasticity in the spinal dorsal horn, and that an injury-induced loss in GABA transporter content may have contributed to a depletion of GABA from its terminals within the spinal dorsal horn. These data lent further support to the notion that the loss of GABA inhibition may have important consequences for the development of neuropathic pain. PMID:14499453

  14. Enhancement by GABA of the association rate of picrotoxin and tert-butylbicyclophosphorothionate to the rat cloned alpha 1 beta 2 gamma 2 GABAA receptor subtype.

    PubMed Central

    Dillon, G. H.; Im, W. B.; Carter, D. B.; McKinley, D. D.

    1995-01-01

    1. We examined how gamma-aminobutyric acid (GABA) influences interaction of picrotoxin and tert-butylbicyclophosphorothionate (TBPS) with recombinant rat alpha 1 beta 2 gamma 2 GABAA receptors stably expressed in human embryonic kidney cells (HEK293), as monitored with changes in Cl- currents measured by the whole-cell patch clamp technique. 2. During application of GABA (5 microM) for 15 s, picrotoxin and TBPS dose-dependently accelerated the decay of inward GABA-induced currents (a holding potential of -60 mV under a symmetrical Cl- gradient). The drugs, upon preincubation with the receptors, also reduced the initial current amplitude in a preincubation time and concentration-dependent manner. This indicates their interaction with both GABA-bound and resting receptors. 3. The half maximal inhibitory concentration for picrotoxin and TBPS at the beginning of a 15 s GABA (5 microM) pulse was several times greater than that obtained at the end of the pulse. GABA thus appears to enhance picrotoxin and TBPS potency, but only at concentrations leading to occupancy of both high and low affinity GABA sites, i.e., 5 microM. Preincubation of the receptors with the drugs in the presence of GABA at 200 nM, which leads to occupancy of only high affinity GABA sites in the alpha 1 beta 2 gamma 2 subtype, produced no appreciable change in potency of picrotoxin or TBPS. This indicates that they preferentially interact with multiliganded, but not monoliganded receptors, unlike U-93631, a novel ligand to the picrotoxin site, which has higher affinity to both mono- and multiliganded receptors than resting receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582470

  15. Separation of gamma-aminobutyric acid from fermented broth.

    PubMed

    Li, Haixing; Qiu, Ting; Chen, Yan; Cao, Yusheng

    2011-12-01

    Gamma-aminobutyric acid (GABA) is a non-proteinaceous amino acid that is widely distributed in nature and acts as the major inhibitory neurotransmitter in the mammalian brain. This study aimed to find a separation method for getting high-purity GABA from a fermented broth. Firstly, a fermented broth with a high content of GABA (reaching 997 ± 51 mM) was prepared by fermentation with Lactobacillus brevis NCL912. GABA purification was conducted by successive centrifugation, filtration, decoloration, desalination, ion-exchange chromatography (IEC), and crystallization. Inorganic salt (Na₂SO₄) was removed from the both by desalination with 70% ethanol solution. A ninhydrin test strip was designed for the real-time detection of GABA during IEC. The recovery rate for the whole purification process was about 50%. The purified product was characterized by thin-layer chromatography and HPLC, and its purity reached 98.66 ± 2.36%.

  16. How and why does tomato accumulate a large amount of GABA in the fruit?

    PubMed Central

    Takayama, Mariko; Ezura, Hiroshi

    2015-01-01

    Gamma-aminobutyric acid (GABA) has received much attention as a health-promoting functional compound, and several GABA-enriched foods have been commercialized. In higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt. The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA) cycle via reactions catalyzed by three enzymes: glutamate decarboxylase, GABA transaminase, and succinic semialdehyde dehydrogenase. The GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels in tomato fruits dramatically change during fruit development; the GABA levels increase from flowering to the mature green stage and then rapidly decrease during the ripening stage. Although GABA constitutes up to 50% of the free amino acids at the mature green stage, the molecular mechanism of GABA accumulation and the physiological function of GABA during tomato fruit development remain unclear. In this review, we summarize recent studies of GABA accumulation in tomato fruits and discuss the potential biological roles of GABA in tomato fruit development. PMID:26322056

  17. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    PubMed

    Posluszny, Anna; Liguz-Lecznar, Monika; Turzynska, Danuta; Zakrzewska, Renata; Bielecki, Maksymilian; Kossut, Malgorzata

    2015-01-01

    Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  18. Active transport of. gamma. -aminobutyric acid and glycine into synaptic vesicles

    SciTech Connect

    Kish, P.E.; Fischer-Bovenkerk, C.; Ueda, T. )

    1989-05-01

    Although {gamma}-aminobutyric acid (GABA) and glycine are recognized as major amino acid inhibitory neurotransmitters in the central nervous system, their storage is poorly understood. In this study the authors have characterized vesicular GABA and glycine uptakes in the cerebrum and spinal cord, respectively. They present evidence that GABA and glycine are each taken up into isolated synaptic vesicles in an ATP-dependent manner and that the uptake is driven by an electrochemical proton gradient. Uptake for both amino acids exhibited kinetics with low affinity similar to a vesicular glutamate uptake. The ATP-dependent GABA uptake was not inhibited by the putative amino acid neurotransmitters glycine, taurine, glutamate, or aspartate or by GABA analogs, agonists, and antagonists. Similarly, ATP-dependent glycine uptake was hardly affected by GABA, taurine, glutamate, or aspartate or by glycine analogs or antagonists. The GABA uptake was not affected by chloride, which is in contrast to the uptake of the excitatory neurotransmitter glutamate, whereas the glycine uptake was slightly stimulated by low concentrations of chloride. Tissue distribution studies indicate that the vesicular uptake systems for GABA, glycine, and glutamate are distributed in different proportions in the cerebrum and spinal cord. These results suggest that the vesicular uptake systems for GABA, glycine, and glutamate are distinct from each other.

  19. Library screening by means of mass spectrometry (MS) binding assays-exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1).

    PubMed

    Sindelar, Miriam; Wanner, Klaus T

    2012-09-01

    In the present study, the application of mass spectrometry (MS) binding assays as a tool for library screening is reported. For library generation, dynamic combinatorial chemistry (DCC) was used. These libraries can be screened by means of MS binding assays when appropriate measures are taken to render the libraries pseudostatic. That way, the efficiency of MS binding assays to determine ligand binding in compound screening with the ease of library generation by DCC is combined. The feasibility of this approach is shown for γ-aminobutyric acid (GABA) transporter 1 (GAT1) as a target, representing the most important subtype of the GABA transporters. For the screening, hydrazone libraries were employed that were generated in the presence of the target by reacting various sets of aldehydes with a hydrazine derivative that is delineated from piperidine-3-carboxylic acid (nipecotic acid), a common fragment of known GAT1 inhibitors. To ensure that the library generated is pseudostatic, a large excess of the nipecotic acid derivative is employed. As the library is generated in a buffer system suitable for binding and the target is already present, the mixtures can be directly analyzed by MS binding assays-the process of library generation and screening thus becoming simple to perform. The binding affinities of the hits identified by deconvolution were confirmed in conventional competitive MS binding assays performed with single compounds obtained by separate synthesis. In this way, two nipecotic acid derivatives exhibiting a biaryl moiety, 1-{2-[2'-(1,1'-biphenyl-2-ylmethylidene)hydrazine]ethyl}piperidine-3-carboxylic acid and 1-(2-{2'-[1-(2-thiophenylphenyl)methylidene]hydrazine}ethyl)piperidine-3-carboxylic acid, were found to be potent GAT1 ligands exhibiting pK(i) values of 6.186 ± 0.028 and 6.229 ± 0.039, respectively. This method enables screening of libraries, whether generated by conventional chemistry or DCC, and is applicable to all kinds of targets including

  20. Library screening by means of mass spectrometry (MS) binding assays-exemplarily demonstrated for a pseudostatic library addressing γ-aminobutyric acid (GABA) transporter 1 (GAT1).

    PubMed

    Sindelar, Miriam; Wanner, Klaus T

    2012-09-01

    In the present study, the application of mass spectrometry (MS) binding assays as a tool for library screening is reported. For library generation, dynamic combinatorial chemistry (DCC) was used. These libraries can be screened by means of MS binding assays when appropriate measures are taken to render the libraries pseudostatic. That way, the efficiency of MS binding assays to determine ligand binding in compound screening with the ease of library generation by DCC is combined. The feasibility of this approach is shown for γ-aminobutyric acid (GABA) transporter 1 (GAT1) as a target, representing the most important subtype of the GABA transporters. For the screening, hydrazone libraries were employed that were generated in the presence of the target by reacting various sets of aldehydes with a hydrazine derivative that is delineated from piperidine-3-carboxylic acid (nipecotic acid), a common fragment of known GAT1 inhibitors. To ensure that the library generated is pseudostatic, a large excess of the nipecotic acid derivative is employed. As the library is generated in a buffer system suitable for binding and the target is already present, the mixtures can be directly analyzed by MS binding assays-the process of library generation and screening thus becoming simple to perform. The binding affinities of the hits identified by deconvolution were confirmed in conventional competitive MS binding assays performed with single compounds obtained by separate synthesis. In this way, two nipecotic acid derivatives exhibiting a biaryl moiety, 1-{2-[2'-(1,1'-biphenyl-2-ylmethylidene)hydrazine]ethyl}piperidine-3-carboxylic acid and 1-(2-{2'-[1-(2-thiophenylphenyl)methylidene]hydrazine}ethyl)piperidine-3-carboxylic acid, were found to be potent GAT1 ligands exhibiting pK(i) values of 6.186 ± 0.028 and 6.229 ± 0.039, respectively. This method enables screening of libraries, whether generated by conventional chemistry or DCC, and is applicable to all kinds of targets including

  1. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.

    PubMed

    Sharma, Saroj; Nag, Tapas C; Thakar, Alok; Bhardwaj, Daya N; Roy, Tara Sankar

    2014-03-01

    The human auditory system is highly susceptible to environmental and metabolic insults which further affect the biochemical and physiological milieu of the cells that may contribute to progressive, hearing loss with aging. The cochlear nucleus (CN) is populated by morphologically diverse types of neurons with discrete physiological and neurochemical properties. Between the dorsal and the ventral cochlear nucleus (DCN and VCN), the VCN is further sub-divided into the rostral (rVCN) and caudal (cVCN) sub-divisions. Although, information is available on the age related neurochemical changes in the mammalian CN similar reports on human CN is still sparse. The morphometry and semiquantitative analysis of intensity of expression of glial fibrillary acidic protein (GFAP), calcium binding proteins (calbindin, calretinin and parvalbumin), gamma amino butyric acid (GABA) and nicotinic acetyl choline receptor (nAchR) beta 2 immunostaining were carried out in all three sub-divisions of the human CN from birth to 90 years. There was increased GFAP immunoreactivity in decades 2 and 3 in comparison to decade 1 in the CN. But no change was observed in rVCN from decade 4 onwards, whereas intense staining was also observed in decades 5 and 6 in cVCN and DCN. All three calcium binding proteins were highly expressed in early to middle ages, whereas a significant reduction was found in later decades in the VCN. GABA and nAchR beta 2 expressions were unchanged throughout in all the decades. The middle age may represent a critical period of onset and progression of aging changes in the CN and these alterations may add to the deterioration of hearing responses in the old age.

  2. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.

    PubMed

    Sharma, Saroj; Nag, Tapas C; Thakar, Alok; Bhardwaj, Daya N; Roy, Tara Sankar

    2014-03-01

    The human auditory system is highly susceptible to environmental and metabolic insults which further affect the biochemical and physiological milieu of the cells that may contribute to progressive, hearing loss with aging. The cochlear nucleus (CN) is populated by morphologically diverse types of neurons with discrete physiological and neurochemical properties. Between the dorsal and the ventral cochlear nucleus (DCN and VCN), the VCN is further sub-divided into the rostral (rVCN) and caudal (cVCN) sub-divisions. Although, information is available on the age related neurochemical changes in the mammalian CN similar reports on human CN is still sparse. The morphometry and semiquantitative analysis of intensity of expression of glial fibrillary acidic protein (GFAP), calcium binding proteins (calbindin, calretinin and parvalbumin), gamma amino butyric acid (GABA) and nicotinic acetyl choline receptor (nAchR) beta 2 immunostaining were carried out in all three sub-divisions of the human CN from birth to 90 years. There was increased GFAP immunoreactivity in decades 2 and 3 in comparison to decade 1 in the CN. But no change was observed in rVCN from decade 4 onwards, whereas intense staining was also observed in decades 5 and 6 in cVCN and DCN. All three calcium binding proteins were highly expressed in early to middle ages, whereas a significant reduction was found in later decades in the VCN. GABA and nAchR beta 2 expressions were unchanged throughout in all the decades. The middle age may represent a critical period of onset and progression of aging changes in the CN and these alterations may add to the deterioration of hearing responses in the old age. PMID:24412669

  3. Melanogenesis-inhibitory activity and cancer chemopreventive effect of glucosylcucurbic acid from shea (Vitellaria paradoxa) kernels.

    PubMed

    Zhang, Jie; Kurita, Masahiro; Ebina, Kodai; Ukiya, Motohiko; Tokuda, Harukuni; Yasukawa, Ken; Masters, Eliot T; Shimizu, Naoto; Akihisa, Momoko; Feng, Feng; Akihisa, Toshihiro

    2015-04-01

    Two jasmonate derivatives, glucosylcucurbic acid (1) and methyl glucosylcucurbate (2), were isolated from the MeOH extract of defatted shea (Vitellaria paradoxa; Sapotaceae) kernels. These and their deglucosylated derivatives, cucurbic acid (3) and methyl cucurbate (4), were evaluated for their melanogenesis-inhibitory and cancer chemopreventive potencies. Compounds 1, 3, and 4 exhibited potent melanogenesis-inhibitory activities in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 melanoma cells. Western-blot analysis revealed that compounds 1 and 3 reduced the protein levels of MITF (=microphthalmia-associated transcription factor), tyrosinase, TRP-1 (=tyrosine-related protein 1), and TRP-2 mostly in a concentration-dependent manner. In addition, compound 1 exhibited inhibitory effects against Epstein-Barr virus early antigen (EBV-EA) activation induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells, against TPA-induced inflammation in mice, and against skin tumor promotion in an in vivo two-stage mouse skin carcinogenesis test based on 7,12-dimethylbenz[a]anthracene (DMBA) as initiator, and with TPA as promoter. PMID:25879500

  4. GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo.

    PubMed

    Kirmse, Knut; Kummer, Michael; Kovalchuk, Yury; Witte, Otto W; Garaschuk, Olga; Holthoff, Knut

    2015-01-01

    A large body of evidence from in vitro studies suggests that GABA is depolarizing during early postnatal development. However, the mode of GABA action in the intact developing brain is unknown. Here we examine the in vivo effects of GABA in cells of the upper cortical plate using a combination of electrophysiological and Ca(2+)-imaging techniques. We report that at postnatal days (P) 3-4, GABA depolarizes the majority of immature neurons in the occipital cortex of anaesthetized mice. At the same time, GABA does not efficiently activate voltage-gated Ca(2+) channels and fails to induce action potential firing. Blocking GABA(A) receptors disinhibits spontaneous network activity, whereas allosteric activation of GABA(A) receptors has the opposite effect. In summary, our data provide evidence that in vivo GABA acts as a depolarizing neurotransmitter imposing an inhibitory control on network activity in the neonatal (P3-4) neocortex. PMID:26177896

  5. Detection of Reduced GABA Synthesis Following Inhibition of GABA Transaminase Using in Vivo Magnetic Resonance Signal of [13C]GABA C1

    PubMed Central

    Yang, Jehoon; Johnson, Christopher; Shen, Jun

    2009-01-01

    Previous in vivo magnetic resonance spectroscopy (MRS) studies of gamma-aminobutyric acid (GABA) synthesis have relied on 13C label incorporation into GABA C2 from [1-13C] or [1,6-13C2]glucose. In this study, the [13C]GABA C1 signal at 182.3 ppm in the carboxylic/amide spectral region of localized in vivo 13C spectra was detected. GABA-transaminase of rat brain was inhibited by administration of gabaculine after pre-labeling of GABA C1 and its metabolic precursors with exogenous [2,5-13C2]glucose. A subsequent isotope chase experiment was performed by infusing unlabeled glucose, which revealed a markedly slow change in the labeling of GABA C1 accompanying the blockade of the GABA shunt. This slow labeling of GABA at elevated GABA concentration was attributed to the relatively small intercompartmental GABA-glutamine cycling flux that constitutes the main route of 13C label loss during the isotope chase. Because this study showed that using low RF power broadband stochastic proton decoupling is feasible at very high field strength, it has important implications for the development of carboxylic/amide 13C MRS methods to study brain metabolism and neurotransmission in human subjects at high magnetic fields. PMID:19540876

  6. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation. PMID:27135813

  7. Impact of exogenous GABA treatments on endogenous GABA metabolism in anthurium cut flowers in response to postharvest chilling temperature.

    PubMed

    Aghdam, Morteza Soleimani; Naderi, Roohangiz; Jannatizadeh, Abbasali; Babalar, Mesbah; Sarcheshmeh, Mohammad Ali Askari; Faradonbe, Mojtaba Zamani

    2016-09-01

    Anthurium flowers are susceptible to chilling injury, and the optimum storage temperature is 12.5-20 °C. The γ-aminobutyric acid (GABA) shunt pathway may alleviate chilling stress in horticultural commodities by providing energy (ATP), reducing molecules (NADH), and minimizing accumulation of reactive oxygen species (ROS). In this experiment, the impact of a preharvest spray treatment with 1 mM GABA and postharvest treatment of 5 mM GABA stem-end dipping on GABA shunt pathway activity of anthurium cut flowers (cv. Sirion) in response to cold storage (4 °C for 21 days) was investigated. GABA treatments resulted in lower glutamate decarboxylase (GAD) and higher GABA transaminase (GABA-T) activities in flowers during cold storage, which was associated with lower GABA content and coincided with higher ATP content. GABA treatments also enhanced accumulation of endogenous glycine betaine (GB) in flowers during cold storage, as well as higher spathe relative water content (RWC). These findings suggest that GABA treatments may alleviate chilling injury of anthurium cut flowers by enhancing GABA shunt pathway activity leading to provide sufficient ATP and promoting endogenous GB accumulation.

  8. Antioxidant Activity and α-Glucosidase Inhibitory Activities of the Polycondensate of Catechin with Glyoxylic Acid

    PubMed Central

    Ma, Hanjun; Liu, Benguo

    2016-01-01

    In order to investigate polymeric flavonoids, the polycondensate of catechin with glyoxylic acid (PCG) was prepared and its chemically antioxidant, cellular antioxidant (CAA) and α-glucosidase inhibitory activities were evaluated. The DPPH and ABTS radical scavenging activities and antiproliferative effect of PCG were lower than those of catechin, while PCG had higher CAA activity than catechin. In addition, PCG had very high α-glucosidase inhibitory activities (IC50 value, 2.59 μg/mL) in comparison to catechin (IC50 value, 239.27 μg/mL). Inhibition kinetics suggested that both PCG and catechin demonstrated a mixture of noncompetitive and anticompetitive inhibition. The enhanced CAA and α-glucosidase inhibitor activities of PCG could be due to catechin polymerization enhancing the binding capacity to the cellular membrane and enzymes. PMID:26960205

  9. Increased GABA concentrations in type 2 diabetes mellitus are related to lower cognitive functioning.

    PubMed

    van Bussel, Frank C G; Backes, Walter H; Hofman, Paul A M; Puts, Nicolaas A J; Edden, Richard A E; van Boxtel, Martin P J; Schram, Miranda T; Stehouwer, Coen D A; Wildberger, Joachim E; Jansen, Jacobus F A

    2016-09-01

    Type 2 diabetes mellitus is associated with accelerated cognitive decline. The underlying pathophysiological mechanisms still remain to be elucidated although it is known that insulin signaling modulates neurotransmitter activity, including inhibitory γ-aminobutyric acid (GABA) and excitatory glutamate (Glu) receptors. Therefore, we examined whether levels of GABA and Glu are related to diabetes status and cognitive performance.Forty-one participants with type 2 diabetes and 39 participants without type 2 diabetes underwent detailed cognitive assessments and 3-Tesla proton MR spectroscopy. The associations of neurotransmitters with type 2 diabetes and cognitive performance were examined using multivariate regression analyses controlling for age, sex, education, BMI, and percentage gray/white matter ratio in spectroscopic voxel.Analysis revealed higher GABA+ levels in participants with type 2 diabetes, in participants with higher fasting blood glucose levels and in participants with higher HbA1c levels, and higher GABA+ levels in participants with both high HbA1c levels and less cognitive performance.To conclude, participants with type 2 diabetes have alterations in the GABAergic neurotransmitter system, which are related to lower cognitive functioning, and hint at the involvement of an underlying metabolic mechanism. PMID:27603392

  10. Increased GABA concentrations in type 2 diabetes mellitus are related to lower cognitive functioning

    PubMed Central

    van Bussel, Frank C.G.; Backes, Walter H.; Hofman, Paul A.M.; Puts, Nicolaas A.J.; Edden, Richard A.E.; van Boxtel, Martin P.J.; Schram, Miranda T.; Stehouwer, Coen D.A.; Wildberger, Joachim E.; Jansen, Jacobus F.A.

    2016-01-01

    Abstract Type 2 diabetes mellitus is associated with accelerated cognitive decline. The underlying pathophysiological mechanisms still remain to be elucidated although it is known that insulin signaling modulates neurotransmitter activity, including inhibitory γ-aminobutyric acid (GABA) and excitatory glutamate (Glu) receptors. Therefore, we examined whether levels of GABA and Glu are related to diabetes status and cognitive performance. Forty-one participants with type 2 diabetes and 39 participants without type 2 diabetes underwent detailed cognitive assessments and 3-Tesla proton MR spectroscopy. The associations of neurotransmitters with type 2 diabetes and cognitive performance were examined using multivariate regression analyses controlling for age, sex, education, BMI, and percentage gray/white matter ratio in spectroscopic voxel. Analysis revealed higher GABA+ levels in participants with type 2 diabetes, in participants with higher fasting blood glucose levels and in participants with higher HbA1c levels, and higher GABA+ levels in participants with both high HbA1c levels and less cognitive performance. To conclude, participants with type 2 diabetes have alterations in the GABAergic neurotransmitter system, which are related to lower cognitive functioning, and hint at the involvement of an underlying metabolic mechanism. PMID:27603392

  11. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons.

    PubMed

    Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen

    2015-11-13

    Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state.

  12. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons.

    PubMed

    Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen

    2015-11-13

    Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state. PMID:26424793

  13. P2Y1 receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes.

    PubMed

    Jacob, Pedro F; Vaz, Sandra H; Ribeiro, Joaquim A; Sebastião, Ana M

    2014-08-01

    Astrocytes express a variety of purinergic (P2) receptors, involved in astrocytic communication through fast increases in [Ca(2+) ]i . Of these, the metabotropic ATP receptors (P2Y) regulate cytoplasmic Ca(2+) levels through the PLC-PKC pathway. GABA transporters are a substrate for a number of Ca(2+) -related kinases, raising the possibility that calcium signalling in astrocytes impact the control of extracellular levels of the major inhibitory transmitter in the brain. To access this possibility we tested the influence of P2Y receptors upon GABA transport into astrocytes. Mature primary cortical astroglial-enriched cultures expressed functional P2Y receptors, as evaluated through Ca(2+) imaging, being P2Y1 the predominant P2Y receptor subtype. ATP (100 μM, for 1 min) caused an inhibition of GABA transport through either GAT-1 or GAT-3 transporters, decreasing the Vmax kinetic constant. ATP-induced inhibition of GATs activity was still evident in the presence of adenosine deaminase, precluding an adenosine-mediated effect. This, was mimicked by a specific agonist for the P2Y1,12,13 receptor (2-MeSADP). The effect of 2-MeSADP on GABA transport was blocked by the P2 (PPADS) and P2Y1 selective (MRS2179) receptor antagonists, as well as by the PLC inhibitor (U73122). 2-MeSADP failed to inhibit GABA transport in astrocytes where intracellular calcium had been chelated (BAPTA-AM) or where calcium stores were depleted (α-cyclopiazonic acid, CPA). In conclusion, P2Y1 receptors in astrocytes inhibit GABA transport through a mechanism dependent of P2Y1 -mediated calcium signalling, suggesting that astrocytic calcium signalling, which occurs as a consequence of neuronal firing, may operate a negative feedback loop to enhance extracellular levels of GABA. PMID:24733747

  14. Guinea Pig Horizontal Cells Express GABA, the GABA-Synthesizing Enzyme GAD65, and the GABA Vesicular Transporter

    PubMed Central

    Guo, Chenying; Hirano, Arlene A.; Stella, Salvatore L.; Bitzer, Michaela; Brecha, Nicholas C.

    2013-01-01

    γ-Aminobutyric acid (GABA) is likely expressed in horizontal cells of all species, although conflicting physiological findings have led to considerable controversy regarding its role as a transmitter in the outer retina. This study has evaluated key components of the GABA system in the outer retina of guinea pig, an emerging retinal model system. The presence of GABA, its rate-limiting synthetic enzyme glutamic acid decarboxylase (GAD65 and GAD67 isoforms), the plasma membrane GABA transporters (GAT-1 and GAT-3), and the vesicular GABA transporter (VGAT) was evaluated by using immunohistochemistry with well-characterized antibodies. The presence of GAD65 mRNA was also evaluated by using laser capture microdissection and reverse transcriptase-polymerase chain reaction. Specific GABA, GAD65, and VGAT immunostaining was localized to horizontal cell bodies, as well as to their processes and tips in the outer plexiform layer. Furthermore, immunostaining of retinal whole mounts and acutely dissociated retinas showed GAD65 and VGAT immunoreactivity in both A-type and B-type horizontal cells. However, these cells did not contain GAD67, GAT-1, or GAT-3 immunoreactivity. GAD65 mRNA was detected in horizontal cells, and sequencing of the amplified GAD65 fragment showed approximately 85% identity with other mammalian GAD65 mRNAs. These studies demonstrate the presence of GABA, GAD65, and VGAT in horizontal cells of the guinea pig retina, and support the idea that GABA is synthesized from GAD65, taken up into synaptic vesicles by VGAT, and likely released by a vesicular mechanism from horizontal cells. PMID:20235161

  15. Assignment of the human GABA transporter gene (GABATHG) locus to chromosome 3p24-p25

    SciTech Connect

    Huang, Fang; Fei, Jian; Guo, Li-He

    1995-09-01

    An essential regulatory process of synaptic transmission is the inactivation of released neurotransmitters by the transmitter-specific uptake mechanism, {gamma}-Aminobutyric acid (GABA) is an inhibitory transmitter in the vertebrate central nervous system; its activity is terminated by a high-affinity Na{sup +} and Cl{sup -} -dependent specific GABA transporter (GAT), which carries the neurotransmitter to the presynaptic neuron and/or glial elements surrounding the synaptic cleft. Deficiency of the transporter may cause epilepsy and some other nervous diseases. The human GAT gene (GABATHG), approximately 25 kb in length, has been cloned and sequenced by our colleagues (7). Here the results of the in situ hybridization mapping with the gene are presented. 10 refs., 1 fig.

  16. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    PubMed

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  17. [GABA-Receptors in Modulation of Fear Memory Extinction].

    PubMed

    Dubrovina, N I

    2016-01-01

    GABA is the major inhibitory neurotransmitter in the central nervous system determining the efficacy of neuronal interaction. GABA-receptors play a key role in different aspects of fear memory--acquisition and consolidation, retention, reconsolidation and extinction. Extinction is an important behavioural phenomenon which allows organism to adapt its behavior to a changing environment. Extinction of fear memory is a form of new inhibitory learning which interferes with expression of the initial acquired fear conditioning. Resistance to extinction is symptom of depression and posttraumatic stress disorder. The aim of the present review was to summarize own and literary data about GABAergic modulation of fear extinction and pharmacological correction of extinction impairment at influences on GABA(A)- and GABA(B)- receptors. PMID:27538279

  18. Effects of prenatal exposure to 2,4-D/2,4,5-T mixture on postnatal changes in rat brain glutamate, GABA protein, and nucleic acid levels

    SciTech Connect

    Mohammad, F.K.; Omer, V.E.V.

    1988-02-01

    The opportunity of maternal exposure to various chemicals in the work place and the general environments have increased, and the fetus and neonate may be at greater risk than the adult. However, the embryotoxic and teratogenic effects of the chlorinated phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), the main chemicals in Agent Orange, are well documented only in laboratory animals. The brain of the developing fetus is vulnerable to the toxic effects of the phenoxy herbicides which readily cross the placental barrier and distribute into fetal tissues, including brain. Although the neurochemical basis for the behavioral teratogenicity of the phenoxy herbicides is not know, it was recently reported that non-teratogenic doses of a 1:1 mixture of 2,4-D and 2,4,5-T delayed the ontogeny of dopamine and serotonin in the brain of the developing rate. This communication provides further descriptive information about the ontogeny of rat brain nucleic acid, protein, glutamate and ..gamma..-aminobutyrate (GABA) following in utero exposure to non-teratogenic levels of a 1:1 mixture of 2,4-D/2,4,5-T.

  19. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis.

    PubMed

    Jones, Rhys Jon; Massanet-Nicolau, Jaime; Guwy, Alan; Premier, Giuliano C; Dinsdale, Richard M; Reilly, Matthew

    2015-08-01

    Hydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths. During 60 min of operation CED removed up to 99% of VFAs from model solutions, sucrose-fed and grass-fed hydrogen fermentation broths, containing up to 1200 mg l(-1) each of acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid, and n-valeric acid. CED's ability to remove VFAs from hydrogen fermentation broths suggests that this technology is capable of improving hydrogen yields from dark fermentation.

  20. GABA{sub A} receptor open-state conformation determines non-competitive antagonist binding

    SciTech Connect

    Chen Ligong; Xue Ling; Giacomini, Kathleen M.; Casida, John E.

    2011-02-01

    The {gamma}-aminobutyric acid (GABA) type A receptor (GABA{sub A}R) is one of the most important targets for insecticide action. The human recombinant {beta}3 homomer is the best available model for this binding site and 4-n-[{sup 3}H]propyl-4'-ethynylbicycloorthobenzoate ([{sup 3}H]EBOB) is the preferred non-competitive antagonist (NCA) radioligand. The uniquely high sensitivity of the {beta}3 homomer relative to the much-less-active but structurally very-similar {beta}1 homomer provides an ideal comparison to elucidate structural and functional features important for NCA binding. The {beta}1 and {beta}3 subunits were compared using chimeragenesis and mutagenesis and various combinations with the {alpha}1 subunit and modulators. Chimera {beta}3/{beta}1 with the {beta}3 subunit extracellular domain and the {beta}1 subunit transmembrane helices retained the high [{sup 3}H]EBOB binding level of the {beta}3 homomer while chimera {beta}1/{beta}3 with the {beta}1 subunit extracellular domain and the {beta}3 subunit transmembrane helices had low binding activity similar to the {beta}1 homomer. GABA at 3 {mu}M stimulated heteromers {alpha}1{beta}1 and {alpha}1{beta}3 binding levels more than 2-fold by increasing the open probability of the channel. Addition of the {alpha}1 subunit rescued the inactive {beta}1/{beta}3 chimera close to wildtype {alpha}1{beta}1 activity. EBOB binding was significantly altered by mutations {beta}1S15'N and {beta}3N15'S compared with wildtype {beta}1 and {beta}3, respectively. However, the binding activity of {alpha}1{beta}1S15'N was insensitive to GABA and {alpha}1{beta}3N15'S was stimulated much less than wildtype {alpha}1{beta}3 by GABA. The inhibitory effect of etomidate on NCA binding was reduced more than 5-fold by the mutation {beta}3N15'S. Therefore, the NCA binding site is tightly regulated by the open-state conformation that largely determines GABA{sub A} receptor sensitivity. - Graphical Abstract: Display Omitted Research Highlights

  1. Characteristics of GABA release induced by free radicals in mouse hippocampal slices.

    PubMed

    Saransaari, Pirjo; Oja, Simo S

    2008-03-01

    The release of the inhibitory neurotransmitter GABA is generally enhanced under potentially cell-damaging conditions. The properties and regulation of preloaded [3H]GABA release from mouse hippocampal slices were now studied in free radical-containing medium in a superfusion system. Free radical production was induced by 0.01% of H2O2 in the medium. H2O2 markedly potentiated GABA release, which was further enhanced about 1.5-fold by K+ stimulation (50 mM). In Ca2+-free media this stimulation was not altered, indicating that the release was mostly Ca2+-independent. Moreover, omission of Na+ increased the release, suggesting that it is mediated by Na+-dependent transporters operating outwards, a conception confirmed by the enhancement with GABA homoexchange. Inhibition of the release with the ion channel inhibitors diisothiocyanostilbene-2,2'-disulphonate and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonate indicates that Cl(-) channels also participate in the process. This release was not modified by the adenosine receptor (A1 and A2a) agonists and ionotropic glutamate receptor agonists kainate, N-methy-D: -aspartate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, whereas the agonists of metabotropic glutamate receptors of group I [(S)-3,5-dihydroxyphenylglycine] and of group II [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] enhanced it by receptor-mediated mechanisms, the effects being abolished by their respective antagonists. The group III agonist L+-2-amino-4-phosphonobutyrate reduced the evoked GABA release, but this was not affected by the antagonist. Furthermore, the release was reduced by activation of protein kinase C by 4 beta-phorbol 12-myristate 13-acetate and by inhibition of tyrosine kinase by genistein and of phoshoplipase by quinacrine. On the other hand, increasing cGMP levels with the phosphodiesterase inhibitor zaprinast, selective for PDE5, 6 and 9, and NO production with the NO-generating compounds hydroxylamine, sodium nitroprusside

  2. Increased excretion of c4-carnitine species after a therapeutic acetylsalicylic Acid dose: evidence for an inhibitory effect on short-chain Fatty Acid metabolism.

    PubMed

    Mels, Catharina M C; Jansen van Rensburg, Peet; van der Westhuizen, Francois H; Pretorius, Pieter J; Erasmus, Elardus

    2011-01-01

    Acetylsalicylic acid and/or its metabolites are implicated to have various effects on metabolism and, especially, on mitochondrial function. These effects include both inhibitory and stimulatory effects. We investigated the effect of both combined and separate oral acetylsalicylic acid and acetaminophen administration at therapeutic doses on the urinary metabolite profile of human subjects. In this paper, we provided in vivo evidence, in human subjects, of a statistically significant increase in isobutyrylcarnitine after the administration of a therapeutic dose of acetylsalicylic acid. We, therefore, propose an inhibitory effect of acetylsalicylic acid on the short-chain fatty acid metabolism, possibly at the level of isobutyryl-CoA dehydrogenase.

  3. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.

    PubMed

    Chao, Hsiao-Tuan; Chen, Hongmei; Samaco, Rodney C; Xue, Mingshan; Chahrour, Maria; Yoo, Jong; Neul, Jeffrey L; Gong, Shiaoching; Lu, Hui-Chen; Heintz, Nathaniel; Ekker, Marc; Rubenstein, John L R; Noebels, Jeffrey L; Rosenmund, Christian; Zoghbi, Huda Y

    2010-11-11

    Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes. PMID:21068835

  4. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.

    PubMed

    Chao, Hsiao-Tuan; Chen, Hongmei; Samaco, Rodney C; Xue, Mingshan; Chahrour, Maria; Yoo, Jong; Neul, Jeffrey L; Gong, Shiaoching; Lu, Hui-Chen; Heintz, Nathaniel; Ekker, Marc; Rubenstein, John L R; Noebels, Jeffrey L; Rosenmund, Christian; Zoghbi, Huda Y

    2010-11-11

    Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.

  5. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels.

    PubMed

    Boué-Grabot, Eric; Emerit, Michel B; Toulmé, Estelle; Séguéla, Philippe; Garret, Maurice

    2004-02-20

    Gamma-aminobutyric-acid (GABA) and ATP ionotropic receptors represent two structurally and functionally different classes of neurotransmitter-gated channels involved in fast synaptic transmission. We demonstrate here that, when the inhibitory rho1/GABA and the excitatory P2X2 receptor channels are co-expressed in Xenopus oocytes, activation of one channel reduces the currents mediated by the other one. This reciprocal inhibitory cross-talk is a receptor-mediated phenomenon independent of agonist cross-modulation, membrane potential, direction of ionic flux, or channel densities. Functional interaction is disrupted when the cytoplasmic C-terminal domain of P2X2 is deleted or in competition experiments with minigenes coding for the C-terminal domain of P2X2 or the main intracellular loop of rho1 subunits. We also show a physical interaction between P2X2 and rho1 receptors expressed in oocytes and the co-clustering of these receptors in transfected hippocampal neurons. Co-expression with P2X2 induces retargeting and recruitment of mainly intracellular rho1/GABA receptors to surface clusters. Therefore, molecular and functional cross-talk between inhibitory and excitatory ligand-gated channels may regulate synaptic strength both by activity-dependent current occlusion and synaptic receptors co-trafficking.

  6. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.

    PubMed

    Crook, J; Hendrickson, A; Robinson, F R

    2006-09-15

    Previous work demonstrates that the cerebellum uses glycine as a fast inhibitory neurotransmitter [Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H]glycine and [3H]GABA uptake. Exp Brain Res 66(1):211-221; Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450(1-2):342-353; Dieudonne S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441-1445; Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057; Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498; Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482(2):123-141]. In the rat cerebellum glycine is not released by itself but is released together with GABA by Lugaro cells onto Golgi cells [Dumoulin A, Triller A, Dieudonne S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21(16):6045-6057] and by Golgi cells onto unipolar brush and granule cells [Dugue GP, Dumoulin A, Triller A, Dieudonne S (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25(28):6490-6498]. Here we report, from immunolabeling evidence in Macaca cerebellum, that interneurons in the granular cell layer are glycine+ at a density

  7. Early depolarizing GABA controls critical period plasticity in the rat visual cortex

    PubMed Central

    Deidda, Gabriele; Allegra, Manuela; Cerri, Chiara; Naskar, Shovan; Bony, Guillaume; Zunino, Giulia; Bozzi, Yuri; Caleo, Matteo; Cancedda, Laura

    2014-01-01

    SUMMARY Hyperpolarizing and inhibitory GABA regulates “critical periods” for plasticity in sensory cortices. Here, we examine the role of early, depolarizing GABA in controlling plasticity mechanisms. We report that brief interference with depolarizing GABA during early development prolonged critical period plasticity in visual cortical circuits, without affecting overall development of the visual system. The effects on plasticity were accompanied by dampened inhibitory neurotransmission, down-regulation of BDNF expression, and reduced density of extracellular matrix-perineuronal nets. Early interference with depolarizing GABA decreased perinatal BDNF signaling, and pharmacological increase of BDNF signaling during GABA interference rescued the effects on plasticity and its regulators later in life. We conclude that depolarizing GABA exerts a long-lasting, selective modulation of plasticity of cortical circuits by a strong crosstalk with BDNF. PMID:25485756

  8. Effects of volatile and intravenous anesthetics on the uptake of GABA, glutamate and dopamine by their transporters heterologously expressed in COS cells and in rat brain synaptosomes.

    PubMed

    Sugimura, M; Kitayama, S; Morita, K; Irifune, M; Takarada, T; Kawahara, M; Dohi, T

    2001-08-01

    Although the neurotransmitter uptake system is considered a possible target for the presynaptic action of anesthetic agents, observations are inconsistent concerning effects on the transporter and their clinical relevance. The present study examined the effects of volatile and intravenous anesthetics on the uptake of GABA, glutamate and dopamine in COS cells heterologously expressing the transporters for these neurotransmitters and in the rat brain synaptosomes. Halothane and isoflurane, but not thiamylal or thiopental, significantly inhibited uptake by COS cell systems of GABA, dopamine and glutamic acid in a concentration-dependent manner within clinically relevant ranges for anesthesia induced by these agents. Similarly, in synaptosomes halothane and isoflurane but not thiopental significantly suppressed the uptake of GABA and glutamic acid, respectively. These results do not support the hypothesis that volatile and intravenous anesthetics exert their action via specific inhibition of GABA uptake to enhance inhibitory GABAergic neuronal activity. Rather, they suggest that presynaptic uptake systems for various neurotransmitters including GABA may be the molecular targets for volatile anesthetic agents.

  9. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    PubMed Central

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested. PMID:27699172

  10. Inhibitory Effect of Long-Chain Fatty Acids on Biogas Production and the Protective Effect of Membrane Bioreactor

    PubMed Central

    Dasa, Kris Triwulan; Westman, Supansa Y.; Cahyanto, Muhammad Nur; Niklasson, Claes

    2016-01-01

    Anaerobic digestion of lipid-containing wastes for biogas production is often hampered by the inhibitory effect of long-chain fatty acids (LCFAs). In this study, the inhibitory effects of LCFAs (palmitic, stearic, and oleic acid) on biogas production as well as the protective effect of a membrane bioreactor (MBR) against LCFAs were examined in thermophilic batch digesters. The results showed that palmitic and oleic acid with concentrations of 3.0 and 4.5 g/L resulted in >50% inhibition on the biogas production, while stearic acid had an even stronger inhibitory effect. The encased cells in the MBR system were able to perform better in the presence of LCFAs. This system exhibited a significantly lower percentage of inhibition than the free cell system, not reaching over 50% at any LCFA concentration tested.

  11. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants

    PubMed Central

    Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD’s underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABAA and GABAB receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants – the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine – modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well

  12. Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants.

    PubMed

    Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD's underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABAA and GABAB receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants - the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine - modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well-controlled empirical

  13. Inhibitory effect of ursolic acid and oleanolic acid from Eriobotrya fragrans on A549 cell viability in vivo.

    PubMed

    Gao, Y S; Yuan, Y; Song, G; Lin, S Q

    2016-01-01

    Loquat [Eriobotrya japonica (Lindl.)] is a traditional Chinese medicine, which has been used as an anti-inflammatory and for curing chronic bronchitis among other potential applications. Extracted ursolic acid (UA) and oleanolic acid (OA) from wild loquat were previously found capable of suppressing the proliferation of A549 cells in vitro. In the current study, nude mice were used to determine the inhibitory effect of UA and OA on tumor formation in vivo. The results demonstrate that UA and OA reduced the proliferation of A549 cells in nude mice, and increased the expression of Bid while decreasing the protein levels of MMP-2, Ki-67, and CD34. In this study, we identified potential antitumor activity in a wild loquat extract containing UA and OA, which demonstrates that traditional Chinese medicine may have a role in treating certain types of cancer. PMID:27323036

  14. Inhibitory effect of ursolic acid and oleanolic acid from Eriobotrya fragrans on A549 cell viability in vivo.

    PubMed

    Gao, Y S; Yuan, Y; Song, G; Lin, S Q

    2016-05-13

    Loquat [Eriobotrya japonica (Lindl.)] is a traditional Chinese medicine, which has been used as an anti-inflammatory and for curing chronic bronchitis among other potential applications. Extracted ursolic acid (UA) and oleanolic acid (OA) from wild loquat were previously found capable of suppressing the proliferation of A549 cells in vitro. In the current study, nude mice were used to determine the inhibitory effect of UA and OA on tumor formation in vivo. The results demonstrate that UA and OA reduced the proliferation of A549 cells in nude mice, and increased the expression of Bid while decreasing the protein levels of MMP-2, Ki-67, and CD34. In this study, we identified potential antitumor activity in a wild loquat extract containing UA and OA, which demonstrates that traditional Chinese medicine may have a role in treating certain types of cancer.

  15. Dorsal raphe 5-HT(2C) receptor and GABA networks regulate anxiety produced by cocaine withdrawal.

    PubMed

    Craige, Caryne P; Lewandowski, Stacia; Kirby, Lynn G; Unterwald, Ellen M

    2015-06-01

    The serotonin system is intimately linked to both the mediation of anxiety and long-term effects of cocaine, potentially through interaction of inhibitory 5-HT2C receptor and gamma-aminobutyric acid (GABA) networks. This study characterized the function of the dorsal raphe (DR) 5-HT2C receptor and GABA network in anxiety produced by chronic cocaine withdrawal. C57BL/6 mice were injected with saline or cocaine (15 mg/kg) 3 times daily for 10 days, and tested on the elevated plus maze 30 min, 25 h, or 7 days after the last injection. Cocaine-withdrawn mice showed heightened anxiety-like behavior at 25 h of withdrawal, as compared to saline controls. Anxiety-like behavior was not different when mice were tested 30 min or 7 days after the last cocaine injection. Electrophysiology data revealed that serotonin cells from cocaine-withdrawn mice exhibited increased GABA inhibitory postsynaptic currents (IPSCs) in specific DR subregions dependent on withdrawal time (25 h or 7 d), an effect that was absent in cells from non-withdrawn mice (30 min after the last cocaine injection). Increased IPSC activity was restored to baseline levels following bath application of the 5-HT2C receptor antagonist, SB 242084. In a separate cohort of cocaine-injected mice at 25 h of withdrawal, both global and intra-DR blockade of 5-HT2C receptors prior to elevated plus maze testing attenuated anxiety-like behavior. This study demonstrates that DR 5-HT2C receptor blockade prevents anxiety-like behavior produced by cocaine withdrawal, potentially through attenuation of heightened GABA activity, supporting a role for the 5-HT2C receptor in mediating anxiety produced by cocaine withdrawal.

  16. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria.

    PubMed

    Pastorkova, E; Zakova, T; Landa, P; Novakova, J; Vadlejch, J; Kokoska, L

    2013-02-15

    This paper investigates the in vitro antimicrobial potential of 15 grape phenolic compounds of various chemical classes (phenolic acids, stilbenes and flavonoids) using the broth microdilution method against yeasts and acetic acid bacteria frequently occurring in deteriorated wine. Pterostilbene (MICs=32-128 μg/mL), resveratrol (MICs=256-512 μg/mL) and luteolin (MICs=256-512 μg/mL) are among six active compounds that possessed the strongest inhibitory effects against all microorganisms tested. In the case of phenolic acids, myricetin, p-coumaric and ferulic acids exhibited selective antimicrobial activity (MICs=256-512 μg/mL), depending upon yeasts and bacteria tested. In comparison with potassium metabisulphite, all microorganisms tested were more susceptible to the phenolics. The results revealed the antibacterial and antiyeast effects against wine spoilage microorganisms of several highly potent phenolics naturally occurring in grapes. These findings also provide arguments for further investigation of stilbenes as prospective compounds reducing the need for the use of sulphites in winemaking.

  17. Green Synthesis and Urease Inhibitory Activity of Spiro-Pyrimidinethiones/Spiro-Pyrimidinones-Barbituric Acid Derivatives

    PubMed Central

    Mohammadi Ziarani, Ghodsi; Asadi, Shima; Faramarzi, Sakineh; Amanlou, Massoud

    2015-01-01

    Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H) with pore size 6 nm as an efficient heterogeneous nanoporous solid acid catalyst exhibited good catalytic activity in the Biginelli-like reaction in the synthesis of spiroheterobicyclic rings with good yield and good recyclability. Spiro-pyrimidinethiones/spiro-pyrimidinones-barbituric acid derivatives were synthesized in a simple and efficient method using the one-pot three-component reaction of a cyclic 1,3- dicarbonyl compounds (barbituric acid), an aromatic aldehyde and urea or thiourea in the presence of nanoporous silica SBA-Pr-SO3H under solvent free conditions. Urease inhibitory activity of spiro compounds were tested against Jack bean urease using Berthelot alkaline phenol–hypochlorite method. Five of 13 compounds were inhibitor and two of them were enzyme activators. Analysis of the docking results showed that, in most of the spiro molecules, one of the carbonyl groups is coordinated with both nickel atoms, while the other one is involved in the formation of hydrogen bonds with important active-site residues. The effect of inserting two methyl groups on N atoms of barbiturate ring, S substituted, ortho, meta and para substituted compounds were investigated too. PMID:26664377

  18. Acid-sensing ion channels regulate spontaneous inhibitory activity in the hippocampus: possible implications for epilepsy.

    PubMed

    Ievglevskyi, O; Isaev, D; Netsyk, O; Romanov, A; Fedoriuk, M; Maximyuk, O; Isaeva, E; Akaike, N; Krishtal, O

    2016-08-01

    Acid-sensing ion channels (ASICs) play an important role in numerous functions in the central and peripheral nervous systems ranging from memory and emotions to pain. The data correspond to a recent notion that each neuron and many glial cells of the mammalian brain express at least one member of the ASIC family. However, the mechanisms underlying the involvement of ASICs in neuronal activity are poorly understood. However, there are two exceptions, namely, the straightforward role of ASICs in proton-based synaptic transmission in certain brain areas and the role of the Ca(2+)-permeable ASIC1a subtype in ischaemic cell death. Using a novel orthosteric ASIC antagonist, we have found that ASICs specifically control the frequency of spontaneous inhibitory synaptic activity in the hippocampus. Inhibition of ASICs leads to a strong increase in the frequency of spontaneous inhibitory postsynaptic currents. This effect is presynaptic because it is fully reproducible in single synaptic boutons attached to isolated hippocampal neurons. In concert with this observation, inhibition of the ASIC current diminishes epileptic discharges in a low Mg(2+) model of epilepsy in hippocampal slices and significantly reduces kainate-induced discharges in the hippocampus in vivo Our results reveal a significant novel role for ASICs.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377725

  19. An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans

    PubMed Central

    Han, Bingjie; Bellemer, Andrew; Koelle, Michael R.

    2015-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) is depolarizing in the developing vertebrate brain, but in older animals switches to hyperpolarizing and becomes the major inhibitory neurotransmitter in adults. We discovered a similar developmental switch in GABA response in Caenorhabditis elegans and have genetically analyzed its mechanism and function in a well-defined circuit. Worm GABA neurons innervate body wall muscles to control locomotion. Activation of GABAA receptors with their agonist muscimol in newly hatched first larval (L1) stage animals excites muscle contraction and thus is depolarizing. At the mid-L1 stage, as the GABAergic neurons rewire onto their mature muscle targets, muscimol shifts to relaxing muscles and thus has switched to hyperpolarizing. This muscimol response switch depends on chloride transporters in the muscles analogous to those that control GABA response in mammalian neurons: the chloride accumulator sodium-potassium-chloride-cotransporter-1 (NKCC-1) is required for the early depolarizing muscimol response, while the two chloride extruders potassium-chloride-cotransporter-2 (KCC-2) and anion-bicarbonate-transporter-1 (ABTS-1) are required for the later hyperpolarizing response. Using mutations that disrupt GABA signaling, we found that neural circuit development still proceeds to completion but with an ∼6-hr delay. Using optogenetic activation of GABAergic neurons, we found that endogenous GABAA signaling in early L1 animals, although presumably depolarizing, does not cause an excitatory response. Thus a developmental depolarizing-to-hyperpolarizing shift is an ancient conserved feature of GABA signaling, but existing theories for why this shift occurs appear inadequate to explain its function upon rigorous genetic analysis of a well-defined neural circuit. PMID:25644702

  20. Functional expression of γ-amino butyric acid transporter 2 in human and guinea pig airway epithelium and smooth muscle.

    PubMed

    Zaidi, Sarah; Gallos, George; Yim, Peter D; Xu, Dingbang; Sonett, Joshua R; Panettieri, Reynold A; Gerthoffer, William; Emala, Charles W

    2011-08-01

    γ-Amino butyric acid (GABA) is a primary inhibitory neurotransmitter in the central nervous system, and is classically released by fusion of synaptic vesicles with the plasma membrane or by egress via GABA transporters (GATs). Recently, a GABAergic system comprised of GABA(A) and GABA(B) receptors has been identified on airway epithelial and smooth muscle cells that regulate mucus secretion and contractile tone of airway smooth muscle (ASM). In addition, the enzyme that synthesizes GABA, glutamic acid decarboxylase, has been identified in airway epithelial cells; however, the mechanism(s) by which this synthesized GABA is released from epithelial intracellular stores is unknown. We questioned whether any of the four known isoforms of GATs are functionally expressed in ASM or epithelial cells. We detected mRNA and protein expression of GAT2 and -4, and isoforms of glutamic acid decarboxylase in native and cultured human ASM and epithelial cells. In contrast, mRNA encoding vesicular GAT (VGAT), the neuronal GABA transporter, was not detected. Functional inhibition of (3)H-GABA uptake was demonstrated using GAT2 and GAT4/betaine-GABA transporter 1 (BGT1) inhibitors in both human ASM and epithelial cells. These results demonstrate that two isoforms of GATs, but not VGAT, are expressed in both airway epithelial and smooth muscle cells. They also provide a mechanism by which locally synthesized GABA can be released from these cells into the airway to activate GABA(A) channels and GABA(B) receptors, with subsequent autocrine and/or paracrine signaling effects on airway epithelium and ASM. PMID:21057105

  1. Development of cyclobutene- and cyclobutane-functionalized fatty acids with inhibitory activity against Mycobacterium tuberculosis

    PubMed Central

    Sittiwong, Wantanee; Zinniel, Denise K.; Fenton, Robert J.; Marshall, Darrel; Story, Courtney B.; Kim, Bohkyung; Lee, Ji-Young; Powers, Robert; Barletta, Raúl G.

    2014-01-01

    Eleven fatty acid analogs incorporating four-membered carbocycles (cyclobutenes, cyclobutanes, cyclobutanones, and cyclobutanols) were investigated for the ability to inhibit growth of Mycobacterium smegmatis (Msm) and Mycobacterium tuberculosis (Mtb). A number of the analogs displayed inhibitory activity against both mycobacterial species in minimal media. Several of the molecules displayed potent levels of inhibition against Mtb with MIC values equal to or below those obtained with the anti-tuberculosis drugs D-cycloserine and isoniazid. In contrast, two of the analogs displaying the greatest activity against Mtb failed to inhibit E. coli growth under either set of conditions. Thus, the active molecules identified here (1, 2, 6, and 8) may provide the basis for development of anti-mycobacterial agents against Mtb. PMID:24902951

  2. Synthesis and HIV-1 inhibitory activities of dicaffeoyl and digalloyl esters of quinic acid derivatives.

    PubMed

    Junior, C O R; Verde, S C; Rezende, C A M; Caneschi, W; Couri, M R C; McDougall, B R; Robinson, W E; de Almeida, M V

    2013-01-01

    Twenty analogues of the anti-HIV-1 integrase (IN) inhibitors dicaffeoylquinic acids (DCQAs) were prepared. Their IC(50) values for 3'-end processing and strand transfer against recombinant HIV-1IN were determined in vitro, and their cell toxicities and EC(50) against HIV-1 were measured in cells (ex vivo). Acetylated or benzylated and/or with cyclohexylidene group compounds exhibited no inhibition of integration in biochemical assays or viral replication in HIV-infected cells, with the exception of 16 and 36. Removal of these groups, however, correlated with potent inhibition. Compounds 19, 31, and 38, all digalloyls, exhibited the most robust inhibitory performance in biochemical assays as well as in cell culture and less toxicity than other molecules in the current study.

  3. Cloning and expression of a rat brain GABA transporter

    SciTech Connect

    Guastella, J.; Czyzyk, L.; Davidson, N.; Lester, H.A. ); Nelson, N.; Nelson, H.; Miedel, M.C. ); Keynan, S.; Kanner, B.I. )

    1990-09-14

    A complementary DNA clone (designated GAT-1) encoding a transporter for the neurotransmitter {gamma}-aminobutyric acid (GABA) has been isolated from rat brain, and its functional properties have been examined in Xenopus oocytes. Oocytes injected with GAT-1 synthetic messenger RNA accumulated ({sup 3}H)GABA to levels above control values. The transporter encoded by GAT-1 has a high affinity for GABA, is sodium- and chloride-dependent, and is pharmacologically similar to neuronal GABA transporters. The GAT-1 protein shares antigenic determinants with a native rat brain GABA transporter. The nucleotide sequence of GAT-1 predicts a protein of 599 amino acids with a molecular weight of 67 kilodaltons. Hydropathy analysis of the deduced protein suggests multiple transmembrane regions, a feature shared by several cloned transporters; however, database searches indicate that GAT-1 is not homologous to any previously identified proteins. Therefore, GAT-1 appears to be a member of a previously uncharacterized family of transport molecules.

  4. Quantification of γ-Aminobutyric Acid in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    PubMed

    Arning, Erland; Bottiglieri, Teodoro

    2016-01-01

    We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of GABA in CSF (50 μL) was performed utilizing high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Determination of total GABA in CSF requires additional sample preparation in order to hydrolyze all the bound GABA in the sample to the free form. This requires hydrolyzing the sample by boiling in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90 % acetonitrile/0.1 % formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 nM to 1000 nM and 0.63 μM to 80 μM for free and total GABA, respectively.

  5. Quantification of γ-Aminobutyric Acid in Cerebrospinal Fluid Using Liquid Chromatography-Electrospray Tandem Mass Spectrometry.

    PubMed

    Arning, Erland; Bottiglieri, Teodoro

    2016-01-01

    We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of GABA in CSF (50 μL) was performed utilizing high performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Determination of total GABA in CSF requires additional sample preparation in order to hydrolyze all the bound GABA in the sample to the free form. This requires hydrolyzing the sample by boiling in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90 % acetonitrile/0.1 % formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 nM to 1000 nM and 0.63 μM to 80 μM for free and total GABA, respectively. PMID:26602123

  6. Non-neuronal release of gamma-aminobutyric Acid by embryonic pluripotent stem cells.

    PubMed

    Teng, Lin; Tang, Ya-Bin; Sun, Fan; An, Shi-Min; Zhang, Chun; Yang, Xin-Jie; Lv, Hao-Yu; Lu, Qin; Cui, Yong-Yao; Hu, Jin-Jia; Zhu, Liang; Chen, Hong-Zhuan

    2013-11-15

    γ-Aminobutyric acid (GABA), the principle inhibitory transmitter in the mature central nervous system, is also involved in activities outside the nervous system. Recent studies have shown that functional GABA receptors are expressed in embryonic stem (ES) cells and these receptors control ES cell proliferation. However, it is not clear whether ES cells have their own GABAergic transmission output machinery that can fulfill GABA release or whether the cells merely process the GABA receptors by receiving and responding to the diffused GABA released elsewhere. To get further insight into this unresolved problem, we detected the repertoire of components for GABA synthesis, storage, reaction, and termination in ES and embryonal carcinoma stem cells by biological assays, and then directly quantified released GABA in the intercellular milieu from these pluripotent stem (PS) cells by an analytical chemical assay based on high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). We found that embryonic PS cells processed a GABAergic circuit machinery and spontaneously released GABA, which suggests the potential that embryonic PS cells could autonomously establish a GABA niche via release of the transmitter.

  7. Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons.

    PubMed

    Wang, Jian; McFadden, Sandra L; Caspary, Donald; Salvi, Richard

    2002-07-19

    Neurons containing gamma aminobutyric acid (GABA) are widely distributed throughout the primary auditory cortex (AI). We investigated the effects of endogenous GABA by comparing response properties of 110 neurons in chinchilla AI before and after iontophoresis of bicuculline, a GABA(A) receptor antagonist, and/or CGP35348, a GABA(B) receptor antagonist. GABA(A) receptor blockade significantly increased spontaneous and driven discharge rates, dramatically decreased the thresholds of many neurons, and constricted the range of thresholds across the neural population. Some neurons with 'non-onset' temporal discharge patterns developed an onset pattern that was followed by a long pause. Interestingly, the excitatory response area typically expanded on both sides of the characteristic frequency; this expansion exceeded one octave in a third of the sample. Although GABA(B) receptor blockade had little effect alone, the combination of CGP35348 and bicuculline produced greater increases in driven rate and expansion of the frequency response area than GABA(A) receptor blockade alone, suggesting a modulatory role of local GABA(B) receptors. The results suggest that local GABA inhibition contributes significantly to intensity and frequency coding by controlling the range of intensities over which cortical neurons operate and the range of frequencies to which they respond. The inhibitory circuits that generate nonmonotonic rate-level functions are separate from those that influence other response properties of AI neurons. PMID:12106684

  8. Inhibitory Effects of Lipophilic Acids and Related Compounds on Bacteria and Mammalian Cells

    PubMed Central

    Sheu, C. W.; Salomon, D.; Simmons, J. L.; Sreevalsan, T.; Freese, E.

    1975-01-01

    The inhibitory effect of lipophilic acids, antimicrobial food additives, and analgesics-antipyretics was examined at concentrations from 0.1 to 100 mM in bacteria (Bacillus subtilis and Escherichia coli) and mammalian cells (HeLa, human fibroblasts, and mouse neuroblastoma cells). Most compounds inhibit the growth of HeLa cells about as efficiently as that of B. subtilis. However, butyrate and propionate, as well as acetaminophen, antipyrene, phenacetin, and salicylamide, inhibit HeLa at millimolar concentrations whereas, at least 10 times higher concentrations are needed to inhibit B. subtilis. The concentrations needed to inhibit growth by 50% decrease with increasing octanol-water partition coefficients of the compound. Growth of E. coli is inhibited similar to that of B. subtilis by all compounds except butylbenzoate, decanoate, and linoleate which cannot penetrate the lipopolysaccharide layer. All growth inhibitors inhibit amino acid uptake into bacteria and their vesicles, and oxygen consumption in bacteria. In HeLa cells or human fibroblasts, neither amino acid uptake nor adenine 5′-triphosphate synthesis are inhibited by fatty acids at concentrations that completely inhibit growth. Short chain fatty acids (propionate, butyrate, and pentanoate) induce in HeLa the formation of cell processes. In neuroblastoma cells, grown in the presence of 10% fetal calf serum, butyrate also induces such processes which slowly continue to grow in length for at least 7 days; these processes differ in speed of formation, width, and cycloheximide susceptibility from the thin processes produced by serum deprivation alone. Images PMID:1137388

  9. Isolation, modification, and aldose reductase inhibitory activity of rosmarinic acid derivatives from the roots of Salvia grandifolia.

    PubMed

    Kang, Jie; Tang, Yanbo; Liu, Quan; Guo, Nan; Zhang, Jian; Xiao, Zhiyan; Chen, Ruoyun; Shen, Zhufang

    2016-07-01

    To find aldose reductase inhibitors, two previously unreported compounds, grandifolias H and I, and five known compounds, including rosmarinic acid and rosmarinic acid derivatives, were isolated from the roots of Salvia grandifolia. A series of rosmarinic acid derivatives was obtained from rosmarinic acid using simple synthetic methods. The aldose reductase inhibitory activity of the isolated and synthesized compounds was assessed. Seven of the tested compounds showed moderate aldose reductase inhibition (IC50=0.06-0.30μM). The structure-activity relationship of aldose reductase inhibitory activity of rosmarinic acid derivatives was discussed for the first time. This study provided useful information that will facilitate the development of aldose reductase inhibitors. PMID:27233987

  10. Comparison of gamma-aminobutyric acid effects in different parts of the cat ileum.

    PubMed

    Pencheva, N; Itzev, D; Milanov, P

    1999-02-26

    The effects of gamma-aminobutyric acid (GABA) and those of a GABA(A) (muscimol) and a GABA(B) (baclofen) receptor agonists were determined on the spontaneous activity of longitudinally or circularly oriented preparations (segments) isolated from terminal, proximal and distal parts of the cat ileum. GABA applied at 1 microM to 2 mM caused dose-dependent biphasic changes (relaxation and contraction) in spontaneous activity of the longitudinal and circular layers in the terminal and distal parts of the cat ileum and monophasic changes (contraction) in the proximal part. The potency of GABA to elicit relaxant and/or contractile effects in different parts of the ileum showed a proximal-to-terminal increasing pattern. In the longitudinal layer of the distal and terminal ileum, muscimol (100 microM) mimicked the relaxation phase of the GABA effect, while baclofen (100 microM) simulated the contractile phase. Bicuculline, atropine and tetrodotoxin abolished GABA- and muscimol-induced relaxation and suppressed, but failed to prevent GABA- and baclofen-induced contractions. In addition, 2-hydroxysaclofen antagonized the baclofen-induced contractile effect, reduced the GABA-induced contractile phase but failed to prevent GABA- and muscimol-induced relaxation. In the circular layer of the same regions, muscimol mimicked the biphasic GABA effects, while baclofen was without effect. Bicuculline, atropine and tetrodotoxin completely prevented the GABA- and muscimol effects, while 2-hydroxysaclofen failed to antagonize them. In the longitudinal and circular layers of the proximal ileum, muscimol (100 microM) exerted a 'GABA-like' transient contractile effect, while baclofen (100 microM) did not elicit any response. Bicuculline, atropine and tetrodotoxin antagonized the GABA- and muscimol-induced contractile responses of longitudinal and circular layers, while 2-hydroxysaclofen was ineffective. The results suggested that the inhibitory and/or excitatory action of GABA on

  11. Metabotropic GABA signalling modulates longevity in C. elegans

    PubMed Central

    Chun, Lei; Gong, Jianke; Yuan, Fengling; Zhang, Bi; Liu, Hongkang; Zheng, Tianlin; Yu, Teng; Xu, X. Z. Shawn; Liu, Jianfeng

    2015-01-01

    The nervous system plays an important but poorly understood role in modulating longevity. GABA, a prominent inhibitory neurotransmitter, is best known to regulate nervous system function and behaviour in diverse organisms. Whether GABA signalling affects aging, however, has not been explored. Here we examined mutants lacking each of the major neurotransmitters in C. elegans, and find that deficiency in GABA signalling extends lifespan. This pro-longevity effect is mediated by the metabotropic GABAB receptor GBB-1, but not ionotropic GABAA receptors. GBB-1 regulates lifespan through G protein-PLCβ signalling, which transmits longevity signals to the transcription factor DAF-16/FOXO, a key regulator of lifespan. Mammalian GABAB receptors can functionally substitute for GBB-1 in lifespan control in C. elegans. Our results uncover a new role of GABA signalling in lifespan regulation in C. elegans, raising the possibility that a similar process may occur in other organisms. PMID:26537867

  12. Cloning of the mouse GABA-benzodiazepine receptor. alpha. 1 subunit in a study of alcohol neurosensitivity

    SciTech Connect

    Keir, W.J.; Deitrich, R.A.; Sikela, J.M. )

    1989-02-09

    The inhibitory action of gamma amino butyric acid (GABA) is mediated by its binding to the benzodiazepine (BDZ) receptor and opening of a chloride channel. This receptor contains a variety of binding sites for several behavorially active drugs. Recent studies with SS and LS mice which were selected for differential neurosensitivity to ethanol, suggest that the GABAergic system plays a role in this differential sensitivity. Thus genes controlling the GABAergic system may also influence the acute hypnotic actions of ethanol. As a fist step towards verifying this hypothesis we have cloned and partially sequenced the mouse GABA-BDZ {alpha}1 subunit cDNA using a 40 bp oligonucleotide derived from the N terminus of a published bovine {alpha} subunit cDNA. A positive clone from a mouse brain cDNA library was identified and contains an insert of approximately 2.5 Kb. Partial sequence analysis indicates that this clone corresponds to the mouse homolog of the {alpha}1 subunit of the GABA-BDZ receptor. This clone is being used as a probe to identify restriction fragment length polymorphisms in several mouse genotypes which differ in their neurosensitivity to ethanol in an attempt to identify molecular genetic changes in the GABA-BDZ receptor that are related to differential ethanol neurosensitivity.

  13. Verruculogen: a new substance for decreasing of GABA levels in CNS.

    PubMed

    Hotujac, L; Muftić, R H; Filipović, N

    1976-01-01

    In our previous work we examined the mechanism of action of the new tremorogenic substance verruculogen isolated by Cole and coworkers. Examining the effect of various substances with known mechanisms of action on verruculogen-induced tremor, we concluded that this tremor was probably related to decrease of GABA levels in CNS. In order to further define the mechanisms of action of verruculogen, we determined brain GABA levels in animals in which tremor was produced by verruculogen administration. Verruculogen administration produced a decrease in GABA levels in mouse CNS. This finding substantiates our earlier suggestion that verruculogen-induced tremor is mediated by a loss of inhibitory GABA function. PMID:935244

  14. Enrichment of ACE inhibitory peptides in navy bean (Phaseolus vulgaris) using lactic acid bacteria.

    PubMed

    Rui, Xin; Wen, Delan; Li, Wei; Chen, Xiaohong; Jiang, Mei; Dong, Mingsheng

    2015-02-01

    The present study was conducted to explore a novel strategy to enhance angiotensin I-converting enzyme (ACE) inhibitory activities of navy bean by preparation of navy bean milk (NBM) which was then subjected to fermentation of four lactic acid bacteria (LAB) strains, namely, Lactobacillus bulgaricus, Lactobacillus helveticus MB2-1, Lactobacillus plantarum B1-6, and Lactobacillus plantarum 70810. With the exception of L. helveticus MB2-1, the other three selected strains had good growth performances in NBM with viable counts increased to log 8.30-8.39 cfu ml(-1) during 6 h of fermentation, and thus were selected for the following investigations. Protein contents of NBM significantly reduced when treated with L. bulgaricus and L. plantarum B1-6, and the electrophoresis patterns showed the preferable proteins for LAB strains to hydrolyze were α- and β-type phaseolins, whereas γ-type phaseolin was resistant to hydrolysis. RP-HPLC analysis demonstrated all fermented NBM had higher intensities of peaks with retention times between 2.5 and 3.5 min indicative of formation of small peptides. All fermented NBM showed higher ACE inhibitory activity compared to the unfermented ones, for which 2 h, 3 h, and 5 h were found to be the optimum fermentation periods for respectively L. plantarum 70810, L. plantarum B1-6 and L. bulgaricus, with IC50 values of 109 ± 5.1, 108 ± 1.1, and 101 ± 2.2 μg protein ml(-1). The subsequent in vitro gastrointestinal simulation afforded all fermented extracts reduced IC50 values and the extracts fermented by L. plantarum B1-6 exerted the lowest IC50 value of 21 ± 2.1 μg protein ml(-1). The research has broadened our knowledge bases on the effect of LAB fermentation on the degradation of navy bean proteins and the capacity to release ACE inhibitory peptides. The approach was promising to obtain probiotic products with potential to serve as functional ingredients targeting hypertension.

  15. Phenylethanoids in the herb of Plantago lanceolata and inhibitory effect on arachidonic acid-induced mouse ear edema.

    PubMed

    Murai, M; Tamayama, Y; Nishibe, S

    1995-10-01

    The five phenylethanoids, acteoside (1), cistanoside F (2), lavandulifolioside (3), plantamajoside (4) and isoacteoside (5) were isolated from the herb of Plantago lanceolata L. (Plantaginaceae). Compounds 1, the major phenylethanoid in the herb of P. lanceolata L., and 4, the major phenylethanoid in the herb of P. asiatica L., showed inhibitory effects on arachidonic acid-induced mouse ear edema. PMID:7480214

  16. Phenylethanoids in the herb of Plantago lanceolata and inhibitory effect on arachidonic acid-induced mouse ear edema.

    PubMed

    Murai, M; Tamayama, Y; Nishibe, S

    1995-10-01

    The five phenylethanoids, acteoside (1), cistanoside F (2), lavandulifolioside (3), plantamajoside (4) and isoacteoside (5) were isolated from the herb of Plantago lanceolata L. (Plantaginaceae). Compounds 1, the major phenylethanoid in the herb of P. lanceolata L., and 4, the major phenylethanoid in the herb of P. asiatica L., showed inhibitory effects on arachidonic acid-induced mouse ear edema.

  17. Linking GABA and glutamate levels to cognitive skill acquisition during development.

    PubMed

    Cohen Kadosh, Kathrin; Krause, Beatrix; King, Andrew J; Near, Jamie; Cohen Kadosh, Roi

    2015-11-01

    Developmental adjustments in the balance of excitation and inhibition are thought to constrain the plasticity of sensory areas of the cortex. It is unknown however, how changes in excitatory or inhibitory neurochemical expression (glutamate, γ-aminobutyric acid (GABA)) contribute to skill acquisition during development. Here we used single-voxel proton magnetic resonance spectroscopy (1H-MRS) to reveal how differences in cortical glutamate vs. GABA ratios relate to face proficiency and working memory abilities in children and adults. We show that higher glutamate levels in the inferior frontal gyrus correlated positively with face processing proficiency in the children, but not the adults, an effect which was independent of age-dependent differences in underlying cortical gray matter. Moreover, we found that glutamate/GABA levels and gray matter volume are dissociated at the different maturational stages. These findings suggest that increased excitation during development is linked to neuroplasticity and the acquisition of new cognitive skills. They also offer a new, neurochemical approach to investigating the relationship between cognitive performance and brain development across the lifespan. PMID:26350618

  18. Extrasynaptic GABA(A) receptors in the brainstem and spinal cord: structure and function.

    PubMed

    Delgado-Lezama, Rodolfo; Loeza-Alcocer, Emanuel; Andrés, Carmen; Aguilar, Justo; Guertin, Pierre A; Felix, Ricardo

    2013-01-01

    γ-aminobutyric acid (GABA) plays many of its key roles in embryonic development and functioning of the central nervous system (CNS) by acting on ligand gated chloride-permeable channels known as GABAA receptors (GABAAR). Classically, GABAARmediated synaptic communication is tailored to allow rapid and precise transmission of information to synchronize the activity of large populations of cells to generate and maintain neuronal networks oscillations. An alternative type of inhibition mediated by GABAA receptors, initially described about 25 years ago, is characterized by a tonic activation of receptors that react to ambient extracellular GABA. The receptors that mediate this action are wide-spread throughout the nerve cells but are located distant from the sites of GABA release, and therefore they have been called extrasynaptic GABAA receptors. The molecular nature of the extrasynaptic GABAA receptors and the tonic inhibitory current they generate have been characterized in many brain structures, and due to its relevance in controlling neuron excitability they have become attractive pharmacological targets for a variety of neurological disorders such as schizophrenia, epilepsy and Parkinson disease. In the spinal cord, early studies have implicated these receptors in anesthesia, chronic pain, motor control, and locomotion. This review highlights past and present developments in the field of extrasynaptic GABAA receptors and emphasizes their subunit containing distribution and physiological role in the spinal cord. PMID:23360278

  19. Inhibitory effect of organic acids on arcobacters in culture and their use for control of Arcobacter butzleri on chicken skin.

    PubMed

    Skřivanová, Eva; Molatová, Zuzana; Matěnová, Michaela; Houf, Kurt; Marounek, Milan

    2011-01-01

    The inhibitory effects of 17 organic acids (C₂-C₁₆ fatty acids, sorbic, benzoic, phenylacetic, fumaric, succinic, lactic, malic and citric) on Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii were investigated by determining their IC₅₀ values, defined as the concentration of acid at which the target DNA sequence was expressed at 50% of the positive control level in cultures incubated at 30°C for 24 h. DNA was analysed by real-time PCR. The Arcobacter strains tested were inhibited by all the organic acids, with the sensitivities in the order A. skirrowii > A. cryaerophilus > A. butzleri. Eight acids with IC₅₀ values of <1 mg/mL against A. butzleri were tested for their effects on A. butzleri inoculated on chicken carcasses at a concentration of 5 log CFU/g of skin. Inoculated halved carcasses were immersed in solutions of the acids at 5 mg/mL for 1 min. Samples of skin were collected from carcass halves after storage at 4°C for 0, 1, 2 or 3 days for enumeration of arcobacters on Muller-Hinton agar. All eight tested acids suppressed bacterial proliferation. The highest inhibitory activities were observed for benzoic, citric, malic and sorbic acids. Subsequent sensory analysis revealed benzoic acid to be the most suitable organic acid for chicken skin treatment.

  20. Inhibitory effects of catechin gallates on o-methyltranslation of protocatechuic acid in rat liver cytosolic preparations and cultured hepatocytes.

    PubMed

    Kadowaki, Masaaki; Ootani, Emi; Sugihara, Narumi; Furuno, Koji

    2005-08-01

    Flavonoids including tea catechins and gallic acid esters were characterized for their ability to inhibit o-methyltranslation of protocatechuic acid (PCA) to form vanillic acid (VA) in rat liver cytosolic preparations and cultured hepatocytes. Flavonols and flavones exhibited different behaviors in inhibiting the formation of VA between the cell-free enzymatic preparations and the intact cells. The underlying mechanism of the inhibitory effects of flavonols and flavones on PCA o-methylation in cultured hepatocytes may not be due to the inhibition of the enzyme activity of catechol o-methyl transferase (COMT). Catechin gallates inhibited PCA o-methylation in liver cytosolic preparations with markedly higher potency than other flavonoids. As compared with catechin gallates, ungallated catechins had two to three orders of magnitude lower efficiency in inhibiting cytosolic PCA o-methylation. Gallic acid esters inhibited cytosolic PCA o-methylation with strong potency almost equal to that of catechin gallates. These results suggest that the COMT-inhibitory activity of catechin gallates is derived from the presence of the galloyl moiety at the C3 position in the C-ring. Catechin gallates and gallic acid esters inhibited PCA o-methylation in cultured hepatocytes with two orders of magnitude lower efficacy than that in cytosolic preparations. The inhibitory effects of catechin gallates and gallic acid esters on cellular PCA o-methylation appear to be due to the direct inhibition of COMT activity.

  1. Neuronal transmembrane chloride electrochemical gradient: a key player in GABA A receptor activation physiological effect.

    PubMed

    Cupello, A

    2003-06-01

    It has long been accepted that GABA is the main inhibitory neurotransmitter in the mammalian brain, acting via GABA(A) or GABA(B) receptors. However, new evidences have shown that it may work as an excitatory transmitter, especially in the brain of newly-born animals and acting via GABA(A) receptors. The difference in the end results of GABA(A) receptors activation in the two cases is not due to the receptor associated channels, which in both cases are chloride channels. The different physiological effect in the two cases is due to different electrochemical gradients for chloride. When GABA acting via GABA(A) receptors is inhibitory, either there is no transmembrane electrochemical gradient for chloride or there is one forcing such negative ions into the nerve cell, once chloride channels are open. Viceversa, GABA is excitatory when the electrochemical gradient is such to make chloride ions flow outside the cell, upon opening of the GABA activated chloride channels.In this review this concept is discussed in details and evidence in the scientific literature for the existence of different types of chloride pumps (either internalizing or extruding chloride) is compiled.

  2. Differential proteomics to explore the inhibitory effects of acidic, slightly acidic electrolysed water and sodium hypochlorite solution on Vibrio parahaemolyticus.

    PubMed

    Chen, Tai-Yuan; Kuo, Shu-Hao; Chen, Shui-Tein; Hwang, Deng-Fwu

    2016-03-01

    Slightly acidic electrolysed water (SlAEW) and acidic electrolysed water (AEW) have been demonstrated to effectively inactivate food-borne pathogens. However, the underlying mechanism of inactivation remains unknown. Therefore, in this study, a differential proteomic platform was used to investigate the bactericidal mechanism of SlAEW, AEW, and sodium hypochlorite (NaOCl) solutions against Vibrio parahaemolyticus. The upregulated proteins after SlAEW, AEW, and NaOCl treatments were identified as outer membrane proteins K and U. The downregulated proteins after the SlAEW, AEW, and NaOCl treatments were identified as adenylate kinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and enolase, all of which are responsible for energy metabolism. Protein synthesis-associated proteins were downregulated and identified as elongation factor Tu and GAPDH. The inhibitory effects of SlAEW and AEW solutions against V. parahaemolyticus may be attributed to the changes in cell membrane permeability, protein synthesis activity, and adenosine triphosphate (ATP) biosynthesis pathways such as glycolysis and ATP replenishment.

  3. Differential proteomics to explore the inhibitory effects of acidic, slightly acidic electrolysed water and sodium hypochlorite solution on Vibrio parahaemolyticus.

    PubMed

    Chen, Tai-Yuan; Kuo, Shu-Hao; Chen, Shui-Tein; Hwang, Deng-Fwu

    2016-03-01

    Slightly acidic electrolysed water (SlAEW) and acidic electrolysed water (AEW) have been demonstrated to effectively inactivate food-borne pathogens. However, the underlying mechanism of inactivation remains unknown. Therefore, in this study, a differential proteomic platform was used to investigate the bactericidal mechanism of SlAEW, AEW, and sodium hypochlorite (NaOCl) solutions against Vibrio parahaemolyticus. The upregulated proteins after SlAEW, AEW, and NaOCl treatments were identified as outer membrane proteins K and U. The downregulated proteins after the SlAEW, AEW, and NaOCl treatments were identified as adenylate kinase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and enolase, all of which are responsible for energy metabolism. Protein synthesis-associated proteins were downregulated and identified as elongation factor Tu and GAPDH. The inhibitory effects of SlAEW and AEW solutions against V. parahaemolyticus may be attributed to the changes in cell membrane permeability, protein synthesis activity, and adenosine triphosphate (ATP) biosynthesis pathways such as glycolysis and ATP replenishment. PMID:26471589

  4. A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism.

    PubMed

    Michaeli, Simon; Fait, Aaron; Lagor, Kelly; Nunes-Nesi, Adriano; Grillich, Nicole; Yellin, Ayelet; Bar, Dana; Khan, Munziba; Fernie, Alisdair R; Turano, Frank J; Fromm, Hillel

    2011-08-01

    In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an Arabidopsis protein similar in sequence and topology to unicellular GABA transporters. The expression of this protein complements a GABA-transport-deficient yeast mutant. Thus the protein was termed AtGABP to indicate GABA-permease activity. In vivo localization of GABP fused to GFP and immunobloting of subcellular fractions demonstrate its mitochondrial localization. Direct [(3) H]GABA uptake measurements into isolated mitochondria revealed impaired uptake into mitochondria of a gabp mutant compared with wild-type (WT) mitochondria, implicating AtGABP as a major mitochondrial GABA carrier. Measurements of CO(2) release, derived from radiolabeled substrates in whole seedlings and in isolated mitochondria, demonstrate impaired GABA-derived input into the TCA cycle, and a compensatory increase in TCA cycle activity in gabp mutants. Finally, growth abnormalities of gabp mutants under limited carbon availability on artificial media, and in soil under low light intensity, combined with their metabolite profiles, suggest an important role for AtGABP in primary carbon metabolism and plant growth. Thus, AtGABP-mediated transport of GABA from the cytosol into mitochondria is important to ensure proper GABA-mediated respiration and carbon metabolism. This function is particularly essential for plant growth under conditions of limited carbon.

  5. Glycolic acid chemical peeling improves inflammatory acne eruptions through its inhibitory and bactericidal effects on Propionibacterium acnes.

    PubMed

    Takenaka, Yuko; Hayashi, Nobukazu; Takeda, Mikiko; Ashikaga, Sayaka; Kawashima, Makoto

    2012-04-01

    Glycolic acid chemical peeling is effective for treating comedones, and some clinical data show that it also improves inflammatory eruptions. The purpose of this study was to identify the mechanism of glycolic acid chemical peeling to improve inflammatory acne. To assess growth inhibitory and bactericidal effects of glycolic acid on Propionibacterium acnes in vitro, we used an agar diffusion method and a time-kill method. To reveal bactericidal effects in vivo, we established an agar-attached method which correlated well with the ordinary swab-wash method, and we used the agar-attached method to compare the numbers of propionibacteria on the cheek treated with glycolic acid chemical peeling. Our results show that 30% glycolic acid (at pH 1.5, 3.5 and 5.5) formed growth inhibitory circles in the agar diffusion method, but the diameters of those circles were smaller than with 1% nadifloxacin lotion or 1% clindamycin gel. In the time-kill method, 30% glycolic acid (at pH 1.5 and 3.5) or 1% nadifloxacin lotion reduced the number of P. acnes to less than 100 CFU/mL within 5 min. In contrast, in 30% glycolic acid (at pH 5.5) or in 1% clindamycin gel, P. acnes survived for more than 4 h. Chemical peeling with 35% glycolic acid (at pH 1.2) decreased the number of propionibacteria on the cheeks of patients compared with untreated controls (P < 0.01). Our results demonstrate that glycolic acid has moderate growth inhibitory and bactericidal effects on P. acnes, and that chemical peeling with glycolic acid works on inflammatory acne via those effects. PMID:21950544

  6. Inhibitory effect of boric acid on intergranular attack and stress corrosion cracking of Alloy 600 in high temperature water

    SciTech Connect

    Kawamura, H.; Hirano, H.; Koike, M.; Suda, M.

    1995-09-01

    The inhibitory effect of boric acid on the Intergranular Attack and Stress Corrosion Cracking (IGA/SCC) propagation behavior of steam generator (SG) tubing was studied under accelerated test conditions. Based on the analysis results of stress intensity factors at IGA/SCC crack tips, the notched C-ring tests were carried out to evaluate the effect of stress intensity and boric acid on the IGA/SCC crack propagation. The A.C. impedance measurement and Auger electron spectroscopy (AES) were also conducted to clarify the inhibitory effect of boric acid. Notched C-ring test results indicated that IGA/SCC crack velocity of alloy 600 increased gradually with increasing stress intensity factor in the range 4 to about 26 MPa{center_dot}m{sup 1/2}, which might be loaded on the IGA/SCC crack tips of actual SG tubes under PWR secondary conditions. Adding boric acid slightly retarded the crack velocity in both all volatile treatment (AVT) water and caustic solutions. IGA/SCC crack velocities were lower in nearly neutral solutions than in alkali or acidic solutions. Furthermore, A.C. impedance studies showed that the polarization resistances of oxide films formed in boric acid solutions were higher than those of films formed in acidic and alkali solutions. AES analysis revealed that boron content in the oxide films formed in acidic solution containing boric acid was lowest. Good agreement was obtained between the IGA/SCC inhibitory effect of boric acid and the formation of the stable oxide films containing boron.

  7. Glycolic acid chemical peeling improves inflammatory acne eruptions through its inhibitory and bactericidal effects on Propionibacterium acnes.

    PubMed

    Takenaka, Yuko; Hayashi, Nobukazu; Takeda, Mikiko; Ashikaga, Sayaka; Kawashima, Makoto

    2012-04-01

    Glycolic acid chemical peeling is effective for treating comedones, and some clinical data show that it also improves inflammatory eruptions. The purpose of this study was to identify the mechanism of glycolic acid chemical peeling to improve inflammatory acne. To assess growth inhibitory and bactericidal effects of glycolic acid on Propionibacterium acnes in vitro, we used an agar diffusion method and a time-kill method. To reveal bactericidal effects in vivo, we established an agar-attached method which correlated well with the ordinary swab-wash method, and we used the agar-attached method to compare the numbers of propionibacteria on the cheek treated with glycolic acid chemical peeling. Our results show that 30% glycolic acid (at pH 1.5, 3.5 and 5.5) formed growth inhibitory circles in the agar diffusion method, but the diameters of those circles were smaller than with 1% nadifloxacin lotion or 1% clindamycin gel. In the time-kill method, 30% glycolic acid (at pH 1.5 and 3.5) or 1% nadifloxacin lotion reduced the number of P. acnes to less than 100 CFU/mL within 5 min. In contrast, in 30% glycolic acid (at pH 5.5) or in 1% clindamycin gel, P. acnes survived for more than 4 h. Chemical peeling with 35% glycolic acid (at pH 1.2) decreased the number of propionibacteria on the cheeks of patients compared with untreated controls (P < 0.01). Our results demonstrate that glycolic acid has moderate growth inhibitory and bactericidal effects on P. acnes, and that chemical peeling with glycolic acid works on inflammatory acne via those effects.

  8. Melanogenesis-inhibitory saccharide fatty acid esters and other constituents of the fruits of Morinda citrifolia (noni).

    PubMed

    Akihisa, Toshihiro; Tochizawa, Shun; Takahashi, Nami; Yamamoto, Ayako; Zhang, Jie; Kikuchi, Takashi; Fukatsu, Makoto; Tokuda, Harukuni; Suzuki, Nobutaka

    2012-06-01

    Five new saccharide fatty acid esters, named nonioside P (3), nonioside Q (4), nonioside R (8), nonioside S (10), and nonioside T (14), and one new succinic acid ester, butyl 2-hydroxysuccinate (=4-butoxy-3-hydroxy-4-oxobutanoic acid) (31), were isolated, along with 26 known compounds, including eight saccharide fatty acid esters, 1, 2, 5, 6, 7, 9, 12, and 13, three hemiterpene glycosides, 15, 17, and 18, six iridoid glycosides, 21-25, and 27, and nine other compounds, 20, 28, 29, and 32-37, from a MeOH extract of the fruit of Morinda citrifolia (noni). Upon evaluation of these and five other glycosidic compounds, 11, 16, 19, 26, and 30, from M. citrifolia fruit extract for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), most of the saccharide fatty acid esters, hemiterpene glycosides, and iridoid glycosides showed inhibitory effects with no or almost no toxicity to the cells. These compounds were further evaluated with respect to their cytotoxic activities against two human cancer cell lines (HL-60 and AZ521) and their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells.

  9. Relative efficacies of 1,4-diazepines on GABA-stimulated chloride influx in rat brain vesicles

    SciTech Connect

    Ikeda, Masaaki; Weber, K.H.; Bechtel, W.D.; Malatynska, E.; Yamamura, H.I.

    1989-01-01

    The effects of 1,4-diazepines with two annelated heterocycles (brotizolam (WE 941), ciclotizolam (WE 973) and WE 1008) on gamma-aminobutyric acid (GABA)-stimulated chloride influx into rat brain membrane vesicles were examined. Brotizolam enhanced GABA-stimulated /sup 36/Cl/sup /minus// influx, while ciclotizolam and WE 1008 showed only a small enhancement of GABA-stimulated /sup 36/Cl/sup /minus// uptake. Brotizolam resulted in a left shift of the GABA dose response curve at lower concentrations of GABA, while at higher concentrations of GABA, brotizolam caused a reduction of the maximal response. The enhancement of GABA-stimulated /sup 36/Cl/sup /minus// uptake by brotizolam was antagonized by Ro 15-1788. At higher concentration of GABA (300 /mu/M), brotizolam inhibited GABA-stimulated /sup 36/Cl/sup /minus// uptake in a dose dependent manner and Ro 15-1788 failed to antagonize this effect.

  10. Acute larvicidal activity against mosquitoes and oxygen consumption inhibitory activity of dihydroguaiaretic acid derivatives.

    PubMed

    Nishiwaki, Hisashi; Tabara, Yoshimi; Kishida, Taro; Nishi, Kosuke; Shuto, Yoshihiro; Sugahara, Takuya; Yamauchi, Satoshi

    2015-03-11

    (-)-Dihydroguaiaretic acid (DGA) and its derivatives having 3-hydroxyphenyl (3-OH-DGA) and variously substituted phenyl groups instead of 3-hydroxy-4-methoxyphenyl groups were synthesized to measure their larvicidal activity against the mosquito Culex pipiens Linnaeus, 1758 (Diptera: Culicidae). Compared with DGA and 3-OH-DGA (LC50 (M), 3.52 × 10(-5) and 4.57 × 10(-5), respectively), (8R,8'R)-lignan-3-ol (3) and its 3-Me (10), 2-OH (12), 3-OH (13), and 2-OMe (15) derivatives showed low potency (ca. 6-8 × 10(-5) M). The 4-Me derivative (11) showed the lowest potency (12.1 × 10(-5) M), and the 2-F derivative (4) showed the highest (2.01 × 10(-5) M). All of the synthesized compounds induced an acute toxic symptom against mosquito larvae, with potency varying with the type and position of the substituents. The 4-F derivative (6), which killed larvae almost completely within 45 min, suppressed the O2 consumption of the mitochondrial fraction, demonstrating that this compound inhibited mitochondrial O2 consumption contributing to a respiratory inhibitory activity.

  11. Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process.

    PubMed

    Zonta, Z; Alves, M M; Flotats, X; Palatsi, J

    2013-03-01

    Mathematical modelling of anaerobic digestion process has been used to give new insights regarding dynamics of the long chain fatty acids (LCFA) inhibition. Previously published experimental data, including batch tests with clay mineral bentonite additions, were used for parameter identification. New kinetics were considered to describe the bio-physics of the inhibitory process, including: i) adsorption of LCFA over granular biomass and ii) specific LCFA substrate (saturated/unsaturated) and LCFA-degrading populations. Furthermore, iii) a new variable was introduced to describe the state of damage of the acetoclastic methanogens in order to account for the loss of cell-functionality (inhibition) induced by the adsorbed LCFAs. The proposed model modifications are state compatible and easy to be integrated into the International Water Association's Anaerobic Digestion Model N°1 (ADM1) framework. Practical identifiability of model parameters was assessed with a global sensitivity analysis, while calibration and model structure validation were performed on independent data sets. A reliable simulation of the LCFA-inhibition process can be achieved, if the model includes the description of the adsorptive nature of the LCFAs and the LCFA-damage over specific biomass. The importance of microbial population structure (saturated/unsaturated LCFA-degraders) and the high sensitivity of acetoclastic population to LCFA are evidenced, providing a plausible explanation of experimental based hypothesis. PMID:23276428

  12. Inhibitory Effects of Glycyrrhetinic Acid on DNA Polymerase and Inflammatory Activities

    PubMed Central

    Ishida, Tsukasa; Mizushina, Yoshiyuki; Yagi, Saori; Irino, Yasuhiro; Nishiumi, Shin; Miki, Ikuya; Kondo, Yasuyuki; Mizuno, Shigeto; Yoshida, Hiromi; Azuma, Takeshi; Yoshida, Masaru

    2012-01-01

    We investigated the inhibitory effect of three glycyrrhizin derivatives, such as Glycyrrhizin (compound 1), dipotassium glycyrrhizate (compound 2) and glycyrrhetinic acid (compound 3), on the activity of mammalian pols. Among these derivatives, compound 3 was the strongest inhibitor of mammalian pols α, β, κ, and λ, which belong to the B, A, Y, and X families of pols, respectively, whereas compounds 1 and 2 showed moderate inhibition. Among the these derivatives tested, compound 3 displayed strongest suppression of the production of tumor necrosis factor-α (TNF-α) induced by lipopolysaccharide (LPS) in a cell-culture system using mouse macrophages RAW264.7 and peritoneal macrophages derived from mice. Moreover, compound 3 was found to inhibit the action of nuclear factor-κB (NF-κB) in engineered human embryonic kidney (HEK) 293 cells. In addition, compound 3 caused greater reduction of 12-O-tetradecanoylphorbol-13-acetate-(TPA-) induced acute inflammation in mouse ear than compounds 1 and 2. In conclusion, this study has identified compound 3, which is the aglycone of compounds 1 and 2, as a promising anti-inflammatory candidate based on mammalian pol inhibition. PMID:21785649

  13. The relationship between fearfulness, GABA+, and fear-related BOLD responses in the insula.

    PubMed

    Lipp, Ilona; Evans, C John; Lewis, Caroline; Murphy, Kevin; Wise, Richard G; Caseras, Xavier

    2015-01-01

    The inhibitory neurotransmitter GABA plays a crucial role in anxiety and fear, but its relationship to brain activation during fear reactions is not clear. Previous studies suggest that GABA agonists lead to an attenuation of emotion-processing related BOLD signals in the insula. The aim of this study was to investigate the relationship between GABA concentration and fear-related BOLD responses in this region. In 44 female participants with different levels of fearfulness, GABA concentration in the left insula was measured using a GABA+ MRS acquisition during rest; additionally, BOLD signals were obtained during performance of a fear provocation paradigm. Fearfulness was not associated with GABA+ in the left insula, but could predict fear-related BOLD responses in a cluster in the left anterior insula. The BOLD signal change in this cluster did not correlate with GABA+ concentration. However, we found a significant positive correlation between GABA+ concentration and fear-related BOLD responses in a different cluster that included parts of the left insula, amygdala and putamen. Our findings indicate that low insular GABA concentration is not a predisposition for fearfulness, and that several factors influence whether a correlation between GABA and BOLD can be found.

  14. Inhibitory effect of aroma on the bitterness of branched-chain amino acid solutions.

    PubMed

    Mukai, Junji; Tokuyama, Emi; Ishizaka, Toshihiko; Okada, Sachie; Uchida, Takahiro

    2007-11-01

    Nutritional products for patients with liver failure available on the Japanese market contain many branched-chain amino acids (BCAAs) such as L-leucine, L-isoleucine, and L-valine, which not only have a bitter taste but also strong, unpleasant odours, leading to low palatability. The palatability of these nutritional products can be significantly improved by the addition of flavoured powders containing various kinds of tastants (sucrose, citric acid, etc.) and odourants (fruit, coffee aromas, etc.). The specific effects of the aroma of flavoured powders have not yet been clearly evaluated. In the present article, the inhibitory effect of aroma on the bitterness of BCAA solutions was examined. The bitterness intensity of a BCAA solution at the same concentration as Aminoleban EN was defined as 3.5 (measured by a previously described gustatory sensation method). The bitterness threshold of a BCAA standard solution without added aroma was estimated to be 1.87, while those of BCAA solutions containing green-tea, coffee, apple, vanilla, or strawberry aromas were 2.02, 1.98, 2.35, 2.40 and 2.87, respectively, when evaluated by the probit method. This shows that the addition of an aroma can elevate the bitterness threshold in human volunteers. The green-tea and coffee aromas predominantly evoked bitterness, while the vanilla aroma predominantly evoked sweetness. Apple and strawberry aromas evoked both sweetness and sourness, with the apple aroma having stronger sourness and the strawberry aroma stronger sweetness. Thus, a 'sweet' aroma suppresses the bitterness of BCAA, with coexisting sourness also participating in the bitterness inhibition.

  15. A new hexacyclic triterpene acid from the roots of Euscaphis japonica and its inhibitory activity on triglyceride accumulation.

    PubMed

    Li, Yan-Ci; Tian, Ke; Sun, Li-Juan; Long, Hui; Li, Lu-Jun; Wu, Zheng-Zhi

    2016-03-01

    A new taraxerene-type hexacyclic triterpene acid named (12R,13S)-3-methoxy-12,13-cyclo-taraxerene-2,14-diene-1-one-28-oic acid (1), together with a known compound 3,7-dihydroxy-5-octanolide (2), was isolated from the roots of Euscaphis japonica. The structure of new compound 1 was elucidated on the basis of NMR, HR-ESIMS and X-ray diffraction analysis. It showed promising inhibitory activity on oleic acid induced triglyceride accumulation on HepG2 cells. PMID:26828452

  16. Control of cortical neuronal migration by glutamate and GABA

    PubMed Central

    Luhmann, Heiko J.; Fukuda, A.; Kilb, W.

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis. PMID:25688185

  17. Control of cortical neuronal migration by glutamate and GABA.

    PubMed

    Luhmann, Heiko J; Fukuda, A; Kilb, W

    2015-01-01

    Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP), respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca(2+) transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e., neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g., anti-epileptics, anesthetics, alcohol) may disturb the normal migration pattern when present during early corticogenesis.

  18. Molecular analysis of the A322D mutation in the GABA receptor alpha-subunit causing juvenile myoclonic epilepsy.

    PubMed

    Krampfl, Klaus; Maljevic, Snezana; Cossette, Patrick; Ziegler, Elke; Rouleau, Guy A; Lerche, Holger; Bufler, Johannes

    2005-07-01

    Juvenile myoclonic epilepsy (JME) belongs to the most common forms of hereditary epilepsy, the idiopathic generalized epilepsies. Although the mode of inheritance is usually complex, mutations in single genes have been shown to cause the disease in some families with autosomal dominant inheritance. The first mutation in a multigeneration JME family has been recently found in the alpha1-subunit of the GABAA receptor (GABRA1), predicting the single amino acid substitution A322D. We further characterized the functional consequences of this mutation by coexpressing alpha1-, beta2- and gamma2-subunits in human embryonic kidney (HEK293) cells. By using an ultrafast application system, mutant receptors have shown reduced macroscopic current amplitudes at saturating GABA concentrations and a highly reduced affinity to GABA compared to the wild-type (WT). Dose-response curves for current amplitudes, activation kinetics, and GABA-dependent desensitization parameters showed a parallel shift towards 30- to 40-fold higher GABA concentrations. Both deactivation and resensitization kinetics were considerably accelerated in mutant channels. In addition, mutant receptors labelled with enhanced green fluorescent protein (EGFP) were not integrated in the cell membrane, in contrast to WT receptors. Therefore, the A322D mutation leads to a severe loss-of-function of the human GABAA receptor by several mechanisms, including reduced surface expression, reduced GABA-sensitivity, and accelerated deactivation. These molecular defects could decrease and shorten the resulting inhibitory postsynaptic currents (IPSCs) in vivo, which can induce a hyperexcitability of the postsynaptic membrane and explain the occurrence of epileptic seizures.

  19. Etomidate, propofol and the neurosteroid THDOC increase the GABA efficacy of recombinant alpha4beta3delta and alpha4beta3 GABA A receptors expressed in HEK cells.

    PubMed

    Meera, Pratap; Olsen, Richard W; Otis, Thomas S; Wallner, Martin

    2009-01-01

    General anesthetics, once thought to exert their effects through non-specific membrane effects, have highly specific ion channel targets that can silence neuronal populations in the nervous system, thereby causing unconsciousness and immobility, characteristic of general anesthesia. Inhibitory GABA(A) receptors (GABA(A)Rs), particularly highly GABA-sensitive extrasynaptic receptor subtypes that give rise to sustained inhibitory currents, are uniquely sensitive to GABA(A)R-active anesthetics. A prominent population of extrasynaptic GABA(A)Rs is made up of alpha4, beta2 or beta3, and delta subunits. Considering the demonstrated importance of GABA receptor beta3 subunits for in vivo anesthetic effects of etomidate and propofol, we decided to investigate the effects of GABA anesthetics on "extrasynaptic" alpha4beta3delta and also binary alpha4beta3 receptors expressed in human embryonic kidney (HEK) cells. Consistent with previous work on similar receptor subtypes we show that maximal GABA currents through "extrasynaptic" alpha4beta3delta receptors, receptors defined by sensitivity to EtOH (30mM) and the beta-carboline beta-CCE (1microM), are enhanced by the GABA(A)R-active anesthetics etomidate, propofol, and the neurosteroid anesthetic THDOC. Furthermore, we show that receptors formed by alpha4beta3 subunits alone also show high GABA sensitivity and that saturating GABA responses of alpha4beta3 receptors are increased to the same extent by etomidate, propofol, and THDOC as are alpha4beta3delta receptors. Therefore, both alpha4beta3 and alpha4beta3delta receptors show low GABA efficacy, and GABA is also a partial agonist on certain binary alphabeta receptor subtypes. Increasing GABA efficacy on alpha4/6beta3delta and alpha4beta3 receptors is likely to make an important contribution to the anesthetic effects of etomidate, propofol and the neurosteroid THDOC.

  20. Effects of white rice containing enriched gamma-aminobutyric acid on blood pressure

    PubMed Central

    Nishimura, Mie; Yoshida, Shin-ichi; Haramoto, Masafumi; Mizuno, Hidenori; Fukuda, Tomohiko; Kagami-Katsuyama, Hiroyo; Tanaka, Aiko; Ohkawara, Tatsuya; Sato, Yuji; Nishihira, Jun

    2015-01-01

    Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter with beneficial effects including antihypertension and antistress properties. In this study, we examined the effects of GABA-enriched white rice (GABA rice) on blood pressure (BP) in 39 mildly hypertensive adults in a randomized, double-blind, placebo-controlled study. The participants were divided into a test group (n = 22) who consumed rice with 11.2 mg GABA/100 g of rice and a placebo group (n = 17) who consumed rice with 2.7 mg GABA/100 g of rice. For 8 weeks, the participants took 150 g of either the GABA rice or the placebo rice. Hematological examinations were performed on both groups at 0, 4, and 8 weeks after the start of rice consumption. Home BP was self-measured two times daily, morning and evening, from 1 weeks before to 2 weeks after the intervention. Although the hospital BP and evening BP measurements of the participants showed no significant change, consumption of the GABA rice improved the morning BP compared with the placebo rice after the 1st week and during the 6th and 8th weeks. These results showed the possibility that the GABA rice improves morning hypertension. PMID:26870683

  1. Inhibitory activities of propolis and its promising component, caffeic acid phenethyl ester, against amyloidogenesis of human transthyretin.

    PubMed

    Yokoyama, Takeshi; Kosaka, Yuto; Mizuguchi, Mineyuki

    2014-11-13

    Transthyretin (TTR) is a homotetrameric serum protein associated with amyloidoses such as familial amyloid polyneuropathy and senile systemic amyloidosis. The amyloid fibril formation of TTR can be inhibited through stabilization of the TTR tetramer by the binding of small molecules. In this study, we examined the inhibitory potency of caffeic acid phenethyl ester (CAPE) and its derivatives. Thioflavin T assay showed that CAPE suppressed the amyloid fibril formation of TTR. Comparative analysis of the inhibitory potencies revealed that phenethyl ferulate was the most potent among the CAPE derivatives. The binding of phenethyl ferulate and the selected compounds to TTR were confirmed by the 8-anilino-1-naphthalenesulfonic acid displacement and X-ray crystallography. It was also demonstrated that Bio 30, which is a CAPE-rich commercially available New Zealand propolis, inhibited TTR amyloidogenesis and stabilized the TTR tetramer. These results suggested that a propolis may be efficient for preventing TTR amyloidosis. PMID:25314129

  2. Estimation of ambient GABA levels in layer I of the mouse neonatal cortex in brain slices.

    PubMed

    Dvorzhak, Anton; Myakhar, Olga; Unichenko, Petr; Kirmse, Knut; Kirischuk, Sergei

    2010-07-01

    GABAergic synapses on Cajal-Retzius neurons in layer I of the murine neocortex experience GABA(B) receptor (GABA(B)R)-mediated tonic inhibition. Extracellular GABA concentration ([GABA](o)) that determines the strength of GABA(B)R-mediated inhibition is controlled by GABA transporters (GATs). In this study, we hypothesized that the strength of presynaptic GABA(B)R activation reflects [GABA](o) in the vicinity of synaptic contacts. Slices obtained from two age groups were used, namely postnatal days (P)2-3 and P5-7. GABAergic postsynaptic currents (IPSCs) were recorded using the whole-cell patch-clamp technique. Minimal electrical stimulation in layer I was applied to elicit evoked IPSCs (eIPSCs) using a paired-pulse protocol. Three parameters were selected for comparison: the mean eIPSC amplitude, paired-pulse ratio, and failure rate. When GAT-1 and GAT-2/3 were blocked by NO-711 (10 microM) and SNAP-5114 (40 microM), respectively, no tonic GABA(B)R-mediated inhibition was observed. In order to restore the control levels of GABA(B)R-mediated inhibition, 250 and 125 nm exogenous GABA was required at P2-3 and P5-7, respectively. Addition of 3-mercaptopropionic acid, a glutamate decarboxylase inhibitor, did not significantly change the obtained values arguing against the suggestion that a mechanism different from GATs contributes to [GABA](o) control. We conclude that juxtasynaptic [GABA](o) is higher (about 250 nM) at P2-3 than at P5-7 (about 125 nM). As both radial cell migration and corticogenesis in general are strongly dependent on [GABA](o) and the formation of the last layer 2/3 is finished by P4 in rodents, the observed [GABA](o) reduction in layer I might reflect this crucial event in the cortical development. PMID:20421290

  3. Comparative density of CCK- and PV-GABA cells within the cortex and hippocampus

    PubMed Central

    Whissell, Paul D.; Cajanding, Janine D.; Fogel, Nicole; Kim, Jun Chul

    2015-01-01

    Cholecystokinin (CCK)- and parvalbumin (PV)-expressing neurons constitute the two major populations of perisomatic GABAergic neurons in the cortex and the hippocampus. As CCK- and PV-GABA neurons differ in an array of morphological, biochemical and electrophysiological features, it has been proposed that they form distinct inhibitory ensembles which differentially contribute to network oscillations and behavior. However, the relationship and balance between CCK- and PV-GABA neurons in the inhibitory networks of the brain is currently unclear as the distribution of these cells has never been compared on a large scale. Here, we systemically investigated the distribution of CCK- and PV-GABA cells across a wide number of discrete forebrain regions using an intersectional genetic approach. Our analysis revealed several novel trends in the distribution of these cells. While PV-GABA cells were more abundant overall, CCK-GABA cells outnumbered PV-GABA cells in several subregions of the hippocampus, medial prefrontal cortex and ventrolateral temporal cortex. Interestingly, CCK-GABA cells were relatively more abundant in secondary/association areas of the cortex (V2, S2, M2, and AudD/AudV) than they were in corresponding primary areas (V1, S1, M1, and Aud1). The reverse trend was observed for PV-GABA cells. Our findings suggest that the balance between CCK- and PV-GABA cells in a given cortical region is related to the type of processing that area performs; inhibitory networks in the secondary cortex tend to favor the inclusion of CCK-GABA cells more than networks in the primary cortex. The intersectional genetic labeling approach employed in the current study expands upon the ability to study molecularly defined subsets of GABAergic neurons. This technique can be applied to the investigation of neuropathologies which involve disruptions to the GABAergic system, including schizophrenia, stress, maternal immune activation and autism. PMID:26441554

  4. Inhibitory modulation of optogenetically identified neuron subtypes in the rostral solitary nucleus.

    PubMed

    Chen, Z; Travers, S P; Travers, J B

    2016-08-01

    Inhibition is presumed to play an important role in gustatory processing in the rostral nucleus of the solitary tract (rNST). One source of inhibition, GABA, is abundant within the nucleus and comes both from local, intrasolitary sources and from outside the nucleus. In addition to the receptor-mediated effects of GABA on rNST neurons, the hyperpolarization-sensitive currents, Ih and IA, have the potential to further modulate afferent signals. To elucidate the effects of GABAergic modulation on solitary tract (ST)-evoked responses in phenotypically defined rNST neurons and to define the presence of IA and Ih in the same cells, we combined in vitro recording and optogenetics in a transgenic mouse model. This mouse expresses channelrhodopsin 2 (ChR2) in GAD65-expressing GABAergic neurons throughout the rNST. GABA positive (GABA+) neurons differed from GABA negative (GABA-) neurons in their response to membrane depolarization and ST stimulation. GABA+ neurons had lower thresholds to direct membrane depolarization compared with GABA- neurons, but GABA- neurons responded more faithfully to ST stimulation. Both IA and Ih were present in subsets of GABA+ and GABA- neurons. Interestingly, GABA+ neurons with Ih were more responsive to afferent stimulation than inhibitory neurons devoid of these currents, whereas GABA- neurons with IA were more subject to inhibitory modulation. These results suggest that the voltage-gated channels underlying IA and Ih play an important role in modulating rNST output through a circuit of feedforward inhibition. PMID:27146980

  5. Gain adjustment of inhibitory synapses in the auditory system.

    PubMed

    Kotak, Vibhakar C; Sanes, Dan H

    2003-11-01

    A group of central auditory neurons residing in the lateral superior olivary nucleus (LSO) responds selectively to interaural level differences and may contribute to sound localization. In this simple circuit, ipsilateral sound increases firing of LSO neurons, whereas contralateral sound inhibits the firing rate via activation of the medial nucleus of the trapezoid body (MNTB). During development, individual MNTB fibers arborize within the LSO, but they undergo a restriction of their boutons that ultimately leads to mature topography. A critical issue is whether a distinct form of inhibitory synaptic plasticity contributes to MNTB synapse elimination within LSO. Whole-cell recording from LSO neurons in brain slices from developing gerbils show robust long-term depression (LTD) of the MNTB-evoked IPSP/Cs when the MNTB was activated at a low frequency (1 Hz). These inhibitory synapses also display mixed GABA/glycinergic transmission during development, as assessed physiologically and immunohistochemically (Kotak et al. 1998). While either glycine or GABA(A) receptors could independently display inhibitory LTD, focal delivery of GABA, but not glycine, at the postsynaptic-locus induces depression. Furthermore, the GABA(B) receptor antagonist, SCH-50911, prevents GABA or synaptically induced depression. Preliminary evidence also indicated strengthening of inhibitory transmission (LTP) by a distinct pattern of inhibitory activity. These data support the idea that GABA is crucial for the expression inhibitory LTD and that this plasticity may underlie the early refinement of inhibitory synaptic connections in the LSO. PMID:14669016

  6. Gain adjustment of inhibitory synapses in the auditory system.

    PubMed

    Kotak, Vibhakar C; Sanes, Dan H

    2003-11-01

    A group of central auditory neurons residing in the lateral superior olivary nucleus (LSO) responds selectively to interaural level differences and may contribute to sound localization. In this simple circuit, ipsilateral sound increases firing of LSO neurons, whereas contralateral sound inhibits the firing rate via activation of the medial nucleus of the trapezoid body (MNTB). During development, individual MNTB fibers arborize within the LSO, but they undergo a restriction of their boutons that ultimately leads to mature topography. A critical issue is whether a distinct form of inhibitory synaptic plasticity contributes to MNTB synapse elimination within LSO. Whole-cell recording from LSO neurons in brain slices from developing gerbils show robust long-term depression (LTD) of the MNTB-evoked IPSP/Cs when the MNTB was activated at a low frequency (1 Hz). These inhibitory synapses also display mixed GABA/glycinergic transmission during development, as assessed physiologically and immunohistochemically (Kotak et al. 1998). While either glycine or GABA(A) receptors could independently display inhibitory LTD, focal delivery of GABA, but not glycine, at the postsynaptic-locus induces depression. Furthermore, the GABA(B) receptor antagonist, SCH-50911, prevents GABA or synaptically induced depression. Preliminary evidence also indicated strengthening of inhibitory transmission (LTP) by a distinct pattern of inhibitory activity. These data support the idea that GABA is crucial for the expression inhibitory LTD and that this plasticity may underlie the early refinement of inhibitory synaptic connections in the LSO.

  7. Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues.

    PubMed

    Pettenuzzo, Leticia F; Ferreira, Gustavo da C; Schmidt, Anna Laura; Dutra-Filho, Carlos S; Wyse, Angela T S; Wajner, Moacir

    2006-02-01

    Methylmalonic acidemia is an inherited metabolic disorder biochemically characterized by tissue accumulation of methylmalonic acid (MMA) and clinically by progressive neurological deterioration and kidney failure, whose pathophysiology is so far poorly established. Previous studies have shown that MMA inhibits complex II of the respiratory chain in rat cerebral cortex, although no inhibition of complexes I-V was found in bovine heart. Therefore, in the present study we investigated the in vitro effect of 2.5mM MMA on the activity of complexes I-III, II, II-III and IV in striatum, hippocampus, heart, liver and kidney homogenates from young rats. We observed that MMA caused a significant inhibition of complex II activity in striatum and hippocampus (15-20%) at low concentrations of succinate in the medium, but not in the peripheral tissues. We also verified that the inhibitory property of MMA only occurred after exposing brain homogenates for at least 10 min with the acid, suggesting that this inhibition was mediated by indirect mechanisms. Simultaneous preincubation with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) and catalase (CAT) plus superoxide dismutase (SOD) did not prevent MMA-induced inhibition of complex II, suggesting that common reactive oxygen (superoxide, hydrogen peroxide and hydroxyl radical) and nitric (nitric oxide) species were not involved in this effect. In addition, complex II-III (20-35%) was also inhibited by MMA in all tissues tested, and complex I-III only in the kidney (53%) and liver (38%). In contrast, complex IV activity was not changed by MMA in all tissues studied. These results indicate that MMA differentially affects the activity of the respiratory chain pending on the tissues studied, being striatum and hippocampus more vulnerable to its effect. In case our in vitro data are confirmed in vivo in tissues from methylmalonic acidemic patients, it is feasible that that the present findings may be

  8. Differential distribution of glutamate- and GABA-gated chloride channels in the housefly Musca domestica.

    PubMed

    Kita, Tomo; Ozoe, Fumiyo; Azuma, Masaaki; Ozoe, Yoshihisa

    2013-09-01

    l-Glutamic acid (glutamate) mediates fast inhibitory neurotransmission by affecting glutamate-gated chloride channels (GluCls) in invertebrates. The molecular function and pharmacological properties of GluCls have been well studied, but not much is known about their physiological role and localization in the insect body. The distribution of GluCls in the housefly (Musca domestica L.) was thus compared with the distribution of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls). Quantitative PCR and ligand-binding experiments indicate that the GluCl and GABACl transcripts and proteins are predominantly expressed in the adult head. Intense GluCl immunostaining was detected in the lamina, leg motor neurons, and legs of adult houseflies. The GABACl (Rdl) immunostaining was more widely distributed, and was found in the medulla, lobula, lobula plate, mushroom body, antennal lobe, and ellipsoid body. The present findings suggest that GluCls have physiological roles in different tissues than GABACls.

  9. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1S ,3S)-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    DOE PAGES

    Lee, Hyunbeom; Doud, Emma H.; Wu, Rui; Sanishvili, Ruslan; Juncosa, Jose I.; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B.

    2015-01-23

    γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently,more » CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. Ultimately, this represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.« less

  10. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1S,3S)-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    PubMed Central

    2016-01-01

    γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5′-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general. PMID:25616005

  11. In vitro and in silico studies of the inhibitory effects of some novel kojic acid derivatives on tyrosinase enzyme

    PubMed Central

    Asadzadeh, Azizeh; Sirous, Hajar; Pourfarzam, Morteza; Yaghmaei, Parichehreh; Afshin, Fassihi

    2016-01-01

    Objective(s): Tyrosinase is a key enzyme in pigment synthesis. Overproduction of melanin in parts of the skin results in hyperpigmentation diseases. This enzyme is also responsible for the enzymatic browning in fruits and vegetables. Thus, its inhibitors are of great importance in the medical, cosmetic and agricultural fields. Materials and Methods: A series of twelve kojic acid derivatives were designed to be evaluated as tyrosinase activity inhibitors. The potential inhibitory activity of these compounds was investigated in silico using molecular docking simulation method. Four compounds with a range of predicted tyrosinase inhibitory activities were prepared and their inhibitory effect on tyrosinase activity was evaluated. The antioxidant properties of these compounds were also investigated by in vitro DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydrogen peroxide scavenging assays. Results: Compound IIId exhibited the highest tyrosinase inhibitory activity with an IC50 value of 0.216 ± 0.009 mM which was in accordance with the in silico ΔGbind results (-13.24 Kcal/mol). Conclusion: Based on the docking studies, from the twelve compounds studied, one (IIId) appeared to have the highest inhibition on tyrosinase activity. This was confirmed by enzyme activity measurements. Compound IIId has an NO2 group which binds to both of Cu2+ ions located inside the active site of the enzyme. This compound appeared to be even stronger than kojic acid in inhibiting tyrosinase activity. The DPPH free radical scavenging ability of all the studied compounds was more than that of BHT. However, they were not as strong as BHT or gallic acid in scavenging hydrogen peroxide. PMID:27081457

  12. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target

    PubMed Central

    Paz, Jeanne T.; Wang, Eric Hou Jen; Badgely, Corrine; Olson, Andrew; Micheva, Kristina D.; Wang, Gordon; Lemmens, Robin; Tran, Kevin V.; Nishiyama, Yasuhiro; Liang, Xibin; Hamilton, Scott A.; O’Rourke, Nancy; Smith, Stephen J.; Huguenard, John R.; Bliss, Tonya M.

    2016-01-01

    Ischaemic stroke is the leading cause of severe long-term disability yet lacks drug therapies that promote the repair phase of recovery. This repair phase of stroke occurs days to months after stroke onset and involves brain remapping and plasticity within the peri-infarct zone. Elucidating mechanisms that promote this plasticity is critical for the development of new therapeutics with a broad treatment window. Inhibiting tonic (extrasynaptic) GABA signalling during the repair phase was reported to enhance functional recovery in mice suggesting that GABA plays an important function in modulating brain repair. While tonic GABA appears to suppress brain repair after stroke, less is known about the role of phasic (synaptic) GABA during the repair phase. We observed an increase in postsynaptic phasic GABA signalling in mice within the peri-infarct cortex specific to layer 5; we found increased numbers of α1 receptor subunit-containing GABAergic synapses detected using array tomography, and an associated increased efficacy of spontaneous and miniature inhibitory postsynaptic currents in pyramidal neurons. Furthermore, we demonstrate that enhancing phasic GABA signalling using zolpidem, a Food and Drug Administration (FDA)-approved GABA-positive allosteric modulator, during the repair phase improved behavioural recovery. These data identify potentiation of phasic GABA signalling as a novel therapeutic strategy, indicate zolpidem’s potential to improve recovery, and underscore the necessity to distinguish the role of tonic and phasic GABA signalling in stroke recovery. PMID:26685158

  13. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid.

    PubMed

    Saghaie, L; Pourfarzam, M; Fassihi, A; Sartippour, B

    2013-10-01

    Tyrosinase is a multifunctional oxidase that is widely distributed in nature. It is a key enzyme in melanin biosynthesis and is involved in determining the color of mammalian skin and hair. In addition it is responsible for the undesirable enzymatic browning that occurs in plant-derived foods, limiting the shelf-life of fresh-cut products with the resultant economic loss. In recent years there has been considerable interest to study the inhibitory activity of tyrosinase and a number of inhibitory compounds derived from natural sources or partly/fully synthetic have been described. However, the current conventional methods to control tyrosinase action are inadequate. Considering the significant industrial and economic impact of the inhibitors of tyrosinase, this study was set to seek new potent inhibitors of this enzyme. A series of 3-hydroxypyridine-4-one derivatives were prepared in high yield and evaluated for their inhibitory activity on tyrosinase enzyme using dopachrome method. Our results show that all synthesized compounds have inhibitory effect on tyrosinase activity for the oxidation of L-DOPA. Among compounds studied those containing two free hydroxyl group (ie Va and V'a) were more potent than their analogues with one hydroxyl group (ie Vb and V'b). Also substitution of a methyl group on position N(1) of the hydroxypyridinone ring seems to confer more inhibitory potency.

  14. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid.

    PubMed

    Saghaie, L; Pourfarzam, M; Fassihi, A; Sartippour, B

    2013-10-01

    Tyrosinase is a multifunctional oxidase that is widely distributed in nature. It is a key enzyme in melanin biosynthesis and is involved in determining the color of mammalian skin and hair. In addition it is responsible for the undesirable enzymatic browning that occurs in plant-derived foods, limiting the shelf-life of fresh-cut products with the resultant economic loss. In recent years there has been considerable interest to study the inhibitory activity of tyrosinase and a number of inhibitory compounds derived from natural sources or partly/fully synthetic have been described. However, the current conventional methods to control tyrosinase action are inadequate. Considering the significant industrial and economic impact of the inhibitors of tyrosinase, this study was set to seek new potent inhibitors of this enzyme. A series of 3-hydroxypyridine-4-one derivatives were prepared in high yield and evaluated for their inhibitory activity on tyrosinase enzyme using dopachrome method. Our results show that all synthesized compounds have inhibitory effect on tyrosinase activity for the oxidation of L-DOPA. Among compounds studied those containing two free hydroxyl group (ie Va and V'a) were more potent than their analogues with one hydroxyl group (ie Vb and V'b). Also substitution of a methyl group on position N(1) of the hydroxypyridinone ring seems to confer more inhibitory potency. PMID:24082892

  15. Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid

    PubMed Central

    Saghaie, L; Pourfarzam, M.; Fassihi, A.; Sartippour, B.

    2013-01-01

    Tyrosinase is a multifunctional oxidase that is widely distributed in nature. It is a key enzyme in melanin biosynthesis and is involved in determining the color of mammalian skin and hair. In addition it is responsible for the undesirable enzymatic browning that occurs in plant-derived foods, limiting the shelf-life of fresh-cut products with the resultant economic loss. In recent years there has been considerable interest to study the inhibitory activity of tyrosinase and a number of inhibitory compounds derived from natural sources or partly/fully synthetic have been described. However, the current conventional methods to control tyrosinase action are inadequate. Considering the significant industrial and economic impact of the inhibitors of tyrosinase, this study was set to seek new potent inhibitors of this enzyme. A series of 3-hydroxypyridine-4-one derivatives were prepared in high yield and evaluated for their inhibitory activity on tyrosinase enzyme using dopachrome method. Our results show that all synthesized compounds have inhibitory effect on tyrosinase activity for the oxidation of L-DOPA. Among compounds studied those containing two free hydroxyl group (ie Va and V’a) were more potent than their analogues with one hydroxyl group (ie Vb and V’b). Also substitution of a methyl group on position N1 of the hydroxypyridinone ring seems to confer more inhibitory potency. PMID:24082892

  16. Biphasic GABA-A receptor-mediated effect on the spontaneous activity of the circular layer in cat terminal ileum.

    PubMed

    Pencheva, N; Radomirov, R

    1993-07-01

    1. The GABA and GABA-A receptor agonist muscimol changed the spontaneous mechanical activity of a circular layer isolated from cat terminal ileum, while the selective GABA-B receptor agonist (+/-)baclofen had no effect. 2. GABA at doses ranging from 1 microM to 2 mM elicited concentration-dependent biphasic responses which consisted of a relaxation followed by contraction, with a tonic and a phasic component. The EC50 values, calculated at 95% confidence limits (CL), were 94.9 microM (83.5-109.8 microM) and 66.0 microM (51.2-75.5 microM) for the relaxation and contractile phases, respectively. 3. The GABA-induced biphasic responses were sensitive to bicuculline and picrotoxinin and were entirely mimicked by muscimol. Bicuculline competitively antagonized the effects of GABA and gave closely similar pA2 values for both phases of these responses--inhibitory and stimulatory. Cross-desensitization occurred only between GABA and muscimol and not between (+/-)baclofen and GABA, or (+/-)baclofen and muscimol. 4. Both bicuculline-sensitive phases evoked by GABA and muscimol were abolished by tetrodotoxin or atropine, but were unaffected by guanethidine or naloxone. 5. The present results suggested that the biphasic GABA effect on the mechanical activity of the circular layer in cat terminal ileum was mediated by prejunctional GABA-A receptors, most probably through an action on the cholinergic pathway.

  17. Glutamate and GABA concentration changes in the globus pallidus internus of Parkinson's patients during performance of implicit and declarative memory tasks: a report of two subjects.

    PubMed

    Buchanan, Robert J; Gjini, Klevest; Darrow, David; Varga, Georgeta; Robinson, Jennifer L; Nadasdy, Zoltan

    2015-03-01

    The basal ganglia, typically associated with motor function, are involved in human cognitive processes, as demonstrated in behavioral, lesion, and noninvasive functional neuroimaging studies. Here we report task-contingent changes in concentrations of the neurotransmitters glutamate (Glu) and gamma-aminobutyric acid (GABA) in the globus pallidus internus (GPi) of two patients with Parkinson's disease undergoing deep brain stimulation surgery by utilizing in-vivo microdialysis measurements during performance of implicit and declarative memory tasks. Performance of an implicit memory task (weather prediction task-WPT) was associated with increased levels of glutamate and GABA in the GPi compared to their concentrations at baseline. On the other hand, performance of a declarative memory task (verbal learning task-VLT) was associated with decreased levels of glutamate and GABA in GPi compared to baseline during the encoding and immediate recall phase with less conclusive results during the delayed recall phase. These results are in line with hypothesized changes in these neurotransmitter levels: an increase of excitatory (Glu) input from subthalamic nucleus (STN) to GPi during implicit memory task performance and a decrease of inhibitory inputs (GABA) from globus pallidus externus (GPe) and striatum to GPi during declarative memory performance. Consistent with our previous report on in-vivo neurotransmitter changes during tasks in STN, these data provide corroborative evidence for the direct involvement of basal ganglia in cognitive functions and complements our model of the functional circuitry of basal ganglia in the healthy and Parkinson's disease affected brain.

  18. Evidence for a Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.

    PubMed

    Willford, Samantha L; Anderson, Cynthia M; Spencer, Shelly R; Eskandari, Sepehr

    2015-08-01

    Plasma membrane γ-aminobutyric acid (GABA) transporters (GATs) are electrogenic transport proteins that couple the cotranslocation of Na(+), Cl(-), and GABA across the plasma membrane of neurons and glia. A fundamental property of the transporter that determines its ability to concentrate GABA in cells and, hence, regulate synaptic and extra-synaptic GABA concentrations, is the ion/substrate coupling stoichiometry. Here, we scrutinized the currently accepted 2 Na(+):1 Cl(-):1 GABA stoichiometry because it is inconsistent with the measured net charge translocated per co-substrate (Na(+), Cl(-), and GABA). We expressed GAT1 and GAT3 in Xenopus laevis oocytes and utilized thermodynamic and uptake under voltage-clamp measurements to determine the stoichiometry of the GABA transporters. Voltage-clamped GAT1-expressing oocytes were internally loaded with GABA, and the reversal potential (V rev) of the transporter-mediated current was recorded at different external concentrations of Na(+), Cl(-), or GABA. The shifts in V rev for a tenfold change in the external Na(+), Cl(-), and GABA concentration were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. To determine the net charge translocated per Na(+), Cl(-), and GABA, we measured substrate fluxes under voltage clamp in cells expressing GAT1 or GAT3. Charge flux to substrate flux ratios were 0.7 ± 0.1 charge/Na(+), 2.0 ± 0.2 charges/Cl(-), and 2.1 ± 0.1 charges/GABA. Altogether, our results strongly suggest a 3 Na(+):1 Cl(-):1 GABA coupling stoichiometry for the GABA transporters. The revised stoichiometry has important implications for understanding the contribution of GATs to GABAergic signaling in health and disease.

  19. Inhibitory effect of unconjugated bile acids on the intestinal transport of 5-methyltetrahydrofolate in rat jejunum in vitro.

    PubMed Central

    Said, H M; Hollander, D; Strum, W B

    1984-01-01

    The effect of the unconjugated bile acids, cholic, deoxycholic, chenodeoxycholic, and ursodeoxycholic acids, and of the conjugated bile acid taurocholic acid on the mucosal-to-serosal transport and tissue uptake of the naturally occurring folate derivative, 5-methyltetrahydrofolate (5-CH3H4PteGlu) was examined in everted sacs of rat jejunum. Each of the unconjugated bile acids examined inhibited the transport and tissue uptake of 5-CH3H4PteGlu in a concentration dependent manner. At low concentrations (0.01-0.1 mM) of cholic and deoxycholic acids, no structural or functional damage to the intestinal mucosa occurred and the transport of 5-CH3H4PteGlu was inhibited competitively with Ki values of 0.114 mM and 0.055 mM for cholic and deoxycholic acids, respectively. The greater inhibition of 5-CH3H4PteGlu transport by unconjugated bile acids at 1 mM can be attributed to observed structural and functional damage to the intestinal mucosa. The addition of 2 mM lecithin to the mucosal medium failed to prevent the inhibitory effect of 0.1 mM deoxycholic acid on the transport of 0.5 microM 5-CH3H4PteGlu. Compared with the effect of unconjugated bile acids, the conjugated bile acid taurocholic acid (0.01-5 mM) showed no effect on the transport and tissue uptake of 5-CH3H4PteGlu. The results of this study show that intestinal transport and tissue uptake of 5-CH3H4PteGlu are inhibited by unconjugated bile acids in a dose-dependent fashion. The clinical and physiological implications of these observations are discussed. PMID:6510770

  20. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment

    PubMed Central

    Shabel, Steven J.; Proulx, Christophe D.; Piriz, Joaquin; Malinow, Roberto

    2015-01-01

    The lateral habenula (LHb), a key regulator of monoaminergic brain regions, is activated by negatively-valenced events. Its hyperactivity is associated with depression. While enhanced excitatory input to the LHb has been linked to depression, little is known about inhibitory transmission. We discovered that GABA is co-released with its functional opponent, glutamate, from long-range basal ganglia inputs (which signal negative events) to limit LHb activity in rodents. At this synapse, the balance of GABA/glutamate signaling is shifted towards reduced GABA in a model of depression and increased GABA by antidepressant treatment. GABA and glutamate co-release therefore controls LHb activity, and regulation of this remarkable form of transmission may be important for determining the impact of negative life events on mood and behavior. PMID:25237099

  1. Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model.

    PubMed

    Kiss, Eva; Gorgas, Karin; Schlicksupp, Andrea; Groß, Dagmar; Kins, Stefan; Kirsch, Joachim; Kuhse, Jochen

    2016-09-01

    The pathogenesis of Alzheimer disease (AD) is thought to begin many years before the diagnosis of dementia. Accumulating evidence indicates the involvement of GABAergic neurotransmission in the physiopathology of AD. However, in comparison to excitatory synapses, the structural and functional alterations of inhibitory synapses in AD are less well characterized. We studied the expression and distribution of proteins specific for inhibitory synapses in hippocampal areas of APPPS1 mice at different ages. Interestingly, by immunoblotting and confocal fluorescence microscopy, we disclosed a robust increase in the expression of gephyrin, an organizer of ligand-gated ion channels at inhibitory synapses in hippocampus CA1 and dentate gyrus of young presymptomatic APPPS1 mice (1 to 3 months) as compared to controls. The postsynaptic γ2-GABA(A)-receptor subunit and the presynaptic vesicular inhibitory amino acid transporter protein showed similar expression patterns. In contrast, adult transgenic animals (12 months) displayed decreased levels of these proteins in comparison to wild type in hippocampus areas devoid of amyloid plaques. Within most plaques, strong gephyrin immunoreactivity was detected, partially colocalizing with vesicular amino acid transporter and GABA(A)-receptor γ2 subunit immunoreactivities. Our results indicate a biphasic alteration in expression of hippocampal inhibitory synapse components in AD. Altered inhibition of neurotransmission might be an early prognostic marker and might even be involved in the pathogenesis of AD. PMID:27423698

  2. Biphasic Alteration of the Inhibitory Synapse Scaffold Protein Gephyrin in Early and Late Stages of an Alzheimer Disease Model.

    PubMed

    Kiss, Eva; Gorgas, Karin; Schlicksupp, Andrea; Groß, Dagmar; Kins, Stefan; Kirsch, Joachim; Kuhse, Jochen

    2016-09-01

    The pathogenesis of Alzheimer disease (AD) is thought to begin many years before the diagnosis of dementia. Accumulating evidence indicates the involvement of GABAergic neurotransmission in the physiopathology of AD. However, in comparison to excitatory synapses, the structural and functional alterations of inhibitory synapses in AD are less well characterized. We studied the expression and distribution of proteins specific for inhibitory synapses in hippocampal areas of APPPS1 mice at different ages. Interestingly, by immunoblotting and confocal fluorescence microscopy, we disclosed a robust increase in the expression of gephyrin, an organizer of ligand-gated ion channels at inhibitory synapses in hippocampus CA1 and dentate gyrus of young presymptomatic APPPS1 mice (1 to 3 months) as compared to controls. The postsynaptic γ2-GABA(A)-receptor subunit and the presynaptic vesicular inhibitory amino acid transporter protein showed similar expression patterns. In contrast, adult transgenic animals (12 months) displayed decreased levels of these proteins in comparison to wild type in hippocampus areas devoid of amyloid plaques. Within most plaques, strong gephyrin immunoreactivity was detected, partially colocalizing with vesicular amino acid transporter and GABA(A)-receptor γ2 subunit immunoreactivities. Our results indicate a biphasic alteration in expression of hippocampal inhibitory synapse components in AD. Altered inhibition of neurotransmission might be an early prognostic marker and might even be involved in the pathogenesis of AD.

  3. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. PMID:27542466

  4. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    PubMed

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat.

  5. GABA Signaling and Neuroactive Steroids in Adrenal Medullary Chromaffin Cells

    PubMed Central

    Harada, Keita; Matsuoka, Hidetada; Fujihara, Hiroaki; Ueta, Yoichi; Yanagawa, Yuchio; Inoue, Masumi

    2016-01-01

    Gamma-aminobutyric acid (GABA) is produced not only in the brain, but also in endocrine cells by the two isoforms of glutamic acid decarboxylase (GAD), GAD65 and GAD67. In rat adrenal medullary chromaffin cells only GAD67 is expressed, and GABA is stored in large dense core vesicles (LDCVs), but not synaptic-like microvesicles (SLMVs). The α3β2/3γ2 complex represents the majority of GABAA receptors expressed in rat and guinea pig chromaffin cells, whereas PC12 cells, an immortalized rat chromaffin cell line, express the α1 subunit as well as the α3. The expression of α3, but not α1, in PC12 cells is enhanced by glucocorticoid activity, which may be mediated by both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). GABA has two actions mediated by GABAA receptors in chromaffin cells: it induces catecholamine secretion by itself and produces an inhibition of synaptically evoked secretion by a shunt effect. Allopregnanolone, a neuroactive steroid which is secreted from the adrenal cortex, produces a marked facilitation of GABAA receptor channel activity. Since there are no GABAergic nerve fibers in the adrenal medulla, GABA may function as a para/autocrine factor in the chromaffin cells. This function of GABA may be facilitated by expression of the immature isoforms of GAD and GABAA receptors and the lack of expression of plasma membrane GABA transporters (GATs). In this review, we will consider how the para/autocrine function of GABA is achieved, focusing on the structural and molecular mechanisms for GABA signaling. PMID:27147972

  6. Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese.

    PubMed

    Wemmenhove, Ellen; van Valenberg, Hein J F; Zwietering, Marcel H; van Hooijdonk, Toon C M; Wells-Bennik, Marjon H J

    2016-09-01

    Minimal inhibitory concentrations (MICs) of undissociated lactic acid were determined for six different Listeria monocytogenes strains at 30 °C and in a pH range of 4.2-5.8. Small increments in pH and acid concentrations were used to accurately establish the growth/no growth limits of L. monocytogenes for these acids. The MICs of undissociated lactic acid in the pH range of 5.2-5.8 were generally higher than at pH 4.6 for the different L. monocytogenes strains. The average MIC of undissociated lactic acid was 5.0 (SD 1.5) mM in the pH range 5.2-5.6, which is relevant to Gouda cheese. Significant differences in MICs of undissociated lactic acid were found between strains of L. monocytogenes at a given pH, with a maximum observed level of 9.0 mM. Variations in MICs were mostly due to strain variation. In the pH range 5.2-5.6, the MICs of undissociated lactic acid were not significantly different at 12 °C and 30 °C. The average MICs of undissociated acetic acid, citric acid, and propionic acid were 19.0 (SD 6.5) mM, 3.8 (SD 0.9) mM, and 11.0 (SD 6.3) mM, respectively, for the six L. monocytogenes strains tested in the pH range 5.2-5.6. Variations in MICs of these organic acids for L. monocytogenes were also mostly due to strain variation. The generated data contribute to improved predictions of growth/no growth of L. monocytogenes in cheese and other foods containing these organic acids. PMID:27217360

  7. GABA inhibition of luminescence from lantern shark (Etmopterus spinax) photophores.

    PubMed

    Claes, Julien M; Krönström, Jenny; Holmgren, Susanne; Mallefet, Jérôme

    2011-03-01

    Photogenic organs (photophores) of the velvet belly lantern shark (Etmopterus spinax) are under hormonal control, since melatonin (MT) and prolactin (PRL) trigger luminescence while α-melanocyte-stimulating hormone (α-MSH) prevents this light to be emitted. A recent study supported, however, the presence of numerous nerve fibres in the photogenic tissue of this shark. Immunohistochemical and pharmacological results collected in this work support these nerve fibres to be inhibitory GABAergic nerves since (i) GABA immunoreactivity was detected inside the photogenic tissue, where previous labelling detected the nerve fibre structures and (ii) GABA was able to inhibit MT and PRL-induced luminescence, which was on the other hand increased by the GABA(A) antagonist bicuculline (BICU). In addition, we also demonstrated that BICU can induce light per se by provoking pigment retraction in the pigmented cells composing the iris-like structure of the photophore, attaining, however, only about 10% of hormonally induced luminescence intensity at 10(-3)mol L(-1). This strongly supports that a GABA inhibitory tonus controls photophore "aperture" in the photogenic tissue of E. spinax but also that MT and PRL have more than one target cell type in the photophores.

  8. Improvements in impaired GABA and GAD65/67 production in the spinal dorsal horn contribute to exercise-induced hypoalgesia in a mouse model of neuropathic pain

    PubMed Central

    Taguchi, MS, Satoru; Tajima, Fumihiro; Senba, Emiko

    2016-01-01

    Background Physical exercise effectively attenuates neuropathic pain, and multiple events including the inhibition of activated glial cells in the spinal dorsal horn, activation of the descending pain inhibitory system, and reductions in pro-inflammatory cytokines in injured peripheral nerves may contribute to exercise-induced hypoalgesia. Since fewer GABAergic hypoalgesic interneurons exist in the dorsal horn in neuropathic pain model animals, the recovery of impaired GABAergic inhibition in the dorsal horn may improve pain behavior. We herein determined whether the production of gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD) in the dorsal horn is restored by treadmill running and contributes to exercise-induced hypoalgesia in neuropathic pain model mice. C57BL/6 J mice underwent partial sciatic nerve ligation (PSL). PSL-Runner mice ran on a treadmill at 7 m/min for 60 min/day, 5 days/week, from two days after PSL. Results Mechanical allodynia and heat hyperalgesia developed in PSL-Sedentary mice but were significantly attenuated in PSL-Runner mice. PSL markedly decreased GABA and GAD65/67 levels in neuropils in the ipsilateral dorsal horn, while treadmill running inhibited these reductions. GABA+ neuronal nuclei+ interneuron numbers in the ipsilateral dorsal horn were significantly decreased in PSL-Sedentary mice but not in PSL-Runner mice. Pain behavior thresholds positively correlated with GABA and GAD65/67 levels and GABAergic interneuron numbers in the ipsilateral dorsal horns of PSL-Sedentary and -Runner mice. Conclusions Treadmill running prevented PSL-induced reductions in GAD65/67 production, and, thus, GABA levels may be retained in interneurons and neuropils in the superficial dorsal horn. Therefore, improvements in impaired GABAergic inhibition may be involved in exercise-induced hypoalgesia. PMID:27030712

  9. Pharmacological identification of a guanidine-containing β-alanine analogue with low micromolar potency and selectivity for the betaine/GABA transporter 1 (BGT1).

    PubMed

    Al-Khawaja, Anas; Petersen, Jette G; Damgaard, Maria; Jensen, Mette H; Vogensen, Stine B; Lie, Maria E K; Kragholm, Bolette; Bräuner-Osborne, Hans; Clausen, Rasmus P; Frølund, Bente; Wellendorph, Petrine

    2014-10-01

    The γ-aminobutyric acid (GABA) transporters (GATs) are key membrane transporter proteins involved in the termination of GABAergic signaling at synapses in the mammalian brain and proposed drug targets in neurological disorders such as epilepsy. To date, four different GAT subtypes have been identified: GAT1, GAT2, GAT3 and the betaine/GABA transporter 1 (BGT1). Owing to the lack of potent and subtype selective inhibitors of the non-GAT1 GABA transporters, the physiological role and therapeutic potential of these transporters remain to be fully understood. Based on bioisosteric replacement of the amino group in β-alanine or GABA, a series of compounds was generated, and their pharmacological activity assessed at human GAT subtypes. Using a cell-based [(3)H]GABA uptake assay, several selective inhibitors at human BGT1 were identified. The guanidine-containing compound 9 (2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid hydrochloride) displayed more than 250 times greater potency than the parent compound β-alanine at BGT1 and is thus the most potent inhibitor reported to date for this subtype (IC50 value of 2.5 µM). In addition, compound 9 displayed about 400, 16 and 40 times lower inhibitory potency at GAT1, GAT2 and GAT3, respectively. Compound 9 was shown to be a substrate for BGT1 and to have an overall similar pharmacological profile at the mouse orthologue. Compound 9 constitutes an interesting pharmacological tool for specifically investigating the cellular pharmacology of BGT1 and is the first small-molecule substrate identified with such a high selectivity for BGT1 over the three other GAT subtypes.

  10. GABA distribution in the central vestibular system after retroauricular galvanic stimulation. An immunohistochemical study.

    PubMed

    Okami, K; Sekitani, T; Ogata, M; Matsuda, Y; Ogata, Y; Kanaya, K; Tahara, T

    1991-01-01

    The changes of the neurotransmitter (GABA) distribution in the brain stem of rats by retroauricular galvanic stimulation were investigated using the immunohistochemical method. In the lateral vestibular nucleus GABA-like immunoreactivity was more intensive on the side ipsilateral to the anodal stimulation than on the other side. It is concluded that retroauricular galvanic stimulation causes some changes in the inhibitory activity of the lateral vestibulo-spinal tract and of the spinal motor neuron.

  11. Potent inhibitory effects of D-tagatose on the acid production and water-insoluble glucan synthesis of Streptococcus mutans GS5 in the presence of sucrose.

    PubMed

    Sawada, Daijo; Ogawa, Takaaki; Miyake, Minoru; Hasui, Yoshinori; Yamaguchi, Fuminori; Izumori, Ken; Tokuda, Masaaki

    2015-01-01

    We examined and compared the inhibitory effects of D-tagatose on the growth, acid production, and water-insoluble glucan synthesis of GS5, a bacterial strain of Streptococcus mutans, with those of xylitol, D-psicose, L-psicose and L-tagatose. GS5 was cultured for 12h in a medium containing 10% (w/v) of xylitol, D-psicose, L-psicose, D-tagatose or L-tagatose, and the inhibitory effect of GS5 growth was assessed. Each sugar showed different inhibitory effects on GS5. Both D-tagatose and xylitol significantly inhibited the acid production and water-insoluble glucan synthesis of GS5 in the presence of 1% (w/v) sucrose. However, the inhibitory effect of acid production by D-tagatose was significantly stronger than that of xylitol in presence of sucrose.

  12. Design and synthesis of conformationally constrained analogues of cis-cinnamic acid and evaluation of their plant growth inhibitory activity.

    PubMed

    Nishikawa, Keisuke; Fukuda, Hiroshi; Abe, Masato; Nakanishi, Kazunari; Tazawa, Yuta; Yamaguchi, Chihiro; Hiradate, Syuntaro; Fujii, Yoshiharu; Okuda, Katsuhiro; Shindo, Mitsuru

    2013-12-01

    1-O-cis-Cinnamoyl-β-D-glucopyranose is known to be one of the most potent allelochemical candidates and was isolated from Spiraea thunbergii Sieb by Hiradate et al. (2004), who suggested that it derived its strong inhibitory activity from cis-cinnamic acid, which is crucial for phytotoxicity. In this study, key structural features and substituent effects of cis-cinnamic acid (cis-CA) on lettuce root growth inhibition was investigated. These structure-activity relationship studies indicated the importance of the spatial relationship of the aromatic ring and carboxylic acid moieties. In this context, conformationally constrained cis-CA analogues, in which the aromatic ring and cis-olefin were connected by a carbon bridge, were designed, synthesized, and evaluated as plant growth inhibitors. The results of the present study demonstrated that the inhibitory activities of the five-membered and six-membered bridged compounds were enhanced, up to 0.27 μM, and were ten times higher than cis-CA, while the potency of the other compounds was reduced.

  13. Regulation of Local Ambient GABA Levels via Transporter-Mediated GABA Import and Export for Subliminal Learning.

    PubMed

    Hoshino, Osamu

    2015-06-01

    Perception of supraliminal stimuli might in general be reflected in bursts of action potentials (spikes), and their memory traces could be formed through spike-timing-dependent plasticity (STDP). Memory traces for subliminal stimuli might be formed in a different manner, because subliminal stimulation evokes a fraction (but not a burst) of spikes. Simulations of a cortical neural network model showed that a subliminal stimulus that was too brief (10 msec) to perceive transiently (more than about 500 msec) depolarized stimulus-relevant principal cells and hyperpolarized stimulus-irrelevant principal cells in a subthreshold manner. This led to a small increase or decrease in ongoing-spontaneous spiking activity frequency (less than 1 Hz). Synaptic modification based on STDP during this period effectively enhanced relevant synaptic weights, by which subliminal learning was improved. GABA transporters on GABAergic interneurons modulated local levels of ambient GABA. Ambient GABA molecules acted on extrasynaptic receptors, provided principal cells with tonic inhibitory currents, and contributed to achieving the subthreshold neuronal state. We suggest that ongoing-spontaneous synaptic alteration through STDP following subliminal stimulation may be a possible neuronal mechanism for leaving its memory trace in cortical circuitry. Regulation of local ambient GABA levels by transporter-mediated GABA import and export may be crucial for subliminal learning. PMID:25774546

  14. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    SciTech Connect

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies.

  15. Dynamic changes in gamma-aminobutyric acid and glutamate decarboxylase activity in oats (Avena nuda L.) during steeping and germination.

    PubMed

    Xu, Jian Guo; Hu, Qing Ping; Duan, Jiang Lian; Tian, Cheng Rui

    2010-09-01

    Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the central nervous system and provides beneficial effects for human and other animals health. To accumulate GABA, samples from two different naked oat cultivars, Baiyan II and Bayou I, were steeped and germinated in an incubator. The content of GABA and glutamic acid as well as the activity of the glutamate decarboxylase (GAD) in oats during steeping and germination were investigated with an amino acid automatic analyzer. Compared with raw groats, an increase in GABA content of oat groats during steeping and germination was continuously observed for two oat cultivars. The activity of GAD increased greatly at the end of steeping and the second stage of germination for Baiyan II and Bayou I, respectively. Glutamic acid content of treated oat groats was significantly lower than that in raw groats until the later period of germination. GABA was correlated (p<0.01) significantly and positively with the glutamic acid rather than GAD activity in the current study. The results indicates that steeping and germination process under highly controlled conditions can effectively accumulate the GABA in oat groats for Baiyan II and Bayou I, which would greatly facilitate production of nutraceuticals or food ingredients that enable consumers to gain greater access to the health benefits of oats. However, more assays need to be further performed with more oat cultivars.

  16. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics.

    PubMed

    Jin, Zhe; Bhandage, Amol K; Bazov, Igor; Kononenko, Olga; Bakalkin, Georgy; Korpi, Esa R; Birnir, Bryndis

    2014-01-01

    The central amygdala (CeA) has a role for mediating fear and anxiety responses. It is also involved in emotional imbalance caused by alcohol abuse and dependence and in regulating relapse to alcohol abuse. Growing evidences suggest that excitatory glutamatergic and inhibitory γ-aminobutyric acid-ergic (GABAergic) transmissions in the CeA are affected by chronic alcohol exposure. Human post-mortem CeA samples from male alcoholics (n = 9) and matched controls (n = 9) were assayed for the expression level of ionotropic glutamate and GABA-A receptors subunit mRNAs using quantitative real-time reverse transcription-PCR (RT-qPCR). Our data revealed that out of the 16 ionotropic glutamate receptor subunits, mRNAs encoding two AMPA [2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid] receptor subunits GluA1 and GluA4; one kainate receptor subunit GluK2; one NMDA (N-methyl-D-aspartate) receptor subunit GluN2D and one delta receptor subunit GluD2 were significantly decreased in the CeA of alcoholics. In contrast, of the 19 GABA-A receptor subunits, only the mRNA encoding the α2 subunit was significantly down-regulated in the CeA of the alcoholics as compared with control subjects. Our findings imply that the down-regulation of specific ionotropic glutamate and GABA-A receptor subunits in the CeA of alcoholics may represent one of the molecular substrates underlying the new balance between excitatory and inhibitory neurotransmission in alcohol dependence. PMID:25278838

  17. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1

    PubMed Central

    Ribeiro, Maria J.; Violante, Inês R.; Bernardino, Inês; Edden, Richard A.E.; Castelo-Branco, Miguel

    2016-01-01

    Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and

  18. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1.

    PubMed

    Ribeiro, Maria J; Violante, Inês R; Bernardino, Inês; Edden, Richard A E; Castelo-Branco, Miguel

    2015-03-01

    Neurofibromatosis type 1 (NF1) is a neurodevelopmental disorder characterized by a broad spectrum of cognitive deficits. In particular, executive dysfunction is recognized as a core deficit of NF1, including impairments in executive attention and inhibitory control. Yet, the neural mechanisms behind these important deficits are still unknown. Here, we studied inhibitory control in a visual go/no-go task in children and adolescents with NF1 and age- and gender-matched controls (n = 16 per group). We applied a multimodal approach using high-density electroencephalography (EEG), to study the evoked brain responses, and magnetic resonance spectroscopy (MRS) to measure the levels of GABA and glutamate + glutamine in the medial frontal cortex, a brain region that plays a pivotal role in inhibitory control, and also in a control region, the occipital cortex. Finally, we run correlation analyses to identify the relationship between inhibitory control, levels of neurotransmitters, and EEG markers of neural function. Individuals with NF1 showed impaired impulse control and reduced EEG correlates of early visual processing (parieto-occipital P1) and inhibitory control (frontal P3). MRS data revealed a reduction in medial frontal GABA+/tCr (total Creatine) levels in the NF1 group, in parallel with the already reported reduced occipital GABA levels. In contrast, glutamate + glutamine/tCr levels were normal, suggesting the existence of abnormal inhibition/excitation balance in this disorder. Notably, medial frontal but not occipital GABA levels correlated with general intellectual abilities (IQ) in NF1, and inhibitory control in both groups. Surprisingly, the relationship between inhibitory control and medial frontal GABA was reversed in NF1: higher GABA was associated with a faster response style whereas in controls it was related to a cautious strategy. Abnormal GABAergic physiology appears, thus, as an important factor underlying impaired cognition in NF1, in a level and

  19. Striatal cholinergic interneurons Drive GABA release from dopamine terminals.

    PubMed

    Nelson, Alexandra B; Hammack, Nora; Yang, Cindy F; Shah, Nirao M; Seal, Rebecca P; Kreitzer, Anatol C

    2014-04-01

    Striatal cholinergic interneurons are implicated in motor control, associative plasticity, and reward-dependent learning. Synchronous activation of cholinergic interneurons triggers large inhibitory synaptic currents in dorsal striatal projection neurons, providing one potential substrate for control of striatal output, but the mechanism for these GABAergic currents is not fully understood. Using optogenetics and whole-cell recordings in brain slices, we find that a large component of these inhibitory responses derive from action-potential-independent disynaptic neurotransmission mediated by nicotinic receptors. Cholinergically driven IPSCs were not affected by ablation of striatal fast-spiking interneurons but were greatly reduced after acute treatment with vesicular monoamine transport inhibitors or selective destruction of dopamine terminals with 6-hydroxydopamine, indicating that GABA release originated from dopamine terminals. These results delineate a mechanism in which striatal cholinergic interneurons can co-opt dopamine terminals to drive GABA release and rapidly inhibit striatal output neurons.

  20. Enhanced behavioral sensitivity to the competitive GABA agonist, gaboxadol, in transgenic mice over-expressing hippocampal extrasynaptic alpha6beta GABA(A) receptors.

    PubMed

    Saarelainen, Kati S; Ranna, Martin; Rabe, Holger; Sinkkonen, Saku T; Möykkynen, Tommi; Uusi-Oukari, Mikko; Linden, Anni-Maija; Lüddens, Hartmut; Korpi, Esa R

    2008-04-01

    The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.

  1. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1S ,3S)-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    SciTech Connect

    Lee, Hyunbeom; Doud, Emma H.; Wu, Rui; Sanishvili, Ruslan; Juncosa, Jose I.; Liu, Dali; Kelleher, Neil L.; Silverman, Richard B.

    2015-01-23

    γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. Ultimately, this represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.

  2. Inhibition of recombinant N-type and native high voltage-gated neuronal Ca{sup 2+} channels by AdGABA: Mechanism of action studies

    SciTech Connect

    Martinez-Hernandez, Elizabeth; Sandoval, Alejandro; Gonzalez-Ramirez, Ricardo; Zoidis, Grigoris; Felix, Ricardo

    2011-02-01

    High-voltage activated Ca{sup 2+} (Ca{sub V}) channels play a key role in the regulation of numerous physiological events by causing transient changes in the intracellular Ca{sup 2+} concentration. These channels consist of a pore-forming Ca{sub V}{alpha}{sub 1} protein and three auxiliary subunits (Ca{sub V}{beta}, Ca{sub V}{alpha}{sub 2}{delta} and Ca{sub V}{gamma}). Ca{sub V}{alpha}{sub 2}{delta} is an important component of Ca{sub V} channels in many tissues and of great interest as a drug target. It is well known that anticonvulsant agent gabapentin (GBP) binds to Ca{sub V}{alpha}{sub 2}{delta} and reduces Ca{sup 2+} currents by modulating the expression and/or function of the Ca{sub V}{alpha}{sub 1} subunit. Recently, we showed that an adamantane derivative of GABA, AdGABA, has also inhibitory effects on Ca{sub V} channels. However, the importance of the interaction of AdGABA with the Ca{sub V}{alpha}{sub 2}{delta} subunit has not been conclusively demonstrated and the mechanism of action of the drug has yet to be elucidated. Here, we describe studies on the mechanism of action of AdGABA. Using a combined approach of patch-clamp recordings and molecular biology we show that AdGABA inhibits Ca{sup 2+} currents acting on Ca{sub V}{alpha}{sub 2}{delta} only when applied chronically, both in a heterologous expression system and in dorsal root-ganglion neurons. AdGABA seems to require uptake and be acting intracellularly given that its effects are prevented by an inhibitor of the L-amino acid transport system. Interestingly, a mutation in the Ca{sub V}{alpha}{sub 2}{delta} that abolishes GBP binding did not affect AdGABA actions, revealing that its mechanism of action is similar but not identical to that of GBP. These results indicate that AdGABA is an important Ca{sub V}{alpha}{sub 2}{delta} ligand that regulates Ca{sub V} channels.

  3. Loss of growth inhibitory effects of retinoic acid in human breast cancer cells following long-term exposure to retinoic acid

    PubMed Central

    Stephen, R; Darbre, P D

    2000-01-01

    Although retinoids are known to be inhibitory to breast cancer cell growth, a key remaining question is whether they would remain effective if administered long-term. We describe here the long-term effects of all-trans retinoic acid on two oestrogen-dependent human breast cancer cell lines MCF7 and ZR-75-1. Although both cell lines were growth inhibited by retinoic acid in the short-term in either the absence or the presence of oestradiol, prolonged culture with 1 μM all-trans retinoic acid resulted in the cells acquiring resistance to the growth inhibitory effects of retinoic acid. Time courses showed that oestrogen deprivation of the cell lines resulted in upregulation of the basal non-oestrogen stimulated growth rate such that cells learned to grow at the same rate without as with oestradiol, but the cells remained growth inhibited by retinoic acid throughout. Addition of 1 μM all-trans retinoic acid to steroid deprivation conditions resulted in reproducible loss of growth response to both retinoic acid and oestradiol, although the time courses were separable in that loss of growth response to retinoic acid preceded that of oestradiol. Loss of growth response to retinoic acid did not involve loss of receptors, ER as measured by steroid binding assay or RARα as measured by Northern blotting. Function of the receptors was retained in terms of the ability of both oestradiol and retinoic acid to upregulate pS2 gene expression, but there was reduced ability to upregulate transiently transfected ERE- and RRE-linked reporter genes. Despite the accepted role of IGFBP3 in retinoic acid-mediated growth inhibition, progression to retinoic acid resistance occurred irrespective of level of IGFBP3, which remained high in the resistant MCF7 cells. Measurement of AP1 activity showed that the two cell lines had markedly different basal AP1 activities, but that progression to resistance was accompanied in both cases by a lost ability of retinoic acid to reduce AP1 activity

  4. In vitro inhibitory effect on pancreatic lipase activity of subfractions from ethanol extracts of fermented Oats (Avena sativa L.) and synergistic effect of three phenolic acids.

    PubMed

    Cai, Shengbao; Wang, Ou; Wang, Mengqian; He, Jianfeng; Wang, Yong; Zhang, Di; Zhou, Feng; Ji, Baoping

    2012-07-25

    The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

  5. [Effect of retroauricular galvanic stimulation on the central vestibular system--immunohistochemical evaluation of GABA].

    PubMed

    Okami, K; Sekitani, T

    1990-03-01

    The changes of the neurotransmitter (GABA) distribution in the brain stem of the rats by retroauricular galvanic stimulation were investigated using immunohistochemical method. Twenty-one rats were divided into two groups: the control group which received no galvanic stimulation, and the galvanically stimulated group which received anodal galvanic stimulation (unipolar monoauricular, 5 mA in intensity, 500 msec of duration, 1 Hz in frequency) for 30 minutes. The specimens obtained as usual strict procedure for histological investigation were stained immunohistochemically using antisera against GABA. The results were as follows: 1. In the control group, GABA-like immunoreactivity was observed in all four main vestibular nuclei. In the superior, medial, and descending vestibular nuclei GABA-like immunoreactivity was found in the small cells and the terminals. Giant cells in the lateral vestibular nucleus were surrounded by GABA immunoreactive terminals. 2. In the galvanically stimulated group GABA-like immunoreactivity showed recognizable laterality in the lateral vestibular nucleus where GABA-like immunoreactivity surrounding giant cells showed more intensive on the side ipsilateral to the stimulation compared with the opposite side. On the other hand GABA-like immunoreactivity showed no laterality in the superior, medial, and descending vestibular nuclei. 3. It can be concluded that the retroauricular galvanic stimulation cause some changes in the inhibitory activity of the lateral vestibulo-spinal tract and of the spinal motor neuron.

  6. Extent of colocalization of serotonin and GABA in neurons of the ventral medulla oblongata in rat.

    PubMed

    Millhorn, D E; Hökfelt, T; Seroogy, K; Verhofstad, A A

    1988-09-27

    The colocalization of serotonin (5-hydroxytryptamine; 5-HT) and gamma-aminobutyric acid (GABA) in the ventral aspect of the rat medulla oblongata was studied using antibodies directed against 5-HT and GABA. Although 5-HT- and GABA-immunoreactive cell bodies were observed over the entire rostral-caudal extent of the ventral medulla, the colocalization of these two classical neurotransmitters in single cells was, for the most part, limited to a region that corresponds anatomically to nucleus raphe magnus/nucleus paragigantocellularis. Schematic drawings showing the distribution of 5-HT/GABA cell bodies in the ventral medulla are provided. PMID:3066433

  7. Structure-activity relationships of vanillic acid ester analogs in inhibitory effect of antigen-mediated degranulation in rat basophilic leukemia RBL-2H3 cells.

    PubMed

    Ishimata, Nao; Ito, Hideyuki; Tai, Akihiro

    2016-08-01

    Methyl vanillate (1) showed strong degranulation inhibitory activity among vanillin derivatives tested. In order to find structure-activity relationships for developing anti-allergic agents with simple structures and potent activity, we synthesized several vanillic acid (VA) ester derivatives with C1-C4 and C8 alkyl chains and evaluated their degranulation inhibitory activities. The most active compound of VA ester derivatives was derivative 5 with a C4 straight alkyl chain, and derivative 5 exhibited approximately three-fold greater inhibitory activity than that of 1. Moreover, we designed 8 types of analogs based on 5, and we found that the minimum structure for potent degranulation inhibitory activity requires direct connection of the butyl ester moiety on the benzene ring and at least one hydroxyl group on the benzene ring. Butyl meta or para hydroxyl benzoate (10 or 11) has a simpler structure than that of 5 and exhibited more potent degranulation inhibitory activity than that of 5. PMID:27324979

  8. A study on quality components and sleep-promoting effects of GABA black tea.

    PubMed

    Zhao, Wenfang; Li, Yun; Ma, William; Ge, Yazhong; Huang, Yahui

    2015-10-01

    The aims of this study were to analyze the changes in quality components of gamma (γ)-aminobutyric acid (GABA) black tea during processing, and to investigate the effect of three dosages of GABA black tea on sleep improvement. The results showed that the GABA content was increased significantly up to 2.70 mg g(-1) after vacuum anaerobic and aerobic treatment. In addition, the content of GABA after drying reached 2.34 mg g(-1), which achieved the standard of GABA tea. During the entire processing of GABA black tea, the contents of tea polyphenols, caffeine and total catechins displayed a gradually descending trend, while the contents of free amino acids and GABA were firstly increased, and then reduced. The GABA black tea had significant effects on prolonging the sleeping time with sodium pentobarbital (P < 0.05) and significantly enhancing the sleeping rate induced by sodium pentobarbital at a sub-threshold dose (P < 0.05). But its effect on shortening the sleeping latency period induced by sodium barbital was not significant (P > 0.05). It had no effect on directly inducing sleep and the mouse body weight. The extract of GABA black tea improved the sleeping quality of mice to extend with an optimal effect being found in the high dose-treated mice. PMID:26290415

  9. A study on quality components and sleep-promoting effects of GABA black tea.

    PubMed

    Zhao, Wenfang; Li, Yun; Ma, William; Ge, Yazhong; Huang, Yahui

    2015-10-01

    The aims of this study were to analyze the changes in quality components of gamma (γ)-aminobutyric acid (GABA) black tea during processing, and to investigate the effect of three dosages of GABA black tea on sleep improvement. The results showed that the GABA content was increased significantly up to 2.70 mg g(-1) after vacuum anaerobic and aerobic treatment. In addition, the content of GABA after drying reached 2.34 mg g(-1), which achieved the standard of GABA tea. During the entire processing of GABA black tea, the contents of tea polyphenols, caffeine and total catechins displayed a gradually descending trend, while the contents of free amino acids and GABA were firstly increased, and then reduced. The GABA black tea had significant effects on prolonging the sleeping time with sodium pentobarbital (P < 0.05) and significantly enhancing the sleeping rate induced by sodium pentobarbital at a sub-threshold dose (P < 0.05). But its effect on shortening the sleeping latency period induced by sodium barbital was not significant (P > 0.05). It had no effect on directly inducing sleep and the mouse body weight. The extract of GABA black tea improved the sleeping quality of mice to extend with an optimal effect being found in the high dose-treated mice.

  10. Synthesis and carbonic anhydrase inhibitory properties of amino acid - coumarin/quinolinone conjugates incorporating glycine, alanine and phenylalanine moieties.

    PubMed

    Küçükbay, F Zehra; Küçükbay, Hasan; Tanc, Muhammet; Supuran, Claudiu T

    2016-12-01

    N-Protected amino acids (Gly, Ala and Phe) were reacted with amino substituted coumarin and quinolinone derivatives, leading to the corresponding N-protected amino acid-coumarin/quinolinone conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against various human (h) isoforms, such as hCA I, hCA II, hCA IV and hCA XII. The quinolinone conjugates were inactive as enzyme inhibitors, whereas the coumarins were ineffective hCA I/II inhibitors (KIs > 50 μM) but were submicromolar hCA IV and XII inhibitors, with inhibition constants ranging between 92 nM and 1.19 μM for hCA IV, and between 0.11 and 0.79 μM for hCA XII. These coumarin derivatives, as many others reported earlier, thus show an interesting selective inhibitory profile for the membrane-bound over the cytosolic CA isoforms.

  11. Inhibitory effect of ciprofloxacin on β-glucuronidase-mediated deconjugation of mycophenolic acid glucuronide.

    PubMed

    Kodawara, Takaaki; Masuda, Satohiro; Yano, Yoshitaka; Matsubara, Kazuo; Nakamura, Toshiaki; Masada, Mikio

    2014-07-01

    The interaction between mycophenolate (MPA) and quinolone antibiotics such as ciprofloxacin is considered to reduce the enterohepatic recycling of MPA, which is biotransformed in the intestine from MPA glucuronide (MPAG) conjugate excreted via the biliary system; however, the molecular mechanism underlying this biotransformation of MPA is still unclear. In this study, an in vitro system was established to evaluate β-glucuronidase-mediated deconjugation and to examine the influence of ciprofloxacin on the enzymatic deconjugation of MPAG and MPA resynthesis. Resynthesis of MPA via deconjugation of MPAG increased in a time-dependent manner from 5 to 60 min in the presence of β-glucuronidase. Ciprofloxacin and phenolphthalein-β-d-glucuronide (PhePG), a typical β-glucuronidase substrate, significantly decreased the production of MPA from MPAG in the β-glucuronidase-mediated deconjugation system. In addition, enoxacin significantly inhibited the production of MPA from MPAG, while levofloxacin and ofloxacin had no inhibitory effect on MPA synthesis. Pharmacokinetic analysis revealed that ciprofloxacin showed a dose-dependent inhibitory effect on MPA production from MPAG via β-glucuronidase with a half-maximal inhibitory concentration (IC50 ) value of 30.4 µm. While PhePG inhibited the β-glucuronidase-mediated production of MPA from MPAG in a competitive manner, ciprofloxacin inhibited MPA synthesis via noncompetitive inhibition. These findings suggest that the reduction in the serum MPA concentration during the co-administration of ciprofloxacin is at least in part due to the decreased enterohepatic circulation of MPA because of noncompetitive inhibition of deconjugation of MPAG by intestinal β-glucuronidase.

  12. Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition.

    PubMed

    Kahle, Kristopher T; Schmouth, Jean-François; Lavastre, Valérie; Latremoliere, Alban; Zhang, Jinwei; Andrews, Nick; Omura, Takao; Laganière, Janet; Rochefort, Daniel; Hince, Pascale; Castonguay, Geneviève; Gaudet, Rébecca; Mapplebeck, Josiane C S; Sotocinal, Susana G; Duan, JingJing; Ward, Catherine; Khanna, Arjun R; Mogil, Jeffrey S; Dion, Patrick A; Woolf, Clifford J; Inquimbert, Perrine; Rouleau, Guy A

    2016-03-29

    HSN2is a nervous system predominant exon of the gene encoding the kinase WNK1 and is mutated in an autosomal recessive, inherited form of congenital pain insensitivity. The HSN2-containing splice variant is referred to as WNK1/HSN2. We created a knockout mouse specifically lacking theHsn2exon ofWnk1 Although these mice had normal spinal neuron and peripheral sensory neuron morphology and distribution, the mice were less susceptible to hypersensitivity to cold and mechanical stimuli after peripheral nerve injury. In contrast, thermal and mechanical nociceptive responses were similar to control mice in an inflammation-induced pain model. In the nerve injury model of neuropathic pain, WNK1/HSN2 contributed to a maladaptive decrease in the activity of the K(+)-Cl(-)cotransporter KCC2 by increasing its inhibitory phosphorylation at Thr(906)and Thr(1007), resulting in an associated loss of GABA (γ-aminobutyric acid)-mediated inhibition of spinal pain-transmitting nerves. Electrophysiological analysis showed that WNK1/HSN2 shifted the concentration of Cl(-)such that GABA signaling resulted in a less hyperpolarized state (increased neuronal activity) rather than a more hyperpolarized state (decreased neuronal activity) in mouse spinal nerves. Pharmacologically antagonizing WNK activity reduced cold allodynia and mechanical hyperalgesia, decreased KCC2 Thr(906)and Thr(1007)phosphorylation, and restored GABA-mediated inhibition (hyperpolarization) of injured spinal cord lamina II neurons. These data provide mechanistic insight into, and a compelling therapeutic target for treating, neuropathic pain after nerve injury. PMID:27025876

  13. Caffeoylquinic acid derivatives isolated from the aerial parts of Gynura divaricata and their yeast α-glucosidase and PTP1B inhibitory activity.

    PubMed

    Chen, Jian; Mangelinckx, Sven; Ma, Li; Wang, Zhengtao; Li, Weilin; De Kimpe, Norbert

    2014-12-01

    The phytochemical investigation of natural products of Gynura divaricata led to the isolation of eleven caffeoylquinic acid derivatives. They were characterized by spectrometric methods as 5-O-caffeoylquinic acid (1), 5-O-p-coumaroylquinic acid (2), 5-O-feruloylquinic acid (3), methyl 5-O-caffeoylquinate (4), 3,4-dicaffeoylquinic acid (5), 3,5-dicaffeoylquinic acid (6), 4,5-dicaffeoylquinic acid (7), methyl 3,4-dicaffeoylquinate (8), methyl 3,5-dicaffeoylquinate (9), methyl 4,5-dicaffeoylquinate (10) and ethyl 4,5-dicaffeoylquinate (11). The individual compounds were screened for the inhibition of yeast α-glucosidase and Protein Tyrosine Phosphatase 1B (PTP1B) using in vitro assays. Among the isolated compounds, 3,4-dicaffeoylquinic acid (5), 4,5-dicaffeoylquinic acid (7), methyl 3,4-dicaffeoylquinate (8) and methyl 4,5-dicaffeoylquinate (10) exhibited significant inhibitory activities against α-glucosidase. In addition, 5-O-p-coumaroylquinic acid (2), 3,5-dicaffeoylquinic acid (6) and 4,5-dicaffeoylquinic acid (7) had considerable inhibitory effect against PTP1B. Based on these findings, the caffeoylquinic acid derivatives were deduced to be potentially responsible for the anti-diabetic activity of G. divaricata. The preliminary structure-activity relationship study suggests that the number and positioning of caffeoyl groups in the quinic acid derivatives are important for both α-glucosidase and PTP1B inhibitory potency. Moreover, the corresponding methyl esters of some dicaffeoylquinic acids have enhanced inhibitory activity against yeast α-glucosidase.

  14. GABA and enkephalin tonically alter sympathetic outflows in the rat spinal cord.

    PubMed

    Bowman, Belinda R; Goodchild, Ann K

    2015-12-01

    GABA and enkephalin provide significant innervation of sympathetic preganglionic neurons. Despite some investigation as to the identity of premotor sources of these innervations no comprehensive analyses have been conducted. Similarly, although data describing the cardiovascular effects of blockade of GABAA receptors in the spinal cord is available, the effects at other sympathetic outflows are unknown. In contrast the sympathetic effects of opioid blockade in the spinal cord are unclear. The aims of this study were to identify potential sympathetic premotor sources of GABAergic and enkephalinergic input to the spinal cord and to describe the sympathetic and cardiovascular effects of spinal GABAA receptor and delta/mu opioid receptor blockade in urethane anaesthetised rats. Glutamic acid decarboxylase (GAD67) and preproenkephalin (PPE) mRNA were found in all regions containing sympathetic premotor neurons, with the medullary raphe and RVMM providing the major GABAergic projections, while the PVN, RVMM and medullary raphe provided the major enkephalinergic projections. Intrathecal injection of bicuculline, a GABAA antagonist, elicited large and prolonged increases in all outflows measured, confirming previous work describing a tonic GABAergic influence on vasomotor tone, and revealing a tonic GABAergic inhibition of interscapular brown adipose tissue temperature. Intrathecal naloxone elicited transient small inhibitory effects only on MAP and HR. Thus GABA acting in the spinal cord plays an important role in the tonic suppression of sympathetic outflows while enkephalin appears to play only a minor role.

  15. GABA A receptor π subunit promotes apoptosis of HTR-8/SVneo trophoblastic cells: Implications in preeclampsia

    PubMed Central

    LU, JUNJIE; ZHANG, QIAN; TAN, DONGMEI; LUO, WENPING; ZHAO, HAI; MA, JING; LIANG, HAO; TAN, YI

    2016-01-01

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter through its receptors in the mature central nervous system. The GABA type A receptor π subunit (GABRP) has been identified in the tissues of the reproductive system, particularly in the uterus. In addition, we have previously detected GABRP expression in both human and mouse placentas. To examine the role of GABRP in trophoblastic cell invasion, we constructed a pIRES2-GABRP-EGFP plasmid which was used for the transfection of a human placental cell line derived from first trimester extravillous trophoblasts (HTR-8/SVneo). The number of invaded cells was decreased by GABRP overexpression. Notably, the decrease in the invasive cell number may be due to the increased apoptosis of the HTR-8/SVneo cells following GABRP transfection, which was further confirmed by flow cytometry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Based on the increased apoptosis of trophoblastic cells in pregnancies complicated by preeclampsia (PE) and the fact that GABRP promotes the apoptosis of trophoblastic cells, we hypothesized that GABRP expression is increased in the placental tissues from patients with PE compared with that in the normal groups and this hypothesis was confirmed by RT-qPCR and immunohistochemical analysis. Taken together, these findings imply that GABRP plays an important role in placentation and this pathway may be a promising molecular target for the development of novel therapeutic strategies for PE. PMID:27221053

  16. The Role of Genetic Sex in Affect Regulation and Expression of GABA-Related Genes Across Species

    PubMed Central

    Seney, Marianne L.; Chang, Lun-Ching; Oh, Hyunjung; Wang, Xingbin; Tseng, George C.; Lewis, David A.; Sibille, Etienne

    2013-01-01

    Although circulating hormones and inhibitory gamma-aminobutyric acid (GABA)-related factors are known to affect mood, considerable knowledge gaps persist for biological mechanisms underlying the female bias in mood disorders. Here, we combine human and mouse studies to investigate sexual dimorphism in the GABA system in the context of major depressive disorder (MDD) and then use a genetic model to dissect the role of sex-related factors in GABA-related gene expression and anxiety-/depressive-like behaviors in mice. First, using meta-analysis of gene array data in human postmortem brain (N = 51 MDD subjects, 50 controls), we show that the previously reported down-regulation in MDD of somatostatin (SST), a marker of a GABA neuron subtype, is significantly greater in women with MDD. Second, using gene co-expression network analysis in control human subjects (N = 214; two frontal cortex regions) and expression quantitative trait loci mapping (N = 170 subjects), we show that expression of SST and the GABA-synthesizing enzymes glutamate decarboxylase 67 (GAD67) and GAD65 are tightly co-regulated and influenced by X-chromosome genetic polymorphisms. Third, using a rodent genetic model [Four Core Genotypes (FCG) mice], in which genetic and gonadal sex are artificially dissociated (N ≥ 12/group), we show that genetic sex (i.e., X/Y-chromosome) influences both gene expression (lower Sst, Gad67, Gad65 in XY mice) and anxiety-like behaviors (higher in XY mice). This suggests that in an intact male animal, the observed behavior represents the outcomes of male genetic sex increasing and male-like testosterone decreasing anxiety-like behaviors. Gonadal sex was the only factor influencing depressive-like behavior (gonadal males < gonadal females). Collectively, these combined human and mouse studies provide mechanistic insight into sexual dimorphism in mood disorders, and specifically demonstrate an unexpected role of male-like factors (XY genetic sex) on

  17. Conformationally sensitive proximity of extracellular loops 2 and 4 of the γ-aminobutyric acid (GABA) transporter GAT-1 inferred from paired cysteine mutagenesis.

    PubMed

    Hilwi, Maram; Dayan, Oshrat; Kanner, Baruch I

    2014-12-01

    The sodium- and chloride-coupled GABA transporter GAT-1 is a member of the neurotransmitter:sodium:symporters, which are crucial for synaptic transmission. Structural work on the bacterial homologue LeuT suggests that extracellular loop 4 closes the extracellular solvent pathway when the transporter becomes inward-facing. To test whether this model can be extrapolated to GAT-1, cysteine residues were introduced at positions 359 and 448 of extracellular loop 4 and transmembrane helix 10, respectively. Treatment of HeLa cells, expressing the double cysteine mutant S359C/K448C with the oxidizing reagent copper(II)(1,10-phenantroline)3, resulted in a significant inhibition of [(3)H]GABA transport. However, transport by the single cysteine mutant S359C was also inhibited by the oxidant, whereas its activity was almost 4-fold stimulated by dithiothreitol. Both effects were attenuated when the conserved cysteine residues, Cys-164 and/or Cys-173, were replaced by serine. These cysteines are located in extracellular loop 2, the role of which in the structure and function of the eukaryotic neurotransmitter:sodium:symporters remains unknown. The inhibition of transport of S359C by the oxidant was markedly reduced under conditions expected to increase the proportion of inward-facing transporters, whereas the reactivity of the mutants to a membrane-impermeant sulfhydryl reagent was not conformationally sensitive. Our data suggest that extracellular loops 2 and 4 come into close proximity to each other in the outward-facing conformation of GAT-1.

  18. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    ERIC Educational Resources Information Center

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  19. Aurintricarboxylic acid structure modifications lead to reduction of inhibitory properties against virulence factor YopH and higher cytotoxicity.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Niedzialkowski, Pawel; Tuszynski, Jack A; Ossowski, Tadeusz; Wozniak, Michal

    2016-10-01

    Yersinia sp. bacteria owe their viability and pathogenic virulence to the YopH factor, which is a highly active bacterial protein tyrosine phosphatase. Inhibition of YopH phosphatase results in the lack of Yersinia sp. pathogenicity. We have previously described that aurintricarboxylic acid inhibits the activity of YopH at nanomolar concentrations and represents a unique mechanism of YopH inactivation due to a redox process. This work is a continuation of our previous studies. Here we show that modifications of the structure of aurintricarboxylic acid reduce the ability to inactivate YopH and lead to higher cytotoxicity. In the present paper we examine the inhibitory properties of aurintricarboxylic acid analogues, such as eriochrome cyanine R (ECR) and pararosaniline. Computational docking studies we report here indicate that ATA analogues are not precluded to bind in the YopH active site and in all obtained binding conformations ECR and pararosaniline bind to YopH active site. The free binding energy calculations show that ECR has a stronger binding affinity to YopH than pararosaniline, which was confirmed by experimental YopH enzymatic activity studies. We found that ATA analogues can reversibly reduce the enzymatic activity of YopH, but possess weaker inhibitory properties than ATA. The ATA analogues induced inactivation of YopH is probably due to oxidative mechanism, as pretreatment with catalase prevents from inhibition. We also found that ATA analogues significantly decrease the viability of macrophage cells, especially pararosaniline, while ATA reveals only slight effect on cell viability. PMID:27562597

  20. Intestinal transport of zinc and folic acid: a mutual inhibitory effect

    SciTech Connect

    Ghishan, F.K.; Said, H.M.; Wilson, P.C.; Murrell, J.E.; Greene, H.L.

    1986-02-01

    Recent observations suggest an inverse relationship between folic acid intake and zinc nutriture and indicate an interaction between folic acid and zinc at the intestinal level. To define that interaction, we designed in vivo and in vitro transport studies in which folic acid transport in the presence of zinc, as well as zinc transport in the presence of folic acid was examined. These studies show that zinc transport is significantly decreased when folate is present in the intestinal lumen. Similarly folic acid transport is significantly decreased with the presence of zinc. To determine whether this intestinal inhibition is secondary to zinc and folate-forming complexes, charcoal-binding studies were performed. These studies indicate that zinc and folate from complexes at pH 2.0, but that at pH 6.0, these complexes dissolve. Therefore, our studies suggest that under normal physiological conditions a mutual inhibition between folate and zinc exists at the site of intestinal transport.

  1. Comparative studies on the inhibitory activities of selected benzoic acid derivatives against secretory phospholipase A2, a key enzyme involved in the inflammatory pathway.

    PubMed

    Dileep, K V; Remya, C; Cerezo, J; Fassihi, A; Pérez-Sánchez, H; Sadasivan, C

    2015-07-01

    Inflammation is considered to be a key factor in major diseases like cancer, Alzheimer's disease, Parkinson's disease, etc. For the past few decades, pharmaceutical companies have explored new effective medications against inflammation. As a part of their detailed studies, many drug targets and drugs have been introduced against inflammation. In the present study, the inhibiting capacities of selected benzoic acid derivatives like gallic acid, vannilic acid, syringic acid and protocatechuic acid against secretory phospholipase A2 (sPLA2), a major enzyme involved in the inflammatory pathway, have been investigated. The detailed in vitro, biophysical and in silico studies carried out on these benzoic acid derivatives revealed that all the selected compounds have a uniform mode of binding in the active site of sPLA2 and are inhibitory in micromolar concentrations. The study also focuses on the non-selective inhibitory activity of an NSAID, aspirin, against sPLA2.

  2. Comparative Mapping of GABA-Immunoreactive Neurons in the Buccal Ganglia of Nudipleura Molluscs.

    PubMed

    Gunaratne, Charuni A; Katz, Paul S

    2016-04-15

    Phylogenetic comparisons of neurotransmitter distribution are important for understanding the ground plan organization of nervous systems. This study describes the γ-aminobutyric acid (GABA)-immunoreactive (GABA-ir) neurons in the buccal ganglia of six sea slug species (Mollusca, Gastropoda, Euthyneura, Nudipleura). In the nudibranch species, Hermissenda crassicornis, Tritonia diomedea, Tochuina tetraquetra, and Dendronotus iris, the number of GABA-ir neurons was highly consistent. Another nudibranch, Melibe leonina, however, contained approximately half the number of GABA-ir neurons. This may relate to its loss of a radula and its unique feeding behavior. The GABA immunoreactivity in a sister group to the nudibranchs, Pleurobranchaea californica, differed drastically from that of the nudibranchs. Not only did it have significantly more GABA-ir neurons but it also had a unique GABA distribution pattern. Furthermore, unlike the nudibranchs, the Pleurobranchaea GABA distribution was also different from that of other, more distantly related, euopisthobranch and panpulmonate snails and slugs. This suggests that the Pleurobranchaea GABA distribution may be a derived feature, unique to this lineage. The majority of GABA-ir axons and neuropil in the Nudipleura were restricted to the buccal ganglia, commissures, and connectives. However, in Tritonia and Pleurobranchaea, we detected a few GABA-ir fibers in buccal nerves that innervate feeding muscles. Although the specific functions of the GABA-ir neurons in the species in this study are not known, the innervation pattern suggests these neurons may play an integrative or regulatory role in bilaterally coordinated behaviors in the Nudipleura. PMID:26355705

  3. Thioperamide, a histamine H3 receptor antagonist, increases GABA release from the rat hypothalamus.

    PubMed

    Yamamoto, Y; Mochizuki, T; Okakura-Mochizuki, K; Uno, A; Yamatodani, A

    1997-06-01

    Using a microdialysis method and a new high performance liquid chromatography (HPLC)-fluorometric method for the detection of gamma-aminobutyric acid (GABA), we investigated the effect of thioperamide, an H3 receptor antagonist, on the GABA content in the dialysate from the anterior hypothalamic area of rats anesthetized with urethane. The addition of thioperamide to the perfusion fluid increased the release of GABA and histamine. Depleting neuronal histamine with alpha-fluoromethylhistidine, a specific inhibitor of histidine decarboxylase, and the administration of immepip, an H3 agonist, had no effect on basal- and thioperamide-induced GABA release. In addition, an infusion of clobenpropit, the most specific H3 receptor antagonist available, did not alter the basal release of GABA. On the other hand, histamine release was decreased by immepip and increased by thioperamide and clobenpropit. Removing Ca2+ from the perfusion fluid did not alter the effect of thioperamide on the GABA release, whereas that on histamine release was abrogated. These results suggest that the effect of thioperamide on GABA release is not mediated by histamine H3 receptors and that thioperamide acts on the transporter to cause an efflux of GABA from neurons and/or glia. Thioperamide is a popular H3 receptor antagonist which has been used applied to many studies. However, results using this compound should be interpreted in consideration of its effects on GABA release.

  4. Differential effects of petit mal anticonvulsants and convulsants on thalamic neurones: GABA current blockade.

    PubMed Central

    Coulter, D. A.; Huguenard, J. R.; Prince, D. A.

    1990-01-01

    1. Currents evoked by applications of gamma-aminobutyric acid (GABA) to acutely dissociated thalamic neurones were analysed by voltage-clamp techniques, and the effects of the anticonvulsant succinimides ethosuximide (ES) and alpha-methyl-alpha-phenylsuccinimide (MPS) and the convulsants tetramethylsuccinimide (TMS), picrotoxin, pentylenetetrazol (PTZ), and bicuculline methiodide were assessed. 2. TMS (1 microM-10 microM) reduced responses to iontophoretically applied GABA, as did picrotoxin (0.1-100 microM), PTZ (1-100 mM) and bicuculline (1-100 microM). 3. ES, in high concentrations (1-10 mM), reduced GABA responses to a lesser extent, and also occluded the reductions in GABA-evoked currents produced by TMS, picrotoxin, and PTZ. ES did not occlude the effects of bicuculline on GABA responses. Therefore, we propose that ES acts as a partial agonist at the picrotoxin GABA-blocking receptor. 4. MPS had no effect on GABA responses (at a concentration of 1 mM), and, like ES, occluded the GABA-blocking actions of TMS, apparently acting as a full antagonist. 5. The anticonvulsant actions of ES and MPS against TMS and PTZ-induced seizures may thus involve two independent mechanisms: (1) the occlusion of TMS and PTZ GABA-blocking effects; and (2) the previously described specific effect of ES and MPS on low-threshold calcium current of thalamic neurones. The latter cellular mechanism may be more closely related to petit mal anticonvulsant activity. PMID:2119843

  5. GABA promotes human β-cell proliferation and modulates glucose homeostasis.

    PubMed

    Purwana, Indri; Zheng, Juan; Li, Xiaoming; Deurloo, Marielle; Son, Dong Ok; Zhang, Zhaoyun; Liang, Christie; Shen, Eddie; Tadkase, Akshaya; Feng, Zhong-Ping; Li, Yiming; Hasilo, Craig; Paraskevas, Steven; Bortell, Rita; Greiner, Dale L; Atkinson, Mark; Prud'homme, Gerald J; Wang, Qinghua

    2014-12-01

    γ-Aminobutyric acid (GABA) exerts protective and regenerative effects on mouse islet β-cells. However, in humans it is unknown whether it can increase β-cell mass and improve glucose homeostasis. To address this question, we transplanted a suboptimal mass of human islets into immunodeficient NOD-scid-γ mice with streptozotocin-induced diabetes. GABA treatment increased grafted β-cell proliferation, while decreasing apoptosis, leading to enhanced β-cell mass. This was associated with increased circulating human insulin and reduced glucagon levels. Importantly, GABA administration lowered blood glucose levels and improved glucose excursion rates. We investigated GABA receptor expression and signaling mechanisms. In human islets, GABA activated a calcium-dependent signaling pathway through both GABA A receptor and GABA B receptor. This activated the phosphatidylinositol 3-kinase-Akt and CREB-IRS-2 signaling pathways that convey GABA signals responsible for β-cell proliferation and survival. Our findings suggest that GABA regulates human β-cell mass and may be beneficial for the treatment of diabetes or improvement of islet transplantation.

  6. Unique insecticide specificity of human homomeric rho 1 GABA(C) receptor.

    PubMed

    Ratra, Gurpreet S; Erkkila, Brian E; Weiss, David S; Casida, John E

    2002-03-24

    Several convulsants and major insecticides block the gamma-aminobutyric acid (GABA)-gated chloride channel in brain on binding to the GABA(A) receptor. The GABA(C) receptor, important in retina and present in brain, is also coupled to a chloride channel and is therefore a potential target for toxicant action examined here in radioligand binding and electrophysiological experiments. Human homomeric rho 1 GABA(C) receptor expressed in human embryonic kidney cells (HEK293) undergoes specific and saturable high-affinity binding of 4-n-[3H]propyl-4' -ethynylbicycloorthobenzoate ([3H]EBOB) using a cyano analog (CNBOB) to determine non-specific binding. This GABA(C) rho 1 receptor is very sensitive to CNBOB and lindane relative to alpha-endosulfan, tert-butylbicyclophosphorothionate, picrotoxinin and fipronil (IC(50) values of 23, 91, 800, 1080, 4000 and >10000 nM, respectively, in displacing [3H]EBOB). A similar potency sequence (except for picrotoxinin) is observed for inhibition of GABA-induced currents of rho 1 receptor expressed in Xenopus oocytes. The present study does not consider rho 2 homomeric and rho 1 rho 2 heteromeric GABA(C) receptors which are known to be more sensitive than rho 1 to picrotoxinin. The inhibitor sensitivity and specificity of this rho 1 GABA(C) receptor differ greatly from those of human homomeric beta 3 and native GABA(A) receptors.

  7. α-Glucosidase inhibitory activities of fatty acids purified from the internal organ of sea cucumber Stichopus japonicas.

    PubMed

    Nguyen, T H; Kim, S M

    2015-04-01

    α-Glucosidase inhibitory activities of the various solvent fractions (n-hexane, CHCl3 , EtOAc, BuOH, and water) of sea cucumber internal organ were investigated. 1,3-Dipalmitolein (1) and cis-9-octadecenoic acid (2) with potent α-glucosidase inhibitory activity were purified from the n-hexane fraction of sea cucumber internal organ. IC50 values of compounds 1 and 2 were 4.45 and 14.87 μM against Saccharomyces cerevisiae α-glucosidase. These compounds mildly inhibited rat-intestinal α-glucosidase. In addition, both compounds showed a mixed competitive inhibition against S. cerevisiae α-glucosidase and were very stable at pH 2 up to 60 min. The KI values of compounds 1 and 2 were 0.48 and 1.24 μM, respectively. Therefore, the internal organ of sea cucumber might be a potential new source of α-glucosidase inhibitors suitably used for prevention of obesity and diabetes mellitus.

  8. An acidic amino acid transmembrane helix 10 residue conserved in the neurotransmitter:sodium:symporters is essential for the formation of the extracellular gate of the γ-aminobutyric acid (GABA) transporter GAT-1.

    PubMed

    Ben-Yona, Assaf; Kanner, Baruch I

    2012-03-01

    GAT-1 mediates transport of GABA together with sodium and chloride in an electrogenic process enabling efficient GABAergic transmission. Biochemical and modeling studies based on the structure of the bacterial homologue LeuT are consistent with a mechanism whereby the binding pocket is alternately accessible to either side of the membrane and which predicts that the extracellular part of transmembrane domain 10 (TM10) exhibits aqueous accessibility in the outward-facing conformation only. In this study we have engineered cysteine residues in the extracellular half of TM10 of GAT-1 and probed their state-dependent accessibility to sulfhydryl reagents. In three out of four of the accessible cysteine mutants, the inhibition of transport by a membrane impermeant sulfhydryl reagent was diminished under conditions expected to increase the proportion of inward-facing transporters, such as the presence of GABA together with the cotransported ions. A conserved TM10 aspartate residue, whose LeuT counterpart participates in a "thin" extracellular gate, was found to be essential for transport and only the D451E mutant exhibited residual transport activity. D451E exhibited robust sodium-dependent transient currents with a voltage-dependence indicative of an increased apparent affinity for sodium. Moreover the accessibility of an endogenous cysteine to a membrane impermeant sulfhydryl reagent was enhanced by the D451E mutation, suggesting that sodium binding promotes an outward-facing conformation of the transporter. Our results support the idea that TM10 of GAT-1 lines an accessibility pathway from the extracellular space into the binding pocket and plays a role in the opening and closing of the extracellular transporter gate.

  9. Studies on the inhibitory effects of caffeoylquinic acids on monocyte migration and superoxide ion production.

    PubMed

    Peluso, G; De Feo, V; De Simone, F; Bresciano, E; Vuotto, M L

    1995-05-01

    Three caffeoylquinic acids, isolated from the Peruvian plants Tessaria integrifolia and Mikania cordifolia that are used medicinally as anti-inflammatory agents, were tested for their activities on monocyte migration and superoxide anion production. 3,5-Di-O-caffeoylquinic and 4,5-di-O-caffeoylquinic acids exhibited an appreciable anti-inflammatory activity in vitro, while the tricaffeoyl derivative was inactive.

  10. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site.

    PubMed

    Snell, Heather D; Gonzales, Eric B

    2015-06-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride's positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound's potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ.

  11. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site

    PubMed Central

    Snell, Heather D.

    2015-01-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride’s positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound’s potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ. PMID:25829529

  12. Hyperpolarization-independent maturation and refinement of GABA/glycinergic connections in the auditory brain stem.

    PubMed

    Lee, Hanmi; Bach, Eva; Noh, Jihyun; Delpire, Eric; Kandler, Karl

    2016-03-01

    During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition. PMID:26655825

  13. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids.

    PubMed

    Luís, Ângelo; Silva, Filomena; Sousa, Sónia; Duarte, Ana Paula; Domingues, Fernanda

    2014-01-01

    Staphylococcus aureus is a Gram-positive pathogen which is able to form biofilms, exhibiting a more pronounced resistance to antibiotics and disinfectants. The hurdles posed in eradicating biofilms have driven the search for new compounds able to fight these structures. Phenolic compounds constitute one of the most numerous and ubiquitous group of plant secondary metabolites with many biological activities. The aim of the present work was to study the potential antimicrobial and antibiofilm properties of gallic, caffeic, and chlorogenic acids against S. aureus as well to elucidate its mechanism of action. It was concluded that the phenolic acids studied in this work have antistaphylococcal properties. For instance, gallic acid is able to influence the adhesion properties of S. aureus. The phenolic acids tested were also able to inhibit the production of α-hemolysin by this microorganism, with the exception of chlorogenic acid. Regarding its mechanism of action, caffeic acid interferes with the stability of the cell membrane and with the metabolic activity of the cells of S. aureus. PMID:24228999

  14. Inhibitory effects of acidic xylooligosaccharide on stress-induced gastric inflammation in mice.

    PubMed

    Yoshino, Kyoji; Higashi, Naoki; Koga, Kunimasa

    2006-12-01

    The preventive effects of acidic xylooligosaccharide prepared from xylan of corncobs and related sugars on stress-induced gastric inflammation in mice were investigated. Oral administration of acidic xylooligosaccharide and hydrocortisone at doses of 100 and 200 mg/kg body weight significantly reduced the number of bleeding points in the gastric mucosa of mice loaded with cold-restraint stress. Acidic xylooligosaccharide showed concentration-dependent superoxide anion radical-scavenging activity at concentrations of 3.3-4.3 mg/mL and its IC50 was 3.5 mg/mL, although this value is approximately six times that of quercetin. The antioxidant activity of acidic xylooligosaccharide could contribute, in part, to its suppressive activities on stress-induced mouse gastritis. Xylose, xylobiose, xylan, and glucuronic acid showed no significant suppressive activities on mouse gastric inflammation at a dose of 100 mg/kg body weight. These results suggest that an appropriate degree of polymerization of xylan (larger than trimer) is necessary for the activities of acidic xylooligosaccharide.

  15. Functional evidence for ligand-dependent dissociation of thyroid hormone and retinoic acid receptors from an inhibitory cellular factor.

    PubMed Central

    Casanova, J; Helmer, E; Selmi-Ruby, S; Qi, J S; Au-Fliegner, M; Desai-Yajnik, V; Koudinova, N; Yarm, F; Raaka, B M; Samuels, H H

    1994-01-01

    The ligand-binding domains of thyroid hormone (L-triiodothyronine [T3]) receptors (T3Rs), all-trans retinoic acid (RA) receptors (RARs), and 9-cis RA receptors (RARs and RXRs) contain a series of heptad motifs thought to be important for dimeric interactions. Using a chimera containing amino acids 120 to 392 of chicken T3R alpha (cT3R alpha) positioned between the DNA-binding domain of the yeast GAL4 protein and the potent 90-amino-acid transactivating domain of the herpes simplex virus VP16 protein (GAL4-T3R-VP16), we provide functional evidence that binding of ligand releases T3Rs and RARs from an inhibitory cellular factor. GAL4-T3R-VP16 does not bind T3 and does not activate transcription from a GAL4 reporter when expressed alone but is able to activate transcription when coexpressed with unliganded T3R or RAR. This activation is reversed by T3 or RA, suggesting that these receptors compete with GAL4-T3R-VP16 for a cellular inhibitor and that ligand reverses this effect by dissociating T3R or RAR from the inhibitor. A chimera containing the entire ligand-binding domain of cT3R alpha (amino acids 120 to 408) linked to VP16 [GAL4-T3R(408)-VP16] is activated by unliganded receptor as well as by T3. In contrast, GAL4-T3R containing the amino acid 120 to 408 ligand-binding region without the VP16 domain is activated only by T3. The highly conserved ninth heptad, which is involved in heterodimerization, appears to participate in the receptor-inhibitor interaction, suggesting that the inhibitor is a related member of the receptor gene family. In striking contrast to T3R and RAR, RXR activates GAL4-T3R-VP16 only with its ligand, 9-cis RA, but unliganded RXR does not appear to be the inhibitor suggested by these studies. Further evidence that an orphan receptor may be the inhibitor comes from our finding that COUP-TF inhibits activation of GAL4-T3R-VP16 by unliganded T3R and the activation of GAL4-T3R by T3. These and other results suggest that an inhibitory factor

  16. New ambuic acid derivatives from the solid culture of Pestalotiopsis neglecta and their nitric oxide inhibitory activity

    PubMed Central

    Qi, Qiu-Yue; Li, Er-Wei; Han, Jun-Jie; Pei, Yun-Fei; Ma, Ke; Bao, Li; Huang, Ying; Zhao, Feng; Liu, Hong-Wei

    2015-01-01

    Four new ambuic acid derivatives (1–4), and four known derivatives (5–8), were isolated from the solid culture of a plant pathogenic fungus Pestalotiopsis neglecta. Their structures were elucidated by extensive NMR experiments. The absolute configuration of the C-16 secondary alcohol in 1 was deduced via the CD data of the in situ formed [Rh2(OCOCF3)4] complex with the acetonide derivative of 1. The absolute configuration in 3 was assigned by comparison of the experimental and simulated electronic circular dichroism (ECD) spectrum. The NMR data of compound 5 was reported for the first time. In the nitric oxide (NO) inhibition assay, compounds 4, 6 and 7 showed inhibitory activity against the NO production in the lipopolysaccharide (LPS)-induced macrophage with IC50 values of 88.66, 11.20, and 20.80 µM, respectively. PMID:25989228

  17. Antistaphylococcal and biofilm inhibitory activities of acetyl-11-keto-β-boswellic acid from Boswellia serrata

    PubMed Central

    2011-01-01

    Background Boswellic acids are pentacyclic triterpenes, which are produced in plants belonging to the genus Boswellia. Boswellic acids appear in the resin exudates of the plant and it makes up 25-35% of the resin. β-boswellic acid, 11-keto-β-boswellic acid and acetyl-11-keto-β-boswellic acid have been implicated in apoptosis of cancer cells, particularly that of brain tumors and cells affected by leukemia or colon cancer. These molecules are also associated with potent antimicrobial activities. The present study describes the antimicrobial activities of boswellic acid molecules against 112 pathogenic bacterial isolates including ATCC strains. Acetyl-11-keto-β-boswellic acid (AKBA), which exhibited the most potent antibacterial activity, was further evaluated in time kill studies, postantibiotic effect (PAE) and biofilm susceptibility assay. The mechanism of action of AKBA was investigated by propidium iodide uptake, leakage of 260 and 280 nm absorbing material assays. Results AKBA was found to be the most active compound showing an MIC range of 2-8 μg/ml against the entire gram positive bacterial pathogens tested. It exhibited concentration dependent killing of Staphylococcus aureus ATCC 29213 up to 8 × MIC and also demonstrated postantibiotic effect (PAE) of 4.8 h at 2 × MIC. Furthermore, AKBA inhibited the formation of biofilms generated by S. aureus and Staphylococcus epidermidis and also reduced the preformed biofilms by these bacteria. Increased uptake of propidium iodide and leakage of 260 and 280 nm absorbing material by AKBA treated cells of S aureus indicating that the antibacterial mode of action of AKBA probably occurred via disruption of microbial membrane structure. Conclusions This study supported the potential use of AKBA in treating S. aureus infections. AKBA can be further exploited to evolve potential lead compounds in the discovery of new anti-Gram-positive and anti-biofilm agents. PMID:21406118

  18. Antioxidant and nitric oxide production inhibitory activities of galacturonyl hydroxamic acid.

    PubMed

    Liu, Yuh-Hwa; Lin, Shyr-Yi; Lee, Chi-Ching; Hou, Wen-Chi

    2008-07-01

    The self-prepared pectin hydroxamic acid has been reported to have antioxidant activities [Yang, S. S., Cheng, K. D., Lin, Y. S., Liu, Y. W., & Hou, W. C. (2004). Pectin hydroxamic acids exhibit antioxidant activities in vitro. Journal of Agricultural and Food Chemistry, 52, 4270-4273]. In this study, the galacturonic acid (GalA), the monomer unit of the pectin polymer, was esterified with acidic methanol (1N HCl) at 4°C with gentle stirring for 5days to get galacturonic acid methyl ester which was further reacted with alkaline hydroxylamine to get galacturonyl hydroxamic acid (GalA-NHOH). The GalA-NHOH was used to test the antioxidant and antiradical activities in the comparison with GalA. The scavenging activities of GalA-NHOH against DPPH radicals (half-inhibition concentration, IC50, was 82μM), hydroxyl radicals detected by electron spin resonance (IC50 was 0.227nM in the comparison with Trolox of 0.433μM), superoxide radicals (IC50 was 830μM) were determined. The protection activities of GalA-NHOH against hydroxyl radicals-mediated calf thymus DNA damages, linoleic acid peroxidation and peroxynitrite-mediated dihydrorhodamine 123 oxidations were also investigated. It was found that the GalA-NHOH exhibited dose-dependently antioxidant activity and few or none was found in GalA. The GalA-NHOH was used to evaluate the suppressed activity of nitric oxide (NO) productions of RAW264.7 cells in the presence of lipopolysaccharide (LPS, 100ng/ml) as inducers. It was found that GalA-NHOH (0.02-0.1mg/ml) could dose-dependently suppress the NO productions (expressed as nitrite concentrations) in RAW264.7 cells without significant cytotoxicity.

  19. Inhibitory effects of bile acids and synthetic farnesoid X receptor agonists on rotavirus replication.

    PubMed

    Kim, Yunjeong; Chang, Kyeong-Ok

    2011-12-01

    Rotaviruses (group A rotaviruses) are the most important cause of severe gastroenteritis in infants and children worldwide. Currently, an antiviral drug is not available and information on therapeutic targets for antiviral development is limited for rotavirus infection. Previously, it was shown that lipid homeostasis is important in rotavirus replication. Since farnesoid X receptor (FXR) and its natural ligands bile acids (such as chenodeoxycholic acid [CDCA]) play major roles in cholesterol and lipid homeostasis, we examined the effects of bile acids and synthetic FXR agonists on rotavirus replication in association with cellular lipid levels. In a mouse model of rotavirus infection, effects of oral administration of CDCA on fecal rotavirus shedding were investigated. The results demonstrate the following. First, the intracellular contents of triglycerides were significantly increased by rotavirus infection. Second, CDCA, deoxycholic acid (DCA), and other synthetic FXR agonists, such as GW4064, significantly reduced rotavirus replication in cell culture in a dose-dependent manner. The reduction of virus replication correlated positively with activation of the FXR pathway and reduction of cellular triglyceride contents (r(2) = 0.95). Third, oral administration of CDCA significantly reduced fecal virus shedding in mice (P < 0.05). We conclude that bile acids and FXR agonists play important roles in the suppression of rotavirus replication. The inhibition mechanism is proposed to be the downregulation of lipid synthesis induced by rotavirus infection.

  20. Adhesive Properties and Acid-Forming Activity of Lactobacilli and Streptococci Under Inhibitory Substances, Such as Nitrates.

    PubMed

    Hakobyan, L; Harutyunyan, K; Harutyunyan, N; Melik-Andreasyan, G; Trchounian, A

    2016-06-01

    One of the main requirements for probiotics is their ability to survive during passage through gastrointestinal tract and to maintain their activity at different adverse conditions. The aim of the study was to look for the strains of lactobacilli and streptococci with high adhesive properties even affected by inhibitory substances, such as nitrates (NO3 (-)). To study the adhesion properties hemagglutination reaction of bacterial cells with red blood cells of different animals and humans was used. The acid formation ability of bacteria was determined by the method of titration after 7 days of incubation in the sterile milk. These properties were investigated at different concentrations of NO3 (-). The high concentration (mostly ≥2.0 %) NO3 (-) inhibited the growth of both lactobacilli and streptococci, but compared with streptococcal cultures lactobacilli, especially Lactobacillus acidophilus Ep 317/402, have shown more stability and higher adhesive properties. In addition, the concentrations of NO3 (-) of 0.5-2.0 % decreased the acid-forming activity of the strains, but even under these conditions they coagulated milk and, in comparison to control, formed low acidity in milk. Thus, the L. acidophilus Ep 317/402 with high adhesive properties has demonstrated a higher activity of NO3 (-) transformation.

  1. [Ammonia and GABA-ergic neurotransmission in pathogenesis of hepatic encephalopathy].

    PubMed

    Helewski, Krzysztof; Kowalczyk-Ziomek, Grazyna; Konecki, Janusz

    2003-01-01

    Pathogenesis of hepatic encephalopathy has not been fully revealed and there are many factors which may affect its development. Ammonia and changes in GABA-ergic neurotransmission seem to be the most essential of these factors. Hepatic encephalopathy is frequently, though not always, accompanied by elevated blood ammonia level. Due to the changes in permeability of blood-brain barrier the ammonia level in the brain also increases which results in both stimulating and inhibitory neurotransmission disturbances. Ammonia also affects abnormal interaction of metabolic neurones and astrocytes as well as glutamine-serotonin balance. Another essential factor affecting hepatic encephalopathy development are disturbances in GABA-ergic neurotransmission connected with GABAA receptor complex. When the liver is damaged GABA-ergic neurotransmission increases due to a higher GABA level, natural benzodiazepine receptor agonists as well as neurosteroids synthesised in astrocytes. Many studies point to the fact that ammonia and GABA-ergic neurotransmission disturbances interrelate with each other. There is a concept saying that both these factors cause hepatic encephalopathy. Ammonia may indirectly increase GABA-ergic neurotransmission and also inhibit the function of the central nervous system by synergistic activity with benzodiazepine receptor ligands. So far it is not known whether GABA-ergic neurotransmission is affected by ammonia only or by other factors as well. PMID:15058165

  2. Genetic association of ErbB4 and Human Cortical GABA levels in-vivo

    PubMed Central

    Marenco, Stefano; Geramita, Matthew; van der Veen, Jan Willem; Barnett, Alan S.; Kolachana, Bhaskar; Shen, Jun; Weinberger, Daniel R.; Law, Amanda J.

    2011-01-01

    NRG1-ErbB4 signaling controls inhibitory circuit development in the mammalian cortex through ErbB4 dependent regulation of GABAergic interneuron connectivity. Common genetic variation in ErbB4 (rs7598440) has been associated with ErbB4 messenger RNA levels in the human cortex and risk for schizophrenia. Recent work demonstrates that Erbb4 is expressed exclusively on inhibitory interneurons, where its presence on parvalbumin positive cells mediates the effects of NRG1 on inhibitory circuit formation in the cortex. We therefore hypothesized that genetic variation in ErbB4 at rs7598440 would impact indices of GABA concentration in the human cortex. We tested this hypothesis in 116 healthy volunteers by measuring GABA and GLX (glutamate + glutamine) with proton magnetic resonance spectroscopy (MRS) in the dorsal anterior cingulate gyrus. ErbB4 rs7598440 genotype significantly predicted cortical GABA concentration (p=0.014), but not GLX (p=0.51), with A allele carriers having higher GABA as predicted by their impact on ErbB4 expression. These data establish an association of ErbB4 and GABA in human brain and have implications for understanding the pathogenesis of schizophrenia and other psychiatric disorders. PMID:21832192

  3. The interleukin-18 inhibitory activities of echinocystic acid and its saponins from Impatiens pritzellii var. hupehensis.

    PubMed

    Zhou, Xue-Feng; Tang, Lan; Zhang, Peng; Zhaod, Xiao-Ya; Pi, Hui-Fang; Zhang, Yong-Hui; Ruan, Han-Li; Liu, Yonghong; Wu, Ji-Zhou

    2009-01-01

    Echinocystic acid (1), an echinocystic acid saponin, 2, and four of its ester saponins, 3-6, obtained from the active fraction of Impatiens pritzellii var. hupehensis, an traditional Chinese medicine for rheumatoid arthritis, were investigated for their effects on lipopolysaccharide (LPS)-induced interleukin (IL)-18 in human peripheral blood mononuclear cells. Three of them, 1, 2 and 6, showed obvious activity to inhibit the production of IL-18, especially the ester saponins with a sugar chain at C-28, 6. Structure-activity relationships are discussed in brief.

  4. Role of proline and GABA in sexual reproduction of angiosperms.

    PubMed

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance.

  5. Role of proline and GABA in sexual reproduction of angiosperms

    PubMed Central

    Biancucci, Marco; Mattioli, Roberto; Forlani, Giuseppe; Funck, Dietmar; Costantino, Paolo; Trovato, Maurizio

    2015-01-01

    Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance. PMID:26388884

  6. The inhibitory efficacy of methylseleninic acid against colon cancer xenografts in C57BL/6 mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data indicate that methylselenol is a critical selenium (Se) metabolite for anticancer activity in vivo. We tested the hypoththesis that oral dosing methylseleninic acid (MSeA), a methylselenol precursor, inhibits the growth of colon cancer xenografts in C57BL/6 mice fed a Se adequate diet. In this...

  7. Inhibitory activities of omega-3 Fatty acids and traditional african remedies on keloid fibroblasts.

    PubMed

    Olaitan, Peter B; Chen, I-Ping; Norris, James E C; Feinn, Richard; Oluwatosin, Odunayo M; Reichenberger, Ernst J

    2011-04-01

    Keloids develop when scar tissue responds to skin trauma with proliferative fibrous growths that extend beyond the boundaries of the original wound and progress for several months or years. Keloids most frequently occur in individuals of indigenous sub-Saharan African origin. The etiology for keloids is still unknown and treatment can be problematic as patients respond differently to various treatment modalities. Keloids have a high rate of recurrence following surgical excision. Some West African patients claim to have had successful outcomes with traditional African remedies-boa constrictor oil (BCO) and shea butter-leading the authors to investigate their effects on cultured fibroblasts. The effects of emulsions of BCO, fish oil, isolated omega-3 fatty acids, and shea butter were tested in comparison to triamcinolone regarding inhibition of cell growth in keloid and control fibroblast cultures. In a series of controlled studies, it was observed that fish oil and BCO were more effective than triamcinolone, and that cis-5, 8, 11, 14, 17-eicosapentaenoic acid was more effective than -linolenic acid. While cell counts in control cultures continuously decreased over a period of 5 days, cell counts in keloid cultures consistently declined between day 1 and day 3, and then increased between day 3 and day 5 for all tested reagents except for fish oil. These results suggest that oils rich in omega-3 fatty acids may be effective in reducing actively proliferating keloid fibroblasts. Additional studies are warranted to investigate whether oils rich in omega-3 fatty acids offer effective and affordable treatment for some keloid patients, especially in the developing world.

  8. Acute Immobilization Stress Modulate GABA Release from Rat Olfactory Bulb: Involvement of Endocannabinoids—Cannabinoids and Acute Stress Modulate GABA Release

    PubMed Central

    Delgado, Alejandra; Jaffé, Erica H.

    2011-01-01

    We studied the effects of cannabinoids and acute immobilization stress on the regulation of GABA release in the olfactory bulb. Glutamate-stimulated 3H-GABA release was measured in superfused slices. We report that cannabinoids as WIN55, 212-2, methanandamide, and 2-arachidonoylglycerol were able to inhibit glutamate- and KCl-stimulated 3H-GABA release. This effect was blocked by the CB1 antagonist AM281. On the other hand, acute stress was able per se to increase endocannabinoid activity. This effect was evident since the inhibition of stimulated GABA release by acute stress was reversed with AM281 and tetrahydrolipstatin. Inhibition of the endocannabinoid transport or its catabolism showed reduction of GABA release, antagonized by AM281 in control and stressed animals. These results point to endocannabinoids as inhibitory modulators of GABA release in the olfactory bulb acting through an autocrine mechanism. Apparently, stress increases the endocannabinoid system, modulating GABAergic synaptic function in a primary sensory organ. PMID:21785597

  9. Actions of insecticides on the insect GABA receptor complex

    SciTech Connect

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J. )

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.

  10. Cytoskeletal rearrangement and Src and PI-3K-dependent Akt activation control GABA(B)R-mediated chemotaxis.

    PubMed

    Barati, Michelle T; Lukenbill, Janice; Wu, Rui; Rane, Madhavi J; Klein, Jon B

    2015-06-01

    The γ-amino butyric acid (GABA) type B receptors (GABA(B)R) function as chemoattractant receptors in response to GABA(B)R agonists in human neutrophils. The goal of this study was to define signaling mechanisms regulating GABA(B)R-mediated chemotaxis and cytoskeletal rearrangement. In a proteomic study we identified serine/threonine kinase Akt, tyrosine kinases Src and Pyk2, microtubule regulator kinesin and microtubule affinity-regulating kinase (MARK) co-immunoprecipitating with GABA(B)R. To define the contributions of these candidate signaling events in GABA(B)R-mediated chemotaxis, we used rat basophilic leukemic cells (RBL-2H3 cells) stably transfected with human GABA(B1b) and GABA(B2) receptors. The GABA(B)R agonist baclofen induced Akt phosphorylation and chemotaxis by binding to its specific GABA(B)R since pretreatment of cells with CGP52432, a GABA(B)R antagonist, blocked such effects. Moreover, baclofen induced Akt phosphorylation was shown to be dependent upon PI-3K and Src kinases. Baclofen failed to stimulate actin polymerization in suspended RBL cells unless exposed to a baclofen gradient. However, baclofen stimulated both actin and tubulin polymerization in adherent RBL-GABA(B)R cells. Blockade of actin and tubulin polymerization by treatment of cells with cytochalasin D or nocodazole respectively, abolished baclofen-mediated chemotaxis. Furthermore, baclofen stimulated Pyk2 and STAT3 phosphorylation, both known regulators of cell migration. In conclusion, GABA(B)R stimulation promotes chemotaxis in RBL cells which is dependent on signaling via PI3-K/Akt, Src kinases and on rearrangement of both microtubules and actin cytoskeleton. These data define mechanisms of GABA(B)R-mediated chemotaxis which may potentially be used to therapeutically regulate cellular response to injury and disease.

  11. Phytogrowth-inhibitory activities of sulfur-containing compounds. II. The inhibitory activities of thiosalicylic acid and dihydro-2(3H)-thiophenone-related compounds on plant growth.

    PubMed

    Inamori, Y; Muro, C; Yoshioka, M; Yamada, M; Tsujibo, H; Kusano, G; Watanabe, M; Fujimoto, M

    1993-08-01

    Thiosalicylic acid (I) showed rather strong inhibitory activity on the growth of roots of all plants treated except Abelmoschus esculentus Moench at the concentration of 5.0 x 10(-4) M. This compound strongly inhibited the growth of the root of Echinochloa utilis Ohwi et Yabuno even at the low concentration of 5.0 x 10(-5) M. Dihydro-2(3H)-thiophenone (VII) also exhibited inhibitory activity on the growth of roots of all plants treated except Glycine max Merrill. Both compounds inhibited the germination of seeds of some plants at the concentration of 1.0 x 10(-3) M. In I-related compounds (I-V), methyl acetylthiosalicylate (IV) had the strongest inhibitory activity, while in VII-related compounds (VII-XI), 4-hydroxy-2(5H)-thiophenone (VIII) showed the most potent inhibitory activity. The amount of chlorophyll in the cotyledon of Brassica campestris L. subsp. rapa Hook. f. et Anders treated with all compounds except tetrahydrothiophene (XI) was lower than that of the control group.

  12. Microperfusion of 3-MPA into the brain augments GABA

    PubMed Central

    Mayer, Andrew P.; Osorio, Ivan; Lunte, Craig E.

    2014-01-01

    In vivo effects of microperfusion of a GABA synthesis inhibitor (3-MPA) into the striatum and hippocampus on amino acid concentrations and electrical neuronal activity were investigated. Paradoxical elevations in GABA in the striatum (5-fold in anesthetized and 50-fold in awake rats) and hippocampus (2-fold in anesthetized and 15-fold in awake rats) were documented under steady-state concentrations of 3-MPA along with expected increases in glutamate (a 15-fold increase and a 250-fold increase in the striatum of anesthetized and awake rats, respectively; a 7-fold increase and a 25-fold increase in the hippocampus of anesthetized and awake rats, respectively). There was no clear epileptiform or seizure activity. Explanations for the paradoxical increase in GABA are offered, and emphasis is placed on the dependency of disinhibition on the model in which its effects are studied as well as on the prevailing level of activation of the probed network. PMID:24094842

  13. Intracellular calcium ions decrease the affinity of the GABA receptor.

    PubMed

    Inoue, M; Oomura, Y; Yakushiji, T; Akaike, N

    Intracellular free Ca2+ [( Ca2+]i) plays a crucial role in the transduction of extracellular signals. It has been implicated in the modulation of light sensitivity in Limulus photoreceptors and in the efficacy of synaptic transmission; calcium ion fluxes are also involved in the postsynaptic facilitation of nicotinic transmission seen in sympathetic ganglia, and in activation of the acetylcholine (ACh) receptor. [Ca2+]i is also a second messenger for many biologically active substances. We recorded neuronal activities of sensory neurones from the bullfrog (Rana catesbiana), using the suction pipette method and a 'concentration clamp' technique to apply gamma-aminobutyric acid (GABA) to the cell. We report the first evidence that [Ca2+]i suppresses the GABA-activated Cl- conductance, by decreasing the apparent affinity of the GABA receptor. PMID:2431316

  14. Low doses of alcohol potentiate GABA sub B inhibition of spontaneous activity of hippocampal CA1 neurons in vivo

    SciTech Connect

    Criado, J.R.; Thies, R. )

    1991-03-11

    Low doses of alcohol facilitate firing of hippocampal neurons. Such doses also enhance the inhibitory actions of GABA. Alcohol is known to potentiate inhibition via GABA{sub A} receptors. However, the effects of alcohol on GABA{sub B} receptor function are not understood. Spontaneous activity of single units was recorded from CA1 neurons of male rats anesthetized with 1.0% halothane. Electrical recordings and local application of drugs were done with multi-barrel pipettes. CA1 pyramidal neurons fired spontaneous bursts of action potentials. Acute alcohol decreased the interval between bursts, a mild excitatory action. Alcohol also more than doubled the period of complete inhibition produced by local application of both GABA and baclofen. These data suggest that GABA{sub B}-mediated inhibition is also potentiated by low doses of alcohol.

  15. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  16. Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids.

    PubMed

    Abdel-Salam, Omar

    2016-05-01

    Cannabis sativa has long been known for its psychotropic effect. Only recently with the discovery of the cannabinoid receptors, their endogenous legends and the enzymes responsible for their synthesis and degradation, the role of this 'endocannabinoid system' in different pathophysiologic processes is beginning to be delineated. There is evidence that CB1 receptor stimulation with synthetic cannabinoids or Cannabis sativa extracts rich in Δ(9)-tetrahydrocannabinol inhibit gastric acid secretion in humans and experimental animals. This is specially seen when gastric acid secretion is stimulated by pentagastrin, carbachol or 2-deoxy-d-glucose. Cannabis and/or cannabinoids protect the gastric mucosa against noxious challenge with non-steroidal anti-inflammatory drugs, ethanol as well as against stress-induced mucosal damage. Cannabis/cannabinoids might protect the gastric mucosa by virtue of its antisecretory, antioxidant, anti-inflammatory, and vasodilator properties. PMID:27261847

  17. Gastric acid inhibitory and gastric protective effects of Cannabis and cannabinoids.

    PubMed

    Abdel-Salam, Omar

    2016-05-01

    Cannabis sativa has long been known for its psychotropic effect. Only recently with the discovery of the cannabinoid receptors, their endogenous legends and the enzymes responsible for their synthesis and degradation, the role of this 'endocannabinoid system' in different pathophysiologic processes is beginning to be delineated. There is evidence that CB1 receptor stimulation with synthetic cannabinoids or Cannabis sativa extracts rich in Δ(9)-tetrahydrocannabinol inhibit gastric acid secretion in humans and experimental animals. This is specially seen when gastric acid secretion is stimulated by pentagastrin, carbachol or 2-deoxy-d-glucose. Cannabis and/or cannabinoids protect the gastric mucosa against noxious challenge with non-steroidal anti-inflammatory drugs, ethanol as well as against stress-induced mucosal damage. Cannabis/cannabinoids might protect the gastric mucosa by virtue of its antisecretory, antioxidant, anti-inflammatory, and vasodilator properties.

  18. Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response.

    PubMed

    Scholz, Sandra S; Reichelt, Michael; Mekonnen, Dereje W; Ludewig, Frank; Mithöfer, Axel

    2015-01-01

    The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad1/2 double mutants showing reduced GABA concentrations as well as GABA-enriched triple mutants (gad1/2 x pop2-5) were generated and employed for a systematic study of GABA induction, accumulation and related effects in Arabidopsis leaves upon herbivory. The results demonstrate that GABA accumulation is stimulated by insect feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect (Spodoptera littoralis) herbivory. Higher GABA levels in both plant tissue and artificial dietary supplements in turn affect the performance of feeding larvae. GABA enrichment occurs not only in the challenged but also in adjacent leaf. This induced response is neither dependent on herbivore defense-related phytohormones, jasmonates, nor is jasmonate induction dependent on the presence of GABA. Thus, in Arabidopsis the rapid accumulation of GABA very likely represents a general, direct and systemic defense reaction against insect herbivores. PMID:26734035

  19. Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response

    PubMed Central

    Scholz, Sandra S.; Reichelt, Michael; Mekonnen, Dereje W.; Ludewig, Frank; Mithöfer, Axel

    2015-01-01

    The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad1/2 double mutants showing reduced GABA concentrations as well as GABA-enriched triple mutants (gad1/2 x pop2-5) were generated and employed for a systematic study of GABA induction, accumulation and related effects in Arabidopsis leaves upon herbivory. The results demonstrate that GABA accumulation is stimulated by insect feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect (Spodoptera littoralis) herbivory. Higher GABA levels in both plant tissue and artificial dietary supplements in turn affect the performance of feeding larvae. GABA enrichment occurs not only in the challenged but also in adjacent leaf. This induced response is neither dependent on herbivore defense-related phytohormones, jasmonates, nor is jasmonate induction dependent on the presence of GABA. Thus, in Arabidopsis the rapid accumulation of GABA very likely represents a general, direct and systemic defense reaction against insect herbivores. PMID:26734035

  20. Evaluation of inhibitory effects of caffeic acid and quercetin on human liver cytochrome p450 activities.

    PubMed

    Rastogi, Himanshu; Jana, Snehasis

    2014-12-01

    When herbal drugs and conventional allopathic drugs are used together, they can interact in our body which can lead to the potential for herb-drug interactions. This work was conducted to evaluate the herb-drug interaction potential of caffeic acid and quercetin mediated by cytochrome P450 (CYP) inhibition. Human liver microsomes (HLMs) were added to each selective probe substrates of cytochrome P450 enzymes with or without of caffeic acid and quercetin. IC50 , Ki values, and the types of inhibition were determined. Both caffeic acid and quercetin were potent competitive inhibitors of CYP1A2 (Ki = 1.16 and 0.93 μM, respectively) and CYP2C9 (Ki = 0.95 and 1.67 μM, respectively). Caffeic acid was a potent competitive inhibitor of CYP2D6 (Ki = 1.10 μM) and a weak inhibitor of CYP2C19 and CYP3A4 (IC50  > 100 μM). Quercetin was a potent competitive inhibitor of CYP 2C19 and CYP3A4 (Ki = 1.74 and 4.12 μM, respectively) and a moderate competitive inhibitor of CYP2D6 (Ki = 18.72 μM). These findings might be helpful for safe and effective use of polyphenols in clinical practice. Our data indicated that it is necessary to study the in vivo interactions between drugs and pharmaceuticals with dietary polyphenols. PMID:25196644

  1. In Vitro and In Vivo Assessment of Angiotensin-Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Milk by Lactobacillus casei Strains.

    PubMed

    Bao, Zhijie; Chi, Yujie

    2016-08-01

    Angiotensin-converting enzyme (ACE) inhibitory activity of fermented soybean milk (FSM) by Lactobacillus casei strains in vitro was investigated in this study. Effects of fermented soybean milk administration by gavage on systolic blood pressure and diastolic blood pressure was also evaluated in spontaneously hypertensive rats (SHR) rats and Wistar-Kyoto (WKY) rats. Results showed that, CICC 20280 and CICC 23184 FSM showed high ACE inhibitory activity in vitro test and ACE inhibitory activity of CICC 23184 FSM was higher than CICC 20280 FSM. The bioactive substances of FSM were peptide and γ-aminobutyric acid (GABA). Their contents in CICC 20280 FSM and CICC 23184 FSM were 3.97 ± 0.67 mg/ml (peptide), 1.71 ± 0.36 mg/ml (GABA) and 5.17 ± 0.22 mg/ml (peptide), 1.57 ± 0.21 mg/ml (GABA), respectively. Moreover, CICC 20280 and CICC 23184 FSM administration by gavage could effectively lower the blood pressure of SHR to a normal level, while there was no effect on blood pressure of WKY rats. This result indicated that the bioactive substances could play an antihypertensive role when the blood pressure was not within the normal levels (high levels). PMID:27139252

  2. Does extracellular calcium determine what pool of GABA is the target for alpha-latrotoxin?

    PubMed

    Storchak, L G; Linetska, M V; Himmelreich, N H

    2002-04-01

    Presynaptic neurotoxin alpha-latrotoxin, from the venom of Latrodectus mactans tredecimguttatus, causes massive [(3)H]GABA release from rat brain synaptosomes, irrespective of calcium presence in the extracellular medium. Whether the binding of alpha-latrotoxin to Ca(2+)-dependent (neurexin 1 alpha) or to Ca(2+)-independent (latrophilin) receptor triggers [(3)H]GABA release by the same mechanisms or different ones, inducing either exocytotic process or outflow by mobile membrane GABA transporter, is unknown. We examined alpha-latrotoxin-evoked [(3)H]GABA release from synaptosomes which cytosolic [(3)H]GABA pool was depleted either by applying competitive inhibitors of the GABA transporter, nipecotic acid and 2,4-diaminobutyric acid, or by permeation with digitonin. We also compared the effect of the GABA transporter inhibitors on depolarisation-evoked and alpha-latrotoxin-evoked [(3)H]GABA release using as depolarising agents 4-aminopyridine and high KCl in the Ca(2+)-containing and in Ca(2+)-free medium, respectively. Incubation of synaptosomes with nipecotic acid induced the essential acceleration of unstimulated [(3)H]GABA release and deep inhibition of high KCl-evoked Ca(2+)-independent [(3)H]GABA release. In contrast, at the similar conditions the effect of alpha-latrotoxin was greatly augmented with respect to the control response. Another way to assay what GABA pool was involved in alpha-latrotoxin-induced release lays in an analysis of the effects of depolarisation and alpha-latrotoxin in consecutive order. The preliminary 4-aminopyridine-stimulated [(3)H]GABA release attenuated the toxin effect. But when depolarisation occurred in Ca(2+)-free medium, no influence on alpha-latrotoxin effect was revealed. Employing digitonin-permeated synaptosomes, we have shown that alpha-latrotoxin could stimulate [3H]GABA release in the medium with 1mM EGTA, this effect of the toxin was blocked by concanavalin A and was ATP-dependent. The latter suggests that alpha

  3. Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile.

    PubMed

    Kragholm, Bolette; Kvist, Trine; Madsen, Karsten K; Jørgensen, Lars; Vogensen, Stine B; Schousboe, Arne; Clausen, Rasmus P; Jensen, Anders A; Bräuner-Osborne, Hans

    2013-08-15

    The γ-aminobutyric acid (GABA) transporters (GATs) are essential regulators of the activity in the GABAergic system through their continuous uptake of the neurotransmitter from the synaptic cleft and extrasynaptic space. Four GAT subtypes have been identified to date, each displaying different pharmacological properties and expression patterns. The present study focus on the human betaine/GABA transporter 1 (BGT-1), which has recently emerged as a new target for treatment of epilepsy. However, the lack of selective inhibitors of this transporter has impaired the exploration of this potential considerably. With the objective of identifying novel compounds displaying selectivity for BGT-1, we performed a screening of a small compound library at cells expressing BGT-1 using a [(3)H]GABA uptake assay. The screening resulted in the identification of the compound N-(1-benzyl-4-piperidinyl)-2,4-dichlorobenzamide (BPDBA), a selective inhibitor of the human BGT-1 transporter with a non-competitive profile exhibiting no significant inhibitory activity at the other three human GAT subtypes. The selectivity profile of the compound was subsequently confirmed at cells expressing the four mouse GAT subtypes. Thus, BPDBA constitutes a potential useful pharmacological tool compound for future explorations of the function of the BGT-1 subtype.

  4. Inhibitory effects of onion (Allium cepa L.) extract on proliferation of cancer cells and adipocytes via inhibiting fatty acid synthase.

    PubMed

    Wang, Yi; Tian, Wei-Xi; Ma, Xiao-Feng

    2012-01-01

    Onions (Allium cepa L.) are widely used in the food industry for its nutritional and aromatic properties. Our studies showed that ethyl acetate extract of onion (EEO) had potent inhibitory effects on animal fatty acid synthase (FAS), and could induce apoptosis in FAS over-expressing human breast cancer MDA-MB-231 cells. Furthermore, this apoptosis was accompanied by reduction of intracellular FAS activity and could be rescued by 25 mM or 50 mM exogenous palmitic acids, the final product of FAS catalyzed synthesis. These results suggest that the apoptosis induced by EEO occurs via inhibition of FAS. We also found that EEO could suppress lipid accumulation during the differentiation of 3T3-L1 adipocytes, which was also related to its inhibition of intracellular FAS activity. Since obesity is closely related to breast cancer and obese patients are at elevated risk of developing various cancers, these findings suggested that onion might be useful for preventing obesity-related malignancy.

  5. Pretreatment with anti-oxidants sensitizes oxidatively stressed human cancer cells to growth inhibitory effect of suberoylanilide hydroxamic acid (SAHA)

    PubMed Central

    Mahlum, Amy; Mehraein-Ghomi, Farideh; Kegel, Stacy J.; Guo, Song; Peters, Noel R.; Wilding, George

    2013-01-01

    Purpose Most prostate, colon and breast cancer cells are resistant to growth inhibitory effects of suberoylanilide hydroxamic acid (SAHA). We have examined whether the high oxidative stress in these cells causes a loss of SAHA activity and if so, whether pretreatment with an anti-oxidant can sensitize these cells to SAHA. Methods A DNA-Hoechst dye fluorescence measured cell growth and dichlorfluorescein-diacetate (DCF-DA) dye fluorescence measured reactive oxygen species (ROS). Growth inhibitory and ROS-generating activities of SAHA in androgen-treated or untreated LNCaP cells and PC-3 prostate cancer cells, HT-29 and HCT-115 colon cancer cells, MDA-MB231 breast cancer cells and A549 and NCI-H460 lung cancer cells with or without pretreatment with an anti-oxidant Vitamin E was determined. SAHA activity against LNCaP cells treated with another anti-oxidant N-acetyl cysteine (NAC) was also determined. Liquid chromatography–mass spectrometry (LC–MS) was used to determine intracellular SAHA level. Results SAHA treatment markedly inhibits LNCaP cell growth, when the cells are at a low ROS level. SAHA is, however, inactive against the same cell line, when the cells are at a high ROS level. A significant decrease in SAHA level was observed in LNCaP cells with high ROS after 24-and 72-h treatment when compared to cells with low ROS. Vitamin E pretreatment that reduces cellular ROS, synergistically sensitizes oxidatively stressed LNCaP, PC-3, HT-29, HCT-115 and MDA-MB231 cells, but not the A-549 and NCI-H460 cells with low ROS to SAHA. NAC treatment also sensitized androgen-treated LNCaP cells to the growth inhibitory effects of SAHA. Conclusion Response to SAHA could be improved by combining anti-oxidants such as Vitamin E with SAHA for the treatment of oxidatively stressed human malignancies that are otherwise resistant to SAHA. PMID:20512578

  6. Amino acids as central synaptic transmitters or modulators in mammalian thermoregulation

    SciTech Connect

    Bligh, J.

    1981-11-01

    Of the amino acids that affect the activity of central neurons, aspartate and glutamate (which exert generally excitatory influences) and glycine, taurine, and ..gamma..-aminobutyric acid (GABA) (which generally exert inhibitory influences) are the strongest neurotransmitter candidates. As with other putative transmitter substances, their effects on body temperature when injected into the cerebral ventricles or the preoptic hypothalamus tend to vary within and between species. These effects are uninterpretable without accompanying information regarding effector activity changes and the influences of dose and ambient temperature. Observations necessary for analysis of apparent action have been made in studies of the effects of intracerebroventricular injections of these amino acids into sheep. Aspartate and glutamate have similar excitatory effects on the pathway from cold sensors, whereas taurine and GABA exert inhibitory influences on the neural pathways that activate both heat production and heat loss effectors. Glycine appears to be without effect.

  7. Actions of picrotoxinin analogues on an expressed, homo-oligomeric GABA receptor of Drosophila melanogaster.

    PubMed

    Shirai, Y; Hosie, A M; Buckingham, S D; Holyoke, C W; Baylis, H A; Sattelle, D B

    1995-04-01

    The actions of picrotoxinin and four of its analogues were tested on a Drosophila melanogaster homo-oligomeric GABA (gamma-aminobutyric acid) receptor formed when RDL (resistance to dieldrin) subunits were expressed in Xenopus oocytes. In agreement with previously reported studies on native insect GABA receptors and native expressed vertebrate GABA receptors, acetylation of the bridgehead hydroxyl group (picrotoxinin acetate) greatly reduced the activity of the molecule, but surprisingly, substitution with flourine at the same position also reduced the activity. Conversion of the terminal isopropenyl group to an acetyl (alpha-picrotoxinone) or hydration of the double bond (picrotin) also reduced activity, in agreement with findings for native insect and mammalian receptors. The present results suggest that interactions of convulsants with homo-oligomeric and multimeric GABA receptors are qualitatively similar. Thus, the RDL homo-oligomer exhibits a pharmacological profile for picrotoxinin analogues resembling that of native GABA receptors. PMID:7603613

  8. Inhibitory effects of gallic acid ester derivatives on Saccharomyces cerevisiae multidrug resistance protein Pdr5p.

    PubMed

    Pereira Rangel, Luciana; Fritzen, Márcio; Yunes, Rosendo Augusto; Leal, Paulo César; Creczynski-Pasa, Tânia Beatriz; Ferreira-Pereira, Antônio

    2010-05-01

    Overexpression of the Saccharomyces cerevisiae ABC transporter Pdr5p confers resistance to a range of structurally unrelated xenobiotics. This property allows Pdr5p to be used as a target for novel multidrug resistance reversal reagents or chemosensitizers. Herein, we report the effects of gallic acid derivatives with substitutions either on the ester moiety or in the benzene ring on the activity of Pdr5p. Compounds with a longer side chain (8-16 carbons) resulted in greater inhibition of Pdr5p ATPase. Derivatives with side chains of 8-12 carbons that retained hydroxyl groups on the benzene ring extensively inhibited Pdr5p ATPase activity. These compounds almost completely inhibited the efflux of the Pdr5p fluorescent substrate Rhodamine 6G and at 25 muM chemosensitized the Pdr5p-overexpressing strain AD124567 to fluconazole (0.4 mg mL(-1)). Gallic acid derivatives may be a new class of Pdr5p inhibitors.

  9. Inhibitory effect of glutamic acid on the scale formation process using electrochemical methods.

    PubMed

    Karar, A; Naamoune, F; Kahoul, A; Belattar, N

    2016-08-01

    The formation of calcium carbonate CaCO3 in water has some important implications in geoscience researches, ocean chemistry studies, CO2 emission issues and biology. In industry, the scaling phenomenon may cause technical problems, such as reduction in heat transfer efficiency in cooling systems and obstruction of pipes. This paper focuses on the study of the glutamic acid (GA) for reducing CaCO3 scale formation on metallic surfaces in the water of Bir Aissa region. The anti-scaling properties of glutamic acid (GA), used as a complexing agent of Ca(2+) ions, have been evaluated by the chronoamperometry and electrochemical impedance spectroscopy methods in conjunction with a microscopic examination. Chemical and electrochemical study of this water shows a high calcium concentration. The characterization using X-ray diffraction reveals that while the CaCO3 scale formed chemically is a mixture of calcite, aragonite and vaterite, the one deposited electrochemically is a pure calcite. The effect of temperature on the efficiency of the inhibitor was investigated. At 30 and 40°C, a complete scaling inhibition was obtained at a GA concentration of 18 mg/L with 90.2% efficiency rate. However, the efficiency of GA decreased at 50 and 60°C. PMID:26824779

  10. Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid: inhibitory effect of serum.

    PubMed

    Pacherník, J; Bryja, V; Esner, M; Kubala, L; Dvorák, P; Hampl, A

    2005-01-01

    In both embryonal carcinoma (EC) and embryonic stem (ES) cells, the differentiation pathway entered after treatment with retinoic acid (RA) varies as it is based upon different conditions of culture. This study employs mouse EC cells P19 to investigate the effects of serum on RA-induced neural differentiation occurring in a simplified monolayer culture. Cell morphology and expression of lineage-specific molecular markers document that, while non-neural cell types arise after treatment with RA under serum-containing conditions, in chemically defined serum-free media RA induces massive neural differentiation in concentrations of 10(-9) M and higher. Moreover, not only neural (Mash-1) and neuroectodermal (Pax-6), but also endodermal (GATA-4, alpha-fetoprotein) genes are expressed at early stages of differentiation driven by RA under serum-free conditions. Furthermore, as determined by the luciferase reporter assay, the presence or absence of the serum does not affect the activity of the retinoic acid response element (RARE). Thus, mouse EC cells are able to produce neural cells upon exposure to RA even without culture in three-dimensional embryoid bodies (EBs). However, in contrast to standard EBs-involving protocol(s), neural differentiation in monolayer only takes place when complex signaling from serum factors is avoided. This simple and efficient strategy is proposed to serve as a basis for neurodifferentiation studies in vitro. PMID:15717849

  11. Inhibitory mechanism of dimercaptopropanesulfonic acid (DMPS) in the cellular biomethylation of arsenic.

    PubMed

    Wang, Shuping; Shi, Nan; Geng, Zhirong; Li, Xiangli; Hu, Xin; Wang, Zhilin

    2014-11-01

    Dimercaptopropanesulfonic acid (DMPS) has been approved for the treatment of arsenic poisoning through promoting arsenic excretion and modulating arsenic species. To clarify how DMPS regulates the excretion of arsenic species, we investigated the effects of DMPS on the biomethylation of arsenite (As(3+)) in HepG2 cells. In the experiments, we found that DMPS at low concentrations dramatically decreased the content of arsenic in HepG2 cells and inhibited the cellular methylation of As(3+). Three aspects, the expression of human arsenic (III) methyltransferase (hAS3MT), the accumulation of cellular reactive oxygen species (ROS) and the in vitro enzymatic methylation of arsenic, were considered to explain the reasons for the inhibition of DMPS in arsenic metabolism. The results suggested that DMPS competitively coordinated with As(3+) and monomethylarsonous acid (MMA(3+)) to inhibit the up-regulation of arsenic on the expression of hAS3MT and block arsenic involving in the enzymatic methylation. Moreover, DMPS eliminated arsenic-induced accumulation of ROS, which might contribute to the antidotal effects of DMPS on arsenic posing. PMID:25194983

  12. Inhibitory mechanism of dimercaptopropanesulfonic acid (DMPS) in the cellular biomethylation of arsenic.

    PubMed

    Wang, Shuping; Shi, Nan; Geng, Zhirong; Li, Xiangli; Hu, Xin; Wang, Zhilin

    2014-11-01

    Dimercaptopropanesulfonic acid (DMPS) has been approved for the treatment of arsenic poisoning through promoting arsenic excretion and modulating arsenic species. To clarify how DMPS regulates the excretion of arsenic species, we investigated the effects of DMPS on the biomethylation of arsenite (As(3+)) in HepG2 cells. In the experiments, we found that DMPS at low concentrations dramatically decreased the content of arsenic in HepG2 cells and inhibited the cellular methylation of As(3+). Three aspects, the expression of human arsenic (III) methyltransferase (hAS3MT), the accumulation of cellular reactive oxygen species (ROS) and the in vitro enzymatic methylation of arsenic, were considered to explain the reasons for the inhibition of DMPS in arsenic metabolism. The results suggested that DMPS competitively coordinated with As(3+) and monomethylarsonous acid (MMA(3+)) to inhibit the up-regulation of arsenic on the expression of hAS3MT and block arsenic involving in the enzymatic methylation. Moreover, DMPS eliminated arsenic-induced accumulation of ROS, which might contribute to the antidotal effects of DMPS on arsenic posing.

  13. A novel, rapid, inhibitory effect of insulin on alpha1beta2gamma2s gamma-aminobutyric acid type A receptors.

    PubMed

    Williams, Daniel B

    2008-09-26

    In the CNS, GABA and insulin seem to contribute to similar processes, including neuronal survival; learning and reward; and energy balance and food intake. It is likely then that insulin and GABA may interact, perhaps at the GABA(A) receptor. One such interaction has already been described [Q. Wan, Z.G. Xiong, H.Y. Man, C.A. Ackerley, J. Braunton, W.Y. Lu, L.E. Becker, J.F. MacDonald, Y.T. Wang, Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin, Nature 388 (1997) 686-690]; in it a micromolar concentration of insulin causes the insertion of GABA(A) receptors into the cell membrane, increasing GABA current. I have discovered another effect of insulin on GABA(A) currents. Using a receptor isoform, alpha(1)beta(2)gamma(2s) that is the likely main neuronal GABA(A) isoform expressed recombinantly in Xenopus oocytes, insulin inhibits GABA-induced current when applied simultaneously with low concentrations of GABA. Insulin will significantly inhibit currents induced by EC(30-50) concentrations of GABA by about 38%. Insulin is potent in this effect; IC(50) of insulin was found to be about 4.3 x 10(-10) M. The insulin effect on the GABA dose responses looked like that of an antagonist similar to bicuculline or beta-carbolines. However, an effect of phosphorylation on the GABA(A) receptor from the insulin receptor signal transduction pathway cannot yet be dismissed.

  14. In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects.

    PubMed

    Zhao, Mouming; Zhu, Dashuai; Sun-Waterhouse, Dongxiao; Su, Guowan; Lin, Lianzhu; Wang, Xiao; Dong, Yi

    2014-08-01

    This study aimed to explore the potential of polished adlay, brown adlay, adlay bran, and adlay hull to prevent and treat hyperuricemia. Brown adlay extract effectively decreased the serum uric acid levels of oxonate-induced hyperuricemic rats. Free and bound phenolic extracts from these materials contained significant amounts of phenolics, with free phenolics dominated by chlorogenic acid and p-coumaric acid while bound phenolics dominated by p-coumaric acid and ferulic acid. Free and bound phenolics of adlay bran exhibited significant xanthine oxidase inhibition activities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, oxygen radical absorbance capacities, and superoxide radical scavenging activities. Adlay bran phenolics could be effective xanthine oxidase inhibitors and radical scavengers. p-Coumaric acid is a xanthine oxidase inhibitor with strong superoxide radical scavenging activity. However, ferulic acid is a xanthine oxidase inhibitor with weak superoxide radical scavenging activity. Chlorogenic acid is a superoxide radical scavenger with weak xanthine oxidase inhibitory activity.

  15. Inhibitory effects of lysophosphatidic acid receptor-5 on cellular functions of sarcoma cells.

    PubMed

    Araki, Mutsumi; Kitayoshi, Misaho; Dong, Yan; Hirane, Miku; Ozaki, Shuhei; Mori, Shiori; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2014-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that interacts with G protein-coupled LPA receptors (LPA receptor-1 (LPA1) to LPA6). Here, we investigated the effects of LPA signaling via LPA5 on cellular functions of sarcoma cells by generating Lpar5 overexpressing and Lpar5 knockdown cells from rat osteosarcoma and malignant fibrous histiocytoma cells, respectively. The cell motility activity of Lpar5 overexpressing cells was significantly lower, while Lpar5 knockdown cells showed high cell motility, compared with respective controls. Gelatin zymography showed that LPA5 suppressed the activation of matrix metalloproteinase-2. LPA5 also inhibited the cell motility activity of endothelial cells, correlating with the expression levels of vascular endothelial growth factor genes. These results suggest that LPA signaling via LPA5 negatively regulates the cellular functions of rat sarcoma cells. PMID:24798396

  16. Temperature dependence and GABA modulation of (TH)triazolam binding in the rat brain

    SciTech Connect

    Earle, M.E.; Concas, A.; Wamsley, J.K.; Yamamura, H.I.

    1987-07-27

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of (TH)TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0C; K/sub d/ = 1.96 +/- 0.85 nM at 37C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0C and 1160 +/- 383 fmoles/mg protein at 37C). Saturation studies of (TH)TZ binding in the presence or absence of GABA (100 M) showed a GABA-shift. At 0C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables.

  17. Segregation of Acetylcholine and GABA in the Rat Superior Cervical Ganglia: Functional Correlation

    PubMed Central

    Elinos, Diana; Rodríguez, Raúl; Martínez, Luis Andres; Zetina, María Elena; Cifuentes, Fredy; Morales, Miguel Angel

    2016-01-01

    Sympathetic neurons have the capability to segregate their neurotransmitters (NTs) and co-transmitters to separate varicosities of single axons; furthermore, in culture, these neurons can even segregate classical transmitters. In vivo sympathetic neurons employ acetylcholine (ACh) and other classical NTs such as gamma aminobutyric acid (GABA). Herein, we explore whether these neurons in vivo segregate these classical NTs in the superior cervical ganglia of the rat. We determined the topographical distribution of GABAergic varicosities, somatic GABAA receptor, as well as the regional distribution of the segregation of ACh and GABA. We evaluated possible regional differences in efficacy of ganglionic synaptic transmission, in the sensitivity of GABAA receptor to GABA and to the competitive antagonist picrotoxin (PTX). We found that sympathetic preganglionic neurons in vivo do segregate ACh and GABA. GABAergic varicosities and GABAA receptor expression showed a rostro-caudal gradient along ganglia; in contrast, segregation exhibited a caudo-rostral gradient. These uneven regional distributions in expression of GABA, GABAA receptors, and level of segregation correlate with stronger synaptic transmission found in the caudal region. Accordingly, GABAA receptors of rostral region showed larger sensitivity to GABA and PTX. These results suggest the presence of different types of GABAA receptors in each region that result in a different regional levels of endogenous GABA inhibition. Finally, we discuss a possible correlation of these different levels of GABA modulation and the function of the target organs innervated by rostral and caudal ganglionic neurons. PMID:27092054

  18. Effect of GABA, a bacterial metabolite, on Pseudomonas fluorescens surface properties and cytotoxicity.

    PubMed

    Dagorn, Audrey; Chapalain, Annelise; Mijouin, Lily; Hillion, Mélanie; Duclairoir-Poc, Cécile; Chevalier, Sylvie; Taupin, Laure; Orange, Nicole; Feuilloley, Marc G J

    2013-01-01

    Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA) and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37) to GABA (10-5 M) increased its necrotic-like activity on eukaryotic (glial) cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS) structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains. PMID:23743829

  19. GABA-shunt enzymes activity in GH3 cells with reduced level of PMCA2 or PMCA3 isoform

    SciTech Connect

    Kowalski, Antoni

    2011-08-12

    Highlights: {yields} Suppression of PMCA2 or PMCA3 slows down proliferation of GH3 cells. {yields} PMCA2 suppression lowers the activity of GABA-shunt enzymes. {yields} PMCA3 suppression increases the expression of glutamate decarboxylase 65. {yields} PMCA2 and PMCA3 function appears to be linked to regulation of GABA metabolism. -- Abstract: GABA ({gamma}-aminobutyric acid) is important neurotransmitter and regulator of endocrine functions. Its metabolism involves three enzymes: glutamate decarboxylase (GAD65 and GAD67), GABA aminotransferase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). As many cellular processes GABA turnover can depend on calcium homeostasis, which is maintained by plasma membrane calcium ATPases (PMCAs). In excitable cells PMCA2 and PMCA3 isoforms are particularly important. In this study we focused on GABA-metabolizing enzymes expression and activity in rat anterior pituitary GH3 cells with suppressed expression of PMCA2 or PMCA3. We observed that PMCA3-reduced cells have increased GAD65 expression. Suppression of PMCA2 caused a decrease in total GAD and GABA-T activity. These results indicate that PMCA2 and PMCA3 presence may be an important regulatory factor in GABA metabolism. Results suggest that PMCA2 and PMCA3 function is rather related to regulation of GABA synthesis and degradation than supplying cells with metabolites, which can be potentially energetic source.

  20. Role of medullary GABA signal transduction on parasympathetic reflex vasodilatation in the lower lip.

    PubMed

    Kawakami, So; Izumi, Hiroshi; Masaki, Eiji; Kuchiiwa, Satoshi; Mizuta, Kentaro

    2012-02-01

    In the orofacial area, noxious stimulation of the orofacial structure in the trigeminal region evokes parasympathetic reflex vasodilatation, which occurs via the trigeminal spinal nucleus (Vsp) and the inferior/superior salivatory nucleus (ISN/SSN). However, the neurotransmitter involved in the inhibitory synaptic inputs within these nuclei has never been described. This parasympathetic reflex vasodilatation is suppressed by GABAergic action of volatile anesthetics, such as isoflurane, sevoflurane, and halothane, suggesting that medullary GABAergic mechanism exerts its inhibitory effect on the parasympathetic reflex via an activation of GABA receptors. The aim of the present study was to determine the role of GABA(A) and GABA(B) receptors in the Vsp and the ISN in regulating the lingual nerve (LN)-evoked parasympathetic reflex vasodilatation in the lower lip. Under urethane anesthesia (1g/kg), change in lower lip blood flow elicited by electrical stimulation of the LN was recorded in cervically vago-sympathectomized rats. Microinjection of GABA (10 μM; 0.3 μl/site) into the Vsp or the ISN significantly and reversibly attenuated the LN-evoked parasympathetic reflex vasodilatation. Microinjection of the GABA(A) receptor-selective agonist muscimol (100 μM; 0.3 μl/site) or the GABA(B) receptor-selective agonist baclofen (100 μM; 0.3 μl/site) into the Vsp or the ISN significantly and irreversibly reduced this reflex vasodilatation, and these effects were attenuated by pretreatment with microinjection of each receptor-selective antagonists [GABA(A) receptor selective antagonist bicuculline methiodide (1mM; 0.3 μl/site) or GABA(B) receptor selective antagonist CGP-35348 (1mM; 0.3 μl/site)] into the Vsp or the ISN. Microinjection of these antagonists alone into the Vsp or the ISN had no significant effect on this reflex vasodilatation. In addition, microinjection (0.3 μl/site) of the mixture of muscimol (100 μM) and baclofen (100 μM) into the Vsp or the ISN also

  1. Gramicidin-perforated patch revealed depolarizing effect of GABA in cultured frog melanotrophs

    PubMed Central

    Le Foll, Frank; Castel, Hélène; Soriani, Olivier; Vaudry, Hubert; Cazin, Lionel

    1998-01-01

    In frog pituitary melanotrophs, GABA induces a transient stimulation followed by prolonged inhibition of hormone secretion. This biphasic effect is inconsistent with the elevation of cytosolic calcium and the inhibition of electrical activity also provoked by GABA in single melanotrophs. In the present study, standard patch-clamp configurations and gramicidin-perforated patches were used to investigate the physiological GABAA receptor-mediated response and intracellular chloride concentration ([Cl−]i) in cultured frog melanotrophs. In the gramicidin-perforated patch configuration, 1 μM GABA caused a depolarization associated with an action potential discharge and a slight fall of membrane resistance. In contrast, at a higher concentration (10 μm) GABA elicited a depolarization accompanied by a transient volley of action potentials, followed by a sustained inhibitory plateau and a marked fall of membrane resistance. Isoguvacine mimicked the GABA-evoked responses, indicating a mediation by GABAA receptors. In gramicidin-perforated cells, the depolarizing excitatory effect of 1 μm GABA was converted into a depolarizing inhibitory action when 0.4 μm allopregnanolone was added to the bath solution. After gaining the whole-cell configuration, the amplitude and/or direction of the GABA-evoked current (IGABA) rapidly changed before stabilizing. After stabilization, the reversal potential of IGABA followed the values predicted by the Nernst equation for chloride ions when [Cl−]i was varied. In gramicidin-perforated cells, the steady-state I–V relationships of 10 μm GABA- or isoguvacine-evoked currents yielded reversal potentials of −37.5 ± 1.6 (n= 17) and −38.6 ± 2.0 mV (n= 8), respectively. These values were close to those obtained by using a voltage-ramp protocol in the presence of Na+, K+ and Ca2+ channel blockers. The current evoked by 1 μm GABA also reversed at these potentials. We conclude that, in frog pituitary melanotrophs, chloride is the

  2. Invasive ability of human renal cell carcinoma cell line Caki-2 is accelerated by gamma-aminobutyric acid, via sustained activation of ERK1/2 inducible matrix metalloproteinases.

    PubMed

    Inamoto, Teruo; Azuma, Haruhito; Sakamoto, Takeshi; Kiyama, Satoshi; Ubai, Takanobu; Kotake, Yatsugu; Watanabe, Masahito; Katsuoka, Yoji

    2007-10-01

    Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.

  3. Protein kinase C regulates tonic GABA(A) receptor-mediated inhibition in the hippocampus and thalamus.

    PubMed

    Bright, Damian P; Smart, Trevor G

    2013-11-01

    Tonic inhibition mediated by extrasynaptic GABA(A) receptors (GABA(A) Rs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABA(A) Rs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABA(A) R-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABA(A) R activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABA(A) Rs, which represent a key extrasynaptic GABA(A) R isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABA(A) Rs. The inhibitory effects of PKC activation on α4β2δ GABA(A) R activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC-mediated phosphorylation can be an important physiological regulator of tonic GABA(A) R-mediated inhibition.

  4. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected?

    PubMed Central

    Förstera, Benjamin; Castro, Patricio A.; Moraga-Cid, Gustavo; Aguayo, Luis G.

    2016-01-01

    In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools. PMID:27199667

  5. Zolpidem modulates GABA(A) receptor function in subthalamic nucleus.

    PubMed

    Chen, Lei; Xie, Jun-Xia; Fung, Kam-Shuen; Yung, Wing-Ho

    2007-05-01

    The subthalamic nucleus occupies a position in the indirect pathway of basal ganglia circuit, which plays an important role in the movement regulation. Zolpidem is an imidazopyridine agonist with a high affinity on the benzodiazepine site of GABA(A) receptors containing alpha 1 subunit. Recently, zolpidem has been reported to be useful in treating subgroups of parkinsonian patients. A high density of zolpidem binding sites has been shown in rat subthalamic nucleus. To further investigate the modulation of zolpidem on GABA(A) receptor-mediated inhibitory synaptic current in subthalamic nucleus, whole-cell patch clamp recordings were used in the present study. Zolpidem at 100nM significantly prolonged the decay time and rise time of miniature inhibitory postsynaptic currents, with no effect on the amplitude and frequency. The benzodiazepine antagonist flumazenil could completely block the potentiation induced by zolpidem, confirming the specificity on the benzodiazepine site. At a high concentration of 1 microM, zolpidem significantly increased the decay time, rise time, amplitude and frequency of miniature inhibitory postsynaptic currents. In the behaving rats, unilateral microinjection of zolpidem into subthalamic nucleus induced a significant contralateral rotation. The present findings on the effect of zolpidem in subthalamic nucleus provide a rationale for further investigations into its potential in the treatment of Parkinson's disease. PMID:17337310

  6. Fabrication of the Optical Fiber GABA Sensor Based on the NADP+ -Functionalized Quantum Dots.

    PubMed

    Zhao, Fei; Yoo, Jeongha; Kim, Jongsung

    2016-02-01

    A novel quantum dots (QDs)-based optical fiber biosensor has been developed to detect gamma-amino butyric acid (GABA) directly, via QD fluorescence quenching and recovery. QDs were immobilized on the surface of an optical-fiber through the EDC/Sulfo-NHS coupling reaction. The QDs were functionalized by 3-aminophenyl boronic acid and then by NADP+. The fluorescence of the NADP+ -functionalized QDs was quenched by electron transfer from QDs to NADP+. However, by the metabolic conversion of GABA to succinic acid by GABase, NADP+ was reduced to NADPH, which hindered the electron transfer. As a result, the fluorescence of the QDs could recover. The recovery rate of the fluorescence intensity of QDs depended on the concentration of GABA. This shows the possibility of detection of low concentrations of GABA via measurement of the fluorescence intensity.

  7. Fabrication of the Optical Fiber GABA Sensor Based on the NADP+ -Functionalized Quantum Dots.

    PubMed

    Zhao, Fei; Yoo, Jeongha; Kim, Jongsung

    2016-02-01

    A novel quantum dots (QDs)-based optical fiber biosensor has been developed to detect gamma-amino butyric acid (GABA) directly, via QD fluorescence quenching and recovery. QDs were immobilized on the surface of an optical-fiber through the EDC/Sulfo-NHS coupling reaction. The QDs were functionalized by 3-aminophenyl boronic acid and then by NADP+. The fluorescence of the NADP+ -functionalized QDs was quenched by electron transfer from QDs to NADP+. However, by the metabolic conversion of GABA to succinic acid by GABase, NADP+ was reduced to NADPH, which hindered the electron transfer. As a result, the fluorescence of the QDs could recover. The recovery rate of the fluorescence intensity of QDs depended on the concentration of GABA. This shows the possibility of detection of low concentrations of GABA via measurement of the fluorescence intensity. PMID:27433599

  8. The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide.

    PubMed Central

    Nicoll, R A

    1978-01-01

    1. A variety of compounds which are known to block chloride transport in a variety of systems have been examined for their effects on amino acid and synaptic responses in the frog spinal cord in vitro. 2. A number of monocarboxylic aromatic acids, copper sulphate, and acetazolamide had no effect on any of the responses. 3. Ammonium ions blocked the motoneurone hyperpolarizing responses to all the neutral amino acids. In addition it selectively blocked dorsal root potentials and the action of GABA and beta-alanine on primary afferents. 5. Intracellular recording from dorsal root ganglion cells demonstrated that furosemide had little effect on the reversal potential for the GABA response. These results suggest that furosemide acts primarily by blocking the conductance increase elicited by GABA. 6. The results with furosemide provide indirect evidence that chloride ions are involved in generating the GABA depolarizations of primary afferent terminals and dorsal root potentials. PMID:722571

  9. [PECULIARITIES OF THE CEREBROVASCULAR EFFECTS OF GLUTAMIC ACID].

    PubMed

    Gan'shina, T S; Kurza, E V; Kurdyumov, I N; Maslennikov, D V; Mirzoyan, R S

    2016-01-01

    Experiments on nonlinear rats subjected to global transient cerebral ischemia revealed the ability of glutamic acid to improve cerebral circulation. Consequently, the excitatory amino acid can produce adverse (neurotoxic) and positive (anti-ischemic) effects in cerebral ischemia. The cerebrovascular effect of glutamic acid in cerebral ischemia is attenuated on the background action of the MNDA receptor blocker MK-801 (0.5 mg/kg intravenously) and eliminated by bicuculline. When glutamic acid is combined with the non-competitive MNDA receptor antagonist MK-801, neither one nor another drug shows its vasodilator effect. The results are indicative of the interaction between excitatory and inhibitory systems on the level of cerebral vessels and once again confirm our previous conclusion about the decisive role of GABA(A) receptors in brain vessels in the implementation of anti-ischemic activity of endogenous compounds (melatonin) and well-known pharmacological substances (mexidol, afobazole), and new chemical compounds based on GABA-containing lipid derivatives.

  10. Serotonin as a Modulator of Glutamate- and GABA-Mediated Neurotransmission: Implications in Physiological Functions and in Pathology

    PubMed Central

    Ciranna, L

    2006-01-01

    The neurotransmitter serotonin (5-HT), widely distributed in the central nervous system (CNS), is involved in a large variety of physiological functions. In several brain regions 5-HT is diffusely released by volume transmission and behaves as a neuromodulator rather than as a “classical” neurotransmitter. In some cases 5-HT is co-localized in the same nerve terminal with other neurotransmitters and reciprocal interactions take place. This review will focus on the modulatory action of 5-HT on the effects of glutamate and γ-amino-butyric acid (GABA), which are the principal neurotransmitters mediating respectively excitatory and inhibitory signals in the CNS. Examples of interaction at pre-and/or post-synaptic levels will be illustrated, as well as the receptors involved and their mechanisms of action. Finally, the physiological meaning of neuromodulatory effects of 5-HT will be briefly discussed with respect to pathologies deriving from malfunctioning of serotonin system. PMID:18615128

  11. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro

    PubMed Central

    HUANG, XIN; HUANG, SHILONG; GUO, FENGJIN; XU, FEI; CHENG, PENG; YE, YAPING; DONG, YONGHUI; XIANG, WEI; CHEN, ANMIN

    2016-01-01

    Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate-associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3-E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3-E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin-V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein-2 (BMP-2) and downregulation of the phosphorylation levels in the downstream extracellular signal-regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration-dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses

  12. Inhibitory effect of combinations of caprylic acid and nisin on Listeria monocytogenes in queso fresco.

    PubMed

    Gadotti, Camila; Nelson, Laura; Diez-Gonzalez, Francisco

    2014-05-01

    Queso fresco (QF), a fresh Hispanic cheese has been linked to outbreaks and recalls caused by Listeria contamination. The use antimicrobial treatments may be a potential solution. The goal of this research was to test the addition of nisin (N), caprylic acid (CA) and trans-cinnamaldehyde (CN) as anti-listerial ingredients in QF. QF batches were inoculated with approx. 10(4) CFU/g of 5- or 6-strain mixtures of Listeria monocytogenes and treated with antimicrobials. Samples were stored at 4 °C for three weeks and Listeria counts were determined by plating on PALCAM agar. The impact on the QF's natural indicator microorganisms was also assessed during refrigerated storage. All N and CA combinations (≥0.4 g/kg each) were effective against L. monocytogenes and reduced the final counts by at least 3 log CFU/g after 20 days of storage compared to controls. The levels of most strain mixtures were reduced immediately after treatment and their numbers remained below 10(3) CFU/g during storage. CN (1.2 g/kg) was bacteriostatic against L. monocytogenes, but it did not reduce initial counts. The addition of CN to the combination of N and CA did not enhance their antimicrobial effect. Results indicated that combinations of N and CA could control L. monocytogenes in QF with little impact on the natural flora of the cheese, providing a solution to control post processing L. monocytogenes contamination of QF.

  13. Salvianolic Acid A, as a Novel ETA Receptor Antagonist, Shows Inhibitory Effects on Tumor in Vitro.

    PubMed

    Zhang, Qiao; Wang, Shifeng; Yu, Yangyang; Sun, Shengnan; Zhang, Yuxin; Zhang, Yanling; Yang, Wei; Li, Shiyou; Qiao, Yanjiang

    2016-01-01

    Endothelin-1 (ET-1) autocrine and paracrine signaling modulate cell proliferation of tumor cells by activating its receptors, endothelin A receptor (ETAR) and endothelin B receptor (ETBR). Dysregulation of ETAR activation promotes tumor development and progression. The potential of ETAR antagonists and the dual-ETAR and ETBR antagonists as therapeutic approaches are under preclinical and clinical studies. Salvianolic acid A (Sal A) is a hydrophilic polyphenolic derivative isolated from Salvia miltiorrhiza Bunge (Danshen), which has been reported as an anti-cancer and cardio-protective herbal medicine. In this study, we demonstrate that Sal A inhibits ETAR activation induced by ET-1 in both recombinant and endogenous ETAR expression cell lines. The IC50 values were determined as 5.7 µM in the HEK293/ETAR cell line and 3.14 µM in HeLa cells, respectively. Furthermore, our results showed that Sal A suppressed cell proliferation and extended the doubling times of multiple cancer cells, including HeLa, DU145, H1975, and A549 cell lines. In addition, Sal A inhibited proliferation of DU145 cell lines stimulated by exogenous ET-1 treatment. Moreover, the cytotoxicity and cardio-toxicity of Sal A were assessed in human umbilical vein endothelial cells (HUVEC) and Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which proved that Sal A demonstrates no cytotoxicity or cardiotoxicity. Collectively, our findings indicate that Sal A is a novel anti-cancer candidate through targeting ETAR. PMID:27490540

  14. Salvianolic Acid A, as a Novel ETA Receptor Antagonist, Shows Inhibitory Effects on Tumor in Vitro

    PubMed Central

    Zhang, Qiao; Wang, Shifeng; Yu, Yangyang; Sun, Shengnan; Zhang, Yuxin; Zhang, Yanling; Yang, Wei; Li, Shiyou; Qiao, Yanjiang

    2016-01-01

    Endothelin-1 (ET-1) autocrine and paracrine signaling modulate cell proliferation of tumor cells by activating its receptors, endothelin A receptor (ETAR) and endothelin B receptor (ETBR). Dysregulation of ETAR activation promotes tumor development and progression. The potential of ETAR antagonists and the dual-ETAR and ETBR antagonists as therapeutic approaches are under preclinical and clinical studies. Salvianolic acid A (Sal A) is a hydrophilic polyphenolic derivative isolated from Salvia miltiorrhiza Bunge (Danshen), which has been reported as an anti-cancer and cardio-protective herbal medicine. In this study, we demonstrate that Sal A inhibits ETAR activation induced by ET-1 in both recombinant and endogenous ETAR expression cell lines. The IC50 values were determined as 5.7 µM in the HEK293/ETAR cell line and 3.14 µM in HeLa cells, respectively. Furthermore, our results showed that Sal A suppressed cell proliferation and extended the doubling times of multiple cancer cells, including HeLa, DU145, H1975, and A549 cell lines. In addition, Sal A inhibited proliferation of DU145 cell lines stimulated by exogenous ET-1 treatment. Moreover, the cytotoxicity and cardio-toxicity of Sal A were assessed in human umbilical vein endothelial cells (HUVEC) and Human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), which proved that Sal A demonstrates no cytotoxicity or cardiotoxicity. Collectively, our findings indicate that Sal A is a novel anti-cancer candidate through targeting ETAR. PMID:27490540

  15. Inhibitory effects of lithospermic acid on proliferation and migration of rat vascular smooth muscle cells

    PubMed Central

    Chen, Li; Wang, Wen-yi; Wang, Yi-ping

    2009-01-01

    Aim: To understand the effects of lithospermic acid (LA), a potent antioxidant from the water-soluble extract of Salvia miltiorrhiza, on the migration and proliferation of rat thoracic aorta vascular smooth muscle cells (VSMCs). Methods: VSMC migration, proliferation, DNA synthesis and cell cycle progression were investigated by transwell migration analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, bromodeoxyuridine (BrdU) incorporation assay, and flow cytometric detection, respectively. Intracellular reactive oxygen species (ROS) generation was detected using 2′,7′-dichlorofluorescin diacetate (DCFH-DA). The expression of cyclin D1 protein and matrix metalloproteinase-9 (MMP-9) protein, as well as the phosphorylation state of ERK1/2, were determined using Western blots. The activity of MMP-9 and the expression of MMP-9 mRNA were assessed by gelatin zymography analysis and RT-PCR, respectively. Results: LA (25−100 μmol/L) inhibited both lipopolysaccharide (LPS)- and fetal bovine serum (FBS)-induced ROS generation and ERK1/2 phosphorylation. By down-regulating the expression of cyclin D1 and arresting cell cycle progression at the G1 phase, LA inhibited both VSMC proliferation and DNA synthesis as induced by 5% FBS. Furthermore, LA attenuated LPS-induced VSMC migration by inhibiting MMP-9 expression and its enzymatic activity. Conclusion: LA is able to inhibit FBS-induced VSMC proliferation and LPS-induced VSMC migration, which suggests that LA may have therapeutic effects in the prevention of atherosclerosis, restenosis and neointimal hyperplasia. PMID:19701233

  16. Inhibitory effect of combinations of caprylic acid and nisin on Listeria monocytogenes in queso fresco.

    PubMed

    Gadotti, Camila; Nelson, Laura; Diez-Gonzalez, Francisco

    2014-05-01

    Queso fresco (QF), a fresh Hispanic cheese has been linked to outbreaks and recalls caused by Listeria contamination. The use antimicrobial treatments may be a potential solution. The goal of this research was to test the addition of nisin (N), caprylic acid (CA) and trans-cinnamaldehyde (CN) as anti-listerial ingredients in QF. QF batches were inoculated with approx. 10(4) CFU/g of 5- or 6-strain mixtures of Listeria monocytogenes and treated with antimicrobials. Samples were stored at 4 °C for three weeks and Listeria counts were determined by plating on PALCAM agar. The impact on the QF's natural indicator microorganisms was also assessed during refrigerated storage. All N and CA combinations (≥0.4 g/kg each) were effective against L. monocytogenes and reduced the final counts by at least 3 log CFU/g after 20 days of storage compared to controls. The levels of most strain mixtures were reduced immediately after treatment and their numbers remained below 10(3) CFU/g during storage. CN (1.2 g/kg) was bacteriostatic against L. monocytogenes, but it did not reduce initial counts. The addition of CN to the combination of N and CA did not enhance their antimicrobial effect. Results indicated that combinations of N and CA could control L. monocytogenes in QF with little impact on the natural flora of the cheese, providing a solution to control post processing L. monocytogenes contamination of QF. PMID:24387845

  17. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    PubMed

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity.

  18. A comparative density functional theory study of electronic structure and optical properties of γ-aminobutyric acid and its cocrystals with oxalic and benzoic acid

    NASA Astrophysics Data System (ADS)

    da Silva Filho, J. G.; Freire, V. N.; Caetano, E. W. S.; Ladeira, L. O.; Fulco, U. L.; Albuquerque, E. L.

    2013-11-01

    In this letter, we study the electronic structure and optical properties of the active medicinal component γ-aminobutyric acid (GABA) and its cocrystals with oxalic (OXA) and benzoic (BZA) acid by means of the density functional theory formalism. It is shown that the cocrystallization strongly weakens the zwitterionic character of the GABA molecule leading to striking differences among the electronic band structures and optical absorption spectra of the GABA crystal and GABA:OXA, GABA:BZA cocrystals, originating from distinct sets of hydrogen bonds. Calculated band widths and Δ-sol band gap estimates indicate that both GABA and GABA:OXA, GABA:BZA cocrystals are indirect gap insulators.

  19. Inhibitory effect of fangchinoline on excitatory amino acids-induced neurotoxicity in cultured rat cerebellar granule cells.

    PubMed

    Kim, S D; Oh, S K; Kim, H S; Seong, Y H

    2001-04-01

    Glutamate receptors-mediated excitotoxicity is believed to play a role in the pathophysiology of neurodegenerative diseases. The present study was performed to evaluate the inhibitory effect of fangchinoline, a bis-benzylisoquinoline alkaloid, which has a characteristic as a Ca2+ channel blocker, on excitatory amino acids (EAAs)-induced neurotoxicity in cultured rat cerebellar granule neuron. Fangchinoline (1 and 5 microM) inhibited glutamate (1 mM), N-methyl-D-aspartate (NMDA; 1 mM) and kainate (100 microM)-induced neuronal cell death which was measured by trypan blue exclusion test. Fangchinoline (1 and 5 microM) inhibited glutamate release into medium induced by NMDA (1 mM) and kainate (100 microM), which was measured by HPLC. And fangchinoline (5 microM) inhibited glutamate (1 mM)-induced elevation of intracellular calcium concentration. These results suggest that inhibition of Ca2+ influx by fangchinoline may contribute to the beneficial effects on neurodegenerative effect of glutamate in pathophysiological conditions. PMID:11339637

  20. Inhibitory activities of caffeoylquinic acid derivatives from Ilex kudingcha C.J. Tseng on α-glucosidase from Saccharomyces cerevisiae.

    PubMed

    Xu, Donglan; Wang, Qingchuan; Zhang, Wenqin; Hu, Bing; Zhou, Li; Zeng, Xiaoxiong; Sun, Yi

    2015-04-15

    Polyphenols and caffeoylquinic acid (CQA) derivatives (3-CQA, 4-CQA, 5-CQA, 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA) were prepared from Ilex kudingcha C.J. Tseng, and their effects and mechanisms on the activities of α-glucosidase from Saccharomyces cerevisiae were investigated in the present study. As results, the IC50 values for CQA derivatives were 0.16-0.39 mg/mL, and the inhibition mode of CQA derivatives was noncompetitive. On the basis of fluorescence spectroscopy and circular dichroism spectroscopy data, the binding constants and number of binding sites were calculated to be 10(6)-10(8) M(-1) and 1.42-1.87, respectively. CQA derivatives could bind to the enzyme mainly through hydrophobic interaction, altering the microenvironment and molecular conformation of the enzyme, thus decreasing the catalytic activity. To the authors' knowledge, this is the first report on α-glucosidase inhibitory mechanism by CQA derivatives from I. kudingcha, and the findings suggest a potential use of kudingcha as functional foods for the prevention and treatment of diabetes and related symptoms. PMID:25805337

  1. In Vitro Evaluation of Bacteriocin-Like Inhibitory Substances Produced by Lactic Acid Bacteria Isolated During Traditional Sicilian Cheese Making

    PubMed Central

    Macaluso, Giusi; Fiorenza, Gerlando; Gaglio, Raimondo; Mancuso, Isabella

    2016-01-01

    Bacteriocins are antimicrobial proteins produced by bacteria that inhibit the growth of other bacteria with a bactericidal or bacteriostatic mode of action. Many lactic acid bacteria (LAB) produce a high diversity of different bacteriocins. Bacteriocinogenic LAB are generally recognised as safe (GRAS) and useful to control the frequent development of pathogens and spoilage microorganisms. For this reason they are commonly used as starter cultures in food fermentations. In this study, the authors describe the results of a screening on 699 LAB isolated from wooden vat surfaces, raw milk and traditional Sicilian cheeses, for the production of bacteriocin-like inhibitory substances, by comparing two alternative methods. The antagonistic activity of LAB and its proteinaceous nature were evaluated using the spot-on-the-lawn and the well-diffusion assay (WDA) and the sensitivity to proteolytic (proteinase K, protease B and trypsin), amylolytic (a-amylase) and lipolytic (lipase) enzymes. The indicator strains used were: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis. A total of 223 strains (belonging to the species Enterococcus spp., Lactobacillus spp., Pediococcus spp., Streptococcus spp., Leuconostoc spp. and Lactococcus lactis) were found to inhibit the growth of Listeria monocytogenes by using the spot-on-the-lawn method; only 37 of these were confirmed by using the WDA. The direct addition of bacteriocin-producing cultures into dairy products can be a more practical and economic option for the improvement of the safety and quality of the final product. PMID:27800430

  2. Evidence for defective transfer ribonucleic acid in polymyopathic hamsters and its inhibitory effect on protein synthesis

    PubMed Central

    Bester, André J.; Gevers, Wieland

    1973-01-01

    1. Different reaction steps involved in protein synthesis were studied in skeletal muscles from control and myopathic hamsters. 2. There was no difference between partially purified aminoacyl-tRNA synthetases from myopathic and control animals in yield or catalytic activity, as tested with exogenous deacylated tRNA. 3. However, isolated deacylated tRNA from myopathic muscle was aminoacylated by these synthetases to a lesser extent than that derived from control muscle. 4. Addition of deacylated tRNA isolated from control muscle improved the performance of pH5 enzymes from myopathic muscle in polypeptide synthesis on homologous polyribosomes; tRNA isolated from myopathic animals did not. 5. Preparation of extracts from both types of animals in the presence of the ribonuclease-absorbent bentonite led to an increased capacity of endogenous tRNA to accept amino acids in pH5 enzymes prepared from normal and abnormal tissue, but the difference between the two systems remained the same. 6. Total tRNA nucleotidyltransferase activity, tested with twice-pyrophosphorolysed rat liver tRNA, was identical in both extracts. 7. Added tRNA nucleotidyltransferase incorporated more AMP and CMP into endogenous tRNA with the pH5 enzyme from myopathic muscle than with that from control muscle. 8. Preincubation of deacylated tRNA from myopathic muscle with ATP, CTP and tRNA nucleotidyltransferase more than doubled its subsequent aminoacyl-acceptor activity, and halved the extent of the defect relative to aminoacylation of control tRNA similarly treated. Endogenous tRNA in pH5 enzyme preparations behaved likewise. 9. It is suggested that a 3′-exonuclease in myopathic muscles attacks tRNA molecules in such a way that some of them remain substrates for tRNA nucleotidyltransferase, which may incorporate into RNA not only AMP and CMP, but also GMP. 10. Cell-free protein synthesis in preparations from myopathic hamster muscles is limited by the supply of intact tRNA molecules. PMID:4725037

  3. [Modulation by the GABA of the ventro-oral-pontine reticular REM sleep-inducing neurons].

    PubMed

    Reinoso Suárez, Fernando

    2007-01-01

    From a multidisciplinary study in our laboratory we have compiled numerous findings on the role played by the inhibitory neurotransmitter GABA in the ventral part of the oral pontine reticular nucleus (vRPO), REM sleep induction and maintenance brainstem structure. Functional GABA in the vRPO is located in a few small and scattered neuronal bodies, and in an abundant number of synaptic terminals: 30% of all synaptic terminals in vRPO are GABAergic. These terminals form inhibitory, symmetric synapses on the soma and different segments of the dendritic tree of the vRPO neurons, mainly in those of large diameter. In unitary intracellular studies, in vitro, we have demonstrated that GABA produces hyperpolarization of the vRPO neurons. In vivo experiments in freely moving cats, local microinjections of the GABA(A) receptor agonist muscimol decreased REM sleep. The different densities of GABA-immunoreactions and the diverse and complex morphological ultrastructure of the vRPO GABAergic terminals suggest that they have different origins and physiologic functions. There are GABAergic projections to the vRPO from diencephalic structures related with the other phases of the sleep-wakefulness cycle: wakefulness and non-REM sleep, which may be anatomical substrata for the GABAergic inhibition of the vRPO REM sleep-inducing neurons during these other phases.

  4. Mu opioid receptor modulation of somatodendritic dopamine overflow: GABA and glutamatergic mechanisms

    PubMed Central

    Chefer, V.I.; Denoroy, L.; Zapata, A.; Shippenberg, T.S.

    2009-01-01

    Mu opioid receptor (MOR) regulation of somatodendritic dopamine neurotransmission in the ventral tegmental area (VTA) was investigated using conventional microdialysis in freely moving rats and mice. Reverse dialysis of the MOR agonist, DAMGO (50, 100 μM), into the VTA of rats produced a concentration-dependent increase in dialysate DA concentrations. Basal dopamine overflow in the VTA was unaltered in mice lacking the MOR gene. However, basal GABA overflow in these animals was significantly increased, while glutamate overflow was decreased. Intra-VTA perfusion of DAMGO to wildtype (WT) mice increased dopamine overflow. GABA concentrations were decreased whereas glutamate concentrations in the VTA were unaltered. Consistent with the loss of MOR, no effect of DAMGO was observed in MOR knockout (KO) mice. These data provide the first direct demonstration of tonically active MOR systems in the VTA that regulate basal glutamatergic and GABAergic neurotransmission in this region. We hypothesize that increased GABAergic neurotransmission following constitutive deletion of MOR is due to the elimination of a tonic inhibitory influence of MOR on GABA neurons in the VTA, whereas decreased glutamatergic neurotransmission in MOR KO mice is a consequence of intensified GABA tone on glutamatergic neurons and/or terminals. As a consequence, somatodendritic dopamine release is unaltered. Furthermore, MOR KO exhibit no positive correlation between basal dopamine levels and the glutamate/GABA ratio observed in WT animals. Together our findings indicate a critical role of VTA MOR in maintaining an intricate balance between excitatory and inhibitory inputs to dopaminergic neurons. PMID:19614973

  5. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate.

    PubMed

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  6. Glutamate and GABA activate different receptors and Cl(-) conductances in crab peptide-secretory neurons.

    PubMed

    Duan, S; Cooke, I M

    2000-01-01

    Responses to rapid application of glutamic acid (Glu) and gamma-aminobutyric acid (GABA), 0.01-3 mM, were recorded by whole-cell patch clamp of cultured crab (Cardisoma carnifex) X-organ neurons. Responses peaked within 200 ms. Both Glu and GABA currents had reversal potentials that followed the Nernst Cl(-) potential when [Cl(-)](i) was varied. A Boltzmann fit to the normalized, averaged dose-response curve for Glu indicated an EC(50) of 0.15 mM and a Hill coefficient of 1.05. Rapid (t(1/2) approximately 1 s) desensitization occurred during Glu but not GABA application that required >2 min for recovery. Desensitization was unaffected by concanavalin A or cyclothiazide. N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, quisqualate, and kainate (to 1 mM) were ineffective, nor were Glu responses influenced by glycine (1 microM) or Mg(2+) (0-26 mM). Glu effects were imitated by ibotenic acid (0.1 mM). The following support the conclusion that Glu and GABA act on different receptors: 1) responses sum; 2) desensitization to Glu or ibotenic acid did not diminish GABA responses; 3) the Cl(-)-channel blockers picrotoxin and niflumic acid (0.5 mM) inhibited Glu responses by approximately 90 and 80% but GABA responses by approximately 50 and 20%; and 4) polyvinylpyrrolydone-25 (2 mM in normal crab saline) eliminated Glu responses but left GABA responses unaltered. Thus crab secretory neurons have separate receptors responsive to Glu and to GABA, both probably ionotropic, and mediating Cl(-) conductance increases. In its responses and pharmacology, this crustacean Glu receptor resembles Cl(-)-permeable Glu receptors previously described in invertebrates and differs from cation-permeable Glu receptors of vertebrates and invertebrates.

  7. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate

    PubMed Central

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  8. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors.

    PubMed

    Elmariah, Sarina B; Oh, Eun Joo; Hughes, Ethan G; Balice-Gordon, Rita J

    2005-04-01

    Astrocytes promote the formation and function of excitatory synapses in the CNS. However, whether and how astrocytes modulate inhibitory synaptogenesis are essentially unknown. We asked whether astrocytes regulate the formation of inhibitory synapses between hippocampal neurons during maturation in vitro. Neuronal coculture with astrocytes or treatment with astrocyte-conditioned medium (ACM) increased the number of inhibitory presynaptic terminals, the frequency of miniature IPSCs, and the number and synaptic localization of GABA(A) receptor (GABA(A)R) clusters during the first 10 d in vitro. We asked whether neurotrophins, which are potent modulators of inhibitory synaptic structure and function, mediate the effects of astrocytes on inhibitory synapses. ACM from BDNF- or tyrosine receptor kinase B (TrkB)-deficient astrocytes increased inhibitory presynaptic terminals and postsynaptic GABA(A)R clusters in wild-type neurons, suggesting that BDNF and TrkB expression in astrocytes is not required for these effects. In contrast, although the increase in the number of inhibitory presynaptic terminals persisted, no increase was observed in postsynaptic GABA(A)R clusters after ACM treatment of hippocampal neurons lacking BDNF or TrkB. These results suggest that neurons, not astrocytes, are the relevant source of BDNF and are the site of TrkB activation required for postsynaptic GABA(A)R modulation. These data also suggest that astrocytes may modulate postsynaptic development indirectly by stimulating Trk signaling between neurons. Together, these data show that astrocytes modulate inhibitory synapse formation via distinct presynaptic and postsynaptic mechanisms.

  9. GABA release from mouse axonal growth cones

    PubMed Central

    Gao, Xiao-Bing; van den Pol, Anthony N

    2000-01-01

    Using developing hypothalamic neurons from transgenic mice that express high levels of green fluorescent protein in growing axons, and an outside-out patch from mature neuronal membranes that contain neurotransmitter receptors as a sensitive detector, we found that GABA is released by a vesicular mechanism from the growth cones of developing axons prior to synapse formation. A low level of GABA release occurs spontaneously from the growth cone, and this is substantially increased by evoked action potentials. Neurotransmitters such as acetylcholine can enhance protein kinase C (PKC) activity even prior to synapse formation; PKC activation caused a substantial increase in spontaneous GABA release from the growth cone, probably acting at the axon terminal. These data indicate that GABA is secreted from axons during a stage of neuronal development when GABA is excitatory, and that neuromodulators could alter GABA release from the growing axon, potentially enabling other developing neurons of different transmitter phenotype to modulate the early actions of GABA. PMID:10718743

  10. Molecular and pharmacological properties of GABA-rho subunits from white perch retina.

    PubMed

    Qian, H; Dowling, J E; Ripps, H

    1998-11-01

    Five gamma-aminobutyric acid (GABA)-rho subunits were cloned from a white perch retinal cDNA library and expressed in Xenopus oocytes. The deduced amino acid sequences indicated that all are highly homologous to the GABA-rho subunits cloned from mammalian retinas; two clones (perch-rho 1A and perch-rho 1B) were in the rho 1 family, two (perch-rho 2A and perch-rho 2B) were in the rho 2 family, and one clone has been tentatively identified as a perch-rho 3 subunit. When expressed in Xenopus oocytes, all but one of the subunits (rho 3) formed functional homooligomeric receptors. However, the receptors expressed by each of the GABA-rho subunits displayed unique response properties that distinguished one from the other. For example, receptors formed by perch-rho 1B subunits were more sensitive to GABA than the receptors formed by other GABA-rho subunits, the dose-response curves for the various receptors revealed different Hill coefficients, and there were differences in the kinetics of the GABA-induced currents. In addition, the GABA-mediated current-voltage curve for rho 2 receptors was approximately linear, whereas the responses from rho 1 receptors showed outward rectification. A further division in the properties of the GABA-rho subunits was revealed in their responses to imidazole-4-acetic acid (I4AA); the drug behaved as an antagonist on A-type rho receptors and a partial agonist on the B-type rho receptors. These results suggest that there is a large diversity of GABAC receptors in the vertebrate retina, probably formed by homooligomeric and heterooligomeric combinations of GABA rho subunits, that exhibit different functional properties. PMID:9805275

  11. Acupuncture improves locomotor function by enhancing GABA receptor expression in transient focal cerebral ischemia rats.

    PubMed

    Xu, Qian; Yang, Jing-Wen; Cao, Yan; Zhang, Li-Wen; Zeng, Xiang-Hong; Li, Fang; Du, Si-Qi; Wang, Lin-Peng; Liu, Cun-Zhi

    2015-02-19

    Stroke is the major cause of long-term disability among adults. Recent studies have found that GABAergic inhibitory neurotransmission plays a vital role in ameliorate locomotor damage after ischemic injury. Acupuncture has been widely used to improve locomotor function. However, the underlying mechanisms remain unclear. The present study is designed to investigate whether GABA and GABA receptors are involved in the mechanism underlying acupuncture treatment in rats with middle cerebral artery occlusion (MCAO). One week after acupuncture at JiaJi acupoint, the locomotor function and infarct volumes were tested. Then level of GABA and the expressions of GABAAγ2 and GABABR2 were assessed by high-performance liquid chromatography, immunofluorescence and immunohistochemistry, respectively. Compared with normal group, GABAAγ2 and GABABR2 expressions were decreased in striatum and spinal cord of the MCAO group. After acupuncture, the expressions of the two receptors were increased, but levels of GABA and trafficking protein, kinesin binding 1 (TRAK1), which plays a role in the intracellular transport of GABA receptors, were unchanged. The present study suggests that acupuncture could reverse locomotor function by modulating the expressions of GABA receptors in MCAO rats. PMID:25556683

  12. GABA abnormalities in schizophrenia: A methodological review of in vivo studies